WO2022202409A1 - 判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム - Google Patents

判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム Download PDF

Info

Publication number
WO2022202409A1
WO2022202409A1 PCT/JP2022/010962 JP2022010962W WO2022202409A1 WO 2022202409 A1 WO2022202409 A1 WO 2022202409A1 JP 2022010962 W JP2022010962 W JP 2022010962W WO 2022202409 A1 WO2022202409 A1 WO 2022202409A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
deterioration
degree
determination device
edible oil
Prior art date
Application number
PCT/JP2022/010962
Other languages
English (en)
French (fr)
Inventor
裕樹 岡本
功 木村
賀美 井上
Original Assignee
株式会社J-オイルミルズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社J-オイルミルズ filed Critical 株式会社J-オイルミルズ
Priority to JP2023509021A priority Critical patent/JPWO2022202409A1/ja
Priority to CA3213612A priority patent/CA3213612A1/en
Publication of WO2022202409A1 publication Critical patent/WO2022202409A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/12Deep fat fryers, e.g. for frying fish or chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/03Edible oils or edible fats

Definitions

  • the present invention relates to a determination device, a learning device, a determination system, a determination method, a learning method, and a program.
  • the sensor first detects the smell. Then, when the output of the sensor that detects the odor exceeds a predetermined threshold value, it is determined that the cooking oil has deteriorated, that is, that the degree of deterioration has increased. In this way, there is known a technique capable of determining the degree of deterioration of edible oil without attaching a device to the oil tank (see, for example, Patent Document 1).
  • An object of the present invention is to accurately determine the degree of deterioration of cooking oil.
  • the determination device is a determination device for determining the degree of deterioration of edible oil used for cooking fried food, an acquisition unit that acquires components generated from the edible oil; A first specifying part that specifies the content of aldehydes, Maillard reaction products, or fatty acids among the components; and a second identifying unit that identifies the degree of deterioration based on the content.
  • the degree of deterioration of cooking oil can be accurately determined.
  • FIG. 2 is a diagram showing the relationship between the content of 2-methylbutanal and the acid value.
  • FIG. 2 is a diagram showing the relationship between the content of 2-methylbutanal and color tone.
  • FIG. 4 is a diagram showing the relationship between the content of 3-methylbutanal and the acid value.
  • FIG. 3 is a diagram showing the relationship between the content of 3-methylbutanal and color tone. It is a figure which shows the content of a heptanal, and the relationship of an acid value. It is a figure which shows the content of a heptanal, and the relationship of a color tone.
  • FIG. 2 is a diagram showing the relationship between the content of 2-nonenal and the acid value.
  • FIG. 2 is a diagram showing the relationship between the content of 2-nonenal and color tone.
  • FIG. 2 is a diagram showing the relationship between the content of 2-pentylpyridine and the acid value.
  • FIG. 2 is a diagram showing the relationship between the content of 2-pentylpyridine and color tone. It is a figure which shows the content of butanoic acid, and the relationship of an acid value. It is a figure which shows the content of butanoic acid, and the relationship of a color tone. It is a figure which shows the content of a pentanoic acid, and the relationship of an acid value. It is a figure which shows the content of a pentanoic acid, and the relationship of a color tone. It is a figure which shows the comparative example of the content of hexanal and the relationship of an acid value. It is a figure which shows the comparative example of the content of hexanal and the relationship of a color tone. FIG.
  • FIG. 4 is a diagram showing a comparative example of the relationship between octanal content and acid value.
  • FIG. 5 is a diagram showing a comparative example of the relationship between octanal content and color tone.
  • FIG. 4 is a diagram showing a comparative example of the relationship between the content of 2,4-decadienal and the acid value.
  • FIG. 4 is a diagram showing a comparative example of the relationship between the content of 2,4-decadienal and color tone.
  • FIG. 4 is a diagram showing a comparative example of the relationship between the content of 2,4-heptadienal and the acid value.
  • FIG. 4 is a diagram showing a comparative example of the relationship between the content of 2,4-heptadienal and color tone.
  • FIG. 4 is a diagram showing a comparative example of the relationship between the content of 2,4-heptadienal and color tone.
  • FIG. 3 is a diagram showing a comparative example of the relationship between the content of 2-methylpyrazine and the acid value.
  • FIG. 3 is a diagram showing a comparative example of the relationship between the content of 2-methylpyrazine and color tone.
  • FIG. 4 is a diagram showing a comparative example of the relationship between pyridine content and acid value. It is a figure which shows the comparative example of the content of a pyridine, and the relationship of a color tone. It is a figure which shows the comparative example of the content of a hexanoic acid, and the relationship of an acid value. It is a figure which shows the comparative example of the content of hexanoic acid, and the relationship of a color tone.
  • 1 is a diagram showing an example of an information system 200;
  • FIG. It is a figure which shows an example of a network structure. It is a figure showing an example of functional composition. It is a figure which shows the example of a basic composition.
  • fried foods include fried chicken, croquettes, French fries, fried chicken, tempura, pork cutlets, and the like.
  • FIG. 1 is a diagram showing a configuration example of the kitchen 1.
  • An example of the edible oil is hereinafter referred to as "frying oil Y”.
  • the kitchen 1 is, for example, inside a store such as a convenience store or a supermarket.
  • the kitchen 1 is provided with facilities for cooking the fried food X.
  • the facility is an electric fryer (Fryer, hereinafter simply referred to as "fryer 2").
  • the fryer 2 is, for example, equipment having an oil tank 21, a housing 22, and the like.
  • the oil tank 21 stores the frying oil Y. Also, the oil tank 21 is composed of, for example, a handle 30, a frying basket 3, and the like.
  • the housing 22 accommodates the oil tank 21 .
  • the housing 22 also has a switch 22A or the like on its side, which serves as a setting operation unit for setting the temperature of the frying oil Y or the contents of cooking for each type of fried food X.
  • the cook When cooking, the cook first puts the fried food X into the fry basket 3. Next, the cook dips the frying basket 3 containing the fried food X in the frying oil Y stored in the oil tank 21 and hooks the handle 30 to the upper end of the housing 22 . At the same time, or before or after, the cook presses the switch 22A according to the type of fried food X. This operation starts frying.
  • the fryer 2 notifies the cook of the completion of frying when a predetermined frying time has elapsed according to the switch 22A. At the same time, the fryer 2 raises the frying basket 3 from the oil tank 21 . In this way, the fried food X is lifted from the state of being immersed in the frying oil.
  • the method of notification is, for example, a method of outputting a buzzer sound from a speaker, or a method of displaying on a monitor or the like.
  • the elapse of frying time is notified by light, sound, or a combination thereof.
  • the cook pulls up the fry basket 3 and takes out the fried food X.
  • the fly basket 3 may be pulled up by a driving mechanism or the like.
  • the kitchen 1 is not limited to the configuration using the utensils shown in the figure.
  • the fryer 2 is a cooking utensil capable of cooking, the type, arrangement, etc. may be other than those shown in the drawings.
  • An imaging device that images the frying oil Y may be installed in the kitchen 1 .
  • the imaging device is a video camera.
  • the video camera is attached to the ceiling or the like.
  • the video camera continuously captures the surface of the frying oil Y, etc., and generates an image.
  • the image be a moving image.
  • conditions such as the angle of view and focus of the video camera are adjusted.
  • the imaging device may be a camera or the like included in a mobile device such as a tablet or a smartphone.
  • the kitchen 1 is provided with an exhaust port 10 and the like so as to exhaust substances volatilized from the fryer 2, air, and the like.
  • the exhaust port 10 is installed in the upper part of the fryer 2 or the like.
  • the sensor 11 is installed, for example, at the exhaust port 10 or the like. That is, the sensor 11 is desirably installed at a position such as the vicinity of the exhaust port 10 where the components volatilized from the cooking oil can be sufficiently detected.
  • the senor 11 is a gas sensor or the like.
  • the sensor 11 is not limited to the types described above. That is, the sensor 11 is a sensor that can analyze the type of substance and the amount of components by mass spectrometry (GC-MS) or the like, or if it is an odor sensor, the type, installation position, and number of sensors. etc.
  • the sensor 11 may be a quartz crystal sensor, a metal oxide semiconductor sensor, a membrane surface stress sensor, a micro-electro-mechanical system (MEMS) semiconductor gas sensor, a portable gas analyzer, a sensor gas chromatograph, or the like.
  • MEMS micro-electro-mechanical system
  • the determination device 5 is, for example, an information processing device. Then, the determination device 5 is connected to, for example, the sensor 11 or the like, and receives data or the like indicating the results of analysis of components volatilizing from the cooking oil. Note that the determination device 5 may be connected to a device or the like that analyzes the result of detection by the sensor 11 or the like.
  • the determination device 5 receives the detection result of the sensor 11, and acquires the components generated from the edible oil by analysis or the like.
  • the determination device 5 is the following device.
  • FIG. 2 is a diagram illustrating a hardware configuration example of an information processing apparatus.
  • the determination device 5 is an information processing device having the following hardware resources.
  • the determination device 5 has a Central Processing Unit (hereinafter referred to as "CPU 500A”), a Random Access Memory (hereinafter referred to as “RAM 500B”), and the like. Furthermore, the determination device 5 includes a Read Only Memory (hereinafter referred to as "ROM 500C”), a hard disk drive (hereinafter referred to as “HDD 500D”), an interface (hereinafter referred to as "I/F 500E”), etc. have a Central Processing Unit (hereinafter referred to as "CPU 500A”), a Random Access Memory (hereinafter referred to as "RAM 500B”), and the like. Furthermore, the determination device 5 includes a Read Only Memory (hereinafter referred to as "ROM 500C”), a hard disk drive (hereinafter referred to as "HDD 500D”), an interface (hereinafter referred to as "I/F 500E”), etc. have a Central Processing Unit (hereinafter referred to as "CPU 500A”), a Random Access Memory (hereinafter
  • the CPU 500A is an example of an arithmetic device and a control device.
  • the RAM 500B is an example of a main storage device.
  • the ROM 500C and HDD 500D are examples of auxiliary storage devices.
  • the I/F 500E connects an input device or an output device. Specifically, the I/F 500E connects an external device by wire or wirelessly and inputs/outputs data.
  • the determination device 5 is not limited to the hardware configuration shown above.
  • the determination device 5 may further include an arithmetic device, a control device, a storage device, an input device, an output device, or an auxiliary device.
  • the information processing device may have an auxiliary device such as a Graphics Processing Unit (GPU) externally or internally.
  • GPU Graphics Processing Unit
  • the determination device 5 may be a plurality of devices.
  • FIG. 3 is a diagram illustrating an example of overall processing. For example, as illustrated, the determination device executes each process in the order of "pre-processing" and "execution process".
  • Pre-processing is processing that is executed in advance in order to prepare for execution processing rather than execution processing.
  • the pre-processing is a process of making preparations such as learning a learning model.
  • the execution process is a process using the trained model prepared in the pre-processing.
  • the execution process may be a process using a table or the like.
  • the pre-processing is a table (also referred to as a lookup table (LUT), etc.) or a process of preparing to input a formula or the like.
  • the execution process is a process that uses a table or formula entered in the pre-processing. An example of a table will be described below.
  • the determination device does not have to execute the preliminary processing and the execution processing in a continuous order as illustrated in the figure. Therefore, it is not essential to continue the period of preparation by preliminary processing and the subsequent period of execution processing.
  • the trained model may be diverted, and the determination device may start from the execution process, omitting the preprocessing.
  • the learning model and the trained model may be configured to perform transfer learning, fine tuning, or the like. That is, the determination device often has a different execution environment for each device. Therefore, the basic configuration of AI is learned by another information processing device. Each decision device may then be further trained, configured, etc., to further optimize for each execution environment.
  • step S0301 the determination device prepares. Further, the content of the pre-processing differs depending on whether the configuration uses AI or the configuration uses a table. Note that the table, formula, learning data, or the like may be generated by the user's operation.
  • the determination device makes preparations such as learning a learning model.
  • the determination device makes preparations such as inputting the table. The details of the preparation will be described later.
  • execution processing example After the preprocessing is executed, that is, after the AI or the table is prepared, the determination device performs execution processing, for example, in the following procedure.
  • the determination device acquires components generated from the cooking oil.
  • the determination device may acquire the component by inputting another analysis device that receives the detection result of the sensor or the like, or by inputting the result of analysis by the user's operation or the like.
  • the determination device identifies the content. Specifically, the determination device identifies the content of each of the components determined in advance, such as aldehydes, Maillard reaction products, and fatty acids, among the components acquired in step S0302.
  • Aldehydes are, for example, isobutyraldehyde, 2-methylbutanal, 3-methylbutanal, heptanal, or 2-nonenal.
  • Isobutyraldehyde is sometimes called 2-Methylpropanal.
  • 2-Methylbutanal is sometimes called 2-Methylbutanal, 2-Methylbutyraldehyde, or 2-Ethylpropanal.
  • 3-Methylbutanal is isovaleraldehyde, Isovaleraldehyde, Isovaleral, Isovaleric aldehyde, Isovaleral, Isovaleric aldehyde, 3-Methylbutyraldehyde, 3-Methylbutanal, Isopentanal, Isopentanal, 3,3-Dimethylpentanal, etc. Sometimes called.
  • Heptanal is sometimes called normal heptaldehyde, 1-heptanone, heptylaldehyde, heptaldehyde, 1-heptanone, or heptylaldehyde.
  • 2-Nonenal is sometimes called ⁇ -nonenylaldehyde, ⁇ -hexyl acrolein, 2-nonenal, 2-nonen-1-al, trans-2-nonenal, or the like.
  • Maillard reactants are 2-pentylpyridine and the like.
  • 2-Pentylpyridine (2-Pentylpyridine) is sometimes called 2-Pentylpyridine and the like.
  • the fatty acid is butanoic acid, pentanoic acid, or the like.
  • Butanoic acid is sometimes called butyric acid or n-butyric acid.
  • Pentanoic acid is sometimes called valeric acid.
  • step S0304 the determination device determines the degree of deterioration based on the content.
  • step S0305 the determination device outputs based on the degree of deterioration.
  • step S0305 in the overall processing described above differ depending on whether the configuration uses AI or uses a table. Each configuration will be described separately below.
  • FIG. 4 is a diagram showing an example of overall processing of a configuration using AI.
  • the preprocessing is processing for learning the learning model A1.
  • the execution process is a process of judging the cooking environment or the like using the learned model A2, which is a learning model that has completed learning to some extent by preprocessing or the like.
  • the pre-processing is, for example, a process of learning the learning model A1 using the learning data D11. That is, the pre-processing is a process of making the learning model A1 learn by "supervised” learning using the learning data D11 to generate the trained model A2.
  • the learning data D11 is, for example, data obtained by combining data such as the content D112 for each component and the degree of deterioration D111.
  • the degree of deterioration D111 is an index that indicates the degree to which the cooking oil has deteriorated. Details of the degree of deterioration D111 will be described later.
  • the content D112 is the content of aldehydes, Maillard reaction products, or fatty acids among the components generated from the edible oil.
  • the content D112 is indicated by an area value (the unit system is dimensionless). Note that the content D112 may be of a plurality of types.
  • the content D112 does not have to be obtained directly from the sensor 11. That is, if the content D112 can be grasped by a user's operation or by data or the like, the value indicating the content, the type of the component, or the like, the format of the data and the device used for input do not matter.
  • the learning model A1 can learn the relationship between the content D112 and the degree of deterioration D111 (step S0301 in FIG. 3). ). Therefore, the degree of deterioration D111 is information indicating how much the edible oil is deteriorated with respect to the content D112, and is information that becomes "correct data” in the configuration of "supervised” learning. be.
  • the determination device can learn the relationship between the content D112 and the degree of deterioration D111.
  • the determination device 5 can execute the following processing.
  • the execution process is a process of generating the estimation result of the degree of deterioration (hereinafter simply referred to as "estimation result D13") by AI with the input data D12 as input.
  • the determination device inputs input data D12 including the content of each component detected by the sensor 11 (hereinafter referred to as "unknown content D121"). It should be noted that, compared to the pre-processing, the execution processing differs in that the resulting degree of deterioration is unknown with respect to the content.
  • the input data D12 is one or more types of unknown contents D121 and the like.
  • the determination device acquires the detection results of the components generated from the cooking oil by the sensor 11 (step S0302 in FIG. 3).
  • the determination device identifies the content of each component by, for example, analyzing the detection result of the sensor 11 (step S0303 in FIG. 3).
  • the determination device can determine the degree of deterioration (step S0304 in FIG. 3).
  • the determination device can estimate the degree of deterioration and the like based on learning.
  • FIG. 5 is a diagram showing an example of overall processing in a configuration using a table.
  • the pre-processing is the processing of generating the table D22.
  • the execution process is a process of determining the degree of deterioration using the table D22 generated in the pre-processing.
  • the preprocessing is, for example, a process of putting together the experimental data D21 into a table format.
  • the table D22 does not have to be in the form of a two-dimensional table or the like. That is, in the pre-processing, a format such as a mathematical formula may be generated that uniquely identifies the degree of deterioration D111 with respect to the content D112.
  • the determination device determines the relationship between the contents D112 and the deterioration degrees D111. It is possible to calculate the formula shown. In the following, an example will be described in which the equation represents a straight line, that is, a linear equation.
  • the table D22 is in a two-dimensional format in which the "deterioration degree” is associated with the "content” for each "ingredient". Therefore, by referring to the table D22, the "degradation level" corresponding to the "content” for each "ingredient" is determined.
  • the "ingredient”, “content”, and “degradation level” in the table D22 are values indicated by the experimental data D21. Therefore, when experimental data D21 is input in preprocessing, table D22 is generated.
  • the experimental data D21 is, for example, data indicating the results of detection of the content D112 and the degree of deterioration D111 by the sensor 11 or the like. Note that the content D112 and the degree of deterioration D111 are the same as those in FIG. 4, for example.
  • the table D22 is data that associates the content D112 with the degree of deterioration D111.
  • An example in which the degree of deterioration D111 is the acid value will be described below. Note that the table D22 may include information other than those shown.
  • the determination device can associate the content and the degree of deterioration.
  • the determination device can execute the following processing.
  • the determination device identifies the content of each component using the sensor 11, as in the configuration using AI (steps S0302 and S0303 in FIG. 3).
  • the table-based configuration differs from the pre-processing in that the content is unknown in the execution processing.
  • the determination device when the determination device inputs the unknown content D121 from the input data D12, it extracts the corresponding deterioration degree from the table D22. Thus, the determination device outputs the extraction result D23 in response to the input. That is, similarly to the configuration using AI, under the conditions indicated by the input data D12, the determination device extracts the degree of deterioration of the cooking oil from the table D22 (step S0304 in FIG. 3).
  • the determination device can perform high-speed processing because it searches for the deterioration level corresponding to the conditions that are input on the table D22.
  • the determination device may estimate the degree of deterioration and the like by linear interpolation or the like. That is, in the case of conditions not entered in the table D22, the determination device may calculate the degree of deterioration by, for example, averaging similar conditions in the table D22.
  • isobutyraldehyde is 46162443
  • “isobutyraldehyde is 85915338” are input to table D22
  • “isobutyraldehyde is 66038891” that is, unknown
  • the determination device may calculate an intermediate value between “isobutyraldehyde is 46162443” and “isobutyraldehyde is 85915338”.
  • the determination device 5 can handle conditions that are not entered in the table D22.
  • the determination device may be configured to use both the table D22 and the formula. For example, the determination device extracts the degree of deterioration indicated by the table D22 for the conditions in the table D22. On the other hand, the determination device extracts the degree of deterioration calculated by the formula for conditions not included in the table D22.
  • sample preparation 0.5 g of oil was placed in a glass vial for GC-MS.
  • GC system Agilent 7890B (manufactured by Agilent Technologies)
  • Column DB-WAX UI (manufactured by Agilent Technologies, 0.25 ⁇ m, 0.25 mm ⁇ 60 m)
  • Carrier gas He Ionization
  • measurement mode EI
  • scan Analysis method Analysis was performed according to Agilent Technologies' dynamic headspace (DHS method).
  • Deconvolution is an operation that divides overlapping peaks into components by software calculation.
  • 13 kinds of edible oils were used to confirm the correlation between acid value and color tone, and aroma components with high correlation coefficients were selected.
  • Method for measuring acid value Method for measuring standard oils and fats
  • Method for measuring color tone Lovibond method (automatic measurement), using a 1-inch cell.
  • Fig. 6 is a diagram showing the relationship between the content of isobutyraldehyde and the acid value.
  • the vertical axis indicates the content
  • the horizontal axis indicates the acid value.
  • the figure also shows a mathematical formula and a straight line showing the relationship between the content of isobutyraldehyde and the acid value.
  • the correlation is indicated by the correlation coefficient of "R”. Therefore, the closer “R” is to "1", the stronger the correlation between the two variables.
  • FIG. 7 is a diagram showing the relationship between isobutyraldehyde content and color tone.
  • FIG. 7 like FIG. 6, shows the results of experiments with isobutyraldehyde.
  • the experiment shown in FIG. 7 differs from the experiment shown in FIG. 6 in that color tone is used as an index of the degree of deterioration.
  • the vertical axis indicates the content
  • the horizontal axis indicates the color tone. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 8 is a diagram showing the relationship between the content of 2-methylbutanal and the acid value. Compared to FIG. 6, FIG. 8 differs in that the component is 2-methylbutanal. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 9 is a diagram showing the relationship between the content of 2-methylbutanal and color tone. Compared to FIG. 8, FIG. 9 differs in that color tone is used as an indicator of the degree of deterioration. Descriptions of the same points as in FIG. 8 will be omitted below.
  • FIG. 10 is a diagram showing the relationship between the content of 3-methylbutanal and the acid value. Compared to FIG. 6, FIG. 10 differs in that the component is 3-methylbutanal. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 11 is a diagram showing the relationship between the content of 3-methylbutanal and color tone. Compared to FIG. 10, FIG. 11 differs in that color tone is used as an index of the degree of deterioration. Hereinafter, description of the same points as in FIG. 10 will be omitted.
  • FIG. 12 is a diagram showing the relationship between heptanal content and acid value. Compared to FIG. 6, FIG. 12 differs in that the component is heptanal. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 13 is a diagram showing the relationship between heptanal content and color tone. Compared to FIG. 12, FIG. 13 differs in that color tone is used as an indicator of the degree of deterioration. Hereinafter, description of the same points as in FIG. 12 will be omitted.
  • FIG. 14 is a diagram showing the relationship between the content of 2-nonenal and the acid value. Compared to FIG. 6, FIG. 14 differs in that the component is 2-nonenal. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 15 is a diagram showing the relationship between the content of 2-nonenal and color tone. Compared to FIG. 14, FIG. 15 differs in that color tone is used as an indicator of the degree of deterioration. Descriptions of the same points as in FIG. 14 will be omitted below.
  • FIG. 16 is a diagram showing the relationship between the content of 2-pentylpyridine and the acid value. Compared to FIG. 6, FIG. 16 differs in that the component is 2-pentylpyridine. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 17 is a diagram showing the relationship between the content of 2-pentylpyridine and color tone. Compared to FIG. 16, FIG. 17 differs in that color tone is used as an indicator of the degree of deterioration. Hereinafter, description of the same points as in FIG. 16 will be omitted.
  • FIG. 18 is a diagram showing the relationship between the content of butanoic acid and the acid value. Compared to FIG. 6, FIG. 16 differs in that the component is butanoic acid. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 19 is a diagram showing the relationship between the content of butanoic acid and color tone. Compared to FIG. 18, FIG. 19 differs in that color tone is used as an indicator of the degree of deterioration. Hereinafter, description of the same points as in FIG. 18 will be omitted.
  • FIG. 20 is a diagram showing the relationship between the content of pentanoic acid and the acid value. Compared to FIG. 6, FIG. 20 differs in that the component is pentanoic acid. Descriptions of the same points as in FIG. 6 will be omitted below.
  • FIG. 21 is a diagram showing the relationship between the content of pentanoic acid and color tone. Compared to FIG. 20, FIG. 21 differs in that color tone is used as an indicator of the degree of deterioration. Hereinafter, description of the same points as in FIG. 20 will be omitted.
  • the determination device can accurately determine the degree of deterioration of the cooking oil by calculation using AI or correspondence using a table or the like.
  • Edible oils also produce weakly correlated components such as: Below, for each component, similar to the above experimental results, the degree of deterioration is indicated by the acid value and the degree of deterioration is indicated by the color tone.
  • FIG. 22 is a diagram showing a comparative example of the relationship between the hexanal content and the acid value.
  • FIG. 23 is a diagram showing a comparative example of the relationship between hexanal content and color tone.
  • Fig. 24 is a diagram showing a comparative example of the relationship between octanal content and acid value.
  • FIG. 25 is a diagram showing a comparative example of the relationship between octanal content and color tone.
  • FIG. 26 is a diagram showing a comparative example of the relationship between the content of 2,4-decadienal and the acid value.
  • FIG. 27 is a diagram showing a comparative example of the relationship between the content of 2,4-decadienal and color tone.
  • FIG. 28 is a diagram showing a comparative example of the relationship between the content of 2,4-heptadienal and the acid value.
  • FIG. 29 is a diagram showing a comparative example of the relationship between the content of 2,4-heptadienal and color tone.
  • FIG. 30 is a diagram showing a comparative example of the relationship between the content of 2-methylpyrazine and the acid value.
  • FIG. 31 is a diagram showing a comparative example of the relationship between the content of 2-methylpyrazine and the color tone.
  • FIG. 32 is a diagram showing a comparative example of the relationship between pyridine content and acid value.
  • FIG. 33 is a diagram showing a comparative example of the relationship between pyridine content and color tone.
  • FIG. 34 is a diagram showing a comparative example of the relationship between the content of hexanoic acid and the acid value.
  • FIG. 35 is a diagram showing a comparative example of the relationship between the content of hexanoic acid and color tone.
  • the components shown in the comparative example above have a weak correlation.
  • the degree of deterioration cannot be determined with high accuracy in many cases.
  • the second embodiment differs from the first embodiment in that the following output is performed in step S0305 in FIG. 3 based on the determination result after determining the degree of deterioration.
  • the determination device determines that the cooking oil has deteriorated to a certain degree or more, that is, if the cooking oil is in a state unsuitable for use in cooking, the cooking oil is discarded by controlling the regulator or the like. Addition, replacement, or the like may be performed.
  • the regulator is a pump or the like. Therefore, when the determination device outputs a signal for instructing the operation of the pump to the regulator or the like and controls it, the operation of the pump or the like causes adjustment such as discarding, adding, or replacing the edible oil. can.
  • the value of the degree of deterioration which is the criterion for determining whether or not to perform the adjustment, is set in advance.
  • the determination device can maintain the edible oil with less deterioration. As a result, the user can provide delicious fried food by cooking using cooking oil with less deterioration.
  • the determination device may provide information regarding adjustments, etc. in the information system.
  • FIG. 36 is a diagram showing an example of the information system 200.
  • the information system 200 is constructed by connecting the determination devices 5 installed in each of the stores S1 to S3 via a communication line or the like.
  • the store S2 (in this example, the store S2 is an izakaya) notifies the general headquarters H of the notification information.
  • the general headquarters H analyzes the number of times or frequency of receiving the notification information.
  • the general headquarters H analyzes the store S1 (store S1 is a tempura restaurant) and the store S3 (store S3 is a pork cutlet restaurant).
  • the General Headquarters H will propose or provide guidance on whether the cooking oil is being used appropriately, whether it is being replaced as appropriate, and whether there is any waste.
  • the general headquarters H may also manage the factory where the fryer 2 is installed. Also, the general headquarters H may exist in a store or a factory and manage the fryer 2 and the like in the facility.
  • the notification information is notified to, for example, the edible oil manufacturer P and the distributor Q. Then, the manufacturer P draws up a manufacturing plan or a sales plan based on the reported information. In addition, distributor Q orders edible oil and purchases edible oil from manufacturer P based on the notification information. Then, the distributor Q delivers the edible oil or the like to the stores S1 to S3.
  • the notification information is notified to collection company Z (collection company Z and manufacturer P may be the same company, etc.). Then, upon receiving the notification information, the collecting company Z collects the waste oil W. Specifically, when the recovery agent Z receives the notification information a predetermined number of times, the recovery agent Z visits the store S2 and recovers the waste oil W from the oil tank 21 of the fryer 2 .
  • the notification information may also be notified to cleaning contractors.
  • the cleaning operator visits the store S2 and cleans the inside of the oil tank 21 of the fryer 2 or the vicinity thereof.
  • the notification information is used as described above, it is possible to quickly perform operations from supply to waste oil and cleaning at stores S1 to S3. Further, automating the exchange of cooking oil and the like can further reduce the burden on the user (for example, a store clerk). Specifically, when notification information such as that the degree of progress exceeds a threshold is output, the cooking oil in use is replaced with new cooking oil or the like.
  • the determination device 5 when additional oil or waste oil is generated in the adjustment, the determination device 5 sends the amount of edible oil to the general headquarters H, the recovery company Z, the manufacturer P, etc. The time when additional oil or waste oil is generated may be notified. In this way, if the information system 200 can automate ordering, collection, delivery, and procedures for additional oil or waste oil, the user's workload can be reduced.
  • AI is realized by, for example, the following network.
  • FIG. 37 is a diagram showing an example network structure.
  • a learning model and a trained model are structures of network 300 as follows.
  • the network 300 has, for example, an input layer L1, an intermediate layer L2 (also referred to as a "hidden layer”), an output layer L3, and the like.
  • the input layer L1 is a layer for inputting data.
  • the intermediate layer L2 converts the data input in the input layer L1 based on weights, biases, and the like.
  • the results processed in the intermediate layer L2 are transmitted to the output layer L3.
  • the output layer L3 is a layer that outputs inference results and the like.
  • the network 300 is not limited to the illustrated network structure.
  • AI may be realized by other machine learning.
  • the AI may be configured to perform preprocessing such as dimensionality reduction using "unsupervised" machine learning.
  • preprocessing such as dimensionality reduction using "unsupervised" machine learning.
  • the degree of deterioration is desirably calculated by a linear expression or the like with the content as an input. With such a calculation, the degree of deterioration can be determined with low calculation cost and high accuracy.
  • the degree of deterioration is, for example, the acid value of the edible oil, the color tone of the edible oil, or a combination thereof.
  • the acid value of edible oil, the color tone of edible oil, or a combination thereof has a particularly strong correlation with the content of aldehydes, Maillard reaction products, or fatty acids. . Therefore, if the acid value of the edible oil, the color tone of the edible oil, or a combination thereof is used as an indicator of the degree of deterioration, the degree of deterioration can be accurately determined based on the content.
  • the acid value (acid value, sometimes referred to as "AV") of edible oil is, for example, a value measured by a method according to the Standard Fat Analysis Test Method 2.3.1-2013.
  • the color tone of edible oil (sometimes referred to as “color” or “hue”) is, for example, a value measured by a method according to the Standard Fat Analysis Test Method 2.2.1.1-2013 (e.g., yellow component value and the red component value, the value is calculated by yellow component value+10 ⁇ red component value).
  • FIG. 38 is a diagram illustrating an example of a functional configuration;
  • the determination device 5 has a functional configuration including an acquisition unit 5F1, a first identification unit 5F2, a second identification unit 5F3, and the like.
  • the determination device 5 preferably has a functional configuration further including an output unit 5F4 and the like.
  • the illustrated functional configuration will be described below as an example.
  • the acquisition unit 5F1 performs an acquisition procedure for acquiring components generated from edible oil.
  • the acquisition unit 5F1 is realized by the sensor 11, the I/F 500E, and the like.
  • the first identification unit 5F2 performs a first identification procedure of identifying the content of aldehydes, Maillard reaction products, or fatty acids among the components.
  • the first specifying unit 5F2 is realized by the CPU 500A or the like.
  • the second identification unit 5F3 performs a second identification procedure for identifying the degree of deterioration based on the content.
  • the second specifying unit 5F3 is realized by the CPU 500A or the like.
  • the output unit 5F4 performs an output procedure for outputting based on the degree of deterioration.
  • the output unit 5F4 is realized by an I/F 500E or the like.
  • the determination system 7 having the determination device 5 and the learning device 6 has, for example, the following functional configuration.
  • a case where the learning device 6 has the same hardware configuration as the determination device 5 will be taken as an example below.
  • the determination device 5 and the learning device 6 may have different hardware configurations.
  • the learning device 6 for example, similarly to the determination device 5, has a functional configuration including an acquisition unit 5F1, a first identification unit 5F2, and the like. However, as long as the learning device 6 can input the state and the first information, the configuration of the input and the format of the data do not matter.
  • functional configurations similar to those of the determination device 5 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the generation unit 5F5 performs a generation procedure for learning the learning model A1 and generating a trained model A2. Alternatively, the generation unit 5F5 performs a generation procedure for generating the table D22.
  • the generation unit 5F5 is realized by the CPU 500A or the like.
  • the learned model A2 generated by the learning device 6 or the table D22 is distributed from the learning device 6 to the determination device 5 or the like via a network or the like.
  • the learning device 6 Through preprocessing, the learning device 6 generates a learned model A2, table D22, or the like.
  • the determination device 5 performs the execution process to accurately determine the degree of deterioration based on the content of aldehydes, Maillard reactants, or fatty acids as follows. can judge well.
  • FIG. 39 is a diagram showing an example of the basic configuration.
  • AI learns the relationship between the content of aldehydes, Maillard reactants, or fatty acids and the degree of deterioration, and generates a learned model A2.
  • the relationship between the content of aldehydes, Maillard reaction products, or fatty acids and the degree of deterioration is grasped from Table D22 or the like.
  • the determination device can accurately determine the degree of deterioration if the contents of aldehydes, Maillard reactants, or fatty acids are known.
  • the determination device can accurately determine the degree of deterioration compared to the case of determining the degree of deterioration based on the content of other components.
  • the content may be used in combination.
  • the determination device can determine the degree of deterioration with higher accuracy. Specifically, when two or more types of content are employed, the weight of the component with the highest content is increased. In particular, when weighting is performed to increase the weight of a component having a particularly strong correlation, such as 3-methylbutanal, the determination device can determine the degree of deterioration with higher accuracy.
  • 3-methylbutanal and pentanoic acid are desirable as a combination of two types of content.
  • multicollinearity also called “multico"
  • a combination of components having strong correlations has the same tendency, and is therefore difficult to refer to. Therefore, it is desirable that the determination device uses a combination of components with weak correlation.
  • the multiple correlation coefficient is "0.911".
  • the multiple correlation coefficient is "0.896". Therefore, by using a combination of components having a weak correlation, such as the contents of 3-methylbutanal and pentanoic acid, the degree of deterioration can be determined with higher accuracy based on a stronger correlation.
  • the expiration date for example, for fried foods, the expiration date, weight, temperature, humidity, size, arrangement of fried foods in cooking, thickness, ratio of batter, or a combination of these may be considered.
  • the judgment result may be in the form of a tendency of the degree of deterioration, whether it is time to replace the cooking oil, or a result of estimating the time to replace the cooking oil.
  • the judgment result is displayed on the monitor in a format such as "The current degree of deterioration is XX%.”
  • the monitor indicates the current timing in percentage format with respect to the future timing when the degree of deterioration is "100%”.
  • the monitor may display a determination result such as, for example, "Please replace the frying oil.”
  • the monitor when the type of fried food and the number of each type are determined, the monitor will say, for example, "The remaining number of fried foods is 0." , ⁇ is ⁇ pieces.” That is, the monitor may display the type of fried food and the number of fried foods that can be cooked before the replacement time is reached, based on the determination result of the determination device.
  • various sensors such as a microphone, a thermometer, or an optical sensor may be connected to the determination device or the like. By using various sensors in this manner, components and the like can be detected with higher accuracy.
  • the determination device performs both preprocessing for the learning model and execution processing using the learned model.
  • the preprocessing and the execution processing may not be performed by the same information processing device.
  • the pre-processing and the execution processing may not be consistently executed by one information processing apparatus. That is, each process, data storage, and the like may be performed by an information system or the like composed of a plurality of information processing apparatuses.
  • determination device or the like may perform additional learning after the execution process or before the execution process.
  • the embodiment may be a combination of the above embodiments.
  • a process for reducing overfitting such as dropout (also referred to as “overfitting” or “overfitting”) may be performed.
  • preprocessing such as dimensionality reduction and normalization may be performed.
  • a learning model and a trained model may have a CNN network structure or the like.
  • the network structure may have a configuration such as RNN (Recurrent Neural Network) or LSTM (Long Short-Term Memory). That is, AI may be a network structure or the like other than deep learning.
  • the learning model and the trained model may be configured with hyperparameters. That is, the learning model and the learned model may be partially configured by the user. Furthermore, the AI may specify the feature amount to be learned, or the user may set some or all of the feature amounts to be learned.
  • the learning model and the trained model may use other machine learning.
  • the learning model and the trained model may be subjected to preprocessing such as normalization by an unsupervised model.
  • the learning may be reinforcement learning or the like.
  • preprocessing may be performed by extending one piece of experimental data or the like into a plurality of pieces of learning data. By increasing the amount of learning data in this way, the learning of the learning model can be further advanced.
  • program including firmware and programs equivalent thereto, hereinafter simply referred to as "program" that executes the determination method, learning method, or processing equivalent to the above-described processing.
  • the present invention may be implemented by a program or the like written in a programming language or the like so as to issue a command to a computer and obtain a predetermined result.
  • the program may have a configuration in which part of the processing is executed by hardware such as an integrated circuit (IC) or an arithmetic unit such as a GPU.
  • the program causes the computer to execute the above-described processes by cooperating with the arithmetic device, control device, storage device, etc. of the computer. That is, the program is loaded into the main storage device or the like, issues instructions to the arithmetic unit to perform arithmetic operation, and operates the computer.
  • the program may be provided via a computer-readable recording medium or an electric communication line such as a network.
  • the present invention may be implemented in a system composed of multiple devices. That is, a multi-computer information processing system may perform the processes described above redundantly, in parallel, distributed, or in a combination thereof. Therefore, the present invention may be realized by devices with hardware configurations other than those shown above, and systems other than those shown above.
  • the present invention has been described above.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of this embodiment can be replaced with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Edible Oils And Fats (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

食用油の劣化度を精度良く判定する。 判定装置は、揚げ物を調理する揚げ調理に用いられる食用油の劣化度を判定する判定装置であって、前記食用油から発生する成分を取得する取得部と、前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定部と、前記含有量に基づき、前記劣化度を特定する第2特定部とを備える。

Description

判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム
 本発明は、判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラムに関する。
 揚げ物の品質を保つためには、揚げ物の調理(以下、単に「調理」又は「揚げ調理」とする。)において、食用油の品質を適切に管理することが望ましい。そこで、食用油の劣化度を管理する技術が知られている。
 具体的には、まず、センサ部が、においを検出する。そして、においを検出するセンサの出力が所定閾値を超えると、食用油が劣化した、すなわち、劣化度が高くなったと判定する。このようにして、油槽に装置を取り付けなくとも、食用油の劣化度を判定できる技術が知られている(例えば、特許文献1を参照)。
特開2017-136365号公報
 従来の技術は、様々な成分が混ざった状態のにおいを用いて、食用油の劣化度を判定する。そのため、劣化度と相関関係が弱い成分を用いて劣化度を判定すると、劣化度の判定精度が低い課題がある。
 本発明は、食用油の劣化度を精度良く判定することを目的とする。
 上記の目的を達成するために、判定装置は、揚げ物を調理する揚げ調理に用いられる食用油の劣化度を判定する判定装置であって、
 前記食用油から発生する成分を取得する取得部と、
 前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定部と、
 前記含有量に基づき、前記劣化度を特定する第2特定部とを備える。
 本発明によれば、食用油の劣化度を精度良く判定できる。
調理場1の構成例を示す図である。 情報処理装置のハードウェア構成例を示す図である。 全体処理例を示す図である。 AIを用いる構成の全体処理例を示す図である。 テーブルを用いる構成の全体処理例を示す図である。 イソブチルアルデヒドの含有量と酸価の関係を示す図である。 イソブチルアルデヒドの含有量と色調の関係を示す図である。 2-メチルブタナールの含有量と酸価の関係を示す図である。 2-メチルブタナールの含有量と色調の関係を示す図である。 3-メチルブタナールの含有量と酸価の関係を示す図である。 3-メチルブタナールの含有量と色調の関係を示す図である。 ヘプタナールの含有量と酸価の関係を示す図である。 ヘプタナールの含有量と色調の関係を示す図である。 2-ノネナールの含有量と酸価の関係を示す図である。 2-ノネナールの含有量と色調の関係を示す図である。 2-ペンチルピリジンの含有量と酸価の関係を示す図である。 2-ペンチルピリジンの含有量と色調の関係を示す図である。 ブタン酸の含有量と酸価の関係を示す図である。 ブタン酸の含有量と色調の関係を示す図である。 ペンタン酸の含有量と酸価の関係を示す図である。 ペンタン酸の含有量と色調の関係を示す図である。 ヘキサナールの含有量と酸価の関係の比較例を示す図である。 ヘキサナールの含有量と色調の関係の比較例を示す図である。 オクタナールの含有量と酸価の関係の比較例を示す図である。 オクタナールの含有量と色調の関係の比較例を示す図である。 2,4-デカジエナールの含有量と酸価の関係の比較例を示す図である。 2,4-デカジエナールの含有量と色調の関係の比較例を示す図である。 2,4-ヘプタジエナールの含有量と酸価の関係の比較例を示す図である。 2,4-ヘプタジエナールの含有量と色調の関係の比較例を示す図である。 2メチルピラジンの含有量と酸価の関係の比較例を示す図である。 2メチルピラジンの含有量と色調の関係の比較例を示す図である。 ピリジンの含有量と酸価の関係の比較例を示す図である。 ピリジンの含有量と色調の関係の比較例を示す図である。 ヘキサン酸の含有量と酸価の関係の比較例を示す図である。 ヘキサン酸の含有量と色調の関係の比較例を示す図である。 情報システム200の例を示す図である。 ネットワーク構造例を示す図である。 機能構成例を示す図である。 基本構成の例を示す図である。
 以下、食用油を用いて調理する対象を「揚げ物」という。例えば、揚げ物は、フライドチキン、コロッケ、フライドポテト、唐揚げ、天ぷら、又は、トンカツ等である。
 [第1実施形態]
 (調理場1の構成例)
 まず、上記にて列挙したような揚げ物を得るための揚げ調理が行われる調理場1の例について、下記に図1を参照して説明する。
 図1は、調理場1の構成例を示す図である。以下、食用油の例を「揚げ油Y」とする。
 調理場1は、例えば、コンビニエンスストア、又は、スーパーマーケット等の店舗内である。そして、調理場1には、揚げ物Xを調理する設備が設けられる。例えば、設備は、電気式のフライヤー(Fryer、以下単に「フライヤー2」とする。)等である。
 フライヤー2は、例えば、油槽21、及び、ハウジング22等を有する設備である。
 油槽21は、揚げ油Yを貯留する。また、油槽21は、例えば、取っ手30、及び、フライバスケット3等で構成する。
 ハウジング22は、油槽21を収容する。また、ハウジング22は、揚げ物Xの種類別に、揚げ油Yの温度、又は、調理の内容等を設定する設定操作部となる、スイッチ22A等を側面に有する。
 調理を行う際には、まず、調理者は、揚げ物Xをフライバスケット3内に投入する。次に、調理者は、揚げ物Xを入れたフライバスケット3を油槽21に貯留されている揚げ油Yに漬け、かつ、取っ手30をハウジング22の上端部に引っ掛ける。そして、同時、又は、前後して、調理者は、揚げ物Xの種類に応じて、スイッチ22Aを押下する。この操作により揚げ調理が開始される。
 続いて、フライヤー2は、スイッチ22Aに応じて所定の揚げ時間が経過すると、調理者に揚げ上がりを報知する。また、同時に、フライヤー2は、フライバスケット3を油槽21から上昇させる。このようにして、揚げ物Xは、揚げ油に漬かった状態から上げられる。
 なお、報知の方法は、例えば、スピーカでブザー音を出力する、又は、モニタ等に表示する方法等である。このように、揚げ時間の経過は、光、音、又は、これらの組み合わせで報知される。
 調理者は、揚げ物Xが揚げ上がると、フライバスケット3を引き上げ、揚げ物Xを取り出す。なお、フライバスケット3の引き上げは、駆動機構等で行う構成でもよい。
 また、調理場1は、図示するような器具を用いる構成に限られない。例えば、フライヤー2は、調理が可能な調理器具であれば、種類、及び、配置等は図示する以外であってもよい。
 調理場1は、揚げ油Yを撮像する撮像装置が設置されてもよい。例えば、撮像装置は、ビデオカメラである。具体的には、ビデオカメラは、天井等に取り付ける。
 そして、ビデオカメラは、揚げ油Yの表面等を連続的に撮像し、画像を生成する。なお、画像は、動画が望ましい。さらに、ビデオカメラは、画角、及び、焦点等の条件が調整される。
 さらに、撮像装置は、複数でもよい。また、撮像装置は、タブレット、又は、スマートフォンといったモバイル機器等が有するカメラ等でもよい。
 また、調理場1には、フライヤー2から揮発する物質、及び、空気等を排気するように、排気口10等が設置される。具体的には、排気口10は、フライヤー2の上部等に設置される。
 センサ11は、例えば、排気口10等に設置される。すなわち、センサ11は、排気口10の付近等のように、食用油から揮発する成分等が十分に検出できる位置に設置されるのが望ましい。
 例えば、センサ11は、ガスセンサ等である。
 ただし、センサ11は、上記の種類に限られない。すなわち、センサ11は、質量分析法(GC-MS)等によって、物質の種類、及び、成分量等が分析できるセンサ、又は、においセンサ等であれば、センサの種類、設置位置、及び、数等を問わない。例えば、センサ11は、水晶振動子型センサ、金属酸化物半導体式センサ、膜型表面応力センサ、微小電気機械システム(MEMS)半導体式ガスセンサ、ポータブルガス分析装置、又は、センサガスクロマトグラフ等でもよい。
 判定装置5は、例えば、情報処理装置等である。そして、判定装置5は、例えば、センサ11等と接続し、食用油から揮発する成分等を分析した結果を示すデータ等を受信する。なお、判定装置5は、センサ11が検出した結果等を分析する装置等と接続してもよい。
 以下、センサ11と判定装置5が直接接続され、判定装置5がセンサ11による検出結果を受信して、分析等により、食用油から発生する成分を取得する例で説明する。
 例えば、判定装置5は、以下のような装置である。
 (情報処理装置のハードウェア構成例)
 図2は、情報処理装置のハードウェア構成例を示す図である。例えば、判定装置5は、以下のようなハードウェア資源を有する情報処理装置である。
 判定装置5は、Central Processing Unit(以下、「CPU500A」とする。)、及び、Random Access Memory(以下、「RAM500B」とする。)等を有する。さらに、判定装置5は、Read Only Memory(以下、「ROM500C」とする。)、ハードディスクドライブ(以下、「HDD500D」とする。)、及び、インタフェース(以下、「I/F500E」とする。)等を有する。
 CPU500Aは、演算装置、及び、制御装置の例である。
 RAM500Bは、主記憶装置の例である。
 ROM500C、及び、HDD500Dは、補助記憶装置の例である。
 I/F500Eは、入力装置、又は、出力装置等を接続する。具体的には、I/F500Eは、外部装置を有線、又は、無線で接続し、データを入出力する。
 なお、判定装置5は、上記に示すハードウェア構成に限られない。例えば、判定装置5は、演算装置、制御装置、記憶装置、入力装置、出力装置、又は、補助装置を更に有してもよい。具体的には、情報処理装置は、外部、又は、内部にGraphics Processing Unit(GPU)等の補助装置があってもよい。
 さらに、判定装置5は、複数の装置であってもよい。
 (全体処理例)
 図3は、全体処理例を示す図である。例えば、判定装置は、図示するように、「事前処理」、及び、「実行処理」の順に各処理を実行する。
 事前処理は、実行処理より、実行処理の準備を行うため、事前に実行される処理である。具体的には、事前処理は、人工知能(Artificial Intelligence(AI)、以下「AI」という。)を用いる構成では、学習モデルを学習させる等の準備を行う処理である。そして、実行処理は、事前処理で準備する学習済みモデルを用いる処理である。
 一方で、実行処理は、テーブル等を用いる処理でもよい。このように、テーブルを用いる構成では、事前処理は、テーブル(ルックアップテーブル(Look Up Table、LUT)等ともいう。)、又は、数式等を入力する準備を行う処理である。そして、実行処理は、事前処理で入力されたテーブル、又は、数式を用いる処理である。以下、テーブルの例で説明する。
 なお、判定装置は、事前処理、及び、実行処理を図に例示するような連続する順序で実行しなくともよい。したがって、事前処理によって準備を行う期間と、その後、実行処理を行う期間を連続させることは必須ではない。
 ゆえに、AIを用いる場合には、学習済みモデルを一旦作成した後に、別の機会として学習済みモデルを用いる実行処理を行うようにしてもよい。
 また、学習済みモデルが一度生成された後であれば、学習済みモデルを転用し、判定装置は、事前処理を省略して、実行処理から開始してもよい。
 また、学習モデル、及び、学習済みモデルは、転移学習(Transfer Learning)、又は、ファインチューニング(Fine tuning)等を行う構成でもよい。すなわち、判定装置は、装置ごとに異なる実行環境となる場合が多い。そこで、AIの基本構成は、別の情報処理装置で学習する。その後、各々の判定装置は、更に各々の実行環境に最適化するため、更に学習、又は、設定等がされてもよい。
 (事前処理例)
 ステップS0301では、判定装置は、準備を行う。また、事前処理は、AIを用いる構成であるか、又は、テーブルを用いる構成であるかにより処理の内容が異なる。なお、テーブル、数式、又は、学習データ等は、ユーザが操作して生成されてもよい。
 AIを用いる構成では、判定装置は、学習モデルを学習する等の準備を行う。一方で、テーブルを用いる構成では、判定装置は、テーブルを入力する等の準備を行う。なお、準備の詳細は後述する。
 (実行処理例)
 事前処理が実行された後、すなわち、AI又はテーブルが準備された後、判定装置は、例えば、以下のような手順で実行処理を行う。
 ステップS0302では、判定装置は、食用油から発生する成分を取得する。なお、判定装置は、センサの検出結果等を受け付けた他の分析装置、又は、ユーザによる操作等で分析された結果等を入力して成分を取得してもよい。
 ステップS0303では、判定装置は、含有量を特定する。具体的には、判定装置は、ステップS0302で取得する成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸等といった事前に定める特定の成分について、成分ごとの含有量を特定する。
 アルデヒド類は、例えば、イソブチルアルデヒド、2-メチルブタナール、3-メチルブタナール、ヘプタナール、又は、2-ノネナール等である。
 イソブチルアルデヒド(Isobutyraldehyde)は、2‐メチルプロパナール(2-Methylpropanal)等と呼ばれる場合もある。
 2-メチルブタナール(2-Methylbutanal)は、2-Methylbutanal、2-Methylbutyraldehyde、又は、2-Ethylpropanal等と呼ばれる場合もある。
 3-メチルブタナール(3-Methylbutanal)は、イソバレルアルデヒド、Isovaleraldehyde、イソバレラール、イソバレリックアルデヒド、Isovaleral、Isovaleric aldehyde、3-Methylbutyraldehyde、3-Methylbutanal、イソペンタナール、Isopentanal、3,3-Dimethylpropanal等と呼ばれる場合もある。
 ヘプタナール(Heptanal)は、ノルマルヘプタアルデヒド、1-ヘプタノン、ヘプチルアルデヒド、Heptaldehyde、1-Heptanone、又は、Heptyl aldehyde等と呼ばれる場合もある。
 2-ノネナール(2-Nonenal)は、α-ノネニルアルデヒド、β-ヘキシルアクロレイン、2-ノネナール、2-ノネン-1-アール、又は、trans-2-ノネナール等と呼ばれる場合もある。
 メイラード反応物は、2-ペンチルピリジン等である。
 2-ペンチルピリジン(2-Pentylpyridine)は、2-Pentylpyridine等と呼ばれる場合もある。
 脂肪酸は、ブタン酸、又は、ペンタン酸等である。
 ブタン酸(butanoic acid)は、Butyric acid、又は、n-酪酸等と呼ばれる場合もある。
 ペンタン酸(pentanoic acid)は、吉草酸等と呼ばれる場合もある。
 ステップS0304では、判定装置は、含有量に基づき劣化度を判定する。
 ステップS0305では、判定装置は、劣化度に基づく出力を行う。
 以上のような全体処理におけるステップS0305までの処理は、AIを用いる構成であるか、又は、テーブルを用いる構成かによって処理内容が異なる。以下、構成ごとに分けて説明する。
 (AIを用いる構成の全体処理例)
 図4は、AIを用いる構成の全体処理例を示す図である。図示するように、AIを用いる構成では、事前処理は、学習モデルA1を学習する処理である。そして、実行処理は、事前処理等によって、ある程度の学習が完了した学習モデルである、学習済みモデルA2を用いて調理環境等を判定する処理である。
 事前処理は、例えば、学習データD11を用いて、学習モデルA1を学習させる処理である。すなわち、事前処理は、学習データD11を用いる「教師あり」の学習により、学習モデルA1を学習させて、学習済みモデルA2を生成する処理である。
 学習データD11は、例えば、成分ごとの含有量D112、及び、劣化度D111等のデータを組み合わせたデータである。
 劣化度D111は、食用油が劣化している進行度を示す指標である。劣化度D111の詳細は後述する。
 含有量D112は、食用油から発生する成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量等である。例えば、含有量D112は、面積値(単位系は無次元である。)で示す。なお、含有量D112は、複数の種類でもよい。
 なお、含有量D112は、センサ11から直接取得しなくともよい。つまり、含有量D112は、ユーザの操作、又は、データ等で含有量を示す値、及び、成分の種類等が把握できれば、データの形式、及び、入力に用いるデバイスは問わない。
 このように、含有量D112、及び、劣化度D111がセットになった学習データD11が入力されると、学習モデルA1は、含有量D112と劣化度D111の関係を学習できる(図3におけるステップS0301)。したがって、劣化度D111は、含有量D112に対して、食用油がどの程度の劣化であるかを示す情報であって、「教師あり」の学習を行う構成において、「正解データ」となる情報である。
 以上のような学習データD11を用いて、学習モデルA1を学習させると、判定装置は、含有量D112、及び、劣化度D111の関係を学習できる。そして、このような学習によって生成する学習済みモデルA2を用いると、判定装置5は、以下のような実行処理ができる。
 実行処理は、入力データD12を入力とするAIによる劣化度の推定結果(以下単に「推定結果D13」という。)を生成する処理である。
 例えば、実行処理では、判定装置は、センサ11で検出する成分ごとの含有量(以下「未知含有量D121」という。)を含む入力データD12を入力する。なお、事前処理と比較すると、実行処理では、含有量に対して、結果となる劣化度が未知である点が異なる。
 入力データD12は、1種類以上の未知含有量D121等である。まず、判定装置は、センサ11により、食用油から発生した成分の検出結果等を取得する(図3におけるステップS0302)。次に、判定装置は、センサ11の検出結果を分析する等によって、成分ごとの含有量を特定する(図3におけるステップS0303)。
 以上のようにして得られる含有量を特定した結果である未知含有量D121が学習済みモデルA2に入力されると、判定装置は、劣化度を判定できる(図3におけるステップS0304)。
 このように、AIを用いる構成であると、学習データD11で入力される条件と異なる条件が入力されても、判定装置は、学習に基づき、劣化度等を推定できる。
 (テーブルを用いる構成の全体処理例)
 図5は、テーブルを用いる構成の全体処理例を示す図である。図示するように、テーブルを用いる構成では、事前処理は、テーブルD22を生成する処理である。そして、実行処理は、事前処理で生成したテーブルD22を用いて劣化度等を判定する処理である。
 事前処理は、例えば、実験データD21をまとめてテーブル形式にする処理である。
 なお、テーブルD22は、2次元の表等の形式でなくともよい。すなわち、事前処理では、含有量D112に対して劣化度D111を一義的に特定する、数式等の形式等を生成してもよい。
 例えば、複数の含有量D112、及び、劣化度D111のセットに対して多変量解析、又は、最小二乗法等の計算を行うと、判定装置は、含有量D112、及び、劣化度D111の関係を示す数式を算出できる。以下、数式が、直線を示す、すなわち、1次式の例で説明する。
 例えば、テーブルD22は、図示するように、「成分」ごとの「含有量」に対して、「劣化度」を対応付けした2次元の形式である。したがって、テーブルD22を参照すると、「成分」ごとの「含有量」に対応する「劣化度」が定まる。
 また、テーブルD22における「成分」、「含有量」、及び、「劣化度」は、実験データD21が示す値である。したがって、事前処理において実験データD21を入力していくと、テーブルD22が生成される。
 実験データD21は、例えば、含有量D112、及び、劣化度D111をセンサ11等で検出した結果を示すデータである。なお、含有量D112、及び、劣化度D111は、例えば、図4と同様である。
 テーブルD22は、含有量D112と、劣化度D111とを対応付けするデータである。以下、劣化度D111を酸価とする例で説明する。なお、テーブルD22には、図示する以外の情報が含まれてもよい。
 以上のようなテーブルD22、又は、数式を用いると、判定装置は、含有量と、劣化度とを対応付けできる。そして、このようなテーブルD22を用いると、判定装置は、以下のような実行処理ができる。
 例えば、実行処理では、判定装置は、AIを用いる構成と同様に、センサ11により、成分ごとの含有量を特定する(図3におけるステップS0302、及び、ステップS0303)。
 AIを用いる構成と同様に、テーブルを用いる構成でも、事前処理と比較すると、実行処理では、含有量が未知である点が異なる。
 以下、AIを用いる構成と同様に、入力データD12は、未知含有量D121等である例で説明する。
 AIを用いる構成と同様に、判定装置は、入力データD12により、未知含有量D121を入力すると、テーブルD22において、対応する劣化度を抽出する。このように、入力に対し、判定装置は、抽出結果D23を出力する。すなわち、AIを用いる構成と同様に、入力データD12が示す条件下では、判定装置は、食用油がどのような程度の劣化度であるかをテーブルD22から抽出する(図3におけるステップS0304)。
 このように、テーブルを用いる構成であると、テーブルD22上で入力される条件と対応する劣化度を検索するため、判定装置は、高速に処理できる。
 なお、判定装置は、線形補間等により、劣化度等を推定してもよい。すなわち、テーブルD22に入力されていない条件等の場合には、判定装置は、テーブルD22において類似する条件を平均する等によって劣化度を計算してもよい。
 例えば、図示するように、「イソブチルアルデヒドが46162443」、及び、「イソブチルアルデヒドが85915338」がテーブルD22に入力され、かつ、「イソブチルアルデヒドが66038891」(すなわち、未知の場合である。)を実行処理の対象とする場合には、判定装置は、「イソブチルアルデヒドが46162443」、及び、「イソブチルアルデヒドが85915338」の中間となる値等を計算してもよい。
 このような補間を行うと、テーブルD22に入力されていない条件であっても、判定装置5は、対応できる。
 また、判定装置は、テーブルD22、及び、数式の両方を用いる構成でもよい。例えば、判定装置は、テーブルD22にある条件に対しては、テーブルD22が示す劣化度を抽出する。一方で、判定装置は、テーブルD22にない条件に対しては、数式で計算した劣化度を抽出する。
 アルデヒド類、メイラード反応物、又は、脂肪酸の含有量と、劣化度には、以下に示す実験結果から分かるように、強い相関関係がある。
 [実験結果]
 下記のような条件で実験を行った結果を示す。
 (サンプル調整)油脂0.5 gをGC-MS用のガラスバイアル瓶に入れた。
 (GC-MS分析について)
 GCシステム:Agilent7890B(アジレントテクノロジーズ社製)
  カラム:DB-WAX UI(アジレントテクノロジーズ社製、0.25 μm,0.25 mm×60 m)
  キャリアガス:He
  イオン化、測定モード:EI、スキャン
  分析方法:アジレントテクノロジー社のダイナミックヘッドスペース(DHS法)に準拠し分析を実施した。
 (香気成分解析について)
 取得したトータルイオンクロマトグラム(TIC)を各成分のデコンボリューション後の面積値を抽出した。
 デコンボリューションは、重なったピークをソフト上の計算で成分ごとに分ける操作である。また、13種類の食用油を用いて酸価、及び、色調との相関を確認し、相関係数が高い香気成分を選抜した。
 (劣化度の計測方法について)
 酸価の計測方法:基準油脂測定法
 色調の計測方法:ロビボンド法(自動測定)、1インチセルを用いた。
 図6は、イソブチルアルデヒドの含有量と酸価の関係を示す図である。図では、縦軸に含有量と示し、かつ、横軸に酸価を示す。また、図は、イソブチルアルデヒドの含有量と酸価の関係を示す数式、及び、直線を示す。なお、相関関係は、「R」の相関係数で示す。したがって、「R」が「1」に近いほど、2つの変数は相関が強い。
 本実験では、「R=0.799」となった。
 図7は、イソブチルアルデヒドの含有量と色調の関係を示す図である。図6と比較すると、図7は、図6と同様に、イソブチルアルデヒドについて実験した結果を示す図である。一方で、図7に示す実験では、図6と比較すると、劣化度の指標に色調を用いた点が異なる。図では、縦軸に含有量と示し、かつ、横軸に色調を示す。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.819」となった。
 図8は、2-メチルブタナールの含有量と酸価の関係を示す図である。図6と比較すると、図8は、成分が2-メチルブタナールである点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.801」となった。
 図9は、2-メチルブタナールの含有量と色調の関係を示す図である。図8と比較すると、図9は、劣化度の指標に色調を用いた点が異なる。以下、図8と同様の点は説明を省略する。
 本実験では、「R=0.844」となった。
 図10は、3-メチルブタナールの含有量と酸価の関係を示す図である。図6と比較すると、図10は、成分が3-メチルブタナールである点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.829」となった。
 図11は、3-メチルブタナールの含有量と色調の関係を示す図である。図10と比較すると、図11は、劣化度の指標に色調を用いた点が異なる。以下、図10と同様の点は説明を省略する。
 本実験では、「R=0.858」となった。
 図12は、ヘプタナールの含有量と酸価の関係を示す図である。図6と比較すると、図12は、成分がヘプタナールである点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.685」となった。
 図13は、ヘプタナールの含有量と色調の関係を示す図である。図12と比較すると、図13は、劣化度の指標に色調を用いた点が異なる。以下、図12と同様の点は説明を省略する。
 本実験では、「R=0.720」となった。
 図14は、2-ノネナールの含有量と酸価の関係を示す図である。図6と比較すると、図14は、成分が2-ノネナールである点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.751」となった。
 図15は、2-ノネナールの含有量と色調の関係を示す図である。図14と比較すると、図15は、劣化度の指標に色調を用いた点が異なる。以下、図14と同様の点は説明を省略する。
 本実験では、「R=0.776」となった。
 図16は、2-ペンチルピリジンの含有量と酸価の関係を示す図である。図6と比較すると、図16は、成分が2-ペンチルピリジンである点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.860」となった。
 図17は、2-ペンチルピリジンの含有量と色調の関係を示す図である。図16と比較すると、図17は、劣化度の指標に色調を用いた点が異なる。以下、図16と同様の点は説明を省略する。
 本実験では、「R=0.704」となった。
 図18は、ブタン酸の含有量と酸価の関係を示す図である。図6と比較すると、図16は、成分がブタン酸である点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.723」となった。
 図19は、ブタン酸の含有量と色調の関係を示す図である。図18と比較すると、図19は、劣化度の指標に色調を用いた点が異なる。以下、図18と同様の点は説明を省略する。
 本実験では、「R=0.736」となった。
 図20は、ペンタン酸の含有量と酸価の関係を示す図である。図6と比較すると、図20は、成分がペンタン酸である点が異なる。以下、図6と同様の点は説明を省略する。
 本実験では、「R=0.763」となった。
 図21は、ペンタン酸の含有量と色調の関係を示す図である。図20と比較すると、図21は、劣化度の指標に色調を用いた点が異なる。以下、図20と同様の点は説明を省略する。
 本実験では、「R=0.738」となった。
 以上の実験結果が示すように、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量は、食用油の酸価、又は、色調等の劣化度と強い相関関係にある。したがって、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定できると、判定装置は、AIによる計算、又は、テーブル等による対応付け等によって、食用油の劣化度を精度良く判定できる。
 [比較例]
 食用油は、以下のような相関関係の弱い成分も発生させる。以下、成分ごとに、上記の実験結果と同様に、劣化度を酸価にした場合と、劣化度を色調にした場合とを示す。
 図22は、ヘキサナールの含有量と酸価の関係の比較例を示す図である。
 図23は、ヘキサナールの含有量と色調の関係の比較例を示す図である。
 図24は、オクタナールの含有量と酸価の関係の比較例を示す図である。
 図25は、オクタナールの含有量と色調の関係の比較例を示す図である。
 図26は、2,4-デカジエナールの含有量と酸価の関係の比較例を示す図である。
 図27は、2,4-デカジエナールの含有量と色調の関係の比較例を示す図である。
 図28は、2,4-ヘプタジエナールの含有量と酸価の関係の比較例を示す図である。
 図29は、2,4-ヘプタジエナールの含有量と色調の関係の比較例を示す図である。
 図30は、2メチルピラジンの含有量と酸価の関係の比較例を示す図である。
 図31は、2メチルピラジンの含有量と色調の関係の比較例を示す図である。
 図32は、ピリジンの含有量と酸価の関係の比較例を示す図である。
 図33は、ピリジンの含有量と色調の関係の比較例を示す図である。
 図34は、ヘキサン酸の含有量と酸価の関係の比較例を示す図である。
 図35は、ヘキサン酸の含有量と色調の関係の比較例を示す図である。
 上記の比較例に示すような成分では、相関関係が弱い場合が多い。このような相関関係が弱い成分では、含有量が分かっても、劣化度が精度良く判定できない場合が多い。
 [第2実施形態]
 第2実施形態は、劣化度の判定の後、判定結果に基づき、図3におけるステップS0305で以下のような出力を行う点が第1実施形態と異なる。
 例えば、判定装置は、食用油が一定以上の劣化度であると判定する、すなわち、食用油が調理に使用するのに適さない状態であると、調整器等を制御して食用油を廃棄、追加、又は、交換等を行ってもよい。
 具体的には、調整器は、ポンプ等である。ゆえに、判定装置は、調整器等に対して、ポンプを稼働させる等を命令する信号を出力して制御すると、ポンプ等の稼働により、食用油を廃棄、追加、又は、交換する等といった調整ができる。
 なお、調整を行うか否かを判断する基準となる劣化度の値は、事前に設定される。
 このような劣化度に基づいて食用油を調整するように出力すると、判定装置は、劣化が少ない食用油を維持できる。その結果、ユーザは、劣化の少ない食用油を用いて調理することで美味しい揚げ物を提供できる。
 また、以下のように、判定装置は、情報システムにおいて、調整等に関する情報を提供してもよい。
 図36は、情報システム200の例を示す図である。例えば、情報システム200は、店舗S1乃至店舗S3ごとに設置する判定装置5を通信回線等で接続して構築する。
 例えば、店舗S2(この例では、店舗S2は、居酒屋とする。)は、統括本部Hに報知情報を通知する。この場合には、統括本部Hは、報知情報を受信した回数、又は、頻度等を分析する。同様に、統括本部Hは、店舗S1(店舗S1は、天ぷら屋とする。)、及び、店舗S3(店舗S3は、とんかつ屋とする。)も分析する。
 このように分析した結果に基づき、統括本部Hは、食用油の使用方法が適切か、適宜交換しているか、及び、無駄がないか等を提案、又は、指導する。
 なお、統括本部Hは、フライヤー2が設置された工場等も管理してよい。また、統括本部Hは、店舗、又は、工場内に存在し、施設内のフライヤー2等を管理してもよい。
 報知情報は、例えば、食用油の製造業者P、及び、販売業者Q等に通知される。そして、製造業者Pは、報知情報に基づき、製造計画、又は、販売計画を立案する。また、販売業者Qは、報知情報に基づき、食用油を発注、及び、製造業者Pから食用油を仕入れる等を行う。そして、販売業者Qは、店舗S1乃至店舗S3等へ食用油等を配送する。
 さらに、報知情報は、回収業者Z(なお、回収業者Z、及び、製造業者Pは同一の業者等でもよい。)に通知される。そして、報知情報を受けると、回収業者Zは、廃油Wを回収する。具体的には、回収業者Zは、所定回数の報知情報を受信すると、店舗S2を訪問してフライヤー2の油槽21から廃油Wを回収する。
 さらに、報知情報は、清掃作業業者等にも通知されてよい。そして、報知情報を受けると、清掃作業業者は、店舗S2を訪問して、フライヤー2の油槽21の内部、又は、その付近等を清掃する。
 例えば、以上のように報知情報を用いると、店舗S1乃至店舗S3において、供給から廃油、清掃までが迅速にできる。また、食用油の交換等を自動化すると、ユーザ(例えば、店員等である)の負担がより軽減できる。具体的には、進行度が閾値を超えた等の報知情報が出力されると、使用中の食用油は、新しい食用油等に交換される。
 このようなサプライチェーンにおいて、判定装置5は、調整において、追加油、又は、廃油が発生する場合には、統括本部H、回収業者Z、及び、製造業者P等へ食用油の量、及び、追加油、又は、廃油が発生する時期等を報知してもよい。このように、追加油、又は、廃油等についての発注、回収、納品、及び、手続等が情報システム200によって自動化できると、ユーザは、作業負荷が軽減できる。
 (ネットワーク構成例)
 AIは、例えば、以下のようなネットワークで実現する。
 図37は、ネットワーク構造例を示す図である。例えば、学習モデル、及び、学習済みモデルは、以下のようなネットワーク300の構造である。
 ネットワーク300は、例えば、入力層L1、中間層L2(「隠れ層」等ともいう。)、及び、出力層L3等を有する構成である。
 入力層L1は、データを入力する層である。
 中間層L2は、入力層L1で入力するデータを重み、及び、バイアス等に基づいて変換する。このように中間層L2で処理された結果が出力層L3へ伝えられる。
 出力層L3は、推測結果等を出力する層である。
 そして、学習により、重みの係数、及び、等が最適化される。なお、ネットワーク300は、図示するネットワーク構造に限られない。つまり、AIは、他の機械学習によって実現されてもよい。
 例えば、AIは、「教師なし」の機械学習等により、次元削減等の前処理を行う構成等でもよい。上記の実験結果が示すように、成分の含有量と劣化度は、1次程度の低い次元で相関関係を示すのが望ましい。成分の含有量と劣化度は、単純な比例関係にある場合が多い。したがって、劣化度は、含有量を入力として、1次式等で計算されるのが望ましい。このような計算であると、計算コストを少なく、かつ、精度良く劣化度を判定できる。
 一方で、2ペンチルピリジンと色調等は、2次式の相関関係となる場合が多い。したがって、2ペンチルピリジンと色調等を採用する場合には、2次式で相関関係を示すと、精度良く劣化度を判定できる。
 (劣化度について)
 劣化度は、例えば、食用油の酸価、食用油の色調、又は、これらの組み合わせ等が望ましい。他の劣化度を示す指標と比較すると、食用油の酸価、食用油の色調、又は、これらの組み合わせ等は、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量等と特に相関関係が強い。したがって、食用油の酸価、食用油の色調、又は、これらの組み合わせ等を劣化度の指標とすると、含有量に基づき、精度良く劣化度が判定できる。
 食用油の酸価(Acid Value、「AV」という場合もある。)は、例えば、基準油脂分析試験法2.3.1-2013に準じる方法で測定する値である。
 食用油の色調(「色」又は「色相」等という場合もある。)は、例えば、基準油脂分析試験法2.2.1.1-2013に準じる方法で測定する値(例えば、黄色成分値と赤色成分値を用いて、黄色成分値+10×赤色成分値で計算する値等である。)である。
 (機能構成例)
 図38は、機能構成例を示す図である。例えば、判定装置5は、取得部5F1、第1特定部5F2、及び、第2特定部5F3等を備える機能構成である。なお、図示するように、判定装置5は、出力部5F4等を更に備える機能構成であるのが望ましい。以下、図示する機能構成を例に説明する。
 取得部5F1は、食用油から発生する成分を取得する取得手順を行う。例えば、取得部5F1は、センサ11、及び、I/F500E等で実現する。
 第1特定部5F2は、成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定手順を行う。例えば、第1特定部5F2は、CPU500A等で実現する。
 第2特定部5F3は、含有量に基づき、劣化度を特定する第2特定手順を行う。例えば、第2特定部5F3は、CPU500A等で実現する。
 出力部5F4は、劣化度に基づく出力を行う出力手順を行う。例えば、出力部5F4は、I/F500E等で実現する。
 また、判定装置5、及び、学習装置6を有する判定システム7は、例えば、以下のような機能構成である。以下、学習装置6が判定装置5と同様のハードウェア構成である場合を例にする。ただし、判定装置5、及び、学習装置6は異なるハードウェア構成でもよい。
 学習装置6は、例えば、判定装置5と同様に、取得部5F1、及び、第1特定部5F2等を備える機能構成である。ただし、学習装置6は、状態、及び、第1情報が入力できるのであれば、入力の構成、及び、データの形式は問わない。以下、判定装置5と同様の機能構成は、同一の符号を付して説明を省略する。
 生成部5F5は、学習モデルA1を学習させて学習済みモデルA2を生成する生成手順を行う。又は、生成部5F5は、テーブルD22を生成する生成手順を行う。例えば、生成部5F5は、CPU500A等で実現する。
 判定システム7では、学習装置6が生成する学習済みモデルA2、又は、テーブルD22が、学習装置6からネットワーク等を介して、判定装置5等へ配信される。
 事前処理により、学習装置6が学習済みモデルA2、又は、テーブルD22等を生成する。このような学習済みモデルA2、又は、テーブルD22があると、判定装置5は、実行処理により、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量に基づき、以下のように、劣化度を精度良く判定できる。
 図39は、基本構成の例を示す図である。
 図示するように、揚げ油Yからは、調理中に様々な成分が揮発する。これらの成分は、センサ11で検出できる。これらの成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量に注目する。
 そして、事前に、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量と、劣化度との関係をAIが学習して、学習済みモデルA2を生成する。又は、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量と、劣化度との関係は、テーブルD22等で把握する。このような学習済みモデルA2、又は、テーブルD22等があると、判定装置は、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量が分かると、劣化度を精度良く判定できる。
 特に、他の成分の含有量で劣化度を判定する場合等と比較して、判定装置は、劣化度を精度良く判定できる。
 なお、含有量は、複数を組み合わせて使用してもよい。例えば、アルデヒド類、メイラード反応物、又は、脂肪酸のうち、2種類以上を採用すると、判定装置は、劣化度をより精度良く判定できる。具体的には、2種類以上の含有量を採用する場合には、最も含有量が高い成分の重みを高くする等である。特に、3-メチルブタナール等のように、相関関係が特に強い成分の重みを高くする重み付けを行うと、判定装置は、劣化度をより精度良く判定できる。
 また、2種類以上の含有量を採用する場合には、成分間の相関が弱い関係にある成分を選ぶのが望ましい。例えば、2種類の含有量の組み合わせは、3メチルブタナールとペンタン酸等が望ましい。
 3メチルブタナールとペンタン酸の相関は、「0.535」である。一方で、3メチルブタナールと2ペンチルピリジンの相関は、「0.781」である。すなわち、比較すると、3メチルブタナールとペンタン酸の組み合わせの方が、成分間の相関が弱い関係にある組み合わせである。
 回帰分析等に基づいて判定する場合には、選択する成分の組み合わせによっては多重共線性(multicollinearity、「マルチコ」等という場合もある。)がある場合がある。すなわち、相関が強い関係同士の成分の組み合わせでは、どちらも同じような傾向になるため、参考になりにくい。そこで、判定装置は、相関が弱い成分の組み合わせを用いるのが望ましい。
 3メチルブタナールとペンタン酸の組み合わせで、酸価を目的変数として重回帰分析を行うと、重相関係数は、「0.911」である。一方で、3メチルブタナールと2ペンチルピリジンの組み合わせで、酸価を目的変数として重回帰分析を行うと、重相関係数は、「0.896」である。したがって、3メチルブタナールとペンタン酸の各々の含有量のように、相関が弱い関係にある成分の組み合わせを用いると、より強い相関関係に基づき、劣化度をより精度良く判定できる。
 (変形例)
 パラメータの一部、又は、全部は、ユーザによる入力等で取得されてもよい。
 なお、判定等は、例えば、揚げ物について、賞味期限、揚げ物の重量、温度、湿度、大きさ、調理における揚げ物の配置、厚み、衣の率、又は、これらの組み合わせ等が考慮されてもよい。
 例えば、判定結果は、劣化度の傾向、又は、食用油の交換時期であるか否か、食用油の交換時期をした推測した結果等の形式でもよい。
 具体的には、判定結果は、モニタに、「現在の劣化度は〇〇%です。」等のような形式で表示される。すなわち、モニタは、交換時期を劣化度が「100%」となる将来の時期に対し、現在の時期を百分率形式で示す。一方で、劣化度が交換時期に既に達している場合には、モニタには、例えば「揚げ油を交換して下さい。」等と判定結果が表示されてもよい。
 次に、揚げ物の種類、及び、種類別の個数が定まる場合には、モニタは、例えば「残りの揚げ個数は〇個です。」、「次回、調理が可能なのは、〇〇が〇個、又は、●●が●個です。」、又は、「今、差し油すると、あと〇日使用できます。」等を表示する。すなわち、モニタは、判定装置による判定結果に基づき、交換時期に達するまでに調理可能な内容を揚げ物の種類、及び、個数等の形式で表示してもよい。
 また、食用油を撮影、及び、画像解析して、「気泡の数」、「気泡の大きさ」、「特定の大きさの気泡が存在する領域の面積が全体面積に占める割合に相当する面積率」、「特定の気泡が生じてから消滅するまでの時間(消滅速度)」、又は、これらの組み合わせ等が算出されてもよい。
 また、これらの算出結果、画像、又は、これらを総合して、「酸価」、「色調」、「粘度上昇率」、「気泡の流れ度合い」、「調理対象物の画像内における輪郭の見えやすさ」、揚げ油の種類、揚げ物の種類、揚げ物の数量、又は、これらの組み合わせ等が特定されてもよい。
 (その他の実施形態)
 他にも、判定装置等には、マイク、温度計、又は、光センサ等といった様々なセンサが接続してもよい。このように、様々なセンサを用いると、成分等をより精度良く検出できる。
 上記の例では、判定装置は、学習モデルに対する事前処理、及び、学習済みモデルを用いて実行処理の両方を行う。ただし、事前処理、及び、実行処理は、同じの情報処理装置が行わなくともよい。また、事前処理、及び、実行処理も、1つの情報処理装置で一貫して実行しなくともよい。すなわち、各処理、及び、データの記憶等は、複数の情報処理装置で構成する情報システム等で行ってもよい。
 なお、判定装置等は、実行処理の後、又は、実行処理の前に追加して学習を更に行ってもよい。
 実施形態は、上記の実施形態を組み合わせたものでもよい。
 実施形態では、ドロップアウト等といった過学習(「過剰適合」又は「過適合」等ともいう。)(overfitting)を軽減化させる処理が行われてもよい。ほかにも、次元削減、及び、正規化等の前処理が行われてもよい。
 学習モデル、及び、学習済みモデルは、CNNのネットワーク構造等があってもよい。他にも、例えば、ネットワーク構造は、RNN(再帰型ニューラルネットワーク、Recurrent Neural Network)又はLSTM(Long Short-Term Memory)等の構成を有してもよい。すなわち、AIは、ディープラーニング以外のネットワーク構造等であってもよい。
 また、学習モデル、及び、学習済みモデルは、ハイパパラメータを有する構成であってもよい。すなわち、学習モデル、及び、学習済みモデルは、一部の設定をユーザが行う構成でもよい。さらに、AIは、学習対象とする特徴量を特定してもよいし、ユーザが学習対象とする一部又は全部の特徴量を設定してもよい。
 また、学習モデル、及び、学習済みモデルは、他の機械学習を利用してもよい。例えば、学習モデル、及び、学習済みモデルは、教師なしのモデルにより、正規化等を前処理で行ってもよい。さらに、学習は、強化学習等であってもよい。
 学習では、データの拡張等が行われてもよい。すなわち、学習モデルの学習に用いる学習データを増やすため、1つの実験データ等を拡張させて、複数の学習データにする前処理が行われてもよい。このようにして、学習データを増やせると、より学習モデルの学習を進めることができる。
 本発明は、上記に例示する判定方法、学習方法、又は、上記に示す処理と等価な処理を実行するプログラム(ファームウェア、及び、プログラムに準ずるものを含む。以下単に「プログラム」という。)で実現されてもよい。
 すなわち、本発明は、コンピュータに対して指令を行って所定の結果が得られるように、プログラミング言語等で記載されたプログラム等で実現されてもよい。なお、プログラムは、処理の一部をIntegrated Circuit(集積回路、IC)等のハードウェア又はGPU等の演算装置等で実行する構成であってもよい。
 プログラムは、コンピュータが有する演算装置、制御装置、及び、記憶装置等を協働させて上記に示す処理等をコンピュータに実行させる。すなわち、プログラムは、主記憶装置等にロードされて、演算装置に命令を発して演算を行わせてコンピュータを動作させる。
 また、プログラムは、コンピュータが読み込み可能な記録媒体、又は、ネットワーク等の電気通信回線を介して提供されてもよい。
 本発明は、複数の装置で構成されるシステムで実現されてもよい。すなわち、複数のコンピュータによる情報処理システムは、上記に示す処理を冗長、並列、分散、又は、これらの組み合わせとなるように実行してもよい。したがって、本発明は、上記に示すハードウェア構成以外の装置、及び、上記に示す装置以外のシステムで実現されてもよい。
 以上、本発明の実施形態について説明した。なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、本実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、本実施形態の構成に他の実施形態の構成を加えることも可能である。またさらに、本実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
5     :判定装置
5F1   :取得部
5F2   :第1特定部
5F3   :第2特定部
5F4   :出力部
5F5   :生成部
6     :学習装置
7     :判定システム
11    :センサ
300   :ネットワーク
A1    :学習モデル
A2    :学習済みモデル
D11   :学習データ
D111  :劣化度
D112  :含有量
D12   :入力データ
D121  :未知含有量
D13   :推定結果
D21   :実験データ
D22   :テーブル
D23   :抽出結果
L1    :入力層
L2    :中間層
L3    :出力層
 

Claims (14)

  1.  揚げ物を調理する揚げ調理に用いられる食用油の劣化度を判定する判定装置であって、
     前記食用油から発生する成分を取得する取得部と、
     前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定部と、
     前記含有量に基づき、前記劣化度を特定する第2特定部とを備える判定装置。
  2.  前記劣化度は、
     前記食用油の酸価、又は、色調である請求項1に記載の判定装置。
  3.  前記アルデヒド類は、
     イソブチルアルデヒド、2-メチルブタナール、3-メチルブタナール、ヘプタナール、又は、2-ノネナールである請求項1又は2に記載の判定装置。
  4.  前記メイラード反応物は、
     2-ペンチルピリジンである請求項1乃至3のいずれか1項に記載の判定装置。
  5.  前記脂肪酸は、
     ブタン酸、又は、ペンタン酸である請求項1乃至4のいずれか1項に記載の判定装置。
  6.  前記劣化度に基づく出力を行う出力部を更に備える請求項1乃至5のいずれか1項に記載の判定装置。
  7.  前記出力部は、
     前記食用油を発注する通知、前記食用油の製造計画、若しくは、販売計画を立案させる通知、前記食用油の使用方法を提案、若しくは、指導させる通知、廃油の回収を手配する通知、又は、前記食用油を貯留する油槽の清掃を手配する通知を行う請求項6に記載の判定装置。
  8.  前記出力部は、前記食用油が一定以上の劣化度であると、
     前記食用油を廃棄、追加、又は、交換する調整を行う調整器が調整を行うように制御する請求項6又は7に記載の判定装置。
  9.  揚げ物を調理する揚げ調理に用いられる食用油から発生する成分を取得する取得部と、
     前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定部と、
     前記含有量、及び、前記食用油の劣化度を入力して、学習モデルを学習させて学習済みモデルを生成する生成部とを備える学習装置。
  10.  請求項1乃至8のいずれか1項に記載の判定装置と、
     請求項9に記載の学習装置とを有する判定システム。
  11.  揚げ物を調理する揚げ調理に用いられる食用油の劣化度を判定する判定方法であって、
     前記食用油から発生する成分を取得する取得手順と、
     前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定手順と、
     前記含有量に基づき、前記劣化度を特定する第2特定手順とを備える判定方法。
  12.  請求項11に記載の判定方法をコンピュータに実行させるためのプログラム。
  13.  揚げ物を調理する揚げ調理に用いられる食用油から発生する成分を取得する取得手順と、
     前記成分のうち、アルデヒド類、メイラード反応物、又は、脂肪酸の含有量を特定する第1特定手順と、
     前記含有量、及び、前記食用油の劣化度を入力して、学習モデルを学習させて学習済みモデルを生成する生成手順とを備える学習方法。
  14.  請求項13に記載の学習方法をコンピュータに実行させるためのプログラム。
PCT/JP2022/010962 2021-03-25 2022-03-11 判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム WO2022202409A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023509021A JPWO2022202409A1 (ja) 2021-03-25 2022-03-11
CA3213612A CA3213612A1 (en) 2021-03-25 2022-03-11 Determination device, learning device, determination system, determination method, learning method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051773 2021-03-25
JP2021-051773 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022202409A1 true WO2022202409A1 (ja) 2022-09-29

Family

ID=83394969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010962 WO2022202409A1 (ja) 2021-03-25 2022-03-11 判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム

Country Status (3)

Country Link
JP (1) JPWO2022202409A1 (ja)
CA (1) CA3213612A1 (ja)
WO (1) WO2022202409A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101072A1 (ja) * 2022-11-08 2024-05-16 株式会社J-オイルミルズ 食用油の劣化情報処理装置、食用油の劣化情報処理システム、および食用油の劣化情報処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174587A (ja) * 2015-03-20 2016-10-06 テーブルマーク株式会社 調味料組成物
JP2017049030A (ja) * 2015-08-31 2017-03-09 スリーエム イノベイティブ プロパティズ カンパニー 食用油の劣化度を測定する装置、システム、プログラムおよび方法
JP2017136365A (ja) * 2016-01-29 2017-08-10 京セラ株式会社 検知装置及び検知システム
JP2019049540A (ja) * 2016-04-28 2019-03-28 日本精工株式会社 潤滑剤劣化検出装置、潤滑剤劣化状態評価方法
JP2020074819A (ja) * 2018-11-05 2020-05-21 ナブテスコ株式会社 フライヤー制御装置及びフライヤー制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016174587A (ja) * 2015-03-20 2016-10-06 テーブルマーク株式会社 調味料組成物
JP2017049030A (ja) * 2015-08-31 2017-03-09 スリーエム イノベイティブ プロパティズ カンパニー 食用油の劣化度を測定する装置、システム、プログラムおよび方法
JP2017136365A (ja) * 2016-01-29 2017-08-10 京セラ株式会社 検知装置及び検知システム
JP2019049540A (ja) * 2016-04-28 2019-03-28 日本精工株式会社 潤滑剤劣化検出装置、潤滑剤劣化状態評価方法
JP2020074819A (ja) * 2018-11-05 2020-05-21 ナブテスコ株式会社 フライヤー制御装置及びフライヤー制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OTA SHIZUYUKI, YUKI ETSUJI: "Hydrolysis of Edible Fats and Oils", JOURNAL OF JAPAN OIL CHEMISTS' SOCIETY, vol. 26, no. 3, 1 January 1977 (1977-01-01), pages 150 - 164, XP055969213, DOI: 10.5650/jos1956.26.150 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024101072A1 (ja) * 2022-11-08 2024-05-16 株式会社J-オイルミルズ 食用油の劣化情報処理装置、食用油の劣化情報処理システム、および食用油の劣化情報処理方法

Also Published As

Publication number Publication date
JPWO2022202409A1 (ja) 2022-09-29
CA3213612A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP7171970B1 (ja) 判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム
US20230140684A1 (en) Edible oil deterioration level determination device, edible oil deterioration level determination system, edible oil deterioration level determination method, edible oil deterioration level determination program, edible oil deterioration level learning device, learned model for use in edible oil deterioration level determination, and edible oil exchange system
TWI574004B (zh) 油劣化度計及油劣化度評價方法
TWI841796B (zh) 油脂的劣化預測系統、劣化預測方法、油脂更換系統及油炸器系統
WO2022202409A1 (ja) 判定装置、学習装置、判定システム、判定方法、学習方法、及び、プログラム
JP2016103042A (ja) 調理スキル評価方法、調理スキル評価システム及び調理スキル評価システムを制御する制御プログラム
WO2014199584A1 (ja) 調理スキル評価方法、調理スキル評価システム及び調理スキル評価システムを制御する制御プログラム
JP2023021124A (ja) 揚げ物廃棄時期管理装置、揚げ物廃棄時期管理システム、および揚げ物廃棄時期管理方法
CN112168001A (zh) 烹饪设备和烹饪方法
KR102272372B1 (ko) 치킨 주문 방법 및 치킨 조리 장치
JP6829347B1 (ja) フライ油劣化判定装置及びフライ油劣化判定方法
JP2023054824A (ja) 食品廃棄時期管理装置、食品廃棄時期管理システム、および食品廃棄時期管理方法
WO2021053992A1 (ja) フライ油劣化判定装置及びフライ油劣化判定方法
WO2022163435A1 (ja) 学習装置、予測装置、学習方法、プログラム、及び、学習システム
WO2023054100A1 (ja) 食用油の劣化度判定装置、食用油の劣化度判定システム、食用油の劣化度判定方法、食用油の劣化度学習装置、および食用油の劣化度判定に用いられる学習済モデル
WO2021095543A1 (ja) 貯留タンク管理システム及び貯留タンク管理方法
WO2024101072A1 (ja) 食用油の劣化情報処理装置、食用油の劣化情報処理システム、および食用油の劣化情報処理方法
WO2023106034A1 (ja) 食品販売促進制御装置、食品販売促進システム、および食品販売促進方法
WO2024154473A1 (ja) 油脂劣化予測装置、油脂劣化予測システム、および油脂劣化予測方法
JP7266157B1 (ja) 食品廃棄時点管理制御装置、食品廃棄時点管理システム、および食品廃棄時点管理方法
KR102465314B1 (ko) 튀김유 관리 시스템 및 방법
JP2024141537A (ja) 分析システム、分析方法及び、コンピュータプログラム
KR20240014911A (ko) 능동적으로 조리 조건을 조절하는 프라잉 로봇 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 3213612

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775201

Country of ref document: EP

Kind code of ref document: A1