WO2022202334A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2022202334A1
WO2022202334A1 PCT/JP2022/010367 JP2022010367W WO2022202334A1 WO 2022202334 A1 WO2022202334 A1 WO 2022202334A1 JP 2022010367 W JP2022010367 W JP 2022010367W WO 2022202334 A1 WO2022202334 A1 WO 2022202334A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cylindrical portion
gas supply
exhaust port
substrate
Prior art date
Application number
PCT/JP2022/010367
Other languages
French (fr)
Japanese (ja)
Inventor
康介 山本
俊彦 城
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2022202334A1 publication Critical patent/WO2022202334A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present disclosure relates to a substrate processing apparatus and a substrate processing method.
  • wafers As an apparatus for processing semiconductor wafers (hereinafter referred to as "wafers"), a plurality of wafers are arranged in a shelf in a processing container, and a processing gas is supplied to the surface of each wafer to process them all at once. things are known.
  • Japanese Patent Application Laid-Open No. 2002-200003 describes a substrate processing apparatus configured to process each wafer by supplying a processing gas from the side thereof.
  • An object of the present disclosure is to suppress the amount of gas supplied when processing a plurality of substrates supported in a shelf shape by supplying the gas.
  • a substrate processing apparatus includes a processing container that houses a substrate support that supports a plurality of substrates in a shelf shape in the vertical direction, and that includes a cylindrical portion whose axis faces the vertical direction; a first gas supply port for supplying a first gas for processing each substrate to one side in the vertical direction of a substrate support area in which each substrate is supported in the tubular portion; a first exhaust port for exhausting the first gas from the other longitudinal side of the substrate support area;
  • the inside of the tubular portion forms a flow path for the first gas to meander from the first gas supply port toward the first exhaust port along the surface of each of the substrates. recesses located at the height of each of the substrates on the side surface and provided alternately to the left and right when viewed along the vertical direction; Prepare.
  • FIG. 1 is an X-axis cross-sectional view of a film forming apparatus according to the present disclosure
  • FIG. 1 is a Y-axis cross-sectional view of a film forming apparatus according to the present disclosure
  • FIG. 1 is a perspective view of a wafer boat provided in a film forming apparatus
  • FIG. It is a perspective view of a cylinder part provided in a film-forming apparatus. It is a transparent perspective view of the said cylinder part.
  • It is a perspective view of the outer cylinder part provided in the film-forming apparatus.
  • It is a transparent perspective view of the said outer cylinder part. It is the top view which match
  • FIG. 10 is an operation diagram showing the flow of gas when the outer cylindrical portion is aligned with the first position;
  • FIG. 10 is an operation diagram showing the flow of gas when the outer cylinder part is aligned with the second position;
  • FIG. 4 is an X-axis cross-sectional view of another example of a film forming apparatus according to the present disclosure;
  • FIG. 4 is a Y-axis cross-sectional view of another example of a film forming apparatus according to the present disclosure;
  • FIG. 4 is a plan view of another example of a film forming apparatus according to the present disclosure;
  • FIG. 10 is a pressure distribution diagram showing the pressure of gas when the outer cylindrical portion is aligned with the first position;
  • FIG. 11 is a pressure distribution diagram showing the pressure of gas when the outer cylindrical portion is aligned with the second position;
  • 1 and 2 show a vertical cross-sectional view along the X-axis direction and a vertical cross-sectional view along the Y-axis direction, respectively, of the film forming apparatus 1.
  • the X-axis and the Y-axis are horizontal axes perpendicular to each other. be.
  • the Z-axis in the drawing is a vertical axis orthogonal to the X-axis and the Y-axis, specifically, for example, a vertical axis.
  • the left and right sides of the film forming apparatus 1 are referred to as the left and right sides of the film forming apparatus 1 when viewed from the front in FIG. shown as the anterior and posterior sides of the . Therefore, the X-axis direction is the left-right direction, and the Y-axis direction is the front-rear direction.
  • the film forming apparatus 1 includes a low-profile, generally circular processing container 10 .
  • a wafer boat 2 which is a substrate support for supporting a plurality of wafers W in the Z-axis direction, that is, in the vertical direction, is provided inside the processing container 10 .
  • a cylindrical portion 3 having a lid portion and an outer cylindrical portion 4 surrounding the cylindrical portion 3 are provided upright in the processing container 10 , and the wafer boat 2 is accommodated in the cylindrical portion 3 .
  • a heating unit 14 is provided so as to surround the processing container 10 and is configured to heat each wafer W placed on the wafer boat 2 .
  • an exhaust port 11 is formed on the left side surface of the processing container 10 .
  • the exhaust port 11 is connected to an exhaust portion 12 that exhausts an exhaust space 12A formed between the outer cylinder portion 4 and the cylinder portion 3 and the side wall of the processing container 10 .
  • the exhaust space 12 ⁇ /b>A is formed so as to extend from the outer peripheral side of the outer cylinder portion 4 to the upper side of the outer cylinder portion 4 and the cylinder portion 3 .
  • An exhaust port (to be described later) provided in the cylindrical portion 3 is connected to the exhaust space 12A through a through hole provided in the outer cylindrical portion 4, and the exhaust from the exhaust port 11 exhausts the inside of the cylindrical portion 3 as well.
  • This film forming apparatus 1 forms a film on a wafer W by ALD (Atomic Layer Deposition). Therefore, the cylinder 3 contains a precursor gas containing a film precursor, a reaction gas that reacts with the precursor gas to produce a reaction product, and unnecessary precursor gas and reaction gas for purging. of purge gas are supplied. Through-holes at different positions in the cylindrical portion 3 are used as exhaust ports when the precursor gas is supplied to the wafer boat 2 and when the purge gas and reaction gas are supplied to the wafer boat 2 .
  • the outer cylinder part 4 is used for switching the exhaust port. Further, the precursor gas, the reaction gas, and the purge gas are supplied into the cylinder portion 3 from openings at different positions in the cylinder portion 3 .
  • the precursor gas forms a downward meandering flow while meandering left and right in the cylindrical portion 3, and the reaction gas and the purge gas flow from the front to the rear.
  • the reason for switching the distribution route according to the type of gas will be described in detail later.
  • a circular opening 13 is formed in the central portion of the bottom plate 10A that constitutes the processing container 10, and a circular lid 20 that closes the opening 13 is provided.
  • a through-hole 21 is formed in the center of the lid portion 20, and a rotating shaft 24 having a support base 23 installed at the upper end thereof is inserted through the through-hole 21 along the Z-axis direction. 3, the wafer boat 2 is placed on the support table 23.
  • a lower portion of the rotating shaft 24 is connected to a rotating mechanism 25 provided below the lid portion 20. The rotating mechanism 25 rotates the support base 23 and the wafer boat 2 clockwise in plan view during processing.
  • a purge gas is supplied from a purge gas supply source 63 to the gap between the rotating shaft 24 and the lid portion 20, flows into the processing container 10, and is exhausted from the exhaust space 12A.
  • the purge gas By supplying the purge gas, the precursor gas and reaction gas are prevented from being supplied to a sealing mechanism (not shown) for sealing the gap between the rotating shaft 24 and the lid portion 20.
  • the rotating mechanism 25 and the lid portion 20 are connected to an elevating mechanism (not shown), and by moving up and down with respect to the processing container 10 , the opening portion 13 can be opened and closed, and the wafer boat 2 can be loaded into and unloaded from the processing container 10 . be.
  • the wafer boat 2 includes a circular bottom plate 26 having a diameter larger than the diameter of the wafer W (300 mm), and the bottom plate 26 is supported on the support base 23 described above.
  • the bottom plate 26 is supported on the support base 23 described above.
  • four columns 27 extending in the Z-axis direction are provided at equal intervals in the circumferential direction of the bottom plate 26 in a half-peripheral area of the peripheral portion of the bottom plate 26 .
  • Four mounting portions 200 are provided above the bottom plate 26 at intervals in the Z-axis direction.
  • the mounting part 200 is a circular ring-shaped member whose outer diameter is the same size as the diameter of the bottom plate 26 , and its peripheral edge is supported by each support 27 .
  • a stepped portion is formed along the entire circumference of the upper surface of the mounting portion 200, and the height of the inner peripheral edge portion is lower than that of the outer peripheral edge portion.
  • the upper surface of the inner peripheral edge portion supports the peripheral edge portion of the wafer W as the mounting surface 28 , and the stepped portion prevents the wafer W from being displaced on the mounting portion 200 .
  • a substrate support area extends from the height at which the wafer W at the top of the wafer boat 2 is supported to the height at which the wafer W at the bottom is supported.
  • the wafers W supported in this manner may be described in the order counted from the top.
  • the second and third wafers W are the second and third wafers W counted from the top.
  • the mounting portion 200 and the recessed portion 32 to be described later may also be described according to the order counted from the top.
  • FIG. 5 shows the arrangement of each part formed on the inner wall of the cylindrical portion 3 omitted in FIG.
  • the cylindrical portion 3 is configured in a cylindrical shape with its axis directed in the vertical direction, more specifically in the Z-axis direction, and has a top plate (lid portion) 30 .
  • a lower end of the cylindrical portion 3 is connected to the peripheral edge of the opening 13 .
  • the inner peripheral surface of the cylindrical portion 3 is close to the outer edge of the mounting portion 200 of the wafer boat 2, and the inner peripheral surface of the cylindrical portion 3 and the mounting portion 200 are in close contact with each other.
  • the distance L1 is sufficiently smaller than the depth of the recess 32, for example 2 mm.
  • An upstream end of a flow path 31A for introducing the precursor gas, which is the first gas, into the cylindrical portion 3 is open on the upper surface of the edge portion of the top plate 30 of the cylindrical portion 3 .
  • the downstream side of the flow path 31A extends downward and opens at the upper end of the inner wall of the cylindrical portion 3, forming a first gas supply port 31.
  • the first gas supply port 31 is above the uppermost wafer W and the uppermost mounting portion 200 and opens rightward.
  • a through hole is formed in the side wall of the cylindrical portion 3 below the lowermost wafer W and the lowermost mounting portion 200 of the wafer boat 2 in the cylindrical portion 3 to form a first exhaust port 33 .
  • the first exhaust port 33 is formed in a slit shape along the circumference of the cylindrical portion 3 and is positioned on the right side. Since the first gas supply port 31 and the first exhaust port 33 are provided as described above, the precursor gas can be supplied to one side (upper side) in the vertical direction of the substrate supporting region in the cylindrical portion 3, In addition, the precursor gas can be exhausted from the other side (lower side) of the substrate support area.
  • each concave portion 32 is formed in an arc shape in plan view.
  • the point that equally divides the arc of the recessed portion 32 on the left side and the point that equally divides the arc of the recessed portion 32 on the right side are along the axis P (Z-axis) of the cylindrical portion 3 and are shown in FIGS. (shown in FIGS. 8 and 9 to be described later) are sandwiched therebetween.
  • the width of each concave portion 32 in the vertical direction is greater than the width of the mounting portion 200 in the vertical direction.
  • the two recessed portions 32 on the left side are separated from each other in the Z-axis direction, and the two recessed portions 32 on the right side are also separated from each other in the Z-axis direction.
  • the central portion of the height of the first stage mounting portion 200 is positioned within the height range where the upper recessed portions 32 are formed, and the height at which the lower recessed portions 32 are formed.
  • the central portion of the height of the third stage mounting portion 200 is located in the range of .
  • the central portion of the height of the second-stage mounting portion 200 is positioned within the height range where the upper recesses 32 are formed, and the height at which the lower recesses 32 are formed.
  • the central portion of the height of the fourth stage mounting portion 200 is located in the range of .
  • the concave portion 32 and the mounting portion 200 whose center portion of the height is located within the height range of the concave portion 32 are referred to as the concave portion 32 and the mounting portion 200 corresponding to each other.
  • the recesses 32 are positioned at the height of the mounting portions 200 (that is, the wafers W in each stage) of each stage, and are alternately provided on the left and right when viewed along the vertical direction (Z-axis direction).
  • the concave portion 32 Since the concave portion 32 has the above-described vertical width, the upper end of the concave portion 32 is located above the upper surfaces of the mounting portion 200 corresponding to the concave portion 32 and the wafer W corresponding to the concave portion 32 .
  • the lower end of the recess 32 is located below the lower surfaces of the mounting portion 200 corresponding to the recess 32 and the wafer W corresponding to the recess 32 . As will be described later, this is for the purpose of guiding the gas so that it flows step by step.
  • the recessed portion 32 of the first stage and the recessed portion 32 of the third stage are positioned at a height offset from the mounting portions 200 of the second and fourth stages and the wafer W, and the recessed portion 32 of the second stage and the recessed portion 32 of the fourth stage
  • the concave portion 32 is located at a height offset from the mounting portions 200 and the wafer W on the first and third stages. In other words, the concave portion 32 is provided only on one side of the mounting portion 200 and the wafer W on each stage.
  • the first exhaust port 33 is connected to the lower portion of the recess 32 on the fourth stage. From a different point of view, the lower side of the recessed portion 32 is further recessed toward the outer side of the cylindrical portion 3 and opened to the outer peripheral surface of the cylindrical portion 3 to form the first exhaust port 33 .
  • the flow path that flows from the first gas supply port 31 to the first exhaust port 33 and meanders left and right. is formed. That is, in the cylindrical portion 3, the precursor gas flows on the surface of the wafer W in one stage from one of the left end and the right end of the wafer W to the other, moves downward through the recess 32, and moves downward on the surface of the wafer W in the next stage. It flows on the surface of the wafer W from the other of the left end and the right end of the wafer W to one.
  • through holes are formed in five stages in the Z-axis direction in the front side wall of the cylindrical portion 3 , forming second gas supply ports 35 each opening to the inner surface of the cylindrical portion 3 .
  • the five second gas supply ports 35 are supply ports for supplying reaction gas and purge gas as the second gas, and are formed in a slit shape extending in the circumferential direction of the cylindrical portion 3 .
  • the second gas supply port 35 is positioned above the mounting portion 200 of each stage and below the mounting portion 200 of the lowest stage, and supplies the reaction gas and the purge gas to the front surface side and the rear surface side of each wafer W. supply.
  • through-holes are formed in five stages in the Z-axis direction in the rear side wall of the cylindrical portion 3 , forming second exhaust ports 36 that open to the inner surface of the cylindrical portion 3 .
  • the five second exhaust ports 36 are for exhausting reaction gas and purge gas, and are formed in a slit shape extending in the circumferential direction of the cylindrical portion 3 . Since each is formed on the side wall of the cylindrical portion 3 as described above, the second gas supply port 35 and the second exhaust port 36 are arcuate in plan view, and are formed to have the same length, for example. .
  • the point that equally divides the arc of the second gas supply port 35 and the point that equally divides the arc of the second exhaust port 36 face each other with the axis P of the cylindrical portion 3 interposed therebetween.
  • the second gas supply port 35 and the second exhaust port 36 have the same vertical width.
  • the concave portion 32, the second gas supply port 35, and the second exhaust port 36 will be supplemented.
  • the left recess 32 and the right recess 32 are arranged so as to be each equally divided by a line passing through the axis P and along the X axis.
  • the second gas supply port 35 and the second exhaust port 36 are arranged so as to be equally divided by a line along the Y-axis passing through the axis P in plan view.
  • both the second gas supply port 35 and the second exhaust port 36 are largely separated from each other when viewed from the precursor gas flowing from one of the left and right recessed portions 32 to the other left and right recessed portions 32 as a meandering flow. will be located.
  • the flow of the precursor gas is less likely to be affected by the provision of the second gas supply port 35 and the second exhaust port 36 on the peripheral surface of the tubular portion 3 . That is, the occurrence of stagnation and retention near the second gas supply port 35 and the second exhaust port 36 is prevented, and the in-plane uniformity of processing of the wafer W can be improved.
  • nine through-holes are formed in the side wall of the cylindrical portion 3 below the second gas supply port 35 and the second exhaust port 36 to form the exhaust hole 34 .
  • These exhaust holes 34 are arranged at equal intervals along the circumference of the cylindrical portion 3, and the purge gas supplied around the rotating shaft 24 and flowing into the cylindrical portion 3 is discharged through the cylindrical portion 3. It is configured as a channel for discharging to the outside.
  • FIG. 7 shows the arrangement of each part formed on the inner wall of the cylindrical portion 3 omitted in FIG.
  • the outer cylinder portion 4 is configured as a cylinder coaxial with the cylinder portion 3 . Therefore, the axis P of the tubular portion 3 described above is also the axis of the outer tubular portion 4 .
  • the inner peripheral surface of the outer tubular portion 4 is close to the outer peripheral surface of the tubular portion 3 .
  • the lower end side of the outer cylinder portion 4 protrudes downward from the processing container 10 through an annular opening 19 formed in the bottom plate 10A. It is supported by struts 45 provided at intervals.
  • the column 45 is connected to a rotation mechanism 46 that rotates the column 45 about the vertical axis via an arm portion 45A.
  • the support column 45 is formed sufficiently long so that the arm portion 45A does not hinder the lowering of the wafer boat 2 when the lid portion 20 is lowered.
  • a purge gas is supplied from a purge gas supply source 63 to the gap between the edge of the opening 19 and the outer cylinder 4, flows into the processing container 10, and is exhausted from the exhaust space 12A.
  • the supply of the purge gas prevents the precursor gas and the reaction gas from being supplied to a sealing mechanism (not shown) for sealing the gap formed between the edge of the opening 19 and the outer cylindrical portion 4 . I'm trying to
  • the rotating mechanism 46 rotates the outer tube portion 4 around the axis P relative to the tube portion 3 . More specifically, the rotation mechanism 46 rotates the outer cylinder 4 clockwise and counterclockwise in a plan view to switch the position of the outer cylinder 4 with respect to the cylinder 3 .
  • a first through-hole 41 , a second through-hole 42 and a third through-hole 43 are formed in the side wall of the outer cylindrical portion 4 .
  • These through holes 41 , 42 , 43 overlap the first exhaust port 33 , the second gas supply port 35 , and the second exhaust port 36 of the cylindrical portion 3 , respectively, so that the first exhaust port 33 , It has a role of opening the second gas supply port 35 and the second exhaust port 36 to the outside of the outer cylindrical portion 4 .
  • the first through hole 41 is formed in a slit shape along the circumference of the outer cylindrical portion 4 corresponding to the shape of the first exhaust port 33 .
  • the second through holes 42 are formed vertically corresponding to the second gas supply ports 35 provided in five stages as described above, and the third through holes 43 are formed in five stages as described above. It is formed vertically corresponding to the second exhaust port 36 provided in the step.
  • the upper end portions of the second through-hole 42 and the third through-hole 43 are positioned at the height of the second gas supply port 35 and the second exhaust port 36 on the uppermost stage.
  • the lower ends of the second through-hole 42 and the third through-hole 43 are located at the height of the second gas supply port 35 and the second exhaust port 36 at the lowest stage.
  • the second through hole 42 and the third through hole 43 are arranged to face each other.
  • the first through hole 41 is opened at a position shifted in the circumferential direction of the outer cylindrical portion 4 with respect to the second through hole 42 and the third through hole 43 .
  • the outer cylinder part 4 When the outer cylinder part 4 is arranged in the first position (the position shown in FIG. 8) so that the first through hole 41 overlaps the first exhaust port 33 (in the first state), the second The through hole 42 and the third through hole 43 are separated from the second gas supply port 35 and the second exhaust port 36, respectively. That is, in the first position, the first exhaust port 33 is open to the outside of the outer cylinder portion 4, while the side wall of the outer cylinder portion 4 allows the second gas supply port 35 and the second exhaust port 36 to be opened. It is closed to the outside of the outer cylindrical portion 4 . The outer cylinder part 4 is moved to the second position (the position shown in FIG.
  • the first through hole 41 is separated from the first exhaust port 33 . That is, in the second position, the second gas supply port 35 and the second exhaust port 36 are open to the outside of the outer cylinder portion 4 , while the side wall of the outer cylinder portion 4 opens the first exhaust port 33 . It is closed to the outside of the outer cylinder part 4 .
  • the second position is a position obtained by rotating the outer cylinder part 4 counterclockwise in a plan view by 40° with respect to the first position about the axis P as the rotation axis.
  • nine through-holes 44 are formed at equal intervals in the circumferential direction at positions near the bottom of the outer cylindrical portion 4. As shown in FIG. This through hole 44 overlaps with the exhaust hole 34 of the cylindrical portion 3 when the outer cylindrical portion 4 is set to either the first position or the second position.
  • a first gas supply section 5 is provided on the right side of the outer cylinder section 4 in the exhaust space 12A.
  • the first gas supply unit 5 is configured as a pipe that is erected with respect to the bottom plate 10A of the processing container 10, and the tip side thereof is located above the upper end of the outer cylindrical portion 4. It is folded back toward the inner side of the outer cylindrical portion 4 so as to face downward.
  • a gas supply port formed at the tip of the first gas supply part 5 is opened in proximity to the flow path 31A of the top plate 30 of the cylindrical part 3, and the first gas is supplied to the flow path 31A. can be supplied.
  • the base end side of the first gas supply unit 5 extends downward through the bottom plate 10A and is connected to the first gas supply source 52 outside the processing container 10 .
  • DCS Dichlorosilane
  • a second gas supply section 6 is provided on the front side of the outer cylinder section 4 in the exhaust space 12A.
  • the second gas supply unit 6 is configured as a pipe that is wide in the left and right directions and is erected with respect to the bottom plate 10A of the processing container 10 .
  • On the side surface of the second gas supply portion 6 facing the outer cylinder portion 4 five-stage slits 61 are formed in the Z-axis direction while being close to the outer cylinder portion 4 .
  • the height of the slits 61 on each stage is aligned with the height of the second gas supply port 35 on each stage of the cylindrical portion 3, and the outer cylindrical portion 4 is positioned at the second position as described with reference to FIG.
  • Gas can sometimes be supplied from each slit 61 to each second gas supply port 35 .
  • the base end side of the second gas supply unit 6 extends downward through the bottom plate 10A and is connected to a second gas supply source 62 and a purge gas supply source 63 outside the processing container 10, respectively.
  • ozone (O 3 ) gas is supplied from the second gas supply source 62 as the reactive gas, which is the second gas, and for example, nitrogen (N 2 ) gas is supplied from the purge gas supply source 63 as the purge gas.
  • control section 90 made up of, for example, a computer.
  • the control unit 90 includes a data processing unit including a program, a memory, and a CPU. Instructions (each step) are built in to advance the steps.
  • This program is stored in a storage medium such as a compact disc, hard disk, DVD, or memory card and installed in the control unit 90 .
  • the heating portion 14 heats the processing container 10 . heated inside.
  • the exhaust space 12A in the processing container 10 is evacuated by the exhaust unit 12, and the wafer boat 2 is rotated by the rotation mechanism 25.
  • the second gas supply port 35 and the second exhaust port 36 are closed, and the first exhaust port 33 is opened. and Then, the DCS gas is supplied from the first gas supply unit 5 (step S1).
  • This DCS gas is supplied from the right side of the uppermost wafer W as shown in FIG. 10 and flows leftward on the surface of the wafer W. Then, it descends to the left side of the wafer W in the second stage via the recess 32 in the uppermost stage and flows toward the right side of the wafer W in the second stage. After that, the DCS gas flows from one wafer W to the surface of another wafer W positioned one below the one wafer W through the concave portion 32, and flows on the surface of the other wafer W to the left and right. going from one side to the other. The gas flow on the surface of the other wafer W is in the opposite direction to the gas flow on the surface of the wafer W of one.
  • the DCS gas alternately flows from right to left and left to right from the uppermost wafer W toward the lower wafer W.
  • a meandering flow is formed as described above, and the DCS contained in the gas is adsorbed on the surface of each wafer W.
  • the DCS gas which has flowed in order on the surfaces of the four wafers W, flows rightward from the surface of the wafer W in the lowest stage, flows into the first exhaust port 33 arranged on the right side of the wafer W, and flows into the first exhaust port 33.
  • the gas is discharged into the exhaust space 12A through one through hole 41 and exhausted from the exhaust port 11. As shown in FIG.
  • the purge gas is supplied from the second gas supply unit 6 (step S2), and the purge gas passes through the third through-hole 43 and the second gas supply port 35 in order to the surfaces of the wafers W in the cylindrical unit 3 and the Supplied on the back side. Since the purge gas is exhausted from the second exhaust port 36 facing each second gas supply port 35, the purge gas flows from the front to the rear along the front and back surfaces of each wafer W. 2 into the exhaust port 36 (FIG. 11). Then, it is released to the exhaust space 12A through the second through hole 42 and exhausted. As a result, the DCS gas remaining in the cylindrical portion 3 is purged and removed.
  • step S3 O 3 gas is supplied instead of the purge gas from the second gas supply unit 6 (step S3). Similar to the purge gas, the O 3 gas also flows from the front side to the rear side along the front and back surfaces of each wafer W and is discharged into the exhaust space 12A through the second exhaust port 36 and the second through hole 42 in order. is exhausted. By supplying the O 3 gas in this manner, the DCS adsorbed on the wafer W reacts with the O 3 gas to produce SiO 2 as a reaction product. Subsequently, the purge gas is supplied instead of the O 3 gas from the second gas supply unit 6 (step S4). This step S4 is the same operation as step S2 except that the purge target is O3 gas instead of DCS gas.
  • step S1 is performed again.
  • steps S2 to S4 are performed, and then steps S1 to S4 are performed.
  • SiO.sub.2 is repeatedly deposited on the wafer W as a reaction product to form a SiO.sub.2 film.
  • the evacuation of the processing chamber 10 is stopped, the lid 20 is lowered, and the wafer boat 2 is unloaded from the processing chamber 10 .
  • the precursor gas which is the first gas
  • DCS was taken as an example in the previous explanation, but various gases can be used according to the type of film to be formed.
  • this precursor gas a gas having a low adsorption efficiency to the surface of the wafer W may be used. If such a precursor gas were to be supplied from one end side of each wafer W and exhausted from the other end side of each wafer W in the same manner as the reaction gas and purge gas described above, most of it would remain unadsorbed to the wafer W. It will be removed from the periphery of the wafer W. Therefore, a relatively large amount of precursor gas is supplied into the cylindrical portion 3 in order to cause the wafer W to adsorb an amount necessary for film formation, which may increase the cost required for the process.
  • the precursor gas meanders in the cylindrical portion 3 and flows on the surface of each wafer W in order as described above. Therefore, even components in the gas that are not adsorbed when the precursor gas passes over the surface of one wafer W can be adsorbed when passing through the surface of another wafer W on the lower stage side of the one wafer W. can. Therefore, the efficiency of using the precursor gas can be increased, so that each wafer W can be processed with a relatively small supply amount of the precursor gas, and the cost required for processing can be reduced.
  • the O 3 gas was used as an example of the reaction gas in the above description, various gases can be used according to the type of film to be formed.
  • by-products other than the reaction products for forming the film on the wafer W may be generated, and the film quality may be deteriorated by mixing the by-products into the film.
  • the reaction gas that has already passed through the surface of the wafer W may contain the above-described by-products, and it is desirable that the by-products are not supplied to the other wafers W and are quickly exhausted.
  • the reaction gas is supplied from the second gas supply port 35 on the front side of each wafer W, and the second gas supply port 35 is opposed to the second gas supply port 35 on the rear side of the wafer W. Exhaust is performed from the second exhaust port 36 .
  • the reaction gas that has flowed from the front to the rear on the surface of one wafer W is quickly removed from the cylindrical portion 3 and is prevented from being supplied to the other wafers W.
  • FIG. As a result, contamination of the film of each wafer W with by-products is prevented, and a drop in the yield of semiconductor products manufactured from the wafers W can be prevented.
  • the purge gas is also supplied from the second gas supply port 35 and exhausted from the second exhaust port 36 in the same manner as the reaction gas.
  • the precursor gas and reaction gas swept away by the purge gas are quickly removed from the cylindrical portion 3 and prevented from remaining in the cylindrical portion 3 for a long time. Therefore, this purge can be completed quickly, which is preferable.
  • the second gas supply port 35 and the second exhaust port 36 are provided in the vicinity of the concave portion 32 in the circumferential direction of the cylindrical portion 3, that is, are provided in the lateral direction, respectively, so that the reaction gas and the purge gas are not longitudinally directed. You may make it flow in a left-right direction.
  • the second gas supply port 35 and the second exhaust port 36 are provided at a greater distance from the precursor gas that forms a meandering flow and flows between the recesses 32 as described above. . Therefore, as described above, the second gas supply port 35 and the second exhaust port 36 are preferably arranged in the front-rear direction so that the reactant gas and the purge gas form airflows in the front-rear direction.
  • one of the first exhaust port 33 and the second exhaust port 36 is opened in the cylindrical portion 3 by rotating the outer cylinder portion 4, but the second exhaust port is opened.
  • the outer cylindrical portion 4 is configured so that the second gas supply port 35 is also closed when the port 36 is closed.
  • both the second gas supply port 35 and the second exhaust port 36 are closed as described above, so that the gas enters the gas supply port 35 and the second exhaust port 36.
  • turbulence of the airflow is prevented. Therefore, the uniformity of processing between the wafers W and within the surface of the wafer W can be improved.
  • the mounting portion 200 on which the wafer W is mounted has an outer diameter larger than the diameter of the wafer W, and the portion of the mounting portion 200 other than the portion where the concave portion 32 is formed on the inner peripheral surface of the cylindrical portion 3 is close to the perimeter. That is, the mounting portion 200 is configured to have a high gas pressure loss between it and the inner peripheral surface of the cylindrical portion 3 , and the precursor gas flows from between the cylindrical portion 3 and the mounting portion 200 . is prevented. Therefore, the amount of the precursor gas to be used can be reduced more reliably.
  • the second gas supply port 35 and the second exhaust port 36 in the cylindrical portion 3 are provided for each wafer W in each stage. It is not limited to the configuration provided for each stage. Specifically, for example, like the second through-hole 42 and the third through-hole 43 of the outer cylindrical portion 4, the opening extends from the height of the wafer W on the uppermost stage to the height of the wafer W on the lowermost stage. It may be configured vertically as shown. Even with such a configuration, the reaction gas or the purge gas supplied onto one wafer W does not reach the surface of the other wafer W because the mounting portion 200 is close to the inner peripheral surface of the cylindrical portion 3 . is exhausted while the supply to is suppressed.
  • the first gas supply port 31 is opened in the inner peripheral surface of the cylindrical portion 3, and the precursor gas is supplied so as to go toward the first recessed portion 32 located on the left side. That is, the recess 32 closest to one end (upper end) in the vertical direction of the plurality of recesses 32 is provided on one of the left and right sides (left side). It is configured to open on the other side (right side).
  • the opening position of the first gas supply port 31 is not limited to such an opening position because it is sufficient to open so as to supply the precursor gas to the surface of the wafer W in the first stage.
  • the top plate 30 of the cylindrical portion 3 may be provided with the first gas supply port 31 and the precursor gas may be discharged downward toward the left end of the wafer W in the first stage.
  • the first gas supply port 31 to open to the inner peripheral surface of the cylindrical portion 3 as described above, the gap between the surface of the wafer W in the first stage and the surface of the other wafer W can be reduced.
  • the precursor gas flow conditions at are aligned. That is, the same airflow is formed on the surface of each wafer W, and the occurrence of variations in processing among the wafers W is prevented.
  • the first exhaust port 33 only needs to be able to exhaust the precursor gas after passing through the surface of the wafer W in the fourth stage. Therefore, the opening is not limited to being provided at a height lower than the wafer W on the fourth tier, and may be provided at a height between the wafer W on the third tier and the wafer W on the fourth tier. good.
  • the film forming apparatus 1 may be configured so that the cleaning gas is supplied from the first gas supply port 31 after the film forming process.
  • a cleaning gas supply source is also connected to the first gas supply unit 5, and the precursor gas and the cleaning gas are connected. It is configured such that they are switched to each other and supplied to the first gas supply unit 5 . Even when the cleaning gas is supplied, the outer cylinder portion 4 is placed at the first position, so that the air is exhausted from the first exhaust port 33 and a meandering flow is formed. The cleaning gas removes the film formed inside the cylindrical portion 3 and on the wafer boat 2 .
  • the wafer boat 2 supports, for example, dummy wafers not intended for manufacturing semiconductor products in place of the wafers W.
  • the cleaning gas meanders and stays for a relatively long time from being supplied into the cylindrical portion 3 to being exhausted from the cylindrical portion 3 . Therefore, the inside of the cylindrical portion 3 and the wafer boat 2 can be cleaned with a relatively small amount of cleaning gas supplied.
  • the substrate processing apparatus is not limited to the film forming process, and may be an etching apparatus for etching the wafer W, in which case an etching gas is supplied as the first gas.
  • the wafer W may be configured as an annealing apparatus that heats the wafer W while supplying an inert gas as the first gas. Even in these cases, the amount of etching gas and inert gas supplied can be reduced, and the cost required for processing can be reduced.
  • the film forming apparatus is not limited to performing ALD, and may perform CVD (Chemical Vapor Deposition). In that case, a film-forming gas may be supplied as the first gas.
  • FIG. 12 and 13 show longitudinal sections along the X and Y axes of the device, respectively, and FIG. 14 shows a transverse plane of the device.
  • the outer cylinder portion 4 is not provided, and exhaust pipes 110 and 111 are connected to the first exhaust port 33 and the second exhaust port 36 of the cylinder portion 3, respectively.
  • the other ends of the exhaust pipes 110 and 111 are connected to the common exhaust section 12, for example.
  • Valves V1 and V2 are provided in exhaust pipes 110 and 111, respectively.
  • the valve V1 is opened to exhaust air from the first exhaust port 33, and the valve V2 is closed. Then, the precursor gas is supplied from the first gas supply unit 5, and the process of step S1 described above is performed. After the supply of the precursor gas is finished, the valve V1 is closed and the valve V2 is opened. As a result, the air is switched to be exhausted from the second exhaust port 36 . Further, the purge gas, the O 3 gas, and the purge gas are supplied in this order from the second gas supply unit 6, and the processes of steps S2 to S4 described above are performed. As with the film forming apparatus 1, the process of steps S1 to S4 is repeated for the apparatus of this modification to perform ALD.
  • the form of the airflow formed in the cylinder 3 may be switched.
  • the state in which the valve V1 is opened so as to exhaust air from the first exhaust port 33 and the valve V2 is closed corresponds to the first state, in which exhaust air is exhausted from the second exhaust port 33.
  • the second state corresponds to the state in which the valve V1 is closed and the valve V2 is open.
  • Valves V1 and V2 correspond to a switching mechanism.
  • the processing container 10 may not be provided outside the tubular portion 3 . That is, by configuring the cylinder part 3 as a processing container, the side wall of the cylinder part 3 becomes the side wall of the processing container, and each exhaust port and gas supply port may be configured to open to the processing container. That is, it is not limited to an apparatus configuration in which the side wall of the cylindrical portion 3 and the side wall of the processing container 10 are separated from each other as in the film forming apparatus 1, and the cylindrical portion 3 is provided with each exhaust port and gas supply port. can't
  • the location serving as the first exhaust port 33 may be used as the first gas supply port, and the location serving as the first gas supply port 31 may be used as the first exhaust port. That is, the apparatus may be configured such that the precursor gas flows as a meandering flow from bottom to top. When the precursor gas is flowed upward in this way, the first gas supply port only needs to be able to supply the first gas to the surface of the wafer W in the fourth stage.
  • the opening is not limited to being at a height below the wafer W in the tier, but may be at a height between the wafer W in the third tier and the wafer W in the fourth tier.
  • the first gas supply port 31 supplies the first gas to one side of the substrate support area in the vertical direction, and the first exhaust port 33 exhausts the first gas from the other side of the substrate support area.
  • the first gas supply port 31 supplies the first gas to the surface of the uppermost wafer W.
  • the opening is above the substrate support area so that the .
  • the first exhaust port 33 is provided for the lowermost wafer W and the wafer one level higher than the lowermost wafer W so that the first gas that has already passed through the surface of the lowermost wafer W can be exhausted. It suffices if the opening is on the lower side than the height between W.
  • the first gas supply port 31 is located on the surface of the lowermost wafer W.
  • the opening should be below the height between the lowermost wafer W and the wafer W one level higher than the lowermost wafer W so that the first gas can be supplied.
  • the first exhaust port 33 may open above the uppermost wafer W so that the first gas that has passed through the surface of the uppermost wafer W can be exhausted.
  • the number of wafers W held in the wafer boat 2 is not limited to five, and may be more or less than five.
  • the wafer boat 2 is rotated by the rotating mechanism 25 during processing. Rotation may not be necessary if highly uniform processing can be performed.
  • N.sub.2 gas was supplied at a flow rate of 1.0.times.10.sup.- 6 kg/sec.
  • the temperature of the wafer W was set to 300K
  • the pressure at the exhaust port 11 of the processing container 10 was set to 266Pa.
  • FIGS. 15 and 16 show the case where the gas is supplied from the first gas supply section 5 with the outer cylinder section 4 set to the first position, and the case where the second gas supply section 6 is set to the second position.
  • 10A and 10B are pressure distribution diagrams in the processing container 10 when a gas is supplied from .
  • FIGS. 15 and 16 show the pressure difference based on the pressure (266 Pa) of the exhaust port 11 described above. Also, in FIGS. 15 and 16, the airflows obtained by the simulation are indicated by arrows in a more simplified manner than the actual ones.
  • the pressure gradient is such that the lower the height region defined by the wafer W in the cylindrical portion 3, the lower the pressure. was formed. According to this pressure gradient, it was confirmed that the gas forms a meandering flow as described in the embodiment, flows on the surface of each wafer W, and is exhausted to the exhaust space 12A. Moreover, the pressure difference between the surface of the wafer W on the uppermost stage and the surface of the wafer W on the lowermost stage is about 0.3 Pa, which is about 0.1% of the pressure of the exhaust port 11 described above. Therefore, it is presumed that the pressure environment in which each wafer W is placed is substantially the same, and that each wafer W is processed with high uniformity.

Abstract

A substrate treatment device according to the present disclosure comprises a treatment container, a first gas supply port, a first exhaust port, and recesses. The treatment container is provided with a cylinder part having an axis oriented in the longitudinal direction and storing a substrate support implement which supports a plurality of substrates in a shelf-like manner in the longitudinal direction. The first gas supply port supplies a first gas for treating each of the substrates to one side in the longitudinal direction of a substrate support area at which each of the substrates is supported within the cylinder part. The first exhaust port exhausts the first gas from the other side in the longitudinal direction of the substrate support area. The recesses are positioned at the height of each of the substrates in the inner side surface of the cylinder part and are alternately provided at the left and right as viewed along the longitudinal direction so as to form a flow passage, which causes the first gas to flow from the first gas supply port towards the first exhaust port while meandering left and right along the surfaces of each of the substrates.

Description

基板処理装置及び基板処理方法SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
 本開示は、基板処理装置及び基板処理方法に関する。 The present disclosure relates to a substrate processing apparatus and a substrate processing method.
 半導体ウエハ(以下「ウエハ」という)に対して処理を行う装置として、処理容器内に複数枚のウエハを棚状に配置し、各ウエハの表面に処理ガスを供給して一括して処理を行うものが知られている。特許文献1にはそのような装置の一例として、各ウエハに側方から処理ガスを供給して処理を行う構成の基板処理装置が記載されている。 As an apparatus for processing semiconductor wafers (hereinafter referred to as "wafers"), a plurality of wafers are arranged in a shelf in a processing container, and a processing gas is supplied to the surface of each wafer to process them all at once. things are known. As an example of such an apparatus, Japanese Patent Application Laid-Open No. 2002-200003 describes a substrate processing apparatus configured to process each wafer by supplying a processing gas from the side thereof.
特開2015-191955号公報JP 2015-191955 A
 本開示は、棚状に支持された複数の基板にガスを供給して処理するにあたって、当該ガスの供給量を抑制することにある。 An object of the present disclosure is to suppress the amount of gas supplied when processing a plurality of substrates supported in a shelf shape by supplying the gas.
 本開示の基板処理装置は、複数の基板を縦方向に棚状に支持する基板支持具を収納し、軸が前記縦方向を向く筒部を備える処理容器と、
前記筒部内における前記各基板が支持される基板支持領域の縦方向の一方側に、前記各基板を処理するための第1のガスを供給する第1のガス供給口と、
前記基板支持領域の縦方向の他方側から前記第1のガスを排気するための第1の排気口と、
 前記第1のガスが前記第1のガス供給口から前記第1の排気口へ向けて前記各基板の表面に沿って左右に蛇行して流れるための流路をなすように前記筒部の内側面における前記各基板の高さに位置し、前記縦方向に沿って見て左右交互に設けられる凹部と、
 を備える。
A substrate processing apparatus according to the present disclosure includes a processing container that houses a substrate support that supports a plurality of substrates in a shelf shape in the vertical direction, and that includes a cylindrical portion whose axis faces the vertical direction;
a first gas supply port for supplying a first gas for processing each substrate to one side in the vertical direction of a substrate support area in which each substrate is supported in the tubular portion;
a first exhaust port for exhausting the first gas from the other longitudinal side of the substrate support area;
The inside of the tubular portion forms a flow path for the first gas to meander from the first gas supply port toward the first exhaust port along the surface of each of the substrates. recesses located at the height of each of the substrates on the side surface and provided alternately to the left and right when viewed along the vertical direction;
Prepare.
 本開示によれば棚状に支持された複数の基板に処理ガスを供給して処理するにあたって、当該ガスの供給量を抑制することができる。 According to the present disclosure, it is possible to suppress the supply amount of the gas when the processing gas is supplied to the plurality of substrates supported in the form of shelves.
本開示に係る成膜装置のX軸断面図である。1 is an X-axis cross-sectional view of a film forming apparatus according to the present disclosure; FIG. 本開示に係る成膜装置のY軸断面図である。1 is a Y-axis cross-sectional view of a film forming apparatus according to the present disclosure; FIG. 成膜装置に設けられるウエハボートの斜視図である。1 is a perspective view of a wafer boat provided in a film forming apparatus; FIG. 成膜装置に設けられる筒部の斜視図である。It is a perspective view of a cylinder part provided in a film-forming apparatus. 前記筒部の透過斜視図である。It is a transparent perspective view of the said cylinder part. 成膜装置に設けられる外筒部の斜視図である。It is a perspective view of the outer cylinder part provided in the film-forming apparatus. 前記外筒部の透過斜視図である。It is a transparent perspective view of the said outer cylinder part. 前記外筒部を第1の位置に合わせた平面図である。It is the top view which match|combined the said outer cylinder part with the 1st position. 前記外筒部を第2の位置に合わせた平面図である。It is the top view which match|combined the said outer cylinder part with the 2nd position. 外筒部を第1の位置に合わせたときのガスの流れを示す作用図である。FIG. 10 is an operation diagram showing the flow of gas when the outer cylindrical portion is aligned with the first position; 外筒部を第2の位置に合わせたときのガスの流れを示す作用図である。FIG. 10 is an operation diagram showing the flow of gas when the outer cylinder part is aligned with the second position; 本開示に係る成膜装置の他の例のX軸断面図である。FIG. 4 is an X-axis cross-sectional view of another example of a film forming apparatus according to the present disclosure; 本開示に係る成膜装置の他の例のY軸断面図である。FIG. 4 is a Y-axis cross-sectional view of another example of a film forming apparatus according to the present disclosure; 本開示に係る成膜装置の他の例の平面図である。FIG. 4 is a plan view of another example of a film forming apparatus according to the present disclosure; 外筒部を第1の位置に合わせたときのガスの圧力を示す圧力分布図である。FIG. 10 is a pressure distribution diagram showing the pressure of gas when the outer cylindrical portion is aligned with the first position; 外筒部を第2の位置に合わせたときのガスの圧力を示す圧力分布図である。FIG. 11 is a pressure distribution diagram showing the pressure of gas when the outer cylindrical portion is aligned with the second position;
 本開示に係る基板処理装置をウエハWに対して成膜を行う成膜装置に適用した例を説明する。図1、図2は、夫々成膜装置1のX軸方向に沿った縦断面図、Y軸方向に沿った縦断面図を示しており、X軸、Y軸は互いに直交する水平な軸である。また図中のZ軸は、X軸及びY軸に直交する縦軸であり、具体的には例えば鉛直軸である。なお以下、明細書中では、図1を正面に見て左手側、右手側を成膜装置1の左側、右側として記載し、図2を正面に見て左手側、右手側を成膜装置1の前方側、後方側として示す。従って、X軸方向は左右方向であり、Y軸方向は前後方向である。 An example in which the substrate processing apparatus according to the present disclosure is applied to a film forming apparatus that forms a film on a wafer W will be described. 1 and 2 show a vertical cross-sectional view along the X-axis direction and a vertical cross-sectional view along the Y-axis direction, respectively, of the film forming apparatus 1. The X-axis and the Y-axis are horizontal axes perpendicular to each other. be. The Z-axis in the drawing is a vertical axis orthogonal to the X-axis and the Y-axis, specifically, for example, a vertical axis. In the following description, the left and right sides of the film forming apparatus 1 are referred to as the left and right sides of the film forming apparatus 1 when viewed from the front in FIG. shown as the anterior and posterior sides of the . Therefore, the X-axis direction is the left-right direction, and the Y-axis direction is the front-rear direction.
 成膜装置1の概略構成について述べると、当該成膜装置1は低背で概ね円形の処理容器10を備えている。処理容器10の内部には、複数のウエハWをZ軸方向、即ち縦方向に棚状に支持する基板支持具であるウエハボート2が設けられている。また処理容器10内には、蓋部を備える筒部3と、筒部3を囲む外筒部4と、が各々起立して設けられ、ウエハボート2は筒部3内に収納される。そして、処理容器10の周囲を囲むように加熱部14が設けられ、ウエハボート2に載置される各ウエハWを加熱できるように構成されている。 Regarding the schematic configuration of the film forming apparatus 1 , the film forming apparatus 1 includes a low-profile, generally circular processing container 10 . A wafer boat 2 which is a substrate support for supporting a plurality of wafers W in the Z-axis direction, that is, in the vertical direction, is provided inside the processing container 10 . A cylindrical portion 3 having a lid portion and an outer cylindrical portion 4 surrounding the cylindrical portion 3 are provided upright in the processing container 10 , and the wafer boat 2 is accommodated in the cylindrical portion 3 . A heating unit 14 is provided so as to surround the processing container 10 and is configured to heat each wafer W placed on the wafer boat 2 .
 さらに処理容器10の左側面には排気口11が形成されている。排気口11には、外筒部4、及び筒部3と、処理容器10の側壁との間に形成される排気空間12Aを排気する排気部12が接続されている。なお排気空間12Aは、外筒部4の外周側から外筒部4及び筒部3の上方側に亘るように形成されている。筒部3に設けられる後述の排気口が外筒部4に設けられる貫通孔を介して排気空間12Aに接続され、排気口11からの排気によって筒部3内も排気される。 Further, an exhaust port 11 is formed on the left side surface of the processing container 10 . The exhaust port 11 is connected to an exhaust portion 12 that exhausts an exhaust space 12A formed between the outer cylinder portion 4 and the cylinder portion 3 and the side wall of the processing container 10 . The exhaust space 12</b>A is formed so as to extend from the outer peripheral side of the outer cylinder portion 4 to the upper side of the outer cylinder portion 4 and the cylinder portion 3 . An exhaust port (to be described later) provided in the cylindrical portion 3 is connected to the exhaust space 12A through a through hole provided in the outer cylindrical portion 4, and the exhaust from the exhaust port 11 exhausts the inside of the cylindrical portion 3 as well.
 この成膜装置1はALD(Atomic Layer Deposition)によりウエハWに成膜を行うものである。従って上記の筒部3内には、膜の前駆体を含む前駆体ガスと、当該前駆体ガスと反応して反応生成物を生じる反応ガスと、不要な前駆体ガス及び反応ガスをパージするためのパージガスとが供給される。ウエハボート2への前駆体ガスの供給時と、ウエハボート2へのパージガス及び反応ガスの供給時とで、筒部3における互いに異なる位置の貫通孔が排気口として用いられる。外筒部4は、この排気口の切替えに利用される。また、前駆体ガスと、反応ガス及びパージガスとは、筒部3における異なる位置の開口部から当該筒部3内に供給される。その排気位置及び給気位置の切替えにより、前駆体ガスは筒部3内を左右に蛇行しつつ下方に向かう蛇行流をなし、反応ガス及びパージガスは前方から後方に向って流れる。このようにガスの種類に応じて流通経路を切り替える理由については後に詳述する。 This film forming apparatus 1 forms a film on a wafer W by ALD (Atomic Layer Deposition). Therefore, the cylinder 3 contains a precursor gas containing a film precursor, a reaction gas that reacts with the precursor gas to produce a reaction product, and unnecessary precursor gas and reaction gas for purging. of purge gas are supplied. Through-holes at different positions in the cylindrical portion 3 are used as exhaust ports when the precursor gas is supplied to the wafer boat 2 and when the purge gas and reaction gas are supplied to the wafer boat 2 . The outer cylinder part 4 is used for switching the exhaust port. Further, the precursor gas, the reaction gas, and the purge gas are supplied into the cylinder portion 3 from openings at different positions in the cylinder portion 3 . By switching the exhaust position and the air supply position, the precursor gas forms a downward meandering flow while meandering left and right in the cylindrical portion 3, and the reaction gas and the purge gas flow from the front to the rear. The reason for switching the distribution route according to the type of gas will be described in detail later.
 以下、成膜装置1の各部について詳しく説明する。処理容器10を構成する底板10Aの中央部には円形の開口部13が形成され、開口部13を塞ぐ円形の蓋部20が設けられている。蓋部20の中心部には貫通孔21が形成され、貫通孔21には、上端に支持台23が設置された回転軸24がZ軸方向に沿って挿通されており、斜視図である図3に示すように、支持台23上にウエハボート2が載置される。回転軸24の下方は、蓋部20の下方に設けられた回転機構25に接続されており、当該回転機構25によって支持台23及びウエハボート2は、処理中に平面視時計回りに回転する。なお、回転軸24と蓋部20との間の隙間にはパージガス供給源63よりパージガスが供給され、処理容器10内に流入して上記の排気空間12Aから排気される。当該パージガスの供給により、上記の前駆体ガス及び反応ガスが回転軸24と蓋部20との間の隙間をシールするためのシール機構(不図示)に供給されることが防止されるようにしている。その回転機構25及び蓋部20は図示しない昇降機構に接続されており、処理容器10に対して昇降することで開口部13を開閉し、ウエハボート2の処理容器10内に対する搬入出が可能である。 Each part of the film forming apparatus 1 will be described in detail below. A circular opening 13 is formed in the central portion of the bottom plate 10A that constitutes the processing container 10, and a circular lid 20 that closes the opening 13 is provided. A through-hole 21 is formed in the center of the lid portion 20, and a rotating shaft 24 having a support base 23 installed at the upper end thereof is inserted through the through-hole 21 along the Z-axis direction. 3, the wafer boat 2 is placed on the support table 23. As shown in FIG. A lower portion of the rotating shaft 24 is connected to a rotating mechanism 25 provided below the lid portion 20. The rotating mechanism 25 rotates the support base 23 and the wafer boat 2 clockwise in plan view during processing. A purge gas is supplied from a purge gas supply source 63 to the gap between the rotating shaft 24 and the lid portion 20, flows into the processing container 10, and is exhausted from the exhaust space 12A. By supplying the purge gas, the precursor gas and reaction gas are prevented from being supplied to a sealing mechanism (not shown) for sealing the gap between the rotating shaft 24 and the lid portion 20. there is The rotating mechanism 25 and the lid portion 20 are connected to an elevating mechanism (not shown), and by moving up and down with respect to the processing container 10 , the opening portion 13 can be opened and closed, and the wafer boat 2 can be loaded into and unloaded from the processing container 10 . be.
 ウエハボート2は、ウエハWの径(300mm)よりも大きな径を有する円形の底板26を備え、当該底板26が上記の支持台23上に支持される。底板26の周縁部のうちの半周領域において、Z軸方向に伸びる例えば4本の支柱27が、底板26の周方向に等間隔に設けられている。そして底板26の上方には、4つの載置部200がZ軸方向に互いに間隔を空けて設けられている。 The wafer boat 2 includes a circular bottom plate 26 having a diameter larger than the diameter of the wafer W (300 mm), and the bottom plate 26 is supported on the support base 23 described above. For example, four columns 27 extending in the Z-axis direction are provided at equal intervals in the circumferential direction of the bottom plate 26 in a half-peripheral area of the peripheral portion of the bottom plate 26 . Four mounting portions 200 are provided above the bottom plate 26 at intervals in the Z-axis direction.
 載置部200は、その外径が底板26の直径と同じ寸法である円形のリング状部材であり、その周縁部が各支柱27に支持されている。載置部200の上面には全周に亘って段部が形成されており、外周縁部に比べて内周縁部の高さが低い。この内周縁部の上面が載置面28としてウエハWの周縁部を支持し、上記の段部によりウエハWの載置部200上での位置ずれが防止される。この載置部200の各々にウエハWが載置されることで、既述したようにウエハWはウエハボート2にZ軸方向に棚状に支持される。ウエハボート2において最上段のウエハWが支持される高さから、最下段のウエハWが支持される高さに至るまでが基板支持領域である。ところで、このように支持されるウエハWについて、以降は上から数えた場合の順番に従って記載する場合が有る。具体的には2段目、3段目のウエハWと記載した場合には、上から数えて2番目、3番目のウエハWである。同様に載置部200及び後述の凹部32についても上から数えた場合の順番に従って記載する場合が有る。 The mounting part 200 is a circular ring-shaped member whose outer diameter is the same size as the diameter of the bottom plate 26 , and its peripheral edge is supported by each support 27 . A stepped portion is formed along the entire circumference of the upper surface of the mounting portion 200, and the height of the inner peripheral edge portion is lower than that of the outer peripheral edge portion. The upper surface of the inner peripheral edge portion supports the peripheral edge portion of the wafer W as the mounting surface 28 , and the stepped portion prevents the wafer W from being displaced on the mounting portion 200 . By mounting the wafers W on each of the mounting portions 200, the wafers W are supported by the wafer boat 2 in a shelf shape in the Z-axis direction, as described above. A substrate support area extends from the height at which the wafer W at the top of the wafer boat 2 is supported to the height at which the wafer W at the bottom is supported. By the way, the wafers W supported in this manner may be described in the order counted from the top. Specifically, the second and third wafers W are the second and third wafers W counted from the top. Similarly, the mounting portion 200 and the recessed portion 32 to be described later may also be described according to the order counted from the top.
 続いて筒部3について図4、図5の斜視図も参照して説明する。図5では、図4で省略した筒部3の内壁に形成される各部の配置を示している。なお、以下の装置構成の説明では特に記載無い限り、処理容器10の開口部13が閉じられて、ウエハボート2が筒部3に収納された状態であるものとして述べる。筒部3は軸が縦方向、より具体的にはZ軸方向を向く円筒状に構成されており、天板(蓋部)30を備えている。筒部3の下端は、開口部13の周縁に接続されている。上記した蛇行流を形成する目的から、筒部3の内周面はウエハボート2の載置部200の外縁に対して近接しており、当該筒部3の内周面と載置部200との距離L1(図1参照)は、凹部32の深さよりも十分に小さい距離、例えば2mmである。 Next, the cylindrical portion 3 will be described with reference to the perspective views of FIGS. 4 and 5 as well. FIG. 5 shows the arrangement of each part formed on the inner wall of the cylindrical portion 3 omitted in FIG. In the following description of the apparatus configuration, it is assumed that the opening 13 of the processing container 10 is closed and the wafer boat 2 is accommodated in the cylindrical portion 3, unless otherwise specified. The cylindrical portion 3 is configured in a cylindrical shape with its axis directed in the vertical direction, more specifically in the Z-axis direction, and has a top plate (lid portion) 30 . A lower end of the cylindrical portion 3 is connected to the peripheral edge of the opening 13 . For the purpose of forming the above-described meandering flow, the inner peripheral surface of the cylindrical portion 3 is close to the outer edge of the mounting portion 200 of the wafer boat 2, and the inner peripheral surface of the cylindrical portion 3 and the mounting portion 200 are in close contact with each other. The distance L1 (see FIG. 1) is sufficiently smaller than the depth of the recess 32, for example 2 mm.
 筒部3の天板30の縁部の上面には、第1のガスである前駆体ガスを筒部3内に導入するための流路31Aの上流端が開口している。この流路31Aの下流側は下方へと伸び、筒部3の内側壁の上端部に開口することで、第1のガス供給口31として形成されている。第1のガス供給口31は、最上段のウエハW及び最上段の載置部200よりも上側で、右側方に開口している。また筒部3の側壁には、筒部3内のウエハボート2の最下段のウエハW及び最下段の載置部200よりも下方に貫通孔が形成され、第1の排気口33をなす。この第1の排気口33は、筒部3の周に沿ったスリット状に形成され、右側方に位置する。以上のように第1のガス供給口31及び第1の排気口33が設けられるため、筒部3内の基板支持領域の縦方向の一方側(上側)に前駆体ガスを供給可能であり、且つ、当該基板支持領域の他方側(下側)から前駆体ガスを排気可能である。 An upstream end of a flow path 31A for introducing the precursor gas, which is the first gas, into the cylindrical portion 3 is open on the upper surface of the edge portion of the top plate 30 of the cylindrical portion 3 . The downstream side of the flow path 31A extends downward and opens at the upper end of the inner wall of the cylindrical portion 3, forming a first gas supply port 31. As shown in FIG. The first gas supply port 31 is above the uppermost wafer W and the uppermost mounting portion 200 and opens rightward. A through hole is formed in the side wall of the cylindrical portion 3 below the lowermost wafer W and the lowermost mounting portion 200 of the wafer boat 2 in the cylindrical portion 3 to form a first exhaust port 33 . The first exhaust port 33 is formed in a slit shape along the circumference of the cylindrical portion 3 and is positioned on the right side. Since the first gas supply port 31 and the first exhaust port 33 are provided as described above, the precursor gas can be supplied to one side (upper side) in the vertical direction of the substrate supporting region in the cylindrical portion 3, In addition, the precursor gas can be exhausted from the other side (lower side) of the substrate support area.
 また筒部3の内周面における左側、右側には、当該筒部3の周方向に沿って横長に形成された凹部32が各々2つずつ設けられている。従って各凹部32は平面視で円弧状に形成されている。平面視で、左側の凹部32の円弧を等分する点と右側の凹部32の円弧を等分する点とは、筒部3の軸P(Z軸に沿っており、図1、図2及び後述の図8、図9で表示している)を挟んで対向する。各凹部32の縦方向の幅については、載置部200の縦方向の幅よりも大きい。そして、左側の2つの凹部32についてはZ軸方向に互いに離れており、右側の2つの凹部32についてもZ軸方向に互いに離れている。 In addition, two concave portions 32 are provided on each of the left side and the right side of the inner peripheral surface of the cylindrical portion 3 and are formed horizontally along the circumferential direction of the cylindrical portion 3 . Therefore, each concave portion 32 is formed in an arc shape in plan view. In plan view, the point that equally divides the arc of the recessed portion 32 on the left side and the point that equally divides the arc of the recessed portion 32 on the right side are along the axis P (Z-axis) of the cylindrical portion 3 and are shown in FIGS. (shown in FIGS. 8 and 9 to be described later) are sandwiched therebetween. The width of each concave portion 32 in the vertical direction is greater than the width of the mounting portion 200 in the vertical direction. The two recessed portions 32 on the left side are separated from each other in the Z-axis direction, and the two recessed portions 32 on the right side are also separated from each other in the Z-axis direction.
 左側の2つの凹部32について、上側の凹部32が形成された高さの範囲に1段目の載置部200の高さの中央部が位置し、下側の凹部32が形成された高さの範囲に3段目の載置部200の高さの中央部が位置している。右側の2つの凹部32について、上側の凹部32が形成された高さの範囲に2段目の載置部200の高さの中央部が位置し、下側の凹部32が形成された高さの範囲に4段目の載置部200の高さの中央部が位置している。凹部32と、当該凹部32の高さの範囲にその高さの中央部が位置する載置部200と、を互いに対応する凹部32、載置部200とする。このように凹部32は各段の載置部200(即ち各段のウエハW)の高さに位置し、縦方向(Z軸方向)に沿って見て左右交互に設けられている。 Regarding the two recessed portions 32 on the left side, the central portion of the height of the first stage mounting portion 200 is positioned within the height range where the upper recessed portions 32 are formed, and the height at which the lower recessed portions 32 are formed. The central portion of the height of the third stage mounting portion 200 is located in the range of . Regarding the two recesses 32 on the right side, the central portion of the height of the second-stage mounting portion 200 is positioned within the height range where the upper recesses 32 are formed, and the height at which the lower recesses 32 are formed. The central portion of the height of the fourth stage mounting portion 200 is located in the range of . The concave portion 32 and the mounting portion 200 whose center portion of the height is located within the height range of the concave portion 32 are referred to as the concave portion 32 and the mounting portion 200 corresponding to each other. In this manner, the recesses 32 are positioned at the height of the mounting portions 200 (that is, the wafers W in each stage) of each stage, and are alternately provided on the left and right when viewed along the vertical direction (Z-axis direction).
 凹部32が上記の縦幅を有するため、凹部32の上端は、当該凹部32に対応する載置部200及び当該凹部32に対応するウエハWの各上面よりも上方に位置する。そして凹部32の下端は、当該凹部32に対応する載置部200及び当該凹部32に対応するウエハWの各下面よりも下方に位置する。これは後述するように、ガスが1段ずつ順番に流れるようにガイドする流路とするためである。そして1段目の凹部32、3段目の凹部32は、2段目及び4段目の載置部200及びウエハWからずれた高さに位置し、2段目の凹部32、4段目の凹部32は1段目及び3段目の載置部200及びウエハWからずれた高さに位置している。つまり、各段の載置部200及びウエハWに対して、凹部32は左右のうちの片方のみに設けられた構成になっている。また、4段目の凹部32の下部には、上記の第1の排気口33が接続されている。見方を変えれば、当該凹部32の下部側が、筒部3の外方へ向ってさらに窪み、筒部3の外周面に開口することで、第1の排気口33として形成されている。 Since the concave portion 32 has the above-described vertical width, the upper end of the concave portion 32 is located above the upper surfaces of the mounting portion 200 corresponding to the concave portion 32 and the wafer W corresponding to the concave portion 32 . The lower end of the recess 32 is located below the lower surfaces of the mounting portion 200 corresponding to the recess 32 and the wafer W corresponding to the recess 32 . As will be described later, this is for the purpose of guiding the gas so that it flows step by step. The recessed portion 32 of the first stage and the recessed portion 32 of the third stage are positioned at a height offset from the mounting portions 200 of the second and fourth stages and the wafer W, and the recessed portion 32 of the second stage and the recessed portion 32 of the fourth stage The concave portion 32 is located at a height offset from the mounting portions 200 and the wafer W on the first and third stages. In other words, the concave portion 32 is provided only on one side of the mounting portion 200 and the wafer W on each stage. The first exhaust port 33 is connected to the lower portion of the recess 32 on the fourth stage. From a different point of view, the lower side of the recessed portion 32 is further recessed toward the outer side of the cylindrical portion 3 and opened to the outer peripheral surface of the cylindrical portion 3 to form the first exhaust port 33 .
筒部3において以上に述べた凹部32が形成された箇所は、載置部200との間に十分なコンダクタンスが確保される。従って、当該凹部32と、棚状に配置されることでウエハW間に形成される隙間とにより、第1のガス供給口31から第1の排気口33へ向うと共に、左右に蛇行する流路が形成される。つまり筒部3内において前駆体ガスは、一の段のウエハWの表面を当該ウエハWの左端及び右端のうちの一方から他方へ流れ、凹部32を介して下方へ移動し、次の段のウエハWの表面を当該ウエハWの左端及び右端のうちの他方から一方へ流れる。 Sufficient conductance is ensured with the mounting portion 200 at the portion of the cylindrical portion 3 where the concave portion 32 described above is formed. Therefore, due to the concave portion 32 and the gap formed between the wafers W by being arranged in a shelf shape, the flow path that flows from the first gas supply port 31 to the first exhaust port 33 and meanders left and right. is formed. That is, in the cylindrical portion 3, the precursor gas flows on the surface of the wafer W in one stage from one of the left end and the right end of the wafer W to the other, moves downward through the recess 32, and moves downward on the surface of the wafer W in the next stage. It flows on the surface of the wafer W from the other of the left end and the right end of the wafer W to one.
 また筒部3の前方側の側壁にはZ軸方向に5段に貫通孔が形成されており、筒部3の内側面に各々開口する第2のガス供給口35をなす。この5つの第2のガス供給口35は、第2のガスとして反応ガス及びパージガスを供給するための供給口であり、筒部3の周方向に伸びるスリット状に形成されている。第2のガス供給口35は、各段の載置部200の上側及び最下段の載置部200の下方側に位置しており、各ウエハWの表面側及び裏面側に反応ガス及びパージガスを供給する。 In addition, through holes are formed in five stages in the Z-axis direction in the front side wall of the cylindrical portion 3 , forming second gas supply ports 35 each opening to the inner surface of the cylindrical portion 3 . The five second gas supply ports 35 are supply ports for supplying reaction gas and purge gas as the second gas, and are formed in a slit shape extending in the circumferential direction of the cylindrical portion 3 . The second gas supply port 35 is positioned above the mounting portion 200 of each stage and below the mounting portion 200 of the lowest stage, and supplies the reaction gas and the purge gas to the front surface side and the rear surface side of each wafer W. supply.
さらに筒部3の後方側の側壁には、Z軸方向に5段に貫通孔が形成されており、筒部3の内側面に各々開口する第2の排気口36をなす。この5つの第2の排気口36は反応ガス及びパージガスの排気用であり、筒部3の周方向に伸びるスリット状に形成されている。上記のように各々筒部3の側壁に形成されているため、平面視、第2のガス供給口35及び第2の排気口36は円弧状であり、例えば互いに同じ長さに形成されている。そして平面視で、第2のガス供給口35の円弧を等分する点と第2の排気口36の円弧を等分する点とは、筒部3の軸Pを挟んで対向する。また、例えば第2のガス供給口35と第2の排気口36とについては、縦幅も同じ大きさである。第2のガス供給口35からの反応ガスあるいはパージガスの供給と、第2の排気口36からの排気とを行うことで、前方から後方に向けて各ウエハWの表面及び裏面に沿って当該ガスが流れる。 Furthermore, through-holes are formed in five stages in the Z-axis direction in the rear side wall of the cylindrical portion 3 , forming second exhaust ports 36 that open to the inner surface of the cylindrical portion 3 . The five second exhaust ports 36 are for exhausting reaction gas and purge gas, and are formed in a slit shape extending in the circumferential direction of the cylindrical portion 3 . Since each is formed on the side wall of the cylindrical portion 3 as described above, the second gas supply port 35 and the second exhaust port 36 are arcuate in plan view, and are formed to have the same length, for example. . In a plan view, the point that equally divides the arc of the second gas supply port 35 and the point that equally divides the arc of the second exhaust port 36 face each other with the axis P of the cylindrical portion 3 interposed therebetween. Further, for example, the second gas supply port 35 and the second exhaust port 36 have the same vertical width. By supplying a reaction gas or a purge gas from the second gas supply port 35 and exhausting it from the second exhaust port 36, the gas is supplied from the front to the rear along the front surface and the back surface of each wafer W. flows.
凹部32、第2のガス供給口35、第2の排気口36の配置について補足しておく。平面視、軸Pを通るようにX軸に沿った線によって各々等分されるように、左側の凹部32及び右側の凹部32が配置されている。また、平面視、軸Pを通るようにY軸に沿った線によって各々等分されるように、第2のガス供給口35及び第2の排気口36が各々配置されている。そのような配置により、蛇行流として左右の一方の凹部32から左右の他方の凹部32へと流れる前駆体ガスから見て、第2のガス供給口35及び第2の排気口36が共に大きく離れて位置することになる。それ故に、当該前駆体ガスの流れは、筒部3の周面に第2のガス供給口35及び第2の排気口36が設けられることの影響を受け難くなる。つまり、第2のガス供給口35及び第2の排気口36付近での淀みや滞留の発生が防止され、ウエハWの処理の面内均一性を高くすることができる。 The arrangement of the concave portion 32, the second gas supply port 35, and the second exhaust port 36 will be supplemented. In plan view, the left recess 32 and the right recess 32 are arranged so as to be each equally divided by a line passing through the axis P and along the X axis. Further, the second gas supply port 35 and the second exhaust port 36 are arranged so as to be equally divided by a line along the Y-axis passing through the axis P in plan view. With such an arrangement, both the second gas supply port 35 and the second exhaust port 36 are largely separated from each other when viewed from the precursor gas flowing from one of the left and right recessed portions 32 to the other left and right recessed portions 32 as a meandering flow. will be located. Therefore, the flow of the precursor gas is less likely to be affected by the provision of the second gas supply port 35 and the second exhaust port 36 on the peripheral surface of the tubular portion 3 . That is, the occurrence of stagnation and retention near the second gas supply port 35 and the second exhaust port 36 is prevented, and the in-plane uniformity of processing of the wafer W can be improved.
なお、筒部3の側壁において、第2のガス供給口35及び第2の排気口36よりも下方に例えば9つの貫通孔が穿孔されており、排気孔34をなす。これらの排気孔34は、筒部3の周に沿って等間隔に配置されており、既述した回転軸24の周囲に供給されて当該筒部3内に流入するパージガスを、筒部3の外部へ排出するための流路として構成されている。 For example, nine through-holes are formed in the side wall of the cylindrical portion 3 below the second gas supply port 35 and the second exhaust port 36 to form the exhaust hole 34 . These exhaust holes 34 are arranged at equal intervals along the circumference of the cylindrical portion 3, and the purge gas supplied around the rotating shaft 24 and flowing into the cylindrical portion 3 is discharged through the cylindrical portion 3. It is configured as a channel for discharging to the outside.
 続いて筒部3を囲む外筒部4について、図6、図7の斜視図も参照して説明する。図7では、図6で省略した筒部3の内壁に形成される各部の配置を示している。外筒部4は筒部3と同軸の円筒として構成されている。従って、上述の筒部3の軸Pは、外筒部4の軸でもある。そして外筒部4の内周面は、筒部3の外周面に近接する。図1、図2に示すように外筒部4の下端側は、底板10Aに形成された環状の開口部19を介して処理容器10の下方に突出し、例えば当該外筒部4の周方向に間隔を空けて設けられる支柱45により支持される。支柱45は腕部45Aを介して当該支柱45を鉛直軸周りに回転させる回転機構46に接続されている。なお、上記の支柱45は、十分に長く、蓋部20を下降させたときに腕部45Aがウエハボート2の下降を妨げないように形成されている。開口部19の縁部と外筒部4とがなす隙間にはパージガス供給源63よりパージガスが供給され、処理容器10内に流入して上記の排気空間12Aから排気される。当該パージガスの供給により、上記の前駆体ガス及び反応ガスが、開口部19の縁部と外筒部4とがなす隙間をシールするためのシール機構(不図示)に供給されることが防止されるようにしている。 Next, the outer cylindrical portion 4 surrounding the cylindrical portion 3 will be described with reference to the perspective views of FIGS. 6 and 7 as well. FIG. 7 shows the arrangement of each part formed on the inner wall of the cylindrical portion 3 omitted in FIG. The outer cylinder portion 4 is configured as a cylinder coaxial with the cylinder portion 3 . Therefore, the axis P of the tubular portion 3 described above is also the axis of the outer tubular portion 4 . The inner peripheral surface of the outer tubular portion 4 is close to the outer peripheral surface of the tubular portion 3 . As shown in FIGS. 1 and 2, the lower end side of the outer cylinder portion 4 protrudes downward from the processing container 10 through an annular opening 19 formed in the bottom plate 10A. It is supported by struts 45 provided at intervals. The column 45 is connected to a rotation mechanism 46 that rotates the column 45 about the vertical axis via an arm portion 45A. The support column 45 is formed sufficiently long so that the arm portion 45A does not hinder the lowering of the wafer boat 2 when the lid portion 20 is lowered. A purge gas is supplied from a purge gas supply source 63 to the gap between the edge of the opening 19 and the outer cylinder 4, flows into the processing container 10, and is exhausted from the exhaust space 12A. The supply of the purge gas prevents the precursor gas and the reaction gas from being supplied to a sealing mechanism (not shown) for sealing the gap formed between the edge of the opening 19 and the outer cylindrical portion 4 . I'm trying to
回転機構46は外筒部4を筒部3に対して、軸P周りに相対的に回転させる。より詳しく述べると、回転機構46は外筒部4を平面視時計回り、反時計回りに夫々回転させて、筒部3に対しての外筒部4の位置の切り替えを行う。 The rotating mechanism 46 rotates the outer tube portion 4 around the axis P relative to the tube portion 3 . More specifically, the rotation mechanism 46 rotates the outer cylinder 4 clockwise and counterclockwise in a plan view to switch the position of the outer cylinder 4 with respect to the cylinder 3 .
 外筒部4の側壁には、第1の貫通孔41、第2の貫通孔42及び第3の貫通孔43が形成されている。これらの貫通孔41、42、43は、筒部3における第1の排気口33、第2のガス供給口35、第2の排気口36と夫々重なることによって、当該第1の排気口33、第2のガス供給口35、第2の排気口36を外筒部4の外側に開放させる役割を有する。 A first through-hole 41 , a second through-hole 42 and a third through-hole 43 are formed in the side wall of the outer cylindrical portion 4 . These through holes 41 , 42 , 43 overlap the first exhaust port 33 , the second gas supply port 35 , and the second exhaust port 36 of the cylindrical portion 3 , respectively, so that the first exhaust port 33 , It has a role of opening the second gas supply port 35 and the second exhaust port 36 to the outside of the outer cylindrical portion 4 .
第1の貫通孔41は第1の排気口33の形状に対応して、外筒部4の周に沿ったスリット状に形成されている。そして、第2の貫通孔42は既述のように5段に設けられる第2のガス供給口35に対応して縦長に形成されており、第3の貫通孔43は既述のように5段に設けられる第2の排気口36に対応して縦長に形成されている。つまり、第2の貫通孔42及び第3の貫通孔43の各上端部は最上段の第2のガス供給口35及び第2の排気口36の高さに位置している。また第2の貫通孔42及び第3の貫通孔43の各下端部は、最下段の第2のガス供給口35及び第2の排気口36の高さに位置している。そのように第2のガス供給口35、第2の排気口36に各々対応するものであるため、第2の貫通孔42及び第3の貫通孔43は互いに対向して配置されている。そして、第1の貫通孔41については、第2の貫通孔42及び第3の貫通孔43に対して外筒部4の周方向にずれた位置に開口している。 The first through hole 41 is formed in a slit shape along the circumference of the outer cylindrical portion 4 corresponding to the shape of the first exhaust port 33 . The second through holes 42 are formed vertically corresponding to the second gas supply ports 35 provided in five stages as described above, and the third through holes 43 are formed in five stages as described above. It is formed vertically corresponding to the second exhaust port 36 provided in the step. In other words, the upper end portions of the second through-hole 42 and the third through-hole 43 are positioned at the height of the second gas supply port 35 and the second exhaust port 36 on the uppermost stage. Further, the lower ends of the second through-hole 42 and the third through-hole 43 are located at the height of the second gas supply port 35 and the second exhaust port 36 at the lowest stage. Since they respectively correspond to the second gas supply port 35 and the second exhaust port 36, the second through hole 42 and the third through hole 43 are arranged to face each other. The first through hole 41 is opened at a position shifted in the circumferential direction of the outer cylindrical portion 4 with respect to the second through hole 42 and the third through hole 43 .
 筒部3と、外筒部4との位置関係を示す図8、図9も参照して説明する。第1の貫通孔41が第1の排気口33に重なるように外筒部4を第1の位置(図8に示す位置)に配置した場合(第1の状態とした場合)、第2の貫通孔42、第3の貫通孔43は、第2のガス供給口35、第2の排気口36から夫々外れる。つまり、第1の位置では第1の排気口33が外筒部4の外側に対して開放される一方、外筒部4の側壁によって第2のガス供給口35及び第2の排気口36が当該外筒部4の外側に対して閉じられる。第2の貫通孔42、第3の貫通孔43が、第2のガス供給口35、第2の排気口36に夫々重なるように外筒部4を第2の位置(図9に示す位置)に配置した場合(第2の状態とした場合)、第1の貫通孔41は、第1の排気口33から外れる。つまり、第2の位置では第2のガス供給口35及び第2の排気口36が外筒部4の外側に対して開放される一方、外筒部4の側壁によって第1の排気口33が外筒部4の外側に対して閉じられる。第2の位置は、第1の位置に対して軸Pを回転軸として平面視反時計回りの方向に外筒部4を40°回転させた位置である。 Description will also be made with reference to FIGS. When the outer cylinder part 4 is arranged in the first position (the position shown in FIG. 8) so that the first through hole 41 overlaps the first exhaust port 33 (in the first state), the second The through hole 42 and the third through hole 43 are separated from the second gas supply port 35 and the second exhaust port 36, respectively. That is, in the first position, the first exhaust port 33 is open to the outside of the outer cylinder portion 4, while the side wall of the outer cylinder portion 4 allows the second gas supply port 35 and the second exhaust port 36 to be opened. It is closed to the outside of the outer cylindrical portion 4 . The outer cylinder part 4 is moved to the second position (the position shown in FIG. 9) so that the second through hole 42 and the third through hole 43 overlap the second gas supply port 35 and the second exhaust port 36, respectively. 2 (in the second state), the first through hole 41 is separated from the first exhaust port 33 . That is, in the second position, the second gas supply port 35 and the second exhaust port 36 are open to the outside of the outer cylinder portion 4 , while the side wall of the outer cylinder portion 4 opens the first exhaust port 33 . It is closed to the outside of the outer cylinder part 4 . The second position is a position obtained by rotating the outer cylinder part 4 counterclockwise in a plan view by 40° with respect to the first position about the axis P as the rotation axis.
 また外筒部4における下方寄りの位置には、周方向等間隔に例えば9か所の貫通孔44が形成されている。この貫通孔44は、外筒部4を第1の位置及び第2の位置のいずれに合わせたときにも、筒部3の排気孔34に重なる。 Further, nine through-holes 44, for example, are formed at equal intervals in the circumferential direction at positions near the bottom of the outer cylindrical portion 4. As shown in FIG. This through hole 44 overlaps with the exhaust hole 34 of the cylindrical portion 3 when the outer cylindrical portion 4 is set to either the first position or the second position.
 また排気空間12Aにおいて外筒部4の右側には、第1のガス供給部5が設けられている。この第1のガス供給部5は、処理容器10の底板10Aに対して起立して設けられた配管として構成されており、その先端側は外筒部4の上端よりも上方の位置にて、下方に向かうように外筒部4の内方側へ折り返されている。そして、当該第1のガス供給部5の先端に形成されるガス供給口は、筒部3の天板30の流路31Aに近接して開口しており、当該流路31Aに第1のガスを供給可能である。また第1のガス供給部5の基端側は底板10Aを貫いて下方へ向かい、処理容器10の外部にて第1のガス供給源52に接続されている。本例では、第1のガスである前駆体ガスとして、当該第1のガス供給源52から例えばDCS(Dichlorosilane)ガスが供給されるものとする。 A first gas supply section 5 is provided on the right side of the outer cylinder section 4 in the exhaust space 12A. The first gas supply unit 5 is configured as a pipe that is erected with respect to the bottom plate 10A of the processing container 10, and the tip side thereof is located above the upper end of the outer cylindrical portion 4. It is folded back toward the inner side of the outer cylindrical portion 4 so as to face downward. A gas supply port formed at the tip of the first gas supply part 5 is opened in proximity to the flow path 31A of the top plate 30 of the cylindrical part 3, and the first gas is supplied to the flow path 31A. can be supplied. The base end side of the first gas supply unit 5 extends downward through the bottom plate 10A and is connected to the first gas supply source 52 outside the processing container 10 . In this example, DCS (Dichlorosilane) gas, for example, is supplied from the first gas supply source 52 as the precursor gas, which is the first gas.
 また排気空間12Aにおいて外筒部4の前方側には、第2のガス供給部6が設けられている。この第2のガス供給部6は、処理容器10の底板10Aに対して起立して設けられた、左右に幅広の配管として構成されている。第2のガス供給部6における外筒部4に向かう側面については、当該外筒部4に近接すると共にZ軸方向に5段のスリット61が形成されている。各段のスリット61の高さは、筒部3の各段の第2のガス供給口35の高さに揃っており、図9で述べたとおり外筒部4が第2の位置に位置するときに、各スリット61から各第2のガス供給口35へガスを供給することができる。また第2のガス供給部6の基端側は底板10Aを貫いて下方へ向かい、処理容器10の外部にて第2のガス供給源62と、パージガス供給源63とに夫々接続されている。本例では、第2のガスである反応ガスとして第2のガス供給源62から、例えばオゾン(O)ガスが供給され、パージガスとしてパージガス供給源63から、例えば窒素(N)ガスが供給されるものとする。 A second gas supply section 6 is provided on the front side of the outer cylinder section 4 in the exhaust space 12A. The second gas supply unit 6 is configured as a pipe that is wide in the left and right directions and is erected with respect to the bottom plate 10A of the processing container 10 . On the side surface of the second gas supply portion 6 facing the outer cylinder portion 4 , five-stage slits 61 are formed in the Z-axis direction while being close to the outer cylinder portion 4 . The height of the slits 61 on each stage is aligned with the height of the second gas supply port 35 on each stage of the cylindrical portion 3, and the outer cylindrical portion 4 is positioned at the second position as described with reference to FIG. Gas can sometimes be supplied from each slit 61 to each second gas supply port 35 . The base end side of the second gas supply unit 6 extends downward through the bottom plate 10A and is connected to a second gas supply source 62 and a purge gas supply source 63 outside the processing container 10, respectively. In this example, for example, ozone (O 3 ) gas is supplied from the second gas supply source 62 as the reactive gas, which is the second gas, and for example, nitrogen (N 2 ) gas is supplied from the purge gas supply source 63 as the purge gas. shall be
 また成膜装置1には、例えばコンピュータからなる制御部90が設けられている。この制御部90は、プログラム、メモリ、CPUからなるデータ処理部などを備えており、プログラムには、制御部90から成膜装置1の各部に制御信号を送り、例えば成膜処理を実行する各ステップを進行させるように命令(各ステップ)が組み込まれている。このプログラムは、例えばコンパクトディスク、ハードディスク、DVD、メモリーカードなどの記憶媒体に格納されて制御部90にインストールされる。 In addition, the film forming apparatus 1 is provided with a control section 90 made up of, for example, a computer. The control unit 90 includes a data processing unit including a program, a memory, and a CPU. Instructions (each step) are built in to advance the steps. This program is stored in a storage medium such as a compact disc, hard disk, DVD, or memory card and installed in the control unit 90 .
 成膜装置1の作用について説明する。各載置部200にウエハWが載置されたウエハボート2が処理容器10内に格納されて、蓋部20により処理容器10の開口部13が閉じられると、加熱部14により、処理容器10内が加熱される。その一方で、排気部12により処理容器10の内の排気空間12Aの真空引きを行うと共に、回転機構25によりウエハボート2を回転させる。さらに回転機構46により外筒部4を図8に示す第1の位置に位置させ、第2のガス供給口35、第2の排気口36を閉じると共に、第1の排気口33を開いた状態とする。そして、第1のガス供給部5からDCSガスを供給する(ステップS1)。 The action of the film forming apparatus 1 will be described. When the wafer boat 2 in which the wafers W are mounted on the respective mounting portions 200 is stored in the processing container 10 and the opening portion 13 of the processing container 10 is closed by the lid portion 20 , the heating portion 14 heats the processing container 10 . heated inside. On the other hand, the exhaust space 12A in the processing container 10 is evacuated by the exhaust unit 12, and the wafer boat 2 is rotated by the rotation mechanism 25. As shown in FIG. 8 by the rotating mechanism 46, the second gas supply port 35 and the second exhaust port 36 are closed, and the first exhaust port 33 is opened. and Then, the DCS gas is supplied from the first gas supply unit 5 (step S1).
 このDCSガスが、図10に示すように最上段のウエハWの右側から供給されて、当該ウエハWの表面を左側に向けて流れる。そして、最上段の凹部32を介して2段目のウエハWの左側へ下降し、当該2段目のウエハWの右側に向けて流れる。以降もDCSガスは、凹部32を介することで一のウエハWから、当該一のウエハWの一つ下方に位置する他のウエハWの表面へと流れ、当該他のウエハWの表面を左右の一方から他方に向かう。当該他のウエハWの表面でのガス流れは、一のウエハWの表面でのガス流れと逆方向である。従って、DCSガスは最上段のウエハWから下方側のウエハWに向かってに順番に右から左への流れと、左から右への流れとを交互に繰り返して流れる。即ち、既述したように蛇行流が形成され、各ウエハWの表面には、ガスに含まれるDCSが吸着される。そして4枚のウエハWの各表面を順番に流れたDCSガスは、最下段のウエハWの表面から右側に向かい、当該ウエハWの右側に配置された第1の排気口33に流入し、第1の貫通孔41を介して排気空間12Aに放出され、排気口11より排気される。 This DCS gas is supplied from the right side of the uppermost wafer W as shown in FIG. 10 and flows leftward on the surface of the wafer W. Then, it descends to the left side of the wafer W in the second stage via the recess 32 in the uppermost stage and flows toward the right side of the wafer W in the second stage. After that, the DCS gas flows from one wafer W to the surface of another wafer W positioned one below the one wafer W through the concave portion 32, and flows on the surface of the other wafer W to the left and right. going from one side to the other. The gas flow on the surface of the other wafer W is in the opposite direction to the gas flow on the surface of the wafer W of one. Therefore, the DCS gas alternately flows from right to left and left to right from the uppermost wafer W toward the lower wafer W. As shown in FIG. That is, a meandering flow is formed as described above, and the DCS contained in the gas is adsorbed on the surface of each wafer W. FIG. Then, the DCS gas, which has flowed in order on the surfaces of the four wafers W, flows rightward from the surface of the wafer W in the lowest stage, flows into the first exhaust port 33 arranged on the right side of the wafer W, and flows into the first exhaust port 33. The gas is discharged into the exhaust space 12A through one through hole 41 and exhausted from the exhaust port 11. As shown in FIG.
 続いてDCSガスの供給を停止し、外筒部4を上方から見て反時計回りに40°回転させて、図9に示した第2の位置に位置させる。それにより第1の排気口33を閉じると共に、第2のガス供給口35、第2の排気口36を開く。 Subsequently, the supply of the DCS gas is stopped, and the outer cylinder part 4 is rotated counterclockwise by 40° as viewed from above to be positioned at the second position shown in FIG. As a result, the first exhaust port 33 is closed, and the second gas supply port 35 and the second exhaust port 36 are opened.
 そして第2のガス供給部6からパージガスを供給し(ステップS2)、当該パージガスは第3の貫通孔43、第2のガス供給口35を順に介して筒部3内の各ウエハWの表面及び裏面に供給される。各第2のガス供給口35に対向する第2の排気口36からの排気が行われているため、当該パージガスは各ウエハWの表面及び裏面に沿って前方から後方に向かって流れ、当該第2の排気口36に流入する(図11)。そして、第2の貫通孔42を介して排気空間12Aへ放出されて排気される。これにより筒部3内に残るDCSガスがパージされて除去される。 Then, the purge gas is supplied from the second gas supply unit 6 (step S2), and the purge gas passes through the third through-hole 43 and the second gas supply port 35 in order to the surfaces of the wafers W in the cylindrical unit 3 and the Supplied on the back side. Since the purge gas is exhausted from the second exhaust port 36 facing each second gas supply port 35, the purge gas flows from the front to the rear along the front and back surfaces of each wafer W. 2 into the exhaust port 36 (FIG. 11). Then, it is released to the exhaust space 12A through the second through hole 42 and exhausted. As a result, the DCS gas remaining in the cylindrical portion 3 is purged and removed.
続いて第2のガス供給部6から、パージガスに代えてOガスを供給する(ステップS3)。Oガスもパージガスと同様に各ウエハWの表面及び裏面に沿って前方側から後方側に向かって流れ、第2の排気口36、第2の貫通孔42を順に介して排気空間12Aへ放出されて排気される。このようにOガスを供給することで、ウエハWに吸着したDCSと、Oガスとが反応して、反応生成物としてSiOが生成する。さらに続いて第2のガス供給部6からOガスに代えてパージガスを供給する(ステップS4)。このステップS4はパージ対象がDCSガスである代わりにOガスであることを除いて、ステップS2と同様の動作である。 Subsequently, O 3 gas is supplied instead of the purge gas from the second gas supply unit 6 (step S3). Similar to the purge gas, the O 3 gas also flows from the front side to the rear side along the front and back surfaces of each wafer W and is discharged into the exhaust space 12A through the second exhaust port 36 and the second through hole 42 in order. is exhausted. By supplying the O 3 gas in this manner, the DCS adsorbed on the wafer W reacts with the O 3 gas to produce SiO 2 as a reaction product. Subsequently, the purge gas is supplied instead of the O 3 gas from the second gas supply unit 6 (step S4). This step S4 is the same operation as step S2 except that the purge target is O3 gas instead of DCS gas.
 そしてパージガスの供給を停止し、外筒部4を上方から見て時計回り方向に40°回転させ、第1の位置に戻し、DCSガスを供給する。つまり、上記のステップS1を再度行う。以降ステップS2~S4を行い、さらにステップS1~S4を行う。このようにステップS1~S4を繰り返すことで、ウエハWに反応生成物としてSiOが繰り返し堆積して、SiO膜が形成される。所定の回数ステップS1~S4を繰り返してSiO膜が所望の膜厚となったら、処理容器10内の排気を停止し、蓋部20を下降させてウエハボート2を処理容器10から搬出する。 Then, the supply of the purge gas is stopped, the outer cylinder part 4 is rotated clockwise by 40° when viewed from above, returned to the first position, and the DCS gas is supplied. That is, the above step S1 is performed again. After that, steps S2 to S4 are performed, and then steps S1 to S4 are performed. By repeating steps S1 to S4 in this manner, SiO.sub.2 is repeatedly deposited on the wafer W as a reaction product to form a SiO.sub.2 film. When the SiO 2 film has a desired film thickness by repeating steps S1 to S4 a predetermined number of times, the evacuation of the processing chamber 10 is stopped, the lid 20 is lowered, and the wafer boat 2 is unloaded from the processing chamber 10 .
 第1のガスである前駆体ガスについて既述の説明ではDCSを例に挙げたが、成膜する膜種に応じて様々なガスを用いることができる。そしてこの前駆体ガスとして、ウエハWの表面に対する吸着効率が低いものが用いられる場合が有る。仮にそのような前駆体ガスを上記の反応ガス及びパージガスと同様に、各ウエハWの一端側から供給すると共に各ウエハWの他端側から排気したとすると、その多くはウエハWに吸着されないままウエハWの周囲から除去されてしまうことになる。従って、成膜に必要な量をウエハWに吸着させるために、筒部3内へ供給する前駆体ガスの量は比較的多いものとなり、処理に要するコストが高くなってしまうおそれが有る。 Regarding the precursor gas, which is the first gas, DCS was taken as an example in the previous explanation, but various gases can be used according to the type of film to be formed. As this precursor gas, a gas having a low adsorption efficiency to the surface of the wafer W may be used. If such a precursor gas were to be supplied from one end side of each wafer W and exhausted from the other end side of each wafer W in the same manner as the reaction gas and purge gas described above, most of it would remain unadsorbed to the wafer W. It will be removed from the periphery of the wafer W. Therefore, a relatively large amount of precursor gas is supplied into the cylindrical portion 3 in order to cause the wafer W to adsorb an amount necessary for film formation, which may increase the cost required for the process.
 成膜装置1では、既述したように前駆体ガスは筒部3内を蛇行して各ウエハWの表面を順番に流れる。従って、前駆体ガスが一のウエハWの表面を通過する際に吸着されないガス中の成分についても、当該一のウエハWの下段側における他のウエハWの表面を通過する際に吸着させることができる。それ故に、前駆体ガスの利用効率を高くすることができるので、比較的少ない供給量の前駆体ガスで各ウエハWに処理を行うことができ、処理に要するコストを低減させることができる。 In the film forming apparatus 1, the precursor gas meanders in the cylindrical portion 3 and flows on the surface of each wafer W in order as described above. Therefore, even components in the gas that are not adsorbed when the precursor gas passes over the surface of one wafer W can be adsorbed when passing through the surface of another wafer W on the lower stage side of the one wafer W. can. Therefore, the efficiency of using the precursor gas can be increased, so that each wafer W can be processed with a relatively small supply amount of the precursor gas, and the cost required for processing can be reduced.
 また、反応ガスについて既述の説明ではOガスを例に挙げたが、成膜する膜種に応じて様々なガスを用いることができる。ところで使用する前駆体ガス及び反応ガスの種類によって、ウエハWに膜を形成するための反応生成物以外の副生成物が生成し、この副生成物が膜に混入することで膜質が悪化するおそれがある。即ち、ウエハWの表面を通過済みの反応ガスについては上記の副生成物を含むおそれが有り、この副生成物が他のウエハWに供給されないように、速やかに排気されることが望ましい。そこで成膜装置1においては、上記したように各ウエハWの前方側の第2のガス供給口35から反応ガスを供給すると共に、ウエハWの後方側で第2のガス供給口35に対向する第2の排気口36から排気を行う。それにより一のウエハWの表面を前方から後方に向かって流れた反応ガスは速やかに筒部3内から除去されて、他のウエハWへ供給されることが防止される。結果として、各ウエハWの膜への副生成物の混入が防止されて、ウエハWから製造される半導体製品の歩留りの低下を防止することができる。 In addition, although the O 3 gas was used as an example of the reaction gas in the above description, various gases can be used according to the type of film to be formed. Incidentally, depending on the type of precursor gas and reaction gas used, by-products other than the reaction products for forming the film on the wafer W may be generated, and the film quality may be deteriorated by mixing the by-products into the film. There is That is, the reaction gas that has already passed through the surface of the wafer W may contain the above-described by-products, and it is desirable that the by-products are not supplied to the other wafers W and are quickly exhausted. Therefore, in the film forming apparatus 1, as described above, the reaction gas is supplied from the second gas supply port 35 on the front side of each wafer W, and the second gas supply port 35 is opposed to the second gas supply port 35 on the rear side of the wafer W. Exhaust is performed from the second exhaust port 36 . As a result, the reaction gas that has flowed from the front to the rear on the surface of one wafer W is quickly removed from the cylindrical portion 3 and is prevented from being supplied to the other wafers W. FIG. As a result, contamination of the film of each wafer W with by-products is prevented, and a drop in the yield of semiconductor products manufactured from the wafers W can be prevented.
そしてパージガスについても反応ガスと同様に、第2のガス供給口35から供給されると共に第2の排気口36から排気される。それにより、パージガスによって押し流される前駆体ガス及び反応ガスは速やかに筒部3内から除去され、筒部3内に長く留まることが防止される。従って、このパージを速やかに完了することができるため好ましい。 The purge gas is also supplied from the second gas supply port 35 and exhausted from the second exhaust port 36 in the same manner as the reaction gas. As a result, the precursor gas and reaction gas swept away by the purge gas are quickly removed from the cylindrical portion 3 and prevented from remaining in the cylindrical portion 3 for a long time. Therefore, this purge can be completed quickly, which is preferable.
 ところで第2のガス供給口35及び第2の排気口36は、筒部3の周方向において凹部32の近傍に設ける、つまり左右方向に各々設けるようにし、反応ガス及びパージガスについて前後方向ではなく、左右方向に流れるようにしてもよい。ただし、上記したように蛇行流を構成して凹部32間を流れる前駆体ガスから見て、第2のガス供給口35及び第2の排気口36は、より離れて設けられていることが好ましい。従って、上記したように第2のガス供給口35及び第2の排気口36は前後方向に各々配置し、反応ガス及びパージガスが前後方向の気流を形成するようにすることが好ましい。 By the way, the second gas supply port 35 and the second exhaust port 36 are provided in the vicinity of the concave portion 32 in the circumferential direction of the cylindrical portion 3, that is, are provided in the lateral direction, respectively, so that the reaction gas and the purge gas are not longitudinally directed. You may make it flow in a left-right direction. However, it is preferable that the second gas supply port 35 and the second exhaust port 36 are provided at a greater distance from the precursor gas that forms a meandering flow and flows between the recesses 32 as described above. . Therefore, as described above, the second gas supply port 35 and the second exhaust port 36 are preferably arranged in the front-rear direction so that the reactant gas and the purge gas form airflows in the front-rear direction.
 また、成膜装置1によれば外筒部4を回転させることで、筒部3において第1の排気口33及び第2の排気口36のうちの一方が開放されるが、第2の排気口36の閉鎖と共に第2のガス供給口35についても閉鎖されるように外筒部4が構成されている。このように第2のガス供給口35及び第2の排気口36が一括して開閉されることで、装置構成が簡素なものとされている。 Further, according to the film forming apparatus 1, one of the first exhaust port 33 and the second exhaust port 36 is opened in the cylindrical portion 3 by rotating the outer cylinder portion 4, but the second exhaust port is opened. The outer cylindrical portion 4 is configured so that the second gas supply port 35 is also closed when the port 36 is closed. By collectively opening and closing the second gas supply port 35 and the second exhaust port 36 in this manner, the configuration of the apparatus is simplified.
 そして、蛇行流の形成時に、上記のように第2のガス供給口35及び第2の排気口36が共に閉鎖されることで、これらガス供給口35及び第2の排気口36にガスが進入して、気流が乱れることが防止される。そのため、各ウエハW間及びウエハWの面内での処理の均一性の向上を図ることができる。なお、外筒部4の代わりに筒部3を回転機構46に接続し、外筒部4に対して回転させることで、第1の排気口33、第2のガス供給口35及び第2の排気口36が各々開閉される構成であってもよい。 When the meandering flow is formed, both the second gas supply port 35 and the second exhaust port 36 are closed as described above, so that the gas enters the gas supply port 35 and the second exhaust port 36. As a result, turbulence of the airflow is prevented. Therefore, the uniformity of processing between the wafers W and within the surface of the wafer W can be improved. By connecting the cylindrical portion 3 instead of the outer cylindrical portion 4 to the rotating mechanism 46 and rotating it with respect to the outer cylindrical portion 4, the first exhaust port 33, the second gas supply port 35 and the second gas supply port 35 are connected. A configuration in which each of the exhaust ports 36 is opened and closed may be employed.
 さらに、ウエハWが載置される載置部200はウエハWの径より大きい外径を有し、筒部3の内周面において凹部32が形成される部位以外は、この載置部200の周端に近接する。つまり、載置部200は、筒部3の内周面との間においてガスの圧力損失が高くなる構成とされており、前駆体ガスが筒部3と載置部200の間から流れてしまうことが防止される。従って、使用する前駆体ガスについて、より確実に少量化を図ることができる。 Further, the mounting portion 200 on which the wafer W is mounted has an outer diameter larger than the diameter of the wafer W, and the portion of the mounting portion 200 other than the portion where the concave portion 32 is formed on the inner peripheral surface of the cylindrical portion 3 is close to the perimeter. That is, the mounting portion 200 is configured to have a high gas pressure loss between it and the inner peripheral surface of the cylindrical portion 3 , and the precursor gas flows from between the cylindrical portion 3 and the mounting portion 200 . is prevented. Therefore, the amount of the precursor gas to be used can be reduced more reliably.
 ところで、既述した成膜装置1では、筒部3における第2のガス供給口35及び第2の排気口36は各段のウエハW毎に設けられた構成となっているが、そのように段毎に設けられる構成とすることには限られない。具体的には例えば、外筒部4の第2の貫通孔42、第3の貫通孔43のように、最上段のウエハWの高さから最下段のウエハWの高さに亘って開口するように縦長の構成とされてもよい。そのような構成であっても、載置部200が筒部3の内周面に近接していることで、一のウエハW上に供給された反応ガスあるいはパージガスは、他のウエハWの表面への供給が抑制されつつ、排気される。 By the way, in the above-described film forming apparatus 1, the second gas supply port 35 and the second exhaust port 36 in the cylindrical portion 3 are provided for each wafer W in each stage. It is not limited to the configuration provided for each stage. Specifically, for example, like the second through-hole 42 and the third through-hole 43 of the outer cylindrical portion 4, the opening extends from the height of the wafer W on the uppermost stage to the height of the wafer W on the lowermost stage. It may be configured vertically as shown. Even with such a configuration, the reaction gas or the purge gas supplied onto one wafer W does not reach the surface of the other wafer W because the mounting portion 200 is close to the inner peripheral surface of the cylindrical portion 3 . is exhausted while the supply to is suppressed.
また成膜装置1では、第1のガス供給口31が筒部3の内周面に開口し、左方に位置する1段目の凹部32に向かうように前駆体ガスが供給される。つまり、複数の凹部32のうち縦方向の最も一端寄り(上端寄り)の凹部32が左右の一方側(左側)に設けられ、第1のガス供給口31は、筒部3の内側面の左右の他方側(右側)に開口する構成となっている。しかし第1のガス供給口31は、1段目のウエハWの表面に前駆体ガスを供給できるように開口すればよいため、このような開口位置には限られない。例えば筒部3の天板30に第1のガス供給口31を設け、1段目のウエハWの左端に向かうように下方に前駆体ガスが吐出される構成であってもよい。ただし、上記のように第1のガス供給口31が筒部3の内周面に開口する構成とすることで、1段目のウエハWの表面上と他のウエハWの表面上との間での前駆体ガスの流れの状態が揃う。つまり、各ウエハWの表面上に同様の気流が形成され、ウエハW間での処理のばらつきの発生が防止される。 Further, in the film forming apparatus 1, the first gas supply port 31 is opened in the inner peripheral surface of the cylindrical portion 3, and the precursor gas is supplied so as to go toward the first recessed portion 32 located on the left side. That is, the recess 32 closest to one end (upper end) in the vertical direction of the plurality of recesses 32 is provided on one of the left and right sides (left side). It is configured to open on the other side (right side). However, the opening position of the first gas supply port 31 is not limited to such an opening position because it is sufficient to open so as to supply the precursor gas to the surface of the wafer W in the first stage. For example, the top plate 30 of the cylindrical portion 3 may be provided with the first gas supply port 31 and the precursor gas may be discharged downward toward the left end of the wafer W in the first stage. However, by configuring the first gas supply port 31 to open to the inner peripheral surface of the cylindrical portion 3 as described above, the gap between the surface of the wafer W in the first stage and the surface of the other wafer W can be reduced. The precursor gas flow conditions at are aligned. That is, the same airflow is formed on the surface of each wafer W, and the occurrence of variations in processing among the wafers W is prevented.
さらに第1の排気口33については、4段目のウエハWの表面を通過した後の前駆体ガスを排気することができればよい。従って、既述した4段目のウエハWよりも下方の高さに設けることには限られず、3段目のウエハWと4段目のウエハWとの間の高さに開口していてもよい。 Further, the first exhaust port 33 only needs to be able to exhaust the precursor gas after passing through the surface of the wafer W in the fourth stage. Therefore, the opening is not limited to being provided at a height lower than the wafer W on the fourth tier, and may be provided at a height between the wafer W on the third tier and the wafer W on the fourth tier. good.
 ところで上記の成膜装置1について、成膜処理後に第1のガス供給口31からクリーニングガスが供給される構成としてもよい。具体的に述べると、第1のガス供給部5には、前駆体ガス供給源である第1のガス供給源52の他に、クリーニングガス供給源も接続され、前駆体ガスとクリーニングガスとが互いに切り替えられて、第1のガス供給部5に供給される構成とされる。このクリーニングガスの供給時も、外筒部4は第1の位置とされることで第1の排気口33から排気され、蛇行流が形成される。クリーニングガスにより、筒部3内及びウエハボート2に形成された膜が除去される。ただし、このクリーニングの際にウエハボート2には、例えばウエハWの代わりに半導体製品の製造を目的としないダミーウエハが支持されるようにする。以上のように行うクリーニングについて、クリーニングガスは蛇行することで筒部3内に供給されてから筒部3内から排気されるまでに比較的長く留まる事になる。従って、比較的少ないクリーニングガスの供給量で、筒部3内及びウエハボート2のクリーニングを行うことができる。 By the way, the film forming apparatus 1 may be configured so that the cleaning gas is supplied from the first gas supply port 31 after the film forming process. Specifically, in addition to the first gas supply source 52, which is a precursor gas supply source, a cleaning gas supply source is also connected to the first gas supply unit 5, and the precursor gas and the cleaning gas are connected. It is configured such that they are switched to each other and supplied to the first gas supply unit 5 . Even when the cleaning gas is supplied, the outer cylinder portion 4 is placed at the first position, so that the air is exhausted from the first exhaust port 33 and a meandering flow is formed. The cleaning gas removes the film formed inside the cylindrical portion 3 and on the wafer boat 2 . However, during this cleaning, the wafer boat 2 supports, for example, dummy wafers not intended for manufacturing semiconductor products in place of the wafers W. As shown in FIG. In the cleaning performed as described above, the cleaning gas meanders and stays for a relatively long time from being supplied into the cylindrical portion 3 to being exhausted from the cylindrical portion 3 . Therefore, the inside of the cylindrical portion 3 and the wafer boat 2 can be cleaned with a relatively small amount of cleaning gas supplied.
 また基板処理装置は成膜処理に限らず、例えばウエハWをエッチングするエッチング装置としてもよく、その場合は第1のガスとしてエッチングガスを供給する。また、ウエハWに第1のガスとして不活性ガスを供給しつつ加熱するアニール装置として構成してもよい。これらの場合であってもエッチングガスや不活性ガスの供給量を低減させ、処理に要するコストの低減を図ることができる。なお、成膜装置としてはALDを行うことに限られずCVD(Chemical Vapor Deposition)を行うようにしてもよい。その場合は、成膜用のガスを第1のガスとして供給すればよい。 Also, the substrate processing apparatus is not limited to the film forming process, and may be an etching apparatus for etching the wafer W, in which case an etching gas is supplied as the first gas. Alternatively, the wafer W may be configured as an annealing apparatus that heats the wafer W while supplying an inert gas as the first gas. Even in these cases, the amount of etching gas and inert gas supplied can be reduced, and the cost required for processing can be reduced. Note that the film forming apparatus is not limited to performing ALD, and may perform CVD (Chemical Vapor Deposition). In that case, a film-forming gas may be supplied as the first gas.
 続いて成膜装置1の変形例について、図12~図14を参照して成膜装置1との差異点を中心に説明する。図12、図13は、装置のX軸、Y軸に夫々沿った縦断面を示しており、図14は装置の横断平面を示している。この変形例の成膜装置では外筒部4が設けられておらず、筒部3における第1の排気口33及び第2の排気口36に各々排気管110、111が接続されている。排気管110、111の他端は例えば共通の排気部12に接続されている。そして排気管110、111に夫々バルブV1、V2を設ける。まず第1の排気口33から排気を行うようにバルブV1を開き、バルブV2を閉じる。そして第1のガス供給部5から前駆体ガスを供給し、既述したステップS1の処理を行う。次いで前駆体ガスの供給を終えると、さらにバルブV1を閉じ、バルブV2を開く。これにより第2の排気口36から排気を行うように切り替わる。さらに第2のガス供給部6からパージガス、Oガス、パージガスの順に供給を行い、既述したステップS2~S4の処理を行う。成膜装置1と同様に、この変形例の装置についてもステップS1~S4の処理を繰り返してALDを行う。 Next, a modified example of the film forming apparatus 1 will be described with a focus on differences from the film forming apparatus 1 with reference to FIGS. 12 to 14. FIG. 12 and 13 show longitudinal sections along the X and Y axes of the device, respectively, and FIG. 14 shows a transverse plane of the device. In the film forming apparatus of this modified example, the outer cylinder portion 4 is not provided, and exhaust pipes 110 and 111 are connected to the first exhaust port 33 and the second exhaust port 36 of the cylinder portion 3, respectively. The other ends of the exhaust pipes 110 and 111 are connected to the common exhaust section 12, for example. Valves V1 and V2 are provided in exhaust pipes 110 and 111, respectively. First, the valve V1 is opened to exhaust air from the first exhaust port 33, and the valve V2 is closed. Then, the precursor gas is supplied from the first gas supply unit 5, and the process of step S1 described above is performed. After the supply of the precursor gas is finished, the valve V1 is closed and the valve V2 is opened. As a result, the air is switched to be exhausted from the second exhaust port 36 . Further, the purge gas, the O 3 gas, and the purge gas are supplied in this order from the second gas supply unit 6, and the processes of steps S2 to S4 described above are performed. As with the film forming apparatus 1, the process of steps S1 to S4 is repeated for the apparatus of this modification to perform ALD.
 このように外筒部4の回転の代りにバルブの開閉によって、使用される排気口の位置が切り替わることで、筒部3内に形成される気流の形態が切り替えられるようにしてもよい。なお、この変形例の装置では、第1の排気口33から排気を行うようにバルブV1を開き、バルブV2を閉じた状態が第1の状態に相当し、第2の排気口33から排気を行うようにバルブV1を閉じ、バルブV2を開いた状態が第2の状態に相当する。バルブV1、V2は切替え機構に相当する。 By switching the position of the exhaust port to be used by opening and closing the valve instead of rotating the outer cylinder 4, the form of the airflow formed in the cylinder 3 may be switched. In the apparatus of this modified example, the state in which the valve V1 is opened so as to exhaust air from the first exhaust port 33 and the valve V2 is closed corresponds to the first state, in which exhaust air is exhausted from the second exhaust port 33. The second state corresponds to the state in which the valve V1 is closed and the valve V2 is open. Valves V1 and V2 correspond to a switching mechanism.
なお、この変形例の装置において、筒部3の外部に処理容器10が設けられなくてもよい。即ち、筒部3が処理容器として構成されることで、当該筒部3の側壁が処理容器の側壁となり、各排気口及びガス供給口は当該処理容器に開口する構成としてもよい。即ち、成膜装置1のように筒部3の側壁と処理容器10の側壁とが別体であって、筒部3に各排気口及びガス供給口が設けられる装置構成とすることには限られない。 In addition, in the apparatus of this modified example, the processing container 10 may not be provided outside the tubular portion 3 . That is, by configuring the cylinder part 3 as a processing container, the side wall of the cylinder part 3 becomes the side wall of the processing container, and each exhaust port and gas supply port may be configured to open to the processing container. That is, it is not limited to an apparatus configuration in which the side wall of the cylindrical portion 3 and the side wall of the processing container 10 are separated from each other as in the film forming apparatus 1, and the cylindrical portion 3 is provided with each exhaust port and gas supply port. can't
ところで、この変形例の装置について、第1の排気口33としている箇所を第1のガス供給口とし、第1のガス供給口31としている箇所を第1の排気口としてもよい。つまり、下方から上方へ向かって前駆体ガスが蛇行流として流れるように装置を構成してもよい。そのように上方へ向けて前駆体ガスを流す場合、第1のガス供給口としては、4段目のウエハWの表面に第1のガスを供給することができればよいので、図中に示す4段目のウエハWよりも下方の高さに開口することに限られず、3段目のウエハWと4段目のウエハWとの間の高さに開口していてもよい。 By the way, in the apparatus of this modified example, the location serving as the first exhaust port 33 may be used as the first gas supply port, and the location serving as the first gas supply port 31 may be used as the first exhaust port. That is, the apparatus may be configured such that the precursor gas flows as a meandering flow from bottom to top. When the precursor gas is flowed upward in this way, the first gas supply port only needs to be able to supply the first gas to the surface of the wafer W in the fourth stage. The opening is not limited to being at a height below the wafer W in the tier, but may be at a height between the wafer W in the third tier and the wafer W in the fourth tier.
ここで、第1のガス供給口31、第1の排気口33の配置についてまとめておく。第1のガス供給口31は基板支持領域の縦方向の一方側に第1のガスを供給し、第1の排気口33は基板支持領域の他方側から第1のガスを排気する。この縦方向の一方側が上側、縦方向の他方側が下側である場合(即ち下方に向けてガスを流す場合)、第1のガス供給口31は最上段のウエハWの表面に第1のガスを供給できるように、基板支持領域よりも上側に開口する。そして第1の排気口33は、最下段のウエハWの表面を通過済みの第1のガスを排気できるように、最下段のウエハWと、当該最下段のウエハWよりも1つ上段のウエハWとの間の高さよりも下方側に開口していればよい。 Here, the arrangement of the first gas supply port 31 and the first exhaust port 33 will be summarized. The first gas supply port 31 supplies the first gas to one side of the substrate support area in the vertical direction, and the first exhaust port 33 exhausts the first gas from the other side of the substrate support area. When one side in the vertical direction is the upper side and the other side in the vertical direction is the lower side (that is, when the gas is supplied downward), the first gas supply port 31 supplies the first gas to the surface of the uppermost wafer W. The opening is above the substrate support area so that the . The first exhaust port 33 is provided for the lowermost wafer W and the wafer one level higher than the lowermost wafer W so that the first gas that has already passed through the surface of the lowermost wafer W can be exhausted. It suffices if the opening is on the lower side than the height between W.
それに対して、縦方向の一方側が下方側、縦方向の他方側が上方側である場合(即ち上方に向けてガスを流す場合)、第1のガス供給口31は最下段のウエハWの表面に第1のガスを供給できるように、当該最下段のウエハWと最下段のウエハWよりも1つ上段のウエハWとの間の高さよりも下側に開口していればよい。そして、第1の排気口33は最上段のウエハWの表面を通過済みの第1のガスを排気できるように、最上段のウエハWよりも上側に開口していればよい。 On the other hand, when one side in the vertical direction is the lower side and the other side in the vertical direction is the upper side (that is, when the gas is flowed upward), the first gas supply port 31 is located on the surface of the lowermost wafer W. The opening should be below the height between the lowermost wafer W and the wafer W one level higher than the lowermost wafer W so that the first gas can be supplied. The first exhaust port 33 may open above the uppermost wafer W so that the first gas that has passed through the surface of the uppermost wafer W can be exhausted.
なお、ウエハボート2におけるウエハWの保持枚数としては5枚に限られず、5枚より多くても少なくてもよい。また、成膜装置1では回転機構25により処理中にウエハボート2を回転させているが、凹部32、各排気口、ガス供給口の大きさや配置を適宜調整し、各ウエハWの面内で均一性高い処理を行うことができれば回転させなくてもよい。 The number of wafers W held in the wafer boat 2 is not limited to five, and may be more or less than five. In the film forming apparatus 1, the wafer boat 2 is rotated by the rotating mechanism 25 during processing. Rotation may not be necessary if highly uniform processing can be performed.
 以上に検討したように、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 As discussed above, the embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The embodiments described above may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
[検証試験]
 本開示の実施の形態に示した成膜装置1を用い、外筒部4を第1の位置に合わせて、第1のガス供給部5からガスを供給したときにおける筒部3内の圧力分布、及び当該ガスによる気流の形成状態をシミュレーションにより求めた。また外筒部4を第2の位置に合わせて2のガス供給部6からガスを供給したときにおける筒部3内の圧力分布、及び当該ガスによる気流の形成状態をシミュレーションにより求めた。なお第1のガス供給部5から酸素ガスを1.0×10-5kg/秒の流量で供給、第2のガス供給部6からArガスを1.0×10-6kg/秒の流量で供給するものとした。また回転軸24及び外筒部4の周囲に流すパージガスは、Nガスを1.0×10-6kg/秒の流量で供給するものとした。この試験ではウエハWの温度を300Kに設定し、処理容器10の排気口11における圧力が266Paになるように設定した。
[Verification test]
Pressure distribution in cylinder part 3 when gas is supplied from first gas supply part 5 with outer cylinder part 4 aligned with the first position using film deposition apparatus 1 shown in the embodiment of the present disclosure , and the state of formation of the airflow by the gas were obtained by simulation. Further, the pressure distribution in the cylindrical portion 3 and the state of formation of the airflow by the gas when the outer cylindrical portion 4 is set to the second position and the gas is supplied from the two gas supply portions 6 were obtained by simulation. Oxygen gas is supplied from the first gas supply unit 5 at a flow rate of 1.0×10 −5 kg/sec, and Ar gas is supplied from the second gas supply unit 6 at a flow rate of 1.0×10 −6 kg/sec. shall be supplied by As the purge gas flowing around the rotary shaft 24 and the outer cylindrical portion 4 , N.sub.2 gas was supplied at a flow rate of 1.0.times.10.sup.- 6 kg/sec. In this test, the temperature of the wafer W was set to 300K, and the pressure at the exhaust port 11 of the processing container 10 was set to 266Pa.
 図15、図16は、夫々外筒部4を第1の位置に合わせて、第1のガス供給部5からガスを供給したときと、第2の位置に合わせて第2のガス供給部6からガスを供給したときと、における処理容器10内の圧力分布図である。なお、より詳しくはこれら図15、図16は、上記の排気口11の圧力(266Pa)を基準とした圧力差を表示したものである。また、図15、図16ではシミュレーションで得られた気流について、実際のものよりも簡略化して矢印によって表示している。 15 and 16 show the case where the gas is supplied from the first gas supply section 5 with the outer cylinder section 4 set to the first position, and the case where the second gas supply section 6 is set to the second position. 10A and 10B are pressure distribution diagrams in the processing container 10 when a gas is supplied from . In more detail, FIGS. 15 and 16 show the pressure difference based on the pressure (266 Pa) of the exhaust port 11 described above. Also, in FIGS. 15 and 16, the airflows obtained by the simulation are indicated by arrows in a more simplified manner than the actual ones.
 図15に示すように第1のガス供給部5からガスを供給したときは、筒部3内におけるウエハWで区画される高さ領域について、下方の領域ほど圧力が低くなるように圧力勾配が形成されていた。そしてこの圧力勾配に従って、実施形態で述べたようにガスが蛇行流を形成して各ウエハW表面を流れて、排気空間12Aへ排気されることが確認された。また、最上段のウエハW表面と最下段のウエハW表面との圧力差は、約0.3Paであり、上記の排気口11の圧力に対して約0.1%である。従って、各ウエハWが置かれる圧力環境は略同じであり、各ウエハWについて均一性高く処理が行われることが推定される。また図16に示すように第2のガス供給部6からガスを供給したときは、実施形態で述べたように前方から後方へ向かう気流が形成されることが確認された。そして、筒部3内の圧力はほぼ均一であった。従って、各ウエハWについて、均一性高く処理が行われることが推定される。 As shown in FIG. 15, when the gas is supplied from the first gas supply unit 5, the pressure gradient is such that the lower the height region defined by the wafer W in the cylindrical portion 3, the lower the pressure. was formed. According to this pressure gradient, it was confirmed that the gas forms a meandering flow as described in the embodiment, flows on the surface of each wafer W, and is exhausted to the exhaust space 12A. Moreover, the pressure difference between the surface of the wafer W on the uppermost stage and the surface of the wafer W on the lowermost stage is about 0.3 Pa, which is about 0.1% of the pressure of the exhaust port 11 described above. Therefore, it is presumed that the pressure environment in which each wafer W is placed is substantially the same, and that each wafer W is processed with high uniformity. Further, it was confirmed that when the gas was supplied from the second gas supply unit 6 as shown in FIG. 16, an air flow was formed from the front to the rear as described in the embodiment. And the pressure in the cylinder part 3 was substantially uniform. Therefore, it is presumed that each wafer W is processed with high uniformity.
1         成膜装置
2         ウエハボート
3         筒部
10        処理容器
31        第1のガス供給口
33        第1の排気口
32        凹部
W         ウエハ

 
1 Film forming apparatus 2 Wafer boat 3 Cylindrical part 10 Processing vessel 31 First gas supply port 33 First exhaust port 32 Recess W Wafer

Claims (15)

  1.  複数の基板を縦方向に棚状に支持する基板支持具を収納し、軸が前記縦方向を向く筒部を備える処理容器と、
    前記筒部内における前記各基板が支持される基板支持領域の縦方向の一方側に、前記各基板を処理するための第1のガスを供給する第1のガス供給口と、
    前記基板支持領域の縦方向の他方側から前記第1のガスを排気するための第1の排気口と、
     前記第1のガスが前記第1のガス供給口から前記第1の排気口へ向けて前記各基板の表面に沿って左右に蛇行して流れるための流路をなすように前記筒部の内側面における前記各基板の高さに位置し、前記縦方向に沿って見て左右交互に設けられる凹部と、
     を備える基板処理装置。
    a processing container containing a substrate support for supporting a plurality of substrates in a shelf-like manner in the vertical direction, the processing container comprising a cylindrical portion having an axis directed in the vertical direction;
    a first gas supply port for supplying a first gas for processing each substrate to one side in the vertical direction of a substrate support area in which each substrate is supported in the tubular portion;
    a first exhaust port for exhausting the first gas from the other longitudinal side of the substrate support area;
    The inside of the tubular portion forms a flow path for the first gas to meander from the first gas supply port toward the first exhaust port along the surface of each of the substrates. recesses located at the height of each of the substrates on the side surface and provided alternately to the left and right when viewed along the vertical direction;
    A substrate processing apparatus comprising:
  2. 前記筒部の内側面に形成され、前記各基板に第2のガスを供給するための第2のガス供給口と、
    前記筒部の内側面に前記第2のガス供給口と対向して開口し、前記第2のガスを排気するための第2の排気口と、を備える請求項1記載の基板処理装置。
    a second gas supply port formed on the inner surface of the cylindrical portion for supplying a second gas to each of the substrates;
    2. The substrate processing apparatus according to claim 1, further comprising: a second exhaust port for exhausting the second gas, which opens in the inner surface of the cylindrical portion so as to face the second gas supply port.
  3. 前記第2のガス供給口、前記第2の排気口は、前記筒部における前後の一方、他方に夫々形成される請求項2記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein said second gas supply port and said second exhaust port are formed on one of the front and rear sides of said cylindrical portion and on the other side, respectively.
  4. 前記第1のガス供給口からの前記第1のガスの供給及び前記第1の排気口からの当該第1のガスの排気が行われる第1の状態と、
    前記第2のガス供給口からの前記第2のガスの供給及び前記第2の排気口からの当該第2のガスの排気が行われる第2の状態と、
    を切り替えるための切替え機構が設けられる請求項2記載の基板処理装置。
    a first state in which the first gas is supplied from the first gas supply port and the first gas is exhausted from the first exhaust port;
    a second state in which the second gas is supplied from the second gas supply port and the second gas is exhausted from the second exhaust port;
    3. The substrate processing apparatus according to claim 2, wherein a switching mechanism for switching between is provided.
  5. 前記筒部は、前記処理容器の側壁とは別体であり、
    当該筒部と前記処理容器の側壁との間に形成される排気空間を排気する排気部が設けられ、
    前記第1の排気口、前記第2の排気口は当該筒部に設けられ、
    前記切替え機構は、前記第1の排気口、前記第2の排気口の各々について、前記排気空間に対して開閉する開閉機構を備える請求項4記載の基板処理装置。
    The cylindrical portion is separate from the side wall of the processing container,
    An exhaust unit is provided for exhausting an exhaust space formed between the cylindrical portion and the side wall of the processing container,
    The first exhaust port and the second exhaust port are provided in the cylindrical portion,
    5. The substrate processing apparatus according to claim 4, wherein said switching mechanism comprises an opening/closing mechanism for opening and closing said first exhaust port and said second exhaust port with respect to said exhaust space.
  6. 前記筒部は円筒であり、
    前記開閉機構は、外周面が前記排気空間に面するように当該処理容器内において前記筒部を囲むように設けられ、当該筒部と同軸の円筒をなす外筒部と、
    前記外筒部を前記筒部に対して軸周りに相対的に回転させて第1の位置と、第2の位置とに位置させる回転機構と、を備え、
    前記外筒部の側壁には、
    前記第1の位置において前記第1の排気口に重なり、前記第2の位置において当該第1の排気口から外れる第1の貫通孔と、
    前記第1の位置において前記第2の排気口から外れ、前記第2の位置において当該第2の排気口に重なる第2の貫通孔と、が設けられる請求項5記載の基板処理装置。
    The cylindrical portion is cylindrical,
    The opening/closing mechanism is provided so as to surround the cylindrical portion in the processing container so that the outer peripheral surface thereof faces the exhaust space, and has a cylindrical shape that is coaxial with the cylindrical portion;
    a rotation mechanism that rotates the outer cylinder relative to the cylinder around an axis to position the outer cylinder at a first position and a second position;
    On the side wall of the outer cylinder part,
    a first through hole that overlaps the first exhaust port at the first position and separates from the first exhaust port at the second position;
    6. The substrate processing apparatus according to claim 5, further comprising a second through hole separated from said second exhaust port at said first position and overlapping said second exhaust port at said second position.
  7. 前記排気空間において前記外筒部の側壁に対向して、前記第2のガスを供給する第2のガス供給部が設けられ、
    当該外筒部の側壁には、前記第1の位置において前記第2のガス供給部から外れ、前記第2の位置において前記第2のガス供給部に重なる第3の貫通孔が設けられる請求項6記載の基板処理装置。
    A second gas supply unit for supplying the second gas is provided facing the side wall of the outer cylinder in the exhaust space,
    A side wall of the outer cylindrical portion is provided with a third through-hole separated from the second gas supply portion at the first position and overlapping the second gas supply portion at the second position. 7. The substrate processing apparatus according to 6.
  8. 前記左右交互に設けられる凹部のうち、前記縦方向の最も一端寄りに位置する凹部が左右の一方側に設けられ、
    前記第1のガス供給口は、前記筒部の内側面の左右の他方側に開口する請求項6記載の基板処理装置。
    Of the recesses provided alternately on the left and right sides, the recess located closest to one end in the vertical direction is provided on one of the left and right sides,
    7. The substrate processing apparatus according to claim 6, wherein said first gas supply port opens on the other left and right sides of the inner surface of said cylindrical portion.
  9. 前記縦方向の一端側は上側であり、
    前記筒部は、前記第1のガス供給口に接続される供給路が形成された蓋を備え、
    前記排気空間には、前記供給路の上流側に前記第1のガスを供給する第1のガス供給部が設けられる請求項5記載の基板処理装置。
    One end side in the vertical direction is the upper side,
    the cylindrical portion includes a lid formed with a supply path connected to the first gas supply port;
    6. The substrate processing apparatus according to claim 5, wherein the exhaust space is provided with a first gas supply unit for supplying the first gas upstream of the supply path.
  10. 前記第2のガスは、前記基板に吸着された前記第1のガスと反応して反応生成物を生じる反応ガスを含み、
    前記反応生成物が繰り返し堆積して当該反応生成物の膜が前記各基板に形成されるように、前記第1の状態と前記第2の状態とが交互に繰り返される請求項4記載の基板処理装置。
    the second gas comprises a reactive gas that reacts with the first gas adsorbed on the substrate to produce a reaction product;
    5. The substrate processing according to claim 4, wherein the first state and the second state are alternately repeated such that the reaction product is repeatedly deposited to form a film of the reaction product on each of the substrates. Device.
  11. 前記第2のガスは、前記第1のガスと前記反応ガスとを交互に繰り返し供給するにあたり、
    当該第1のガスの供給と当該反応ガスの供給との間に、前記処理容器内の雰囲気をパージするために供給されるパージガスを含む請求項10記載の基板処理装置。
    When the second gas is alternately and repeatedly supplied with the first gas and the reaction gas,
    11. The substrate processing apparatus according to claim 10, further comprising a purge gas supplied for purging the atmosphere in said processing chamber between the supply of said first gas and said supply of said reaction gas.
  12. 前記基板支持具は、前記基板の周縁部を下方から支持するために複数段に設けられる支持部を備え、当該支持部の外周縁は、前記基板の外周縁よりも前記筒部の内側面に近接する請求項1記載の基板処理装置。 The substrate support includes support portions provided in a plurality of stages to support the peripheral edge portion of the substrate from below, and the outer peripheral edge of the support portion is closer to the inner surface of the tubular portion than the outer peripheral edge of the substrate. 2. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is in close proximity.
  13. 前記凹部の上端は、当該凹部に対応する前記基板の上面及び当該基板を支持する前記支持部の上面より高く、
    前記凹部の下端は、当該支持部の下面より低い請求項12記載の基板処理装置。
    the upper end of the recess is higher than the upper surface of the substrate corresponding to the recess and the upper surface of the supporting portion that supports the substrate;
    13. The substrate processing apparatus according to claim 12, wherein the lower end of said recess is lower than the lower surface of said support.
  14. 基板支持部に複数の基板を縦方向に棚状に支持する工程と、
    軸が前記縦方向を向く筒部を備える処理容器に前記基板支持部を収納する工程と、
    前記筒部内における前記各基板が支持される基板支持領域の縦方向の一方側に前記各基板を処理するための第1のガスを第1のガス供給口から供給する工程と、
    第1の排気口により前記基板支持領域の縦方向の他方側から前記第1のガスを排気する工程と、
    前記筒部の内側面における前記各基板の高さに位置し、前記縦方向に沿って見て左右交互に設けられる凹部を流路として、前記第1のガス供給口から前記第1の排気口へ向けて前記各基板の表面に沿って前記第1のガスを左右に蛇行して流す工程と、
     を備える基板処理方法。
    a step of vertically supporting a plurality of substrates on a substrate support in a shelf-like manner;
    housing the substrate support portion in a processing container having a tubular portion with an axis facing the vertical direction;
    a step of supplying a first gas for processing the substrates from a first gas supply port to one side in the vertical direction of a substrate supporting region in which the substrates are supported in the tubular portion;
    exhausting the first gas from the other longitudinal side of the substrate support area through a first exhaust port;
    The first gas supply port is connected to the first exhaust port using concave portions that are positioned at the height of each of the substrates on the inner surface of the cylindrical portion and are provided alternately on the left and right sides when viewed along the vertical direction. a step of flowing the first gas meandering left and right along the surface of each of the substrates toward the substrate;
    A substrate processing method comprising:
  15. 前記筒部の内側面に形成される第2のガス供給口から、前記各基板に第2のガスを供給する工程と、
    前記筒部の内側面に前記第2のガス供給口と対向して形成される第2の排気口から、前記第2のガスを排気する工程と、
    を備える請求項14記載の基板処理方法。

     
    supplying a second gas to each of the substrates from a second gas supply port formed on the inner surface of the cylindrical portion;
    a step of exhausting the second gas from a second exhaust port formed on the inner surface of the cylindrical portion facing the second gas supply port;
    The substrate processing method according to claim 14, comprising:

PCT/JP2022/010367 2021-03-22 2022-03-09 Substrate treatment device and substrate treatment method WO2022202334A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021047625A JP2022146582A (en) 2021-03-22 2021-03-22 Substrate processing apparatus and substrate processing method
JP2021-047625 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202334A1 true WO2022202334A1 (en) 2022-09-29

Family

ID=83394928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010367 WO2022202334A1 (en) 2021-03-22 2022-03-09 Substrate treatment device and substrate treatment method

Country Status (2)

Country Link
JP (1) JP2022146582A (en)
WO (1) WO2022202334A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046084A (en) * 2002-11-26 2004-06-05 삼성전자주식회사 Atomic layer depositon apparatus for manufacturing semiconductor device
JP2012019095A (en) * 2010-07-08 2012-01-26 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method and substrate processing apparatus
JP2017079289A (en) * 2015-10-21 2017-04-27 東京エレクトロン株式会社 Vertical type heat treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040046084A (en) * 2002-11-26 2004-06-05 삼성전자주식회사 Atomic layer depositon apparatus for manufacturing semiconductor device
JP2012019095A (en) * 2010-07-08 2012-01-26 Hitachi Kokusai Electric Inc Semiconductor device manufacturing method and substrate processing apparatus
JP2017079289A (en) * 2015-10-21 2017-04-27 東京エレクトロン株式会社 Vertical type heat treatment device

Also Published As

Publication number Publication date
JP2022146582A (en) 2022-10-05

Similar Documents

Publication Publication Date Title
US11282721B2 (en) Vertical heat treatment apparatus
US10475641B2 (en) Substrate processing apparatus
JP5545055B2 (en) Support structure and processing apparatus
JP5589878B2 (en) Deposition equipment
JP5083193B2 (en) Film forming apparatus, film forming method, and storage medium
KR101240110B1 (en) Gas feeding device, treating device, treating method, and storage medium
KR101387289B1 (en) Film forming device and film forming method
JP2018107255A (en) Film deposition apparatus, film deposition method and heat insulation member
WO2007043478A1 (en) Substrate processing apparatus and substrate processing method
JP2008258595A (en) Substrate processing apparatus
JP2010126797A (en) Film deposition system, semiconductor fabrication apparatus, susceptor for use in the same, program and computer readable storage medium
JP4790291B2 (en) Substrate processing method, recording medium, and substrate processing apparatus
TWI628307B (en) Nozzle and substrate processing apparatus using same
JP2010059496A (en) Film deposition apparatus, film deposition method, program for making apparatus conduct the film deposition method and computer-readable storage medium for storing the program therein
JP6447338B2 (en) Vertical heat treatment equipment
WO2012153591A1 (en) Film-forming apparatus
WO2022202334A1 (en) Substrate treatment device and substrate treatment method
KR20180106921A (en) Gas supply member and gas processing apparatus
JP2009235470A (en) Film deposition system, and film deposition method
US20220259736A1 (en) Processing apparatus
JP2014090212A (en) Processing container structure and processing apparatus
JP2015185750A (en) vacuum processing apparatus
CN111058015A (en) Substrate processing apparatus, substrate input method, and substrate processing method
JP7365973B2 (en) Gas nozzle, substrate processing equipment and substrate processing method
KR20220037350A (en) Gas introduction structure and processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775126

Country of ref document: EP

Kind code of ref document: A1