WO2022202232A1 - Light guide body, lighting device, image sensor, and reading device - Google Patents

Light guide body, lighting device, image sensor, and reading device Download PDF

Info

Publication number
WO2022202232A1
WO2022202232A1 PCT/JP2022/009520 JP2022009520W WO2022202232A1 WO 2022202232 A1 WO2022202232 A1 WO 2022202232A1 JP 2022009520 W JP2022009520 W JP 2022009520W WO 2022202232 A1 WO2022202232 A1 WO 2022202232A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
light source
interface
longitudinal direction
Prior art date
Application number
PCT/JP2022/009520
Other languages
French (fr)
Japanese (ja)
Inventor
和敬 網干
和也 保科
剛志 石丸
重雄 橘高
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2023508912A priority Critical patent/JPWO2022202232A1/ja
Publication of WO2022202232A1 publication Critical patent/WO2022202232A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/04Scanning arrangements, i.e. arrangements for the displacement of active reading or reproducing elements relative to the original or reproducing medium, or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a light guide, lighting device, image sensor and reading device.
  • a lighting device that uses a light guide (also called a light guide) to illuminate an object in a line.
  • a light guide also called a light guide
  • Such an illuminating device allows light to enter from the end of a light guide that is long in at least one direction and propagate in the lengthwise direction of the light guide, and linearly along the lengthwise direction from at least one light exit surface. It has the function of irradiating light.
  • a lighting device When a lighting device is configured using a long light guide having a light source arranged at at least one end, light emitted from the light source arranged at the end enters the light guide from the end surface and travels along the length of the light guide. Propagate in direction. Part of the light propagating through the light guide is reflected, scattered, or the like by at least one light reflecting surface along the longitudinal direction, and is emitted from the light exit surface facing the light reflecting surface. However, part of the light that has entered the light guide from the end face where the light source is arranged reaches the light exit surface directly without being reflected or scattered by the light reflection surface and exits. Such a phenomenon is occasionally seen in the vicinity of the light source. In such a lighting device, there are cases where the illumination light has a light amount distribution in which the intensity near the light source is high.
  • the pattern of reflection and diffusion of the light reflecting surface of the light guide is optimized.
  • Patent Literature 1 an aperture is formed between an end face on which light from a light source is incident and a light emitting surface (light emitting portion) and a light reflecting surface (light reflecting portion) of a light guide.
  • a technique for reducing the amount of light emitted to the light source and making the distribution of the amount of light uniform is described.
  • Patent Document 1 it is necessary to install a surface-treated aperture and a light shielding member constituting the aperture between the light source and the light emitting portion of the light guide, etc., and the need for separate parts. , there are cases where it is not preferable from the viewpoint of an increase in the unit price of the parts, the complexity of the assembly work, the accuracy of the required arrangement, and the like.
  • the present invention has been made in view of such circumstances, and its object is to provide a light guide body capable of uniforming the light amount distribution with a relatively simple structure, an illumination device using the light guide body, and an image
  • the object is to provide a sensor and a reader.
  • a light guide is a columnar light guide, comprising: a light incident surface provided at or near an end surface of the light guide; and at least one interface provided between the light entrance surface and the light exit surface.
  • the light guide is a columnar light guide, and includes a cavity for accommodating at least part of a light source provided at or near an end face of the light guide, a light incident surface in the cavity, A light exit surface provided on at least a part of a side surface along the longitudinal direction of the light guide, and at least one interface provided between the light entrance surface and the light exit surface.
  • Another aspect of the present invention is a lighting device comprising the light guide described above and a light source for causing light to enter the light guide from the light incident surface.
  • Yet another aspect of the present invention comprises the above-described illumination device that linearly illuminates an object, an erecting equal-magnification lens array that collects reflected light from the object, and an erecting equal-magnification lens array. and a light-receiving element that receives the condensed light.
  • Yet another aspect of the present invention is a reading device comprising the image sensor described above, a driving mechanism for scanning the image sensor, and an image processing section for processing data read by the image sensor.
  • the amount of light in this specification represents a concept that includes the strength and size of physical quantities such as light power (work rate) and energy unless otherwise specified.
  • radiant flux, radiant intensity, radiance, irradiance, and radiant energy shall include notions encompassing physical quantities such as luminous intensity, luminance, and illuminance.
  • the present invention it is possible to provide a light guide that can uniformize the amount of light with a relatively simple structure, and an illumination device, an image sensor, and a reader using the light guide.
  • FIG. 4 is a schematic enlarged cross-sectional view of the vicinity of the light source of the lighting device;
  • FIG. It is a figure which shows a light ray when there is no interface between a 1st end surface and a light-projection surface.
  • FIG. 10 shows another pattern of the light reflecting surface;
  • FIG. 10 is a diagram showing still another pattern of the light reflecting surface;
  • FIG. 10 is a diagram showing still another pattern of the light reflecting surface;
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface
  • 13(a) to 13(d) are schematic diagrams for explaining a lighting device according to another embodiment of the present invention.
  • FIG. 4 is a schematic enlarged cross-sectional view of the vicinity of the light source of the lighting device;
  • FIG. FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface;
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface;
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface;
  • FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface;
  • FIGS. 19(a) and 19(b) are diagrams showing an example of a light source in which three LED chips are housed in a case.
  • FIGS. 19(a) and 19(b) are diagrams showing an example of a light source in which three LED chips are housed in a case.
  • FIGS. 19(a) and 19(b) are diagrams showing
  • FIGS. 24(a) and 24(b) are diagrams showing an illumination device including a thin circuit board on which a light source is mounted and a flanged light guide with positioning pins.
  • 21(a) to 21(d) are schematic diagrams for explaining the illumination device according to the first example used in the simulation.
  • FIGS. 24(a) and 24(b) are schematic diagrams for explaining the illumination device according to the second example used in the simulation.
  • FIGS. 30(a) to 30(d) are schematic diagrams for explaining the illumination device according to the fourth example used in the simulation.
  • FIG. 1 is a schematic cross-sectional view showing a reading device using an illumination device according to this embodiment;
  • FIG. 1(a) to 1(d) are four schematic diagrams for explaining a lighting device 10 according to an embodiment of the present invention.
  • FIG. 1(a) is a schematic left side view of the lighting device 10.
  • FIG. 1B is a schematic plan view of the illumination device 10.
  • FIG. 1(c) is a schematic AA cross-sectional view of the lighting device 10 shown in FIG. 1(a).
  • FIG. 1D is a schematic bottom view of the illumination device 10.
  • the illumination device 10 includes at least a light source 12 and a light guide 14.
  • the light guide 14 is a columnar body extending in the Z direction (also referred to as the longitudinal direction). It includes a light reflecting surface 14b, a light emitting surface 14c that is a side surface along the Z direction of the light guide 14 facing the light reflecting surface 14b, and a second end surface 14d that is the other end surface in the Z direction.
  • the light source 12 is arranged so that part of the light emitted from the light source 12 travels in the Z direction of the light guide 14, or when the symmetry axis of the light emitted from the light source 12 is the optical axis, the optical axis is arranged on the side of the first end surface 14a so that the Z direction is parallel to the .
  • Light emitted from the light source 12 enters the light guide 14 from the first end surface 14a as a light incident surface, and propagates in the light guide 14 in the Z direction while diffusing.
  • the light source may be arranged on the side of the second end surface 14d at the same time.
  • FIG. 2 is a schematic enlarged cross-sectional view of the vicinity of the light source 12 of the illumination device 10.
  • FIG. 2 light rays emitted from the light source 12 and incident on the light guide 14 are schematically indicated by arrows.
  • the first end face 14a of the light guide 14 is formed with a recess 16 recessed in the Z direction.
  • the recess 16 is formed between the light source 12 and the light exit surface 14c on the first end surface 14a.
  • the recess 16 is rectangular in cross section and in plan view.
  • a plurality of interfaces are formed by the recess 16 between the first end surface 14a as the light incident surface and the light emitting surface 14c.
  • the first interface 16 a is the bottom surface of the recess 16
  • the second interface 16 b is the bottom surface of the recess 16
  • the third interface 16 c is the top surface of the recess 16 .
  • the recess 16 may have a pair of interfaces facing each other in the Y direction, or the recess 16 may penetrate the light guide in the Y direction.
  • This embodiment has a recess 16 recessed in the Z direction or the longitudinal direction from the light incident surface of the light guide 14 .
  • FIG. 3 shows how part of the light emitted from the light source 12 directly travels to the light exit surface 14c when there is no interface between the first end surface 14a and the light exit surface.
  • such light directly directed to the light exit surface 14 c is closely related to the cause of the biased light intensity distribution in which the light intensity is high in the vicinity of the light source 12 .
  • FIG. 4 shows the light emitted from the light source 12 when there is an interface formed by the recessed portion 16 between the light incident surface (first end surface 14a) and the light exit surface 14c as a result of having the recessed portion recessed in the Z direction from the light incident surface. It shows how part of the emitted light is refracted by the interface in a direction away from the light source 12 .
  • a light ray that causes an increase in the amount of light near the light source 12 when there is no interface (FIG. 3) is refracted in a direction away from the light source 12 when there is an interface (FIG. 4).
  • the concentration of luminous flux in the vicinity is reduced. As a result, it is possible to make the light amount distribution uniform in the irradiation range.
  • the recess includes the concept of a hole, a groove, a recess, etc., and is not limited to a specific cross-sectional shape or planar view shape. Anything that reduces the concentration of light in the vicinity is sufficient.
  • the light guide 14 will be described in detail below.
  • the light guide 14 is, for example, in the shape of a rod, a rod (like), or a column elongated in one direction. propagate toward The light guide 14 has a cross section perpendicular to the Z direction of a polygon, a substantially circular shape (including an ellipse), or a combination of these shapes, which may include a curved line.
  • the light guide 14 has a plurality of side surfaces that are flat or curved in the longitudinal direction.
  • a portion of the light within the light guide 14 propagates in the longitudinal direction while repeating reflections on these side surfaces one or more times.
  • At least one of the side surfaces of the light guide 14 is a light exit surface 14c that linearly emits light.
  • the light guide 14 also includes a light reflection surface 14b that faces the light exit surface 14c and reflects at least part of the light propagating through the light guide 14 toward the light exit surface 14c.
  • the light emitted from the light source 12 enters the light guide 14 from the first end surface 14a of the light guide 14, and part of the light propagates in the light guide 14 in the longitudinal direction while being reflected.
  • the light guide 14 may be integrally formed including the first end surface 14a, the light emitting surface 14c and the light reflecting surface 14b.
  • the diameter of the circumscribed circle may be 1 mm to 30 mm, and the length in the longitudinal direction may be 50 mm to 1200 mm.
  • the effective length in the longitudinal direction may reach about 1000 mm, and the lighting device 10 may be used in a reading device mounted on a multifunction printer or the like. If used, it may reach an effective longitudinal length of 100 mm to 330 mm.
  • the light guide 14 is mounted on at least one side of the light guide 14 for the purpose of mounting to a housing or the like, mounting the light source 12 or a circuit board on which the light source 12 is mounted, or mounting other parts.
  • a collar-like flange may be included near the end (for example, the first end surface 14a).
  • the flange may have a surface perpendicular to the longitudinal direction (Z direction) of the light guide 14, and has ancillary structures such as positioning pins and notches for the purpose of improving positioning accuracy with other parts. may be
  • a cavity is formed in the first end surface 14 a of the light guide 14 so as to include part or all of the light source 12 . or a kind of hollow) may be provided.
  • the light guide 14 and the light source 12 for example, a light emitting element
  • the light source 12 main body or part thereof is housed inside the light guide and substantially sealed, so that the delicate part of the light source 12 is protected from the outside air. Since the probability of being exposed to disturbance is reduced, the service life of the parts can be extended, and this is also preferable from the viewpoint of space saving.
  • the light emitting surface of the light source 12 is substantially perpendicular to the longitudinal direction (Z direction) of the light guide 14, or the optical axis of the light source 12 is aligned with the light guide 12.
  • the longitudinal bottom surface of the light guide 14 of the cavity may be the light incident surface.
  • the interval of 0 mm means that the light emitting surface of the light source and the light incident surface of the light guide are in contact with each other. If the light exit surface of the light source and the light entrance surface of the light guide are separated even by a small amount, the light is refracted by the light entrance surface of the light guide, which can reduce the concentration of the luminous flux near the light source. have a nature.
  • the light guide 14 be transparent to the light of the wavelength contained in the illumination light, and that the light absorption by the material constituting the light guide 14 be small.
  • the internal transmittance of the light guide 14 having a thickness of 10 mm at a wavelength of 550 nm may be 90% or more, preferably 95% or more, more preferably 98% or more.
  • Internal transmittance is the transmittance excluding surface reflectance at the entrance and exit surfaces.
  • the light guide 14 may be made of resin from the requirements of workability and low cost. When the light guide 14 is made of resin, the productivity can be improved by means such as injection molding or cast molding. Moreover, the light guide 14 may be formed by combining resin with metal, ceramics, glass, or the like. For example, the long portion of the light guide 14 is made of transparent resin or glass, and the flange (for attachment to a housing or the like or attachment of the light source 12 or circuit board) is made of metal, ceramics, or non-transparent resin.
  • ceramics such as alumina having a high heat dissipation property may be used as a material forming the vicinity of the light source 12 because the amount of heat generated is large.
  • Transparent resins such as cycloolefin-based resins, acrylic-based resins, vinyl chloride-based resins, epoxy-based resins, PET-based resins, PC-based resins, and GPPS-based resins can be used as materials for forming the light guide 14 .
  • a method for producing the light guide 14 an injection molding method, an insert molding method, a blow molding method, an extrusion molding method, or the like can be used.
  • the light guide 14 may be produced by combining a metal such as aluminum or duralumin, a ceramic material such as alumina or zirconia, or the like, with the above transparent resin.
  • the light exit surface 14c is a surface that is provided on at least a part of the side surface of the light guide 14 along the longitudinal direction and emits light from the inside of the light guide 14 to the outside.
  • the light exit surface 14c may have a smooth and flat surface, or may partially include a curved surface depending on the external shape of the object. Further, when the spread of the emitted light is desired, a so-called diffusion surface may be obtained by providing a plurality of minute irregularities on the surface of the light emitting surface 14c, frosting, rubbing, or the like.
  • the light emitting surface 14c may have an antireflection film or a reflection reducing film formed thereon in order to improve the light transmission efficiency.
  • Anti-reflection coatings and anti-reflection coatings are formed by forming a dielectric multilayer film by sputtering, vacuum deposition, etc., applying a coating with a low refractive index material, or applying a coating with a low refractive index material containing hollow particles or solid particles.
  • a light absorption film or a light reflection film may be formed on the light exit surface 14c in order to suppress the emission of light in a part of the wavelength range.
  • the light absorption film may be formed, for example, by coating the light exit surface 14c with a resin containing fine particles or a pigment that absorbs light in a specific wavelength range.
  • the light reflecting film may be a dielectric multilayer film formed by a sputtering method, a vacuum deposition method, or the like.
  • the light reflecting surface 14b of the light guide 14 is provided with a pattern for appropriately reflecting or diffusing light.
  • the mode of the pattern is not limited to these, but a rough surface is formed in a pattern, a printed pattern such as white or silver that reflects light, a crater with a diameter of about several ⁇ m to several mm, or a part of a spherical surface. (visually visible as a polka-dot pattern in a plan view), conversely, convex portions are formed, column-shaped solids such as cylinders, cone-shaped solids, and frustum-shaped solids whose side surfaces are illuminated.
  • a pattern formed in a concave shape over the width of the reflective surface, a convex shape, or a combination thereof may be formed.
  • the pattern on the light reflecting surface 14b may be formed in consideration of the desired light intensity distribution of the illumination light, the length and size of the lighting device, the shape of the light guide 14, the light distribution of the light source 12 used, and the like.
  • an antireflection film, a reflection reducing film, a light absorbing film, and a light reflecting film can be formed in the same manner as for the light emitting surface 14c, depending on the purpose and intended performance. .
  • the pattern of the light reflecting surface 14b provided on the light guide 14 is not limited to these, and these patterns may be combined as appropriate.
  • a plurality of substantially circular structures 18 having various sizes in plan view are formed.
  • the substantially circular structure 18 may be concave or convex. As shown in FIG. 5, the structure 18 may have a plurality of concave shapes such as a part of a spherical surface with a diameter of several ⁇ m to several mm or a curved surface.
  • the size of the substantially circular structures 18 may vary, for example, as the distance from the light source 12 increases, or they may be arranged at random.
  • a plurality of groove-shaped or ridge-shaped structures 20 are formed in a direction perpendicular to the Z direction. Let grooves be concave and ridges be convex. The grooves and ridges may be formed in a direction perpendicular to the Z direction as shown in FIG. These structures 20 may also vary in pitch or size, or may be arranged at random, for example, as they move away from the light source 12 . For example, groove-shaped or ridge-shaped structures 20 formed far from the light source 12 may have a smaller arrangement pitch than those formed near the light source 12 .
  • the reflective pattern 22 is formed on the light reflecting surface by printing or the like.
  • the individual reflection patterns 22 are, for example, white or silver with high reflectance, and may change color such as brightness and color according to the distance from the light source 12.
  • reflection patterns formed far from the light source 12 The reflectance of 22 may be higher than that formed near the light source 12 .
  • the area of the reflection pattern 22 formed far from the light source 12 may be larger than that of the reflection pattern 22 formed near the light source 12 .
  • the illumination device 10 may include a cover that covers at least the rod-shaped portion or the effective range (the range where light is irradiated) of the light guide 14 .
  • the light that has entered the light guide 14 is repeatedly reflected by the side surfaces of the light guide 14 and propagates in the longitudinal direction (Z direction) of the light guide 14 . may be emitted. Since the light emitted from the surfaces other than the light emitting surface 14c becomes a loss, the light emitted from the surface other than the light emitting surface 14c is re-reflected in the light guide 14 and returned to the light guide 14 side. can be considered.
  • the cover may have a structure that has a shape along the shape of the side surface of the light guide 14 on the inside. should be white or silver.
  • the illumination device 10 can also be considered to have no cover. While the cover is expected to perform its function, it increases the cost of the illumination device 10 and the reading device using it. Therefore, depending on the demand for low cost, it is fully conceivable to propose a lighting device 10 that does not have a cover (coverless).
  • a low cost lighting device 10 can be a selling point. When light propagates through the light guide 14, the function of total reflection by multiple side surfaces is exhibited.
  • the effective length of the light guide 14 is a length that can irradiate at least the desired range of the object (specific length of one side of the object) and that can ensure the desired uniformity of light intensity. you can Alternatively, the effective length of the light guide 14 may be 85% to 100% of the total length of the long bar-shaped portion of the light guide 14 . Further, the surface of the light guide 14 other than the light exit surface may be partially or wholly colored with a color such as white or silver that can be expected to improve light reflectivity, although not limited thereto.
  • the structure of the housing is such that it has a surface facing the side surface other than the light emitting surface 14c of the light guide 14, and the surface is made of a reflective material such as white or silver.
  • the light guide 14 has at least one interface between the light incident surface and the light exit surface 14c. Alternatively, at least one interface is provided on the optical path of light from the light incident surface to the light exit surface 14c. It is a conventional problem of the light guide 14 that the amount of light in the vicinity of the light source 12 is higher than that in other parts (brightness in the vicinity of the light source 12 is brighter than other parts), and the present inventors are working to solve this problem. Among them, the idea is reached that the amount of light in the vicinity of the light source 12 can be reduced by providing an interface between the light source 12 and the light emitting surface 14c that can refract or scatter part of the light emitted from the light source 12. did.
  • An LED which is often used as the light source 12, generally has a Lambertian light distribution and emits light up to an angle of 70° or 80°.
  • an LED When such an LED is arranged near the first end face 14a of the light guide 14, part of the light does not propagate in the longitudinal direction of the light guide 14 and directly reaches the light exit surface 14c to be emitted. Since a large number of light rays following the optical path are generated in the vicinity of the light source 12, the amount of light in the vicinity thereof increases.
  • the light directly directed to the light emitting surface 14c is reflected, refracted, or diffused in a direction away from the light source at the interface between the light guide 14 and the air. , the amount of light in the vicinity of the light source 12 is reduced.
  • FIGS. 8-12 are schematic cross-sectional views of a portion of a light guide 14 including a light source 12 and an interface, in which the light source 12 is positioned at the end of the light guide and the first end face 14a of the light guide. is the light incident surface.
  • the surface (lower side surface) of the concave portion 16 closer to the light reflecting surface is used as the first interface 16a, and the surface of the concave portion 16 recessed in the Z direction.
  • the light guide 14 is shown with the (bottom surface) as the second interface 16b and the surface (upper surface) closer to the light exit surface of the recess 16 as the third interface 16c.
  • the light rays emitted from the light source 12 are refracted in a direction away from the light source 12 by the occurrence of two or three interfaces on the optical path of the light that is emitted from the light source 12 and directed to the light emission surface 14c, so that the light rays are directed to the light emission surface 14c that is closer to the light source 12. can be reduced, thereby reducing the amount of light emitted from the light emitting surface 14c near the light source 12.
  • FIGS. 9 and 10 show a light guide 14 in which a plurality of interfaces are formed by providing a so-called wedge-shaped recess 16 in the Z direction from the first end surface 14a.
  • the obliquely inclined interface 16d tends to have a critical angle or an angle close to it in relation to the light beam directed from the light source 12 toward the light exit surface 14c. It is possible to increase the number of refracted light rays, and to more effectively reduce the amount of light emitted from the light emission surface 14c closer to the light source 12 .
  • FIG. 11 shows a light guide 14 in which a plurality of concave portions 16 are arranged in the X direction. According to the light guide 14 shown in FIG. 11, it is possible to increase the number of interfaces that refract the light emitted from the light source 12 toward the light exit surface 14c. It is possible to reduce the amount of emitted light.
  • FIG. 12 shows a light guide 14 having an inclined surface 16e formed in a portion near the light source 12.
  • FIG. 12 similarly to the one shown in FIG. 9 and FIG. It is possible to increase the number of light rays refracted at the interface, and it is possible to effectively reduce the amount of light emitted from the light emitting surface 14c near the light source 12.
  • FIG. 12 shows a light guide 14 having an inclined surface 16e formed in a portion near the light source 12.
  • the recessed portion 16 including a plurality of interfaces may have a cross section parallel to the X direction (perpendicular to the Z direction) of a polygonal shape such as a triangle or quadrilateral, or may be wedge-shaped or step-shaped. Further, the interface forming the concave portion 16 may be a sliding surface.
  • a concave portion 16 formed in the longitudinal direction of the light guide 14 from the first end surface 14a may be filled with a black or white resin, or a black or white coating film may be formed on the surface forming the concave portion 16.
  • FIG. 13(a) to 13(d) are schematic diagrams for explaining a lighting device 30 according to another embodiment of the present invention.
  • FIG. 13(a) is a schematic left side view of the illumination device 30.
  • FIG. 13B is a schematic plan view of the illumination device 30.
  • FIG. 13(c) is a schematic BB cross-sectional view of the illumination device 30 shown in FIG. 13(a).
  • FIG. 13D is a schematic bottom view of the illumination device 30.
  • FIG. FIG. 14 is a schematic enlarged cross-sectional view of the vicinity of the light source 12 of the illumination device 30. As shown in FIG.
  • a cavity 32 is formed in the first end face 14a of the light guide 14. As shown in FIG. If the light source 12 is arranged at or near the end face of the light guide 14, it may be advantageous to provide the end face of the light guide 14 with a cavity 32 for housing the light source. This is because when the light source 12 such as an LED element is housed in the cavity 32, it becomes easy to seal the area near the light source 12 for the purpose of protecting the light source 12 from disturbance.
  • the recess 16 including a plurality of interfaces extends from the first end surface 14a of the light guide 14 in the longitudinal direction of the light guide 14, Moreover, it is formed so as to overhang the bottom surface 32a of the cavity 32 .
  • a surface of the light source 12 that faces the bottom surface 32 a of the cavity 32 is an emission surface of the light source 12 .
  • the light guide body 14 has a flange 34 including a plane perpendicular to the Z direction in the vicinity of the first end surface 14a.
  • the action and effect are the same as those of the mode in which the cavity 32 is not provided (see FIG. 1). .
  • the bottom surface 32a of the cavity 32 serves as the light incident surface.
  • the distance between the light exit surface of the light source 12 and the light entrance surface (of the light guide) may be 0 to 5 mm, or may be 0 to 3 mm (excluding 0 mm).
  • 15 to 18 are schematic cross-sectional views of part of a light guide 14 comprising a light source 12 housed in a cavity and a recess containing an interface.
  • FIG. 15 shows a light guide 14 in which a plurality of interfaces are formed by providing a so-called wedge-shaped recess 16 in the Z direction from the first end surface 14a.
  • the obliquely inclined interface 16d tends to have a critical angle or an angle close to the critical angle in relation to the light beam directed from the light source 12 toward the light exit surface 14c, and the light beam refracted at the interface can be increased, and the amount of light in the vicinity of the light source 12 can be reduced more effectively.
  • FIG. 16 shows a light guide 14 in which a plurality of concave portions 16 are arranged in the X direction. According to the light guide 14 shown in FIG. 16, it is possible to increase the interface that refracts the light emitted from the light source 12 and directed to the light emitting surface 14c, thereby effectively reducing the amount of light in the vicinity of the light source 12. be able to.
  • the light source 12 is arranged so that the light emitted from the light source 12 enters the light guide with the end surface of the rod-shaped light guide 14 (or the bottom surface 32a of the cavity 32 for housing the light source, if any) as the light incident surface. It is arranged near the end face of the light guide 14 .
  • the light source 12 may be arranged on or near one end surface (e.g., first end surface 14a) of the light guide 14, or on or near both end surfaces (first end surface 14a and second end surface 14d) of the light guide 14. .
  • a light-emitting diode (LED) or a light source (such as a light bulb) that emits light by energizing a filament or the like can be used.
  • LEDs are particularly effective because they are small, have a low power consumption, emit a large amount of light, and are capable of reproducing various colors.
  • an LED may be a plurality of LEDs including at least three chips that emit light of wavelengths belonging to R (red), G (green), and B (blue). By appropriately tuning the wavelength and intensity, it is possible to emit visually white light, which is suitable as a light source for image sensors and reading devices.
  • FIGS. 19(a) and 19(b) show an example of the light source 12 in which three LED chips 40 are accommodated within the case 42.
  • FIG. FIG. 19(a) is a schematic front view of the light source 12
  • FIG. 19(b) is a schematic CC cross-sectional view of the light source 12 shown in FIG. 19(a).
  • the inside of the case 42 in which the LED chip 40 is arranged may be filled with a transparent resin.
  • the light source 12 made up of such an LED can be regarded as having a light exit surface 42 a on the end face of the case 42 .
  • a white LED in which LED chips that emit light of three colors of RGB are integrated may be used as the light source 12 .
  • one or two of the RGB LED chips inactive do not emit light
  • one of the three colors other than white or a color obtained by mixing these colors can be emitted. It can also be emitted.
  • the arrangement parameters such as the relative position and phase with the light guide according to the performance required of the lighting device.
  • a single-chip type LED containing a blue LED and a resin containing a yellow phosphor or a single-chip type LED containing a blue LED and a resin containing red/green phosphors, or the like is used. be able to.
  • the mounting type of the LED is not limited to these, a substrate type LED or PLCC (Plastic Leaded Chip Carrier) type LED, which is thin and can be surface mounted, can be used.
  • PLCC Plastic Leaded Chip Carrier
  • the light source 12 made up of these LEDs and the like may be formed on a substrate (circuit board) on which a circuit for driving is formed.
  • the circuit board may be a rigid board or a flexible board.
  • a rigid substrate is suitable for a structure that requires strength because it is rigid.
  • a flexible substrate is thin and inexpensive, and its low rigidity may be overcome by fixing and integrating it with the light guide.
  • Substrate materials include phenolic resins, epoxy resins, polyimide resins, fluorine resins, PRO resins, polyimide films, PET films, etc.
  • composite substrates containing paper, glass fiber, cloth, etc. may be formed on a substrate (circuit board) on which a circuit for driving is formed.
  • the circuit board may be a rigid board or a flexible board.
  • a rigid substrate is suitable for a structure that requires strength because it is rigid.
  • a flexible substrate is thin and inexpensive, and its low rigidity may be overcome by fixing and integrating it with the light guide.
  • Substrate materials
  • FIGS. 20(a) and 20(b) show a lighting device 50 comprising a thin circuit board 51 on which a light source 12 is mounted, and a light guide 14 with a flange 34 having positioning pins 52.
  • FIG. FIG. 20(a) is a schematic left side view of the illumination device 50.
  • FIG. FIG. 20(b) is a schematic DD sectional view of the illumination device 50 shown in FIG. 20(a).
  • a positioning pin 52 protrudes from the flange 34 .
  • a hole 53 through which the positioning pin 52 is inserted is formed in the circuit board 51 , and the light source 12 is arranged in advance at a fixed position with respect to the hole 53 .
  • the circuit board 51 may include an electrode 54 for power supply for driving the light source. Furthermore, if the circuit board 51 is flexible, it becomes easy to attach it to a housing that constitutes the contact image sensor, to connect and fix it to other circuit boards, and to package it.
  • FIGS. 21(a) to 21(d) are schematic diagrams for explaining the illumination device 60 according to the first example used in the simulation.
  • FIG. 21(a) is a schematic left side view of the lighting device 60 according to the first embodiment.
  • FIG. 21(b) is a schematic plan view of the illumination device 60 according to the first example.
  • FIG. 21(c) is a schematic EE cross-sectional view of the lighting device 60 according to the first embodiment shown in FIG. 21(a).
  • FIG. 21(d) is a schematic bottom view of the illumination device 60 according to the first example.
  • the light guide 14 has a quadrangular prism shape extending in the Z direction and has an end face parallel to the XY plane and four side faces perpendicular to the end face.
  • the upper side surface parallel to the YZ plane was used as the light emitting surface 14c, and the opposite lower side surface was used as the light reflecting surface 14b.
  • the material of the light guide 14 has a refractive index of 1.49 at the wavelength used and no absorption.
  • the air around the illumination device 60 has a refractive index of 1.
  • the light guide 14 has a concave portion 16 between the portion of the first end surface 14a where the light source 12 is arranged and the light exit surface 14c.
  • the concave portion 16 has a substantially rectangular parallelepiped shape having two interfaces perpendicular to the X direction and facing each other, one interface perpendicular to the Z direction, and two interfaces perpendicular to the Y direction and facing each other.
  • dc is the maximum distance (depth or overhang amount) in the Z direction of the concave portion 16 from the light incident surface (that is, the first end surface 14a) of the light guide 14, and the value of dc is changed as a parameter described later. I did a simulation.
  • the light reflecting surface 14b of the light guide 14 has a plurality of concave grooves 62 having a triangular cross section perpendicular to the Z direction arranged in the Z direction. Roughly speaking, the arrangement pitch is large in the area near the light source 12 and the arrangement pitch is small in the area far from the light source 12 .
  • the side surfaces (including the light exit surface 14c) other than the light reflection surface 14b are flat.
  • the light source 12 is arranged so that the optical axis is parallel to the Z direction and coincides with the central axis passing through the central portion of the light guide 14 when the axis along which the light distribution is symmetrical is taken as the optical axis. It is arranged on the first end face 14 a of the light guide 14 .
  • the simulation used TracePro (Ver. 20.4), lighting design, analysis and optimization software from Lambda Research Corporation.
  • the light source 12 emitted a total of 1 ⁇ 10 6 light beams having a wavelength of 550 nm and having the above light distribution. Further, the number of light rays incident on a unit area at a position spaced 4.78 mm in the X direction from the light exit surface 14c of the light guide was counted to obtain the irradiance.
  • These models are intended to show the effectiveness of the recess (interface), and are optimized according to the specifications, including the shape of the light guide and the mode of the light reflecting surface, when mounted on the actual equipment. Note that it should
  • the light amount distribution of the illumination device 60 according to the first embodiment was evaluated as the irradiance distribution along the light exit surface 14c. 22 and 23, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit of the effective length Lef of the light guide 14 on the light source side being 0 and the distance in the Z direction.
  • the divided irradiance ratio is plotted.
  • the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less.
  • the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm.
  • the irradiance ratio becomes 6 or less, and lighting characteristics having a good irradiance distribution (light amount distribution) can be expected.
  • An overhang amount (depth) dc of the concave portion with respect to the light incident surface is 0.1 mm, preferably 0.3 mm, and more preferably 0.4 mm. Also, dc is 1.0 mm or less, preferably 0.9 mm or less, and more preferably 0.8 mm or less.
  • FIG. 24(a) and 24(b) are schematic diagrams for explaining the illumination device 70 according to the second example used in the simulation.
  • FIG. 24(a) is a schematic left side view of a lighting device 70 according to the second embodiment.
  • FIG. 24(b) is a schematic FF sectional view of the illumination device 70 according to the second embodiment shown in FIG. 24(a).
  • the illuminating device 70 according to the second embodiment differs from the illuminating device 60 according to the first embodiment in that the tip of the concave portion 16 of the light guide 14 in the Z direction is wedge-shaped. etc., including the simulation conditions and method, are the same as those in the first embodiment.
  • the light quantity distribution of the illumination device 70 according to the second example was evaluated as the irradiance distribution along the light exit surface 14c. 25 and 26, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit on the light source side of the effective length Lef of the light guide 14 being 0 and the distance in the Z direction.
  • the divided irradiance ratio is plotted.
  • the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less.
  • 25 and 26 show the irradiance ratio of a comparative example without a concave portion (interface), the overhang amount in the Z direction of the concave portion as dc, and the wedge-shaped tip angle at the tip of the concave portion (between the YZ plane and the slope).
  • angle is ⁇ c
  • the irradiance ratio in each case of (dc, ⁇ c) (2.00 mm, 30°), (1.50 mm, 30°), (1.50 mm, 19°) is show.
  • the relative irradiance ratio is substantially constant in the range where the value of Z exceeds approximately 12.5 mm.
  • the light intensity increases for those without the concave portion 16 with the interface, but the overhang amount (dc) is 1.50 mm or the tip angle ( ⁇ c) is 30°, and when it is a smaller angle (19°), an increase in the irradiance ratio is suppressed, and illumination characteristics having a good irradiance distribution (light amount distribution) can be expected.
  • the tip of the concave portion 16 recessed in the Z direction has a wedge shape
  • the light ray reaches the interface oblique to the Z direction at a large incident angle. It is presumed that the reflectance due to the light source 12 increases, and the irradiance associated with the light rays directly directed to the light exit surface 14c near the light source 12 decreases.
  • ⁇ c is 26° or less, preferably 22° or less.
  • ⁇ c is 15° or more, preferably 16° or more.
  • FIG. 27(a) to 27(d) are schematic diagrams for explaining the illumination device 80 according to the third example used in the simulation.
  • FIG. 27(a) is a schematic left side view of a lighting device 80 according to the third embodiment.
  • FIG. 27(b) is a schematic plan view of a lighting device 80 according to the third embodiment.
  • FIG. 27(c) is a schematic GG sectional view of the illumination device 80 according to the third embodiment shown in FIG. 27(a).
  • FIG. 27(d) is a schematic bottom view of the lighting device 80 according to the third embodiment.
  • the light amount distribution of the illumination device 80 according to the third example was evaluated as the irradiance distribution along the light exit surface 14c. 28 and 29, the horizontal axis represents the irradiance per unit area at a certain position as the distance in the Z direction with the lower limit of the effective length Lef of the light guide 14 on the light source side being 0, and the irradiance over the entire effective length. is a plot of the irradiance ratio divided by the mean of . In this embodiment, the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less.
  • the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm.
  • each example has an irradiance ratio of less than 6, which is relatively good, and the overhang amount (dc) of 1.30 mm and 2.00 mm is the maximum.
  • the irradiance ratio is also around 1, and it has lighting characteristics with an even better irradiance distribution (light amount distribution).
  • the third embodiment there is a light ray emitted from the flange 34 or its vicinity, particularly near the boundary between the flange 34 and the rod-shaped portion extending in the longitudinal direction of the light guide, and reaching the effective illumination area.
  • the overhang amount is 1.30 mm or 2.00 mm
  • a uniform irradiance distribution light amount distribution
  • FIGS. 30(a) to 30(d) are schematic diagrams for explaining the illumination device 90 according to the fourth example used in the simulation.
  • FIG. 30(a) is a schematic left side view of a lighting device 90 according to the fourth embodiment.
  • FIG. 30(b) is a schematic plan view of a lighting device 90 according to the fourth embodiment.
  • FIG. 30(c) is a schematic HH sectional view of the illumination device 90 according to the fourth embodiment shown in FIG. 30(a).
  • FIG. 30(d) is a schematic bottom view of the lighting device 90 according to the fourth embodiment.
  • the illumination device 90 according to the fourth embodiment differs from the third embodiment in that the shape of the tip of the concave portion 16 recessed in the Z direction is wedge-shaped, but other points are the same as in the third embodiment. is.
  • the light amount distribution of the illumination device 90 according to the fourth example was evaluated as the irradiance distribution along the light exit surface 14c. 31 and 32, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit on the light source side of the effective length Lef of the light guide 14 being 0 and the distance in the Z direction.
  • the divided irradiance ratio is plotted.
  • the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less.
  • 31 and 32 show the irradiance ratio of a comparative example without a concave portion (interface), the overhang amount in the Z direction of the concave portion as dc, and the tip angle of the wedge shape at the tip of the concave portion (between the YZ plane and the slope).
  • the angle) is ⁇ c
  • the irradiance ratio in each case of (dc, ⁇ c) (2.00 mm, 30°), (1.50 mm, 30°), (1.50 mm, 19°) is show.
  • the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm.
  • the irradiance ratio is large for those without the concave portion 16 with the interface, but the overhang amount (dc) is 1.50 mm or the tip angle ( ⁇ c ) is 30° or smaller (19°), the increase in the irradiance ratio is suppressed, and illumination characteristics having a good irradiance distribution (light amount distribution) can be expected.
  • the tip of the concave portion 16 recessed in the Z direction has a wedge shape
  • the light ray reaches the interface oblique to the Z direction at a large angle of incidence. It is presumed that the reflectance due to the light source 12 increases, and the effect of reducing the irradiance associated with the light rays directly directed to the light exit surface 14c in the vicinity of the light source 12 is presumed.
  • FIG. 33 is a schematic cross-sectional view showing a reading device 100 using the illumination device 10 according to this embodiment.
  • the reading device 100 includes a contact plate 102 on which an object (original) 120 to be read is placed, an image sensor (contact image sensor) 104, a drive mechanism 116 for scanning the image sensor 104, and an image read by the image sensor 104. and an image processing unit 118 that processes data.
  • the reading device 100 can scan part or all of the document 120 to read information on the document 120 by moving the image sensor 104 in a direction parallel to the contact plate 102 using the drive mechanism 116 .
  • the image sensor 104 includes an illumination device 106 that illuminates the document 120 in a line (long in the direction perpendicular to the paper surface), and an erecting equal-magnification system that collects reflected light from the document 120 with an erecting equal-magnification system.
  • Lens array 108 light receiving elements 110 arranged in an array for receiving the condensed light, circuit board 112 on which light receiving elements 110 are mounted, illumination device 106 , erect equal-magnification lens array 108 and light receiving elements 110 and a housing 114 that accommodates and fixes the in a predetermined arrangement.
  • the devices of the above-described embodiments can be used.
  • the illumination device according to the above-described embodiment with the uniform light quantity distribution the reading device 100 with high image quality can be realized.
  • the present invention can be used for lighting devices, image sensors, and reading devices that use light guides.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Planar Illumination Modules (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Facsimile Heads (AREA)

Abstract

A columnar light guide body 14 includes: a light incident surface provided to a first end surface 14a; a light emission surface 14c provided to a side surface along the longitudinal direction of the light guide body 14; and a first interface 16a, a second interface 16b, and a third interface 16c provided between the light incident surface and the light emission surface 14c.

Description

導光体、照明装置、イメージセンサおよび読取装置Light guides, lighting devices, image sensors and reading devices
 本発明は、導光体、照明装置、イメージセンサおよび読取装置に関する。 The present invention relates to a light guide, lighting device, image sensor and reading device.
 従来、導光体(ライトガイドとも呼ばれる)を用いて対象物にライン状の照明をする照明装置が知られている。このような照明装置は、少なくとも一方向に長い導光体の端部から光を入射させて導光体内を長手方向に伝搬させるとともに、少なくとも一つの光出射面から長手方向に沿ってライン状に光を照射する機能を備える。 Conventionally, there is known a lighting device that uses a light guide (also called a light guide) to illuminate an object in a line. Such an illuminating device allows light to enter from the end of a light guide that is long in at least one direction and propagate in the lengthwise direction of the light guide, and linearly along the lengthwise direction from at least one light exit surface. It has the function of irradiating light.
 少なくとも一方の端部に光源を配置した長尺の導光体を用いて照明装置を構成する場合、端部に配置された光源から出射された光は、導光体に端面から入射して長手方向に伝搬する。導光体を伝搬する光の一部は、長手方向に沿った少なくとも一つの光反射面で反射、散乱等をして光反射面に対向する光出射面から出射する。しかしながら、光源の配置された端面から導光体に入射した一部の光は、光反射面で反射や散乱等することなく直接に光出射面に達して出射する。このような現象は光源近傍において散見される。このような照明装置においては光源近傍の強度が高い光量分布を有する照明光となる場合がある。 When a lighting device is configured using a long light guide having a light source arranged at at least one end, light emitted from the light source arranged at the end enters the light guide from the end surface and travels along the length of the light guide. Propagate in direction. Part of the light propagating through the light guide is reflected, scattered, or the like by at least one light reflecting surface along the longitudinal direction, and is emitted from the light exit surface facing the light reflecting surface. However, part of the light that has entered the light guide from the end face where the light source is arranged reaches the light exit surface directly without being reflected or scattered by the light reflection surface and exits. Such a phenomenon is occasionally seen in the vicinity of the light source. In such a lighting device, there are cases where the illumination light has a light amount distribution in which the intensity near the light source is high.
 一様な光量分布を有する照明装置とするために、例えば導光体の光反射面の反射や拡散のパターン等を最適化することなどが行われる。 In order to obtain a lighting device with a uniform light amount distribution, for example, the pattern of reflection and diffusion of the light reflecting surface of the light guide is optimized.
 特許文献1では、光源からの光が入射する端面と、導光体の光出射面(光出射部)及び光反射面(光反射部)との間等にアパーチャを形成することで光源から直接に出射する光量を低減し、光量分布の均一化を図る技術が記載されている。 In Patent Literature 1, an aperture is formed between an end face on which light from a light source is incident and a light emitting surface (light emitting portion) and a light reflecting surface (light reflecting portion) of a light guide. A technique for reducing the amount of light emitted to the light source and making the distribution of the amount of light uniform is described.
特開2000-48616号公報JP-A-2000-48616
 特許文献1に開示された技術では、表面処理等をしたアパーチャやそれを構成する遮光部材を、光源と導光体の光出射部等の間に設置する必要があり、別途の部品の必要性、部品単価の高額化、組立作業の煩雑性、求められる配置の精度などの観点で好ましくない場合があった。 In the technique disclosed in Patent Document 1, it is necessary to install a surface-treated aperture and a light shielding member constituting the aperture between the light source and the light emitting portion of the light guide, etc., and the need for separate parts. , there are cases where it is not preferable from the viewpoint of an increase in the unit price of the parts, the complexity of the assembly work, the accuracy of the required arrangement, and the like.
 本発明はこうした状況に鑑みてなされたものであり、その目的は、比較的簡易な構造で光量分布の一様化を図ることのできる導光体並びに該導光体を用いた照明装置、イメージセンサおよび読取装置を提供することにある。 The present invention has been made in view of such circumstances, and its object is to provide a light guide body capable of uniforming the light amount distribution with a relatively simple structure, an illumination device using the light guide body, and an image The object is to provide a sensor and a reader.
 上記課題を解決するために、本発明のある態様の導光体は、柱状の導光体であって、当該導光体の端面またはその近傍に設けられた光入射面と、当該導光体の長手方向に沿った側面の少なくとも一部に設けられた光出射面と、光入射面と光出射面との間に設けられた少なくとも一つの界面とを備える。 In order to solve the above-mentioned problems, a light guide according to one aspect of the present invention is a columnar light guide, comprising: a light incident surface provided at or near an end surface of the light guide; and at least one interface provided between the light entrance surface and the light exit surface.
 本発明の別の態様も導光体である。この導光体は、柱状の導光体であって、当該導光体の端面またはその近傍に設けられた、光源の少なくとも一部を収容するためのキャビティと、キャビティ内の光入射面と、当該導光体の長手方向に沿った側面の少なくとも一部に設けられた光出射面と、光入射面と光出射面との間に設けられた少なくとも一つの界面とを備える。 Another aspect of the present invention is also a light guide. The light guide is a columnar light guide, and includes a cavity for accommodating at least part of a light source provided at or near an end face of the light guide, a light incident surface in the cavity, A light exit surface provided on at least a part of a side surface along the longitudinal direction of the light guide, and at least one interface provided between the light entrance surface and the light exit surface.
 本発明の別の態様は、上述の導光体と、光入射面から導光体の内部に光を入射させる光源とを備える照明装置である。 Another aspect of the present invention is a lighting device comprising the light guide described above and a light source for causing light to enter the light guide from the light incident surface.
 本発明のさらに別の態様は、対象物に対してライン状に照明する上述の照明装置と、対象物からの反射光を集光する正立等倍レンズアレイと、正立等倍レンズアレイで集光された光を受光する受光素子とを備えるイメージセンサである。 Yet another aspect of the present invention comprises the above-described illumination device that linearly illuminates an object, an erecting equal-magnification lens array that collects reflected light from the object, and an erecting equal-magnification lens array. and a light-receiving element that receives the condensed light.
 本発明のさらに別の態様は、上述のイメージセンサと、イメージセンサを走査する駆動機構と、イメージセンサによって読み取られたデータを処理する画像処理部とを備える読取装置である。 Yet another aspect of the present invention is a reading device comprising the image sensor described above, a driving mechanism for scanning the image sensor, and an image processing section for processing data read by the image sensor.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、などの間で変換したものもまた、本発明の態様として有効である。また、本明細書内における光量(amount of light)は、特段の説明のない限り光のパワー(仕事率)やエネルギーなどの物理量の強さや大きさを包含する概念を表し、例えば放射量においては、放射束(パワー、radiant flux)、放射強度(radiant intensity)、放射輝度(radiance)、放射照度(irradiance)、放射エネルギー(radiant energy)などの物理量、測光量においては、光束(luminous flux)、光度(luminous intensity)、輝度(luminance)、照度(illuminance)などの物理量を包含する観念を含むものとする。 It should be noted that any combination of the above constituent elements, and any conversion of the expression of the present invention between methods, devices, systems, etc. are also effective as aspects of the present invention. In addition, the amount of light in this specification represents a concept that includes the strength and size of physical quantities such as light power (work rate) and energy unless otherwise specified. , radiant flux, radiant intensity, radiance, irradiance, and radiant energy. shall include notions encompassing physical quantities such as luminous intensity, luminance, and illuminance.
 本発明によれば、比較的簡易な構造で光量の一様化を図ることのできる導光体並びに該導光体を用いた照明装置、イメージセンサおよび読取装置を提供できる。 According to the present invention, it is possible to provide a light guide that can uniformize the amount of light with a relatively simple structure, and an illumination device, an image sensor, and a reader using the light guide.
図1(a)~図1(d)は、本発明の一実施形態に係る照明装置を説明するための概略図である。1(a) to 1(d) are schematic diagrams for explaining a lighting device according to an embodiment of the present invention. 照明装置の光源の近傍の概略拡大断面図である。4 is a schematic enlarged cross-sectional view of the vicinity of the light source of the lighting device; FIG. 第1端面と光出射面との間に界面を有さない場合の光線を示す図である。It is a figure which shows a light ray when there is no interface between a 1st end surface and a light-projection surface. 光入射面と光出射面との間に凹部による界面を有する場合の光線を示す図である。It is a figure which shows a light ray when there exists an interface by a recessed part between a light-incidence surface and a light-projection surface. 光反射面の一パターンを示す図である。It is a figure which shows one pattern of a light reflection surface. 光反射面の別のパターンを示す図である。FIG. 10 is a diagram showing another pattern of the light reflecting surface; 光反射面のさらに別のパターンを示す図である。FIG. 10 is a diagram showing still another pattern of the light reflecting surface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 図13(a)~図13(d)は、本発明の別の実施形態に係る照明装置を説明するための概略図である。13(a) to 13(d) are schematic diagrams for explaining a lighting device according to another embodiment of the present invention. 照明装置の光源の近傍の概略拡大断面図である。4 is a schematic enlarged cross-sectional view of the vicinity of the light source of the lighting device; FIG. 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 光源と界面を含む導光体の一部の概略断面図である。FIG. 4A is a schematic cross-sectional view of a portion of a lightguide including a light source and an interface; 図19(a)および図19(b)は、3個のLEDチップがケース内に収容された光源の一例を示す図である。FIGS. 19(a) and 19(b) are diagrams showing an example of a light source in which three LED chips are housed in a case. 図20(a)および図20(b)は、光源を実装した薄型の回路基板と、位置決めピンを備えるフランジ付きの導光体とを備える照明装置を示す図である。FIGS. 20(a) and 20(b) are diagrams showing an illumination device including a thin circuit board on which a light source is mounted and a flanged light guide with positioning pins. 図21(a)~図21(d)は、シミュレーションに用いた第1実施例に係る照明装置を説明するための概略図である。21(a) to 21(d) are schematic diagrams for explaining the illumination device according to the first example used in the simulation. 第1実施例に係る照明装置の光出射面に沿った光量分布(放射照度分布)を示す図である。FIG. 3 is a diagram showing a light amount distribution (irradiance distribution) along the light exit surface of the lighting device according to the first embodiment; 図22のL=0~25mmの拡大図である。23 is an enlarged view of L=0 to 25 mm in FIG. 22; FIG. 図24(a)および図24(b)は、シミュレーションに用いた第2実施例に係る照明装置を説明するための概略図である。FIGS. 24(a) and 24(b) are schematic diagrams for explaining the illumination device according to the second example used in the simulation. 第2実施例に係る照明装置の光出射面に沿った光量分布(放射照度分布)を示す図である。FIG. 10 is a diagram showing a light quantity distribution (irradiance distribution) along the light exit surface of the lighting device according to the second embodiment; 図25のL=0~25mmの拡大図である。26 is an enlarged view of L=0 to 25 mm in FIG. 25; FIG. 図27(a)~図27(d)は、シミュレーションに用いた第3実施例に係る照明装置を説明するための概略図である。27(a) to 27(d) are schematic diagrams for explaining the illumination device according to the third example used in the simulation. 第3実施例に係る照明装置の光出射面に沿った光量分布(放射照度分布)を示す図である。FIG. 11 is a diagram showing a light quantity distribution (irradiance distribution) along the light exit surface of the lighting device according to the third embodiment; 図28のL=0~25mmの拡大図である。29 is an enlarged view of L=0 to 25 mm in FIG. 28; FIG. 図30(a)~図30(d)は、シミュレーションに用いた第4実施例に係る照明装置を説明するための概略図である。FIGS. 30(a) to 30(d) are schematic diagrams for explaining the illumination device according to the fourth example used in the simulation. 第4実施例に係る照明装置の光出射面に沿った光量分布(放射照度分布)を示す図である。It is a figure which shows the light quantity distribution (irradiance distribution) along the light-projection surface of the illuminating device based on 4th Example. 図31のL=0~25mmの拡大図である。32 is an enlarged view of L=0 to 25 mm in FIG. 31; FIG. 本実施形態に係る照明装置を用いた読取装置を示す概略断面図である。1 is a schematic cross-sectional view showing a reading device using an illumination device according to this embodiment; FIG.
 以下、本発明の実施形態について説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Embodiments of the present invention will be described below. The same or equivalent constituent elements, members, and processes shown in each drawing are denoted by the same reference numerals, and duplication of description will be omitted as appropriate. Moreover, the embodiments are illustrative rather than limiting the invention, and not all features and combinations thereof described in the embodiments are necessarily essential to the invention.
 図1(a)~図1(d)は、本発明の一実施形態に係る照明装置10を説明するための四面の概略図である。図1(a)は、照明装置10の概略左側面図である。図1(b)は、照明装置10の概略平面図である。図1(c)は、図1(a)に示す照明装置10の概略A-A断面図である。図1(d)は、照明装置10の概略下面図である。 1(a) to 1(d) are four schematic diagrams for explaining a lighting device 10 according to an embodiment of the present invention. FIG. 1(a) is a schematic left side view of the lighting device 10. FIG. FIG. 1B is a schematic plan view of the illumination device 10. FIG. FIG. 1(c) is a schematic AA cross-sectional view of the lighting device 10 shown in FIG. 1(a). FIG. 1D is a schematic bottom view of the illumination device 10. FIG.
 照明装置10は、少なくとも光源12と、導光体14とを備える。導光体14は、Z方向(長手方向ともいう)に延びる柱状体であり、Z方向の一端面である第1端面14aと、導光体14のZ方向に沿った少なくとも一つの側面である光反射面14bと、光反射面14bに対向する導光体14のZ方向に沿った側面である光出射面14cと、Z方向の他端面である第2端面14dとを含む。本実施形態において、光源12は、光源12から出射する光の一部が導光体14のZ方向に進むように、または光源12から出射する光の対称軸を光軸としたとき、光軸とZ方向が平行になるように、第1端面14aの側に配置される。光源12から出射された光は、光入射面としての第1端面14aから導光体14内に入射し、拡散しつつ、導光体14内をZ方向に伝搬する。また、図では第1端面14aの側にのみ光源を配置したが、同時に第2端面14dの側にも光源を配置してもよい。 The illumination device 10 includes at least a light source 12 and a light guide 14. The light guide 14 is a columnar body extending in the Z direction (also referred to as the longitudinal direction). It includes a light reflecting surface 14b, a light emitting surface 14c that is a side surface along the Z direction of the light guide 14 facing the light reflecting surface 14b, and a second end surface 14d that is the other end surface in the Z direction. In this embodiment, the light source 12 is arranged so that part of the light emitted from the light source 12 travels in the Z direction of the light guide 14, or when the symmetry axis of the light emitted from the light source 12 is the optical axis, the optical axis is arranged on the side of the first end surface 14a so that the Z direction is parallel to the . Light emitted from the light source 12 enters the light guide 14 from the first end surface 14a as a light incident surface, and propagates in the light guide 14 in the Z direction while diffusing. Further, although the light source is arranged only on the side of the first end surface 14a in the drawing, the light source may be arranged on the side of the second end surface 14d at the same time.
 図2は、照明装置10の光源12の近傍の概略拡大断面図である。図2には、光源12から出射して導光体14に入射する光線が模式的に矢印で示されている。 FIG. 2 is a schematic enlarged cross-sectional view of the vicinity of the light source 12 of the illumination device 10. FIG. In FIG. 2 , light rays emitted from the light source 12 and incident on the light guide 14 are schematically indicated by arrows.
 本実施形態において、導光体14の第1端面14aには、Z方向に凹んだ凹部16が形成されている。この凹部16は、第1端面14aにおいて、光源12と光出射面14cとの間に形成されている。本実施形態において、凹部16はその断面や平面視において矩形状である。この凹部16により、光入射面としての第1端面14aと光出射面14cとの間には、複数の界面(第1界面16a、第2界面16b、第3界面16c)が形成されている。第1界面16aは凹部16の下側面であり、第2界面16bは凹部16の底面であり、第3界面16cは凹部16の上側面である。図2では特に表現されていないが、凹部16は、Y方向に相互に対向する一対の界面を有してもよく、凹部16がY方向に導光体を貫通していてもよい。本実施形態は導光体14の光入射面からZ方向または長尺方向に凹んだ凹部16を有するものである。 In this embodiment, the first end face 14a of the light guide 14 is formed with a recess 16 recessed in the Z direction. The recess 16 is formed between the light source 12 and the light exit surface 14c on the first end surface 14a. In this embodiment, the recess 16 is rectangular in cross section and in plan view. A plurality of interfaces (a first interface 16a, a second interface 16b, and a third interface 16c) are formed by the recess 16 between the first end surface 14a as the light incident surface and the light emitting surface 14c. The first interface 16 a is the bottom surface of the recess 16 , the second interface 16 b is the bottom surface of the recess 16 , and the third interface 16 c is the top surface of the recess 16 . Although not particularly shown in FIG. 2, the recess 16 may have a pair of interfaces facing each other in the Y direction, or the recess 16 may penetrate the light guide in the Y direction. This embodiment has a recess 16 recessed in the Z direction or the longitudinal direction from the light incident surface of the light guide 14 .
 図3は、第1端面14aと光出射面との間に界面を有さない場合に、光源12から出射した光の一部が直接に光出射面14cに向かう様子を示す。例えばこのような直接に光出射面14cに向かう光が、光源12近傍で光量が高くなる偏った光量分布の原因に大きく関係する。 FIG. 3 shows how part of the light emitted from the light source 12 directly travels to the light exit surface 14c when there is no interface between the first end surface 14a and the light exit surface. For example, such light directly directed to the light exit surface 14 c is closely related to the cause of the biased light intensity distribution in which the light intensity is high in the vicinity of the light source 12 .
 図4は、光入射面からZ方向に凹んだ凹部を有する結果として、光入射面(第1端面14a)と光出射面14cとの間に凹部16による界面を有する場合に、光源12から出射した光の一部が界面によって光源12から遠ざかる方向に屈折する様子を示す。界面が存在しない場合(図3)において光源12近傍の光量の増加の一因となっている光線が、界面が存在する場合(図4)では光源12から遠ざかる方向に屈折されており、光源12近傍における光束の集中が低減される。これにより、照射範囲における光量分布の均一化を図ることができる。 FIG. 4 shows the light emitted from the light source 12 when there is an interface formed by the recessed portion 16 between the light incident surface (first end surface 14a) and the light exit surface 14c as a result of having the recessed portion recessed in the Z direction from the light incident surface. It shows how part of the emitted light is refracted by the interface in a direction away from the light source 12 . A light ray that causes an increase in the amount of light near the light source 12 when there is no interface (FIG. 3) is refracted in a direction away from the light source 12 when there is an interface (FIG. 4). The concentration of luminous flux in the vicinity is reduced. As a result, it is possible to make the light amount distribution uniform in the irradiation range.
 本実施形態に係る導光体14について、光入射面もしくは光源と光出射面14cとの間に界面を伴った凹部を設けることにより、均一な光量分布を有する照明装置を提供することができる。なお、凹部は孔、溝、窪みなどの観念を含むものであり、特定の断面の形状や平面視の形状などに限定されるものではなく、凹部を構成するいくつかの界面の作用によって、光源近傍の光の集中を低減するものであれば足りる。 By providing a concave portion with an interface between the light incident surface or the light source and the light emitting surface 14c in the light guide 14 according to the present embodiment, it is possible to provide an illumination device having a uniform light quantity distribution. In addition, the recess includes the concept of a hole, a groove, a recess, etc., and is not limited to a specific cross-sectional shape or planar view shape. Anything that reduces the concentration of light in the vicinity is sufficient.
 以下、導光体14について詳細に説明する。導光体14は、例えば一方向に長尺の棒状またはロッド(状)体や柱状であり、第1端面14aから導光体14内に入射した光を、導光体14の内部を長手方向に向かって伝搬させる。導光体14はZ方向に垂直な断面が多角形、略円形(楕円も含む)またはそれらの一部が組み合わされた形状であり、一部に曲線を含むものであってもよい。導光体14は長手方向に延びた平面もしくは曲面で構成される複数の側面を有する。 The light guide 14 will be described in detail below. The light guide 14 is, for example, in the shape of a rod, a rod (like), or a column elongated in one direction. propagate toward The light guide 14 has a cross section perpendicular to the Z direction of a polygon, a substantially circular shape (including an ellipse), or a combination of these shapes, which may include a curved line. The light guide 14 has a plurality of side surfaces that are flat or curved in the longitudinal direction.
 導光体14内の光の一部はこれらの側面に一回以上反射を繰り返しながら長手方向に伝搬する。導光体14の側面の少なくとも一つの面は、光をライン状に出射する光出射面14cである。また、導光体14は、光出射面14cに対向し、導光体14内を伝搬する少なくとも一部の光を光出射面14cに向けて反射させる光反射面14bを含む。言い換えれば、光源12から出射した光は、導光体14の第1端面14aから導光体14に入射し、一部の光が導光体14内を反射しながら長手方向に伝搬する。導光体14を伝搬する光の一部が光反射面14bに到達し、光反射面14bによってさらに一部の光が光出射面14cに到達し光出射面14cから出射することで、長手方向に沿ったライン状に光を放射する照明装置を実現できる。導光体14は、第1端面14a、光出射面14cおよび光反射面14bを含み、一体に形成されてもよい。 A portion of the light within the light guide 14 propagates in the longitudinal direction while repeating reflections on these side surfaces one or more times. At least one of the side surfaces of the light guide 14 is a light exit surface 14c that linearly emits light. The light guide 14 also includes a light reflection surface 14b that faces the light exit surface 14c and reflects at least part of the light propagating through the light guide 14 toward the light exit surface 14c. In other words, the light emitted from the light source 12 enters the light guide 14 from the first end surface 14a of the light guide 14, and part of the light propagates in the light guide 14 in the longitudinal direction while being reflected. A portion of the light propagating through the light guide 14 reaches the light reflecting surface 14b, and a portion of the light reaches the light emitting surface 14c through the light reflecting surface 14b and is emitted from the light emitting surface 14c. It is possible to realize a lighting device that radiates light linearly along the line. The light guide 14 may be integrally formed including the first end surface 14a, the light emitting surface 14c and the light reflecting surface 14b.
 導光体14は、例えばZ方向に垂直な断面の形状について外接円を想定したとき、外接円の直径が1mm~30mmであってよく、長尺方向の長さが50mm~1200mmであってよい。例えば照明装置10がホワイトボードの読み取り装置に用いられる場合は、長尺方向の有効長さが約1000mmに達するものであってもよく、照明装置10がマルチファンクションプリンタなどに搭載される読み取り装置に用いられる場合は、長尺方向の有効長さが100mm~330mmに達するものであってもよい。 For example, when a circumscribed circle is assumed for the cross-sectional shape of the light guide 14 perpendicular to the Z direction, the diameter of the circumscribed circle may be 1 mm to 30 mm, and the length in the longitudinal direction may be 50 mm to 1200 mm. . For example, when the lighting device 10 is used in a whiteboard reading device, the effective length in the longitudinal direction may reach about 1000 mm, and the lighting device 10 may be used in a reading device mounted on a multifunction printer or the like. If used, it may reach an effective longitudinal length of 100 mm to 330 mm.
 導光体14は、ハウジングなどへの取り付け、光源12や光源12が搭載された回路基板等を取り付けることを目的として、または他の部品の取り付けなどを目的として、導光体14の少なくとも一方の端部(例えば第1端面14a)近傍に鍔状のフランジを含んでいてもよい。フランジは例えば、導光体14の長手方向(Z方向)に直角な面を有していてもよく、他の部品との位置決め精度の向上を目的として位置決めピンやノッチなどの付帯構造を有していてもよい。 The light guide 14 is mounted on at least one side of the light guide 14 for the purpose of mounting to a housing or the like, mounting the light source 12 or a circuit board on which the light source 12 is mounted, or mounting other parts. A collar-like flange may be included near the end (for example, the first end surface 14a). For example, the flange may have a surface perpendicular to the longitudinal direction (Z direction) of the light guide 14, and has ancillary structures such as positioning pins and notches for the purpose of improving positioning accuracy with other parts. may be
 光源12や光源12が搭載された回路基板を導光体14の第1端面14a近傍に取り付ける場合、光源12の一部または全体を含むように導光体14の第1端面14aにキャビティ(凹部またはうろの類のもの)を設けてもよい。導光体14と光源12(例えば発光素子)とを一体化させる場合、光源12本体または一部を導光体の内部に収容し略封止することにより、光源12のデリケートな部分が外気や外乱に曝される蓋然性が低くなるので、部品の長寿命化を図ることができるとともに、省スペースの観点からも好ましい。導光体14が光源収容用のキャビティを備える場合であって、光源12の光出射面が導光体14の長手方向(Z方向)に略直角または、光源12の光軸が導光体12の長手方向(Z方向)に平行になるように光源12が取り付けられるとき、キャビティの導光体14の長手方向の底面を光入射面としてよい。光源12の光が出射すると見なせる面を光出射面としたとき、光源の光出射面と導光体の光入射面との間隔は0~5mmであり、該間隔は0~3mm(0mmは除く)であってもよい。当該間隔が0mmであることは光源の光出射面と導光体の光入射面が接触している状態である。光源の光出射面と導光体の光入射面がわずかでも離間していれば、導光体の光入射面も光を屈折する作用によって、光源近傍の光束の集中が幾分でも低減できる可能性がある。 When the light source 12 or the circuit board on which the light source 12 is mounted is attached near the first end surface 14 a of the light guide 14 , a cavity (recess) is formed in the first end surface 14 a of the light guide 14 so as to include part or all of the light source 12 . or a kind of hollow) may be provided. When the light guide 14 and the light source 12 (for example, a light emitting element) are integrated, the light source 12 main body or part thereof is housed inside the light guide and substantially sealed, so that the delicate part of the light source 12 is protected from the outside air. Since the probability of being exposed to disturbance is reduced, the service life of the parts can be extended, and this is also preferable from the viewpoint of space saving. In the case where the light guide 14 has a cavity for accommodating the light source, the light emitting surface of the light source 12 is substantially perpendicular to the longitudinal direction (Z direction) of the light guide 14, or the optical axis of the light source 12 is aligned with the light guide 12. When the light source 12 is mounted parallel to the longitudinal direction (Z direction) of the cavity, the longitudinal bottom surface of the light guide 14 of the cavity may be the light incident surface. When the surface of the light source 12 from which light is emitted is defined as a light emitting surface, the distance between the light emitting surface of the light source and the light incident surface of the light guide is 0 to 5 mm, and the distance is 0 to 3 mm (excluding 0 mm). ). The interval of 0 mm means that the light emitting surface of the light source and the light incident surface of the light guide are in contact with each other. If the light exit surface of the light source and the light entrance surface of the light guide are separated even by a small amount, the light is refracted by the light entrance surface of the light guide, which can reduce the concentration of the luminous flux near the light source. have a nature.
 また、伝搬効率や照明効率の観点から、導光体14は照明光に含まれる波長の光に対して透明であること、導光体14を構成する材料による吸収が小さいことが望ましい。例えば厚さ10mmの導光体14の波長550nmにおける内部透過率は90%以上であってよく、好ましくは95%以上であってよく、さらに好ましくは98%以上であってよい。内部透過率は、入射および出射面における表面の反射率を除いた透過率である。 In addition, from the viewpoint of propagation efficiency and illumination efficiency, it is desirable that the light guide 14 be transparent to the light of the wavelength contained in the illumination light, and that the light absorption by the material constituting the light guide 14 be small. For example, the internal transmittance of the light guide 14 having a thickness of 10 mm at a wavelength of 550 nm may be 90% or more, preferably 95% or more, more preferably 98% or more. Internal transmittance is the transmittance excluding surface reflectance at the entrance and exit surfaces.
 導光体14は、その加工性や低いコストの要請から樹脂製であってよい。導光体14を樹脂で形成する場合は、例えば射出成形や注型などの手段を用いて生産性の向上を図ることができる。また導光体14は、樹脂と金属やセラミックス、ガラスなどと組み合わせて形成されてもよい。例えば、導光体14の長尺の部分は透明な樹脂やガラスで形成され、フランジ(ハウジングなどへの取り付けまたは光源12や回路基板の取り付け用)などは金属やセラミックス、透明でない樹脂で形成されてもよい。また光源12として高光強度のLEDなどを用いる場合は、発熱量が大きいので熱放熱性の高いアルミナなどのセラミックスを光源12近傍を構成する材料として用いてもよい。 The light guide 14 may be made of resin from the requirements of workability and low cost. When the light guide 14 is made of resin, the productivity can be improved by means such as injection molding or cast molding. Moreover, the light guide 14 may be formed by combining resin with metal, ceramics, glass, or the like. For example, the long portion of the light guide 14 is made of transparent resin or glass, and the flange (for attachment to a housing or the like or attachment of the light source 12 or circuit board) is made of metal, ceramics, or non-transparent resin. may Also, when a high-intensity LED or the like is used as the light source 12, ceramics such as alumina having a high heat dissipation property may be used as a material forming the vicinity of the light source 12 because the amount of heat generated is large.
 導光体14を形成する材料としては、シクロオレフィン系樹脂、アクリル系樹脂、塩化ビニル系樹脂、エポキシ系樹脂、PET系樹脂、PC系樹脂、GPPS系樹脂などの透明性樹脂を用いることができる。導光体14を作製する方法としては、射出成形法、インサート成形法、ブロー成形法、押出成形法などを用いることができる。また、導光体14は、アルミニウム、ジュラルミンなどの金属やアルミナ、ジルコニアなどのセラミックス材料などと上記の透明性樹脂とを組み合わせて作製してもよい。 Transparent resins such as cycloolefin-based resins, acrylic-based resins, vinyl chloride-based resins, epoxy-based resins, PET-based resins, PC-based resins, and GPPS-based resins can be used as materials for forming the light guide 14 . . As a method for producing the light guide 14, an injection molding method, an insert molding method, a blow molding method, an extrusion molding method, or the like can be used. Further, the light guide 14 may be produced by combining a metal such as aluminum or duralumin, a ceramic material such as alumina or zirconia, or the like, with the above transparent resin.
 次に、導光体14の光出射面14cについて詳細に説明する。光出射面14cは、導光体14の長手方向に沿った側面の少なくとも一部に設けられた、導光体14の内部から外部に光を出射する面である。光出射面14cは、平滑でフラットな表面を有するものであってよく、対象物の外形によって一部に曲面を含むものであってもよい。また出射した光の拡がりを求める場合は、光出射面14cの表面に複数の微小な凹凸部を設ける、フロスト加工、擦り面加工などしていわゆる拡散面としてもよい。また光出射面14cは、光の透過効率を向上させるために、その表面上に反射防止膜もしくは反射低減膜を形成してもよい。反射防止膜や反射低減膜は、スパッタ法や真空蒸着法などにより誘電体多層膜を形成する、低屈折率材料によるコーティングを施す、中空粒子や中実粒子を含む低屈折率材料によるコーティングを施すことによって形成することができる。また、光出射面14cには、一部の波長域の光の出射を抑制するために光吸収膜や光反射膜を形成してもよい。光吸収膜は、例えば特定の波長域の光を吸収する微粒子や色素を含む樹脂を光出射面14cにコーティングするなどして形成されてよい。光反射膜は、スパッタ法や真空蒸着法などにより形成された誘電体多層膜であってよい。 Next, the light exit surface 14c of the light guide 14 will be described in detail. The light exit surface 14c is a surface that is provided on at least a part of the side surface of the light guide 14 along the longitudinal direction and emits light from the inside of the light guide 14 to the outside. The light exit surface 14c may have a smooth and flat surface, or may partially include a curved surface depending on the external shape of the object. Further, when the spread of the emitted light is desired, a so-called diffusion surface may be obtained by providing a plurality of minute irregularities on the surface of the light emitting surface 14c, frosting, rubbing, or the like. In addition, the light emitting surface 14c may have an antireflection film or a reflection reducing film formed thereon in order to improve the light transmission efficiency. Anti-reflection coatings and anti-reflection coatings are formed by forming a dielectric multilayer film by sputtering, vacuum deposition, etc., applying a coating with a low refractive index material, or applying a coating with a low refractive index material containing hollow particles or solid particles. can be formed by Further, a light absorption film or a light reflection film may be formed on the light exit surface 14c in order to suppress the emission of light in a part of the wavelength range. The light absorption film may be formed, for example, by coating the light exit surface 14c with a resin containing fine particles or a pigment that absorbs light in a specific wavelength range. The light reflecting film may be a dielectric multilayer film formed by a sputtering method, a vacuum deposition method, or the like.
 次に、導光体14の光反射面14bについて詳細に説明する。光反射面14bは、適切に光を反射または拡散させるためのパターンが設けられている。パターンの態様はこれらに限定されないが、粗面がパターン状に形成されたもの、光を反射する白色や銀色などの印刷パターン、数μm~数mm程度の径のクレータや球面の一部のような複数の凹部が形成されたもの(平面視で水玉模様として視認されるもの)、逆に凸部が形成されたもの、円柱などの柱状立体や錐状立体、錐台状立体の側面が光反射面の幅にわたって凹状に形成されたもの、逆に凸状に形成されたもの、またはこれらの組み合わせによるパターンが形成されていてもよい。求める照明光の光強度分布や照明装置の長さや大きさ、導光体14の形状、用いる光源12の配光分布などを考慮して光反射面14bにおけるパターンを形成してもよい。また、光反射面14bについても、目的とねらいの性能に応じて、光出射面14cと同様に反射防止膜、反射低減膜、光吸収膜、光反射膜を同様の方法で形成することができる。 Next, the light reflecting surface 14b of the light guide 14 will be described in detail. The light reflecting surface 14b is provided with a pattern for appropriately reflecting or diffusing light. The mode of the pattern is not limited to these, but a rough surface is formed in a pattern, a printed pattern such as white or silver that reflects light, a crater with a diameter of about several μm to several mm, or a part of a spherical surface. (visually visible as a polka-dot pattern in a plan view), conversely, convex portions are formed, column-shaped solids such as cylinders, cone-shaped solids, and frustum-shaped solids whose side surfaces are illuminated. A pattern formed in a concave shape over the width of the reflective surface, a convex shape, or a combination thereof may be formed. The pattern on the light reflecting surface 14b may be formed in consideration of the desired light intensity distribution of the illumination light, the length and size of the lighting device, the shape of the light guide 14, the light distribution of the light source 12 used, and the like. Also, for the light reflecting surface 14b, an antireflection film, a reflection reducing film, a light absorbing film, and a light reflecting film can be formed in the same manner as for the light emitting surface 14c, depending on the purpose and intended performance. .
 図5~図7は、光反射面14bのいくつかのパターンを示す。導光体14が備える光反射面14bのパターンはこれらに限定されないほか、これらのパターンを適宜組み合わせてもよい。 5 to 7 show several patterns of the light reflecting surface 14b. The pattern of the light reflecting surface 14b provided on the light guide 14 is not limited to these, and these patterns may be combined as appropriate.
 図5は、平面視で大きさが様々な略円形状の構造物18が複数形成されたものである。略円形状の構造物18は凹であってもよく凸であってもよい。構造物18は図5に表されるように数μm~数mm程度の径の球面の一部や曲面のような複数の凹な形状であってもよい。略円形状の構造物18の大きさは、例えば光源12から遠ざかるにしたがって、そのピッチや大きさを変化させてもよく、ランダムに配置されてもよい。 In FIG. 5, a plurality of substantially circular structures 18 having various sizes in plan view are formed. The substantially circular structure 18 may be concave or convex. As shown in FIG. 5, the structure 18 may have a plurality of concave shapes such as a part of a spherical surface with a diameter of several μm to several mm or a curved surface. The size of the substantially circular structures 18 may vary, for example, as the distance from the light source 12 increases, or they may be arranged at random.
 図6は、Z方向に直角な方向に溝状またはリッジ状の構造物20が複数形成されているものである。溝は凹でありリッジは凸を表すものとする。溝やリッジは、図6の表されるようにZ方向に直角な方向に形成されていてもよい。これの構造物20も例えば光源12から遠ざかるにしたがって、そのピッチや大きさを変化させてもよく、ランダムに配置されてもよい。例えば光源12から遠方に形成された溝状またはリッジ状の構造物20は、その配列ピッチを光源12の近傍に形成されたものよりも小さくしてもよい。 In FIG. 6, a plurality of groove-shaped or ridge-shaped structures 20 are formed in a direction perpendicular to the Z direction. Let grooves be concave and ridges be convex. The grooves and ridges may be formed in a direction perpendicular to the Z direction as shown in FIG. These structures 20 may also vary in pitch or size, or may be arranged at random, for example, as they move away from the light source 12 . For example, groove-shaped or ridge-shaped structures 20 formed far from the light source 12 may have a smaller arrangement pitch than those formed near the light source 12 .
 図7は、反射パターン22が光反射面に印刷等により形成されたものである。個々の反射パターン22は例えば反射率の高い白色や銀色であり、光源12からの距離に応じてその明度や色味などの着色を変えてもよく、例えば光源12から遠方に形成された反射パターン22の反射率は、光源12の近傍に形成されたものよりも高くしてもよい。また、例えば光源12から遠方に形成された反射パターン22の面積は、光源12の近傍に形成されたものよりもその面積を大きくしてもよい。 In FIG. 7, the reflective pattern 22 is formed on the light reflecting surface by printing or the like. The individual reflection patterns 22 are, for example, white or silver with high reflectance, and may change color such as brightness and color according to the distance from the light source 12. For example, reflection patterns formed far from the light source 12 The reflectance of 22 may be higher than that formed near the light source 12 . Also, for example, the area of the reflection pattern 22 formed far from the light source 12 may be larger than that of the reflection pattern 22 formed near the light source 12 .
 次に、導光体14を覆うカバー(図示せず)について説明する。照明装置10は、導光体14の少なくとも棒状部分もしくは有効範囲(光が照射される範囲)を覆うカバーを備えていてもよい。導光体14内に入射した光は、導光体14の側面で反射を繰り返して導光体14の長手方向(Z方向)に伝搬するが、一部の光が導光体14の側面から出射する場合がある。光出射面14c以外の面から出射した光は損失となるので、光出射面14c以外の面から出射した光を導光体14内に再反射して導光体14側に戻す機能を付加させることが考えられる。カバーは、導光体14の側面の形状に沿った形状を内側に有する構造であってよく、カバーの内側による反射効率の向上を図るために、少なくとも導光体14に対向もしくは接する内側の面は白色や銀色であることが望ましい。 Next, a cover (not shown) that covers the light guide 14 will be described. The illumination device 10 may include a cover that covers at least the rod-shaped portion or the effective range (the range where light is irradiated) of the light guide 14 . The light that has entered the light guide 14 is repeatedly reflected by the side surfaces of the light guide 14 and propagates in the longitudinal direction (Z direction) of the light guide 14 . may be emitted. Since the light emitted from the surfaces other than the light emitting surface 14c becomes a loss, the light emitted from the surface other than the light emitting surface 14c is re-reflected in the light guide 14 and returned to the light guide 14 side. can be considered. The cover may have a structure that has a shape along the shape of the side surface of the light guide 14 on the inside. should be white or silver.
 反対に、照明装置10は、カバーを有さない態様も考えられる。カバーはその機能を期待される一方で、照明装置10やそれを用いた読み取り装置などのコストを押し上げる。そのため低コストの要請によってはカバーを有さない(カバーレス)の照明装置10を提案することが十分に考えられる。低コストの照明装置10はセールス上のアピールポイントとなり得る。光が導光体14内を伝搬するとき、複数の側面による全反射の機能が発揮される。全反射または高反射率は面に対して入射角度が大きくなると現れるために、導光体14の棒の部分を細くする(導光体14の断面の形の外接円の径を小さくする)、導光体14の材料の屈折率の大きい材料によって導光体14を作製することによって、光出射面14c以外の側面からの光の出射を低減し伝搬性の向上を図ることができる。導光体14の有効長さとは、少なくとも対象物の求められる範囲(対象物の特定の一辺の長さ)を照射可能であって、求められる光強度の一様性が担保できる長さであってよい。または、導光体14の有効長さとは、導光体14の長尺の棒状部の全長の85%~100%の長さであってよい。また、導光体14の光出射面以外の面を一部または全体をこれらに限られないが白色または銀色など光の反射性の向上が期待できる色で着色してもよい。 On the contrary, the illumination device 10 can also be considered to have no cover. While the cover is expected to perform its function, it increases the cost of the illumination device 10 and the reading device using it. Therefore, depending on the demand for low cost, it is fully conceivable to propose a lighting device 10 that does not have a cover (coverless). A low cost lighting device 10 can be a selling point. When light propagates through the light guide 14, the function of total reflection by multiple side surfaces is exhibited. Since total reflection or high reflectance appears when the angle of incidence to the surface increases, the rod portion of the light guide 14 is made thinner (the diameter of the circumscribed circle of the cross-sectional shape of the light guide 14 is reduced); By fabricating the light guide 14 from a material having a large refractive index, it is possible to reduce the emission of light from the side surfaces other than the light emitting surface 14c and improve the propagation properties. The effective length of the light guide 14 is a length that can irradiate at least the desired range of the object (specific length of one side of the object) and that can ensure the desired uniformity of light intensity. you can Alternatively, the effective length of the light guide 14 may be 85% to 100% of the total length of the long bar-shaped portion of the light guide 14 . Further, the surface of the light guide 14 other than the light exit surface may be partially or wholly colored with a color such as white or silver that can be expected to improve light reflectivity, although not limited thereto.
 また、後述するように導光体14をハウジングなどに固定する場合、導光体14の光出射面14c以外の側面に対向する面を有するハウジングの構造とし、当該面を白色や銀色などの反射率の高い色とすることによって、上述のカバーの機能は補償できる。 Further, when the light guide 14 is fixed to a housing or the like, as will be described later, the structure of the housing is such that it has a surface facing the side surface other than the light emitting surface 14c of the light guide 14, and the surface is made of a reflective material such as white or silver. By having a high percentage color, the function of the cover described above can be compensated.
 次に、凹部16により形成される界面について詳細に説明する。本実施形態に係る導光体14は、光入射面と光出射面14cとの間に少なくとも一つの界面を備える。または、光入射面から光出射面14cに向かう光の光路上に少なくとも一つの界面を備える。光源12近傍の光量が他の部分より高い(光源12近傍の明るさが他の部分より明るい)ということが導光体14の従来的な問題であり、本発明者はこの問題の解決に取り組む中で、光源12と光出射面14cとの間に、光源12から出射する一部の光を屈折や散乱させることが可能な界面を設けることによって光源12近傍の光量を低減できるという思想に到達した。 Next, the interface formed by the concave portion 16 will be described in detail. The light guide 14 according to this embodiment has at least one interface between the light incident surface and the light exit surface 14c. Alternatively, at least one interface is provided on the optical path of light from the light incident surface to the light exit surface 14c. It is a conventional problem of the light guide 14 that the amount of light in the vicinity of the light source 12 is higher than that in other parts (brightness in the vicinity of the light source 12 is brighter than other parts), and the present inventors are working to solve this problem. Among them, the idea is reached that the amount of light in the vicinity of the light source 12 can be reduced by providing an interface between the light source 12 and the light emitting surface 14c that can refract or scatter part of the light emitted from the light source 12. did.
 光源12としてよく用いられるLEDは、一般的にランバーシアン配光を有し、70°または80°におよぶ角度に至るまで光を出射する。このようなLEDを導光体14の第1端面14aの近傍に配置した場合、一部の光が導光体14の長手方向に伝搬せずに直接に光出射面14cに到達し出射する。このように光路を辿る光線が光源12の近傍に特に多く生じることによってその周辺の光量が大きくなる。光入射面と光出射面14cとの間に界面を備えることにより、光出射面14cに直接に向かう光が、導光体14と空気との界面で光源から遠ざかる方向に反射、屈折、拡散などをすることにより、光源12近傍の光量が低減される。 An LED, which is often used as the light source 12, generally has a Lambertian light distribution and emits light up to an angle of 70° or 80°. When such an LED is arranged near the first end face 14a of the light guide 14, part of the light does not propagate in the longitudinal direction of the light guide 14 and directly reaches the light exit surface 14c to be emitted. Since a large number of light rays following the optical path are generated in the vicinity of the light source 12, the amount of light in the vicinity thereof increases. By providing an interface between the light incident surface and the light emitting surface 14c, the light directly directed to the light emitting surface 14c is reflected, refracted, or diffused in a direction away from the light source at the interface between the light guide 14 and the air. , the amount of light in the vicinity of the light source 12 is reduced.
 図8~図12は、光源12と界面を含む導光体14の一部の概略断面図であり、いずれも光源12は導光体の端部に配置され、導光体の第1端面14aを光入射面としたものである。 8-12 are schematic cross-sectional views of a portion of a light guide 14 including a light source 12 and an interface, in which the light source 12 is positioned at the end of the light guide and the first end face 14a of the light guide. is the light incident surface.
 図8は、第1端面14aからZ方向に凹部16を設けることにより、凹部16の光反射面に近いほうの面(下側面)を第1界面16aとし、凹部16のZ方向に奥まった面(底面)を第2界面16bとし、凹部16の光出射面に近いほうの面(上側面)を第3界面16cとした導光体14を示す。光源12から出射して光出射面14cに向かう光の光路上に2または3の界面が生じることによって、光線を光源12から遠ざかる方向に屈折させて、光源12に近い光出射面14cに向かう光線を低減し、それによって光源12に近い光出射面14cから出射される光量の低減を図ることができる。 In FIG. 8, by providing the concave portion 16 in the Z direction from the first end face 14a, the surface (lower side surface) of the concave portion 16 closer to the light reflecting surface is used as the first interface 16a, and the surface of the concave portion 16 recessed in the Z direction. The light guide 14 is shown with the (bottom surface) as the second interface 16b and the surface (upper surface) closer to the light exit surface of the recess 16 as the third interface 16c. The light rays emitted from the light source 12 are refracted in a direction away from the light source 12 by the occurrence of two or three interfaces on the optical path of the light that is emitted from the light source 12 and directed to the light emission surface 14c, so that the light rays are directed to the light emission surface 14c that is closer to the light source 12. can be reduced, thereby reducing the amount of light emitted from the light emitting surface 14c near the light source 12. FIG.
 図9および図10は、第1端面14aからZ方向に所謂くさび型の凹部16を備えることにより、複数の界面が形成された導光体14を示す。図9および図10に示す導光体14においては、特に斜めに傾斜した界面16dは、光源12から光出射面14cに向かう光線との関係で臨界角またはそれに近い角度を有しやすく、界面で屈折する光線を増加させることが可能であり、より効果的に光源12に近い光出射面14cから出射される光量の低減を図ることができる。 9 and 10 show a light guide 14 in which a plurality of interfaces are formed by providing a so-called wedge-shaped recess 16 in the Z direction from the first end surface 14a. In the light guide 14 shown in FIGS. 9 and 10, the obliquely inclined interface 16d tends to have a critical angle or an angle close to it in relation to the light beam directed from the light source 12 toward the light exit surface 14c. It is possible to increase the number of refracted light rays, and to more effectively reduce the amount of light emitted from the light emission surface 14c closer to the light source 12 .
 図11は、凹部16をX方向に複数配列した導光体14を示す。図11に示す導光体14によれば、光源12から出射して光出射面14cに向かう光を屈折させる界面を増加させることが可能であり、効果的に光源12に近い光出射面14cから出射される光量の低減を図ることができる。 FIG. 11 shows a light guide 14 in which a plurality of concave portions 16 are arranged in the X direction. According to the light guide 14 shown in FIG. 11, it is possible to increase the number of interfaces that refract the light emitted from the light source 12 toward the light exit surface 14c. It is possible to reduce the amount of emitted light.
 図12は、光源12近傍の一部分に傾斜面16eが形成された導光体14を示す。図12に示す導光体14によれば、図9および図10に示すものと同様に、光源12から光出射面14cに向かう光線と傾斜面16eとの関係で臨界角またはそれに近い角度を有しやすく、界面で屈折する光線を増加させることが可能であり、効果的に光源12に近い光出射面14cから出射される光量の低減を図ることができる。 FIG. 12 shows a light guide 14 having an inclined surface 16e formed in a portion near the light source 12. FIG. According to the light guide 14 shown in FIG. 12, similarly to the one shown in FIG. 9 and FIG. It is possible to increase the number of light rays refracted at the interface, and it is possible to effectively reduce the amount of light emitted from the light emitting surface 14c near the light source 12. FIG.
 複数の界面を含む凹部16は、X方向に平行(Z方向に垂直)な断面が三角形、四角形などの多角形であってもよく、くさび形、階段状の形であってもよい。また凹部16を構成する界面は摺り状の面であってもよい。 The recessed portion 16 including a plurality of interfaces may have a cross section parallel to the X direction (perpendicular to the Z direction) of a polygonal shape such as a triangle or quadrilateral, or may be wedge-shaped or step-shaped. Further, the interface forming the concave portion 16 may be a sliding surface.
 第1端面14aから導光体14の長手方向に形成された凹部16に黒色や白色などの樹脂が充填されてもよいし、または凹部16を構成する面に黒色や白色の塗膜が形成されてもよい。 A concave portion 16 formed in the longitudinal direction of the light guide 14 from the first end surface 14a may be filled with a black or white resin, or a black or white coating film may be formed on the surface forming the concave portion 16. may
 図13(a)~図13(d)は、本発明の別の実施形態に係る照明装置30を説明するための概略図である。図13(a)は、照明装置30の概略左側面図である。図13(b)は、照明装置30の概略平面図である。図13(c)は、図13(a)に示す照明装置30の概略B-B断面図である。図13(d)は、照明装置30の概略下面図である。図14は、照明装置30の光源12の近傍の概略拡大断面図である。 13(a) to 13(d) are schematic diagrams for explaining a lighting device 30 according to another embodiment of the present invention. FIG. 13(a) is a schematic left side view of the illumination device 30. FIG. FIG. 13B is a schematic plan view of the illumination device 30. FIG. FIG. 13(c) is a schematic BB cross-sectional view of the illumination device 30 shown in FIG. 13(a). FIG. 13D is a schematic bottom view of the illumination device 30. FIG. FIG. 14 is a schematic enlarged cross-sectional view of the vicinity of the light source 12 of the illumination device 30. As shown in FIG.
 本実施形態においては、導光体14の第1端面14aにキャビティ32が形成されている。導光体14の端面または端面近傍に光源12を配する場合、導光体14の端面に光源収納用のキャビティ32を設けることが有利な場合がある。キャビティ32にLED素子などの光源12を収納したとき、光源12を外乱などから保護する目的で光源12近傍の領域を封止することが容易になるからである。 In this embodiment, a cavity 32 is formed in the first end face 14a of the light guide 14. As shown in FIG. If the light source 12 is arranged at or near the end face of the light guide 14, it may be advantageous to provide the end face of the light guide 14 with a cavity 32 for housing the light source. This is because when the light source 12 such as an LED element is housed in the cavity 32, it becomes easy to seal the area near the light source 12 for the purpose of protecting the light source 12 from disturbance.
 本実施形態においても、複数の界面(第1界面16a、第2界面16b、第3界面16c)を含む凹部16が、導光体14の第1端面14aから導光体14の長手方向に、且つ、キャビティ32の底面32aをオーバーハングして形成されている。光源12の、キャビティ32の底面32aに対向する面が、光源12の出射面である。また、本実施形態に係る照明装置30においては、導光体14は、第1端面14aの近傍にZ方向に直角な面を含むフランジ34を有していることに留意する。本実施形態のように、導光体14の第1端面14aに光源収納用のキャビティ32を設けた場合においても、その作用や効果はキャビティ32を設けない態様(図1参照)と同様である。本実施形態においては、光源12からZ方向を中心に光が出射するとき、キャビティ32の底面32aが光入射面となることは容易に理解できる。光源12の光の出射面と(導光体の)光入射面との間隔は0~5mmであってもよく、0~3mm(ただし0mmは除く)であってもよい。 Also in this embodiment, the recess 16 including a plurality of interfaces (first interface 16a, second interface 16b, third interface 16c) extends from the first end surface 14a of the light guide 14 in the longitudinal direction of the light guide 14, Moreover, it is formed so as to overhang the bottom surface 32a of the cavity 32 . A surface of the light source 12 that faces the bottom surface 32 a of the cavity 32 is an emission surface of the light source 12 . Also, in the illumination device 30 according to this embodiment, it should be noted that the light guide body 14 has a flange 34 including a plane perpendicular to the Z direction in the vicinity of the first end surface 14a. Even when the cavity 32 for housing the light source is provided in the first end surface 14a of the light guide 14 as in the present embodiment, the action and effect are the same as those of the mode in which the cavity 32 is not provided (see FIG. 1). . It can be easily understood that in this embodiment, when light is emitted from the light source 12 centering on the Z direction, the bottom surface 32a of the cavity 32 serves as the light incident surface. The distance between the light exit surface of the light source 12 and the light entrance surface (of the light guide) may be 0 to 5 mm, or may be 0 to 3 mm (excluding 0 mm).
 図15~図18は、キャビティに収納される光源12と、界面を含む凹部とを備える導光体14の一部の概略断面図である。 15 to 18 are schematic cross-sectional views of part of a light guide 14 comprising a light source 12 housed in a cavity and a recess containing an interface.
 図15は、第1端面14aからZ方向に所謂くさび型の凹部16を備えることにより、複数の界面が形成された導光体14を示す。図15に示す導光体14においては、特に斜めに傾斜した界面16dは、光源12から光出射面14cに向かう光線との関係で臨界角またはそれに近い角度を有しやすく、界面で屈折する光線を増加させることが可能であり、より効果的に光源12近傍の光量の低減を図ることができる。 FIG. 15 shows a light guide 14 in which a plurality of interfaces are formed by providing a so-called wedge-shaped recess 16 in the Z direction from the first end surface 14a. In the light guide 14 shown in FIG. 15, the obliquely inclined interface 16d tends to have a critical angle or an angle close to the critical angle in relation to the light beam directed from the light source 12 toward the light exit surface 14c, and the light beam refracted at the interface can be increased, and the amount of light in the vicinity of the light source 12 can be reduced more effectively.
 図16は、凹部16をX方向に複数配列した導光体14を示す。図16に示す導光体14によれば、光源12から出射して光出射面14cに向かう光を屈折させる界面を増加させることが可能であり、効果的に光源12近傍の光量の低減を図ることができる。 FIG. 16 shows a light guide 14 in which a plurality of concave portions 16 are arranged in the X direction. According to the light guide 14 shown in FIG. 16, it is possible to increase the interface that refracts the light emitted from the light source 12 and directed to the light emitting surface 14c, thereby effectively reducing the amount of light in the vicinity of the light source 12. be able to.
 図17および図18は、キャビティ32の底面32a(光入射面)からZ方向に凹部16が延長されて設けられている導光体14を示す。これらのような界面を含む凹部16も、同様に光源12近傍の光量の低減を図ることができる。 17 and 18 show the light guide 14 provided with the concave portion 16 extending from the bottom surface 32a (light incident surface) of the cavity 32 in the Z direction. Concave portions 16 including interfaces such as these can similarly reduce the amount of light in the vicinity of light source 12 .
 次に、光源12について詳細に説明する。光源12は、光源12から出射した光が棒状の導光体14の端面(または、光源収納用のキャビティ32がある場合はその底面32a)を光入射面として導光体に入射するように、導光体14の端面近傍に配置される。光源12は、導光体14の一方の端面(例えば第1端面14a)もしくはその近傍、または導光体14の両端面(第1端面14aおよび第2端面14d)もしくはその近傍に配置されてよい。 Next, the light source 12 will be described in detail. The light source 12 is arranged so that the light emitted from the light source 12 enters the light guide with the end surface of the rod-shaped light guide 14 (or the bottom surface 32a of the cavity 32 for housing the light source, if any) as the light incident surface. It is arranged near the end face of the light guide 14 . The light source 12 may be arranged on or near one end surface (e.g., first end surface 14a) of the light guide 14, or on or near both end surfaces (first end surface 14a and second end surface 14d) of the light guide 14. .
 光源12としては発光ダイオード(LED)やフィラメントなどに通電して発光させる光源(電球など)を使用することができる。特にLEDは小型、小電力で光量が大きく、様々な色の再現が可能であり特に有効である。光源12としてLEDを採用した場合、例えばR(赤色)、G(緑色)、B(青色)に属する波長の光を出射する少なくとも3個のチップを含む複数のLEDであってもよく、この場合、波長と強度を適切にチューニングすることにより、視認上白色の光を出射することができ、イメージセンサや読み取り装置用の光源として好ましい。 As the light source 12, a light-emitting diode (LED) or a light source (such as a light bulb) that emits light by energizing a filament or the like can be used. In particular, LEDs are particularly effective because they are small, have a low power consumption, emit a large amount of light, and are capable of reproducing various colors. When an LED is employed as the light source 12, for example, it may be a plurality of LEDs including at least three chips that emit light of wavelengths belonging to R (red), G (green), and B (blue). By appropriately tuning the wavelength and intensity, it is possible to emit visually white light, which is suitable as a light source for image sensors and reading devices.
 図19(a)および図19(b)は、3個のLEDチップ40がケース42内に収容された光源12の一例を示す。図19(a)は、光源12の概略正面図であり、図19(b)は、図19(a)に示す光源12の概略C-C断面図である。またLEDチップ40が配設されるケース42の内側には透明樹脂が充填されていてもよい。このようなLEDからなる光源12は、光出射面42aをケース42の端面に有するものと見なせる。 FIGS. 19(a) and 19(b) show an example of the light source 12 in which three LED chips 40 are accommodated within the case 42. FIG. FIG. 19(a) is a schematic front view of the light source 12, and FIG. 19(b) is a schematic CC cross-sectional view of the light source 12 shown in FIG. 19(a). Further, the inside of the case 42 in which the LED chip 40 is arranged may be filled with a transparent resin. The light source 12 made up of such an LED can be regarded as having a light exit surface 42 a on the end face of the case 42 .
 このように、RGBの三色の光をそれぞれ発光するLEDチップを一体化させた白色LEDを光源12として用いてもよい。またRGBのLEDチップのうち一つまたは二つのチップを不活性(発光させない)とすることによって、白色以外の三色のうちのいずれかの色、またはこれらを混色して得られる色の光を出射することもできる。また、RGBの各LEDチップは光強度が一定ではないため、その強弱を考慮して、導光体との相対的な位置や位相などの配置パラメータを照明装置に求められる性能に応じて最適化してもよい。 As described above, a white LED in which LED chips that emit light of three colors of RGB are integrated may be used as the light source 12 . In addition, by making one or two of the RGB LED chips inactive (do not emit light), one of the three colors other than white or a color obtained by mixing these colors can be emitted. It can also be emitted. In addition, since the light intensity of each RGB LED chip is not constant, considering the strength and weakness, we optimized the arrangement parameters such as the relative position and phase with the light guide according to the performance required of the lighting device. may
 さらに、白色を発光するLEDとしては、青色LEDと黄色蛍光体を含む樹脂を含むシングルチップタイプのLED、または、青色LEDと赤色・緑色蛍光体を含む樹脂を含むシングルチップタイプのLEDなどを用いることができる。 Furthermore, as the LED that emits white light, a single-chip type LED containing a blue LED and a resin containing a yellow phosphor, or a single-chip type LED containing a blue LED and a resin containing red/green phosphors, or the like is used. be able to.
 また、LEDの実装タイプとしては、これらに限定されるものではないが、薄型であり表面実装が可能な、基板タイプLEDやPLCC(Plastic Leaded Chip Carrier)タイプLEDなどを用いることができる。 In addition, although the mounting type of the LED is not limited to these, a substrate type LED or PLCC (Plastic Leaded Chip Carrier) type LED, which is thin and can be surface mounted, can be used.
 これらのLEDなどからなる光源12は、駆動するための回路が形成された基板(回路基板)上に形成されたものであってもよい。回路基板はリジッドな基板やフレキシブルな基板であってもよい。リジッドな基板は剛性があるので強度を求められる構成に好適である。フレキシブルな基板は薄型で安価であり、剛性の低い点は導光体に固着させて一体化させることにより解消される場合がある。基板の材料は、フェノール系樹脂、エポキシ系樹脂、ポリイミド樹脂、フッ素系樹脂、PRO樹脂、ポリイミドフィルム、PETフィルムなどであり、このほかに紙やガラス繊維、布などを含む複合基材から形成されてもよい。 The light source 12 made up of these LEDs and the like may be formed on a substrate (circuit board) on which a circuit for driving is formed. The circuit board may be a rigid board or a flexible board. A rigid substrate is suitable for a structure that requires strength because it is rigid. A flexible substrate is thin and inexpensive, and its low rigidity may be overcome by fixing and integrating it with the light guide. Substrate materials include phenolic resins, epoxy resins, polyimide resins, fluorine resins, PRO resins, polyimide films, PET films, etc. In addition, composite substrates containing paper, glass fiber, cloth, etc. may
 図20(a)および図20(b)は、光源12を実装した薄型の回路基板51と、位置決めピン52を備えるフランジ34付きの導光体14と備える照明装置50を示す。図20(a)は、照明装置50の概略左側面図である。図20(b)は、図20(a)に示す照明装置50の概略D-D断面図である。照明装置50においては、フランジ34に位置決めピン52が突設されている。また、回路基板51には位置決めピン52が挿通される孔53が形成されており、孔53に対して一定の位置に光源12が予め配置されている。このような位置決めピン52と孔53を用いることにより、光源12を導光体14に対して正確に位置決めすることができる。 FIGS. 20(a) and 20(b) show a lighting device 50 comprising a thin circuit board 51 on which a light source 12 is mounted, and a light guide 14 with a flange 34 having positioning pins 52. FIG. FIG. 20(a) is a schematic left side view of the illumination device 50. FIG. FIG. 20(b) is a schematic DD sectional view of the illumination device 50 shown in FIG. 20(a). In the illumination device 50 , a positioning pin 52 protrudes from the flange 34 . A hole 53 through which the positioning pin 52 is inserted is formed in the circuit board 51 , and the light source 12 is arranged in advance at a fixed position with respect to the hole 53 . By using the positioning pin 52 and the hole 53 as described above, the light source 12 can be accurately positioned with respect to the light guide 14 .
 回路基板51は、光源駆動用の電力供給用の電極54を備えていてもよい。さらに回路基板51がフレキシブルであった場合、コンタクトイメージセンサを構成するハウジングへの取り付けや、その他の回路基板への接続や固定、パッケージングが容易になる。 The circuit board 51 may include an electrode 54 for power supply for driving the light source. Furthermore, if the circuit board 51 is flexible, it becomes easy to attach it to a housing that constitutes the contact image sensor, to connect and fix it to other circuit boards, and to package it.
 以下、本発明の具体的な実施例について説明する。 Specific examples of the present invention will be described below.
<第1実施例>
 光入射面と光出射面14cとの間に少なくとも一つの界面を有する導光体14を用いることによって、照明装置のZ方向(導光体14の長手方向)の光量分布のばらつきがどのように改善するかについてシミュレーションで求めた。
<First embodiment>
By using the light guide 14 having at least one interface between the light incident surface and the light exit surface 14c, how does the variation in the light amount distribution in the Z direction (longitudinal direction of the light guide 14) of the illumination device change? A simulation was conducted to see if there would be any improvement.
 図21(a)~図21(d)は、シミュレーションに用いた第1実施例に係る照明装置60を説明するための概略図である。図21(a)は、第1実施例に係る照明装置60の概略左側面図である。図21(b)は、第1実施例に係る照明装置60の概略平面図である。図21(c)は、図21(a)に示す第1実施例に係る照明装置60の概略E-E断面図である。図21(d)は、第1実施例に係る照明装置60の概略下面図である。 FIGS. 21(a) to 21(d) are schematic diagrams for explaining the illumination device 60 according to the first example used in the simulation. FIG. 21(a) is a schematic left side view of the lighting device 60 according to the first embodiment. FIG. 21(b) is a schematic plan view of the illumination device 60 according to the first example. FIG. 21(c) is a schematic EE cross-sectional view of the lighting device 60 according to the first embodiment shown in FIG. 21(a). FIG. 21(d) is a schematic bottom view of the illumination device 60 according to the first example.
 導光体14は、Z方向に延びる四角柱状であり、X-Y面に平行な端面と、端面に直角な四面の側面を備えるものを想定した。Y-Z面に平行な上側面を光出射面14cとし、それに対向する下側面を光反射面14bとした。導光体14の材質は、使用される波長における屈折率が1.49であり吸収がないものとした。照明装置60の周辺は空気でありその屈折率は1とした。導光体14の端面はX-Y平面に平行であり、wg=hg=3.0mmとし、全長Lg=227.5mmとし、光出射面14cにおける有効長さLef=225.5mmとした。 It is assumed that the light guide 14 has a quadrangular prism shape extending in the Z direction and has an end face parallel to the XY plane and four side faces perpendicular to the end face. The upper side surface parallel to the YZ plane was used as the light emitting surface 14c, and the opposite lower side surface was used as the light reflecting surface 14b. The material of the light guide 14 has a refractive index of 1.49 at the wavelength used and no absorption. The air around the illumination device 60 has a refractive index of 1. The end face of the light guide 14 is parallel to the XY plane, wg=hg=3.0 mm, the total length Lg=227.5 mm, and the effective length Lef at the light exit surface 14c=225.5 mm.
 導光体14は、図21に示すように、第1端面14aにおける光源12が配置される部位と光出射面14cとの間に凹部16を備える。凹部16は、X方向に直角であり相互に対向する二個の界面、Z方向に直角な一個の界面、Y方向に直角であり相互に対向する二個の界面を有する略直方体形状である。凹部16は、X方向の寸法hc=0.5mmとし、Y方向の寸法wc=2.4mmとした。dcは導光体14の光入射面(すなわち第1端面14a)からの凹部16のZ方向の最大の距離(深さまたはオーバーハング量)であり、dcの値を後述のパラメータとして変化させてシミュレーションを行った。 As shown in FIG. 21, the light guide 14 has a concave portion 16 between the portion of the first end surface 14a where the light source 12 is arranged and the light exit surface 14c. The concave portion 16 has a substantially rectangular parallelepiped shape having two interfaces perpendicular to the X direction and facing each other, one interface perpendicular to the Z direction, and two interfaces perpendicular to the Y direction and facing each other. The concave portion 16 has a dimension hc=0.5 mm in the X direction and a dimension wc=2.4 mm in the Y direction. dc is the maximum distance (depth or overhang amount) in the Z direction of the concave portion 16 from the light incident surface (that is, the first end surface 14a) of the light guide 14, and the value of dc is changed as a parameter described later. I did a simulation.
 導光体14の光反射面14bは、Z方向に直角な断面が三角状の凹状の溝62が、Z方向に複数配列したものとした。大まかには、光源12に近い領域ではその配列ピッチが大きく、光源12から遠い領域ではその配列ピッチが小さいものとした。光反射面14b以外の側面(光出射面14cを含む)は平面である。 The light reflecting surface 14b of the light guide 14 has a plurality of concave grooves 62 having a triangular cross section perpendicular to the Z direction arranged in the Z direction. Roughly speaking, the arrangement pitch is large in the area near the light source 12 and the arrangement pitch is small in the area far from the light source 12 . The side surfaces (including the light exit surface 14c) other than the light reflection surface 14b are flat.
 導光体14のすべての面では光線が到達した点において厳にスネルの法則が成り立つものとし、散乱や吸収なども実質上ないものとした。 On all surfaces of the light guide 14, it was assumed that Snell's law was strictly satisfied at the point where the light rays reached, and that there was substantially no scattering or absorption.
 光源12は、LEDを想定し、光源12の光出射面はX-Y平面に平行であり、ws=hs=1.5mmとして、一方向に軸対称なランバーシアン配光分布を有する光を出射するものとした。配光が対称となる軸を光軸としたとき、光軸がZ方向に平行となるように、かつ、光軸が導光体14の中央部を通る中心軸に一致するように光源12を導光体14の第1端面14aに配置した。 The light source 12 is assumed to be an LED, the light emission surface of the light source 12 is parallel to the XY plane, ws = hs = 1.5 mm, and emits light having a Lambertian light distribution axially symmetric in one direction. shall be. The light source 12 is arranged so that the optical axis is parallel to the Z direction and coincides with the central axis passing through the central portion of the light guide 14 when the axis along which the light distribution is symmetrical is taken as the optical axis. It is arranged on the first end face 14 a of the light guide 14 .
 シミュレーションは、ラムダリサーチコーポレーション社の照明設計、解析、最適化ソフトウエアであるTracePro(Ver.20.4)を用いた。光源12からは波長が550nmの、上記配光分布を有する総数1×10本の光線を出射させた。さらに、導光体の光出射面14cからX方向に4.78mm離間した位置における単位面積に入射する光線の本数をカウントして放射照度とした。これらのモデルは、凹部(界面)の有効性を示すためのものであり、実機に搭載する場合には導光体の形状や光反射面の態様なども含めて仕様に応じて最適化されるべきものであることに注意する。 The simulation used TracePro (Ver. 20.4), lighting design, analysis and optimization software from Lambda Research Corporation. The light source 12 emitted a total of 1×10 6 light beams having a wavelength of 550 nm and having the above light distribution. Further, the number of light rays incident on a unit area at a position spaced 4.78 mm in the X direction from the light exit surface 14c of the light guide was counted to obtain the irradiance. These models are intended to show the effectiveness of the recess (interface), and are optimized according to the specifications, including the shape of the light guide and the mode of the light reflecting surface, when mounted on the actual equipment. Note that it should
 第1実施例に係る照明装置60の光量分布を光出射面14cに沿った放射照度の分布として評価した。図22および図23は、横軸は導光体14の有効長さLefの光源側の下限を0としてZ方向の距離として、ある位置における放射照度を有効長さ全体の放射照度の平均値で割った放射照度比をプロットしたものである。本実施形態においては、放射照度比が有効長さ全体にわたって10以下となることが好ましく、6以下となることがより好ましく、4以下となることがさらに好ましい。図23は、図22のL=0~25mmの拡大図である。図22および図23は、凹部16(界面)のない比較例の放射照度比と、dc=0.60mmのときの放射照度比と、dc=1.30mmのときの放射照度比と、dc=2.00mmのときの放射照度比を示す。 The light amount distribution of the illumination device 60 according to the first embodiment was evaluated as the irradiance distribution along the light exit surface 14c. 22 and 23, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit of the effective length Lef of the light guide 14 on the light source side being 0 and the distance in the Z direction. The divided irradiance ratio is plotted. In this embodiment, the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less. FIG. 23 is an enlarged view of L=0 to 25 mm in FIG. 22 and 23 show the irradiance ratio of the comparative example without the recess 16 (interface), the irradiance ratio when dc = 0.60 mm, the irradiance ratio when dc = 1.30 mm, and dc = The irradiance ratio at 2.00 mm is shown.
 図22および図23から分かるように、各オーバーハング量(dc)ともに、放射照度比はZの値が約12.5mmを超える範囲では略一定である。一方で、Zの値が12.5mm以下の範囲においては、界面を伴う凹部16のないものやdcが過剰に大きいものについては、放射照度比が大きくなるが、dc=0.6mmのものは放射照度比が6以下となり良好な放射照度分布(光量分布)を有する照明特性が期待できる。オーバーハング量(dc)が適正な範囲であるとき、凹部16のZ方向に奥まった底面(第2界面16b)によって、光線の一部が光出射面14cから遠ざかる方向に屈折し、光源12近傍の光出射面に達する放射照度の増加が抑制されるものと推測される。光入射面に対する凹部のオーバーハング量(深さ)dcは、0.1mmであり、0.3mmが好ましく、0.4mmがさらに好ましい。またdcは、1.0mm以下であり、0.9mm以下が好ましく、0.8mm以下がさらに好ましい。 As can be seen from FIGS. 22 and 23, for each overhang amount (dc), the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm. On the other hand, in the range where the value of Z is 12.5 mm or less, the irradiance ratio is large for those without the concave portion 16 with the interface and for those with excessively large dc, but for those with dc = 0.6 mm The irradiance ratio becomes 6 or less, and lighting characteristics having a good irradiance distribution (light amount distribution) can be expected. When the overhang amount (dc) is within the proper range, part of the light ray is refracted in a direction away from the light exit surface 14c by the bottom surface (second interface 16b) of the recess 16 recessed in the Z direction, and the light ray near the light source 12 is refracted. It is presumed that the increase in irradiance reaching the light exit surface of is suppressed. An overhang amount (depth) dc of the concave portion with respect to the light incident surface is 0.1 mm, preferably 0.3 mm, and more preferably 0.4 mm. Also, dc is 1.0 mm or less, preferably 0.9 mm or less, and more preferably 0.8 mm or less.
<第2実施例>
 図24(a)および図24(b)は、シミュレーションに用いた第2実施例に係る照明装置70を説明するための概略図である。図24(a)は、第2実施例に係る照明装置70の概略左側面図である。図24(b)は、図24(a)に示す第2実施例に係る照明装置70の概略F-F断面図である。
<Second embodiment>
24(a) and 24(b) are schematic diagrams for explaining the illumination device 70 according to the second example used in the simulation. FIG. 24(a) is a schematic left side view of a lighting device 70 according to the second embodiment. FIG. 24(b) is a schematic FF sectional view of the illumination device 70 according to the second embodiment shown in FIG. 24(a).
 第2実施例に係る照明装置70は、導光体14の凹部16のZ方向先端部がくさび形になっている点が第1実施例に係る照明装置60と異なるが、その他の態様、寸法などは、シミュレーションの条件や方法も含めて第1実施例に係るものと同一である。 The illuminating device 70 according to the second embodiment differs from the illuminating device 60 according to the first embodiment in that the tip of the concave portion 16 of the light guide 14 in the Z direction is wedge-shaped. etc., including the simulation conditions and method, are the same as those in the first embodiment.
 第2実施例に係る照明装置70の光量分布を光出射面14cに沿った放射照度の分布として評価した。図25および図26は、横軸は導光体14の有効長さLefの光源側の下限を0としてZ方向の距離として、ある位置における放射照度を有効長さ全体の放射照度の平均値で割った放射照度比をプロットしたものである。本実施形態においては、放射照度比が有効長さ全体にわたって10以下となることが好ましく、6以下となることがより好ましく、4以下となることがさらに好ましい。図26は、図25のL=0~25mmの拡大図である。図25および図26は、凹部(界面)のない比較例の放射照度比と、凹部のZ方向のオーバーハング量をdc、凹部先端のくさび形状の先端角(Y-Z平面と斜面とのなす角)をθcとしたときの、(dc,θc)=(2.00mm,30°)、(1.50mm,30°)、(1.50mm,19°)のそれぞれの場合の放射照度比を示す。 The light quantity distribution of the illumination device 70 according to the second example was evaluated as the irradiance distribution along the light exit surface 14c. 25 and 26, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit on the light source side of the effective length Lef of the light guide 14 being 0 and the distance in the Z direction. The divided irradiance ratio is plotted. In this embodiment, the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less. FIG. 26 is an enlarged view of L=0 to 25 mm in FIG. 25 and 26 show the irradiance ratio of a comparative example without a concave portion (interface), the overhang amount in the Z direction of the concave portion as dc, and the wedge-shaped tip angle at the tip of the concave portion (between the YZ plane and the slope). When the angle) is θc, the irradiance ratio in each case of (dc, θc) = (2.00 mm, 30°), (1.50 mm, 30°), (1.50 mm, 19°) is show.
 図25および図26から分かるように、各オーバーハング量(dc)ともに、相対的な放射照度比はZの値が約12.5mmを超える範囲では略一定である。一方で、Zの値が12.5mm以下の範囲においては、界面を伴う凹部16のないものについては、光強度が大きくなるが、オーバーハング量(dc)が1.50mmまたは先端角(θc)が30°のとき、さらにそれより小さい角度(19°)のときは、放射照度比の増大が抑制されて良好な放射照度分布(光量分布)を有する照明特性が期待できる。第2実施例では、凹部16のZ方向に奥まった先端部の形状がくさび型であるとき、Z方向に対して斜めになった界面に対して大きい入射角で光線が到達するため、当該界面による反射率が大きくなり、光源12近傍において光出射面14cに直接的に向かう光線に関連する放射照度が減少する効果が加わるものと推測される。θcは26°以下であり、22°以下が好ましい。またθcは15°以上であり、16°以上が好ましい。 As can be seen from FIGS. 25 and 26, for each overhang amount (dc), the relative irradiance ratio is substantially constant in the range where the value of Z exceeds approximately 12.5 mm. On the other hand, in the range where the value of Z is 12.5 mm or less, the light intensity increases for those without the concave portion 16 with the interface, but the overhang amount (dc) is 1.50 mm or the tip angle (θc) is 30°, and when it is a smaller angle (19°), an increase in the irradiance ratio is suppressed, and illumination characteristics having a good irradiance distribution (light amount distribution) can be expected. In the second embodiment, when the tip of the concave portion 16 recessed in the Z direction has a wedge shape, the light ray reaches the interface oblique to the Z direction at a large incident angle. It is presumed that the reflectance due to the light source 12 increases, and the irradiance associated with the light rays directly directed to the light exit surface 14c near the light source 12 decreases. θc is 26° or less, preferably 22° or less. θc is 15° or more, preferably 16° or more.
<第3実施例>
 図27(a)~図27(d)は、シミュレーションに用いた第3実施例に係る照明装置80を説明するための概略図である。図27(a)は、第3実施例に係る照明装置80の概略左側面図である。図27(b)は、第3実施例に係る照明装置80の概略平面図である。図27(c)は、図27(a)に示す第3実施例に係る照明装置80の概略G-G断面図である。図27(d)は、第3実施例に係る照明装置80の概略下面図である。
<Third embodiment>
27(a) to 27(d) are schematic diagrams for explaining the illumination device 80 according to the third example used in the simulation. FIG. 27(a) is a schematic left side view of a lighting device 80 according to the third embodiment. FIG. 27(b) is a schematic plan view of a lighting device 80 according to the third embodiment. FIG. 27(c) is a schematic GG sectional view of the illumination device 80 according to the third embodiment shown in FIG. 27(a). FIG. 27(d) is a schematic bottom view of the lighting device 80 according to the third embodiment.
 第3実施例に係る照明装置80は、導光体14の第1端面14a近傍にフランジ34を有する。X-Y平面に平行なフランジ面の寸法wf=hf=3.50mmであり、フランジのZ方向の厚みtf=2.90mmである。さらに第3実施例に係る照明装置80は、導光体14の第1端面14aにおいてキャビティ32を有し、該キャビティ32内に光源12の光出射面を収納する。光源12の光出射面と導光体14の光入射面(すなわちキャビティ32の底面)との間隔は、0.10mmとした。 The illumination device 80 according to the third embodiment has a flange 34 near the first end face 14a of the light guide 14. As shown in FIG. The dimension of the flange face parallel to the XY plane is wf=hf=3.50 mm, and the thickness of the flange in the Z direction is tf=2.90 mm. Furthermore, the illumination device 80 according to the third embodiment has a cavity 32 at the first end face 14a of the light guide 14, and the light exit surface of the light source 12 is accommodated in the cavity 32. As shown in FIG. The distance between the light exit surface of the light source 12 and the light entrance surface of the light guide 14 (that is, the bottom surface of the cavity 32) was set to 0.10 mm.
 第3実施例に係る照明装置80の光量分布を光出射面14cに沿った放射照度の分布として評価した。図28および図29は、横軸は導光体14の有効長さLefの光源側の下限を0としてZ方向の距離として、ある位置における単位面積あたりの放射照度を有効長さ全体の放射照度の平均値で割った放射照度比をプロットしたものである。本実施形態においては、放射照度比が有効長さ全体にわたって10以下となることが好ましく、6以下となることがより好ましく、4以下となることがさらに好ましい。図29は、図28のL=0~25mmの拡大図である。図28および図29は、凹部(界面)のない比較例の放射照度比と、導光体14の光入射面からの凹部16のZ方向の最大の距離(深さまたはオーバーハング量)dcを2.00mm、1.30mm、0.60mmとしたときのそれぞれの放射照度比を示す。 The light amount distribution of the illumination device 80 according to the third example was evaluated as the irradiance distribution along the light exit surface 14c. 28 and 29, the horizontal axis represents the irradiance per unit area at a certain position as the distance in the Z direction with the lower limit of the effective length Lef of the light guide 14 on the light source side being 0, and the irradiance over the entire effective length. is a plot of the irradiance ratio divided by the mean of . In this embodiment, the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less. FIG. 29 is an enlarged view of L=0 to 25 mm in FIG. 28 and 29 show the irradiance ratio of a comparative example without a recess (interface) and the maximum distance (depth or overhang amount) dc in the Z direction of the recess 16 from the light incident surface of the light guide 14. The respective irradiance ratios are shown for 2.00 mm, 1.30 mm, and 0.60 mm.
 図28および図29から分かるように、各オーバーハング量(dc)ともに、放射照度比はZの値が約12.5mmを超える範囲では略一定である。一方で、Zの値が12.5mm以下の範囲においては、各例ともに放射照度比が6未満とある程度良好であり、オーバーハング量(dc)が1.30mm、2.00mmのものは最大の放射照度比でも1前後であり、さらに良好な放射照度分布(光量分布)を有する照明特性を備える。 As can be seen from FIGS. 28 and 29, for each overhang amount (dc), the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm. On the other hand, in the range where the value of Z is 12.5 mm or less, each example has an irradiance ratio of less than 6, which is relatively good, and the overhang amount (dc) of 1.30 mm and 2.00 mm is the maximum. The irradiance ratio is also around 1, and it has lighting characteristics with an even better irradiance distribution (light amount distribution).
 第3実施例では、フランジ34またはその近傍、特にフランジ34と導光体の長手方向に伸びる棒状の部分との境目付近から出射して有効な照明領域に到達する光線が存在するので、フランジのない第1実施例または第2実施例とは異なる傾向の結果となった。オーバーハング量が1.30mmや2.00mmのときは、Zが0から12.5mmに到達するまでの範囲においては、照明に供される放射照度が得られにくいときもあると推測されるが、例えば光出射面14cの有効長さの起点をZ方向に10mm程度シフトすることによって、光出射面14cの有効長さにわたって均一な放射照度分布(光量分布)を得られるものと推測される。 In the third embodiment, there is a light ray emitted from the flange 34 or its vicinity, particularly near the boundary between the flange 34 and the rod-shaped portion extending in the longitudinal direction of the light guide, and reaching the effective illumination area. A result of a tendency different from that of the first embodiment or the second embodiment, which does not have the When the overhang amount is 1.30 mm or 2.00 mm, it is presumed that it may be difficult to obtain the irradiance for illumination in the range of Z from 0 to 12.5 mm. For example, by shifting the starting point of the effective length of the light exit surface 14c by about 10 mm in the Z direction, it is presumed that a uniform irradiance distribution (light amount distribution) can be obtained over the effective length of the light exit surface 14c.
<第4実施例>
 図30(a)~図30(d)は、シミュレーションに用いた第4実施例に係る照明装置90を説明するための概略図である。図30(a)は、第4実施例に係る照明装置90の概略左側面図である。図30(b)は、第4実施例に係る照明装置90の概略平面図である。図30(c)は、図30(a)に示す第4実施例に係る照明装置90の概略H-H断面図である。図30(d)は、第4実施例に係る照明装置90の概略下面図である。
<Fourth embodiment>
FIGS. 30(a) to 30(d) are schematic diagrams for explaining the illumination device 90 according to the fourth example used in the simulation. FIG. 30(a) is a schematic left side view of a lighting device 90 according to the fourth embodiment. FIG. 30(b) is a schematic plan view of a lighting device 90 according to the fourth embodiment. FIG. 30(c) is a schematic HH sectional view of the illumination device 90 according to the fourth embodiment shown in FIG. 30(a). FIG. 30(d) is a schematic bottom view of the lighting device 90 according to the fourth embodiment.
 第4実施例に係る照明装置90は、凹部16のZ方向に奥まった先端部の形状がくさび形になっている点が第3実施例と異なるが、その他の点は第3実施例と同様である。 The illumination device 90 according to the fourth embodiment differs from the third embodiment in that the shape of the tip of the concave portion 16 recessed in the Z direction is wedge-shaped, but other points are the same as in the third embodiment. is.
 第4実施例に係る照明装置90の光量分布を光出射面14cに沿った放射照度の分布として評価した。図31および図32は、横軸は導光体14の有効長さLefの光源側の下限を0としてZ方向の距離として、ある位置における放射照度を有効長さ全体の放射照度の平均値で割った放射照度比をプロットしたものである。本実施形態においては、放射照度比が有効長さ全体にわたって10以下となることが好ましく、6以下となることがより好ましく、4以下となることがさらに好ましい。図32は、図31のL=0~25mmの拡大図である。図31および図32は、凹部(界面)のない比較例の放射照度比と、凹部のZ方向のオーバーハング量をdc、凹部先端のくさび形状の先端角(Y-Z平面と斜面とのなす角)をθcとしたときの、(dc,θc)=(2.00mm,30°)、(1.50mm,30°)、(1.50mm,19°)のそれぞれの場合の放射照度比を示す。 The light amount distribution of the illumination device 90 according to the fourth example was evaluated as the irradiance distribution along the light exit surface 14c. 31 and 32, the horizontal axis represents the irradiance at a certain position as the average value of the irradiance over the entire effective length, with the lower limit on the light source side of the effective length Lef of the light guide 14 being 0 and the distance in the Z direction. The divided irradiance ratio is plotted. In this embodiment, the irradiance ratio is preferably 10 or less over the entire effective length, more preferably 6 or less, and even more preferably 4 or less. FIG. 32 is an enlarged view of L=0 to 25 mm in FIG. 31 and 32 show the irradiance ratio of a comparative example without a concave portion (interface), the overhang amount in the Z direction of the concave portion as dc, and the tip angle of the wedge shape at the tip of the concave portion (between the YZ plane and the slope). When the angle) is θc, the irradiance ratio in each case of (dc, θc) = (2.00 mm, 30°), (1.50 mm, 30°), (1.50 mm, 19°) is show.
 図31および図32から分かるように、各オーバーハング量(dc)ともに、放射照度比はZの値が約12.5mmを超える範囲では略一定である。一方で、Zの値が12.5mm以下の範囲においては、界面を伴う凹部16のないものについては、放射照度比が大きくなるが、オーバーハング量(dc)が1.50mmまたは先端角(θc)が30°さらにそれより小さい角度(19°)のときは放射照度比の増大が抑制されて良好な放射照度分布(光量分布)を有する照明特性が期待できる。第4実施例では、凹部16のZ方向に奥まった先端部の形状がくさび型であるとき、Z方向に対して斜めになった界面に対して大きい入射角で光線が到達するため、当該界面による反射率が大きくなり、光源12近傍において光出射面14cに直接的に向かう光線に関連する放射照度が低減する効果が加わるものと推測される。 As can be seen from FIGS. 31 and 32, for each overhang amount (dc), the irradiance ratio is substantially constant within a range where the value of Z exceeds approximately 12.5 mm. On the other hand, in the range where the value of Z is 12.5 mm or less, the irradiance ratio is large for those without the concave portion 16 with the interface, but the overhang amount (dc) is 1.50 mm or the tip angle (θc ) is 30° or smaller (19°), the increase in the irradiance ratio is suppressed, and illumination characteristics having a good irradiance distribution (light amount distribution) can be expected. In the fourth embodiment, when the tip of the concave portion 16 recessed in the Z direction has a wedge shape, the light ray reaches the interface oblique to the Z direction at a large angle of incidence. It is presumed that the reflectance due to the light source 12 increases, and the effect of reducing the irradiance associated with the light rays directly directed to the light exit surface 14c in the vicinity of the light source 12 is presumed.
 図33は、本実施形態に係る照明装置10を用いた読取装置100を示す概略断面図である。読取装置100は、読み取り対象物(原稿)120を載置するコンタクト板102と、イメージセンサ(密着型イメージセンサ)104と、イメージセンサ104を走査する駆動機構116と、イメージセンサ104によって読み取られたデータを処理する画像処理部118とを備える。読取装置100は、駆動機構116を用いてコンタクト板102に平行な方向にイメージセンサ104を移動させることにより、原稿120の一部または全体を走査して原稿120の情報を読み取ることができる。 FIG. 33 is a schematic cross-sectional view showing a reading device 100 using the illumination device 10 according to this embodiment. The reading device 100 includes a contact plate 102 on which an object (original) 120 to be read is placed, an image sensor (contact image sensor) 104, a drive mechanism 116 for scanning the image sensor 104, and an image read by the image sensor 104. and an image processing unit 118 that processes data. The reading device 100 can scan part or all of the document 120 to read information on the document 120 by moving the image sensor 104 in a direction parallel to the contact plate 102 using the drive mechanism 116 .
 イメージセンサ104は、原稿120に対してライン状(紙面に垂直な方向に長い)に照明をする照明装置106と、原稿120からの反射光を正立等倍系で集光する正立等倍レンズアレイ108と、集光された光を受光するアレイ状に配列された受光素子110と、受光素子110を搭載する回路基板112と、照明装置106、正立等倍レンズアレイ108および受光素子110を所定の配置で収納および固定する筐体114とを備える。 The image sensor 104 includes an illumination device 106 that illuminates the document 120 in a line (long in the direction perpendicular to the paper surface), and an erecting equal-magnification system that collects reflected light from the document 120 with an erecting equal-magnification system. Lens array 108 , light receiving elements 110 arranged in an array for receiving the condensed light, circuit board 112 on which light receiving elements 110 are mounted, illumination device 106 , erect equal-magnification lens array 108 and light receiving elements 110 and a housing 114 that accommodates and fixes the in a predetermined arrangement.
 照明装置106としては、上述した実施形態のものを利用することができる。光量分布が一様化された上述の実施形態に係る照明装置を用いることにより、高画質な読取装置100を実現できる。 As the lighting device 106, the devices of the above-described embodiments can be used. By using the illumination device according to the above-described embodiment with the uniform light quantity distribution, the reading device 100 with high image quality can be realized.
 以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiment. It should be understood by those skilled in the art that this embodiment is merely an example, and that various modifications can be made to combinations of each component and each treatment process, and that such modifications are within the scope of the present invention. be.
 本発明は、導光体を用いた照明装置、イメージセンサおよび読取装置に利用できる。 The present invention can be used for lighting devices, image sensors, and reading devices that use light guides.
 12 光源、 10,30,50,60,70,80,90 照明装置、 14 導光体、 16 凹部、 32 キャビティ、 34 フランジ、 51 回路基板、 52 位置決めピン、 53 孔、 100 読取装置、 104 イメージセンサ、 110 受光素子、 106 照明装置、 108 正立等倍レンズアレイ、 120 原稿、 102 コンタクト板。 12 light source, 10, 30, 50, 60, 70, 80, 90 illumination device, 14 light guide, 16 recess, 32 cavity, 34 flange, 51 circuit board, 52 positioning pin, 53 hole, 100 reader, 104 image Sensor, 110 light receiving element, 106 illumination device, 108 erect equal-magnification lens array, 120 manuscript, 102 contact plate.

Claims (12)

  1.  柱状の導光体であって、
     当該導光体の端面またはその近傍に設けられた光入射面と、
     当該導光体の長手方向に沿った側面の少なくとも一部に設けられた光出射面と、
     前記光入射面と前記光出射面との間に設けられた少なくとも一つの界面と、
     を備えることを特徴とする導光体。
    A columnar light guide,
    a light incident surface provided at or near an end surface of the light guide;
    a light exit surface provided on at least part of a side surface along the longitudinal direction of the light guide;
    at least one interface provided between the light incident surface and the light exit surface;
    A light guide, comprising:
  2.  当該導光体の長手方向に沿った側面における、少なくとも前記光出射面と対向する部分に設けられた光反射面を備えることを特徴とする請求項1に記載の導光体。 2. The light guide according to claim 1, further comprising a light reflection surface provided on at least a portion of a side surface along the longitudinal direction of the light guide that faces the light exit surface.
  3.  前記端面から当該導光体の長手方向に凹んだ凹部を備え、
     前記凹部に含まれる面により前記界面が設けられることを特徴とする請求項1または2に記載の導光体。
    A recess recessed in the longitudinal direction of the light guide from the end face,
    3. The light guide according to claim 1, wherein the interface is provided by a surface included in the recess.
  4.  前記凹部は、当該導光体の長手方向に垂直な断面が多角形状を有することを特徴とする請求項3に記載の導光体。 The light guide according to claim 3, wherein the recess has a polygonal cross section perpendicular to the longitudinal direction of the light guide.
  5.  前記凹部は、当該導光体の長手方向に垂直な断面がくさび形状を有することを特徴とする請求項3に記載の導光体。 The light guide according to claim 3, wherein the recess has a wedge-shaped cross section perpendicular to the longitudinal direction of the light guide.
  6.  前記端面に複数の前記凹部を備えることを特徴とする請求項3から5のいずれかに記載の導光体。 The light guide according to any one of claims 3 to 5, wherein the end face is provided with a plurality of recesses.
  7.  前記端面に光源の少なくとも一部を収容するためのキャビティを備えることを特徴とする請求項1から6のいずれかに記載の導光体。 The light guide according to any one of claims 1 to 6, characterized in that the end face is provided with a cavity for accommodating at least part of the light source.
  8.  柱状の導光体であって、
     当該導光体の端面またはその近傍に設けられた、光源の少なくとも一部を収容するためのキャビティと、
     前記キャビティ内の光入射面と、
     当該導光体の長手方向に沿った側面の少なくとも一部に設けられた光出射面と、
     前記光入射面と前記光出射面との間に設けられた少なくとも一つの界面と、
     を備えることを特徴とする導光体。
    A columnar light guide,
    a cavity at or near an end face of the light guide for containing at least a portion of the light source;
    a light incident surface within the cavity;
    a light exit surface provided on at least part of a side surface along the longitudinal direction of the light guide;
    at least one interface provided between the light incident surface and the light exit surface;
    A light guide, comprising:
  9.  前記端面の近傍に形成されたフランジを備えることを特徴とする請求項1から8のいずれかに記載の導光体。 The light guide according to any one of claims 1 to 8, further comprising a flange formed in the vicinity of said end face.
  10.  請求項1から9のいずれかに記載の導光体と、
     前記光入射面から前記導光体の内部に光を入射させる光源と、
     を備えることを特徴とする照明装置。
    a light guide according to any one of claims 1 to 9;
    a light source for causing light to enter the interior of the light guide from the light incident surface;
    A lighting device comprising:
  11.  対象物に対してライン状に照明する請求項10に記載の照明装置と、
     対象物からの反射光を集光する正立等倍レンズアレイと、
     前記正立等倍レンズアレイで集光された光を受光する受光素子と、
     を備えることを特徴とするイメージセンサ。
    11. The lighting device according to claim 10, which illuminates the object in a line;
    an erecting equal-magnification lens array that collects reflected light from an object;
    a light receiving element for receiving light condensed by the erecting equal-magnification lens array;
    An image sensor comprising:
  12.  請求項11に記載のイメージセンサと、
     前記イメージセンサを走査する駆動機構と、
     前記イメージセンサによって読み取られたデータを処理する画像処理部と、
     を備えることを特徴とする読取装置。
    an image sensor according to claim 11;
    a driving mechanism for scanning the image sensor;
    an image processing unit that processes data read by the image sensor;
    A reading device comprising:
PCT/JP2022/009520 2021-03-22 2022-03-04 Light guide body, lighting device, image sensor, and reading device WO2022202232A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508912A JPWO2022202232A1 (en) 2021-03-22 2022-03-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-047910 2021-03-22
JP2021047910 2021-03-22

Publications (1)

Publication Number Publication Date
WO2022202232A1 true WO2022202232A1 (en) 2022-09-29

Family

ID=83396948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009520 WO2022202232A1 (en) 2021-03-22 2022-03-04 Light guide body, lighting device, image sensor, and reading device

Country Status (3)

Country Link
JP (1) JPWO2022202232A1 (en)
TW (1) TW202244584A (en)
WO (1) WO2022202232A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330734A (en) * 1999-12-17 2001-11-30 Toshiba Corp Light guide body, line illuminator and image input device
WO2007080798A1 (en) * 2006-01-10 2007-07-19 Nippon Sheet Glass Company, Limited Light guide body, illumination device, and image reading device
JP2014011152A (en) * 2012-07-03 2014-01-20 Konica Minolta Inc Light guide
JP2014182888A (en) * 2013-03-18 2014-09-29 Minebea Co Ltd Planar lighting apparatus
JP2016048625A (en) * 2014-08-27 2016-04-07 株式会社小糸製作所 Vehicle lighting appliance
JP2017073271A (en) * 2015-10-07 2017-04-13 東芝ライテック株式会社 Lamp device
JP2017130251A (en) * 2016-01-18 2017-07-27 スタンレー電気株式会社 Vehicular lighting
JP2017224558A (en) * 2016-06-17 2017-12-21 恵和株式会社 Light guide film, edge light type backlight unit, and light guide film manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330734A (en) * 1999-12-17 2001-11-30 Toshiba Corp Light guide body, line illuminator and image input device
WO2007080798A1 (en) * 2006-01-10 2007-07-19 Nippon Sheet Glass Company, Limited Light guide body, illumination device, and image reading device
JP2014011152A (en) * 2012-07-03 2014-01-20 Konica Minolta Inc Light guide
JP2014182888A (en) * 2013-03-18 2014-09-29 Minebea Co Ltd Planar lighting apparatus
JP2016048625A (en) * 2014-08-27 2016-04-07 株式会社小糸製作所 Vehicle lighting appliance
JP2017073271A (en) * 2015-10-07 2017-04-13 東芝ライテック株式会社 Lamp device
JP2017130251A (en) * 2016-01-18 2017-07-27 スタンレー電気株式会社 Vehicular lighting
JP2017224558A (en) * 2016-06-17 2017-12-21 恵和株式会社 Light guide film, edge light type backlight unit, and light guide film manufacturing method

Also Published As

Publication number Publication date
JPWO2022202232A1 (en) 2022-09-29
TW202244584A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP4087864B2 (en) Flat light emitting device
JP5409901B2 (en) Planar light source device and display device using the same
US8109666B2 (en) Light guiding member and linear light source apparatus using same
JP5295382B2 (en) Planar light source device and display device using the same
JP2008147186A (en) Backlight unit with light guide buffer plate
JP2001035230A (en) Flat lighting system
JP2000011723A (en) Sheet-like lighting system
GB2443215A (en) An illumination system having a light source and a light guide
US20090002987A1 (en) Collimation Arrangement and Illumination System and Display Device Using the Same
JP7278920B2 (en) Light guide lens, lens assembly and vehicle lamp
JPH11265610A (en) Light emitting diode, sidelight type surface light source device and liquid crystal displace device
JP4720978B2 (en) Surface lighting device
JP2003346509A (en) Linear light source for image scanner and liquid crystal module
WO2022202232A1 (en) Light guide body, lighting device, image sensor, and reading device
JP5174685B2 (en) Planar light source device and display device using the same
JP2010205565A (en) Light source module, and electronic equipment equipped with this module
JP2010027229A (en) Surface light source device
TWI553272B (en) Side view backlight modul
WO2012114553A1 (en) Light guiding member and light emitting device provided with same
KR100801923B1 (en) A light apparatus for vehicle
TWI666478B (en) A direct type backlight device
JP2014060096A (en) Planar lighting device
KR101933571B1 (en) A Reflection Type Surface Emitting Lighting
US20190204496A1 (en) Backlight unit and display device including the same
JP3139677U (en) Luminescent panel device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508912

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775028

Country of ref document: EP

Kind code of ref document: A1