WO2022202493A1 - Printed board, production method for printed board, solid-state imaging device, and electronic device - Google Patents

Printed board, production method for printed board, solid-state imaging device, and electronic device Download PDF

Info

Publication number
WO2022202493A1
WO2022202493A1 PCT/JP2022/011650 JP2022011650W WO2022202493A1 WO 2022202493 A1 WO2022202493 A1 WO 2022202493A1 JP 2022011650 W JP2022011650 W JP 2022011650W WO 2022202493 A1 WO2022202493 A1 WO 2022202493A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
printed circuit
hole
vias
trench
Prior art date
Application number
PCT/JP2022/011650
Other languages
French (fr)
Japanese (ja)
Inventor
真行 原田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022202493A1 publication Critical patent/WO2022202493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/42Plated through-holes or plated via connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a printed circuit board, a printed circuit board manufacturing method, a solid-state imaging device having the printed circuit board, and an electronic device having the solid-state imaging device.
  • a printed circuit board is a three-dimensional electric circuit formed by alternately laminating, for example, an insulating layer made of a glass fiber base material and a wiring layer formed of a copper foil and having a metal pattern formed thereon.
  • the layer acts as an electrolyte because a DC voltage is normally applied between the through-hole vias.
  • an anodic reaction which is an oxidation reaction that releases electrons, occurs at the interface of the through-hole vias on the anode side of the electric field.
  • copper ions are eluted from the through-hole via on the anode side.
  • the eluted copper ions move along the direction of the glass fiber toward the through-hole via on the cathode side due to the Coulomb force and are deposited. Then, dendrites are generated on the substrate surface from the cathode-side through-hole via to the anode-side through-hole via. Also, in the inner layer of the printed circuit board, CAF (Conductive Anodic Filament) is generated along the direction of the glass fibers of the circuit board. Such a phenomenon is called migration. As a result, there is a problem that an electric circuit is formed between the through-hole vias along the direction of the glass fibers of the glass fiber base material, resulting in a short circuit. Details of the migration will be described later.
  • Patent Document 1 discloses that a diffusion barrier layer for the wiring material is provided to prevent the wiring material from diffusing in the insulating film and causing a short circuit between the wirings, thereby improving reliability.
  • a multilayer printed circuit board has a copper film wiring pattern and an insulating layer pattern alternately laminated on a substrate body.
  • a copper diffusion barrier layer is formed between the copper film wiring pattern and the insulating layer pattern to suppress diffusion of copper into the insulating layer pattern.
  • the insulating film pattern is formed of a photosensitive organic insulating film that has a low dielectric constant (relative dielectric constant of 3.5 or less) and changes the etching characteristics of the light-irradiated portion or the plasma-irradiated portion.
  • dielectric constant relative dielectric constant of 3.5 or less
  • the dielectric constant is low, the value of the inter-wiring capacitance C is small. Therefore, the signal delay determined by the value of the time constant CR when the resistance of the conductive film is R can be reduced, so that the signal transmission speed of the multilayer printed circuit board can be increased.
  • Patent Document 2 a metal electrode is formed on the surface, a non-metallic region made of SiO 2 is formed by an insulating film, and an insulating film is formed on the outermost surface including the electrode and the non-metallic region.
  • a technique in which two substrates each having a gap formed thereon as a structure for preventing the diffusion of metal in a non-metallic region are bonded together so that the electrodes face each other.
  • the technology can be applied to a semiconductor device, a method for manufacturing a semiconductor device, a CMOS image sensor that is a solid-state imaging device, an imaging device using a solid-state imaging device, and an electronic device.
  • Patent Document 1 the technology related to the multilayer printed circuit board disclosed in Patent Document 1 is not a technology for preventing short-circuiting between through-hole vias, but a technology for preventing short-circuiting between wirings, so the problem to be solved by this technology differs. It is.
  • the technology related to the semiconductor device, the manufacturing method of the semiconductor device, the solid-state imaging device, the imaging device using the solid-state imaging device, and the electronic device disclosed in Patent Document 2 merely provides a gap, and further countermeasures are taken for the gap. not a thing
  • the exposed surface absorbs moisture due to humidity, and there is a risk that insulation performance will deteriorate and deformation such as expansion due to stress accompanying processing will occur.
  • the present disclosure has been made in view of the above-described problems. It constitutes. By configuring in this way, the cut surface of the glass fiber is not exposed between the through-hole vias, and the printed circuit board, the method for manufacturing the printed circuit board, and the solid-state imaging device that do not lead to an electrical short due to migration. and electronic equipment.
  • the present disclosure has been made to solve the above-described problems, and a first aspect of the present disclosure includes through-hole vias drilled adjacent to each other, and through-hole vias drilled between the through-hole vias and filled with resin.
  • a printed circuit board having trench vias.
  • the trench via may be arranged so as to traverse the glass cloth that is the base material of the printed circuit board.
  • the trench vias may be arranged between the through-hole vias that penetrate and connect the wiring patterns in the inner layers of the printed circuit board.
  • the trench via may be arranged between the wiring patterns on the outer layer of the printed circuit board or between the through-hole vias that penetrate the wiring patterns on the outer layer and the wiring patterns on the inner layer.
  • the trench via has a shape in plan view such that the width of the trench via is longer than the diameter of the through hole via in a direction perpendicular to a straight line connecting the adjacent through hole vias. It may be formed to be
  • the trench vias surrounding any one of the through-hole vias may be formed.
  • the trench vias surrounding all the through-hole vias may be formed.
  • the center of the substantially multi-pointed star-shaped or substantially radial trench via is arranged at a substantially intermediate position between the three or more adjacent through-hole vias, and is formed on the peripheral surface of the through-hole via.
  • the space may be formed so as to fit within a polygon formed by connecting lines perpendicular to the extending direction of the trench via.
  • the trench via for insulation may be filled with a resin.
  • a second aspect thereof includes the steps of drilling through holes for through-hole vias adjacent to the copper-clad laminate, cleaning the through holes, and copper-plating the inner peripheral surfaces of the through holes. forming a trench via through hole between the through hole vias; cleaning the trench via through hole; filling the trench via through hole with a resin; A method of manufacturing a printed circuit board, comprising the steps of: polishing the recessed portion; and forming a wiring pattern on the lid plating of the resin-filled portion and the copper-clad laminate.
  • a third aspect thereof is a solid-state imaging device including a printed board having through-hole vias drilled adjacently and trench vias drilled between the through-hole vias and filled with resin.
  • a fourth aspect of the present invention is an electronic device having a solid-state imaging device provided with a printed circuit board having through-hole vias drilled adjacently and trench vias drilled between the through-hole vias and filled with resin. Equipment.
  • a trench via is provided between through-hole vias drilled in a printed circuit board, and the trench via is filled with a resin, so that the cut surface of the glass fiber is formed between the through-hole vias. Therefore, it is possible to provide a printed circuit board, a printed circuit board manufacturing method, a solid-state imaging device, and an electronic device that do not cause an electrical short due to migration.
  • FIG. 1 is a cross-sectional view of a solid-state imaging device having a printed circuit board according to the present disclosure
  • FIG. 4 is a plan view of a color filter of the solid-state imaging device
  • FIG. FIG. 4 is a cross-sectional view of an inner layer portion explaining migration occurring between through-hole vias drilled in a printed circuit board
  • 1 is a partially enlarged cross-sectional view of a first embodiment of a printed circuit board according to the present disclosure
  • FIG. FIG. 4 is a diagram illustrating the process of the first embodiment of the printed circuit board according to the present disclosure
  • FIG. 2 is a partially enlarged cross-sectional view (Part 1) of the main steps of the printed circuit board according to the present disclosure
  • FIG. 2 is a partially enlarged cross-sectional view (Part 2) of a main process of a printed circuit board according to the present disclosure
  • FIG. 3 is a partially enlarged cross-sectional view (No. 3) of a main process of the printed circuit board according to the present disclosure
  • FIG. 4 is a partially enlarged cross-sectional view (part 4) of the main steps of the printed circuit board according to the present disclosure
  • FIG. 4 is a partially enlarged cross-sectional view of a second embodiment of a printed circuit board according to the present disclosure
  • FIG. 4 illustrates a process of a second embodiment of a printed circuit board according to the present disclosure
  • 1 is a diagram illustrating a first embodiment of a through-hole via of a printed circuit board according to the present disclosure
  • FIG. 4 illustrates a second embodiment of a through-hole via in a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a third embodiment of a through-hole via of a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a fourth embodiment of a through-hole via of a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a fifth embodiment of a through-hole via in a printed circuit board according to the present disclosure
  • 1 is a block diagram illustrating an example of an electronic device having a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a third embodiment of a through-hole via of a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a fourth embodiment of a through-hole via of a printed circuit board according to the present disclosure
  • FIG. 5 is a diagram illustrating a fifth embodiment of a through-hole via in a printed circuit board according to the present disclosure
  • Migration includes ion migration and electromigration.
  • Ion migration is when a voltage is applied between the electrodes of the substrate, the part of the wiring pattern (copper) that becomes the anode side receives electrons, and metal atoms from the surface move away from the moisture and ionization promoting substances contained in the substrate surface and inside the base material. It is a phenomenon in which the metal is eluted into the atmosphere, moves to the cathode side due to the Coulomb force due to the electric field, and deposits the metal due to electron exchange. This tends to occur when the electric field strength is high.
  • Electromigration is a process in which, when an electric current is passed through a metal wire, collisions occur between electrons moving in the metal wire and metal atoms, and the metal atoms are gradually transported to the anode side, resulting in the migration of the metal to the cathode side. This is a phenomenon in which a defect occurs, resulting in an open (disconnection), and metal is deposited on the anode side, leading to a short circuit. This tends to occur at high temperatures and high current densities.
  • the migration that occurs in the printed circuit board is mainly ion migration. An example of ion migration in a printed circuit board will be described below.
  • the printed circuit board 10 includes wiring patterns 12a to 12d, which are conductive layers formed of copper foil 10c, and insulating layers 13a to 13c, which are formed of base materials of glass fiber 10a and epoxy resin 33. It has a structure in which layers are alternately sandwiched.
  • the surface portions of both surfaces of the printed circuit board 10 are called outer layers 35 , and the inner layers are called inner layers 34 .
  • Wiring patterns 12a to 12d are formed on the outer layer 35 and the inner layer 34 by etching the copper foil 10c bonded to the insulating layers 13a to 13c.
  • the printed circuit board 10 is formed by first forming an inner layer 34 and then laminating an outer layer 35 on both sides of the inner layer 34 .
  • n when calling an n-layer substrate means the number of wiring patterns.
  • the printed circuit board 10 according to the present disclosure is not limited to any particular number of layers. That is, the printed board 10 according to the present disclosure can also be applied to a double-sided board, a multilayer board such as a four-layer board, and the like.
  • the cross-sectional view of the inner layer 34 in FIG. 3 and the partially enlarged cross-sectional view of the main process in FIG. 6 will be used as examples.
  • the copper-clad laminate 31 forming the inner layer 34 is formed by laminating copper foils 10c, 10c on both sides of the insulating layer 13b.
  • the insulating layer 13b is formed by impregnating a glass cloth 10b woven with glass fibers 10a with an epoxy resin 33.
  • FIG. 6A the copper-clad laminate 31 forming the inner layer 34 is formed by laminating copper foils 10c, 10c on both sides of the insulating layer 13b.
  • the insulating layer 13b is formed by impregnating a glass cloth 10b woven with glass fibers 10a with an epoxy resin 33.
  • the copper clad laminate 31 is drilled with a through hole 30 by a drill 90 as shown in FIG. 6B. Since the insulating layer 13b forming the copper-clad laminate 31 is laminated with the glass fiber 10a, the through hole 30 cuts the glass fiber 10a forming the insulating layer 13b. Therefore, the cut surface of the glass fiber 10a is exposed on the inner peripheral surface of the through hole 30. As shown in FIG.
  • the glass fiber 10a has a predetermined hardness, it is not easy to cut. Therefore, burrs are likely to form on the cut surfaces, and cracks 32 are generated along the fiber direction on the cut surfaces of the glass fibers 10a. Furthermore, as shown in FIG. 7C, in the cleaning process, a load is applied to the inner peripheral surface of the through-hole 30 in order to remove the residue of the cut epoxy resin 33 and the glass fibers 10a, and similarly the direction of the glass fibers 10a is increased. A minute crack 32 is generated along the .
  • a through-hole via serving as an anode is designated as 14a
  • a through-hole via serving as a cathode is designated as 14b
  • reference numeral 14 indicates simple through-hole vias
  • reference numerals 14a and 14b indicate cases having polarity.
  • the eluted copper ions move along the direction of the glass fiber 10a toward the through-hole via 14b on the cathode side by the Coulomb force and are deposited.
  • a CAF 17 is formed from the through-hole via 14b on the cathode side toward the through-hole via 14a on the anode side.
  • an electric circuit is formed between the through-hole vias 14a and 14b, resulting in a short circuit.
  • incompatibility due to occurrence of migration occurs.
  • FIG. 1 is a cross-sectional view of a semiconductor device 100 having a printed circuit board 10, such as a solid-state imaging device 101.
  • FIG. A solid-state imaging device 101 such as a CMOS sensor will be described below as an example of the semiconductor device 100 .
  • the solid-state imaging device 101 has a sensor substrate 6 bonded onto a printed circuit board 10 .
  • the printed circuit board 10 has a plurality of external connection terminals 9 formed of solder balls for connection to an external circuit on its lower surface.
  • the sensor substrate 6 is made of single crystal silicon, for example.
  • a pixel region 23 and a peripheral region 24 are provided on the upper surface (surface) of the sensor substrate 6, as shown in FIG.
  • a cover glass 3 is arranged above the sensor substrate 6 so as to face the light receiving portion 21 of the sensor substrate 6 .
  • the light receiving portion 21 and the cover glass 3 are coated with a sealing resin 4 so as to surround the periphery of the peripheral region 24 of the light receiving portion 21, and the sensor substrate 6 and the cover glass 3 are coated with the sealing resin. 4 are attached. By bonding the two together in this manner, a cavity portion 8 that is hollow is formed between the sensor substrate 6 and the facing surface of the cover glass 3 .
  • a plurality of pixels 22 are arranged in a matrix in plan view. A collection of these pixels 22 forms a subject image as a whole.
  • the pixels 22 are photoelectric conversion elements that convert optical signals forming part of an object image formed by an optical system (not shown) into electrical signals.
  • the photoelectric conversion element is, for example, a photodiode, and receives light incident as a subject image on a light receiving surface through an optical system including an external imaging lens, and photoelectrically converts the light to generate a signal charge.
  • a color filter 25 is formed on the upper surface of each of the plurality of pixels 22 so as to cover each pixel 22 .
  • the color filters 25 of three primary colors R (red), G (green), and B (blue) are arranged on-chip in a Bayer arrangement. It is formed in an array as a color filter (OCCF: On Chip Color Filter).
  • OCCF On Chip Color Filter
  • the arrangement pattern of the color filters 25 is not limited to the Bayer pattern.
  • an infrared cut filter (IR Cut Filter) 27 may be provided so as to overlap the color filter 25 .
  • a microlens array 26 for each pixel 22 to collect light is provided either directly or via an infrared cut filter 27.
  • the microlens array 26 is configured such that the light transmitted through the cover glass 3, the color filter 25, and the infrared cut filter 27 is received by each pixel 22 and photoelectrically converted.
  • the peripheral area 24 is an area surrounding the pixel area 23 .
  • a plurality of pads 29 are formed on the upper surface of the peripheral area 24, corresponding to each signal for extracting image signals to the outside.
  • a plurality of pads 11 corresponding to each signal for connection with the outside are arranged in a region surrounding the sensor substrate 6 on the upper surface of the printed circuit board 10 .
  • the pads 29 provided on the periphery of the peripheral region 24 on the upper surface of the sensor substrate 6 and the pads 11 of the printed circuit board 10 are connected by bonding wires 7 such as gold wires.
  • bonding wires 7 such as gold wires.
  • wiring patterns 12b and 12c are formed on the inner layer 34 of the printed circuit board 10
  • wiring patterns 12a and 12d are formed on the outer layer 35 thereof.
  • the wiring patterns 12a to 12d are connected via through-hole vias 14 to the pads 11 and the external connection terminals 9 formed of solder balls or the like and arranged on the lower surface of the printed circuit board 10. FIG. Details will be described later.
  • FIG. 4 is a partially enlarged cross-sectional view of the first embodiment of the printed circuit board 10 according to the present disclosure.
  • the printed circuit board 10 will be described using a so-called four-layer board as an example.
  • the printed circuit board 10 is composed of an inner layer 34 and outer layers 35, 35 laminated on both sides thereof (upper and lower sides in this figure).
  • the inner layer 34 and the outer layers 35, 35 form a sandwich structure in which the wiring patterns 12a, 12b, 12c and 12d and the insulating layers 13a, 13b and 13c are alternately stacked.
  • the wiring patterns 12a to 12d are conductive layers made of copper foil 10c. As described above, insulating layers 13a, 13b and 13c are arranged between the wiring patterns 12a to 12d, respectively. It forms a structure in which insulating layers 13a to 13c made of material are alternately laminated in a sandwich shape.
  • the wiring patterns 12a to 12d are formed by etching the copper foil 10c or the like to form an electric circuit.
  • Through-hole vias 14 a and 14 b are provided between the copper foils 10 c and 10 c of the inner layer 34 and filled with resin 16 . Thereby, the wiring patterns 12b and 12c are electrically connected.
  • a trench via 18 is formed between the through-hole vias 14a and 14b in a direction that traverses the glass fiber 10a, that is, by cutting the glass fiber 10a. Therefore, even if minute cracks 32 are present along the direction of the glass fibers 10a on the outer peripheral surfaces of the through-hole vias 14a and 14b, the provision of the trench vias 18 can prevent the CAF 17 from extending. This can prevent the occurrence of a short circuit between the through-hole vias 14a and 14b due to migration.
  • the printed circuit board 10 is manufactured roughly as shown in the process diagram of FIG. Schematic cross-sections of the printed circuit board 10 in main steps are shown in FIGS. 4 and 6 to 9.
  • FIG. 1 Schematic cross-sections of the printed circuit board 10 in main steps are shown in FIGS. 4 and 6 to 9.
  • a copper foil 10c is laminated on both sides of an insulating layer 13b, which is a glass cloth 10b (glass cloth) impregnated with an epoxy resin 33.
  • a laminated plate 31 is prepared. That is, the copper-clad laminate 31 is formed by impregnating, for example, epoxy resin 33 into a glass cloth 10b woven from glass fibers 10a having high insulating properties as a base material to form an insulating layer 13b. 10c are superimposed and heated and pressed by a press (step S11). The copper-clad laminate 31 thus formed forms the inner layer 34 of the printed circuit board 10 .
  • a drill 90 is used to form through holes 30 for through-hole vias 14a, 14b at predetermined locations between the copper foils 10c, 10c. Punching is performed (step S12).
  • cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the through-hole 30 is removed by washing (step S13).
  • step S14 copper plating is applied to the inner peripheral surface of the through hole 30 that has been cleaned.
  • Through-hole vias 14a and 14b are thus formed (step S14).
  • the copper foils 10c, 10c are electrically connected.
  • a trench via 18, which is a through hole 30 with a predetermined diameter is drilled with a drill 90 (step S15).
  • cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the drilled trench via 18 is removed by washing (step S16).
  • resin 16 is filled inside the copper-plated through-hole vias 14a, 14b and trench vias 18 (step S17).
  • the resin 16 filling openings of the through-hole vias 14a, 14b and the trench vias 18 filled with the resin 16 are polished and flattened (step S18).
  • the top surfaces of the fill ports of the planarized through-hole vias 14a, 14b are cap plated with copper as shown in FIG. 9G.
  • Wiring patterns 12b and 12c are also formed.
  • the wiring patterns 12b and 12c are formed as follows. That is, the wiring patterns 12b and 12c of the inner layer 34 are formed by exposing, developing and etching the copper foils 10c and 10c laminated on both sides of the copper-clad laminate 31 (step S19). As described above, the second layer 42 and the third layer 43, which are part of the inner layer 34 of the four-layer substrate, are formed. When the solder resist 19 described in step S22 is applied on the second layer 42 and the third layer 43, a double-sided board is obtained. To form a four-layer board, following step 19, steps 20 and subsequent steps are performed.
  • the insulating layers 13a and 13c are laminated on both upper and lower surfaces of the inner layer 34, and the copper foils 10c and 10c to be the wiring patterns 12a and 12d are laminated on each surface and heated and pressed with a press machine. Thereby, the first layer 41 and the fourth layer 44, which are the outer layers 35, are laminated (step S20).
  • the wiring patterns 12a and 12d of the first layer 41 and the fourth layer 44 are formed. Specifically, the first layer 41 and the copper foils 10c and 10c that become the fourth layer 44 are bonded to the outer surfaces of the second layer 42 and the third layer 43 that become the inner layer 34 via the insulating layers 13a and 13c, respectively. Then, the wiring patterns 12a and 12d of the outer layer 35 are formed by performing exposure/development and etching.
  • the copper foil 10c of the first layer 41 and the insulating layer 13a and/or the fourth layer 44 A predetermined portion of the copper foil 10c and the insulating layer 13c is drilled with a drill 90. As shown in FIG. After removing the cutting waste, the connection via 15 is formed by plating the inner peripheral surface of the drilled hole with copper. As a result, predetermined wiring patterns 12a and 12d are electrically connected to each other. As described above, the first layer 41 and the fourth layer 44 are formed as shown in FIG. 9H (step S21).
  • a solder resist 19 is applied to the upper surfaces of the first layer 41 and the fourth layer 44 to insulate the wiring patterns 12a and 12d.
  • the solder resist 19 is a protective ink that forms an insulating film, and prevents conductors such as solder from adhering to unnecessary portions and short-circuiting. Also, the wiring patterns 12a and 12d are protected from dust, heat, moisture, etc., and the insulation is maintained (step S22).
  • the printed circuit board 10 according to the present disclosure can be manufactured through the steps described above. In the above description, a four-layer board is described as an example, but a printed board 10 with six layers or eight layers can be manufactured by repeating the same steps.
  • the thickness of the printed circuit board 10 formed in this manner is, for example, 0.6 mm. However, it is not limited to this dimension.
  • the printed circuit board 10 is formed by forming the trench via 18 between the through-hole vias 14a and 14b having a potential difference and filling the inside of the trench via with the resin 16, as described above.
  • the trench via 18 between the through-hole vias 14a and 14b for example, even if a crack 32 occurs on the cut surface of the glass fiber 10a between the through-hole vias 14a and 14b, the trench via 18 and its interior are filled.
  • the elongation of CAF 17 can be prevented by interposing resin 16. This can prevent the occurrence of a short circuit between the through-hole vias 14a and 14b due to migration.
  • the through-hole vias 14a and 14b and the trench vias 18 are filled with resin 16, which has a lower dielectric constant than the material forming the insulating layers 13a to 13c of the printed circuit board 10. Insulation can be secured. In addition, since the capacitance generated between the wiring patterns 12a to 12d can be reduced, signal delay can be prevented and high-speed processing can be realized.
  • the resin 16 can be filled at the same time.
  • the filling of the resin 16 can be completed in one step, leading to improvement in workability of setup and filling work, and reduction in cost.
  • a trench via 18 may be provided between the adjacent through-hole vias 14a and 14b and filled with insulating resin 16 having a large dielectric constant. Since the insulating resin 16 having a large dielectric constant has excellent insulation resistance, it is possible to ensure the insulation even when the insulation distance is small.
  • the resin 16 causes dielectric polarization, and electric charges generated by the dielectric polarization create a new electric field. ⁇ 13c field strength is weakened. This also produces an effect of suppressing the occurrence of migration.
  • the resin 6 filling the insides of the through-hole vias 14a and 14b and the trench via 18 may be insulating resin 16 with a small dielectric constant.
  • the insides of the through-hole vias 14a and 14b may be filled with an insulating resin 16 having a small dielectric constant
  • the trench vias 18 may be filled with an insulating resin 16 having a large dielectric constant.
  • the second embodiment of the printed circuit board 10 according to the present disclosure as shown in FIG. is passed through the glass fiber 10a in a transverse direction, that is, so as to cut it, and the inside thereof is filled with the resin 16.
  • the extension of the CAF 17 can be prevented by forming the trench vias 18.
  • FIG. This can prevent the occurrence of a short circuit between the through-hole vias 14a and 14b due to migration.
  • wiring patterns 12a, 12b, 12c and 12d are conductive layers formed of copper foil 10c. Insulating layers 13a, 13b and 13c are respectively arranged between the wiring patterns 12a to 12d. That is, the printed circuit board 10 shown in this figure includes wiring patterns 12a to 12d, which are conductive layers formed of copper foil 10c, and insulating layers 13a to 13c, which are formed of a base material impregnated with glass fiber 10a and epoxy resin 33. It has a structure in which these are alternately stacked in a sandwich.
  • the wiring patterns 12a to 12d are formed by etching the copper foil 10c or the like to form an electric circuit.
  • the through-hole vias 14 a and 14 b penetrate from the first layer 41 to the fourth layer 44 at positions not overlapping the through-hole vias 14 provided in the inner layer 34 .
  • a trench via 18 similarly penetrates between the through-hole vias 14a and 14b.
  • the through-hole vias 14a and 14b are not connected to the wiring patterns 12b and 12c, they are separated from these wiring patterns 12b and 12c by a predetermined distance.
  • lands are provided on predetermined wiring patterns 12b and 12c, and through-connections are made there.
  • the through hole vias 14a and 14b and the trench via 18 are filled with a resin 16 inside.
  • the openings of the through-hole vias 14a and 14b may be covered with copper plating.
  • Solder resist 19 is applied to the upper surfaces of the wiring patterns 12a and 12d on the front and back surfaces of the printed circuit board 10 to insulate and protect the wiring patterns 12a and 12d.
  • the trench via 18 penetrates between them and is filled with the resin 16 inside. Therefore, even if the CAF 17 extends along the cracks 32 generated in the insulating layers 13a to 13c, it is possible to prevent short-circuiting between the through-hole vias 14a and 14b.
  • step S20 in FIG. 5 The step of forming through-hole vias 14a and 14b and trench vias 18 penetrating through the first layer 41 to the fourth layer 44 is performed after laminating the first layer 41 and the fourth layer 44 (step S20 in FIG. 5). reference).
  • steps S31 to S40 in FIG. 11 are the same as steps S11 to S20 in FIG. Therefore, description of steps S31 to S40 in FIG. 11 is omitted. 6 to 9 described in steps S12 to S20, refer to these figures.
  • step S40 after laminating the first layer 41 and the fourth layer 44 on the inner layer 34 (step S40), the through holes 30 for the through-hole vias 14a and 14b penetrating from the first layer 41 to the fourth layer 44 are drilled. (step S41).
  • cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the through-hole 30 is removed by washing (step S42).
  • step S43 The inner peripheral surface of the through hole 30 that has been cleaned is plated with copper (step S43).
  • Through-hole vias 14a and 14b are thereby formed to electrically connect the wiring patterns 12a and 12d.
  • step S45 shavings such as the glass fiber 10a and the epoxy resin 33 remaining inside the drilled trench via 18 are removed by washing.
  • resin 16 is filled inside the copper-plated through-hole vias 14a, 14b and trench vias 18 (step S46).
  • the resin 16 filling openings of the through-hole vias 14a and 14b and the trench vias 18 filled with the resin 16 are polished and flattened (step S47).
  • the top surface of the fill port of the planarized through-hole vias 14a, 14b may be cap plated with copper.
  • Wiring patterns 12b and 12c are also formed (step S48). As described above, the first layer 41 and the fourth layer 44, which are the outer layers 35 of the four-layer substrate, are formed, and the predetermined wiring patterns 12a to 12d are electrically connected by the through-hole vias 14a and 14b.
  • the upper surfaces of the first layer 41 and the fourth layer 44 are coated with the solder resist 19 to insulate the wiring patterns 12a and 12d (step S49).
  • the printed circuit board 10 according to the present disclosure can be manufactured.
  • a four-layer board is described as an example, but a printed board 10 with six layers or eight layers can be manufactured by repeating the same steps.
  • both of the through-hole vias 14a and 14b penetrate from the first layer 41 to the fourth layer 44.
  • one of the through-hole vias 14a and 14b penetrates from the second layer 42 to the fourth layer 44. and the other may penetrate from the first layer 41 to the fourth layer 44 . That is, both through-hole vias 14a and 14b need not be on the same layer.
  • the printed circuit board 10 according to the first embodiment of the present disclosure is the same as the printed circuit board 10, so the description is omitted.
  • the first embodiment of the trench via 18 has a substantially circular trench via 18 formed between the adjacent through-hole vias 14a and 14b and filled with a resin 16 inside each.
  • the diameter of the trench via 18 may be the same as the diameter of each of the through-hole vias 14a and 14b, but is formed to be larger than these diameters in order to prevent the occurrence of shorts due to elongation of the CAF 17 caused by migration. is desirable.
  • the trench via 18 preferably has a diameter of at least 0.4 mm.
  • the distance between the through-hole vias 14a and 14b is 0.6 mm or more.
  • rectangular trench vias 18 may be formed between adjacent through-hole vias 14a and 14b, and resin 16 may be filled inside each of them.
  • the shape of the trench via 18 is rectangular in this figure, it may be elliptical or elliptical. The point is that if the trench via 18 is formed so that the width of the trench via 18 is elongated in the direction orthogonal to the straight line connecting the adjacent through-hole vias 14a and 14b, even if the CAF 17 is elongated, short-circuiting can be prevented. can be done. Therefore, it is possible to improve the effect of preventing the occurrence of incompatibility due to migration.
  • a second embodiment of the trench via 18 is formed by forming a substantially circular trench via 18 between adjacent through-hole vias 14a and 14b, for example, surrounding the through-hole via 14a. , are filled with a resin 16 inside.
  • the diameter of the trench via 18 is formed larger than the diameter of the through-hole via 14a.
  • the shape of the trench via 18 is substantially circular in this figure, it may be oval, elliptical, or rectangular. It may also be a triangle, a pentagon, or a hexagon.
  • any one of the through-hole vias 14a, for example, should be surrounded by the trench vias 18 and filled with the resin 16 inside.
  • a circular trench via 18 is formed surrounding the high-potential through-hole via 14a, and the resin 16 is filled inside each of them.
  • Circular trench vias 18 may be formed by , and resin 16 may be filled inside each of them.
  • a third embodiment of the trench via 18 is formed by forming a substantially rectangular trench via 18 surrounding both through-hole vias 14a and 14b in the adjacent through-hole vias 14a and 14b.
  • the inside is filled with resin 16 .
  • the inner diameter of the trench via 18 is formed larger than the outer diameter of the through-hole vias 14a and 14b. Even if the insulating layers 13a to 13c are present on the outer peripheral surface of the through-hole via 14a, there is no problem as long as they are separated from the inner peripheral surface of the trench via 18 by the resin 16.
  • the shape of the trench via 18 is substantially rectangular in this figure, it may be circular, elliptical, or substantially oval.
  • both of the through-hole vias 14a and 14b are surrounded by the trench via 18 and filled with the resin 16 inside. With this configuration, even if the CAF 17 extends from any direction, not only between the through-hole vias 14a and 14b, it is possible to prevent the occurrence of a short due to the extension of the CAF 17 due to migration.
  • a fourth embodiment of the trench via 18 is a case where three through-hole vias 14, 14, 14 are adjacent to each other, as shown in FIG. In this case, a substantially three-pointed star-shaped or substantially Y-shaped trench via 18 is drilled at a substantially intermediate position between the three through-hole vias 14, 14, 14, and the resin 16 is filled inside each of them. be.
  • the substantially three-pointed star-shaped end portion 18a of the trench via 18 has a substantially semicircular shape, but it may be formed in a substantially triangular shape or a substantially square shape. Moreover, it is desirable to form the substantially three-pointed star-shaped or substantially Y-shaped end portion 18a by extending it as much as possible.
  • the line surrounding the outer peripheries of the adjacent through-hole vias 14, 14, 14 is formed by connecting the lines perpendicular to the extending direction at the tip of the substantially three-pointed star-shaped or substantially Y-shaped end 18a. It is desirable to form it so that it fits within the triangle (broken line in this figure). By forming in this way, it is possible to prevent the occurrence of a short due to elongation of the CAF 17 caused by migration.
  • a fifth embodiment of the trench via 18 is a case where four through-hole vias 14, 14, 14, 14 are adjacent to each other as shown in FIG. In this case, a substantially four-pointed star-shaped or substantially cross-shaped trench via 18 is formed at substantially the middle position of each of the four through-hole vias 14, and the resin 16 is filled inside each of them.
  • the substantially four-pointed star-shaped or substantially cross-shaped end portion 18a of the trench via 18 has a substantially semicircular shape, but it may be formed in a substantially triangular shape or a substantially square shape. . Moreover, it is desirable to form the substantially four-pointed star-shaped or substantially cross-shaped end portion 18a by extending it as much as possible. In short, the line surrounding the outer periphery of each adjacent through-hole via 14 is a square (this It is desirable to form it so that it fits inside the dashed line in the figure). By configuring in this way, it is possible to prevent the occurrence of a short due to the extension of the CAF 17 caused by migration.
  • a thin substantially multi-pointed star shape such as a substantially five-pointed star shape or a substantially hexagram-like shape or a substantially radial shape extending outward from a position substantially in the middle of these through-hole vias 14 is formed.
  • the shape of these end portions 18a may also be substantially semicircular, substantially triangular, or substantially rectangular. Also, depending on the arrangement of the through-hole vias 14, the lengths of the ends 18a need not be the same, and the lengths of the ends 18a may be changed.
  • the first to fourth embodiments described above may be appropriately combined in addition to the present embodiment.
  • a substantially rectangular trench via 18 surrounding all four through-hole vias 14 is formed as in the trench via of the third embodiment.
  • the resin 16 may be filled.
  • Configuration example of an electronic device having a printed circuit board according to the present disclosure The printed circuit board 10 according to the embodiment described above can be widely used in the semiconductor device 100 .
  • an example of its application an example of application of the solid-state imaging device 101 having the printed circuit board 10 to electronic equipment will be described with reference to FIG. 17 .
  • This application example is applied to the solid-state imaging device 101 having the printed circuit board 10 using the first or second embodiment of the printed circuit board 10 and/or the first to fifth embodiments of the trench via 18. Common.
  • the solid-state imaging device 101 is an image capture unit (photoelectric conversion unit) such as an imaging device such as a digital still camera or a video camera, a mobile terminal device having an imaging function, or a copying machine using the solid-state imaging device 101 as an image reading unit. It is applicable to general electronic equipment that uses the solid-state imaging device 101 for
  • the solid-state imaging device 101 may be formed as a single chip, or may be in the form of a module having an imaging function in which an imaging unit and a signal processing unit or an optical system are packaged together. There may be.
  • an imaging device 200 as an electronic device includes an optical unit 202, a solid-state imaging device 101, a DSP (Digital Signal Processor) circuit 203 as a camera signal processing circuit, a frame memory 204, and a display unit. 205 , a recording unit 206 , an operation unit 207 , and a power supply unit 208 .
  • DSP circuit 203 , frame memory 204 , display unit 205 , recording unit 206 , operation unit 207 and power supply unit 208 are interconnected via bus line 209 .
  • the optical unit 202 includes a plurality of imaging lenses, takes in incident light (image light) from a subject, and forms an image on the pixel area 23 of the solid-state imaging device 101 .
  • the solid-state imaging device 101 converts the amount of incident light imaged on the pixel region 23 by the optical unit 202 into an electric signal for each pixel 22 and outputs the electric signal as a pixel signal.
  • the display unit 205 is made up of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, for example, and displays moving images or still images captured by the solid-state imaging device 101 .
  • a recording unit 206 records a moving image or still image captured by the solid-state imaging device 101 in a recording medium such as a hard disk or a semiconductor memory.
  • the operation unit 207 issues operation commands for various functions of the imaging device 200 under the user's operation.
  • the power supply unit 208 appropriately supplies various power supplies as operating power supplies for the DSP circuit 203, the frame memory 204, the display unit 205, the recording unit 206, and the operation unit 207 to these supply targets.
  • the imaging device 200 having the solid-state imaging device 101 using the printed circuit board 10 according to the present disclosure does not cause failures or problems due to migration even when used for a long period of time, so it can be used with confidence. be able to.
  • the description of each embodiment described above is an example of the present disclosure, and the present disclosure is not limited to the above-described embodiments. Therefore, it goes without saying that various modifications other than the above-described embodiments can be made according to the design and the like within the scope of the technical idea of the present disclosure.
  • the printed board in the above description is an example of an interposer board, but it goes without saying that it can be applied to a motherboard board, a control board for industrial equipment, and the like.
  • the effects described in this specification are merely examples and are not limited, and other effects may also occur.
  • the present technology can also take the following configuration.
  • the trench via is arranged so as to traverse a glass cloth that is a base material of the printed circuit board.
  • the trench vias are disposed between the through-hole vias for penetrating connection between the wiring patterns on the outer layer of the printed circuit board or between the wiring patterns on the outer layer and the wiring patterns on the inner layer.
  • the shape of the trench via in plan view is such that the width of the trench via is longer than the diameter of the through-hole via in a direction orthogonal to a straight line connecting the adjacent through-hole vias.
  • the printed circuit board described in 1). (6) The printed circuit board according to (1) above, wherein the trench via surrounding any one of the through-hole vias is formed between the adjacent through-hole vias. (7) The printed circuit board according to (1) above, wherein trench vias surrounding all of the through-hole vias are formed between the adjacent through-hole vias.
  • the center of the substantially multi-pointed star-shaped or substantially radial trench via is arranged at a substantially intermediate position between the three or more adjacent through-hole vias, and the space formed by the peripheral surface of the through-hole via is the edge of the trench via.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided are: a printed board that can avoid electrical short circuiting between through-hole vias caused by migration; a production method for the printed board; a solid-state imaging device; and an electronic device. This printed board, which is for use in a solid-state imaging device or the like, is configured such that a trench via is bored between through-hole vias that have been bored adjacent to each other, and the trench via and the through-hole vias are filled with a resin, whereby the occurrence of short circuiting between the through-hole vias caused by migration can be prevented.

Description

プリント基板、プリント基板の製造方法、固体撮像装置及び電子機器Printed circuit board, printed circuit board manufacturing method, solid-state imaging device, and electronic equipment
 本開示は、プリント基板、プリント基板の製造方法、当該プリント基板を有する固体撮像装置及び当該固体撮像装置を有する電子機器に関する。 The present disclosure relates to a printed circuit board, a printed circuit board manufacturing method, a solid-state imaging device having the printed circuit board, and an electronic device having the solid-state imaging device.
 従来、プリント基板の製造工程において、配線パターンの微細化及び多層化に伴い、配線材料である銅(Cu)がプリント基板のガラス繊維基材の絶縁層中に拡散し、配線間でショートを引き起こすことが問題となっている。プリント基板とは、例えばガラス繊維基材の絶縁層と、銅箔からなる金属パターンが形成された配線層とを交互に積層することによって立体的に電気回路を構成するものである。 Conventionally, in the process of manufacturing a printed circuit board, as the wiring pattern becomes finer and multi-layered, copper (Cu), which is a wiring material, diffuses into the insulating layer of the glass fiber base material of the printed circuit board, causing a short circuit between wires. is the problem. A printed circuit board is a three-dimensional electric circuit formed by alternately laminating, for example, an insulating layer made of a glass fiber base material and a wiring layer formed of a copper foil and having a metal pattern formed thereon.
 かかるプリント基板においては、内層間や外層と内層又は外層同士を電気的に接続する個所に貫通孔を穿設し、貫通孔の内周面に銅メッキを施したスルホールビアを設けることにより当該個所が接続される。このスルホールビアは、隣接して設けられ、しかも両者に異電圧が印加されて、電界が生じた状態で使用されることが多い。このような使用状態において、プリント基板の銅が絶縁層中に拡散するマイグレーションという現象を生じることがある。その要因としては、電界、電流、温度、湿度などがあげられる。また、このような現象は、ガラス繊維基材のプリント基板の孔あけ加工工程や孔あけ加工後の樹脂残渣を除去する洗浄工程(デスミア工程)において、スルホールビアの内周面に露出するガラス繊維の方向に沿ってクラック(空隙)生成された場合に、そのガラス繊維の方向に沿って生じやすい。 In such a printed circuit board, through holes are bored in places where the inner layers or the outer layers are electrically connected to each other, or between the inner layers or between the outer layers. is connected. These through-hole vias are often used in a state in which they are provided adjacent to each other and different voltages are applied to both to generate an electric field. In such a state of use, a phenomenon called migration may occur in which the copper of the printed circuit board diffuses into the insulating layer. The factors include an electric field, current, temperature, humidity, and the like. In addition, such a phenomenon is caused by the glass fiber exposed on the inner peripheral surface of the through-hole via in the drilling process of the glass fiber-based printed circuit board and the cleaning process (desmear process) for removing the resin residue after the drilling process. When cracks (voids) are generated along the direction of , they tend to occur along the direction of the glass fibers.
 プリント基板の使用環境により、隣接するスルホールビア間に介在する絶縁層の表面が吸湿した場合には、スルホールビア間には、通常直流電圧が印加されているために、その層が電解質として作用する。隣接するスルホールビア間に電界が存在する場合は、電界の陽極側となるスルホールビアの界面において、電子を放出する酸化反応であるアノード反応が起こる。その結果、陽極側となるスルホールビアから銅イオンが溶出する。 When the surface of the insulating layer interposed between adjacent through-hole vias absorbs moisture due to the environment in which the printed circuit board is used, the layer acts as an electrolyte because a DC voltage is normally applied between the through-hole vias. . When an electric field exists between adjacent through-hole vias, an anodic reaction, which is an oxidation reaction that releases electrons, occurs at the interface of the through-hole vias on the anode side of the electric field. As a result, copper ions are eluted from the through-hole via on the anode side.
 溶出した銅イオンは、クーロン力により陰極側となるスルホールビアに向かってガラス繊維の方向に沿って移動し、析出される。そして、陰極側となるスルホールビアから陽極側となるスルホールビアに向かって基板表面においては、デンドライト(dendrite:樹枝状晶)が生成される。また、プリント基板の内層においては、基板のガラス繊維の方向に沿ってCAF(Conductive Anodic Filament)が生成される。このような現象は、マイグレーションと呼ばれている。その結果、スルホールビア間でガラス繊維基材のガラス繊維の方向に沿って電気回路が形成されてショートに至るという問題がある。なお、マイグレーションの詳細については後述する。 The eluted copper ions move along the direction of the glass fiber toward the through-hole via on the cathode side due to the Coulomb force and are deposited. Then, dendrites are generated on the substrate surface from the cathode-side through-hole via to the anode-side through-hole via. Also, in the inner layer of the printed circuit board, CAF (Conductive Anodic Filament) is generated along the direction of the glass fibers of the circuit board. Such a phenomenon is called migration. As a result, there is a problem that an electric circuit is formed between the through-hole vias along the direction of the glass fibers of the glass fiber base material, resulting in a short circuit. Details of the migration will be described later.
 かかる問題点に対して、特許文献1には、配線材料の拡散バリア層を設けることにより、配線材料が絶縁膜中を拡散して配線間でショートが発生することを防止し、信頼度を向上させる多層プリント基板に関する技術が開示されている。 To address this problem, Patent Document 1 discloses that a diffusion barrier layer for the wiring material is provided to prevent the wiring material from diffusing in the insulating film and causing a short circuit between the wirings, thereby improving reliability. A technique related to a multilayer printed circuit board that allows
 当該技術では、多層プリント基板は、基板本体上に銅膜配線パターンと絶縁層パターンが交互に積層されている。そして、銅膜配線パターンと絶縁層パターンとの間には、絶縁層パターン中への銅の拡散を抑制する銅拡散バリア層が形成されている。
 このように、銅拡散バリア層を形成することにより、絶縁膜パターン中へ銅が拡散することに起因する配線間のショート(短絡)の発生を防止することができる。このため、信頼性の高い多層プリント基板を得ることができるというものである。
In this technology, a multilayer printed circuit board has a copper film wiring pattern and an insulating layer pattern alternately laminated on a substrate body. A copper diffusion barrier layer is formed between the copper film wiring pattern and the insulating layer pattern to suppress diffusion of copper into the insulating layer pattern.
By forming the copper diffusion barrier layer in this way, it is possible to prevent the occurrence of a short circuit between wirings due to the diffusion of copper into the insulating film pattern. Therefore, a highly reliable multilayer printed circuit board can be obtained.
 また、前記絶縁膜パターンは低誘電率(比誘電率3.5以下)を有し、且つ光照射部分又はプラズマ照射部分のエッチング特性が変化する感光性有機絶縁膜により形成されている。また、低誘電率であるために配線間容量Cの値が小さい。このため、導電膜の抵抗をRとしたときの時定数CRの値によって定まる信号遅延を小さくすることができるので、多層プリント基板の信号伝送速度を高速にすることができるというものである。 In addition, the insulating film pattern is formed of a photosensitive organic insulating film that has a low dielectric constant (relative dielectric constant of 3.5 or less) and changes the etching characteristics of the light-irradiated portion or the plasma-irradiated portion. In addition, since the dielectric constant is low, the value of the inter-wiring capacitance C is small. Therefore, the signal delay determined by the value of the time constant CR when the resistance of the conductive film is R can be reduced, so that the signal transmission speed of the multilayer printed circuit board can be increased.
 特許文献2には、表面に金属電極が形成され、絶縁膜によりSiOよりなる非金属領域が形成され、電極及び非金属領域を含む最表面に絶縁膜が形成された後、電極を囲むように金属の非金属領域での拡散を防止する構造として空隙が形成された基板が、表面を、電極が対向するように2枚貼り合わされるようにする技術が開示されている。そして、当該技術は、半導体装置及び半導体装置の製造方法、固体撮像素子であるCMOSイメージセンサ、固体撮像素子を利用した撮像装置、並びに電子機器に適用することができるというものである。 In Patent Document 2, a metal electrode is formed on the surface, a non-metallic region made of SiO 2 is formed by an insulating film, and an insulating film is formed on the outermost surface including the electrode and the non-metallic region. discloses a technique in which two substrates each having a gap formed thereon as a structure for preventing the diffusion of metal in a non-metallic region are bonded together so that the electrodes face each other. The technology can be applied to a semiconductor device, a method for manufacturing a semiconductor device, a CMOS image sensor that is a solid-state imaging device, an imaging device using a solid-state imaging device, and an electronic device.
特開2001-119149号公報Japanese Patent Application Laid-Open No. 2001-119149 特開2016-181531号公報JP 2016-181531 A
 しかしながら、特許文献1に開示された多層プリント基板に関する技術は、スルホールビア間のショートを防止する技術ではなく,配線間のショートを防止する技術であるため、本技術が解決しようとする課題が異なるものである。 However, the technology related to the multilayer printed circuit board disclosed in Patent Document 1 is not a technology for preventing short-circuiting between through-hole vias, but a technology for preventing short-circuiting between wirings, so the problem to be solved by this technology differs. It is.
 特許文献2に開示された半導体装置及び半導体装置の製造方法、固体撮像素子、固体撮像素子を利用した撮像装置、並びに電子機器に関する技術は、単に空隙を設けるだけであり、空隙についてさらに対策を施すものではない。 The technology related to the semiconductor device, the manufacturing method of the semiconductor device, the solid-state imaging device, the imaging device using the solid-state imaging device, and the electronic device disclosed in Patent Document 2 merely provides a gap, and further countermeasures are taken for the gap. not a thing
 したがって、空隙を形成する面が露出状態のままであるため、湿度により当該露出面が吸湿し、絶縁性能の低下や加工に伴う応力による膨張等の変形を生ずるおそれがあるという問題がある。 Therefore, since the surface forming the void remains exposed, the exposed surface absorbs moisture due to humidity, and there is a risk that insulation performance will deteriorate and deformation such as expansion due to stress accompanying processing will occur.
 本開示は、上述した問題点に鑑みてなされたものであり、プリント基板において隣接して穿設されたスルホールビアとスルホールビアとの間にトレンチビアを設け、さらにそのトレンチビアを樹脂で埋めるよう構成するものである。このように構成することにより、スルホールビア間にガラス繊維の裁断面が露出することがなくなり、マイグレーションに起因して電気的にショートに至ることのないプリント基板、プリント基板の製造方法、固体撮像装置及び電子機器を提供することを目的とする。 The present disclosure has been made in view of the above-described problems. It constitutes. By configuring in this way, the cut surface of the glass fiber is not exposed between the through-hole vias, and the printed circuit board, the method for manufacturing the printed circuit board, and the solid-state imaging device that do not lead to an electrical short due to migration. and electronic equipment.
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、隣接して穿設されたスルホールビアと、前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、を有するプリント基板である。 The present disclosure has been made to solve the above-described problems, and a first aspect of the present disclosure includes through-hole vias drilled adjacent to each other, and through-hole vias drilled between the through-hole vias and filled with resin. A printed circuit board having trench vias.
 また、第1の態様において、前記トレンチビアは、前記プリント基板の基材であるガラスクロスを横断するように配設されてもよい。 Further, in the first aspect, the trench via may be arranged so as to traverse the glass cloth that is the base material of the printed circuit board.
 また、第1の態様において、前記トレンチビアは、前記プリント基板の内層の配線パターン同士を貫通接続する前記スルホールビア間に配設されてもよい。 Further, in the first aspect, the trench vias may be arranged between the through-hole vias that penetrate and connect the wiring patterns in the inner layers of the printed circuit board.
 また、第1の態様において、前記トレンチビアは、前記プリント基板の外層の配線パターン同士又は外層の前記配線パターンと内層の前記配線パターン同士を貫通接続する前記スルホールビア間に配設されてもよい。 In the first aspect, the trench via may be arranged between the wiring patterns on the outer layer of the printed circuit board or between the through-hole vias that penetrate the wiring patterns on the outer layer and the wiring patterns on the inner layer. .
 また、第1の態様において、前記トレンチビアの平面視の形状は、隣接する前記スルホールビア間を結ぶ直線に対して直交する方向に前記スルホールビアの径よりも前記トレンチビアの幅員の方が長くなるように形成されてもよい。 In the first aspect, the trench via has a shape in plan view such that the width of the trench via is longer than the diameter of the through hole via in a direction perpendicular to a straight line connecting the adjacent through hole vias. It may be formed to be
 また、第1の態様において、隣接する前記スルホールビア間において、いずれか一方の前記スルホールビアを取り囲む前記トレンチビアを形成してもよい。 Further, in the first aspect, between the adjacent through-hole vias, the trench vias surrounding any one of the through-hole vias may be formed.
 また、第1の態様において、隣接する前記スルホールビア間において、全ての前記スルホールビアを取り囲む前記トレンチビアを形成してもよい。 Further, in the first aspect, between the adjacent through-hole vias, the trench vias surrounding all the through-hole vias may be formed.
 また、第1の態様において、隣接する3個以上の前記スルホールビアの略中間の位置に略多芒星状又は略放射状の前記トレンチビアの中心を配置し、前記スルホールビアの周面で形成される空間が前記トレンチビアの端部の先端において、その伸長方向に対して直交する線を結んで構成される多角形の中に納まるように形成してもよい。 Further, in the first mode, the center of the substantially multi-pointed star-shaped or substantially radial trench via is arranged at a substantially intermediate position between the three or more adjacent through-hole vias, and is formed on the peripheral surface of the through-hole via. At the tip of the end of the trench via, the space may be formed so as to fit within a polygon formed by connecting lines perpendicular to the extending direction of the trench via.
 また、第1の態様において、前記絶縁用の前記トレンチビアは、樹脂埋めしてもよい。 Further, in the first aspect, the trench via for insulation may be filled with a resin.
 また、その第2の態様は、銅張積層板に隣接するスルホールビア用の貫通孔を穿設する工程と、前記貫通孔を洗浄する工程と、前記貫通孔の内周面を銅メッキする工程と、前記スルホールビア間にトレンチビア用の貫通孔を穿設する工程と、前記トレンチビア用貫通孔を洗浄する工程と、前記トレンチビア用の貫通孔を樹脂埋めする工程と、前記樹脂埋めされた個所を研磨する工程と、前記樹脂埋め個所の蓋メッキ及び前記銅張積層板に配線パターンを形成する工程と、を有するプリント基板の製造方法である。 A second aspect thereof includes the steps of drilling through holes for through-hole vias adjacent to the copper-clad laminate, cleaning the through holes, and copper-plating the inner peripheral surfaces of the through holes. forming a trench via through hole between the through hole vias; cleaning the trench via through hole; filling the trench via through hole with a resin; A method of manufacturing a printed circuit board, comprising the steps of: polishing the recessed portion; and forming a wiring pattern on the lid plating of the resin-filled portion and the copper-clad laminate.
 また、その第3の態様は、隣接して穿設されたスルホールビアと、前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、を有するプリント基板を備えた固体撮像装置である。 A third aspect thereof is a solid-state imaging device including a printed board having through-hole vias drilled adjacently and trench vias drilled between the through-hole vias and filled with resin.
 また、その第4の態様は、隣接して穿設されたスルホールビアと、前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、を有するプリント基板を備えた固体撮像装置を有する電子機器である。 A fourth aspect of the present invention is an electronic device having a solid-state imaging device provided with a printed circuit board having through-hole vias drilled adjacently and trench vias drilled between the through-hole vias and filled with resin. Equipment.
 上記の態様を取ることにより、マイグレーションに起因してスルホールビア間が電気的にショートに至ることを防止することができる。 By taking the above aspect, it is possible to prevent an electrical short between through-hole vias due to migration.
 本開示によれば、プリント基板に穿設されたスルホールビアとスルホールビアとの間にトレンチビアを設け、さらにそのトレンチビアを樹脂で埋めるよう構成することにより、スルホールビア間にガラス繊維の裁断面が露出することがなくなり、マイグレーションにより電気的にショートに至ることのないプリント基板、プリント基板の製造方法、固体撮像装置及び電子機器を提供することができる。 According to the present disclosure, a trench via is provided between through-hole vias drilled in a printed circuit board, and the trench via is filled with a resin, so that the cut surface of the glass fiber is formed between the through-hole vias. Therefore, it is possible to provide a printed circuit board, a printed circuit board manufacturing method, a solid-state imaging device, and an electronic device that do not cause an electrical short due to migration.
本開示に係るプリント基板を有する固体撮像装置の断面図である。1 is a cross-sectional view of a solid-state imaging device having a printed circuit board according to the present disclosure; FIG. 固体撮像装置のカラーフィルタの平面図である。4 is a plan view of a color filter of the solid-state imaging device; FIG. プリント基板に穿設されたスルホールビアとスルホールビアとの間で生じるマイグレーションを説明する内層部分の断面図である。FIG. 4 is a cross-sectional view of an inner layer portion explaining migration occurring between through-hole vias drilled in a printed circuit board; 本開示に係るプリント基板の第1実施形態の部分拡大断面図である。1 is a partially enlarged cross-sectional view of a first embodiment of a printed circuit board according to the present disclosure; FIG. 本開示に係るプリント基板の第1実施形態の工程を示す図である。FIG. 4 is a diagram illustrating the process of the first embodiment of the printed circuit board according to the present disclosure; 本開示に係るプリント基板の主要工程の部分拡大断面図(その1)である。FIG. 2 is a partially enlarged cross-sectional view (Part 1) of the main steps of the printed circuit board according to the present disclosure; 本開示に係るプリント基板の主要工程の部分拡大断面図(その2)である。FIG. 2 is a partially enlarged cross-sectional view (Part 2) of a main process of a printed circuit board according to the present disclosure; 本開示に係るプリント基板の主要工程の部分拡大断面図(その3)である。FIG. 3 is a partially enlarged cross-sectional view (No. 3) of a main process of the printed circuit board according to the present disclosure; 本開示に係るプリント基板の主要工程の部分拡大断面図(その4)である。FIG. 4 is a partially enlarged cross-sectional view (part 4) of the main steps of the printed circuit board according to the present disclosure; 本開示に係るプリント基板の第2実施形態の部分拡大断面図である。FIG. 4 is a partially enlarged cross-sectional view of a second embodiment of a printed circuit board according to the present disclosure; 本開示に係るプリント基板の第2実施形態の工程を示す図である。FIG. 4 illustrates a process of a second embodiment of a printed circuit board according to the present disclosure; 本開示に係るプリント基板のスルホールビアの第1実施形態を示す図である。1 is a diagram illustrating a first embodiment of a through-hole via of a printed circuit board according to the present disclosure; FIG. 本開示に係るプリント基板のスルホールビアの第2実施形態を示す図である。FIG. 4 illustrates a second embodiment of a through-hole via in a printed circuit board according to the present disclosure; 本開示に係るプリント基板のスルホールビアの第3実施形態を示す図である。FIG. 5 is a diagram illustrating a third embodiment of a through-hole via of a printed circuit board according to the present disclosure; 本開示に係るプリント基板のスルホールビアの第4実施形態を示す図である。FIG. 5 is a diagram illustrating a fourth embodiment of a through-hole via of a printed circuit board according to the present disclosure; 本開示に係るプリント基板のスルホールビアの第5実施形態を示す図である。FIG. 5 is a diagram illustrating a fifth embodiment of a through-hole via in a printed circuit board according to the present disclosure; 本開示に係るプリント基板を有する電子機器の例を示すブロック図である。1 is a block diagram illustrating an example of an electronic device having a printed circuit board according to the present disclosure; FIG.
 次に、図面を参照して、本開示を実施するための形態(以下、「実施形態」と称する。)を下記の順序で説明する。以下の図面において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 1.マイグレーションの発生原因
 2.本開示に係るプリント基板の第1実施形態
 3.本開示に係るプリント基板の第2実施形態
 4.トレンチビアの第1実施形態
 5.トレンチビアの第2実施形態
 6.トレンチビアの第3実施形態
 7.トレンチビアの第4実施形態
 8.トレンチビアの第5実施形態
 9.本開示に係るプリント基板を有する電子機器の構成例
Next, with reference to the drawings, modes for carrying out the present disclosure (hereinafter referred to as "embodiments") will be described in the following order. In the following drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic, and the dimensional ratios and the like of each part do not necessarily match the actual ones. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.
1. Cause of migration 2 . First Embodiment of Printed Circuit Board According to Present Disclosure3. 2. Second Embodiment of Printed Circuit Board According to Present Disclosure; First Embodiment of Trench Via 5 . Second Embodiment of Trench Via 6 . 7. Third Embodiment of Trench Via. 8. Fourth embodiment of trench via; 8. Fifth embodiment of trench via; Configuration example of an electronic device having a printed circuit board according to the present disclosure
<1.マイグレーションの発生原因>
 以下に、マイグレーションについて、さらに詳しく説明する。マイグレーションには、イオンマイグレーションとエレクトロマイグレーションがある。
 イオンマイグレーションとは、基板の電極間に電圧を印加すると配線パターン(銅)の陽極側となる部分が電子をもらうことで表面から金属原子が基板表面や基材内部に含まれる水分やイオン化促進物質に溶出し、電界によるクーロン力で陰極側に移動し、電子交換により金属を析出する現象をさす。電界強度が大きい場合に生じやすい。
<1. Cause of Migration>
Migration will be described in more detail below. Migration includes ion migration and electromigration.
Ion migration is when a voltage is applied between the electrodes of the substrate, the part of the wiring pattern (copper) that becomes the anode side receives electrons, and metal atoms from the surface move away from the moisture and ionization promoting substances contained in the substrate surface and inside the base material. It is a phenomenon in which the metal is eluted into the atmosphere, moves to the cathode side due to the Coulomb force due to the electric field, and deposits the metal due to electron exchange. This tends to occur when the electric field strength is high.
 一方、エレクトロマイグレーションとは、金属配線に電流を流すことにより金属配線中を移動する電子と金属原子の間で衝突が起こり、金属原子が徐々に陽極側に輸送されることにより陰極側に金属の欠損が生じてオープン(断線)となり、陽極側では金属が析出してショートに至る現象である。高温で電流密度が高い場合に生じやすい。
 なお、プリント基板で発生するマイグレーションは、主としてイオンマイグレーションである。以下、プリント基板におけるイオンマイグレーションを例に説明する。
Electromigration, on the other hand, is a process in which, when an electric current is passed through a metal wire, collisions occur between electrons moving in the metal wire and metal atoms, and the metal atoms are gradually transported to the anode side, resulting in the migration of the metal to the cathode side. This is a phenomenon in which a defect occurs, resulting in an open (disconnection), and metal is deposited on the anode side, leading to a short circuit. This tends to occur at high temperatures and high current densities.
Incidentally, the migration that occurs in the printed circuit board is mainly ion migration. An example of ion migration in a printed circuit board will be described below.
 プリント基板10は、図4に示すように、銅箔10cで形成された導電層である配線パターン12a~12dと、ガラス繊維10aとエポキシ樹脂33の基材で形成された絶縁層13a~13cを交互にサンドイッチ状に積層した構造を有している。そして、プリント基板10の両面の表面部分を外層35といい、内部の層を内層34という。外層35及び内層34には絶縁層13a~13cに張り合わされた銅箔10cにエッチングが施されることにより、配線パターン12a~12dが形成される。プリント基板10は、まず最初に内層34が形成され、さらにその両面に外層35が積層されて形成される。 As shown in FIG. 4, the printed circuit board 10 includes wiring patterns 12a to 12d, which are conductive layers formed of copper foil 10c, and insulating layers 13a to 13c, which are formed of base materials of glass fiber 10a and epoxy resin 33. It has a structure in which layers are alternately sandwiched. The surface portions of both surfaces of the printed circuit board 10 are called outer layers 35 , and the inner layers are called inner layers 34 . Wiring patterns 12a to 12d are formed on the outer layer 35 and the inner layer 34 by etching the copper foil 10c bonded to the insulating layers 13a to 13c. The printed circuit board 10 is formed by first forming an inner layer 34 and then laminating an outer layer 35 on both sides of the inner layer 34 .
 すなわち、内層34のみの場合は両面基板と呼ばれる。両面基板の両面に外層35を積層したものは4層基板と呼ばれる。さらに、その両面に外層35を積層したものは6層基板と呼ばれる。以下同様である。これからもわかるように、n層基板と呼ぶときの「n」とは、配線パターンの数のことを意味する。本開示に係るプリント基板10は、特定の層数に限定されるものではない。すなわち、本開示に係るプリント基板10は、両面基板や4層基板等の多層基板などにも適用することができるものである。 That is, the case of only the inner layer 34 is called a double-sided board. A double-sided board in which outer layers 35 are laminated on both sides is called a four-layer board. Further, a board having outer layers 35 laminated on both sides thereof is called a six-layer board. The same applies hereinafter. As will be understood from this, "n" when calling an n-layer substrate means the number of wiring patterns. The printed circuit board 10 according to the present disclosure is not limited to any particular number of layers. That is, the printed board 10 according to the present disclosure can also be applied to a double-sided board, a multilayer board such as a four-layer board, and the like.
 ここで、マイグレーションの発生原因について、説明を簡単にするために、図3の内層34の断面図及び図6の主要工程の部分拡大断面図を例に説明する。
 内層34を形成する銅張積層板31は、図6Aに示すように、絶縁層13bの両面に銅箔10c、10cを張り合わせて形成されている。絶縁層13bは、ガラス繊維10aを織ったガラス布10bにエポキシ樹脂33を含浸させて形成されている。
Here, in order to simplify the explanation of the cause of the migration, the cross-sectional view of the inner layer 34 in FIG. 3 and the partially enlarged cross-sectional view of the main process in FIG. 6 will be used as examples.
As shown in FIG. 6A, the copper-clad laminate 31 forming the inner layer 34 is formed by laminating copper foils 10c, 10c on both sides of the insulating layer 13b. The insulating layer 13b is formed by impregnating a glass cloth 10b woven with glass fibers 10a with an epoxy resin 33. As shown in FIG.
 銅張積層板31は、図6Bに示すように、ドリル90により貫通孔30が穿設される。銅張積層板31を構成する絶縁層13bにはガラス繊維10aが積層されているために、貫通孔30は絶縁層13bを形成するガラス繊維10aを裁断する。したがって、貫通孔30の内周面にはガラス繊維10aの裁断面が露出する。 The copper clad laminate 31 is drilled with a through hole 30 by a drill 90 as shown in FIG. 6B. Since the insulating layer 13b forming the copper-clad laminate 31 is laminated with the glass fiber 10a, the through hole 30 cuts the glass fiber 10a forming the insulating layer 13b. Therefore, the cut surface of the glass fiber 10a is exposed on the inner peripheral surface of the through hole 30. As shown in FIG.
 しかもガラス繊維10aは所定の硬度を有しているために裁断は容易でない。したがって、裁断面はバリを形成しやすく、ガラス繊維10aの裁断面において繊維方向に沿ってクラック32を生じる。さらに、図7Cに示すように、洗浄工程において、切削されたエポキシ樹脂33やガラス繊維10aの残渣を除去するために貫通孔30の内周面に負荷がかかり、同様にしてガラス繊維10aの方向に沿って微小なクラック32を生じる。 Moreover, since the glass fiber 10a has a predetermined hardness, it is not easy to cut. Therefore, burrs are likely to form on the cut surfaces, and cracks 32 are generated along the fiber direction on the cut surfaces of the glass fibers 10a. Furthermore, as shown in FIG. 7C, in the cleaning process, a load is applied to the inner peripheral surface of the through-hole 30 in order to remove the residue of the cut epoxy resin 33 and the glass fibers 10a, and similarly the direction of the glass fibers 10a is increased. A minute crack 32 is generated along the .
 プリント基板10のスルホールビア14、14間に直流電圧が印加されている場合には、隣接するスルホールビア14、14間に電界が存在する。ここで、陽極となるスルホールビアを14a、陰極となるスルホールビアを14bとする(以下、単なるスルホールビアを指し示す場合には符号を14と、極性を有する場合を指し示す場合には符号を14a、14bと表記する。)。そこで、隣接するスルホールビア14a、14b間に介在する絶縁層13a~13cの表面が、使用環境により吸湿した場合には、その層が電解質として作用する。このために、電界の陽極側のスルホールビア14aの界面において、酸化反応である電子を放出するアノード反応が起こる。その結果、陽極側のスルホールビア14aから銅イオンが溶出する。 When a DC voltage is applied between the through- hole vias 14, 14 of the printed circuit board 10, an electric field exists between the adjacent through- hole vias 14, 14. Here, a through-hole via serving as an anode is designated as 14a, and a through-hole via serving as a cathode is designated as 14b (hereinafter, reference numeral 14 indicates simple through-hole vias, and reference numerals 14a and 14b indicate cases having polarity. ). Therefore, when the surfaces of the insulating layers 13a to 13c interposed between the adjacent through- hole vias 14a and 14b absorb moisture due to the usage environment, the layer acts as an electrolyte. Therefore, at the interface of the through-hole via 14a on the anode side of the electric field, an anode reaction that emits electrons, which is an oxidation reaction, occurs. As a result, copper ions are eluted from the through-hole via 14a on the anode side.
 溶出した銅イオンは、クーロン力により陰極側となるスルホールビア14bに向かってガラス繊維10aの方向に沿って移動し、析出される。その結果、図3に示すように、陰極側となるスルホールビア14bから陽極側となるスルホールビア14aに向かってCAF17が形成される。そして、CAF17が伸長することによりスルホールビア14a、14b間に電気回路が形成されてショートに至る。
 以上のようにしてマイグレーションの発生に起因する不適合を生じる。
The eluted copper ions move along the direction of the glass fiber 10a toward the through-hole via 14b on the cathode side by the Coulomb force and are deposited. As a result, as shown in FIG. 3, a CAF 17 is formed from the through-hole via 14b on the cathode side toward the through-hole via 14a on the anode side. As the CAF 17 expands, an electric circuit is formed between the through- hole vias 14a and 14b, resulting in a short circuit.
As described above, incompatibility due to occurrence of migration occurs.
<2.本開示に係るプリント基板の第1実施形態>
[本開示に係るプリント基板を有する固体撮像装置の構成例]
 図1は、プリント基板10を有する半導体装置100の、例えば固体撮像装置101の断面図である。以下、半導体装置100の例としてCMOSセンサなどの固体撮像装置101について説明する。固体撮像装置101は、図1に示すように、プリント基板10上にセンサ基板6が接着されている。プリント基板10は、その下面に外部回路と接続するためのハンダボールによる複数の外部接続端子9を配設している。
<2. First Embodiment of Printed Circuit Board According to Present Disclosure>
[Configuration Example of Solid-State Imaging Device Having Printed Circuit Board According to Present Disclosure]
FIG. 1 is a cross-sectional view of a semiconductor device 100 having a printed circuit board 10, such as a solid-state imaging device 101. FIG. A solid-state imaging device 101 such as a CMOS sensor will be described below as an example of the semiconductor device 100 . As shown in FIG. 1, the solid-state imaging device 101 has a sensor substrate 6 bonded onto a printed circuit board 10 . The printed circuit board 10 has a plurality of external connection terminals 9 formed of solder balls for connection to an external circuit on its lower surface.
 センサ基板6は、例えば、単結晶シリコンで形成されている。センサ基板6の上面(表面)には、図1に示すように、画素領域23と周辺領域24とが設けられている。センサ基板6の上方には、センサ基板6の受光部21に対向してカバーガラス3が配設されている。また、受光部21とカバーガラス3とは、図1に示すように、受光部21の周辺領域24の周縁を囲繞するようにシール樹脂4が塗布され、センサ基板6とカバーガラス3はシール樹脂4を介して接着されている。このように両者が接着されることにより、センサ基板6とカバーガラス3の対向面との間には、空洞であるキャビティ部8が形成されている。 The sensor substrate 6 is made of single crystal silicon, for example. A pixel region 23 and a peripheral region 24 are provided on the upper surface (surface) of the sensor substrate 6, as shown in FIG. A cover glass 3 is arranged above the sensor substrate 6 so as to face the light receiving portion 21 of the sensor substrate 6 . As shown in FIG. 1, the light receiving portion 21 and the cover glass 3 are coated with a sealing resin 4 so as to surround the periphery of the peripheral region 24 of the light receiving portion 21, and the sensor substrate 6 and the cover glass 3 are coated with the sealing resin. 4 are attached. By bonding the two together in this manner, a cavity portion 8 that is hollow is formed between the sensor substrate 6 and the facing surface of the cover glass 3 .
 センサ基板6の画素領域23には、複数の画素22が平面視マトリクス状に配列して形成されている。これらの画素22は、その集合体が全体として被写体像を形成する。
画素22は、光学系(図示せず。)によって結像された被写体像の一部分を構成する光信号をそれぞれ電気信号に変換する光電変換素子である。光電変換素子は、例えば、フォトダイオードであり、外付けの撮像レンズを含む光学系を介して被写体像として入射する光を受光面で受光し、光電変換することで信号電荷を生成する。
In a pixel region 23 of the sensor substrate 6, a plurality of pixels 22 are arranged in a matrix in plan view. A collection of these pixels 22 forms a subject image as a whole.
The pixels 22 are photoelectric conversion elements that convert optical signals forming part of an object image formed by an optical system (not shown) into electrical signals. The photoelectric conversion element is, for example, a photodiode, and receives light incident as a subject image on a light receiving surface through an optical system including an external imaging lens, and photoelectrically converts the light to generate a signal charge.
 複数の画素22のそれぞれの上面には、それぞれの画素22を覆うようにカラーフィルタ25が形成されている。カラーフィルタ25は、例えば図2の平面図に示すように、色の3原色であるR(赤)、G(緑)、B(青)のカラーフィルタ25が、ベイヤー(Bayaer)配列をもってオンチップカラーフィルタ(OCCF:On Chip Color Filter)としてアレイ状に形成されている。なお、カラーフィルタ25の配列パターンはベイヤーパターンに限定されるものではない。
 また、カラーフィルタ25に重なるように、赤外カットフィルタ(IR Cut Filter)27を設けてもよい。
A color filter 25 is formed on the upper surface of each of the plurality of pixels 22 so as to cover each pixel 22 . For example, as shown in the plan view of FIG. 2, the color filters 25 of three primary colors R (red), G (green), and B (blue) are arranged on-chip in a Bayer arrangement. It is formed in an array as a color filter (OCCF: On Chip Color Filter). The arrangement pattern of the color filters 25 is not limited to the Bayer pattern.
Also, an infrared cut filter (IR Cut Filter) 27 may be provided so as to overlap the color filter 25 .
 カラーフィルタ25の上面には、直接に、又は赤外カットフィルタ27を介して、それぞれの画素22が集光するためのマイクロレンズアレイ26がそれぞれ設けられている。そして、マイクロレンズアレイ26は、カバーガラス3、カラーフィルタ25及び赤外カットフィルタ27を透過してきた光を、それぞれの画素22が受光して光電変換するよう構成している。 On the upper surface of the color filter 25, a microlens array 26 for each pixel 22 to collect light is provided either directly or via an infrared cut filter 27. The microlens array 26 is configured such that the light transmitted through the cover glass 3, the color filter 25, and the infrared cut filter 27 is received by each pixel 22 and photoelectrically converted.
 周辺領域24は、画素領域23を囲繞するように周りを取り囲んだ領域である。周辺領域24の上面には、画像信号を外部へ取り出すための各信号に対応した複数のパッド29が形成されている。また、プリント基板10の上面のセンサ基板6を囲繞する領域には、外部と接続するための各信号に対応した複数のパッド11が配設されている。 The peripheral area 24 is an area surrounding the pixel area 23 . A plurality of pads 29 are formed on the upper surface of the peripheral area 24, corresponding to each signal for extracting image signals to the outside. A plurality of pads 11 corresponding to each signal for connection with the outside are arranged in a region surrounding the sensor substrate 6 on the upper surface of the printed circuit board 10 .
 そして、センサ基板6の上面の周辺領域24の周縁に設けられたパッド29と、プリント基板10のパッド11とは、金線などのボンディングワイヤ7により、それぞれ接続されている。プリント基板10には、図4に示すように、内層34に配線パターン12b、12cが、外層35に配線パターン12a、12dが形成されている。そして、各配線パターン12a~12dは、スルホールビア14を介して各パッド11やプリント基板10の下面に配設された先述のハンダボールなどで形成された外部接続端子9と接続されている。なお、詳細は後述する。 The pads 29 provided on the periphery of the peripheral region 24 on the upper surface of the sensor substrate 6 and the pads 11 of the printed circuit board 10 are connected by bonding wires 7 such as gold wires. As shown in FIG. 4, wiring patterns 12b and 12c are formed on the inner layer 34 of the printed circuit board 10, and wiring patterns 12a and 12d are formed on the outer layer 35 thereof. The wiring patterns 12a to 12d are connected via through-hole vias 14 to the pads 11 and the external connection terminals 9 formed of solder balls or the like and arranged on the lower surface of the printed circuit board 10. FIG. Details will be described later.
[本開示に係るプリント基板の製造方法例]
 図4は、本開示に係るプリント基板10の第1実施形態の部分拡大断面図である。ここで、プリント基板10は、いわゆる4層基板を例に説明する。
[Example of method for manufacturing printed circuit board according to the present disclosure]
FIG. 4 is a partially enlarged cross-sectional view of the first embodiment of the printed circuit board 10 according to the present disclosure. Here, the printed circuit board 10 will be described using a so-called four-layer board as an example.
 図4において、プリント基板10は、内層34と、その両面(本図の上下面)に積層された外層35、35とから構成されている。内層34と外層35、35とは、配線パターン12a、12b、12c及び12dと絶縁層13a、13b及び13cが交互に積み重ねられたサンドイッチ構造を形成している。 In FIG. 4, the printed circuit board 10 is composed of an inner layer 34 and outer layers 35, 35 laminated on both sides thereof (upper and lower sides in this figure). The inner layer 34 and the outer layers 35, 35 form a sandwich structure in which the wiring patterns 12a, 12b, 12c and 12d and the insulating layers 13a, 13b and 13c are alternately stacked.
 配線パターン12a~12dは、銅箔10cで形成された導電層である。そして、先述のとおり、各配線パターン12a~12dのそれぞれの間には、それぞれ絶縁層13a、13b及び13cが配設されており、いわば、銅箔10cで形成された導電層とガラス繊維10a基材で形成された絶縁層13a~13cとを交互にサンドイッチ状に積層した構造を形成している。そして配線パターン12a~12dは、銅箔10cをエッチングする等により形成され、電気回路を構成する。 The wiring patterns 12a to 12d are conductive layers made of copper foil 10c. As described above, insulating layers 13a, 13b and 13c are arranged between the wiring patterns 12a to 12d, respectively. It forms a structure in which insulating layers 13a to 13c made of material are alternately laminated in a sandwich shape. The wiring patterns 12a to 12d are formed by etching the copper foil 10c or the like to form an electric circuit.
 また、内層34の銅箔10c、10c間にスルホールビア14a、14bが設けられ、樹脂16が充填されている。これにより、配線パターン12b、12c間が電気的に接続されている。
 また、スルホールビア14a、14b間に、ガラス繊維10aを横断する方向、すなわち裁断するようにトレンチビア18を穿設し、その内部を樹脂16で充填している。したがって、スルホールビア14a、14bの外周面にガラス繊維10aの方向に沿って微小なクラック32が存在したとしても、当該トレンチビア18を配設することによりCAF17の伸長を阻止することができる。これにより、マイグレーションに起因するスルホールビア14a、14b間のショートの発生を防止することができる。
Through- hole vias 14 a and 14 b are provided between the copper foils 10 c and 10 c of the inner layer 34 and filled with resin 16 . Thereby, the wiring patterns 12b and 12c are electrically connected.
A trench via 18 is formed between the through- hole vias 14a and 14b in a direction that traverses the glass fiber 10a, that is, by cutting the glass fiber 10a. Therefore, even if minute cracks 32 are present along the direction of the glass fibers 10a on the outer peripheral surfaces of the through- hole vias 14a and 14b, the provision of the trench vias 18 can prevent the CAF 17 from extending. This can prevent the occurrence of a short circuit between the through- hole vias 14a and 14b due to migration.
 プリント基板10は、具体的には、概略、図5の工程図に示すようにして製造される。また、主要工程におけるプリント基板10の概略断面を図4及び図6~図9に示す。 Specifically, the printed circuit board 10 is manufactured roughly as shown in the process diagram of FIG. Schematic cross-sections of the printed circuit board 10 in main steps are shown in FIGS. 4 and 6 to 9. FIG.
 プリント基板10の製造には、図6Aに示すように、例えば、ガラス布10b(ガラスクロス)にエポキシ樹脂33を含侵させた絶縁層13bの両面に銅箔10cを張り合わせて形成された銅張積層板31を準備する。すなわち、銅張積層板31は基材となる絶縁性の高いガラス繊維10aで織られたガラス布10bに、例えばエポキシ樹脂33を含浸させて絶縁層13bを形成し、その両面に銅箔10c、10cを重ね合わせてプレス機で加熱及び加圧することで形成される(ステップS11)。このようにして形成された銅張積層板31は、プリント基板10の内層34を構成する。 In manufacturing the printed circuit board 10, as shown in FIG. 6A, for example, a copper foil 10c is laminated on both sides of an insulating layer 13b, which is a glass cloth 10b (glass cloth) impregnated with an epoxy resin 33. A laminated plate 31 is prepared. That is, the copper-clad laminate 31 is formed by impregnating, for example, epoxy resin 33 into a glass cloth 10b woven from glass fibers 10a having high insulating properties as a base material to form an insulating layer 13b. 10c are superimposed and heated and pressed by a press (step S11). The copper-clad laminate 31 thus formed forms the inner layer 34 of the printed circuit board 10 .
 次に、図6Bに示すように、内層34の銅箔10c、10c間を接続するために、ドリル90により銅箔10c、10c間の所定の個所にスルホールビア14a、14b用の貫通孔30を穿設する(ステップS12)。 Next, as shown in FIG. 6B, in order to connect the copper foils 10c, 10c of the inner layer 34, a drill 90 is used to form through holes 30 for through- hole vias 14a, 14b at predetermined locations between the copper foils 10c, 10c. Punching is performed (step S12).
 そして、図7Cに示すように、貫通孔30の内部に残留しているガラス繊維10aやエポキシ樹脂33などの切削屑を洗浄により除去する(ステップS13)。 Then, as shown in FIG. 7C, cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the through-hole 30 is removed by washing (step S13).
 次に、洗浄が終わった貫通孔30の内周面に、図7Dに示すように、銅メッキを行う。これにより、スルホールビア14a、14bが形成される(ステップS14)。
 このように、内層34の銅箔10c、10c間にスルホールビア14a、14bを設けることにより銅箔10c、10cが電気的に接続される。
Next, as shown in FIG. 7D, copper plating is applied to the inner peripheral surface of the through hole 30 that has been cleaned. Through- hole vias 14a and 14b are thus formed (step S14).
Thus, by providing the through- hole vias 14a, 14b between the copper foils 10c, 10c of the inner layer 34, the copper foils 10c, 10c are electrically connected.
 次に、図8Eに示すように、スルホールビア14a、14b間に、ドリル90により所定の径の貫通孔30であるトレンチビア18を穿設する(ステップS15)。 Next, as shown in FIG. 8E, between the through- hole vias 14a and 14b, a trench via 18, which is a through hole 30 with a predetermined diameter, is drilled with a drill 90 (step S15).
 次に、図7Cに示すと同様に、穿設されたトレンチビア18の内部に残留しているガラス繊維10aやエポキシ樹脂33などの切削屑を洗浄により除去する(ステップS16)。 Next, in the same manner as shown in FIG. 7C, cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the drilled trench via 18 is removed by washing (step S16).
 次に、図8Fに示すように、銅メッキがされたスルホールビア14a、14bの内部及びトレンチビア18の内部に樹脂16を充填する(ステップS17)。 Next, as shown in FIG. 8F, resin 16 is filled inside the copper-plated through- hole vias 14a, 14b and trench vias 18 (step S17).
 樹脂16の充填が完了すると、樹脂16を充填したスルホールビア14a、14b及びトレンチビア18の樹脂16の充填口を研磨して平坦化する(ステップS18)。 When the filling of the resin 16 is completed, the resin 16 filling openings of the through- hole vias 14a, 14b and the trench vias 18 filled with the resin 16 are polished and flattened (step S18).
 平坦化されたスルホールビア14a、14bの充填口の上面は、図9Gに示すように、銅により蓋メッキされる。併せて配線パターン12b、12cが形成される。ここで、配線パターン12b、12cは、次のようにして形成される。すなわち、銅張積層板31の両面に張り合わされた銅箔10c、10cに露光・現像及びエッチングを行うことで内層34の配線パターン12b、12cが形成される(ステップS19)。
 以上のようにして4層基板の内層34の部分である第2層42と第3層43が形成される。ここで、第2層42と第3層43上に、ステップS22で説明しているソルダレジスト19を塗布すると両面基板になる。4層基板にするには、ステップ19に引き続き、ステップ20以下の工程を行う。
The top surfaces of the fill ports of the planarized through- hole vias 14a, 14b are cap plated with copper as shown in FIG. 9G. Wiring patterns 12b and 12c are also formed. Here, the wiring patterns 12b and 12c are formed as follows. That is, the wiring patterns 12b and 12c of the inner layer 34 are formed by exposing, developing and etching the copper foils 10c and 10c laminated on both sides of the copper-clad laminate 31 (step S19).
As described above, the second layer 42 and the third layer 43, which are part of the inner layer 34 of the four-layer substrate, are formed. When the solder resist 19 described in step S22 is applied on the second layer 42 and the third layer 43, a double-sided board is obtained. To form a four-layer board, following step 19, steps 20 and subsequent steps are performed.
 次に、内層34の上下の両面に絶縁層13a、13cを張り合わせ、さらに各面に配線パターン12a、12dとなる銅箔10c、10cを重ね合わせてプレス機で加熱及び加圧する。これにより外層35である第1層41と第4層44を積層する(ステップS20)。 Next, the insulating layers 13a and 13c are laminated on both upper and lower surfaces of the inner layer 34, and the copper foils 10c and 10c to be the wiring patterns 12a and 12d are laminated on each surface and heated and pressed with a press machine. Thereby, the first layer 41 and the fourth layer 44, which are the outer layers 35, are laminated (step S20).
 次に、第1層41及び第4層44の配線パターン12a、12dを形成する。具体的には、内層34となる第2層42と第3層43のそれぞれの外面に絶縁層13a、13cを介して張り合わされた第1層41と第4層44となる銅箔10c、10cに露光・現像及びエッチングを行うことで外層35の配線パターン12a、12dが形成される。 Next, the wiring patterns 12a and 12d of the first layer 41 and the fourth layer 44 are formed. Specifically, the first layer 41 and the copper foils 10c and 10c that become the fourth layer 44 are bonded to the outer surfaces of the second layer 42 and the third layer 43 that become the inner layer 34 via the insulating layers 13a and 13c, respectively. Then, the wiring patterns 12a and 12d of the outer layer 35 are formed by performing exposure/development and etching.
 また、第1層41と第2層42及び/又は第3層43と第4層44を接続する場合には、第1層41の銅箔10cと絶縁層13a及び/又は第4層44の銅箔10cと絶縁層13cの所定の個所をドリル90により穿孔する。そして、切削屑を除去した後、穿設された穴の内周面を銅メッキすることで、接続ビア15が形成される。その結果、所定の配線パターン12aと12d同士が電気的に接続される。以上のようにして、図9Hに示すように、第1層41と第4層44が形成される(ステップS21)。 When connecting the first layer 41 and the second layer 42 and/or the third layer 43 and the fourth layer 44, the copper foil 10c of the first layer 41 and the insulating layer 13a and/or the fourth layer 44 A predetermined portion of the copper foil 10c and the insulating layer 13c is drilled with a drill 90. As shown in FIG. After removing the cutting waste, the connection via 15 is formed by plating the inner peripheral surface of the drilled hole with copper. As a result, predetermined wiring patterns 12a and 12d are electrically connected to each other. As described above, the first layer 41 and the fourth layer 44 are formed as shown in FIG. 9H (step S21).
 上記の工程が終わると第1層41と第4層44の上面にソルダレジスト19を塗布し、配線パターン12a、12dを絶縁する。ソルダレジスト19は、絶縁膜を形成する保護インキであり、ハンダなどの導電体が不必要な部分へ付着してショートするのを防止する。また、塵埃や熱、湿気などから配線パターン12a、12dを保護し、絶縁性を維持するものである(ステップS22)。 After the above steps are completed, a solder resist 19 is applied to the upper surfaces of the first layer 41 and the fourth layer 44 to insulate the wiring patterns 12a and 12d. The solder resist 19 is a protective ink that forms an insulating film, and prevents conductors such as solder from adhering to unnecessary portions and short-circuiting. Also, the wiring patterns 12a and 12d are protected from dust, heat, moisture, etc., and the insulation is maintained (step S22).
 以上のような工程を経ることにより、本開示に係るプリント基板10を製造することができる。なお、上記説明では4層基板を例に説明したが、同様の工程を繰り返すことにより6層や8層のプリント基板10を製造することができる。このようにして形成されたプリント基板10の板厚は、例えば、0.6mmである。しかし、この寸法に限定されるものではない。 The printed circuit board 10 according to the present disclosure can be manufactured through the steps described above. In the above description, a four-layer board is described as an example, but a printed board 10 with six layers or eight layers can be manufactured by repeating the same steps. The thickness of the printed circuit board 10 formed in this manner is, for example, 0.6 mm. However, it is not limited to this dimension.
 本開示によれば、プリント基板10は、上記のように、電位差を有するスルホールビア14a、14b間にトレンチビア18を穿設し、その内部を樹脂16で充填して形成したものである。スルホールビア14a、14b間にトレンチビア18を配設することにより、例えば、スルホールビア14a、14b間にガラス繊維10aの裁断面にクラック32が発生したとしても、トレンチビア18及びその内部に充填された樹脂16を介在させることによりCAF17の伸長を阻止することができる。これにより、マイグレーションによるスルホールビア14a、14b間のショートの発生を防止することができる。 According to the present disclosure, the printed circuit board 10 is formed by forming the trench via 18 between the through- hole vias 14a and 14b having a potential difference and filling the inside of the trench via with the resin 16, as described above. By arranging the trench via 18 between the through- hole vias 14a and 14b, for example, even if a crack 32 occurs on the cut surface of the glass fiber 10a between the through- hole vias 14a and 14b, the trench via 18 and its interior are filled. The elongation of CAF 17 can be prevented by interposing resin 16. This can prevent the occurrence of a short circuit between the through- hole vias 14a and 14b due to migration.
 また、スルホールビア14a、14b及びトレンチビア18の内部に充填する樹脂16は、プリント基板10の絶縁層13a~13cを形成する材料よりも誘電率の小さな絶縁性を有する樹脂16を充填することにより絶縁性を確保することができる。また、配線パターン12a~12d相互間に生成される静電容量を小さくすることができるため、信号の遅延を防止することができ、高速処理を実現することができる。 The through- hole vias 14a and 14b and the trench vias 18 are filled with resin 16, which has a lower dielectric constant than the material forming the insulating layers 13a to 13c of the printed circuit board 10. Insulation can be secured. In addition, since the capacitance generated between the wiring patterns 12a to 12d can be reduced, signal delay can be prevented and high-speed processing can be realized.
 さらに、スルホールビア14a、14b及びトレンチビア18の内部に充填する樹脂16の材料を同じものとすることにより、樹脂16を同時に充填することができる。これにより樹脂16の充填は1回の工程で済み、段取りや充填作業の作業性の改善につながり、コストを下げることができる。 Furthermore, by using the same material for the resin 16 that fills the insides of the through- hole vias 14a and 14b and the trench via 18, the resin 16 can be filled at the same time. As a result, the filling of the resin 16 can be completed in one step, leading to improvement in workability of setup and filling work, and reduction in cost.
 また、隣接するスルホールビア14a、14bに印加される電位差が大きく、しかも絶縁距離が十分確保できない場合には、スルホールビア14a、14b間の電界強度が大きくなり絶縁性能を維持できない場合がある。さらに、電位差が大きいとマイグレーションを生じやすい。このような場合には、隣接するスルホールビア14a、14b間にトレンチビア18を設けるとともに、その内部には誘電率の大きな絶縁性を有する樹脂16を充填してもよい。誘電率の大きな絶縁性を有する樹脂16は、耐絶縁性能が優れているため、絶縁距離が小さい場合においても絶縁性を確保することができる。
 また、これに関連して、誘電率の大きな絶縁性を有する樹脂16をトレンチビア18に充填すると樹脂16は誘電分極を起こし、誘電分極によって発生した電荷が新たな電界を作るため、絶縁層13a~13cの電界強度が弱められる。これによりマイグレーションの発生を抑制する効果も生ずる。
Also, if the potential difference applied to the adjacent through- hole vias 14a and 14b is large and a sufficient insulation distance cannot be ensured, the electric field strength between the through- hole vias 14a and 14b increases and the insulation performance may not be maintained. Furthermore, if the potential difference is large, migration tends to occur. In such a case, a trench via 18 may be provided between the adjacent through- hole vias 14a and 14b and filled with insulating resin 16 having a large dielectric constant. Since the insulating resin 16 having a large dielectric constant has excellent insulation resistance, it is possible to ensure the insulation even when the insulation distance is small.
In relation to this, when the trench via 18 is filled with an insulating resin 16 having a large dielectric constant, the resin 16 causes dielectric polarization, and electric charges generated by the dielectric polarization create a new electric field. ∼13c field strength is weakened. This also produces an effect of suppressing the occurrence of migration.
 このように、スルホールビア14a、14b及びトレンチビア18の内部に充填される樹脂6は、いずれも誘電率の小さな絶縁性を有する樹脂16であってもよい。また、スルホールビア14a、14bの内部には、誘電率の小さな絶縁性を有する樹脂16を充填し、トレンチビア18の内部には、誘電率の大きな絶縁性を有する樹脂16を充填してもよい。 In this way, the resin 6 filling the insides of the through- hole vias 14a and 14b and the trench via 18 may be insulating resin 16 with a small dielectric constant. Alternatively, the insides of the through- hole vias 14a and 14b may be filled with an insulating resin 16 having a small dielectric constant, and the trench vias 18 may be filled with an insulating resin 16 having a large dielectric constant. .
<3.本開示に係るプリント基板の第2実施形態>
 本開示に係るプリント基板10の第2実施形態は、図10に示すように、隣接しているスルホールビア14a、14bが第1層41から第4層44に貫通して設けられ、トレンチビア18を、ガラス繊維10aを横断する方向すなわち裁断するように貫通し、その内部を樹脂16で充填するものである。したがって、スルホールビア14a、14bの外周面にガラス繊維10aの方向に沿って微小なクラック32が存在したとしても、当該トレンチビア18を穿設することによりCAF17の伸長を阻止することができる。これにより、マイグレーションに起因するスルホールビア14a、14b間のショートの発生を防止することができる。
<3. Second Embodiment of Printed Circuit Board According to Present Disclosure>
In the second embodiment of the printed circuit board 10 according to the present disclosure, as shown in FIG. is passed through the glass fiber 10a in a transverse direction, that is, so as to cut it, and the inside thereof is filled with the resin 16. As shown in FIG. Therefore, even if minute cracks 32 are present along the direction of the glass fibers 10a on the outer peripheral surfaces of the through- hole vias 14a and 14b, the extension of the CAF 17 can be prevented by forming the trench vias 18. FIG. This can prevent the occurrence of a short circuit between the through- hole vias 14a and 14b due to migration.
 以下、プリント基板10は、4層基板を例に説明する。本図において、配線パターン12a、12b、12c及び12dは、銅箔10cで形成された導電層である。そして、各配線パターン12a~12dのそれぞれの間には、絶縁層13a、13b及び13cがそれぞれ配設されている。すなわち、本図に示すプリント基板10は、銅箔10cで形成された導電層である配線パターン12a~12dと、ガラス繊維10aエポキシ樹脂33を含浸させた基材で形成された絶縁層13a~13cとを交互にサンドイッチ状に積層した構造をしている。そして配線パターン12a~12dは、銅箔10cをエッチングする等により形成され、電気回路を構成する。 Hereinafter, the printed circuit board 10 will be described using a four-layer board as an example. In this figure, wiring patterns 12a, 12b, 12c and 12d are conductive layers formed of copper foil 10c. Insulating layers 13a, 13b and 13c are respectively arranged between the wiring patterns 12a to 12d. That is, the printed circuit board 10 shown in this figure includes wiring patterns 12a to 12d, which are conductive layers formed of copper foil 10c, and insulating layers 13a to 13c, which are formed of a base material impregnated with glass fiber 10a and epoxy resin 33. It has a structure in which these are alternately stacked in a sandwich. The wiring patterns 12a to 12d are formed by etching the copper foil 10c or the like to form an electric circuit.
 スルホールビア14a、14bは、内層34に設けられたスルホールビア14と重ならない位置に、第1層41から第4層44まで貫通している。そして、スルホールビア14a、14b間には、トレンチビア18が同じく貫通している。第2層42及び第3層43において、スルホールビア14a、14bを配線パターン12b、12cに接続しない場合には、これらの配線パターン12b、12cと所定の距離だけ離隔する。また、これらと接続する場合には、所定の配線パターン12b、12cにランドを設けて、そこを貫通接続する。 The through- hole vias 14 a and 14 b penetrate from the first layer 41 to the fourth layer 44 at positions not overlapping the through-hole vias 14 provided in the inner layer 34 . A trench via 18 similarly penetrates between the through- hole vias 14a and 14b. In the second layer 42 and the third layer 43, when the through- hole vias 14a and 14b are not connected to the wiring patterns 12b and 12c, they are separated from these wiring patterns 12b and 12c by a predetermined distance. In addition, when connecting to these, lands are provided on predetermined wiring patterns 12b and 12c, and through-connections are made there.
 スルホールビア14a、14b及びトレンチビア18は、その内部に樹脂16を充填している。スルホールビア14a、14bの開口部には銅メッキにより蓋部を設けてもよい。
 プリント基板10の表面と裏面の配線パターン12a、12dの上面はソルダレジスト19が塗布されて配線パターン12a、12dを絶縁し保護する。
The through hole vias 14a and 14b and the trench via 18 are filled with a resin 16 inside. The openings of the through- hole vias 14a and 14b may be covered with copper plating.
Solder resist 19 is applied to the upper surfaces of the wiring patterns 12a and 12d on the front and back surfaces of the printed circuit board 10 to insulate and protect the wiring patterns 12a and 12d.
 このように、第1層41から第4層44まで貫通するスルホールビア14a、14bにおいても、両者の間にトレンチビア18が貫通し、その内部を樹脂16で充填している。このため、絶縁層13a~13cに生じたクラック32に沿ってCAF17が伸長してきてもスルホールビア14a、14b間のショートの発生を防止することができる。 In this way, in the through- hole vias 14a and 14b penetrating from the first layer 41 to the fourth layer 44, the trench via 18 penetrates between them and is filled with the resin 16 inside. Therefore, even if the CAF 17 extends along the cracks 32 generated in the insulating layers 13a to 13c, it is possible to prevent short-circuiting between the through- hole vias 14a and 14b.
 次に、第1層41から第4層44まで貫通するスルホールビア14a、14b及びトレンチビア18を穿設する工程について図11により説明する。第1層41から第4層44までを貫通するスルホールビア14a、14b及びトレンチビア18を穿設する工程は、第1層41及び第4層44を積層した後である(図5のステップS20参照)。 Next, the process of drilling through- hole vias 14a and 14b and trench vias 18 penetrating from the first layer 41 to the fourth layer 44 will be described with reference to FIG. The step of forming through- hole vias 14a and 14b and trench vias 18 penetrating through the first layer 41 to the fourth layer 44 is performed after laminating the first layer 41 and the fourth layer 44 (step S20 in FIG. 5). reference).
 すなわち、図11のステップS31からS40までは、図5のステップS11から20までと同様である。したがって、図11のステップS31からS40までの説明は省略する。また、ステップS12からステップS20で説明した図6~図9に示す工程に相当する工程は、これらの図を参照することとする。
 図11において、内層34に第1層41及び第4層44を積層した後(ステップS40)、第1層41から第4層44まで貫通するスルホールビア14a、14b用の貫通孔30を穿設する(ステップS41)。
That is, steps S31 to S40 in FIG. 11 are the same as steps S11 to S20 in FIG. Therefore, description of steps S31 to S40 in FIG. 11 is omitted. 6 to 9 described in steps S12 to S20, refer to these figures.
In FIG. 11, after laminating the first layer 41 and the fourth layer 44 on the inner layer 34 (step S40), the through holes 30 for the through- hole vias 14a and 14b penetrating from the first layer 41 to the fourth layer 44 are drilled. (step S41).
 次に、貫通孔30の内部に残留しているガラス繊維10aやエポキシ樹脂33などの切削屑を洗浄により除去する(ステップS42)。 Next, cutting debris such as the glass fiber 10a and the epoxy resin 33 remaining inside the through-hole 30 is removed by washing (step S42).
 洗浄が終わった貫通孔30の内周面に銅メッキを行う(ステップS43)。これにより、スルホールビア14a、14bが形成され、両配線パターン12a、12d間が電気的に接続される。 The inner peripheral surface of the through hole 30 that has been cleaned is plated with copper (step S43). Through- hole vias 14a and 14b are thereby formed to electrically connect the wiring patterns 12a and 12d.
 次に、スルホールビア14a、14b間に、図10に示すように、ドリル90により所定の径の貫通孔であるトレンチビア18を穿設する(ステップS44)。 Next, as shown in FIG. 10, a trench via 18, which is a through hole with a predetermined diameter, is drilled between the through- hole vias 14a and 14b (step S44).
 次に、穿設されたトレンチビア18の内部に残留しているガラス繊維10aやエポキシ樹脂33などの切削屑を洗浄により除去する(ステップS45)。 Next, shavings such as the glass fiber 10a and the epoxy resin 33 remaining inside the drilled trench via 18 are removed by washing (step S45).
 次に、銅メッキがされたスルホールビア14a、14bの内部及びトレンチビア18の内部に、図10に示すように、樹脂16を充填する(ステップS46)。 Next, as shown in FIG. 10, resin 16 is filled inside the copper-plated through- hole vias 14a, 14b and trench vias 18 (step S46).
 樹脂16の充填が完了すると、樹脂16を充填したスルホールビア14a、14b及びトレンチビア18の樹脂16の充填口を研磨して平坦化する(ステップS47)。 When the filling of the resin 16 is completed, the resin 16 filling openings of the through- hole vias 14a and 14b and the trench vias 18 filled with the resin 16 are polished and flattened (step S47).
 平坦化されたスルホールビア14a、14bの充填口の上面は、銅により蓋メッキされてもよい。併せて配線パターン12b、12cが形成される(ステップS48)。
 以上のようにして4層基板の外層35である第1層41と第4層44が形成され、スルホールビア14a、14bにより所定の配線パターン12a~12d間が電気的に接続される。
The top surface of the fill port of the planarized through- hole vias 14a, 14b may be cap plated with copper. Wiring patterns 12b and 12c are also formed (step S48).
As described above, the first layer 41 and the fourth layer 44, which are the outer layers 35 of the four-layer substrate, are formed, and the predetermined wiring patterns 12a to 12d are electrically connected by the through- hole vias 14a and 14b.
 上記の工程が終わると第1層41と第4層44の上面にソルダレジスト19を塗布し、配線パターン12a、12dを絶縁する(ステップS49)。
 以上のような工程を経ることにより、本開示に係るプリント基板10を製造することができる。なお、上記説明では4層基板を例に説明したが、同様の工程を繰り返すことにより6層や8層のプリント基板10を製造することができる。
After the above steps are completed, the upper surfaces of the first layer 41 and the fourth layer 44 are coated with the solder resist 19 to insulate the wiring patterns 12a and 12d (step S49).
Through the steps described above, the printed circuit board 10 according to the present disclosure can be manufactured. In the above description, a four-layer board is described as an example, but a printed board 10 with six layers or eight layers can be manufactured by repeating the same steps.
 また、図10では、スルホールビア14a、14bの両方とも第1層41から第4層44まで貫通する場合を例に説明したが、いずれか一方が第2層42から第4層44まで貫通し、他方は第1層41から第4層44まで貫通する場合でもよい。すなわち、スルホールビア14a、14bの両方とも同一の層同士である必要はない。
 上記以外は、本開示に係るプリント基板10の第1実施形態と同様であるため説明を省略する。
10, both of the through- hole vias 14a and 14b penetrate from the first layer 41 to the fourth layer 44. However, one of the through- hole vias 14a and 14b penetrates from the second layer 42 to the fourth layer 44. and the other may penetrate from the first layer 41 to the fourth layer 44 . That is, both through- hole vias 14a and 14b need not be on the same layer.
Other than the above, the printed circuit board 10 according to the first embodiment of the present disclosure is the same as the printed circuit board 10, so the description is omitted.
<4.トレンチビアの第1実施形態>
 次に、本開示に係るプリント基板10のトレンチビア18の第1実施形態について説明する。なお、以下に説明するトレンチビア18の第1実施形態から第5実施形態は前記プリント基板10の第1実施形態及び第2実施形態のいずれにも適用し得るものである。
<4. First Embodiment of Trench Via>
Next, a first embodiment of the trench via 18 of the printed circuit board 10 according to the present disclosure will be described. The first to fifth embodiments of the trench via 18 described below can be applied to both the first embodiment and the second embodiment of the printed circuit board 10. FIG.
 トレンチビア18の第1実施形態は、図12Aに示すように、隣接するスルホールビア14aと14bの間に略円形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填したものである。
 トレンチビア18の径は、スルホールビア14a、14bのそれぞれの径と同一にしてもよいが、マイグレーションに起因するCAF17の伸長によるショートの発生を阻止するためには、これらの径よりも大きく形成するのが望ましい。例えば、スルホールビア14a、14bの径を0.31mmとすれば、トレンチビア18の径は少なくとも0.4mmあることが好ましい。さらに穿設するドリル90の位置公差±0.1mmを考慮すると、スルホールビア14a、14bの離間間隔(本図の破線で記載した円の直径)は、0.6mm以上あることが望ましい。しかし、上記寸法に限定されるものではない。以下同じ。
As shown in FIG. 12A, the first embodiment of the trench via 18 has a substantially circular trench via 18 formed between the adjacent through- hole vias 14a and 14b and filled with a resin 16 inside each. be.
The diameter of the trench via 18 may be the same as the diameter of each of the through- hole vias 14a and 14b, but is formed to be larger than these diameters in order to prevent the occurrence of shorts due to elongation of the CAF 17 caused by migration. is desirable. For example, if the through- hole vias 14a and 14b have a diameter of 0.31 mm, the trench via 18 preferably has a diameter of at least 0.4 mm. Furthermore, considering the positional tolerance of the drill 90 for drilling ±0.1 mm, it is desirable that the distance between the through- hole vias 14a and 14b (the diameter of the circle indicated by the dashed line in this figure) is 0.6 mm or more. However, it is not limited to the above dimensions. same as below.
 また、図12Bに示すように、隣接するスルホールビア14a、14b間に長方形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填してもよい。このように形成することにより隣接するスルホールビア14aと14bとの間隔が短い場合でもマイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。 Alternatively, as shown in FIG. 12B, rectangular trench vias 18 may be formed between adjacent through- hole vias 14a and 14b, and resin 16 may be filled inside each of them. By forming in this manner, even when the distance between the adjacent through- hole vias 14a and 14b is short, it is possible to prevent the occurrence of a short due to elongation of the CAF 17 caused by migration.
 なお、本図では、トレンチビア18の形状を長方形状としたが、楕円状でもよいし、長円形状に形成してもよい。要は、隣接するスルホールビア14aと14bを結ぶ直線に対して、これに直交する方向にトレンチビア18の幅員が長くなるように形成すると、CAF17が伸長したとしても、ショートの発生を阻止することができる。このために、マイグレーションによる不適合の発生を防止する効果を向上することができる。 Although the shape of the trench via 18 is rectangular in this figure, it may be elliptical or elliptical. The point is that if the trench via 18 is formed so that the width of the trench via 18 is elongated in the direction orthogonal to the straight line connecting the adjacent through- hole vias 14a and 14b, even if the CAF 17 is elongated, short-circuiting can be prevented. can be done. Therefore, it is possible to improve the effect of preventing the occurrence of incompatibility due to migration.
<5.トレンチビアの第2実施形態>
 トレンチビア18の第2実施形態は、図13に示すように、隣接するスルホールビア14a、14b間において、いずれかの、例えば、スルホールビア14aを取り囲んで略円形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填したものである。
 トレンチビア18の径は、スルホールビア14aの径よりも大きく形成する。なお、スルホールビア14aの外周面に絶縁層13a~13cがあってもトレンチビア18の内周面から樹脂16により分離されているのであれば差支えない。
<5. Second Embodiment of Trench Via>
As shown in FIG. 13, a second embodiment of the trench via 18 is formed by forming a substantially circular trench via 18 between adjacent through- hole vias 14a and 14b, for example, surrounding the through-hole via 14a. , are filled with a resin 16 inside.
The diameter of the trench via 18 is formed larger than the diameter of the through-hole via 14a. Even if the insulating layers 13a to 13c are present on the outer peripheral surface of the through-hole via 14a, there is no problem as long as they are separated from the inner peripheral surface of the trench via 18 by the resin 16. FIG.
 また、本図では、トレンチビア18の形状を略円形状としたが、長円状や楕円状でもよいし、長方形に形成してもよい。また、三角形、五角形や六角形でもよい。要は、いずれかの、例えば、スルホールビア14aをトレンチビア18が取り囲んでその内部に樹脂16が充填されておればよい。このように構成することにより、いかなる方向からCAF17が伸長してきても、マイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。 In addition, although the shape of the trench via 18 is substantially circular in this figure, it may be oval, elliptical, or rectangular. It may also be a triangle, a pentagon, or a hexagon. The point is that any one of the through-hole vias 14a, for example, should be surrounded by the trench vias 18 and filled with the resin 16 inside. By configuring in this way, it is possible to prevent the occurrence of a short due to the extension of the CAF 17 caused by migration, regardless of the direction in which the CAF 17 extends.
 また、本図の例では、高電位のスルホールビア14aを取り囲んで円形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填する説明をしたが、低電位のスルホールビア14bを取り囲んで円形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填してもよい。 In addition, in the example of this figure, a circular trench via 18 is formed surrounding the high-potential through-hole via 14a, and the resin 16 is filled inside each of them. Circular trench vias 18 may be formed by , and resin 16 may be filled inside each of them.
<6.トレンチビアの第3実施形態>
 トレンチビア18の第3実施形態は、図14に示すように、隣接するスルホールビア14aと14bにおいて、両方のスルホールビア14a、14bを取り囲んで略長方形状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填したものである。
 トレンチビア18の内径は、スルホールビア14a、14bの外径よりも大きく形成する。なお、スルホールビア14aの外周面に絶縁層13a~13cがあってもトレンチビア18の内周面から樹脂16により分離されているのであれば差支えない。
<6. Third Embodiment of Trench Via>
As shown in FIG. 14, a third embodiment of the trench via 18 is formed by forming a substantially rectangular trench via 18 surrounding both through- hole vias 14a and 14b in the adjacent through- hole vias 14a and 14b. The inside is filled with resin 16 .
The inner diameter of the trench via 18 is formed larger than the outer diameter of the through- hole vias 14a and 14b. Even if the insulating layers 13a to 13c are present on the outer peripheral surface of the through-hole via 14a, there is no problem as long as they are separated from the inner peripheral surface of the trench via 18 by the resin 16. FIG.
 また、本図では、トレンチビア18の形状を略長方形状としたが、円形状や楕円状でもよいし、略長円状に形成してもよい。要は、両方のスルホールビア14a、14bをトレンチビア18が取り囲んでその内部に樹脂16が充填されておればよい。このように構成することにより、スルホールビア14a、14b間はもとより、いかなる方向からCAF17が伸長してきても、マイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。 In addition, although the shape of the trench via 18 is substantially rectangular in this figure, it may be circular, elliptical, or substantially oval. The point is that both of the through- hole vias 14a and 14b are surrounded by the trench via 18 and filled with the resin 16 inside. With this configuration, even if the CAF 17 extends from any direction, not only between the through- hole vias 14a and 14b, it is possible to prevent the occurrence of a short due to the extension of the CAF 17 due to migration.
<7.トレンチビアの第4実施形態>
 トレンチビア18の第4実施形態は、図15に示すように、スルホールビア14、14、14の3個が隣接している場合である。この場合において、3個のスルホールビア14、14、14の略中間の位置に略三芒星状又は略Y字状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填したものである。
<7. Fourth Embodiment of Trench Via>
A fourth embodiment of the trench via 18 is a case where three through- hole vias 14, 14, 14 are adjacent to each other, as shown in FIG. In this case, a substantially three-pointed star-shaped or substantially Y-shaped trench via 18 is drilled at a substantially intermediate position between the three through- hole vias 14, 14, 14, and the resin 16 is filled inside each of them. be.
なお、本図では、トレンチビア18の略三芒星状の端部18aの形状を略半円状としたが、略三角形状でもよいし、略方形状に形成してもよい。また、略三芒星状又は略Y字状の端部18aはできるだけ伸長させて形成することが望ましい。要は、隣接するスルホールビア14、14、14の外周を囲む線が略三芒星状又は略Y字状の端部18aの先端において、その伸長方向に対して直交する線を結んで構成される三角形(本図の破線)の中に納まるように形成することが望ましい。このように形成することにより、マイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。 In this figure, the substantially three-pointed star-shaped end portion 18a of the trench via 18 has a substantially semicircular shape, but it may be formed in a substantially triangular shape or a substantially square shape. Moreover, it is desirable to form the substantially three-pointed star-shaped or substantially Y-shaped end portion 18a by extending it as much as possible. In short, the line surrounding the outer peripheries of the adjacent through- hole vias 14, 14, 14 is formed by connecting the lines perpendicular to the extending direction at the tip of the substantially three-pointed star-shaped or substantially Y-shaped end 18a. It is desirable to form it so that it fits within the triangle (broken line in this figure). By forming in this way, it is possible to prevent the occurrence of a short due to elongation of the CAF 17 caused by migration.
<8.トレンチビアの第5実施形態>
 トレンチビア18の第5実施形態は、図16に示すように、スルホールビア14、14、14、14の4個が隣接している場合である。この場合において、4個の各スルホールビア14の略中間の位置に略四芒星状又は略十文字状のトレンチビア18を穿設し、それぞれの内部に樹脂16を充填したものである。
<8. Fifth Embodiment of Trench Via>
A fifth embodiment of the trench via 18 is a case where four through- hole vias 14, 14, 14, 14 are adjacent to each other as shown in FIG. In this case, a substantially four-pointed star-shaped or substantially cross-shaped trench via 18 is formed at substantially the middle position of each of the four through-hole vias 14, and the resin 16 is filled inside each of them.
 なお、本図では、トレンチビア18の略四芒星状又は略十文字状の端部18aの形状を略半円状としたが、略三角形状でもよいし、略方形状に形成してもよい。また、略四芒星状又は略十文字状の端部18aはできるだけ伸長させて形成することが望ましい。要は、隣接する各スルホールビア14の外周を囲む線が略四芒星状又は略十文字状の端部18aの先端において、その伸長方向に対して直交する線を結んで構成される四角形(本図の破線)の中に納まるよう形成することが望ましい。このように構成することにより、マイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。 In this figure, the substantially four-pointed star-shaped or substantially cross-shaped end portion 18a of the trench via 18 has a substantially semicircular shape, but it may be formed in a substantially triangular shape or a substantially square shape. . Moreover, it is desirable to form the substantially four-pointed star-shaped or substantially cross-shaped end portion 18a by extending it as much as possible. In short, the line surrounding the outer periphery of each adjacent through-hole via 14 is a square (this It is desirable to form it so that it fits inside the dashed line in the figure). By configuring in this way, it is possible to prevent the occurrence of a short due to the extension of the CAF 17 caused by migration.
 同様にして、スルホールビア14が5個以上隣接している場合は、これらの略中間の位置から外方に伸びる細めの略五芒星状や略六芒星状などの略多芒星状又は略放射状のトレンチビア18を形成することにより、マイグレーションに起因するCAF17の伸長によるショートの発生を防止することができる。
 これらの端部18aの形状は、同様に略半円状や略三角形状でもよいし、略方形状に形成してもよい。また、スルホールビア14の配置によっては、各端部18aの長さを同一に揃える必要はなく、それぞれの長さを変えてもよい。
Similarly, when five or more through-hole vias 14 are adjacent to each other, a thin substantially multi-pointed star shape such as a substantially five-pointed star shape or a substantially hexagram-like shape or a substantially radial shape extending outward from a position substantially in the middle of these through-hole vias 14 is formed. By forming the trench via 18, it is possible to prevent the occurrence of a short due to the elongation of the CAF 17 caused by migration.
The shape of these end portions 18a may also be substantially semicircular, substantially triangular, or substantially rectangular. Also, depending on the arrangement of the through-hole vias 14, the lengths of the ends 18a need not be the same, and the lengths of the ends 18a may be changed.
 また、スルホールビア14が5個以上隣接している場合は、本実施形態のほかに、前記の第1実施形態から第4実施形態を適宜組み合わせてもよい。例えば、隣接する4個のスルホールビア14が存在する場合には、トレンチビアの第3実施形態のように、これらの4個のスルホールビア14の全てを取り囲む略長方形状のトレンチビア18を形成し、樹脂16を充填してもよい。
 このように、複数のスルホールビア14が隣接して配置されている場合には、第5実施形態のほかに、前記の第1実施形態から第4実施形態を適宜組み合わせることにより、マイグレーションに起因するCAF17の伸長によるショートなどの不適合の発生を防止することができる。
Further, when five or more through-hole vias 14 are adjacent to each other, the first to fourth embodiments described above may be appropriately combined in addition to the present embodiment. For example, when there are four adjacent through-hole vias 14, a substantially rectangular trench via 18 surrounding all four through-hole vias 14 is formed as in the trench via of the third embodiment. , the resin 16 may be filled.
In this way, when a plurality of through-hole vias 14 are arranged adjacently, by appropriately combining the above-described first to fourth embodiments in addition to the fifth embodiment, the It is possible to prevent the occurrence of incompatibility such as a short circuit due to the extension of CAF17.
<9.本開示に係るプリント基板を有する電子機器の構成例>
 上述した実施形態に係るプリント基板10は、半導体装置100に幅広く使用することができる。ここでは、その適用の一例として、プリント基板10を有する固体撮像装置101の電子機器への適用例について、図17を用いて説明する。なお、この適用例は、プリント基板10の第1実施形態又は第2実施形態及び/又はトレンチビア18に係る第1実施形態から第5実施形態を用いたプリント基板10を有する固体撮像装置101に共通である。
<9. Configuration example of an electronic device having a printed circuit board according to the present disclosure>
The printed circuit board 10 according to the embodiment described above can be widely used in the semiconductor device 100 . Here, as an example of its application, an example of application of the solid-state imaging device 101 having the printed circuit board 10 to electronic equipment will be described with reference to FIG. 17 . This application example is applied to the solid-state imaging device 101 having the printed circuit board 10 using the first or second embodiment of the printed circuit board 10 and/or the first to fifth embodiments of the trench via 18. Common.
 固体撮像装置101は、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置や、画像読取部に固体撮像装置101を用いる複写機など、画像取込部(光電変換部)に固体撮像装置101を用いる電子機器全般に対して適用可能である。固体撮像装置101は、ワンチップとして形成された形態のものであってもよいし、撮像部と信号処理部又は光学系とをまとめてパッケージングされた撮像機能を有するモジュール状の形態のものであってもよい。 The solid-state imaging device 101 is an image capture unit (photoelectric conversion unit) such as an imaging device such as a digital still camera or a video camera, a mobile terminal device having an imaging function, or a copying machine using the solid-state imaging device 101 as an image reading unit. It is applicable to general electronic equipment that uses the solid-state imaging device 101 for The solid-state imaging device 101 may be formed as a single chip, or may be in the form of a module having an imaging function in which an imaging unit and a signal processing unit or an optical system are packaged together. There may be.
 図17に示すように、電子機器としての撮像装置200は、光学部202と、固体撮像装置101と、カメラ信号処理回路であるDSP(Digital Signal Processor)回路203と、フレームメモリ204と、表示部205と、記録部206と、操作部207と、電源部208とを備える。DSP回路203、フレームメモリ204、表示部205、記録部206、操作部207および電源部208が、バスライン209を介して相互に接続されている。 As shown in FIG. 17, an imaging device 200 as an electronic device includes an optical unit 202, a solid-state imaging device 101, a DSP (Digital Signal Processor) circuit 203 as a camera signal processing circuit, a frame memory 204, and a display unit. 205 , a recording unit 206 , an operation unit 207 , and a power supply unit 208 . DSP circuit 203 , frame memory 204 , display unit 205 , recording unit 206 , operation unit 207 and power supply unit 208 are interconnected via bus line 209 .
 光学部202は、複数の撮像レンズを含み、被写体からの入射光(像光)を取り込んで固体撮像装置101の画素領域23上に結像する。固体撮像装置101は、光学部202によって画素領域23上に結像された入射光の光量を画素22単位で電気信号に変換して画素信号として出力する。 The optical unit 202 includes a plurality of imaging lenses, takes in incident light (image light) from a subject, and forms an image on the pixel area 23 of the solid-state imaging device 101 . The solid-state imaging device 101 converts the amount of incident light imaged on the pixel region 23 by the optical unit 202 into an electric signal for each pixel 22 and outputs the electric signal as a pixel signal.
 表示部205は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、固体撮像装置101で撮像された動画又は静止画を表示する。記録部206は、固体撮像装置101で撮像された動画又は静止画を、ハードディスクや半導体メモリ等の記録媒体に記録する。 The display unit 205 is made up of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, for example, and displays moving images or still images captured by the solid-state imaging device 101 . A recording unit 206 records a moving image or still image captured by the solid-state imaging device 101 in a recording medium such as a hard disk or a semiconductor memory.
 操作部207は、ユーザによる操作の下に、撮像装置200が持つ様々な機能について操作指令を発する。電源部208は、DSP回路203、フレームメモリ204、表示部205、記録部206および操作部207の動作電源となる各種の電源を、これらの供給対象に対して適宜供給する。 The operation unit 207 issues operation commands for various functions of the imaging device 200 under the user's operation. The power supply unit 208 appropriately supplies various power supplies as operating power supplies for the DSP circuit 203, the frame memory 204, the display unit 205, the recording unit 206, and the operation unit 207 to these supply targets.
 以上のように本開示に係るプリント基板10を用いた固体撮像装置101を有する撮像装置200は、長期間にわたり使用してもマイグレーションに起因する故障や不具合を生じることがないため、安心して使用することができる。 As described above, the imaging device 200 having the solid-state imaging device 101 using the printed circuit board 10 according to the present disclosure does not cause failures or problems due to migration even when used for a long period of time, so it can be used with confidence. be able to.
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。例えば、上記説明におけるプリント基板は、インターポーザ基板の例であるが、マザーボード基板や、産業用機器等の制御基板等に適用できることはいうまでもない。また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、さらに他の効果があってもよい。 Finally, the description of each embodiment described above is an example of the present disclosure, and the present disclosure is not limited to the above-described embodiments. Therefore, it goes without saying that various modifications other than the above-described embodiments can be made according to the design and the like within the scope of the technical idea of the present disclosure. For example, the printed board in the above description is an example of an interposer board, but it goes without saying that it can be applied to a motherboard board, a control board for industrial equipment, and the like. In addition, the effects described in this specification are merely examples and are not limited, and other effects may also occur.
 なお、本技術は以下のような構成も取ることができる。
(1)
 隣接して穿設されたスルホールビアと、
 前記スルホールビア間に穿設されたトレンチビアと、
を有するプリント基板。
(2)
 前記トレンチビアは、前記プリント基板の基材であるガラスクロスを横断するように配設された前記(1)に記載のプリント基板。
(3)
 前記トレンチビアは、前記プリント基板の内層の配線パターン同士を貫通接続する前記スルホールビア間に配設された前記(1)に記載のプリント基板。
(4)
 前記トレンチビアは、前記プリント基板の外層の配線パターン同士又は外層の前記配線パターンと内層の前記配線パターン同士を貫通接続する前記スルホールビア間に配設された前記(1)に記載のプリント基板。
(5)
 前記トレンチビアの平面視の形状は、隣接する前記スルホールビア間を結ぶ直線に対して直交する方向に前記スルホールビアの径よりも前記トレンチビアの幅員の方が長くなるように形成された前記(1)に記載のプリント基板。
(6)
 隣接する前記スルホールビア間において、いずれか一方の前記スルホールビアを取り囲む前記トレンチビアを形成された前記(1)に記載のプリント基板。
(7)
 隣接する前記スルホールビア間において、全てのスルホールビアを取り囲むトレンチビアを形成された前記(1)に記載のプリント基板。
(8)
 隣接する3個以上の前記スルホールビアの略中間の位置に略多芒星状又は略放射状の前記トレンチビアの中心を配置し、前記スルホールビアの周面で形成される空間が前記トレンチビアの端部の先端において、その伸長方向に対して直交する線を結んで構成される多角形の中に納まるように形成された前記(1)に記載のプリント基板。
(9)
 前記絶縁用の前記トレンチビアは、樹脂埋めされた前記(1)から(8)のいずれか1つに記載のプリント基板。
(10)
 銅張積層板に隣接するスルホールビア用の貫通孔を穿設する工程と、
 前記貫通孔を洗浄する工程と、
 前記貫通孔の内周面を銅メッキする工程と、
 前記スルホールビア間にトレンチビア用の貫通孔を穿設する工程と、
 前記トレンチビア用貫通孔を洗浄する工程と、
 前記トレンチビア用の貫通孔を樹脂埋めする工程と、
 前記樹脂埋めされた個所を研磨する工程と、
 前記樹脂埋め個所の蓋メッキ及び前記銅張積層板に配線パターンを形成する工程と、
を有するプリント基板の製造方法。
(11)
 隣接して穿設されたスルホールビアと、
 前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、
を有するプリント基板を備えた固体撮像装置。
(12)
 隣接して穿設されたスルホールビアと、前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、を有するプリント基板を備えた固体撮像装置を有する電子機器。
Note that the present technology can also take the following configuration.
(1)
through-hole vias drilled adjacently;
a trench via formed between the through-hole vias;
printed circuit board.
(2)
The printed circuit board according to (1), wherein the trench via is arranged so as to traverse a glass cloth that is a base material of the printed circuit board.
(3)
The printed circuit board according to (1), wherein the trench vias are arranged between the through-hole vias that penetrate and connect the wiring patterns in the inner layers of the printed circuit board.
(4)
The printed circuit board according to (1), wherein the trench vias are disposed between the through-hole vias for penetrating connection between the wiring patterns on the outer layer of the printed circuit board or between the wiring patterns on the outer layer and the wiring patterns on the inner layer.
(5)
The shape of the trench via in plan view is such that the width of the trench via is longer than the diameter of the through-hole via in a direction orthogonal to a straight line connecting the adjacent through-hole vias. 1) The printed circuit board described in 1).
(6)
The printed circuit board according to (1) above, wherein the trench via surrounding any one of the through-hole vias is formed between the adjacent through-hole vias.
(7)
The printed circuit board according to (1) above, wherein trench vias surrounding all of the through-hole vias are formed between the adjacent through-hole vias.
(8)
The center of the substantially multi-pointed star-shaped or substantially radial trench via is arranged at a substantially intermediate position between the three or more adjacent through-hole vias, and the space formed by the peripheral surface of the through-hole via is the edge of the trench via. The printed circuit board according to (1) above, wherein the end of the portion is formed so as to fit within a polygon formed by connecting lines perpendicular to the extension direction of the portion.
(9)
The printed circuit board according to any one of (1) to (8), wherein the insulating trench via is filled with resin.
(10)
drilling through-holes for through-hole vias adjacent to the copper-clad laminate;
a step of cleaning the through-hole;
a step of copper-plating the inner peripheral surface of the through hole;
forming through holes for trench vias between the through hole vias;
a step of cleaning the trench via through-hole;
a step of filling the through hole for the trench via with a resin;
a step of polishing the resin-filled portion;
a step of forming a wiring pattern on the resin-filled portion by lid plating and the copper-clad laminate;
A method of manufacturing a printed circuit board having
(11)
through-hole vias drilled adjacently;
a trench via formed between the through-hole vias and filled with a resin;
A solid-state imaging device comprising a printed circuit board having
(12)
An electronic device having a solid-state imaging device comprising a printed circuit board having through-hole vias formed adjacent to each other and trench vias formed between the through-hole vias and filled with resin.
 3   カバーガラス
 4   シール樹脂
 6   センサ基板
 7   ボンディングワイヤ
 8   キャビティ部
 9   外部接続端子
 10  プリント基板
 10a ガラス繊維
 10b ガラス布
 10c 銅箔
 11  パッド
 12a~d 配線パターン
 13a~c 絶縁層
 14、14a、14b スルホールビア
 15  接続ビア
 16  樹脂
 17  CAF
 18  トレンチビア
 18a 端部
 19  ソルダレジスト
 21  受光部
 22  画素
 23  画素領域
 24  周辺領域
 25  カラーフィルタ
 26  マイクロレンズアレイ
 27  赤外カットフィルタ
 29  パッド
 30  貫通孔
 31  銅張積層板
 32  クラック
 33  エポキシ樹脂
 34  内層
 35  外層
 41  第1層
 42  第2層
 43  第3層
 44  第4層
 90  ドリル
 100 半導体装置
 101 固体撮像装置
 200 撮像装置
3 cover glass 4 sealing resin 6 sensor substrate 7 bonding wire 8 cavity portion 9 external connection terminal 10 printed circuit board 10a glass fiber 10b glass cloth 10c copper foil 11 pad 12a-d wiring pattern 13a- c insulating layer 14, 14a, 14b through-hole via 15 connection via 16 resin 17 CAF
18 trench via 18a end 19 solder resist 21 light receiving section 22 pixel 23 pixel area 24 peripheral area 25 color filter 26 microlens array 27 infrared cut filter 29 pad 30 through hole 31 copper clad laminate 32 crack 33 epoxy resin 34 inner layer 35 Outer layer 41 First layer 42 Second layer 43 Third layer 44 Fourth layer 90 Drill 100 Semiconductor device 101 Solid-state imaging device 200 Imaging device

Claims (12)

  1.  隣接して穿設されたスルホールビアと、
     前記スルホールビア間に穿設されたトレンチビアと、
    を有するプリント基板。
    through-hole vias drilled adjacently;
    a trench via formed between the through-hole vias;
    printed circuit board.
  2.  前記トレンチビアは、前記プリント基板の基材であるガラスクロスを横断するように配設された請求項1に記載のプリント基板。 The printed circuit board according to claim 1, wherein the trench vias are arranged so as to traverse the glass cloth that is the base material of the printed circuit board.
  3.  前記トレンチビアは、前記プリント基板の内層の配線パターン同士を貫通接続する前記スルホールビア間に配設された請求項1に記載のプリント基板。 2. The printed circuit board according to claim 1, wherein said trench vias are arranged between said through-hole vias for connecting wiring patterns in inner layers of said printed circuit board.
  4.  前記トレンチビアは、前記プリント基板の外層の配線パターン同士又は外層の前記配線パターンと内層の前記配線パターン同士を貫通接続する前記スルホールビア間に配設された請求項1に記載のプリント基板。 2. The printed circuit board according to claim 1, wherein the trench vias are disposed between the wiring patterns on the outer layer of the printed circuit board or between the through-hole vias for penetrating connection between the wiring patterns on the outer layer and the wiring patterns on the inner layer.
  5.  前記トレンチビアの平面視の形状は、隣接する前記スルホールビア間を結ぶ直線に対して直交する方向に前記スルホールビアの径よりも前記トレンチビアの幅員の方が長くなるように形成された請求項1に記載のプリント基板。 3. A shape of said trench via in plan view is formed such that a width of said trench via is longer than a diameter of said through-hole via in a direction orthogonal to a straight line connecting said adjacent through-hole vias. 2. The printed circuit board according to 1.
  6.  隣接する前記スルホールビア間において、いずれか一方の前記スルホールビアを取り囲む前記トレンチビアを形成された請求項1に記載のプリント基板。 2. The printed circuit board according to claim 1, wherein the trench vias surrounding any one of the through-hole vias are formed between the adjacent through-hole vias.
  7.  隣接する前記スルホールビア間において、全てのスルホールビアを取り囲むトレンチビアを形成された請求項1に記載のプリント基板。 2. The printed circuit board according to claim 1, wherein trench vias are formed between the adjacent through-hole vias to surround all of the through-hole vias.
  8.  隣接する3個以上の前記スルホールビアの略中間の位置に略多芒星状又は略放射状の前記トレンチビアの中心を配置し、前記スルホールビアの周面で形成される空間が前記トレンチビアの端部の先端において、その伸長方向に対して直交する線を結んで構成される多角形の中に納まるように形成された請求項1に記載のプリント基板。 The center of the substantially multi-pointed star-shaped or substantially radial trench via is arranged at a substantially intermediate position between the three or more adjacent through-hole vias, and the space formed by the peripheral surface of the through-hole via is the edge of the trench via. 2. The printed circuit board according to claim 1, wherein the end of the portion is formed so as to fit within a polygon formed by connecting lines perpendicular to the extension direction of the portion.
  9.  前記絶縁用のトレンチビアは、樹脂埋めされた請求項1に記載のプリント基板。 The printed circuit board according to claim 1, wherein the insulating trench via is filled with resin.
  10.  銅張積層板に隣接するスルホールビア用の貫通孔を穿設する工程と、
     前記貫通孔を洗浄する工程と、
     前記貫通孔の内周面を銅メッキする工程と、
     前記スルホールビア間にトレンチビア用の貫通孔を穿設する工程と、
     前記トレンチビア用貫通孔を洗浄する工程と、
     前記トレンチビア用の貫通孔を樹脂埋めする工程と、
     前記樹脂埋めされた個所を研磨する工程と、
     前記樹脂埋め個所の蓋メッキ及び前記銅張積層板に配線パターンを形成する工程と、
    を有するプリント基板の製造方法。
    drilling through-holes for through-hole vias adjacent to the copper-clad laminate;
    a step of cleaning the through-hole;
    a step of copper-plating the inner peripheral surface of the through hole;
    forming through holes for trench vias between the through hole vias;
    a step of cleaning the trench via through-hole;
    a step of filling the through hole for the trench via with a resin;
    a step of polishing the resin-filled portion;
    a step of forming a wiring pattern on the resin-filled portion by lid plating and the copper-clad laminate;
    A method of manufacturing a printed circuit board having
  11.  隣接して穿設されたスルホールビアと、
     前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、
    を有するプリント基板を備えた固体撮像装置。
    through-hole vias drilled adjacently;
    a trench via formed between the through-hole vias and filled with a resin;
    A solid-state imaging device comprising a printed circuit board having
  12.  隣接して穿設されたスルホールビアと、前記スルホールビア間に穿設され樹脂で埋められたトレンチビアと、を有するプリント基板を備えた固体撮像装置を有する電子機器。 An electronic device having a solid-state imaging device provided with a printed circuit board having through-hole vias drilled adjacently and trench vias drilled between the through-hole vias and filled with resin.
PCT/JP2022/011650 2021-03-26 2022-03-15 Printed board, production method for printed board, solid-state imaging device, and electronic device WO2022202493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054416 2021-03-26
JP2021054416A JP2022151377A (en) 2021-03-26 2021-03-26 Printed board, production method for printed board, solid-state imaging device, and electronic device

Publications (1)

Publication Number Publication Date
WO2022202493A1 true WO2022202493A1 (en) 2022-09-29

Family

ID=83397116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011650 WO2022202493A1 (en) 2021-03-26 2022-03-15 Printed board, production method for printed board, solid-state imaging device, and electronic device

Country Status (2)

Country Link
JP (1) JP2022151377A (en)
WO (1) WO2022202493A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297519A (en) * 1994-04-21 1995-11-10 Hitachi Chem Co Ltd Manufacture of wiring board
JPH09312461A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Printed-wiring substrate and its manufacturing method
JPH1154854A (en) * 1997-08-07 1999-02-26 Cmk Corp Printed wiring board
JPH1187869A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Printed circuit board and its manufacture
JP2016025307A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Wiring board manufacturing method and wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297519A (en) * 1994-04-21 1995-11-10 Hitachi Chem Co Ltd Manufacture of wiring board
JPH09312461A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Printed-wiring substrate and its manufacturing method
JPH1154854A (en) * 1997-08-07 1999-02-26 Cmk Corp Printed wiring board
JPH1187869A (en) * 1997-09-10 1999-03-30 Hitachi Ltd Printed circuit board and its manufacture
JP2016025307A (en) * 2014-07-24 2016-02-08 日立化成株式会社 Wiring board manufacturing method and wiring board

Also Published As

Publication number Publication date
JP2022151377A (en) 2022-10-07

Similar Documents

Publication Publication Date Title
KR102278755B1 (en) Semiconductor device, solid-state imaging device and electronic apparatus
TWI224486B (en) Printed wiring substrate
CN101536181B (en) Semiconductor device and method for manufacturing same
US7473988B2 (en) Wiring board construction including embedded ceramic capacitors(s)
JP5010737B2 (en) Printed wiring board
KR101155624B1 (en) Embedded pcb and manufacturing method for the same
EP1387403A2 (en) Semiconductor packaging
CN108735697A (en) The manufacturing method of semiconductor device and semiconductor device
US7698813B2 (en) Method for fabricating conductive blind via of circuit substrate
KR101585905B1 (en) Module and method for manufacturing the same
JPH06260368A (en) Capacitor and shield case
JP3835381B2 (en) Multilayer electronic components
WO2022202493A1 (en) Printed board, production method for printed board, solid-state imaging device, and electronic device
JP3884179B2 (en) Semiconductor device and manufacturing method thereof
JP2011146510A (en) In-component board, and electronic circuit module
KR101243304B1 (en) Interposer and method for manufacturing thereof
TW202110293A (en) High-density multilayer substrate and method for manufacturing same
JP2018082070A (en) Wiring board and electronic apparatus using the same
CN112261801A (en) Manufacturing method of multilayer circuit board and multilayer circuit board
JP5919943B2 (en) Silicon interposer
JPH10150260A (en) Printed wiring board
JP2007073655A (en) Chip resistor, component built-in printed wiring board and its manufacturing method
CN112165767B (en) Multilayer circuit board and mobile communication device
JPH10163632A (en) Printed wiring board and its manufacture
KR20120046493A (en) Printed circuit board and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775283

Country of ref document: EP

Kind code of ref document: A1