WO2012153591A1 - Film-forming apparatus - Google Patents

Film-forming apparatus Download PDF

Info

Publication number
WO2012153591A1
WO2012153591A1 PCT/JP2012/059733 JP2012059733W WO2012153591A1 WO 2012153591 A1 WO2012153591 A1 WO 2012153591A1 JP 2012059733 W JP2012059733 W JP 2012059733W WO 2012153591 A1 WO2012153591 A1 WO 2012153591A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing
processing space
substrate
film
Prior art date
Application number
PCT/JP2012/059733
Other languages
French (fr)
Japanese (ja)
Inventor
網倉 学
斉藤 哲也
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2012153591A1 publication Critical patent/WO2012153591A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus

Definitions

  • the present invention relates to a film forming apparatus suitable for an ALD (Atomic Layer Deposition) process.
  • ALD Atomic Layer Deposition
  • a desired device is manufactured by repeatedly performing various processes such as a film forming process and an etching process on a semiconductor wafer (hereinafter simply referred to as a wafer) as a substrate.
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • a first processing gas is adsorbed at an atomic layer level, and then a second processing gas is supplied to react to form an extremely thin film to form a film having a predetermined thickness.
  • a conventional deposition apparatus using ALD uses a processing vessel having a closed structure as much as possible so that high-pressure processing can be performed in order to increase the efficiency of adsorption and reaction of processing gas, and a gas inlet provided directly above the central portion of the wafer.
  • Patent Document 1 has been proposed (for example, Patent Document 1).
  • an object of the present invention is to provide a film forming apparatus that can reduce the volume of the processing space without hindering gas diffusion and can easily set the exhaust conductance.
  • a film forming apparatus for forming a predetermined film on a substrate by alternately supplying a first processing gas and a second processing gas with a purge gas being purged.
  • a substrate in which the substrate is deposited a substrate in which the substrate is deposited, a mounting table on which the substrate is placed in the processing vessel, and a substrate that is formed in the processing vessel.
  • a processing space a gas supply unit that supplies at least the first processing gas, the second processing gas, and the purge gas to the processing space, and an exhaust unit that exhausts the processing space.
  • a film forming apparatus is provided in which the gas supply unit supplies gas from the outer periphery of the processing space, and the exhaust unit exhausts upward from the center upper part of the processing space.
  • the apparatus further includes a cap member provided in the processing container so as to face the mounting table and having a recess for forming the processing space opened downward.
  • a processing space is formed by closing the opening, a plurality of gas discharge ports are formed in the outer peripheral portion of the concave portion of the cap member, and a gas discharge hole is formed in the center of the concave portion of the cap member; can do.
  • the apparatus further includes an elevating mechanism that raises and lowers the mounting table, and the substrate is transferred to the mounting table in a state where the mounting table is lowered by the lifting mechanism, and the mounting table is raised by the lifting mechanism. As a result, the opening of the cap member is closed to form the processing space.
  • the exhaust part includes an annular exhaust path provided so as to surround the outside of the processing space, and a gas exhaust passage for guiding the gas exhausted from the gas exhaust hole of the cap member radially to the exhaust path. It can be set as the structure which has.
  • the buffer chamber connected to the gas discharge hole and a gas line for supplying gas to the buffer chamber, and controls the supply of gas from the gas line to the buffer chamber to control the buffer chamber. By controlling the pressure, it is possible to control the exhaust conductance from the processing space.
  • a mounting table on which the substrate is mounted in the processing container, and in the processing container A processing space for performing a film forming process on the substrate; a gas supply unit that supplies a processing gas for the film forming process to the processing space; and an exhaust unit that exhausts the processing space;
  • a film forming apparatus is provided in which a processing gas is supplied from the outer periphery of the processing space, and the exhaust section exhausts upward from the center upper portion of the processing space.
  • FIG. 1 is a cross-sectional view showing a film forming apparatus according to a first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing a supply / exhaust flow path member and a cap member of the film forming apparatus of FIG. 1
  • FIG. 4 is an exploded perspective view showing an air supply / exhaust flow path member and a cap member in FIG. 4
  • FIG. 4 is a bottom view showing the air supply / exhaust flow path member
  • FIG. 5 is a plan view showing the cap member.
  • the film forming apparatus 100 has a substantially cylindrical processing container 1 in which a processing space S held in a vacuum is formed.
  • the processing container 1 is made of aluminum or an aluminum alloy.
  • a susceptor 2 made of a ceramic such as AlN is provided in the lower part of the center of the processing chamber 1 as a mounting table for mounting (supporting) the wafer W as a substrate to be processed in a horizontal state.
  • the cylindrical support member 3 is arranged so as to be movable up and down while being supported by the cylindrical support member 3.
  • An inner ring 4 made of ceramics such as alumina for guiding the wafer W and defining a processing space is provided on the outer edge of the susceptor 2.
  • a cover ring 15 made of aluminum or an aluminum alloy is provided on the outer periphery of the inner ring 4 so as to engage with the inner ring 4.
  • the susceptor 2 is embedded with a heater 5 made of a refractory metal such as molybdenum.
  • the heater 5 is supplied with power from a heater power source (not shown), and a wafer W as a substrate to be processed is predetermined. For example, 350 to 500 ° C.
  • the processing container 1 has a lower container 1a having an opening in the upper part and a disc-shaped top plate 1b provided so as to close the opening of the lower container 1a.
  • An air supply / exhaust flow path member 12 made of a disc having a diameter larger than that of the susceptor 2 is attached to the center of the lower surface of the top plate 1b.
  • a cap member 13 having a disk shape with substantially the same diameter is attached to face the susceptor 2.
  • the supply / exhaust flow path member 12 and the cap member 13 are formed of aluminum or an aluminum alloy.
  • a concave portion 13 a having a disk shape slightly larger in diameter than the susceptor 2 is formed in the center portion of the lower surface of the cap member 13. Then, with the susceptor 2 in the raised processing position indicated by the solid line in FIG. 1, the outer peripheral portion 13 b of the recess 13 a comes into contact with the cover ring 15, thereby forming the processing space S surrounded by the recess 13 a and the susceptor 2. It is formed. At this time, since the susceptor 2 is heated to a high temperature by the heater 5 in order to heat the wafer W, the inner ring 4 is formed of ceramics in order to reduce the thermal effect on the cover ring 15 made of aluminum or aluminum alloy. ing. The detailed structures of the supply / exhaust flow path member 12 and the cap member 13 will be described later.
  • a gas supply unit 20 is provided above the top plate 1 b of the processing container 1.
  • Gas supply unit 20 includes a first processing TiCl 4 gas supply pipe 21 for supplying TiCl 4 gas as a gas, the second processing NH 3 gas for supplying NH 3 gas supply pipe 22 is a gas, the carrier gas
  • An N 2 gas supply pipe 23 that supplies N 2 gas that functions as a purge gas, a valve unit of these pipes and a collective valve unit 24 in which flow controllers such as a mass flow controller are collectively arranged, and a valve of the collective valve unit 24
  • a common pipe 25 for supplying a desired gas to the processing space S selectively. Control of valve operation at the time of gas supply is performed by the valve control unit 26.
  • the common pipe 25 is connected to a gas inlet 27 provided at the center of the top plate 1b. Then, gas is supplied from the gas introduction port 27 to the processing space S as described later.
  • An annular exhaust path 30 is formed around the air supply / exhaust flow path member 12 and the cap member 13.
  • the exhaust path 30 includes a duct member 33 provided between the side wall of the processing container 1 and the top plate 1b, an inner ring member 34 provided on the lower inner side of the duct member 33, and an air supply / exhaust It is formed so as to be surrounded by the flow path member 12 and the cap member 13.
  • a purge gas for purging the lower container 1 a flows between the inner ring member 34 and the cover ring 15. Accordingly, the outer periphery of the processing space S is surrounded by the exhaust path 30, and the gas in the processing space S is discharged to the exhaust path 30 as described later.
  • An exhaust pipe 31 is connected to the exhaust path 30, and an automatic pressure control valve (APC) 31a and an exhaust device 32 are connected to the exhaust pipe 31, and the opening of the automatic pressure control valve (APC) 31a is controlled.
  • APC automatic pressure control valve
  • APC automatic pressure control valve
  • the supporting member 3 penetrates the bottom surface of the lower container 1a of the processing container 1 and is supported by the elevating plate 41.
  • the elevating plate 41 is attached to the rod 42a of the elevating mechanism 42 and can be moved up and down by the elevating mechanism 42.
  • the susceptor 2 is moved to the processing position indicated by the solid line in FIG. It can be moved up and down between the transfer position indicated by the two-dot chain line.
  • a bellows 43 is airtightly joined between the elevating plate 41 and the lower container 1a.
  • a wafer lifting / lowering part 45 for lifting / lowering the wafer W with respect to the wafer mounting surface of the susceptor 2 is provided.
  • the wafer elevating unit 45 has a support plate 46 that is horizontally fixed to the bottom surface of the lower container 1a, and three (only two are shown in FIG. 1) wafer support pins 47 extending upward from the support plate 46. ing.
  • the susceptor 2 is provided with an insertion hole 2a through which the wafer support pins 47 are inserted.
  • the wafer support pins 47 are inserted into the insertion holes 2a of the susceptor 2, and the upper ends thereof protrude from the wafer placement surface of the susceptor 2,
  • the wafer W can be transferred by a wafer transfer device (not shown).
  • a loading / unloading port 48 for loading and unloading the wafer W is provided on the side wall of the lower container 1a of the processing chamber 1, and the loading / unloading port 48 can be opened and closed by a gate valve 49, and a vacuum transfer chamber. (Not shown).
  • the loading / unloading port 48 is formed at a position where the wafer W can be transferred to the susceptor 2 by a transfer device (not shown) when the susceptor 2 is at the transfer position.
  • a gas inflow hole 61 is formed so as to extend vertically downward from the gas inlet 27 (see FIG. 1).
  • a gas inlet 62 is provided on the upper surface of the air supply / exhaust flow path member 12 so as to correspond to the gas inflow hole 61, and a plurality of gas inlets 62 (8 in the figure) are provided inside the air supply / exhaust flow path member 12.
  • the horizontal gas flow path 63 of the book extends horizontally and radially outward (see FIGS. 2 and 4).
  • a vertical gas channel 64 extending vertically downward from the outer end of the gas horizontal gas channel 63 toward the cap member 13 is formed.
  • the vertical gas flow path 64 opens on the lower surface of the air supply / exhaust flow path member 12.
  • a plurality (eight in the figure) of gas introducing passages 65 are provided on the outer peripheral portion of the upper surface of the cap member 13 so as to correspond to the vertical gas passages 64 of the air supply / exhaust passage member 12.
  • An annular gas channel 66 is provided inside the cap member 13 (see FIGS. 2 and 3), and the gas introduction channel 65 is connected to the annular gas channel 66.
  • a plurality (32 in the figure) of gas discharge ports 67 that are opened from the annular gas flow channel 66 to positions outside the wafer W on the outer peripheral portion of the concave portion 13a of the cap member 13 are equally provided (FIG. 2). 3, 5).
  • the gas introduced from the gas supply unit 20 via the gas inlet 27 is the gas inlet 61, the gas inlet 62, the horizontal gas passage 63, the vertical gas flow.
  • the gas introduction passage 65, the annular gas passage 66, and the gas discharge port 67 the gas is uniformly supplied to the processing space S from the outer periphery.
  • a gas discharge hole 68 is formed at the center of the lower surface of the cap member 13 (the center of the recess 13a). Therefore, the gas supplied to the processing space S from the plurality of gas discharge ports 67 on the outer peripheral upper surface is discharged upward from the gas discharge hole 68 at the upper center of the processing space S through the upper surface of the wafer W.
  • the gas discharge hole 68 has an inverted mortar-shaped lower portion 68a and a small-diameter upper portion 68b.
  • the shape of the gas discharge hole 68 is not limited to this, and may be another shape such as a simple columnar shape.
  • a plurality of gas discharge ports 67 provided along the outer periphery of the processing space S are discharged, and gas is discharged from the central upper portion of the processing space S (FIGS. 2 and 3). 5).
  • a plurality (eight in the figure) of gas discharge passages 71 are provided radially on the lower surface of the air supply / exhaust passage member 12, and the outer peripheral ends of these gas discharge passages 71 face the annular exhaust passage 30. It is like that. Therefore, the gas discharged from the gas discharge hole 68 is guided to the exhaust passage 30 through the gas discharge passage 71 without causing a bias, and is discharged from the exhaust device 32 through the exhaust pipe 31.
  • Each component of the film forming apparatus 100 such as a valve control unit 26, an elevating mechanism 42, a heater power source (not shown) for heating the heater 5, an automatic pressure control valve (APC) 31a, an exhaust device 32, a gate valve 49, etc. Controlled by the overall control unit 80.
  • the overall control unit 80 is executed by the film forming apparatus 100, a controller including a microprocessor (computer), a keyboard for an operator to perform input operations, a user interface including a display for displaying the operating status of the film forming apparatus, and the like.
  • a storage unit storing a control program for realizing various processes performed by the controller and a processing recipe for causing the film forming apparatus 100 to execute a predetermined process according to the processing conditions. Yes.
  • the processing recipe and the like are stored in a storage medium, and are read from the storage medium and executed in the storage unit.
  • the storage medium may be a hard disk or a semiconductor memory, or may be a portable medium such as a CD-ROM, DVD, or flash memory.
  • Recipes and the like are read from the storage unit according to instructions from the user interface as necessary, and are executed by the controller, so that desired processing in the film forming apparatus 100 is performed under the control of the controller.
  • the gate valve 49 is opened and the vacuum transfer is performed with the susceptor 2 placed at the transfer position.
  • the wafer W is transferred from the chamber to the wafer support pins 47 by the transfer device, the transfer device is retracted, and the gate valve 49 is closed.
  • the lifting mechanism 42 raises the susceptor 2, and the cover ring 15 attached to the outer peripheral portion of the susceptor 2 is brought into contact with the outer peripheral portion 13 b of the cap member 13, thereby forming a processing space formed by the recess 13 a and the susceptor 2.
  • S is formed.
  • the wafer W is heated to a predetermined temperature, for example, 350 to 500 ° C. by the heater 5 provided in the susceptor 2.
  • the pressure of the processing space S is controlled by controlling the opening of the automatic pressure control valve (APC) 31a while flowing N 2 gas as a purge gas from the gas supply unit 20, and when the pressure becomes stable, ALD
  • ALD automatic pressure control valve
  • the wafer W by supplying step of adsorbing the TiCl 4 gas onto the wafer W by supplying TiCl 4 gas, purging the processing space S by supplying N 2 gas, NH 3 gas
  • the process of reducing the upper TiCl 4 to form an extremely thin TiN film and the process of purging the processing space S by supplying N 2 gas are repeated a predetermined number of times.
  • the gas switching at this time is realized by controlling the valve by the valve control unit 26.
  • the pressure in the processing space S in each step is, for example, 2 to 4 Torr in the step of adsorbing TiCl 4 gas, 10 to 15 Torr in the step of supplying Ti 3 4 by reducing NH 3 gas, and 2 in the purge step, for example. Set to ⁇ 4 Torr.
  • a TiN film having a predetermined thickness is formed on the wafer W by repeating the supply of TiCl 4 gas and the supply of NH 3 gas with the purge interposed therebetween.
  • the gas is discharged from a plurality of gas discharge ports 67 provided evenly on the outer periphery of the processing space S of the cap member 13 and discharged from the gas discharge hole 68 at the upper center of the processing space S.
  • the wafer W is uniformly supplied in the dispersed state, and the gas can be supplied to the wafer in the dispersed state without using a special dispersion mechanism.
  • the gas discharge port 67 is provided outside and above the wafer W, the gas flow is not directly injected onto the wafer W, but flows along the surface of the wafer W and is uniform with respect to the wafer W. Can be supplied with gas.
  • gas can be supplied in a state of essentially good dispersibility, and a mechanism for dispersing gas in the central portion of the processing space as in the prior art is unnecessary, so that the processing space
  • the volume of S can be made significantly smaller than before, and the gas supply and exhaust time can be shortened. For this reason, it becomes possible to respond to the request of a high-speed process.
  • the amount of gas used can be saved.
  • the conductance of the exhaust can be set by the diameter and shape of the gas discharge hole 68.
  • the exhaust conductance can be easily set as compared with. Further, by exhausting from the center upper portion in this way, the influence on the exhaust conductance due to film formation can be reduced, and the exhaust can be performed uniformly without causing a bias.
  • the processing space S can be formed by an extremely simple operation of raising the susceptor 2 and closing the opening of the concave portion 13a formed in the cap member 13, so that efficient processing can be performed. Since the processing space S that is narrow and closed is formed and the film formation process is performed in the process space S, the processing efficiency is high. In addition, since the film forming process is performed in the space above the susceptor 2 as described above, the gas does not contact the lower part of the susceptor 2, and film formation or corrosion occurs on the wall or member below the susceptor 2. Can be prevented.
  • the gas supply unit supplies gas from the outer periphery of the processing space, and the gas exhaust unit exhausts upward from the center upper portion of the processing space, so that the gas is uniformly distributed.
  • the gas can be supplied to the substrate in a dispersed state without using a special dispersion mechanism. Further, there is no need for a mechanism for dispersing gas in the central portion of the processing space as in the prior art. Since gas can be supplied in such a state with good dispersibility and a mechanism for dispersing the gas is not necessary, the volume of the processing space can be made significantly smaller than before, and the gas supply and exhaust time can be reduced. Can be shortened. For this reason, it becomes possible to respond to the request of a high-speed process. In addition, the amount of gas used can be saved.
  • the exhaust conductance can be set according to the diameter and shape of the gas discharge hole, and the exhaust conductance can be set compared to the conventional case where gas is discharged from the outer periphery. Can be easily performed. Further, by exhausting from the center upper portion in this way, the influence on the exhaust conductance due to film formation can be reduced.
  • the conductance is changed between adsorption and reaction (reduction) and gas replacement.
  • FIG. 6 is a cross-sectional view showing a main part of a film forming apparatus according to the second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a buffer chamber 91 is provided around the gas discharge hole 68 of the cap member 13, and the buffer chamber 91 and the gas discharge hole 68 are connected by a gas flow path 92.
  • N 2 gas or NH 3 gas is introduced from a separate gas line 93.
  • the pressure of the buffer chamber 91 can be arbitrarily controlled by controlling the supply of gas from the gas line 93. Therefore, at the time of adsorption and reaction (reduction), as shown in FIG. 7A, the differential pressure between the buffer chamber 91 and the processing space S is decreased to reduce the conductance, thereby increasing the process gas containment effect. On the other hand, when the purge gas is introduced to replace the gas, as shown in FIG. 7B, the differential pressure between the buffer chamber 91 and the processing space S is increased to increase the conductance. Can be made possible.
  • the method of providing the buffer chamber of this embodiment and controlling conductance is possible irrespective of the position of a gas exhaust hole.
  • the present invention can be similarly applied to a conventional film forming apparatus that introduces gas from the center and exhausts it to the outer periphery as shown in FIG. That is, in the film forming apparatus of FIG. 8, the cap member 13 ′ is configured to form an inverted mortar-shaped processing space S ′, and the gas is introduced by inserting the gas introduction member 101 having the gas dispersion mechanism from the upper center.
  • the exhaust line 102 is evenly arranged on the outer peripheral side of the processing space S ′ and exhausted to an outer exhaust path (not shown).
  • An annular buffer chamber 103 is provided in the middle of the exhaust line 102, a gas line 104 is connected to the buffer chamber 103, and N 2 gas or NH 3 gas is introduced into the buffer chamber 103 via the gas line 104. Pressure control can be performed. Even with such a configuration, the same effect as that of the apparatus of FIG. 6 can be obtained.
  • this invention can be variously deformed, without being limited to the said embodiment.
  • a TiN film is formed by ALD using TiCl 4 gas and NH 3 gas has been described.
  • the type of gas and the material of the film are not limited at all.
  • the present invention can be applied to ALD film formation using various gases.
  • the purge gas may be appropriately selected according to the processing gas, and is not particularly limited. Needless to say, the gas is not limited to two types but can be applied to ALD of three or more types of gases. It can also be applied to normal CVD other than ALD.
  • the gas is discharged from the gas discharge port provided outside the wafer on the outer periphery of the processing space.
  • the gas discharge port may be provided at a position where the wafer exists.
  • the several gas discharge port was arrange
  • a semiconductor wafer is described as an example of a substrate to be processed.
  • the present invention is not limited to a semiconductor wafer, and the present invention is also applied to a glass substrate, a ceramic substrate, and the like used for an FPD (flat panel display) such as a liquid crystal display device.
  • FPD flat panel display
  • the invention can be applied.

Abstract

This film-forming apparatus forms a predetermined film on a substrate (W) by alternately supplying a first processing gas and a second processing gas by having purging therebetween, said purging using a purge gas. The film-forming apparatus is provided with: a processing container (1), in which the substrate (W) is contained, and film-forming processing is performed to the substrate (W); a placing table (2) having the substrate placed thereon in the processing container (1); a processing space (S) for forming the film on the substrate (W), said processing space being formed in the processing container (1); a gas supply unit (20), which supplies at least the first processing gas, the second processing gas, and the purge gas to the processing space (S); and gas-release units (71, 30, 31, 32), through which gas is released from the processing space (S). The gas supply unit (20) supplies the gas from the outer circumference of the processing space (S), and the gas-release units (71, 30, 31, 32) release the gas upward from the center upper portion of the processing space (S).

Description

成膜装置Deposition equipment
 本発明は、ALD(Atomic Layer Deposition)プロセスに好適な成膜装置に関する。 The present invention relates to a film forming apparatus suitable for an ALD (Atomic Layer Deposition) process.
 半導体デバイスの製造においては、基板である半導体ウエハ(以下単にウエハと記す)に成膜処理やエッチング処理等の各種の処理を繰り返し行って所望のデバイスを製造する。 In the manufacture of semiconductor devices, a desired device is manufactured by repeatedly performing various processes such as a film forming process and an etching process on a semiconductor wafer (hereinafter simply referred to as a wafer) as a substrate.
 成膜処理としては、処理ガスを化学的に反応させて成膜を行うCVD(Chemical Vapor Deposition)がある。CVDは微細な回路パターンでも良好なステップカバレッジが得られる利点がある。また、CVDの中でも膜質がより良好な膜を低温で成膜することができるALD(Atomic Layer Deposition)が注目されている。ALDは第1の処理ガスを原子層レベルで吸着させた後に第2の処理ガスを供給して反応させ、極薄い膜とする操作を繰り返して所定厚さの膜を形成するものである。 As the film formation process, there is CVD (Chemical Vapor Deposition) in which a process gas is chemically reacted to form a film. CVD has an advantage that good step coverage can be obtained even with a fine circuit pattern. In addition, ALD (Atomic Layer Deposition), which can form a film with better film quality at low temperature, is attracting attention. In ALD, a first processing gas is adsorbed at an atomic layer level, and then a second processing gas is supplied to react to form an extremely thin film to form a film having a predetermined thickness.
 ALDによる成膜装置は、従来、処理ガスの吸着および反応の効率を高める目的で高圧処理が行えるように極力閉構造とした処理容器を用い、ウエハの中心部分の直上に設けられたガス導入口から処理ガスを導入して外周側へ排出する構造が提案されている(例えば特許文献1)。 A conventional deposition apparatus using ALD uses a processing vessel having a closed structure as much as possible so that high-pressure processing can be performed in order to increase the efficiency of adsorption and reaction of processing gas, and a gas inlet provided directly above the central portion of the wafer. Has been proposed (for example, Patent Document 1).
特開2009-224775号公報JP 2009-224775 A
 ところでALDプロセスを行う場合には、高速でガス供給および排気を行うために、処理容器内の処理空間の容積を極力小さくしたいという要求があるが、上記特許文献1のようにウエハの中心部分の直上からガスを導入する場合、ガス導入部分にはガス拡散ブロック等の構造物が存在するため、中心のガス導入口とウエハとの距離が近くなり、ガス導入口から吐出したガスが拡散しにくく成膜分布が悪いものとなる。一方、十分なガスの拡散を確保しようとすると、処理空間の容積が大きくなってしまう。また、外周から排気する場合、排気コンダクタンスの設定が難しい。 By the way, when performing the ALD process, there is a demand to reduce the volume of the processing space in the processing container as much as possible in order to perform gas supply and exhaust at a high speed. When gas is introduced from directly above, there is a structure such as a gas diffusion block in the gas introduction part, so the distance between the central gas introduction port and the wafer is close, and the gas discharged from the gas introduction port is difficult to diffuse. The film formation distribution is poor. On the other hand, if sufficient gas diffusion is to be ensured, the volume of the processing space increases. Also, when exhausting from the outer periphery, it is difficult to set the exhaust conductance.
 したがって、本発明の目的は、ガスの拡散を妨げることなく処理空間の容積を小さくすることができ、排気コンダクタンスの設定が容易な成膜装置を提供することにある。 Therefore, an object of the present invention is to provide a film forming apparatus that can reduce the volume of the processing space without hindering gas diffusion and can easily set the exhaust conductance.
 本発明の第1の観点によれば、第1の処理ガスと第2の処理ガスとをパージガスによるパージを挟んで交互に供給して基板上に所定の膜を成膜する成膜装置であって、基板を収容し、その中で基板の成膜処理が行われる処理容器と、前記処理容器内で基板を載置する載置台と、前記処理容器内に形成された、基板に成膜処理を行う処理空間と、前記処理空間に、少なくとも前記第1の処理ガスと、前記第2の処理ガスと、前記パージガスとを供給するガス供給部と、前記処理空間を排気する排気部とを具備し、前記ガス供給部は前記処理空間の外周からガスを供給し、前記排気部は前記処理空間の中央上部から上方へ排気する成膜装置が提供される。 According to a first aspect of the present invention, there is provided a film forming apparatus for forming a predetermined film on a substrate by alternately supplying a first processing gas and a second processing gas with a purge gas being purged. A substrate in which the substrate is deposited, a substrate in which the substrate is deposited, a mounting table on which the substrate is placed in the processing vessel, and a substrate that is formed in the processing vessel. A processing space, a gas supply unit that supplies at least the first processing gas, the second processing gas, and the purge gas to the processing space, and an exhaust unit that exhausts the processing space. Then, a film forming apparatus is provided in which the gas supply unit supplies gas from the outer periphery of the processing space, and the exhaust unit exhausts upward from the center upper part of the processing space.
 上記第1の観点において、前記処理容器内に前記載置台と対向して設けられ、下方に開口した前記処理空間を形成するための凹部を有するキャップ部材をさらに具備し、前記載置台により前記凹部の開口を塞ぐことにより処理空間が形成され、前記キャップ部材の前記凹部の外周部に複数のガス吐出口が形成され、前記キャップ部材の前記凹部の中央にガス排出孔が形成されている構成とすることができる。 In the first aspect, the apparatus further includes a cap member provided in the processing container so as to face the mounting table and having a recess for forming the processing space opened downward. A processing space is formed by closing the opening, a plurality of gas discharge ports are formed in the outer peripheral portion of the concave portion of the cap member, and a gas discharge hole is formed in the center of the concave portion of the cap member; can do.
 また、前記載置台を昇降させる昇降機構をさらに具備し、前記昇降機構により前記載置台を下降させた状態で前記載置台への基板の受け渡しが行われ、前記昇降機構により前記載置台を上昇させることにより前記キャップ部材の前記開口が塞がれて前記処理空間が形成される構成とすることができる。 In addition, the apparatus further includes an elevating mechanism that raises and lowers the mounting table, and the substrate is transferred to the mounting table in a state where the mounting table is lowered by the lifting mechanism, and the mounting table is raised by the lifting mechanism. As a result, the opening of the cap member is closed to form the processing space.
 さらに、前記排気部は、前記処理空間の外側を囲うように設けられた環状の排気経路と、前記キャップ部材の前記ガス排出孔から排出されたガスを放射状に前記排気経路に導くガス排出流路とを有する構成とすることができる。 Further, the exhaust part includes an annular exhaust path provided so as to surround the outside of the processing space, and a gas exhaust passage for guiding the gas exhausted from the gas exhaust hole of the cap member radially to the exhaust path. It can be set as the structure which has.
 さらにまた、前記ガス排出孔に接続されたバッファ室と、前記バッファ室にガスを供給するガスラインとを有し、前記ガスラインから前記バッファ室へのガスの供給を制御して前記バッファ室の圧力を制御することにより、前記処理空間からの排気のコンダクタンスを制御する構成とすることができる。 Furthermore, it has a buffer chamber connected to the gas discharge hole and a gas line for supplying gas to the buffer chamber, and controls the supply of gas from the gas line to the buffer chamber to control the buffer chamber. By controlling the pressure, it is possible to control the exhaust conductance from the processing space.
 本発明の第2の観点によれば、基板を収容し、その中で基板の成膜処理が行われる処理容器と、前記処理容器内で基板を載置する載置台と、前記処理容器内において基板に成膜処理を行う処理空間と、前記処理空間に成膜処理のための処理ガスを供給するガス供給部と、前記処理空間を排気する排気部とを具備し、前記ガス供給部は前記処理空間の外周から処理ガスを供給し、前記排気部は前記処理空間の中央上部から上方へ排気する成膜装置が提供される。 According to the second aspect of the present invention, in a processing container in which a substrate is accommodated and a film forming process of the substrate is performed, a mounting table on which the substrate is mounted in the processing container, and in the processing container A processing space for performing a film forming process on the substrate; a gas supply unit that supplies a processing gas for the film forming process to the processing space; and an exhaust unit that exhausts the processing space; A film forming apparatus is provided in which a processing gas is supplied from the outer periphery of the processing space, and the exhaust section exhausts upward from the center upper portion of the processing space.
本発明の第1の実施形態に係る成膜装置を示す断面図である。It is sectional drawing which shows the film-forming apparatus which concerns on the 1st Embodiment of this invention. 図1の成膜装置の給排気流路部材とキャップ部材とを示す断面図である。It is sectional drawing which shows the air supply / exhaust flow path member and cap member of the film-forming apparatus of FIG. 図1の成膜装置における給排気流路部材とキャップ部材とを分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the supply / exhaust flow path member and cap member in the film-forming apparatus of FIG. 給排気流路部材を示す底面図である。It is a bottom view which shows an air supply / exhaust flow path member. キャップ部材を示す平面図である。It is a top view which shows a cap member. 本発明の第2の実施形態に係る成膜装置の要部を示す断面図である。It is sectional drawing which shows the principal part of the film-forming apparatus which concerns on the 2nd Embodiment of this invention. 吸着時および反応(還元)時の処理空間とバッファ室の差圧の例を示す図である。It is a figure which shows the example of the differential pressure | voltage of the process space at the time of adsorption | suction and reaction (reduction | reduction) and a buffer chamber. パージガスを導入してガスを置換する時の処理空間とバッファ室の差圧の例を示す図である。It is a figure which shows the example of the differential pressure | voltage of the process space when introducing purge gas, and replacing gas. 本発明の第2の実施形態に係る成膜装置の他の例の要部を示す図である。It is a figure which shows the principal part of the other example of the film-forming apparatus which concerns on the 2nd Embodiment of this invention.
 以下、添付図面を参照して本発明の実施形態について具体的に説明する。ここでは成膜装置としてTi原料ガスと窒化ガスとを用いてALDによりTiN膜を成膜する装置を例にとって説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Here, an apparatus for forming a TiN film by ALD using a Ti source gas and a nitriding gas will be described as an example of a film forming apparatus.
 <第1の実施形態>
 図1は本発明の第1の実施形態に係る成膜装置を示す断面図、図2は図1の成膜装置の給排気流路部材とキャップ部材とを示す断面図、図3は図1の成膜装置における給排気流路部材とキャップ部材とを分解して示す斜視図、図4は給排気流路部材を示す底面図、図5はキャップ部材を示す平面図である。図1に示すように、成膜装置100は、その中に真空に保持される処理空間Sが形成される略円筒状の処理容器1を有している。処理容器1はアルミニウムまたはアルミニウム合金で形成されている。
<First Embodiment>
1 is a cross-sectional view showing a film forming apparatus according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view showing a supply / exhaust flow path member and a cap member of the film forming apparatus of FIG. 1, and FIG. 4 is an exploded perspective view showing an air supply / exhaust flow path member and a cap member in FIG. 4, FIG. 4 is a bottom view showing the air supply / exhaust flow path member, and FIG. 5 is a plan view showing the cap member. As shown in FIG. 1, the film forming apparatus 100 has a substantially cylindrical processing container 1 in which a processing space S held in a vacuum is formed. The processing container 1 is made of aluminum or an aluminum alloy.
 処理容器1の内部には、被処理基板であるウエハWを水平状態で載置(支持)するための載置台として、例えばAlNのようなセラミックスで構成されたサセプタ2が、その中央下部に設けられた円筒状の支持部材3により支持された状態で昇降可能に配置されている。サセプタ2の外縁部には、ウエハWをガイドするとともに処理空間を規定するための、アルミナ等のセラミックスからなるインナーリング4が設けられている。また、インナーリング4の外周には、アルミニウムまたはアルミニウム合金からなるカバーリング15がインナーリング4に係合するように設けられている。また、サセプタ2にはモリブデン等の高融点金属で構成されたヒーター5が埋め込まれており、このヒーター5はヒーター電源(図示せず)から給電されることにより被処理基板であるウエハWを所定の温度、例えば350~500℃に加熱する。 A susceptor 2 made of a ceramic such as AlN is provided in the lower part of the center of the processing chamber 1 as a mounting table for mounting (supporting) the wafer W as a substrate to be processed in a horizontal state. The cylindrical support member 3 is arranged so as to be movable up and down while being supported by the cylindrical support member 3. An inner ring 4 made of ceramics such as alumina for guiding the wafer W and defining a processing space is provided on the outer edge of the susceptor 2. A cover ring 15 made of aluminum or an aluminum alloy is provided on the outer periphery of the inner ring 4 so as to engage with the inner ring 4. The susceptor 2 is embedded with a heater 5 made of a refractory metal such as molybdenum. The heater 5 is supplied with power from a heater power source (not shown), and a wafer W as a substrate to be processed is predetermined. For example, 350 to 500 ° C.
 処理容器1は、上部に開口を有する下側容器1aと、下側容器1aの開口を塞ぐように設けられた円板状の天板1bとを有する。天板1bの下面の中央部には、サセプタ2よりも大径の円板からなる給排気流路部材12が取り付けられ、給排気流路部材12の下面には、給排気流路部材12とほぼ同径の円板状をなすキャップ部材13がサセプタ2に対向するように取り付けられている。これら給排気流路部材12およびキャップ部材13はアルミニウムまたはアルミニウム合金で形成されている。 The processing container 1 has a lower container 1a having an opening in the upper part and a disc-shaped top plate 1b provided so as to close the opening of the lower container 1a. An air supply / exhaust flow path member 12 made of a disc having a diameter larger than that of the susceptor 2 is attached to the center of the lower surface of the top plate 1b. A cap member 13 having a disk shape with substantially the same diameter is attached to face the susceptor 2. The supply / exhaust flow path member 12 and the cap member 13 are formed of aluminum or an aluminum alloy.
 キャップ部材13の下面中央部にはサセプタ2よりも僅かに大径の円板状をなす凹部13aが形成されている。そして、サセプタ2が図1の実線で示す上昇された処理位置にある状態で、カバーリング15に凹部13aの外周部分13bが接触することにより、凹部13aとサセプタ2に囲まれた処理空間Sが形成される。このとき、サセプタ2はウエハWを加熱するためにヒーター5により高温に加熱されているため、アルミニウムまたはアルミニウム合金からなるカバーリング15への熱影響を緩和するため、インナーリング4をセラミックスで形成している。なお、給排気流路部材12およびキャップ部材13の詳細な構造は後述する。 A concave portion 13 a having a disk shape slightly larger in diameter than the susceptor 2 is formed in the center portion of the lower surface of the cap member 13. Then, with the susceptor 2 in the raised processing position indicated by the solid line in FIG. 1, the outer peripheral portion 13 b of the recess 13 a comes into contact with the cover ring 15, thereby forming the processing space S surrounded by the recess 13 a and the susceptor 2. It is formed. At this time, since the susceptor 2 is heated to a high temperature by the heater 5 in order to heat the wafer W, the inner ring 4 is formed of ceramics in order to reduce the thermal effect on the cover ring 15 made of aluminum or aluminum alloy. ing. The detailed structures of the supply / exhaust flow path member 12 and the cap member 13 will be described later.
 処理容器1の天板1bの上方にはガス供給部20が設けられている。ガス供給部20は、第1の処理ガスであるTiClガスを供給するTiClガス供給配管21と、第2の処理ガスであるNHガスを供給するNHガス供給配管22と、キャリアガスおよびパージガスとして機能するNガスを供給するNガス供給配管23と、これら配管のバルブ類およびマスフローコントローラ等の流量制御器を集合的に配置した集合バルブユニット24と、集合バルブユニット24のバルブの操作により選択的に所望のガスを処理空間Sに供給するための共通配管25とを有している。ガス供給の際のバルブ操作の制御はバルブ制御部26により行われる。共通配管25は、天板1bの中央に設けられたガス導入口27に接続されている。そして、ガス導入口27から後述するようにして処理空間Sにガスが供給される。 A gas supply unit 20 is provided above the top plate 1 b of the processing container 1. Gas supply unit 20 includes a first processing TiCl 4 gas supply pipe 21 for supplying TiCl 4 gas as a gas, the second processing NH 3 gas for supplying NH 3 gas supply pipe 22 is a gas, the carrier gas An N 2 gas supply pipe 23 that supplies N 2 gas that functions as a purge gas, a valve unit of these pipes and a collective valve unit 24 in which flow controllers such as a mass flow controller are collectively arranged, and a valve of the collective valve unit 24 And a common pipe 25 for supplying a desired gas to the processing space S selectively. Control of valve operation at the time of gas supply is performed by the valve control unit 26. The common pipe 25 is connected to a gas inlet 27 provided at the center of the top plate 1b. Then, gas is supplied from the gas introduction port 27 to the processing space S as described later.
 上記給排気流路部材12およびキャップ部材13の周囲には、環状の排気経路30が形成されている。具体的には、排気経路30は、処理容器1の側壁と天板1bとの間に設けられたダクト部材33と、このダクト部材33の下部内側に設けられた内側リング部材34と、給排気流路部材12およびキャップ部材13とで囲まれるように形成されている。内側リング部材34とカバーリング15との間には、下側容器1aをパージするパージガスが流れている。これにより、処理空間Sの外周が排気経路30に囲まれた構成となっており、後述するように処理空間Sのガスがこの排気経路30に排出されるようになっている。排気経路30には排気配管31が接続されており、この排気配管31には自動圧力制御バルブ(APC)31aと排気装置32が接続されており、自動圧力制御バルブ(APC)31aの開度を制御しつつ排気装置32を作動させることにより処理空間S内を所定の真空度まで減圧することが可能となっている。 An annular exhaust path 30 is formed around the air supply / exhaust flow path member 12 and the cap member 13. Specifically, the exhaust path 30 includes a duct member 33 provided between the side wall of the processing container 1 and the top plate 1b, an inner ring member 34 provided on the lower inner side of the duct member 33, and an air supply / exhaust It is formed so as to be surrounded by the flow path member 12 and the cap member 13. A purge gas for purging the lower container 1 a flows between the inner ring member 34 and the cover ring 15. Accordingly, the outer periphery of the processing space S is surrounded by the exhaust path 30, and the gas in the processing space S is discharged to the exhaust path 30 as described later. An exhaust pipe 31 is connected to the exhaust path 30, and an automatic pressure control valve (APC) 31a and an exhaust device 32 are connected to the exhaust pipe 31, and the opening of the automatic pressure control valve (APC) 31a is controlled. By operating the exhaust device 32 while being controlled, the inside of the processing space S can be depressurized to a predetermined degree of vacuum.
 支持部材3は、処理容器1の下側容器1aの底面部を貫通し、昇降板41に支持されている。昇降板41は昇降機構42のロッド42aに取り付けられ、昇降機構42により昇降可能となっており、この昇降板41の昇降により支持部材3を介してサセプタ2が図1の実線で示す処理位置と二点鎖線で示す搬送位置との間で昇降可能となっている。昇降板41と下側容器1aとの間にベローズ43が気密に接合されている。 The supporting member 3 penetrates the bottom surface of the lower container 1a of the processing container 1 and is supported by the elevating plate 41. The elevating plate 41 is attached to the rod 42a of the elevating mechanism 42 and can be moved up and down by the elevating mechanism 42. By the elevating of the elevating plate 41, the susceptor 2 is moved to the processing position indicated by the solid line in FIG. It can be moved up and down between the transfer position indicated by the two-dot chain line. A bellows 43 is airtightly joined between the elevating plate 41 and the lower container 1a.
 また、処理容器1内の下側容器1aの底面部近傍には、ウエハWをサセプタ2のウエハ載置面に対して昇降させるためのウエハ昇降部45が設けられている。ウエハ昇降部45は、下側容器1aの底面に水平に固定された支持板46と、支持板46から上方に延びる3本(図1では2本のみ図示)のウエハ支持ピン47とを有している。一方、サセプタ2にはウエハ支持ピン47が挿通される挿通孔2aが設けられている。そして、サセプタ2が二点鎖線で示す搬送位置に下降された際に、ウエハ支持ピン47がサセプタ2の挿通孔2aに挿通され、その上端がサセプタ2のウエハ載置面から突出した状態となり、図示しないウエハ搬送装置によるウエハWの受け渡しが可能となる。 Further, near the bottom surface of the lower container 1 a in the processing container 1, a wafer lifting / lowering part 45 for lifting / lowering the wafer W with respect to the wafer mounting surface of the susceptor 2 is provided. The wafer elevating unit 45 has a support plate 46 that is horizontally fixed to the bottom surface of the lower container 1a, and three (only two are shown in FIG. 1) wafer support pins 47 extending upward from the support plate 46. ing. On the other hand, the susceptor 2 is provided with an insertion hole 2a through which the wafer support pins 47 are inserted. When the susceptor 2 is lowered to the transfer position indicated by the two-dot chain line, the wafer support pins 47 are inserted into the insertion holes 2a of the susceptor 2, and the upper ends thereof protrude from the wafer placement surface of the susceptor 2, The wafer W can be transferred by a wafer transfer device (not shown).
 処理容器1の下側容器1aの側壁には、ウエハWの搬入および搬出を行うための搬入出口48が設けられており、搬入出口48はゲートバルブ49により開閉可能となっており、真空搬送室(図示せず)に連通している。搬入出口48は、サセプタ2が搬送位置にあるときに、搬送装置(図示せず)によるサセプタ2に対するウエハWの受け渡しを行うことができる位置に形成されている。 A loading / unloading port 48 for loading and unloading the wafer W is provided on the side wall of the lower container 1a of the processing chamber 1, and the loading / unloading port 48 can be opened and closed by a gate valve 49, and a vacuum transfer chamber. (Not shown). The loading / unloading port 48 is formed at a position where the wafer W can be transferred to the susceptor 2 by a transfer device (not shown) when the susceptor 2 is at the transfer position.
 次に、処理空間Sに対するガス供給および排気のための構造について具体的に説明する。 Next, the structure for supplying and exhausting the gas to the processing space S will be specifically described.
 天板1bの中心には、ガス導入口27から垂直に下方に延び、貫通するようにガス流入孔61が形成されている(図1参照)。一方、給排気流路部材12の上面にはガス流入孔61に対応するようにガス導入口62が設けられ、給排気流路部材12の内部には、ガス導入口62から複数(図では8本)の水平ガス流路63が水平かつ放射状に外側に向かって延びている(図2、4参照)。そして、これらガス水平ガス流路63の外端部からキャップ部材13に向けて垂直下方に延びる垂直ガス流路64が形成されている。垂直ガス流路64は給排気流路部材12の下面に開口している。キャップ部材13の上面の外周部には、給排気流路部材12の垂直ガス流路64に対応するように複数(図では8個)のガス導入路65が設けられている。また、キャップ部材13の内部には、環状ガス流路66が設けられていて(図2、3参照)、ガス導入路65は環状ガス流路66に接続されている。また、環状ガス流路66からキャップ部材13の凹部13aの外周部のウエハWよりも外側の位置に開口する複数(図では32個)のガス吐出口67が均等に設けられている(図2、3、5参照)。したがって、サセプタ2を処理位置に位置させた際に、ガス供給部20からガス導入口27を経て導入されたガスは、ガス流入孔61、ガス導入口62、水平ガス流路63、垂直ガス流路64、ガス導入路65、環状ガス流路66、ガス吐出口67を介して外周部から均等に処理空間Sに供給される。 At the center of the top plate 1b, a gas inflow hole 61 is formed so as to extend vertically downward from the gas inlet 27 (see FIG. 1). On the other hand, a gas inlet 62 is provided on the upper surface of the air supply / exhaust flow path member 12 so as to correspond to the gas inflow hole 61, and a plurality of gas inlets 62 (8 in the figure) are provided inside the air supply / exhaust flow path member 12. The horizontal gas flow path 63 of the book extends horizontally and radially outward (see FIGS. 2 and 4). A vertical gas channel 64 extending vertically downward from the outer end of the gas horizontal gas channel 63 toward the cap member 13 is formed. The vertical gas flow path 64 opens on the lower surface of the air supply / exhaust flow path member 12. A plurality (eight in the figure) of gas introducing passages 65 are provided on the outer peripheral portion of the upper surface of the cap member 13 so as to correspond to the vertical gas passages 64 of the air supply / exhaust passage member 12. An annular gas channel 66 is provided inside the cap member 13 (see FIGS. 2 and 3), and the gas introduction channel 65 is connected to the annular gas channel 66. In addition, a plurality (32 in the figure) of gas discharge ports 67 that are opened from the annular gas flow channel 66 to positions outside the wafer W on the outer peripheral portion of the concave portion 13a of the cap member 13 are equally provided (FIG. 2). 3, 5). Therefore, when the susceptor 2 is positioned at the processing position, the gas introduced from the gas supply unit 20 via the gas inlet 27 is the gas inlet 61, the gas inlet 62, the horizontal gas passage 63, the vertical gas flow. Through the passage 64, the gas introduction passage 65, the annular gas passage 66, and the gas discharge port 67, the gas is uniformly supplied to the processing space S from the outer periphery.
 一方、キャップ部材13の下面中央(凹部13aの中央)にはガス排出孔68が形成されている。したがって、外周上面の複数のガス吐出口67から処理空間Sに供給されたガスが、ウエハWの上面を経て処理空間Sの中央上部のガス排出孔68から上方に排出される。ガス排出孔68は逆すり鉢状の下部68aと小径の上部68bとを有している。なお、ガス排出孔68の形状はこれに限らず、単純な円柱状等の他の形状であってもよい。このように、本実施形態では、処理空間Sに外周に沿って複数設けられたガス吐出口67を吐出し、処理空間Sの中央上部からガスを排出するようになっている(図2、3、5参照)。 On the other hand, a gas discharge hole 68 is formed at the center of the lower surface of the cap member 13 (the center of the recess 13a). Therefore, the gas supplied to the processing space S from the plurality of gas discharge ports 67 on the outer peripheral upper surface is discharged upward from the gas discharge hole 68 at the upper center of the processing space S through the upper surface of the wafer W. The gas discharge hole 68 has an inverted mortar-shaped lower portion 68a and a small-diameter upper portion 68b. The shape of the gas discharge hole 68 is not limited to this, and may be another shape such as a simple columnar shape. As described above, in the present embodiment, a plurality of gas discharge ports 67 provided along the outer periphery of the processing space S are discharged, and gas is discharged from the central upper portion of the processing space S (FIGS. 2 and 3). 5).
 給排気流路部材12の下面には、複数(図では8本)のガス排出流路71が放射状に設けられており、これらガス排出流路71の外周端は、環状の排気径路30に臨むようになっている。したがって、ガス排出孔68から排出されたガスは、偏りを生じることなくガス排出流路71を通って排気経路30に導かれ、排気装置32より排気配管31を介して排出される。 A plurality (eight in the figure) of gas discharge passages 71 are provided radially on the lower surface of the air supply / exhaust passage member 12, and the outer peripheral ends of these gas discharge passages 71 face the annular exhaust passage 30. It is like that. Therefore, the gas discharged from the gas discharge hole 68 is guided to the exhaust passage 30 through the gas discharge passage 71 without causing a bias, and is discharged from the exhaust device 32 through the exhaust pipe 31.
 成膜装置100の各構成部、例えばバルブ制御部26、昇降機構42、ヒーター5を加熱するヒーター電源(図示せず)、自動圧力制御バルブ(APC)31a、排気装置32、ゲートバルブ49等は、全体制御部80により制御される。全体制御部80は、マイクロプロセッサ(コンピュータ)からなるコントローラと、オペレータが入力操作等を行うキーボードや、成膜装置の稼働状況等を表示するディスプレイ等からなるユーザーインターフェースと、成膜装置100で実行される各種処理をコントローラの制御にて実現するための制御プログラムや、処理条件に応じて成膜装置100に所定の処理を実行させるための処理レシピ等が格納された記憶部とを有している。処理レシピ等は記憶媒体に記憶されおり、記憶部において記憶媒体から読み出して実行される。記憶媒体は、ハードディスクや半導体メモリであってもよいし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。レシピ等は、必要に応じてユーザーインターフェースからの指示等にて記憶部から読み出し、コントローラに実行させることで、コントローラの制御下で、成膜装置100での所望の処理が行われる。 Each component of the film forming apparatus 100, such as a valve control unit 26, an elevating mechanism 42, a heater power source (not shown) for heating the heater 5, an automatic pressure control valve (APC) 31a, an exhaust device 32, a gate valve 49, etc. Controlled by the overall control unit 80. The overall control unit 80 is executed by the film forming apparatus 100, a controller including a microprocessor (computer), a keyboard for an operator to perform input operations, a user interface including a display for displaying the operating status of the film forming apparatus, and the like. A storage unit storing a control program for realizing various processes performed by the controller and a processing recipe for causing the film forming apparatus 100 to execute a predetermined process according to the processing conditions. Yes. The processing recipe and the like are stored in a storage medium, and are read from the storage medium and executed in the storage unit. The storage medium may be a hard disk or a semiconductor memory, or may be a portable medium such as a CD-ROM, DVD, or flash memory. Recipes and the like are read from the storage unit according to instructions from the user interface as necessary, and are executed by the controller, so that desired processing in the film forming apparatus 100 is performed under the control of the controller.
 このように構成される成膜装置100においては、排気装置32により処理容器1内を減圧状態に維持しつつ、まず、サセプタ2を搬送位置に配置した状態で、ゲートバルブ49を開けて真空搬送室から搬送装置によりウエハWをウエハ支持ピン47の上に受け渡し、搬送装置を退避させてゲートバルブ49を閉じる。その後、昇降機構42によりサセプタ2を上昇させ、サセプタ2の外周部分に取り付けられたカバーリング15をキャップ部材13の外周部分13bに接触させることで、凹部13aとサセプタ2とで形成される処理空間Sを形成する。このときサセプタ2に設けられているヒーター5によりウエハWは所定の温度、例えば350~500℃に加熱されている。 In the film forming apparatus 100 configured as described above, while the inside of the processing container 1 is maintained in a reduced pressure state by the exhaust device 32, first, the gate valve 49 is opened and the vacuum transfer is performed with the susceptor 2 placed at the transfer position. The wafer W is transferred from the chamber to the wafer support pins 47 by the transfer device, the transfer device is retracted, and the gate valve 49 is closed. Thereafter, the lifting mechanism 42 raises the susceptor 2, and the cover ring 15 attached to the outer peripheral portion of the susceptor 2 is brought into contact with the outer peripheral portion 13 b of the cap member 13, thereby forming a processing space formed by the recess 13 a and the susceptor 2. S is formed. At this time, the wafer W is heated to a predetermined temperature, for example, 350 to 500 ° C. by the heater 5 provided in the susceptor 2.
 この状態でガス供給部20からパージガスとしてのNガスを流しつつ自動圧力制御バルブ(APC)31aの開度を制御することにより処理空間Sの圧力を制御し、圧力が安定した段階で、ALDによる成膜を開始する。成膜に際しては、TiClガスを供給してウエハW上へのTiClガスを吸着させる工程、Nガスを供給することにより処理空間Sをパージする工程、NHガスを供給してウエハW上のTiClを還元し、極薄いTiN膜を形成する工程、Nガスを供給することにより処理空間Sをパージする工程を所定回数繰り返す。この際のガスの切替えは、バルブ制御部26によるバルブの制御により実現される。なお、各工程における処理空間S内の圧力は、TiClガスを吸着させる工程では例えば2~4Torr、NHガスを供給してTiClを還元する工程では例えば10~15Torr、パージ工程では例えば2~4Torrに設定される。 In this state, the pressure of the processing space S is controlled by controlling the opening of the automatic pressure control valve (APC) 31a while flowing N 2 gas as a purge gas from the gas supply unit 20, and when the pressure becomes stable, ALD The film formation by is started. During film formation, the wafer W by supplying step of adsorbing the TiCl 4 gas onto the wafer W by supplying TiCl 4 gas, purging the processing space S by supplying N 2 gas, NH 3 gas The process of reducing the upper TiCl 4 to form an extremely thin TiN film and the process of purging the processing space S by supplying N 2 gas are repeated a predetermined number of times. The gas switching at this time is realized by controlling the valve by the valve control unit 26. The pressure in the processing space S in each step is, for example, 2 to 4 Torr in the step of adsorbing TiCl 4 gas, 10 to 15 Torr in the step of supplying Ti 3 4 by reducing NH 3 gas, and 2 in the purge step, for example. Set to ~ 4 Torr.
 このようにして、パージを挟んでTiClガスの供給とNHガスの供給とを繰り返すことにより、ウエハW上に所定の厚さのTiN膜が形成される。 In this way, a TiN film having a predetermined thickness is formed on the wafer W by repeating the supply of TiCl 4 gas and the supply of NH 3 gas with the purge interposed therebetween.
 この場合に、ガスはキャップ部材13の処理空間Sの外周に均等に設けられた複数のガス吐出口67から吐出され、処理空間Sの中央上部のガス排出孔68から排出されるため、ガスは分散された状態で均等にウエハWに供給されることとなり、特別な分散機構を用いることなく分散された状態でウエハにガスを供給することができる。また、ガス吐出口67はウエハWの外方かつ上方に設けられているので、ガス流が直接ウエハWに噴射されるのではなく、ウエハWの表面に沿って流れ、ウエハWに対して均一にガスを供給することができる。 In this case, the gas is discharged from a plurality of gas discharge ports 67 provided evenly on the outer periphery of the processing space S of the cap member 13 and discharged from the gas discharge hole 68 at the upper center of the processing space S. The wafer W is uniformly supplied in the dispersed state, and the gas can be supplied to the wafer in the dispersed state without using a special dispersion mechanism. Further, since the gas discharge port 67 is provided outside and above the wafer W, the gas flow is not directly injected onto the wafer W, but flows along the surface of the wafer W and is uniform with respect to the wafer W. Can be supplied with gas.
 このように、本実施形態では本質的に分散性が良い状態でガスを供給することができ、また、従来のように処理空間の中央部にガスを分散させる機構が不要であるため、処理空間Sの容積を従来よりも著しく小さくすることができ、ガス供給および排気の時間を短くすることができる。このため、高速プロセスの要求に対応することが可能となる。また、ガスの使用量を節約することができる。 Thus, in this embodiment, gas can be supplied in a state of essentially good dispersibility, and a mechanism for dispersing gas in the central portion of the processing space as in the prior art is unnecessary, so that the processing space The volume of S can be made significantly smaller than before, and the gas supply and exhaust time can be shortened. For this reason, it becomes possible to respond to the request of a high-speed process. In addition, the amount of gas used can be saved.
 また、処理空間Sの中央上部のガス排出孔68からガスを排出するため、排気のコンダクタンスをガス排出孔68の径や形状により設定することができ、従来のように外周からガスを排出する場合に比べて排気コンダクタンスの設定を容易に行うことができる。また、このように中央上部から排気することにより、成膜による排気コンダクタンスへの影響を少なくでき、偏りを生じることなく均等に排気することができる。 Further, since the gas is discharged from the gas discharge hole 68 at the center upper portion of the processing space S, the conductance of the exhaust can be set by the diameter and shape of the gas discharge hole 68. The exhaust conductance can be easily set as compared with. Further, by exhausting from the center upper portion in this way, the influence on the exhaust conductance due to film formation can be reduced, and the exhaust can be performed uniformly without causing a bias.
 さらに、処理ガスの吸着および反応(還元)などの効率を高めるためには高圧での処理が必要であり、そのために処理空間を極力閉空間とすることが有利であるが、本実施形態では、サセプタ2を上昇させて、キャップ部材13に形成された凹部13aの開口を塞ぐという、極めて簡単な動作で処理空間Sを形成することができ、効率のよい処理を行うことができる。そして、このように狭くかつ閉じられた処理空間Sを形成してその中で成膜処理を行うので、処理の効率が高い。しかも、このようにサセプタ2の上方の空間で成膜処理が行われるため、サセプタ2の下方にガスが接触することがなく、サセプタ2の下方の壁部または部材に成膜や腐食が生じることを防止できる。 Furthermore, in order to increase the efficiency of adsorption and reaction (reduction) of the processing gas, it is necessary to perform processing at a high pressure. For this reason, it is advantageous to make the processing space as closed as possible. The processing space S can be formed by an extremely simple operation of raising the susceptor 2 and closing the opening of the concave portion 13a formed in the cap member 13, so that efficient processing can be performed. Since the processing space S that is narrow and closed is formed and the film formation process is performed in the process space S, the processing efficiency is high. In addition, since the film forming process is performed in the space above the susceptor 2 as described above, the gas does not contact the lower part of the susceptor 2, and film formation or corrosion occurs on the wall or member below the susceptor 2. Can be prevented.
 以上をまとめると、本実施形態によれば、ガス供給部は処理空間の外周からガスを供給し、ガス排気部は処理空間の中央上部から上方へ排気するので、ガスは分散された状態で均等に基板に供給されることとなり、特別な分散機構を用いることなく分散された状態で基板にガスを供給することができる。また、従来のように処理空間の中央部にガスを分散させる機構が不要である。このように分散性が良い状態でガスを供給することができ、しかもガスを分散させる機構が不要であるため、処理空間の容積を従来よりも著しく小さくすることができ、ガス供給および排気の時間を短くすることができる。このため、高速プロセスの要求に対応することが可能となる。また、ガスの使用量を節約することができる。 In summary, according to the present embodiment, the gas supply unit supplies gas from the outer periphery of the processing space, and the gas exhaust unit exhausts upward from the center upper portion of the processing space, so that the gas is uniformly distributed. The gas can be supplied to the substrate in a dispersed state without using a special dispersion mechanism. Further, there is no need for a mechanism for dispersing gas in the central portion of the processing space as in the prior art. Since gas can be supplied in such a state with good dispersibility and a mechanism for dispersing the gas is not necessary, the volume of the processing space can be made significantly smaller than before, and the gas supply and exhaust time can be reduced. Can be shortened. For this reason, it becomes possible to respond to the request of a high-speed process. In addition, the amount of gas used can be saved.
 また、処理空間の中央上部からガスを排出するため、排気のコンダクタンスをガス排出孔の径や形状により設定することができ、従来のように外周からガスを排出する場合に比べて排気コンダクタンスの設定を容易に行うことができる。また、このように中央上部から排気することにより、成膜による排気コンダクタンスへの影響を少なくすることができる。 In addition, since the gas is discharged from the upper center of the processing space, the exhaust conductance can be set according to the diameter and shape of the gas discharge hole, and the exhaust conductance can be set compared to the conventional case where gas is discharged from the outer periphery. Can be easily performed. Further, by exhausting from the center upper portion in this way, the influence on the exhaust conductance due to film formation can be reduced.
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
 上記第1の実施形態では、上述したように、排気コンダクタンスの設定は従来よりも容易であるが、一度コンダクタンスを設定したら、処理中にコンダクタンスを制御することはできない。しかし、ALDの場合、ガスの置換を短時間で行うためには排気コンダクタンスを大きく設定するのが有利であり、処理ガスの吸着および反応(還元)時には圧力を高めるために排気コンダクタンスを小さく設定することが有利である。
<Second Embodiment>
Next, a second embodiment of the present invention will be described.
In the first embodiment, as described above, the setting of the exhaust conductance is easier than in the prior art, but once the conductance is set, the conductance cannot be controlled during the process. However, in the case of ALD, it is advantageous to set a large exhaust conductance in order to perform gas replacement in a short time, and a small exhaust conductance is set to increase the pressure during adsorption and reaction (reduction) of the processing gas. It is advantageous.
 そこで、本実施形態では、吸着および反応(還元)時と、ガスの置換時とでコンダクタンスを変化させる。 Therefore, in this embodiment, the conductance is changed between adsorption and reaction (reduction) and gas replacement.
 図6は、本発明の第2の実施形態に係る成膜装置の要部を示す断面図である。図6において、第1の実施形態の成膜装置と同じものには同じ符号を付して説明を省略する。 FIG. 6 is a cross-sectional view showing a main part of a film forming apparatus according to the second embodiment of the present invention. In FIG. 6, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 本実施形態では、図6に示すように、キャップ部材13のガス排出孔68の周囲にバッファ室91を設け、バッファ室91とガス排出孔68とをガス流路92で繋ぎ、バッファ室91に別個のガスライン93からNガスまたはNHガスを導入するようになっている。 In the present embodiment, as shown in FIG. 6, a buffer chamber 91 is provided around the gas discharge hole 68 of the cap member 13, and the buffer chamber 91 and the gas discharge hole 68 are connected by a gas flow path 92. N 2 gas or NH 3 gas is introduced from a separate gas line 93.
 これにより、ガスライン93からのガスの供給を制御することによりバッファ室91の圧力を任意に制御することができる。したがって、吸着時および反応(還元)時は、図7Aに示すように、バッファ室91と処理空間Sとの差圧を小さくしてコンダクタンスを小さくすることにより、処理ガスの封じ込め効果を大きくして高圧処理を可能にし、一方、パージガスを導入してガスを置換する時には、図7Bに示すように、バッファ室91と処理空間Sとの差圧を大きくしてコンダクタンスを大きくすることにより、急速排気を可能にすることができる。 Thereby, the pressure of the buffer chamber 91 can be arbitrarily controlled by controlling the supply of gas from the gas line 93. Therefore, at the time of adsorption and reaction (reduction), as shown in FIG. 7A, the differential pressure between the buffer chamber 91 and the processing space S is decreased to reduce the conductance, thereby increasing the process gas containment effect. On the other hand, when the purge gas is introduced to replace the gas, as shown in FIG. 7B, the differential pressure between the buffer chamber 91 and the processing space S is increased to increase the conductance. Can be made possible.
 なお、本実施形態のバッファ室を設けてコンダクタンスを制御する手法は、ガス排出孔の位置を問わず可能である。例えば、図8に示す、従来の中心からガスを導入して外周に排気するタイプの成膜装置でも同様に適用可能である。すなわち、図8の成膜装置において、キャップ部材13′は逆すり鉢状の処理空間S′が形成されるよう構成され、中央上部からガス分散機構を備えたガス導入部材101を挿入してガスが供給され、処理空間S′の外周側に排気ライン102を均等に配置して外方の排気経路(図示せず)に排気する構造を有している。そして、排気ライン102の途中に環状をなすバッファ室103を設け、バッファ室103にガスライン104を接続し、ガスライン104を介してバッファ室103にNガスやNHガスを導入して差圧制御を行えるようになっている。このような構成でも、図6の装置と同様の効果を得ることができる。 In addition, the method of providing the buffer chamber of this embodiment and controlling conductance is possible irrespective of the position of a gas exhaust hole. For example, the present invention can be similarly applied to a conventional film forming apparatus that introduces gas from the center and exhausts it to the outer periphery as shown in FIG. That is, in the film forming apparatus of FIG. 8, the cap member 13 ′ is configured to form an inverted mortar-shaped processing space S ′, and the gas is introduced by inserting the gas introduction member 101 having the gas dispersion mechanism from the upper center. The exhaust line 102 is evenly arranged on the outer peripheral side of the processing space S ′ and exhausted to an outer exhaust path (not shown). An annular buffer chamber 103 is provided in the middle of the exhaust line 102, a gas line 104 is connected to the buffer chamber 103, and N 2 gas or NH 3 gas is introduced into the buffer chamber 103 via the gas line 104. Pressure control can be performed. Even with such a configuration, the same effect as that of the apparatus of FIG. 6 can be obtained.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、TiClガスとNHガスを用いてTiN膜をALDにより成膜する場合について説明したが、本発明の原理上、ガスの種類、膜の材料は何ら限定されず、種々のガスを用いたALD成膜に適用することができる。パージガスも処理ガスに応じて適宜選択すればよく、特に限定されるものではない。また、ガスは2種類に限らず、3種類以上のガスのALDにも適用できることは言うまでもない。また、ALD以外の通常のCVDにも適用できる。 As mentioned above, although embodiment of this invention was described, this invention can be variously deformed, without being limited to the said embodiment. For example, in the above embodiment, a case where a TiN film is formed by ALD using TiCl 4 gas and NH 3 gas has been described. However, on the principle of the present invention, the type of gas and the material of the film are not limited at all. The present invention can be applied to ALD film formation using various gases. The purge gas may be appropriately selected according to the processing gas, and is not particularly limited. Needless to say, the gas is not limited to two types but can be applied to ALD of three or more types of gases. It can also be applied to normal CVD other than ALD.
 また、上記実施形態では、処理空間の外周部の上部のウエハの外方に設けられたガス吐出口からガスを吐出したが、ガス吐出口はウエハの存在する位置に設けられていてもよい。また、複数のガス吐出口を一つの円状に配置したが、二重に配置してもよい。 In the above embodiment, the gas is discharged from the gas discharge port provided outside the wafer on the outer periphery of the processing space. However, the gas discharge port may be provided at a position where the wafer exists. Moreover, although the several gas discharge port was arrange | positioned at one circular shape, you may arrange | position double.
 また、上記実施形態では、被処理基板として半導体ウエハを例にとって説明したが、半導体ウエハに限定されず、液晶表示装置等のFPD(フラットパネルディスプレイ)に用いるガラス基板や、セラミック基板等にも本発明を適用することができることはもちろんである。 In the above embodiment, a semiconductor wafer is described as an example of a substrate to be processed. However, the present invention is not limited to a semiconductor wafer, and the present invention is also applied to a glass substrate, a ceramic substrate, and the like used for an FPD (flat panel display) such as a liquid crystal display device. Of course, the invention can be applied.
 1;処理容器
 2;サセプタ(載置台)
 3;支持部材
 4;インナーリング
 5;ヒーター
 12;給排気流路部材
 13;キャップ部材
 13a;凹部
 15;カバーリング
 20;ガス供給部
 30;排気経路
 31;排気配管
 31a;自動圧力制御バルブ
 32;排気装置
 42;昇降機構
 67;ガス吐出口
 68;ガス排出孔
 71;ガス排出流路
 80;全体制御部
 91;バッファ室
 92;ガス流路
 93;ガスライン
 100;成膜装置
 S;処理空間
 W;半導体ウエハ(基板)
1; Processing container 2; Susceptor (mounting table)
DESCRIPTION OF SYMBOLS 3; Support member 4; Inner ring 5; Heater 12; Supply / exhaust flow path member 13; Cap member 13a; Recess 15; Cover ring 20; Gas supply part 30; Exhaust path 31; Exhaust piping 31a; Exhaust device 42; Elevating mechanism 67; Gas discharge port 68; Gas discharge hole 71; Gas discharge channel 80; Overall control unit 91; Buffer chamber 92; Gas channel 93; Gas line 100; ; Semiconductor wafer (substrate)

Claims (6)

  1.  第1の処理ガスと第2の処理ガスとをパージガスによるパージを挟んで交互に供給して基板上に所定の膜を成膜する成膜装置であって、
     基板を収容し、その中で基板の成膜処理が行われる処理容器と、
     前記処理容器内で基板を載置する載置台と、
     前記処理容器内に形成された、基板に成膜処理を行う処理空間と、
     前記処理空間に、少なくとも前記第1の処理ガスと、前記第2の処理ガスと、前記パージガスとを供給するガス供給部と、
     前記処理空間を排気する排気部と
    を具備し、
     前記ガス供給部は前記処理空間の外周からガスを供給し、前記排気部は前記処理空間の中央上部から上方へ排気する成膜装置。
    A film forming apparatus for forming a predetermined film on a substrate by alternately supplying a first process gas and a second process gas with a purge gas being purged,
    A processing container in which a substrate is accommodated and in which a film forming process of the substrate is performed;
    A mounting table for mounting a substrate in the processing container;
    A processing space for forming a film on the substrate formed in the processing container;
    A gas supply unit that supplies at least the first processing gas, the second processing gas, and the purge gas to the processing space;
    An exhaust part for exhausting the processing space;
    The gas supply unit supplies gas from the outer periphery of the processing space, and the exhaust unit exhausts upward from the center upper part of the processing space.
  2.  前記処理容器内に前記載置台と対向して設けられ、下方に開口した前記処理空間を形成するための凹部を有するキャップ部材をさらに具備し、前記載置台により前記凹部の開口を塞ぐことにより処理空間が形成され、前記キャップ部材の前記凹部の外周部に複数のガス吐出口が形成され、前記キャップ部材の前記凹部の中央にガス排出孔が形成されている、請求項1に記載の成膜装置。 A cap member is provided in the processing container so as to face the mounting table and has a recess for forming the processing space opened downward, and the opening is opened by the mounting table. The film formation according to claim 1, wherein a space is formed, a plurality of gas discharge ports are formed in an outer peripheral portion of the concave portion of the cap member, and a gas discharge hole is formed in the center of the concave portion of the cap member. apparatus.
  3.  前記載置台を昇降させる昇降機構をさらに具備し、前記昇降機構により前記載置台を下降させた状態で前記載置台への基板の受け渡しが行われ、前記昇降機構により前記載置台を上昇させることにより前記キャップ部材の前記開口が塞がれて前記処理空間が形成される、請求項2に記載の成膜装置。 Further comprising a lifting mechanism for raising and lowering the mounting table, the substrate is transferred to the mounting table in a state where the mounting table is lowered by the lifting mechanism, and the mounting table is raised by the lifting mechanism The film forming apparatus according to claim 2, wherein the opening of the cap member is closed to form the processing space.
  4.  前記排気部は、前記処理空間の外側を囲うように設けられた環状の排気経路と、前記キャップ部材の前記ガス排出孔から排出されたガスを放射状に前記排気経路に導くガス排出流路とを有する、請求項2に記載の成膜装置。 The exhaust section includes an annular exhaust path provided so as to surround the outside of the processing space, and a gas discharge passage that guides the gas discharged from the gas discharge hole of the cap member radially to the exhaust path. The film forming apparatus according to claim 2.
  5.  前記ガス排出孔に接続されたバッファ室と、前記バッファ室にガスを供給するガスラインとを有し、前記ガスラインから前記バッファ室へのガスの供給を制御して前記バッファ室の圧力を制御することにより、前記処理空間からの排気のコンダクタンスを制御する、請求項2に記載の成膜装置。 A buffer chamber connected to the gas discharge hole; and a gas line for supplying gas to the buffer chamber; and controlling the pressure of the buffer chamber by controlling the supply of gas from the gas line to the buffer chamber The film deposition apparatus according to claim 2, wherein the conductance of the exhaust from the processing space is controlled.
  6.  基板を収容し、その中で基板の成膜処理が行われる処理容器と、
     前記処理容器内で基板を載置する載置台と、
     前記処理容器内において基板に成膜処理を行う処理空間と、
     前記処理空間に成膜処理のための処理ガスを供給するガス供給部と、
     前記処理空間を排気する排気部と
    を具備し、
     前記ガス供給部は前記処理空間の外周から処理ガスを供給し、前記排気部は前記処理空間の中央上部から上方へ排気する成膜装置。
    A processing container in which a substrate is accommodated and in which a film forming process of the substrate is performed;
    A mounting table for mounting a substrate in the processing container;
    A processing space for forming a film on the substrate in the processing container;
    A gas supply unit for supplying a processing gas for film formation into the processing space;
    An exhaust part for exhausting the processing space;
    The film supply apparatus in which the gas supply unit supplies a processing gas from the outer periphery of the processing space, and the exhaust unit exhausts upward from the center upper part of the processing space.
PCT/JP2012/059733 2011-05-10 2012-04-09 Film-forming apparatus WO2012153591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011105381A JP2012237026A (en) 2011-05-10 2011-05-10 Film forming apparatus
JP2011-105381 2011-05-10

Publications (1)

Publication Number Publication Date
WO2012153591A1 true WO2012153591A1 (en) 2012-11-15

Family

ID=47139077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059733 WO2012153591A1 (en) 2011-05-10 2012-04-09 Film-forming apparatus

Country Status (3)

Country Link
JP (1) JP2012237026A (en)
TW (1) TW201313943A (en)
WO (1) WO2012153591A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073780A (en) * 2013-03-29 2014-10-01 东京毅力科创株式会社 Film forming apparatus, gas supply device and film forming method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250725B (en) * 2013-06-26 2016-11-23 北京北方微电子基地设备工艺研究中心有限责任公司 Pre-deposition technique, diffusion technique and diffusion facilities
JP6516436B2 (en) 2014-10-24 2019-05-22 東京エレクトロン株式会社 Film forming apparatus and film forming method
JP6438751B2 (en) * 2014-12-01 2018-12-19 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP6457643B2 (en) 2015-07-29 2019-01-23 堺ディスプレイプロダクト株式会社 Support pin and film forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140619U (en) * 1987-03-06 1988-09-16
JP2009149989A (en) * 2007-12-24 2009-07-09 Kc Tech Co Ltd Thin film vapor deposition system and thin film vapor deposition method
JP2009155723A (en) * 2007-12-26 2009-07-16 Samsung Electro-Mechanics Co Ltd Chemical vapor deposition apparatus
JP2010059495A (en) * 2008-09-04 2010-03-18 Tokyo Electron Ltd Film deposition apparatus, substrate processing apparatus, film deposition method, and storage medium for storing program for executing the film deposition method
JP2010202982A (en) * 2004-10-15 2010-09-16 Hitachi Kokusai Electric Inc Substrate treatment apparatus, substrate treatment method, and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140619U (en) * 1987-03-06 1988-09-16
JP2010202982A (en) * 2004-10-15 2010-09-16 Hitachi Kokusai Electric Inc Substrate treatment apparatus, substrate treatment method, and method for manufacturing semiconductor device
JP2009149989A (en) * 2007-12-24 2009-07-09 Kc Tech Co Ltd Thin film vapor deposition system and thin film vapor deposition method
JP2009155723A (en) * 2007-12-26 2009-07-16 Samsung Electro-Mechanics Co Ltd Chemical vapor deposition apparatus
JP2010059495A (en) * 2008-09-04 2010-03-18 Tokyo Electron Ltd Film deposition apparatus, substrate processing apparatus, film deposition method, and storage medium for storing program for executing the film deposition method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073780A (en) * 2013-03-29 2014-10-01 东京毅力科创株式会社 Film forming apparatus, gas supply device and film forming method

Also Published As

Publication number Publication date
TW201313943A (en) 2013-04-01
JP2012237026A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
KR101138810B1 (en) Substrate processing apparatus
JP4426518B2 (en) Processing equipment
JP5565242B2 (en) Vertical heat treatment equipment
JP2018107255A (en) Film deposition apparatus, film deposition method and heat insulation member
TWI436423B (en) Oxidation apparatus and method for semiconductor process
TWI736687B (en) Processing device and cover member
JP5144295B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
KR20150110246A (en) Substrate processing apparatus, method for manufacturing semiconductor device and computer-readable recording midium
TWI737868B (en) Film formation device and film formation method
JP2008258595A (en) Substrate processing apparatus
JP5093078B2 (en) Deposition equipment
JPWO2006041169A1 (en) Substrate processing apparatus and semiconductor device manufacturing method
WO2012153591A1 (en) Film-forming apparatus
JP2018066050A (en) Film deposition apparatus, and film deposition method
JP2012004408A (en) Support structure and processing unit
JP2015078418A (en) Film deposition method, and film deposition apparatus
KR20170007132A (en) Substrate processing apparatus
JP2011029441A (en) Device and method for treating substrate
JP2012212819A (en) Vertical batch-type film deposition apparatus
JP2018085392A (en) Substrate processing device
US20160177446A1 (en) Substrate Processing Apparatus, Method of Manufacturing Semiconductor Device and Non-Transitory Computer-Readable Recording Medium
JP5303984B2 (en) Film forming apparatus and film forming method
US20220259736A1 (en) Processing apparatus
WO2015114977A1 (en) Substrate processing device
JP2021015947A (en) FORMING METHOD OF RuSi FILM AND SUBSTRATE PROCESSING SYSTEM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782137

Country of ref document: EP

Kind code of ref document: A1