WO2022202360A1 - 情報処理装置、情報処理方法およびプログラム - Google Patents

情報処理装置、情報処理方法およびプログラム Download PDF

Info

Publication number
WO2022202360A1
WO2022202360A1 PCT/JP2022/010584 JP2022010584W WO2022202360A1 WO 2022202360 A1 WO2022202360 A1 WO 2022202360A1 JP 2022010584 W JP2022010584 W JP 2022010584W WO 2022202360 A1 WO2022202360 A1 WO 2022202360A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
time
information processing
series data
information
Prior art date
Application number
PCT/JP2022/010584
Other languages
English (en)
French (fr)
Inventor
佳士 町田
賢 池上
信行 谷垣
朋子 上村
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2023508986A priority Critical patent/JPWO2022202360A1/ja
Publication of WO2022202360A1 publication Critical patent/WO2022202360A1/ja
Priority to US18/472,500 priority patent/US20240013923A1/en

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/40ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture

Definitions

  • the present disclosure relates to an information processing device, an information processing method, and a program.
  • Patent Document 1 In recent years, it has been proposed to utilize a system that uses machine learning to predict the prognosis of patients (see Patent Document 1, for example).
  • Patient prognostic models using machine learning are trained using data combining various parameters. For example, in the case of mortality prediction for patients admitted to an intensive care unit (ICU), basic information such as age and gender, disease information, vital values, drug administration information, and the like are used as training data.
  • ICU intensive care unit
  • An object of the present disclosure is to generate the necessary number of high-quality training data for performing machine learning from time-series data at the clinical time of a patient.
  • An object of the present invention is to provide an apparatus, an information processing method, and a program.
  • An information processing device as one aspect of the present disclosure is an information processing device used in a system for predicting the prognosis of a patient by machine learning, and includes an input unit that receives input of a plurality of time-series data corresponding to a plurality of patients.
  • the time-series data includes an input unit including a plurality of first parameters relating to at least one of the patient's condition and treatment; and an acquisition rate of each of the first parameters included in the plurality of time-series data. and an acquisition frequency, and using at least one of the calculated acquisition rate and acquisition frequency to select a second parameter to be used for training data from the plurality of first parameters; Prepare.
  • the acquisition rate indicates the rate at which the first parameter is included in the plurality of time-series data.
  • the acquisition frequency indicates the frequency at which the first parameter is included in the time-series data within a predetermined period.
  • the processing unit uses the first parameter as the second parameter for the training data when at least one of the acquisition rate and the acquisition frequency of the first parameter exceeds a predetermined threshold.
  • the acquisition frequency threshold is different among the plurality of first parameters.
  • the acquisition frequency threshold is determined based on the number of pieces of time-series data containing the first parameter exceeding the threshold.
  • the plurality of time-series data includes a first time-series data group and a second time-series data group
  • the processing unit comprises the first time-series data group and the second time-series data group.
  • the input unit further receives input of additional information including at least one of initial symptoms, personal attributes, and diseases for each of the plurality of patients, and the processing unit inputs the additional information
  • additional information including at least one of initial symptoms, personal attributes, and diseases for each of the plurality of patients
  • the processing unit inputs the additional information
  • a process of grouping the time-series data into a plurality of groups based on and selecting the second parameter for each group of the plurality of groups is executed.
  • the processing unit lengthens the predetermined period for calculating the acquisition frequency as time passes.
  • the processing unit generates training data using the selected second parameter.
  • the processing unit generates the training data in a data format based on the acquisition frequency of the selected second parameter.
  • the processing unit uses the training data to generate a learned model that predicts patient prognosis.
  • the processing unit sets the first parameter to Select as a temporary parameter to be used in the training data, generate the training data and test data using the temporary parameter, and generate a learned model that predicts the prognosis of the patient using the training data, A process of determining the accuracy of the learned model using the test data is performed, and the temporary parameter with the highest determined accuracy is selected as the second parameter.
  • the time-series data includes at least one of drug administration information, vital values, examination information, finding information, water intake information, water loss information, and treatment information.
  • the drug administration information includes information on at least one of the type of drug administered, route of administration, dose, and rate of administration.
  • the vital values include information on at least one of body temperature, blood pressure, heart rate, respiratory rate, pulse rate, oxygen saturation, body weight, central venous pressure, and oxygen concentration during inhalation.
  • the test information includes at least one of blood test data, blood gas data, urine test, electrocardiogram, and diagnostic imaging results.
  • the finding information includes at least one of congestion, cyanosis, and level of consciousness.
  • the water intake information includes information on at least one of the amount of drinking water and the amount of transfusion.
  • the water loss information includes information on at least one of urine volume and blood loss volume.
  • the treatment information includes at least dialysis machine onset, dialysis machine weaning, and dialysis machine setting, and ventilator onset, ventilator weaning, and ventilator setting. Contains any information.
  • An information processing method as one aspect of the present disclosure is an information processing method executed by an information processing apparatus used in a system for predicting patient prognosis by machine learning, wherein a plurality of time-series data corresponding to a plurality of patients wherein the time-series data comprises a plurality of first parameters relating to respective patient conditions and/or treatments; and each of the first parameters included in the plurality of time-series data and calculating a second parameter to be used for training data from the plurality of first parameters using at least one of the calculated acquisition rate and acquisition frequency. and selecting.
  • a program as one aspect of the present disclosure is a program that causes an information processing device to execute information processing that is executed by an information processing device used in a system that predicts patient prognosis by machine learning, wherein the information processing includes: acquiring a plurality of time-series data corresponding to a plurality of patients, the time-series data including a plurality of first parameters relating to conditions and/or treatments of the respective patients; a step of calculating an acquisition rate and an acquisition frequency of each of the first parameters included in series data; selecting from the parameters a second parameter to use for the training data.
  • the acquisition rate and acquisition frequency of the first parameter included in the time-series data are used to select the second parameter to be used in the training data. It can generate the necessary number of high-quality training data for machine learning.
  • FIG. 1 is a block diagram showing a schematic configuration of an information processing apparatus according to one embodiment.
  • 2 is a functional block diagram showing an example of a schematic configuration of a processing unit in FIG. 1.
  • FIG. 3 is a diagram showing an example of time-series data relating to one patient.
  • FIG. 4 is a diagram showing an example of acquisition rates and acquisition frequencies calculated from a plurality of pieces of time-series data.
  • FIG. 5 is a diagram showing an example of training data generated from time-series data of one patient.
  • FIG. 6 is a flowchart illustrating an information processing method according to one embodiment.
  • FIG. 7 is a flowchart illustrating an information processing method according to another embodiment.
  • the information processing apparatus 10 is used for selecting parameters used for training data in a system that predicts patient prognosis by machine learning.
  • the information processing apparatus 10 can use computers such as PCs (Personal Computers) and workstations.
  • the information processing apparatus 10 may be installed in a medical institution such as a hospital, or an information processing facility that collects information from a plurality of medical institutions.
  • the information processing device 10 includes an input unit 11, a processing unit 12, an output unit 13 and a storage unit .
  • the input unit 11 is a part of the information processing device 10 that receives input of time-series data.
  • the input unit 11 includes a communication interface with the other device.
  • the input unit 11 may include a storage medium reader. .
  • Time-series data includes time-series information about multiple parameters related to at least one of each patient's condition and treatment acquired during clinical practice.
  • a parameter included in the time-series data is set as a first parameter.
  • a piece of time series data may contain information from pre-treatment to the end of treatment for a single patient.
  • the input unit 11 receives input of a plurality of time-series data for use in machine learning.
  • a plurality of pieces of time-series data relating to a plurality of patients may hereinafter be referred to as a time-series data group.
  • a time-series data group may include, for example, hundreds, thousands, or tens of thousands of time-series data.
  • the time-series data is at least one of drug administration information, vital values, examination information, observation information, water intake information (water IN information), water loss information (water OUT information), and treatment information for one patient. may contain information about
  • the drug administration information may include information on at least one of the type of drug administered, route of administration, dose, and rate of administration.
  • the vital value may include information on at least one of body temperature, blood pressure, heart rate, respiratory rate, pulse rate, oxygen saturation, body weight, central venous pressure, and oxygen concentration during inhalation.
  • the test information may include at least one of blood test data, blood gas data, urinalysis, electrocardiogram, and diagnostic imaging results.
  • the finding information may include congestion, cyanosis, and/or level of consciousness information.
  • the water intake information may include information on at least one of the amount of drinking water and the amount of transfusion.
  • the water loss information may include information on at least one of urine volume and blood loss volume.
  • the treatment information includes at least one of dialysis machine on, dialysis machine off, and dialysis machine settings, and ventilator on, ventilator off, and ventilator settings. It may contain information about
  • Each parameter of time-series data can be adopted as an explanatory variable for machine learning.
  • a part of time-series data can be a target variable for machine learning.
  • the introduction of a dialysis machine and the introduction of a ventilator included in the treatment information can be the prognosis (outcome) that is the target of prediction, and thus can be objective variables.
  • the processing unit 12 executes various arithmetic processing.
  • the processing unit 12 includes one or more processors and memory.
  • a “processor” includes, but is not limited to, general-purpose processors, dedicated processors specialized for specific processing, and the like.
  • a general-purpose processor can read a program stored in a memory and execute processing according to the program. The processing performed by the processing unit 12 is described below.
  • the output unit 13 outputs the result of processing by the processing unit 12 to the outside of the information processing device 10 .
  • Output unit 13 may include a communication interface to other systems.
  • the output unit 13 may include a writing device for storing information on a storage medium such as a magnetic storage medium, a magneto-optical storage medium, or an optical storage medium.
  • the information processing device 10 may include a storage device inside.
  • the storage unit 14 can store information necessary for processing performed by the processing unit 12, information generated by the processing unit 12, programs executed by the processing unit 12, and the like.
  • the storage unit 14 may be configured using, for example, one or more of a semiconductor memory, a magnetic memory, an optical memory, and the like.
  • Semiconductor memory may include volatile memory and non-volatile memory.
  • Magnetic memory may include, for example, hard disks and magnetic tapes.
  • the processing unit 12 includes a time-series data acquisition unit 21 , parameter acquisition rate calculation unit 22 , parameter acquisition frequency calculation unit 23 , and parameter selection unit 24 .
  • the processing unit 12 may further include a training data generation unit 25 , a model generation unit 26 and a model evaluation unit 27 .
  • Each part of the processing unit 12 may be a hardware module or a software module. The function of each component of the processing unit 12 is executed by the processing unit 12 .
  • the time-series data acquisition unit 21 is configured to acquire time-series data via the input unit 11 .
  • Time-series data includes information such as clinical patient examinations and treatments collected in medical institutions such as hospitals.
  • a simplified example of time series data for one patient is shown in FIG.
  • “Date/Time” is information indicating the date and time when the data of each parameter included in the time-series data was acquired.
  • "Parameter name” includes the name of each parameter or information identifying each parameter.
  • “Value” is information indicating the value of the parameter identified by the parameter name.
  • "date/time”, "parameter name” and “value” include information such as "10:10 on March 1, 2021", “blood pressure” and "130” respectively.
  • the format of time-series data as shown in FIG. 3 is merely an example. Time-series data can also be data organized in time-series for each parameter.
  • the parameter acquisition rate calculation unit 22 is configured to calculate the acquisition rate of each parameter included in a plurality of time-series data.
  • the acquisition rate indicates the rate at which each parameter is included in multiple pieces of time-series data. For example, if the number of time-series data is 1000 and 900 of the time-series data include a specific parameter, the parameter acquisition rate is 90%.
  • the acquisition rate can be the rate at which the target parameter is included in the entire time-series data.
  • the acquisition rate may be the rate at which the target parameter is included in the time-series data within a predetermined period.
  • the parameter acquisition frequency calculation unit 23 is configured to calculate the acquisition frequency of each parameter included in a plurality of time-series data.
  • the acquisition frequency indicates the frequency at which the target parameter is included in the data within a predetermined period of the time-series data including the target parameter. For example, if the predetermined period is one day and the number of times the target parameter is included in the time-series data during that period is four, the acquisition frequency is four.
  • the parameter acquisition frequency calculation unit 23 may calculate the acquisition frequency of each parameter for each piece of time-series data.
  • the parameter acquisition frequency calculation unit 23 may calculate an average acquisition frequency, which is the average value of the acquisition frequencies of each parameter, for all the time-series data.
  • the parameter acquisition frequency calculator 23 may calculate an acquisition frequency standard deviation, which is the standard deviation of the acquisition frequencies.
  • the parameter selection unit 24 uses at least one of the acquisition rate and the acquisition frequency calculated by the parameter acquisition rate calculation unit 22 and the parameter acquisition frequency calculation unit 23 to select a plurality of parameters to be used for the training data. Configured. A plurality of parameters used for training data are second parameters. When at least one of the parameter acquisition rate and average acquisition frequency exceeds a predetermined threshold, the parameter selection unit 24 selects the parameter as a parameter to be used for training data.
  • the parameters selected by the parameter selection unit 24 correspond to explanatory variables in machine learning.
  • the parameter selection unit 24 sets the acquisition rate threshold to 80% and the average acquisition frequency threshold to 2, and selects parameters that exceed both thresholds.
  • parameters 1, 3 and 4 in FIG. 4 are selected as the second parameters since they exceed these thresholds.
  • Parameters 2 and 5 are not taken as secondary parameters.
  • the acquisition frequency standard deviation may be considered when selecting parameters. Even if the average acquisition frequency is the same, when the standard deviation is large, the parameter acquisition frequency has a greater variation than when the standard deviation is small. Therefore, even if the same threshold is set, the number of data exceeding the threshold may decrease when the standard deviation is large. Therefore, a parameter with a smaller acquisition frequency standard deviation may be selected in preference to a parameter with a larger acquisition frequency standard deviation.
  • the average acquisition frequency threshold may differ for each of the multiple parameters.
  • blood test data can be collected once a day, and blood pressure can be measured three times a day.
  • the acquisition frequency threshold may be determined in consideration of the number of pieces of time-series data with acquisition frequencies exceeding the threshold. If the threshold is set low, there is a possibility that the parameter data will be missing more and quality training data will not be obtained. However, if the threshold is set too high, a sufficient number of time-series data will not be included, and there is a possibility that the necessary number of training data for machine learning cannot be secured.
  • the threshold may be set such that the number of pieces of time-series data exceeding the threshold is equal to or greater than a predetermined number (eg, 10000). Also, for example, the threshold may be set such that a predetermined percentage (for example, 90%) or more of all time-series data exceeds the threshold.
  • the parameter selection unit 24 may select some or all of the parameters for which at least one of the parameter acquisition rate and average acquisition frequency exceeds a predetermined threshold as parameters to be used for training data.
  • the parameters to be selected may be determined according to the prognosis (outcome) to be predicted.
  • a plurality of parameters that can be selected according to the prognosis to be predicted may be stored in the storage unit 14 .
  • the processing unit 12 may output a plurality of parameters selected by the parameter selection unit 24 to another device via the output unit 13.
  • the processing of the training data generation unit 25, the model generation unit 26, and the model evaluation unit 27, which will be described below, may be executed by another device.
  • the training data generation unit 25 generates a plurality of training data for machine learning using the parameters selected by the parameter selection unit 24 in the time series data. For example, as shown in FIG. 4, if parameters 2 and 5 out of parameters 1 to 5 are not adopted, parameters 2 and 5 are not included in the training data.
  • the training data includes data indicating time-series values of parameters 1, 3, and 4, as simplistically illustrated in FIG.
  • a piece of training data may include data for a selected parameter from before the start of treatment to the end of treatment for a single patient.
  • the training data in FIG. 5 is an example. Training data can have various forms.
  • the training data generation unit 25 may generate training data in a data format based on the acquisition frequency of each selected parameter. For example, for a parameter that is acquired hourly, the training data may be in the form of storing a total of 24 values per day for each hour. On the other hand, when the average acquisition frequency is three times per day, the training data generator 25 can store training data in a format of three data per day. By doing so, it is possible to reduce data loss in the training data, so that machine learning can be performed with an algorithm that does not require correction processing or requires little correction processing.
  • the training data generation unit 25 may generate test data for verifying the accuracy of the trained model generated by machine learning in addition to the training data.
  • the training data generation unit 25 can set a predetermined proportion of the data generated from the time-series data of the parameters selected by the parameter selection unit 24 as training data and the rest as test data.
  • the predetermined percentage can be, for example, 80%.
  • the training data generation unit 25 may pass the generated training data and test data to the model generation unit 26 and the model evaluation unit 27, respectively, in order to generate a learned model.
  • the processing unit 12 outputs training data and test data generated by the training data generation unit 25 to another device via the output unit 13 in order to generate a trained model on another device. good.
  • the processes of the model generation unit 26 and the model evaluation unit 27 described below may be executed by another device.
  • the model generation unit 26 uses the training data generated by the training data generation unit 25 to generate a learned model that predicts patient prognosis.
  • a patient's prognosis can be rephrased as an outcome.
  • Outcomes included patient survival after treatment, whether or not dialysis was introduced, whether or not a ventilator was introduced, length of stay in the ICU if the patient was admitted to the ICU, and It includes information such as severity score, presence or absence of comorbidities, and post-treatment blood pressure and heart rate of the patient. Outcomes correspond to objective variables in machine learning.
  • the model evaluation unit 27 is configured to evaluate the prediction accuracy of the trained model generated by the model generation unit 26 using the test data generated by the training data generation unit 25. Therefore, first, the model evaluation unit 27 predicts the outcome using the trained model and test data. Next, the model evaluation unit 27 calculates prediction accuracy from the degree of matching between the predicted outcome and the actual outcome.
  • the prediction accuracy by the model evaluation unit 27 may be fed back to the threshold setting in the parameter selection unit 24.
  • the processing unit 12 may determine the threshold value for obtaining the best prediction accuracy by machine learning as the threshold value for the parameter selection unit 24 .
  • the processing unit 12 prepares a plurality of temporary thresholds in advance. For each of a plurality of temporary thresholds, the parameter selection unit 24 selects the parameter as a temporary parameter to be used for training data when at least one of the acquisition rate and acquisition frequency of each parameter exceeds the temporary threshold. .
  • the training data generator 25 generates training data and test data using the selected temporary parameters.
  • the model generation unit 26 generates a trained model that predicts the patient's prognosis using the training data.
  • the model evaluation unit 27 performs a process of judging the accuracy of the learned model using test data.
  • the processing unit 12 selects the temporary parameter with the highest determined accuracy as the parameter for machine learning. In addition, the processing unit 12 adopts the learned model corresponding to the selected parameter as the learned model for predicting the patient's prognosis.
  • the information processing apparatus 10 may acquire time series data groups each including a plurality of pieces of time series data from a plurality of medical institutions such as hospitals.
  • the processing unit 12 selects acquisition rates and parameters from a plurality of time-series data groups as one time-series data group, and selects parameters from each time-series data group as an individual time-series data group. and both. For example, assume that the processing unit 12 acquires a first time-series data group from a first medical institution and acquires a second time-series data group from a second medical institution as time-series data.
  • the processing unit 12 collects the first time-series data group and the second time-series data group to select parameters, and separately selects the parameters from the first time-series data group and the second time-series data group. A process of selecting parameters may be performed.
  • the processing unit 12 may use the parameters selected for the entire time-series data to generate a learned model of the common portion of the entire.
  • the processing unit 12 may generate a trained model of an individual medical institution using parameters selected for individual time-series data.
  • the processing unit 12 can combine the trained model of the common part and the trained model of the individual medical institution to improve the prediction accuracy of the outcome at each medical institution.
  • Combining trained models includes, for example, taking a majority vote of multiple trained models and taking a weighted average.
  • the information processing apparatus 10 is configured to further receive input of additional information including at least one of disease, initial symptoms, and personal attributes for each patient included in the plurality of patients from the input unit 11.
  • you can Diseases may include names of diseases such as, for example, stroke and heart failure.
  • Initial symptoms may include, for example, vital data such as when the patient is admitted to the emergency department and admitted to the ICU.
  • Early symptoms may include, for example, severity score information.
  • the severity score includes, for example, indicators for severity evaluation such as SAPS (2nd simplified acute physiology score) II and APACHE (Acute Physiology and Chronic Health Evaluation) II.
  • personal attributes may include, for example, gender and age, race, presence or absence of transportation from an ambulance, hospitalization route.
  • the processing unit 12 may group the time-series data into a plurality of groups based on the additional information, and select parameters for each of the plurality of groups.
  • the parameters to be acquired and the details of treatment differ depending on the content of the disease, initial symptoms, severity, and the like. For example, for patients with heart failure, models of heart failure therapy are applied. In addition, therapeutic strategies for patients with heart failure vary depending on the initial symptom blood pressure value. Therefore, the processing unit 12 can collect time-series data of patients having common diseases and similar symptoms by grouping the time-series data according to the additional information.
  • the processing unit 12 can execute processing such as calculation of parameter acquisition rate and acquisition frequency, selection of parameters, and generation of training data on the grouped time-series data.
  • processing such as calculation of parameter acquisition rate and acquisition frequency, selection of parameters, and generation of training data on the grouped time-series data.
  • the processing unit 12 can lengthen the period for calculating the acquisition rate and acquisition frequency of the parameters over time.
  • the vital values of a patient who has entered the ICU may be measured frequently because the values are not stable immediately after entering the ICU. With the passage of time, when the numerical value stabilizes, the intervals between measurements of vital values become longer. Therefore, the period for calculating the parameter acquisition rate and acquisition frequency can be lengthened over time, for example, immediately after entering the ICU, 1 hour, 3 hours, 1 day, and 3 days after admission.
  • FIG. 6 shows the flow of information processing executed by the processing unit 12 of the information processing device 10 .
  • This process can be executed by a processor included in the information processing device 10 according to a program.
  • Such programs can be stored in non-transitory computer-readable media. Examples of non-transitory computer-readable media include, but are not limited to, magnetic storage media, magneto-optical storage media, semiconductor memories, and the like.
  • the processing unit 12 acquires clinical time-series data regarding a plurality of patients via the input unit 11 (step S101).
  • the processing unit 12 calculates the acquisition rate for each parameter (first parameter) included in the plurality of time-series data acquired in step S101 (step S102).
  • the processing unit 12 calculates the acquisition frequency for each parameter (first parameter) included in the plurality of time-series data acquired in step S101 (step S103).
  • steps S102 and S103 may be executed substantially concurrently. Further, step S103 may be executed before step S102.
  • the processing unit 12 selects parameters (second parameters) to be adopted for training data from parameters included in the time-series data based on the acquisition rate and acquisition frequency of each parameter (step S104).
  • the processing unit 12 generates training data and test data for machine learning using the parameter data selected from the plurality of time-series data (step S105).
  • the processing unit 12 outputs the generated training data and test data to another device or storage medium via the output unit 13 in order to use them in machine learning (step S106).
  • the processing unit 12 may output only the parameter information selected in step S104 to the outside in the next step S106 without executing step S105. In that case, another device generates training data and test data for machine learning.
  • Example 2 of information processing method An example of an information processing method executed by an information processing apparatus 10 according to another embodiment will be described with reference to FIG.
  • the processing from steps S201 to S205 in the flowchart of FIG. 7 is the same as or similar to the processing from steps S101 to S105 of FIG.
  • the flow chart of FIG. 7 assumes that the processing unit 12 includes the model generation unit 26 and the model evaluation unit 27 .
  • steps S201 to S205 similarly to steps S101 to S105, the processing unit 12 generates training data and test data for machine learning based on clinical time-series data acquired from the input unit 11. Run. However, in step S204, a plurality of thresholds are prepared, and a parameter is selected for one of them. A plurality of thresholds can be rephrased as provisional thresholds.
  • the processing unit 12 uses the generated training data to build a patient prognosis prediction model, which is a machine-learned model (step S206).
  • the processing unit 12 uses the test data generated in step S205 to estimate the prediction accuracy of the prognostic prediction model constructed in step S206 (step S207).
  • the processing unit 12 stores the prediction accuracy in the storage unit 14 in association with the provisional threshold.
  • step S208 If the calculations from step S204 to step S207 have not been completed for all of the plurality of temporary thresholds (step S208: No), the processing unit 12 changes the threshold to a temporary threshold that has not yet been calculated (step S209).
  • step S209 the processing unit 12 returns to step S204 and repeats the processing from step S204 to step S207.
  • step S208 the processing unit 12 completes the calculation of steps S204 to S207 for all of the plurality of temporary thresholds.
  • the prognostic prediction model with the highest prediction accuracy stored in the storage unit 14 is adopted. (step S210), and the process ends.
  • the processing unit 12 can select thresholds for the acquisition rate and acquisition frequency that provide high prediction accuracy for parameter selection.
  • the information processing apparatus 10 calculates the acquisition rate and acquisition frequency of each parameter included in a plurality of pieces of time-series data, and uses at least one of the calculated acquisition rate and acquisition frequency to , select the parameters to use for the training data. This makes it possible to easily generate a necessary number of high-quality training data for performing machine learning from time-series data of a patient's clinical time. This also makes it easier to generate training data for machine learning from clinical data.
  • At least one of the acquisition rate and the average acquisition frequency exceeds a threshold value, and time-series data having data exceeding the threshold value is used to generate training data. I made it As a result, it is possible to generate training data with few missing data, and an improvement in the accuracy of machine learning can be expected. In addition, since the process of estimating the missing part of the data is not required or can be reduced in order to correct the missing part of the training data, the processing load can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

情報処理装置は、機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置であって、複数の患者に対応する複数の時系列データの入力を受ける入力部であって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含む入力部と、前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出し、該算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定する処理部とを備える。

Description

情報処理装置、情報処理方法およびプログラム
 本開示は、情報処理装置、情報処理方法およびプログラムに関する。
 近年、患者の予後を予測するため機械学習を用いたシステムを活用することが提案されている(例えば、特許文献1参照)。機械学習を用いた患者の予後予測モデルは、各種パラメータを組み合わせたデータを用いて訓練される。例えば、集中治療室(ICU:Intensive Care Unit)への入室患者の死亡予測の場合、年齢、性別等の基本情報、疾患情報、バイタル値、薬剤の投与情報等が、訓練データとして用いられる。
特開2020-144471号公報
 機械学習用に取得されたものではない、患者の臨床時のデータを用いて、予後予測モデルを訓練する場合、患者の状態および疾患によって実際に取得されるパラメータの頻度および組み合わせが異なる。そのため、特定のパラメータを機械学習用のパラメータとして選定しても、多くのパラメータが取得されていない場合がある。訓練データに使用するパラメータに欠落が多いためデータの品質が低いと、機械学習による予測の精度が低下することが懸念される。そのため、訓練データに使用するパラメータの充足度が高い患者のデータのみを使用しようとすると、訓練データとして使用できるデータ数が減ってしまい、十分な訓練ができない場合がある。さらに、機械学習に適したパラメータセットが取得できないと、訓練した予測モデルが適用できない場合がある。
 したがって、これらの点に着目してなされた本開示の目的は、患者の臨床時における時系列データから、機械学習を行うために品質が高い必要な数の訓練データを生成することができる情報処理装置、情報処理方法およびプログラムを提供することにある。
 本開示の一態様としての情報処理装置は、機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置であって、複数の患者に対応する複数の時系列データの入力を受ける入力部であって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含む入力部と、前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出し、該算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定する処理部とを備える。
 一実施形態として、前記取得率は、前記複数の時系列データに前記第1パラメータが含まれる割合を示す。
 一実施形態として、前記取得頻度は、前記時系列データの所定期間内のデータに前記第1パラメータが含まれる頻度を示す。
 一実施形態として、前記処理部は、前記第1パラメータの前記取得率および前記取得頻度の前記少なくとも何れかが所定の閾値を超える場合、該第1パラメータを前記訓練データに使用する前記第2パラメータとして選定する。
 一実施形態として、前記取得頻度の閾値は、前記複数の前記第1パラメータの間で異なる。
 一実施形態として、前記取得頻度の閾値は、該閾値を超える前記第1パラメータを含む前記時系列データの数に基づいて決定される。
 一実施形態として、前記複数の時系列データは、第1の時系列データ群と、第2の時系列データ群とを含み、前記処理部は、前記第1の時系列データ群と前記第2の時系列データ群とを纏めて前記第2パラメータを選定する処理と、前記第1の時系列データ群と前記第2の時系列データ群とから個別に前記第2パラメータを選定する処理とを実行する。
 一実施形態として、前記入力部は、前記複数の患者の患者ごとに初期症状、個人属性、および、疾患の少なくとも何れかを含む付加情報の入力をさらに受け、前記処理部は、前記付加情報に基づいて前記時系列データを複数のグループにグループ分けし、前記複数のグループのグループごとに前記第2パラメータを選定する処理を実行する。
 一実施形態として、前記処理部は、前記取得頻度を算出する前記所定の期間を、時間経過とともに長くする。
 一実施形態として、前記処理部は、前記選定された前記第2パラメータを用いて訓練データを生成する。
 一実施形態として、前記処理部は、前記訓練データを前記選定された前記第2パラメータの前記取得頻度に基づいたデータ形式で生成する。
 一実施形態として、前記処理部は、前記訓練データを用いて患者の予後を予測する学習済みモデルを生成する。
 一実施形態として、前記処理部は、複数の仮の閾値のそれぞれについて、前記第1パラメータの前記取得率および前記取得頻度の前記少なくとも何れかが前記仮の閾値を超える場合、該第1パラメータを前記訓練データに使用する仮のパラメータとして選定し、前記仮のパラメータを用いて前記訓練データとテストデータとを生成し、前記訓練データを用いて患者の予後を予測する学習済みモデルを生成し、前記テストデータを用いて前記学習済みモデルの精度を判定する処理を行い、判定された前記精度が最も高い前記仮のパラメータを、前記第2パラメータとして選定する。
 一実施形態として、前記時系列データは、薬剤の投与情報、バイタル値、検査情報、所見情報、水分摂取情報、水分喪失情報、および、処置情報の少なくとも何れかの情報を含む。
 一実施形態として、前記薬剤の投与情報は、投与薬剤の種類、投与経路、投与量、および、投与速度の少なくとも何れかの情報を含む。
 一実施形態として、前記バイタル値は、体温、血圧、心拍数、呼吸数、脈拍数、酸素飽和度、体重値、中心静脈圧、および、吸入中酸素濃度の少なくとも何れかの情報を含む。
 一実施形態として、前記検査情報は、血液検査データ、血液ガスデータ、尿検査、心電図、および、画像診断結果の少なくとも何れかの情報を含む。
 一実施形態として、前記所見情報は、うっ血、チアノーゼ、および、意識レベルの少なくとも何れかの情報を含む。
 一実施形態として、前記水分摂取情報は、飲水量、および、輸液量の少なくとも何れかの情報を含む。
 一実施形態として、前記水分喪失情報は、尿量、および、出血量の少なくとも何れかの情報を含む。
 一実施形態として、前記処置情報は、透析装置の導入、透析装置の離脱、および、透析装置の設定、ならびに、人工呼吸器の導入、人工呼吸器の離脱、および、人工呼吸器の設定の少なくとも何れかの情報を含む。
 本開示の一態様としての情報処理方法は、機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置が実行する情報処理方法であって、複数の患者に対応する複数の時系列データを取得するステップであって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含むステップと、前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出するステップと、前記算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定するステップとを含む。
 本開示の一態様としてのプログラムは、機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置が実行する情報処理を前記情報処理装置に実行させるプロブラムであって、前記情報処理は、複数の患者に対応する複数の時系列データを取得するステップであって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含むステップと、前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出するステップと、前記算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定するステップとを含む。
 本開示によれば、時系列データに含まれる第1パラメータの取得率および取得頻度を用いて訓練データに使用する第2パラメータを選定するようにしたので、患者の臨床時における時系列データから、機械学習を行うために品質が高い必要な数の訓練データを生成することができる。
図1は、一実施形態に係る情報処理装置の概略構成を示すブロック図である。 図2は、図1の処理部の概略構成の一例を示す機能ブロック図である。 図3は、一患者に係る時系列データの一例を示す図である。 図4は、複数の時系列データから算出される取得率および取得頻度の一例を示す図である。 図5は、一患者の時系列データから生成される訓練データの一例を示す図である。 図6は、一実施形態に係る情報処理方法を説明するフローチャートである。 図7は、他の一実施形態に係る情報処理方法を説明するフローチャートである。
(情報処理装置の構成)
 以下、本開示の実施形態について、図面を参照して説明する。一実施形態に係る情報処理装置10は、機械学習により患者の予後を予測するシステムにおいて、訓練データに使用されるパラメータの選定のために使用される。情報処理装置10は、PC(Personal Computer)およびワークステーション等のコンピュータを使用することができる。情報処理装置10は、病院等の医療機関、または、複数の医療機関からの情報を集約する情報処理施設等に配置されてよい。図1に示すように、情報処理装置10は、入力部11、処理部12、出力部13および記憶部14を含む。
 入力部11は、情報処理装置10が時系列データの入力を受ける部分である。情報処理装置10が、時系列データを、通信回線を介して他の装置から受信する場合、入力部11は他の装置との通信インタフェースを含む。情報処理装置10が、磁気記憶媒体、光磁気記憶媒体、または、光学記憶媒体等の記憶媒体に記憶された時系列データを取得する場合、入力部11は、記憶媒体の読み取り装置を含んでよい。
 時系列データは臨床時に取得されたそれぞれの患者の状態および治療の少なくとも何れかに関する複数のパラメータについての時系列の情報を含む。時系列データに含まれるパラメータを第1パラメータとする。一つの時系列データは、患者一人に対する治療前から治療終了までの情報を含んでよい。入力部11は、機械学習に使用するための複数の時系列データの入力を受ける。複数の患者に係る複数の時系列データを、以下において時系列データ群とよぶことがある。時系列データ群は、例えば、数百、数千または数万のオーダーの時系列データを含んでよい。
 時系列データは、一人の患者に対する、薬剤の投与情報、バイタル値、検査情報、所見情報、水分摂取情報(水分IN情報)、水分喪失情報(水分OUT情報)、および、処置情報の少なくとも何れかの情報を含んでよい。
 一実施形態において、薬剤の投与情報は、投与薬剤の種類、投与経路、投与量、および、投与速度の少なくとも何れかの情報を含んでよい。
 一実施形態において、バイタル値は、体温、血圧、心拍数、呼吸数、脈拍数、酸素飽和度、体重値、中心静脈圧、および、吸入中酸素濃度の少なくとも何れかの情報を含んでよい。
 一実施形態において、検査情報は、血液検査データ、血液ガスデータ、尿検査、心電図、および、画像診断結果の少なくとも何れかの情報を含んでよい。
 一実施形態において、所見情報は、うっ血、チアノーゼ、および、意識レベルの少なくとも何れかの情報を含んでよい。
 一実施形態において、水分摂取情報は、飲水量、および、輸液量の少なくとも何れかの情報を含んでよい。
 一実施形態において、水分喪失情報は、尿量、および、出血量の少なくとも何れかの情報を含んでよい。
 一実施形態において、処置情報は、透析装置の導入、透析装置の離脱、および、透析装置の設定、ならびに、人工呼吸器の導入、人工呼吸器の離脱、および、人工呼吸器の設定の少なくとも何れかの情報を含んでよい。
 時系列データの各パラメータは、機械学習の説明変数として採用されうる。時系列データの一部は、機械学習の目的変数となりうる。例えば、処置情報に含まれる透析装置の導入、および、人工呼吸器の導入は、予測の対象である予後(アウトカム)となりうるので、目的変数となりうる。
 処理部12は、種々の演算処理を実行する。処理部12は、一つ以上のプロセッサおよびメモリを含んで構成される。「プロセッサ」は、汎用のプロセッサ、および、特定の処理に特化した専用のプロセッサなどであるが、これらに限られない。汎用のプロセッサは、メモリに記憶したプログラムを読み出して、プログラムに従う処理を実行することができる。処理部12が実行する処理は、以下において説明される。
 出力部13は、処理部12による処理の結果を情報処理装置10の外部に出力する。出力部13は、他のシステムに対する通信インタフェースを含んでよい。出力部13は、磁気記憶媒体、光磁気記憶媒体、または、光学記憶媒体等の記憶媒体に情報を記憶するための書き込み装置を含んでよい。情報処理装置10は、内部に記憶装置を含んでよい。
 記憶部14は、処理部12が行う処理に必要な情報、処理部12が生成した情報、および処理部12により実行されるプログラム等を記憶することができる。記憶部14は、例えば半導体メモリ、磁気メモリ、および光メモリ等の何れか一つ以上を用いて構成されてよい。半導体メモリは、揮発性メモリおよび不揮発性メモリを含んでよい。磁気メモリは、例えばハードディスクおよび磁気テープ等を含んでよい。
(処理部の構成)
 図2に示すように、処理部12は、時系列データ取得部21、パラメータ取得率算出部22、パラメータ取得頻度算出部23、および、パラメータ選定部24を含む。処理部12は、さらに、訓練データ生成部25、モデル生成部26、および、モデル評価部27を含んでよい。処理部12の各部は、ハードウェアモジュールであってよく、ソフトウェアモジュールであってよい。処理部12の各構成部の機能は、処理部12により実行される。
 時系列データ取得部21は、入力部11を介して時系列データを取得するように構成される。時系列データは、病院等の医療機関において収集される臨床時の患者の検査および治療等の情報を含む。一患者の時系列データの簡略化された一例が、図3に示される。「日付/時刻」は、時系列データに含まれる各パラメータのデータが取得された日付および時刻を示す情報である。「パラメータ名」は、各パラメータの名称または各パラメータを識別する情報が含まれる。「値」は、パラメータ名で特定されたパラメータの値を示す情報である。一例として、「日時/時刻」、「パラメータ名」および「値」には、それぞれ、「2021年3月1日10時10分」、「血圧」、および、「130」などの情報が含まれる。図3に示すような時系列データの形式は、一例に過ぎない。時系列データは、パラメータごとに時系列で纏められたデータとすることもできる。
 パラメータ取得率算出部22は、複数の時系列データに含まれるそれぞれのパラメータの取得率を算出するように構成される。取得率は、複数の時系列データにそれぞれのパラメータが含まれる割合を示す。例えば、時系列データの数が1000であり、特定のパラメータを含む時系列データがそのうちの900である場合、当該パラメータの取得率は90%となる。取得率は、時系列データ全体に、対象となるパラメータが含まれる割合とすることができる。取得率は、所定の期間内に時系列データ中に対象となるパラメータが含まれる割合としてもよい。
 パラメータ取得頻度算出部23は、複数の時系列データに含まれるそれぞれのパラメータの取得頻度を算出するように構成される。取得頻度は、対象のパラメータを含む時系列データの所定期間内のデータに対象のパラメータが含まれる頻度を示す。例えば、所定期間を1日間とし、その期間に時系列データ中に対象のパラメータが含まれている回数が4のとき、取得頻度は4となる。パラメータ取得頻度算出部23は、各時系列データについてそれぞれのパラメータの取得頻度を算出してよい。パラメータ取得頻度算出部23は、全ての時系列データについて、それぞれのパラメータの取得頻度の平均値である平均取得頻度を算出してよい。さらに、パラメータ取得頻度算出部23は、取得頻度の標準偏差である取得頻度標準偏差を算出してよい。
 パラメータ選定部24は、パラメータ取得率算出部22およびパラメータ取得頻度算出部23により算出された取得率および取得頻度の少なくとも何れか一方を用いて、訓練データに使用する複数のパラメータを選定するように構成される。訓練データに使用する複数のパラメータは、第2パラメータである。パラメータ選定部24は、パラメータの取得率および平均取得頻度の少なくとも何れかが所定の閾値を超える場合、当該パラメータを訓練データに使用するパラメータとして選定する。パラメータ選定部24で選定されたパラメータは、機械学習における説明変数に相当する。
 例えば、パラメータごとの取得率および平均取得頻度が、図4に示される場合を想定する。パラメータ選定部24は、例えば、取得率の閾値を80%、平均取得頻度の閾値を2とし、双方の閾値を上回ったパラメータを選定するとする。この場合、図4中のパラメータ1、3および4はこれらの閾値を上回るので、第2パラメータとして選定される。パラメータ2および5は、第2パラメータとして採用されない。
 パラメータの選定には、取得頻度標準偏差を考慮してよい。同じ平均取得頻度であっても標準偏差が大きい場合、パラメータの取得頻度は、標準偏差が小さい場合に比べてより大きなバラつきを有する。そのため、同じ閾値を設定しても標準偏差が大きい方が、閾値を超えるデータ数が少なくなることがある。したがって、取得頻度標準偏差がより小さいパラメータが、取得頻度標準偏差のより大きいパラメータに優先して選定されてよい。
 パラメータごとの特性に応じて、平均取得頻度の閾値は、複数のパラメータのパラメータごとに異なってよい。例えば、血液検査データの採取は1日につき1回、血圧の測定は1日につき3回など、実際の臨床で行われ得る頻度に合わせて設定することができる。
 また、機械学習用の訓練データには、選定されたパラメータの取得頻度が取得頻度の閾値を超える時系列データのみが使用される。取得頻度の閾値は、当該閾値を超える取得頻度の時系列データの数を考慮して決定されてよい。閾値は、低く設定するとパラメータのデータに欠落が多くなり品質のよい訓練データが得られない可能性がある。しかし、閾値を高く設定しすぎると、十分な数の時系列データが含まれないために、機械学習を行うために必要な訓練データの数を確保できない可能性がある。例えば、閾値は、閾値を超える時系列データの数が所定数(例えば、10000)以上となるように設定されてよい。また、例えば閾値は、全時系列データの所定割合(例えば、90%)以上が閾値を超えるように設定されてよい。
 パラメータ選定部24は、パラメータの取得率および平均取得頻度の少なくとも何れかが所定の閾値を超える複数のパラメータの中から、一部または全部のパラメータを訓練データに使用するパラメータとして選定してよい。選定するパラメータは予測の対象となる予後(アウトカム)に応じて決定されてよい。予測対象の対象となる予後に応じて選定の対象となりうる複数のパラメータが、記憶部14に記憶されてよい。
 一実施形態において、処理部12は、パラメータ選定部24で選定した複数のパラメータを、出力部13を介して他の装置に出力してよい。以下に説明する訓練データ生成部25、モデル生成部26およびモデル評価部27の処理は、他の装置で実行されてもよい。
 訓練データ生成部25は、時系列データ中のパラメータ選定部24により選定されたパラメータを用いて、機械学習用の複数の訓練データを生成する。例えば、図4に示したように、パラメータ1からパラメータ5のうちパラメータ2およびパラメータ5が採用されなかった場合、訓練データにはパラメータ2および5は含まれない。この場合、訓練データは図5に簡略化して例示すように、パラメータ1、パラメータ3およびパラメータ4の時系列の値を示すデータを含む。一つの訓練データは、選定されたパラメータについて、一人の患者の治療開始前から治療終了までのデータを含んでよい。図5の訓練データは一例である。訓練データは種々の形式を有することができる。
 訓練データ生成部25は、選定されたそれぞれのパラメータの取得頻度に基づいたデータ形式で訓練データを生成してよい。例えば、1時間おきに取得されるパラメータについて、訓練データは1時間ごとに、1日当たり合計24個の値が格納される形式としうる。一方、平均取得頻度が1日当たり3回のパラメータの場合、訓練データ生成部25は、訓練データを一日につき3つのデータが格納される形式とすることができる。このようにすることによって、訓練データ内にデータの欠損を少なくすることができるので、機械学習を補正処理の必要のない、または、少ないアルゴリズムで行うことができる。
 訓練データ生成部25は、訓練データに加え機械学習によって生成される学習済みモデルの精度を検証するためのテストデータを生成してよい。例えば、訓練データ生成部25は、パラメータ選定部24により選定されたパラメータの時系列データから生成したデータのうち、所定割合を訓練データとし、残りをテストデータとすることができる。所定割合は、例えば80%等としうる。
 訓練データ生成部25は、生成した訓練データおよびテストデータを、学習済みモデルを生成するため、それぞれモデル生成部26およびモデル評価部27に引き渡してよい。
 一実施形態において、処理部12は、他の装置で学習済みモデルを生成するため、訓練データ生成部25で生成した訓練データおよびテストデータを、出力部13を介して他の装置に出力してよい。以下に説明するモデル生成部26およびモデル評価部27の処理は、他の装置で実行されてもよい。
 モデル生成部26は、訓練データ生成部25により生成された訓練データを用いて、患者の予後を予測する学習済みモデルを生成する。患者の予後はアウトカムと言い換えることができる。アウトカムには、患者の治療後の生死、人工透析の導入に至ったか否か、人工呼吸器の導入に行ったか否か、患者がICUに入った場合のICUの滞在日数、患者の治療後の重症度スコア、合併症の有無、患者の治療後の血圧・心拍数等の情報が含まれる。アウトカムは、機械学習における目的変数に相当する。
 モデル評価部27は、モデル生成部26で生成した学習済みモデルの予測精度を、訓練データ生成部25で生成したテストデータを用いて評価するように構成される。このため、まず、モデル評価部27は、学習済みモデルとテストデータとを用いてアウトカムを予測する。次に、モデル評価部27は、予測したアウトカムと、実際のアウトカムの一致度から予測精度を算出する。
 一実施形態において、モデル評価部27による予測精度は、パラメータ選定部24における閾値の設定にフィードバックされてよい。処理部12は、機械学習により最もよい予測精度が得られる閾値を、パラメータ選定部24における閾値として決定してよい。
 例えば、処理部12において予め複数の仮の閾値が用意される。パラメータ選定部24は、複数の仮の閾値のそれぞれについて、それぞれのパラメータの取得率および取得頻度の少なくとも何れかが仮の閾値を超える場合、当該パラメータを訓練データに使用する仮のパラメータとして選定する。訓練データ生成部25は、選定された仮のパラメータを用いて訓練データとテストデータとを生成する。モデル生成部26は、訓練データを用いて患者の予後を予測する学習済みモデルを生成する。モデル評価部27は、テストデータを用いて学習済みモデルの精度を判定する処理を行う。
 全ての仮の閾値に対して上記処理を行った後、処理部12は、判定された精度が最も高い仮のパラメータを、機械学習を行うパラメータとして選定する。また、処理部12は、選定されたパラメータに対応する学習済みモデルを、患者の予後の予測を行う学習済みモデルとして採用する。
(複数の時系列データ群の処理)
 情報処理装置10は、病院等の複数の医療機関から、それぞれ複数の時系列データを含む時系列データ群を取得することがある。処理部12は、複数の時系列データ群を纏めて一つの時系列データ群として取得率およびパラメータを選定する処理と、それぞれの時系列データ群を個別の時系列データ群としてパラメータを選定する処理との双方を実行してよい。例えば、処理部12が、時系列データとして、第1の医療機関から第1の時系列データ群を取得し、第2の医療機関から第2の時系列データ群を取得したとする。処理部12は、第1の時系列データ群と第2の時系列データ群とを纏めてパラメータを選定する処理と、第1の時系列データ群と第2の時系列データ群とから個別にパラメータを選定する処理とを実行してよい。
 処理部12は、全体の時系列データに対して選定されたパラメータを用いて、全体の共通部分の学習済みモデルを生成してよい。処理部12は、個別の時系列データに対して選定されたパラメータを用いて、個別の医療機関の学習済みモデルを生成してよい。処理部12は、共通部分の学習済みモデルと個別の医療機関の学習済みモデルとを組み合わせて、それぞれの医療機関におけるアウトカムの予測精度を向上させることができる。学習済みモデルを組み合わせることには、例えば、複数の学習済みモデルの多数決をとること、および、重みづけした平均をとることが含まれる。
(時系列データのグループ分け)
 一実施形態において、情報処理装置10は、入力部11により複数の患者に含まれる患者ごとに疾患、初期症状、および、個人属性の少なくとも何れかを含む付加情報の入力をさらに受けるように構成されてよい。疾患は、例えば、脳梗塞および心不全等の疾患の名称を含んでよい。初期症状は、例えば、患者が、救急外来に来院したとき、および、ICUに入室したとき等のバイタル値のデータを含んでよい。初期症状は、例えば、重症度スコアの情報を含んでよい。重症度スコアには、例えば、SAPS(2nd simplified acute physiology score )IIおよびAPACHE(Acute Physiology and Chronic Health Evaluation)II等の重症度評価の指標が含まれる。個人属性は、例えば、性別および年齢、人種、救急車からの搬送有無、入院経路を含んでよい。
 処理部12は、付加情報に基づいて時系列データを複数のグループにグループ分けし、複数のグループのグループごとにパラメータを選定する処理を実行してよい。疾患の内容、初期症状、および、重症度等が異なると、取得すべきパラメータおよび治療の内容が異なる。例えば、心不全の患者に対しては、心不全の治療のモデルが適用される。また、心不全の患者に対する治療戦略は、初期症状の血圧値により変化する。したがって、処理部12は、時系列データを付加情報によりグループ分けすることにより、共通する疾患および類似の症状等を有する患者の時系列データを集めることができる。
 処理部12は、グループ分けした時系列データに対して、パラメータの取得率および取得頻度の算出、パラメータの選択、訓練データの生成等の処理を実行することができる。共通する疾患および類似の症状等を有する患者の時系列データをグループ化することにより、当該疾患および症状等に特有な薬剤の投与情報およびバイタル値等の情報を収集できる比率が高くなる。これによって、アウトカム(予後)と相関の高いパラメータの組合せを選択できるとともに、訓練データに使用されるパラメータのデータの欠落が少なくなることが期待できる。また、グループ化される時系列データを、特定の疾患または症状に応じた時系列データに限定することにより、訓練データを用いて生成される学習済みモデルによる予測精度が高くなることが期待できる。
(取得頻度を算出する期間)
 一実施形態において、処理部12は、パラメータの取得率および取得頻度を算出する期間を、時間経過とともに長くすることができる。例えば、ICUに入出した患者のバイタル値は、入室直後には数値が安定しないため頻繁に測定されることがある。時間経過とともに、数値が安定すると、バイタル値の測定間隔は長くなる。そのため、パラメータの取得率および取得頻度を算出する期間は、例えば、ICUに入室直後、入室後1時間、3時間、1日および3日のように、時間経過とともに長くすることができる。
 ICUに入室してしばらくの間は、臨床で取得されるパラメータの種類が多く、取得頻度も高いので、短期間であっても精度の高い学習済みモデルを生成できることが期待できる。一方、ICU入室後の期間が長くなると、臨床で取得されるパラメータの種類および数が減少するので、ICU入室直後とは異なるパラメータの組合せが選定されてよい。
(情報処理方法の例1)
 図6を参照して、一実施形態に係る情報処理装置10が実行する情報処理方法の一例を説明する。図6は、情報処理装置10の処理部12が実行する情報処理の流れを示す。この処理は、情報処理装置10に含まれるプロセッサがプログラムに従って実行することができる。そのようなプログラムは、非一時的なコンピュータ可読媒体において記憶されることが可能である。非一時的なコンピュータ可読媒体は、例えば、磁気記憶媒体、光磁気記憶媒体および半導体メモリ等を含むが、これらに限定されない。
 図6のフローチャートは、情報処理装置10の処理部12が、時系列データ取得部21、パラメータ取得率算出部22、パラメータ取得頻度算出部23、パラメータ選定部24、および、訓練データ生成部25を有していることを前提とする。処理部12は、モデル生成部26およびモデル評価部27を有していなくてよい。
 まず、処理部12は、入力部11を介して、複数の患者に関する臨床時の時系列データを取得する(ステップS101)。
 処理部12は、ステップS101で取得した複数の時系列データに含まれる各パラメータ(第1パラメータ)について、パラメータごとの取得率を算出する(ステップS102)。
 処理部12は、ステップS101で取得した複数の時系列データに含まれる各パラメータ(第1パラメータ)について、パラメータごとの取得頻度を算出する(ステップS103)。
 ステップS102およびステップS103の処理は、略同時並行で実行されてよい。また、ステップS103がステップS102よりも先に実行されてもよい。
 処理部12は、パラメータごとの取得率および取得頻度に基づいて、時系列データに含まれるパラメータの中から訓練データに採用するパラメータ(第2パラメータ)を選定する(ステップS104)。
 処理部12は、複数の時系列データ中の選定したパラメータのデータを用いて、機械学習用の訓練データとテストデータを生成する(ステップS105)。
 処理部12は、生成した訓練データおよびテストデータを機械学習で使用するため、出力部13を介して他の装置または記憶媒体に出力する(ステップS106)。
 処理部12は、ステップS105を実行せず、ステップS104で選定したパラメータの情報のみを次のステップS106により外部に出力してもよい。その場合、他の装置が機械学習用の訓練データとテストデータとを生成する。
(情報処理方法の例2)
 図7を参照して、他の一実施形態に係る情報処理装置10が実行する情報処理方法の一例を説明する。図7のフローチャート中のステップS201からステップS205の処理は、図6のステップS101からS105の処理と同一または類似するので、ステップS101からS105の説明と共通する内容については、説明を省略する。図7のフローチャートは、処理部12が、モデル生成部26およびモデル評価部27を含むことを前提とする。
 処理部12は、ステップS201からS205において、ステップS101からステップS105と同様に、入力部11から取得した臨床時の時系列データに基づいて、機械学習用の訓練データおよびテストデータを生成する処理を実行する。ただし、ステップS204においては、複数の閾値が用意され、そのうちの一つの閾値についてパラメータの選定が行われる。複数の閾値は、仮の閾値と言い換えられる。
 ステップS205で訓練データとテストデータを生成した後、処理部12は生成した訓練データを用いて、機械学習による学習済みモデルである患者の予後予測モデルを構築する(ステップS206)。
 処理部12は、ステップS205で生成したテストデータを用いて、ステップS206で構築した予後予測モデルによる予測精度を推定する(ステップS207)。処理部12は、予測精度を仮の閾値と関連付けて記憶部14に記憶する。
 処理部12は、複数の仮の閾値全ての閾値についてのステップS204からステップS207の演算が完了していない場合(ステップS208:No)、未だ演算を行っていいない仮の閾値に閾値を変更する(ステップS209)。
 ステップS209の後、処理部12は、ステップS204に戻ってステップS204からステップS207の処理を繰り返す。
 処理部12は、複数の仮の閾値全ての閾値についてステップS204からステップS207の演算を完了した場合(ステップS208:Yes)、記憶部14に記憶された予測精度が最も高かった予後予測モデルを採用し(ステップS210)、処理を終了する。
 このようにすることによって、処理部12は、パラメータの選定のために、高い予測精度が得られる取得率および取得頻度の閾値を選択することが可能になる。
 以上説明したように情報処理装置10は、複数の時系列データに含まれるそれぞれのパラメータの取得率と、取得頻度とを算出し、該算出した取得率および取得頻度の少なくとも何れか一方を用いて、訓練データに使用するパラメータを選定する。これによって、患者の臨床時における時系列データから、機械学習を行うために品質が高い必要な数の訓練データを容易に生成することができる。また、これによって、臨床時におけるデータから機械学習用の訓練データを生成することが容易になる。
 また、上記実施形態では、取得率および平均取得頻度の少なくとも何れか一方が閾値を超えるパラメータを選択し、選択されたパラメータが閾値を超えるデータを有する時系列データを用いて、訓練データを生成するようにした。これによって、データの欠落の少ない訓練データを生成することができ、機械学習の精度の向上が期待できる。また、訓練データの欠落を補正するために、データの欠落部分を推定する処理を必要としないか、または、軽減することができるので、処理負荷を低減することができる。
 上述の実施形態は代表的な例として説明したが、本開示の趣旨および範囲内で、多くの変更および置換が可能であることは当業者に明らかである。したがって、本開示は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形および変更が可能である。例えば、各構成部または各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の構成部またはステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。
 10  情報処理装置
 11  入力部
 12  処理部
 13  出力部
 14  記憶部
 21  時系列データ取得部
 22  パラメータ取得率算出部
 23  パラメータ取得頻度算出部
 24  パラメータ選定部
 25  訓練データ生成部
 26  モデル生成部
 27  モデル評価部

Claims (23)

  1.  機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置であって、
     複数の患者に対応する複数の時系列データの入力を受ける入力部であって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含む入力部と、
     前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出し、該算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定する処理部と
    を備える情報処理装置。
  2.  前記取得率は、前記複数の時系列データに前記第1パラメータが含まれる割合を示す、請求項1に記載の情報処理装置。
  3.  前記取得頻度は、前記時系列データの所定期間内のデータに前記第1パラメータが含まれる頻度を示す、請求項1または2に記載の情報処理装置。
  4.  前記処理部は、前記第1パラメータの前記取得率および前記取得頻度の前記少なくとも何れかが所定の閾値を超える場合、該第1パラメータを前記訓練データに使用する前記第2パラメータとして選定する、請求項1から3の何れか一項に記載の情報処理装置。
  5.  前記取得頻度の閾値は、前記複数の前記第1パラメータの間で異なる、請求項4に記載の情報処理装置。
  6.  前記取得頻度の閾値は、該閾値を超える前記第1パラメータを含む前記時系列データの数に基づいて決定される、請求項4または5に記載の情報処理装置。
  7.  前記複数の時系列データは、第1の時系列データ群と、第2の時系列データ群とを含み、前記処理部は、前記第1の時系列データ群と前記第2の時系列データ群とを纏めて前記第2パラメータを選定する処理と、前記第1の時系列データ群と前記第2の時系列データ群とから個別に前記第2パラメータを選定する処理とを実行する、請求項1から6の何れか一項に記載の情報処理装置。
  8.  前記入力部は、前記複数の患者の患者ごとに初期症状、個人属性、および、疾患の少なくとも何れかを含む付加情報の入力をさらに受け、前記処理部は、前記付加情報に基づいて前記時系列データを複数のグループにグループ分けし、前記複数のグループのグループごとに前記第2パラメータを選定する処理を実行する、請求項1から7の何れか一項に記載の情報処理装置。
  9.  前記処理部は、前記取得頻度を算出する前記所定の期間を、時間経過とともに長くする、請求項3に記載の情報処理装置。
  10.  前記処理部は、前記選定された前記第2パラメータを用いて訓練データを生成する、請求項1から9の何れか一項に記載の情報処理装置。
  11.  前記処理部は、前記訓練データを前記選定された前記第2パラメータの前記取得頻度に基づいたデータ形式で生成する、請求項10に記載の情報処理装置。
  12.  前記処理部は、前記訓練データを用いて患者の予後を予測する学習済みモデルを生成する、請求項10または11に記載の情報処理装置。
  13.  前記処理部は、複数の仮の閾値のそれぞれについて、前記第1パラメータの前記取得率および前記取得頻度の前記少なくとも何れかが前記仮の閾値を超える場合、該第1パラメータを前記訓練データに使用する仮のパラメータとして選定し、前記仮のパラメータを用いて前記訓練データとテストデータとを生成し、前記訓練データを用いて患者の予後を予測する学習済みモデルを生成し、前記テストデータを用いて前記学習済みモデルの精度を判定する処理を行い、判定された前記精度が最も高い前記仮のパラメータを、前記第2パラメータとして選定する、請求項1に記載の情報処理装置。
  14.  前記時系列データは、薬剤の投与情報、バイタル値、検査情報、所見情報、水分摂取情報、水分喪失情報、および、処置情報の少なくとも何れかの情報を含む、請求項1から13の何れか一項に記載の情報処理装置。
  15.  前記薬剤の投与情報は、投与薬剤の種類、投与経路、投与量、および、投与速度の少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  16.  前記バイタル値は、体温、血圧、心拍数、呼吸数、脈拍数、酸素飽和度、体重値、中心静脈圧、および、吸入中酸素濃度の少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  17.  前記検査情報は、血液検査データ、血液ガスデータ、尿検査、心電図、および、画像診断結果の少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  18.  前記所見情報は、うっ血、チアノーゼ、および、意識レベルの少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  19.  前記水分摂取情報は、飲水量、および、輸液量の少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  20.  前記水分喪失情報は、尿量、および、出血量の少なくとも何れかの情報を含む、前記請求項14に記載の情報処理装置。
  21.  前記処置情報は、透析装置の導入、透析装置の離脱、および、透析装置の設定、ならびに、人工呼吸器の導入、人工呼吸器の離脱、および、人工呼吸器の設定の少なくとも何れかの情報を含む、請求項14に記載の情報処理装置。
  22.  機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置が実行する情報処理方法であって、
     複数の患者に対応する複数の時系列データを取得するステップであって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含むステップと、
     前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出するステップと、
     前記算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の第1パラメータから訓練データに使用する第2パラメータを選定するステップと
    を含む情報処理方法。
  23.  機械学習により患者の予後を予測するシステムにおいて使用される情報処理装置が実行する情報処理を前記情報処理装置に実行させるプロブラムであって、
     前記情報処理は、
      複数の患者に対応する複数の時系列データを取得するステップであって、前記時系列データはそれぞれの患者の状態および治療の少なくとも何れかに関する複数の第1パラメータを含むステップと、
      前記複数の時系列データに含まれるそれぞれの前記第1パラメータの取得率と、取得頻度とを算出するステップと、
      前記算出した前記取得率および前記取得頻度の少なくとも何れか一方を用いて、前記複数の前記第1パラメータから訓練データに使用する第2パラメータを選定するステップと
    を含む、プログラム。
PCT/JP2022/010584 2021-03-23 2022-03-10 情報処理装置、情報処理方法およびプログラム WO2022202360A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023508986A JPWO2022202360A1 (ja) 2021-03-23 2022-03-10
US18/472,500 US20240013923A1 (en) 2021-03-23 2023-09-22 Information processing device, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049214 2021-03-23
JP2021049214 2021-03-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,500 Continuation US20240013923A1 (en) 2021-03-23 2023-09-22 Information processing device, information processing method, and program

Publications (1)

Publication Number Publication Date
WO2022202360A1 true WO2022202360A1 (ja) 2022-09-29

Family

ID=83395728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010584 WO2022202360A1 (ja) 2021-03-23 2022-03-10 情報処理装置、情報処理方法およびプログラム

Country Status (3)

Country Link
US (1) US20240013923A1 (ja)
JP (1) JPWO2022202360A1 (ja)
WO (1) WO2022202360A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507354A (ja) * 2016-02-01 2019-03-14 プレベンシオ, インコーポレイテッド 心臓血管疾患及び事象のための診断及び予後方法
JP2020144471A (ja) * 2019-03-04 2020-09-10 学校法人東海大学 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム
JP2021086558A (ja) * 2019-11-29 2021-06-03 キヤノンメディカルシステムズ株式会社 データ選別装置、学習装置及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019507354A (ja) * 2016-02-01 2019-03-14 プレベンシオ, インコーポレイテッド 心臓血管疾患及び事象のための診断及び予後方法
JP2020144471A (ja) * 2019-03-04 2020-09-10 学校法人東海大学 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム
JP2021086558A (ja) * 2019-11-29 2021-06-03 キヤノンメディカルシステムズ株式会社 データ選別装置、学習装置及びプログラム

Also Published As

Publication number Publication date
US20240013923A1 (en) 2024-01-11
JPWO2022202360A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
RU2630122C2 (ru) Способ непрерывного прогнозирования тяжести заболевания у пациента, летального исхода и длительности госпитализации
Fu et al. Development and validation of early warning score system: A systematic literature review
JP6049620B2 (ja) 医学的スコアリングシステムおよび方法
US11166666B2 (en) Enhanced acute care management combining imaging and physiological monitoring
US20170147773A1 (en) System and method for facilitating health monitoring based on a personalized prediction model
JP2018531067A6 (ja) 撮像及び生理学的モニタリングを組み合わせた強化型の急性ケアマネジメント
JP2023546866A (ja) 臨床判断サポートを提供するためのシステムおよび方法
US20230142909A1 (en) Clinically meaningful and personalized disease progression monitoring incorporating established disease staging definitions
JP2014500100A (ja) 人間又は動物の対象におけるボレミック状態の観察
CN116210058A (zh) 慢性肾脏疾病(ckd)机器学习预测系统、方法和装置
WO2022202360A1 (ja) 情報処理装置、情報処理方法およびプログラム
KR20100062439A (ko) 욕창발생 위험예측 베이지안 네트워크 시스템
JP7420145B2 (ja) リスク予測装置、リスク予測方法、及びコンピュータプログラム
US11810652B1 (en) Computer decision support for determining surgery candidacy in stage four chronic kidney disease
US20230197285A1 (en) Patient condition prediction apparatus, patient condition prediction method, and computer program
Adawiyah et al. Hospital Length of Stay Prediction based on Patient Examination Using General features
Portela et al. A Pervasive Intelligent System for Scoring MEWS and TISS-28 in Intensive Care
TWI803893B (zh) 敗血症之人工智慧輔助醫療診斷方法及其系統
JP7420266B2 (ja) 分析装置
CN111902080B (zh) 支援系统、支援方法、支援程序及记录有支援程序的记录介质
WO2021009088A1 (en) Model to dynamically predict patient's discharge readiness in general ward
Santos Vital-sign data-fusion methods to identify patient deterioration in the emergency department
EP3460808A1 (en) Determining patient status based on measurable medical characteristics
Zhao et al. Improving Mortality Risk Prediction Using an LSTM Network Combined With Self-Attention
Cuadrado Cleaning, improving and validating the ICUs patients database in Hospital Joan XXIII for secondary use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775152

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775152

Country of ref document: EP

Kind code of ref document: A1