WO2022202119A1 - Curable composition and cured object - Google Patents

Curable composition and cured object Download PDF

Info

Publication number
WO2022202119A1
WO2022202119A1 PCT/JP2022/008186 JP2022008186W WO2022202119A1 WO 2022202119 A1 WO2022202119 A1 WO 2022202119A1 JP 2022008186 W JP2022008186 W JP 2022008186W WO 2022202119 A1 WO2022202119 A1 WO 2022202119A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
component
curable
repeating unit
Prior art date
Application number
PCT/JP2022/008186
Other languages
French (fr)
Japanese (ja)
Inventor
瑶子 森
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023508851A priority Critical patent/JPWO2022202119A1/ja
Publication of WO2022202119A1 publication Critical patent/WO2022202119A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a curable composition that has a high refractive index and is suitably used in the optical field, and a cured product of this curable composition.
  • curable compositions have been variously improved according to their uses, and have been widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like. Curable compositions are also attracting attention as compositions for optical element fixing materials such as adhesives for optical element fixing materials and sealing materials for optical element fixing materials.
  • Optical devices include various lasers such as semiconductor lasers (LD), light emitting devices such as light emitting diodes (LED), light receiving devices, composite optical devices, optical integrated circuits, and the like.
  • LD semiconductor lasers
  • LED light emitting diodes
  • Optical devices include various lasers such as semiconductor lasers (LD), light emitting devices such as light emitting diodes (LED), light receiving devices, composite optical devices, optical integrated circuits, and the like.
  • LD semiconductor lasers
  • LED light emitting devices
  • LED light emitting diodes
  • optical integrated circuits and the like.
  • blue-light and white-light optical elements with shorter peak emission wavelengths have been developed and widely used.
  • the brightness of such light-emitting elements with a short peak wavelength of light emission has been rapidly increased, and along with this, the amount of heat generated by the optical elements tends to increase further.
  • Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a curable polysilsesquioxane compound as a main component.
  • a curable composition having an appropriate refractive index may be selected in accordance with the refractive index of surrounding members in order to increase the light extraction efficiency.
  • the difference between the refractive index of the sealant and the refractive index of the fixing material is small. Therefore, when using a sealant with a relatively high refractive index, it becomes necessary to form the fixer using a curable composition with a similarly high refractive index.
  • Patent Document 4 describes a polysilsesquioxane compound having both an aliphatic hydrocarbon group or derivative thereof and an aromatic hydrocarbon group or derivative thereof. However, this polysilsesquioxane compound melts when heated and does not have thermosetting properties. Therefore, the polysilsesquioxane compound described in Patent Document 4 does not function as a curable component of the curable composition.
  • Patent Document 5 discloses a method for producing a polysilsesquioxane liquid.
  • the present invention has been made in view of the actual situation of the above-described prior art, and provides a curable composition that has a high refractive index and is suitably used in the optical field, and a cured product of this curable composition. With the goal.
  • a curable composition containing a curable polysilsesquioxane compound As a result, (i) a curable composition containing a curable polysilsesquioxane compound containing many aryl groups tends to have a high refractive index; (ii) cracks may occur in a cured product of a curable composition containing a curable polysilsesquioxane compound containing many aryl groups; By introducing a long-chain alkyl group into the lusesquioxane compound, the occurrence of cracks in (ii) above can be suppressed; and completed the present invention.
  • curable compositions [1] to [7] and cured product [8] are provided.
  • R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or a substituted aryl group having 6 to 12 carbon atoms.
  • the amount of the repeating unit (1) in the component is The curable composition according to [1], which is 50 mol% or more and less than 95 mol% relative to the total amount of repeating units (1) and repeating units (2). [3] Described in [1] or [2], wherein the total amount of repeating units (1) and repeating units (2) in component (A) is 90 to 100 mol% of all repeating units in component (A) curable composition.
  • a curable composition having a high refractive index and suitable for use in the optical field, and a cured product of the curable composition are provided.
  • Curable composition contains the following components (A) and (B).
  • the curable polysilsesquioxane compound (A) constituting the curable composition of the present invention has the following formula (a-1)
  • R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or a substituted aryl group having 6 to 12 carbon atoms.
  • a-2 a repeating unit represented by the following formula (a-2)
  • R 2 represents an unsubstituted alkyl group having 3 to 16 carbon atoms. ] It has a repeating unit represented by
  • curable polysilsesquioxane compound whether or not it is a "curable polysilsesquioxane compound" is determined by the following tests.
  • Method for determining curable polysilsesquioxane compound The polysilsesquioxane compound is divided into two, and 140 g of tetrahydrofuran is added to 0.8 g of one of the polysilsesquioxane compounds (solid content: 0.6% by mass) and left to stand for 24 hours. Next, the insoluble component in tetrahydrofuran is isolated and the amount of the insoluble component (M1) is weighed. Next, after heating the other polysilsesquioxane compound at 140° C.
  • the polysilsesquioxane compound before heating is referred to as a "curable polysilsesquioxane compound.”
  • the curable polysilsesquioxane compound (A) has the repeating unit (1). Since the repeating unit ( 1 ) contains R1, the curable composition containing the curable polysilsesquioxane compound (A) has a high refractive index.
  • the number of carbon atoms in the “unsubstituted aryl group having 6 to 12 carbon atoms” for R 1 is preferably 6.
  • Examples of the “unsubstituted aryl group having 6 to 12 carbon atoms” for R 1 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
  • the number of carbon atoms in the “aryl group having 6 to 12 carbon atoms and having a substituent” for R 1 is preferably 6.
  • the number of carbon atoms means the number of carbon atoms in the portion (aryl group portion) excluding the substituents. Therefore, when R 1 is a “substituted aryl group having 6 to 12 carbon atoms”, the number of carbon atoms in R 1 may exceed 12 in some cases.
  • Examples of the aryl group of the “substituted aryl group having 6 to 12 carbon atoms” for R 1 include the same aryl groups as the “unsubstituted aryl group having 6 to 12 carbon atoms”.
  • the number of substituent atoms (excluding the number of hydrogen atoms) of the “aryl group having 6 to 12 carbon atoms having a substituent” for R 1 is generally 1-30, preferably 1-20.
  • substituents of the "aryl group having 6 to 12 carbon atoms having a substituent” for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, Alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group group; and the like.
  • R 1 is preferably an unsubstituted aryl group having 6 to 12 carbon atoms, more preferably a phenyl group, because a curable polysilsesquioxane compound (A) having a high refractive index can be obtained efficiently. preferable.
  • the curable polysilsesquioxane compound (A) may have one type of R 1 or two or more types of R 1 .
  • the curable polysilsesquioxane compound (A) further has the repeating unit (2). Since the repeating unit ( 2 ) contains R2, the curable composition containing the curable polysilsesquioxane compound (A) is less likely to crack when cured.
  • the number of carbon atoms in the “unsubstituted alkyl group having 3 to 16 carbon atoms” for R 2 is preferably 3 to 10, more preferably 3 to 8.
  • a curable polysilsesquioxane compound (A) having an alkyl group with too many carbon atoms tends to be difficult to synthesize.
  • Examples of the “unsubstituted alkyl group having 3 to 16 carbon atoms” for R 2 include n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n -decyl group, n-undecyl group, n-dodecyl group and the like.
  • the curable polysilsesquioxane compound (A) may have one type of R2 or two or more types of R2.
  • the curable polysilsesquioxane compound (A) may be a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer, or the like. , random copolymers are preferred. Further, the structure of the curable polysilsesquioxane compound (A) is any one of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure and a random structure. good too.
  • the repeating unit (1) and repeating unit (2) are represented by the following formula (a-3).
  • G represents a group represented by R 1 or R 2 .
  • R 1 and R 2 each have the same meaning as above.
  • O 1/2 means that an oxygen atom is shared with the adjacent repeating unit.
  • the curable polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom, generally referred to as T sites, and other groups (G It has a partial structure in which one group represented by is bonded.
  • the amount of the repeating unit (1) is preferably 50 mol% or more and less than 95 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2). , more preferably 60 to 93 mol %, still more preferably 65 to 91 mol %, and particularly preferably 70 to 85 mol %.
  • a curable composition containing a curable polysilsesquioxane compound (A) in which the amount of repeating units (1) is within the above range tends to have a high refractive index, and cracks do not occur when cured. it gets harder.
  • the total amount of repeating units (1) and repeating units (2) in the curable polysilsesquioxane compound (A) is preferably 90 to 100 mol %, more preferably 95 to 100 mol %, still more preferably 98 to 100 mol %.
  • a curable composition containing a curable polysilsesquioxane compound (A) in which the total amount of repeating units (1) and repeating units (2) is within the above range tends to have a high refractive index and can be cured. Cracks are less likely to occur when
  • the weight average molecular weight (Mw) of the curable polysilsesquioxane compound (A) is preferably 500-100,000, more preferably 800-5,000.
  • the molecular weight distribution (Mw/Mn) of the curable polysilsesquioxane compound (A) is not particularly limited, it is usually 1.00 to 10.00, preferably 1.10 to 6.00, more preferably 1 .15 to 4.00.
  • a curable polysilsesquioxane compound (A) having a weight average molecular weight and a molecular weight distribution (Mw/Mn) within the above ranges is relatively easy to synthesize.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) can be obtained as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, for example.
  • the refractive index (nD) at 25° C. of the curable polysilsesquioxane compound (A) is preferably 1.50 to 1.56, more preferably 1.50 to 1.55.
  • the refractive index (nD) of the curable polysilsesquioxane compound (A) can be measured using an Abbe refractometer.
  • the method for synthesizing the curable polysilsesquioxane compound (A) is not particularly limited.
  • at least one silane compound (1) represented by the following formula (a-4) and at least one silane compound (2) represented by the following formula (a-5) are subjected to polycondensation to cure.
  • polysilsesquioxane compound (A) can be synthesized.
  • R 1 has the same meaning as above.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms
  • X 1 represents a halogen atom
  • p represents an integer of 0 to 3.
  • Multiple R 3 , and a plurality of X 1 may be the same or different.
  • R 2 has the same meaning as above.
  • R 4 represents an alkyl group having 1 to 10 carbon atoms
  • X 2 represents a halogen atom
  • q represents an integer of 0 to 3.
  • Multiple R 4 , and a plurality of X 2 may be the same or different.
  • the "alkyl group having 1 to 10 carbon atoms" for R 3 and R 4 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group. etc.
  • a chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X ⁇ 1 >, X ⁇ 2 >.
  • silane compound (1) examples include: unsubstituted aryltrialkoxysilane compounds such as phenyltrimethoxysilane and phenyltriethoxysilane; unsubstituted arylhalogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenylchlorodiethoxysilane, phenyldichloromethoxysilane, phenyldichloroethoxysilane; unsubstituted aryltrihalogenosilane compounds such as phenyltrichlorosilane; Substituents such as 4-methylphenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 4-methylphenyltriethoxysilane, 4-methoxyphenyltriethoxysilane, 4-chlorophenyltriethoxysilane,
  • aryltrialkoxysilane compounds having; Substituents such as 4-methylphenylchlorodimethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-chlorophenylchlorodimethoxysilane, 4-methylphenyldichloromethoxysilane, 4-methoxyphenyldichloromethoxysilane, 4-chlorophenyldichloromethoxysilane, etc.
  • arylhalogenoalkoxysilane compounds having; aryltrihalogenosilane compounds having a substituent such as 4-methylphenyltrichlorosilane, 4-methoxyphenyltrichlorosilane, 4-chlorophenyltrichlorosilane; and the like.
  • These silane compounds (1) can be used singly or in combination of two or more.
  • silane compound (2) examples include: n-propyltrimethoxysilane, n-propyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-dodecyltrimethoxysilane, n-dodecyltriethoxysilane, n-dodecyltripropoxysilane, etc.
  • unsubstituted alkyltrialkoxysilane compounds n-propylchlorodimethoxysilane, n-propylchlorodiethoxysilane, n-hexylchlorodimethoxysilane, n-hexylchlorodiethoxysilane, n-hexyldichloromethoxysilane, n-hexylbromodimethoxysilane, n-dodecylchlorodimethoxysilane , n-dodecylchlorodiethoxysilane, n-dodecyldichloromethoxysilane, n-dodecylbromodimethoxysilane and other unsubstituted alkylhalogenoalkoxysilane compounds; unsubstituted alkyltrihalogenosilane compounds such as n-propyltrichlorosilane, n-propy
  • the method of polycondensing the silane compound is not particularly limited.
  • a method of adding a predetermined amount of a polycondensation catalyst to a silane compound in a solvent or without a solvent and stirring the mixture at a predetermined temperature can be used. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to a silane compound and stirring at a predetermined temperature, (b) adding a predetermined amount of a base catalyst to a silane compound and stirring at a predetermined temperature. (c) a method of adding a predetermined amount of an acid catalyst to a silane compound, stirring at a predetermined temperature, then adding an excess amount of a base catalyst to make the reaction system basic, and stirring at a predetermined temperature; mentioned.
  • the method (a) is preferable because the desired curable polysilsesquioxane compound (a) can be obtained efficiently.
  • the polycondensation catalyst to be used may be either an acid catalyst or a base catalyst. Two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
  • Acid catalysts include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; is mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferred.
  • Base catalysts include aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, aniline, picoline, 1,4- organic bases such as diazabicyclo[2.2.2]octane and imidazole; organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate;
  • the amount of the polycondensation catalyst used is usually in the range of 0.05-10 mol%, preferably 0.1-8 mol%, relative to the total molar amount of the silane compound.
  • the solvent to be used can be appropriately selected according to the type of silane compound.
  • the solvent to be used can be appropriately selected according to the type of silane compound.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more.
  • the amount of the solvent used is 0.1 liters or more and 10 liters or less, preferably 0.1 liters or more and 2 liters or less per mol of the total molar amount of the silane compound.
  • the temperature at which the silane compound is polycondensed is usually in the temperature range from 0°C to the boiling point of the solvent used, preferably in the range of 20°C or higher and 100°C or lower. If the reaction temperature is too low, the polycondensation reaction may proceed insufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.
  • Component (B) constituting the curable composition of the present invention is a silane coupling agent. Since the curable composition of the present invention contains the component (B), the cured product of the curable composition of the present invention has even better adhesion at room temperature and high temperature.
  • a silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
  • the functional group refers to a group having reactivity with other compounds (mainly organic substances), for example, vinyl group, allyl group, epoxy group, amino group, substituted amino group, acrylic group, methacrylic group, mercapto group, isocyanate group, a group having an isocyanurate structure, a group having an acid anhydride structure, and the like.
  • the silane coupling agents can be used singly or in combination of two or more.
  • the content of the silane coupling agent is preferably 0.1 to 70 parts by mass, more preferably 1 to 60 parts by mass, still more preferably 100 parts by mass of the curable polysilsesquioxane compound (A). is 5 to 55 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 15 to 45 parts by mass.
  • a silane coupling agent having a nitrogen atom in the molecule and a silane coupling agent having an acid anhydride structure in the molecule are preferable as the silane coupling agent.
  • the silane coupling agent having a nitrogen atom in the molecule includes, for example, a trialkoxysilane compound represented by the following formula (b-1), a dialkoxyalkylsilane compound represented by the formula (b-2), or a dialkoxy arylsilane compounds and the like.
  • R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy.
  • a plurality of R a may be the same or different.
  • R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- An aryl group with or without a substituent such as a methylphenyl group and a 1-naphthyl group;
  • R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom.
  • R c may be further bonded to another silicon atom-containing group.
  • Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.
  • the compound in which R c is an organic group bonded to another silicon atom-containing group includes an isocyanurate skeleton.
  • examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.
  • silane coupling agent having a nitrogen atom in the molecule an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable, since a cured product having excellent adhesion is easily obtained.
  • a cured product having excellent adhesion is easily obtained.
  • Examples of isocyanurate-based silane coupling agents having 4 or more silicon-bonded alkoxy groups include compounds represented by the following formula (b-3).
  • Urea-based silane coupling agents having 4 or more silicon-bonded alkoxy groups include compounds represented by the following formula (b-4).
  • Ra has the same meaning as above.
  • t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, particularly preferably 3.
  • silane coupling agents having a nitrogen atom in the molecule include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3- triethoxysilylpropyl)isocyanurate (hereinafter referred to as "isocyanurate compound”), N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea (hereinafter referred to as "urea compound”), and a combination of the isocyanurate compound and the urea compound.
  • isocyanurate compound 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate
  • isocyanurate compound 1,3,5-N-tris(3- triethoxysilylpropyl)isocyanurate
  • urea compound N,N'-bis(3-trimeth
  • the content is not particularly limited, but the amount is the same as the component (A) having a nitrogen atom in the molecule.
  • the mass ratio of the silane coupling agent [component (A): silane coupling agent having a nitrogen atom in the molecule] is preferably 100:0.1 to 100:65, more preferably 100:0.3 to 100: 60, more preferably 100:1 to 100:50, still more preferably 100:3 to 100:40, particularly preferably 100:5 to 100:35.
  • a cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule in such a ratio has excellent heat resistance and adhesiveness.
  • a silane coupling agent with an acid anhydride structure in its molecule is an organosilicon compound that has both a group with an acid anhydride structure and a hydrolyzable group in one molecule.
  • Specific examples include compounds represented by the following formula (b-5).
  • Q represents a group having an acid anhydride structure
  • R d represents an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group
  • R e represents carbon represents an alkoxy group of numbers 1 to 6 or a halogen atom
  • i and k represent integers of 1 to 3
  • j represents an integer of 0 to 2
  • i+j+k 4.
  • Rd 's may be the same or different.
  • k is 2 or 3
  • a plurality of Re may be the same or different.
  • i is 2 or 3
  • multiple Qs may be the same or different.
  • Silane coupling agents having an acid anhydride structure in the molecule include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, and 3-(trimethoxysilyl)propyl succinic anhydride.
  • tri(C1-C6)alkoxysilyl(C2-C8)alkyl succinic anhydrides such as 3-(triethoxysilyl)propyl succinic anhydride; di(C1-C6)alkoxymethylsilyl(C2-C8)alkyl succinic anhydrides such as 2-(dimethoxymethylsilyl)ethyl succinic anhydride; (1-6 carbon atoms) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydrides, such as 2-(methoxydimethylsilyl)ethyl succinic anhydride;
  • trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2-(trichlorosilyl)ethyl succinic anhydride and 2-(tribromosilyl)ethyl succinic anhydride; dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2-(dichloromethylsilyl)ethyl succinic anhydride; 2-(chlorodimethylsilyl)ethyl succinic anhydride, halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride;
  • the silane coupling agent having an acid anhydride structure in the molecule is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl ) propyl succinic anhydride or 3-(triethoxysilyl) propyl succinic anhydride are particularly preferred.
  • the curable composition of the present invention contains a silane coupling agent having an acid anhydride structure in the molecule
  • its content is not particularly limited, but the amount is the same as the component (A) and the acid anhydride in the molecule.
  • the mass ratio of the silane coupling agent having a compound structure is preferably 100:0.1 to 100:30, more preferably 100: 0.3 to 100:20, more preferably 100:0.5 to 100:15, still more preferably 100:1 to 100:10.
  • a cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule in such a ratio has excellent adhesiveness.
  • the total amount of component (A) and component (B) is preferably 50 to 100% by mass in the solid content of the curable composition, and 70 to 100% by mass. is more preferred.
  • the solid content refers to components other than the solvent in the curable composition.
  • the curable composition of the invention may contain a solvent.
  • the solvent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention.
  • One type of solvent may be used, or two or more types may be used in combination.
  • the curable composition of the present invention contains a solvent
  • its content is preferably 60% by mass or more and less than 100% by mass, more preferably 65 to 98% by mass, and even more preferably 70% by mass.
  • the amount is ⁇ 95% by mass.
  • the curable composition of the invention may contain other components as long as the objects of the invention are not impaired.
  • Other components include fine particles, antioxidants, ultraviolet absorbers, light stabilizers, and the like. The content of these components can be appropriately determined according to the purpose.
  • the curable composition of the present invention can be prepared, for example, by mixing the components (A) and (B) and, if desired, other components in a predetermined ratio and defoaming.
  • a mixing method and a defoaming method are not particularly limited, and known methods can be used.
  • the curable composition of the present invention contains the polysilsesquioxane compound (A), it has a high refractive index.
  • the curable composition of the present invention has a refractive index (nD) at 25° C. of usually 1.50 to 1.60, preferably 1.50 to 1.56, more preferably 1.50 to 1.54. and more preferably 1.50 to 1.53.
  • the refractive index (nD) of the curable composition can be measured using the method described in Examples.
  • the curable composition of the present invention contains the polysilsesquioxane compound (A), cracks are less likely to occur even when cured. Since the curable composition of the present invention contains a silane coupling agent, the cured product of the curable composition of the present invention has even better adhesion at room temperature and high temperature.
  • the curable composition of the present invention is suitably used as a raw material for manufacturing optical members, an adhesive, and the like.
  • the cured product of the present invention is obtained by curing the curable composition of the present invention.
  • a method for curing the curable composition of the present invention includes heat curing.
  • the heating temperature for curing is usually 100 to 200° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention has excellent adhesion. Whether the cured product of the present invention has these properties can be confirmed, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of a silicon chip, the applied surface is placed on an adherend, pressed, and heat-treated to cure. This is left for 30 seconds on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C.), and from a position at a height of 50 ⁇ m from the adherend, in the horizontal direction (shearing direction) to the adhesive surface A stress is applied and the adhesion between the test piece and the adherend is measured.
  • a predetermined amount of the curable composition of the present invention is applied to the mirror surface of a silicon chip, the applied surface is placed on an adherend, pressed, and heat-treated to cure. This is left for 30 seconds on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C
  • the adhesive strength of the cured product of the present invention is preferably 80 N/4 mm 2 or more, more preferably 100 N/4 mm 2 or more at 23°C.
  • “4 mm 2 ” means “2 mm square”, that is, 2 mm ⁇ 2 mm (square with 2 mm sides).
  • the cured product of the present invention has a high refractive index.
  • the cured product of the present invention has a refractive index (nD) at 25° C. of preferably 1.50 to 1.60, preferably 1.50 to 1.56, more preferably 1.50 to 1.54. Yes, more preferably 1.50 to 1.53.
  • the refractive index (nD) of the cured product can be measured using an Abbe refractometer.
  • the cured product of the present invention has a low elastic modulus and is suppressed from cracking.
  • the elastic modulus of the cured product of the present invention at 25° C. is preferably 2.5 GPa or less, more preferably 2.0 GPa or less, further preferably 1.4 GPa or less, and 0.9 GPa or less. is particularly preferred.
  • From the viewpoint of easily suppressing the occurrence of cracks and easily obtaining high adhesive strength for example, 0.01 to 2.5 GPa, 0.01 to 2.0 GPa, 0.03 to 1.4 GPa, and 0.05 to 0.05 GPa. It may be 9 GPa, 0.1 to 2.5 GPa, or 0.1 to 2.0 GPa.
  • the elastic modulus of the cured product can be measured using a microsurface hardness tester.
  • the curable composition is coated on a slide glass so that the thickness is about 150 ⁇ m, and the resulting coating film is heated at 120 ° C. for 2 hours. and then heat curing at 150° C. for 3 hours.
  • the elastic modulus of the cured product depends on the type of R2 in the repeating unit (2) of the polysilsesquioxane compound, the ratio of the repeating unit (2), and the change in the reaction conditions when producing the polysilsesquioxane compound. It can be adjusted by the structural change of the polysilsesquioxane compound (for example, mass average molecular weight), the type and content of the silane coupling agent, and the like. Specifically, it is as follows. A cured product of a curable composition containing a polysilsesquioxane compound having R 2 with a large number of carbon atoms tends to have a small elastic modulus.
  • a cured product of a curable composition containing a polysilsesquioxane compound having a high proportion of repeating units (2) tends to have a low elastic modulus.
  • a cured product of a curable composition containing a polysilsesquioxane compound having a large weight average molecular weight tends to have a small elastic modulus.
  • a cured product of a curable composition containing a small amount of silane coupling agent tends to have a relatively small elastic modulus.
  • the cured product of the present invention is preferably used as an optical element fixing material because it has the above properties.
  • Silane coupling agent (B1) 1,3,5-N-tris[3-(trimethoxysilyl)propyl]isocyanurate
  • Silane coupling agent (B2) 3-(trimethoxysilyl)propylsuccinic anhydride
  • Example 2 Comparative Examples 1, 2 and 7
  • a curable composition was prepared in the same manner as in Example 1, except that the composition was changed to that shown in Table 2 or Table 3.
  • Tables 2 and 3 polysilsesquioxane compounds are abbreviated as "PSQ compounds.”
  • Example 3 By adding 30 parts by mass of the silane coupling agent (B1) and 3 parts by mass of the silane coupling agent (B2) to 100 parts by mass of the polysilsesquioxane compound (A3), and thoroughly mixing and defoaming the entire volume, A curable composition was obtained.
  • Examples 4 to 6, Comparative Examples 3 to 6 A curable composition was prepared in the same manner as in Example 3, except that the composition was changed to that shown in Table 2 or Table 3.
  • the refractive index (nD) of the curable composition (liquid) was measured at 25° C. using a multi-wavelength Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2).
  • the above examples and comparative examples reveal the following.
  • the curable compositions obtained in Examples 1 to 6 contain a curable polysilsesquioxane compound (A) and a silane coupling agent. Therefore, these curable compositions have a high refractive index, and cured products of these curable compositions do not crack and exhibit excellent adhesive strength.
  • the curable composition obtained in Comparative Example 1 contained a polysilsesquioxane compound having no long-chain alkyl group, and cracks occurred in the cured product of this curable composition.
  • the curable compositions obtained in Comparative Examples 2 to 7 do not contain a silane coupling agent, the cured products of these curable compositions do not have sufficient adhesive strength.

Abstract

A curable composition comprising the following (A) and (B) components; and a cured object formed from this curable composition. This curable composition has a high refractive index and is suitable for use in optical fields. (A) component: a curable polysilsesquioxane compound having specific repeating units (B) component: a silane coupling agent

Description

硬化性組成物、及び硬化物Curable composition and cured product
 本発明は、屈折率が高く、光学分野において好適に用いられる硬化性組成物、及び、この硬化性組成物の硬化物に関する。 The present invention relates to a curable composition that has a high refractive index and is suitably used in the optical field, and a cured product of this curable composition.
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子固定材用接着剤や光素子固定材用封止材等の光素子固定材用組成物としても注目を浴びてきている。
Conventionally, curable compositions have been variously improved according to their uses, and have been widely used industrially as raw materials for optical parts and moldings, adhesives, coating agents, and the like.
Curable compositions are also attracting attention as compositions for optical element fixing materials such as adhesives for optical element fixing materials and sealing materials for optical element fixing materials.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。
 近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い、光素子の発熱量が更に大きくなっていく傾向にある。
Optical devices include various lasers such as semiconductor lasers (LD), light emitting devices such as light emitting diodes (LED), light receiving devices, composite optical devices, optical integrated circuits, and the like.
In recent years, blue-light and white-light optical elements with shorter peak emission wavelengths have been developed and widely used. The brightness of such light-emitting elements with a short peak wavelength of light emission has been rapidly increased, and along with this, the amount of heat generated by the optical elements tends to increase further.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、接着力が低下するという問題が生じた。 However, with the recent increase in brightness of optical elements, the cured product of the optical element fixing composition is exposed to higher energy light and higher temperature heat generated from the optical element for a long time, resulting in a decrease in adhesive strength. A problem arose.
 この問題を解決するべく、特許文献1~3には、硬化性ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。 In order to solve this problem, Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a curable polysilsesquioxane compound as a main component.
 ところで、硬化性組成物を用いて光素子等を固定する場合、光取り出し効率を高めるために、周囲の部材の屈折率に合わせて、適切な屈折率の硬化性組成物が選択されることがある。
 例えば、封止剤と固定材の界面での反射を抑え、光取り出し効率を高めるためには、封止剤の屈折率と固定材の屈折率の差が小さいことが好ましい。
 したがって、比較的高い屈折率を有する封止剤を用いる場合、同じように高い屈折率を有する硬化性組成物を用いて固定材を形成することが必要になる。
By the way, when an optical element or the like is fixed using a curable composition, a curable composition having an appropriate refractive index may be selected in accordance with the refractive index of surrounding members in order to increase the light extraction efficiency. be.
For example, in order to suppress reflection at the interface between the sealant and the fixing material and improve the light extraction efficiency, it is preferable that the difference between the refractive index of the sealant and the refractive index of the fixing material is small.
Therefore, when using a sealant with a relatively high refractive index, it becomes necessary to form the fixer using a curable composition with a similarly high refractive index.
 なお、特許文献4には、脂肪族炭化水素基またはその誘導体、及び芳香族炭化水素基またはその誘導体の両方を有するポリシルセスキオキサン化合物が記載されている。
 しかしながら、このポリシルセスキオキサン化合物は、加熱により溶融するものであり、熱硬化性を有するものではない。したがって、特許文献4に記載のポリシルセスキオキサン化合物は、硬化性組成物の硬化性成分としては機能しない。
 また、特許文献4に記載の発明に関連する技術として、特許文献5には、ポリシルセスキオキサン液体の製造方法が開示されている。
Patent Document 4 describes a polysilsesquioxane compound having both an aliphatic hydrocarbon group or derivative thereof and an aromatic hydrocarbon group or derivative thereof.
However, this polysilsesquioxane compound melts when heated and does not have thermosetting properties. Therefore, the polysilsesquioxane compound described in Patent Document 4 does not function as a curable component of the curable composition.
As a technique related to the invention described in Patent Document 4, Patent Document 5 discloses a method for producing a polysilsesquioxane liquid.
特開2004-359933号公報JP-A-2004-359933 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A 特開2020-76057号公報JP 2020-76057 A 特開2013-253223号公報JP 2013-253223 A
 本発明は、上記した従来技術の実情に鑑みてなされたものであり、屈折率が高く、光学分野において好適に用いられる硬化性組成物、及び、この硬化性組成物の硬化物を提供することを目的とする。 The present invention has been made in view of the actual situation of the above-described prior art, and provides a curable composition that has a high refractive index and is suitably used in the optical field, and a cured product of this curable composition. With the goal.
 本発明者らは、上記課題を解決すべく、硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物について鋭意検討を重ねた。
 その結果、
(i)アリール基を多く含む硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物は、屈折率が高くなる傾向があること、
(ii)アリール基を多く含む硬化性ポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物には、クラックが発生するおそれがあること、及び
(iii)アリール基を多く含む硬化性ポリシルセスキオキサン化合物に長鎖アルキル基を導入することで、上記(ii)のクラックの発生を抑制し得ること、
を見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have extensively studied a curable composition containing a curable polysilsesquioxane compound.
as a result,
(i) a curable composition containing a curable polysilsesquioxane compound containing many aryl groups tends to have a high refractive index;
(ii) cracks may occur in a cured product of a curable composition containing a curable polysilsesquioxane compound containing many aryl groups; By introducing a long-chain alkyl group into the lusesquioxane compound, the occurrence of cracks in (ii) above can be suppressed;
and completed the present invention.
 かくして本発明によれば、下記〔1〕~〔7〕の硬化性組成物、及び〔8〕の硬化物が提供される。 Thus, according to the present invention, the following curable compositions [1] to [7] and cured product [8] are provided.
〔1〕下記(A)成分、及び(B)成分を含有する硬化性組成物。
(A)成分:下記式(a-1)
[1] A curable composition containing the following components (A) and (B).
(A) component: the following formula (a-1)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
で示される繰り返し単位〔繰り返し単位(1)〕、及び、下記式(a-2)
[R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or a substituted aryl group having 6 to 12 carbon atoms. ]
A repeating unit represented by [repeating unit (1)], and the following formula (a-2)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔Rは、無置換の炭素数3~16のアルキル基を表す。〕
で示される繰り返し単位〔繰り返し単位(2)〕を有する、硬化性ポリシルセスキオキサン化合物
(B)成分:シランカップリング剤
〔2〕(A)成分中の繰り返し単位(1)の量が、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、50mol%以上、95mol%未満である、〔1〕に記載の硬化性組成物。
〔3〕(A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%である、〔1〕又は〔2〕に記載の硬化性組成物。
〔4〕(A)成分の質量平均分子量(Mw)が、500~10,000である、〔1〕~〔3〕のいずれかに記載の硬化性組成物。
〔5〕(B)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、〔1〕~〔4〕のいずれかに記載の硬化性組成物。
〔6〕(A)成分と(B)成分の合計量が、硬化性組成物の固形分中50~100質量%である、〔1〕~〔5〕のいずれかに記載の硬化性組成物。
〔7〕25℃における屈折率(nD)が、1.50~1.60である、〔1〕~〔6〕のいずれかに記載の硬化性組成物。
〔8〕前記〔1〕~〔7〕のいずれかに記載の硬化性組成物が硬化して成る硬化物。
[R 2 represents an unsubstituted alkyl group having 3 to 16 carbon atoms. ]
A curable polysilsesquioxane compound (B) component having a repeating unit [repeating unit (2)] represented by: silane coupling agent [2] (A) The amount of the repeating unit (1) in the component is The curable composition according to [1], which is 50 mol% or more and less than 95 mol% relative to the total amount of repeating units (1) and repeating units (2).
[3] Described in [1] or [2], wherein the total amount of repeating units (1) and repeating units (2) in component (A) is 90 to 100 mol% of all repeating units in component (A) curable composition.
[4] The curable composition according to any one of [1] to [3], wherein the weight average molecular weight (Mw) of component (A) is 500 to 10,000.
[5] The curable composition according to any one of [1] to [4], wherein the content of component (B) is 0.1 to 70 parts by mass with respect to 100 parts by mass of component (A) .
[6] The curable composition according to any one of [1] to [5], wherein the total amount of component (A) and component (B) is 50 to 100% by mass in the solid content of the curable composition. .
[7] The curable composition according to any one of [1] to [6], which has a refractive index (nD) at 25°C of 1.50 to 1.60.
[8] A cured product obtained by curing the curable composition according to any one of [1] to [7].
 本発明によれば、屈折率が高く、光学分野において好適に用いられる硬化性組成物、及び、前記硬化性組成物の硬化物が提供される。 According to the present invention, a curable composition having a high refractive index and suitable for use in the optical field, and a cured product of the curable composition are provided.
 以下、本発明を、1)硬化性組成物、及び、2)硬化物、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing into 1) a curable composition and 2) a cured product.
1)硬化性組成物
 本発明の硬化性組成物は、下記(A)成分、及び、(B)成分を含有する。
(A)成分:上記式(a-1)で示される繰り返し単位、及び、上記式(a-2)で示される繰り返し単位を有する硬化性ポリシルセスキオキサン化合物〔以下、「硬化性ポリシルセスキオキサン化合物(A)」と記載することがある。〕
(B)成分:シランカップリング剤
1) Curable composition The curable composition of the present invention contains the following components (A) and (B).
Component (A): A curable polysilsesquioxane compound having a repeating unit represented by the above formula (a-1) and a repeating unit represented by the above formula (a-2) [hereinafter referred to as “curable polysilsesquioxane compound It may be described as "sesquioxane compound (A)". ]
(B) component: silane coupling agent
〔(A)成分〕
 本発明の硬化性組成物を構成する硬化性ポリシルセスキオキサン化合物(A)は、下記式(a-1)
[(A) component]
The curable polysilsesquioxane compound (A) constituting the curable composition of the present invention has the following formula (a-1)
Figure JPOXMLDOC01-appb-C000005
〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
で示される繰り返し単位、及び、下記式(a-2)
Figure JPOXMLDOC01-appb-C000005
[R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or a substituted aryl group having 6 to 12 carbon atoms. ]
and a repeating unit represented by the following formula (a-2)
Figure JPOXMLDOC01-appb-C000006
〔Rは、無置換の炭素数3~16のアルキル基を表す。〕
で示される繰り返し単位を有するものである。
Figure JPOXMLDOC01-appb-C000006
[R 2 represents an unsubstituted alkyl group having 3 to 16 carbon atoms. ]
It has a repeating unit represented by
 本発明において、「硬化性ポリシルセスキオキサン化合物」であるか否かは、以下の試験により判断されるものである。
(硬化性ポリシルセスキオキサン化合物の判断方法)
 ポリシルセスキオキサン化合物を2つに分け、その一方のポリシルセスキオキサン化合物0.8gにテトラヒドロフラン140gを加えて(固形分0.6質量%)、これを24時間静置する。次いで、テトラヒドロフランに対する不溶成分を単離し、不溶成分量(M1)を秤量する。
 次いで、もう一方のポリシルセスキオキサン化合物を140℃で24時間加熱した後、加熱後のポリシルセスキオキサン化合物0.8gにテトラヒドロフラン140gを加えて(固形分0.6質量%)、これを24時間静置する。次いで、テトラヒドロフランに対する不溶成分を単離し、不溶成分量(M2)を秤量する。
 この試験を行った結果、不溶成分量(M1)の割合が全体の2質量%未満、かつ、不溶成分量(M2)の割合が全体の2質量%以上のとき(すなわち不溶成分量(M1)が0.016g未満、かつ、不溶成分量(M2)が0.016g以上のとき)、加熱前のポリシルセスキオキサン化合物を、「硬化性ポリシルセスキオキサン化合物」とする。
In the present invention, whether or not it is a "curable polysilsesquioxane compound" is determined by the following tests.
(Method for determining curable polysilsesquioxane compound)
The polysilsesquioxane compound is divided into two, and 140 g of tetrahydrofuran is added to 0.8 g of one of the polysilsesquioxane compounds (solid content: 0.6% by mass) and left to stand for 24 hours. Next, the insoluble component in tetrahydrofuran is isolated and the amount of the insoluble component (M1) is weighed.
Next, after heating the other polysilsesquioxane compound at 140° C. for 24 hours, 140 g of tetrahydrofuran was added to 0.8 g of the polysilsesquioxane compound after heating (solid content: 0.6% by mass). is allowed to stand for 24 hours. Next, the insoluble component in tetrahydrofuran is isolated and the amount of the insoluble component (M2) is weighed.
As a result of this test, when the ratio of the insoluble component amount (M1) is less than 2% by mass of the total and the ratio of the insoluble component amount (M2) is 2% by mass or more of the total (that is, the insoluble component amount (M1) is less than 0.016 g and the insoluble component amount (M2) is 0.016 g or more), the polysilsesquioxane compound before heating is referred to as a "curable polysilsesquioxane compound."
 硬化性ポリシルセスキオキサン化合物(A)は、上記繰り返し単位(1)を有する。
 繰り返し単位(1)にはRが含まれるため、硬化性ポリシルセスキオキサン化合物(A)を含有する硬化性組成物は高い屈折率を有する。
The curable polysilsesquioxane compound (A) has the repeating unit (1).
Since the repeating unit ( 1 ) contains R1, the curable composition containing the curable polysilsesquioxane compound (A) has a high refractive index.
 Rの「無置換の炭素数6~12のアリール基」の炭素数は6が好ましい。
 Rの「無置換の炭素数6~12のアリール基」としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
The number of carbon atoms in the “unsubstituted aryl group having 6 to 12 carbon atoms” for R 1 is preferably 6.
Examples of the “unsubstituted aryl group having 6 to 12 carbon atoms” for R 1 include a phenyl group, a 1-naphthyl group, a 2-naphthyl group and the like.
 Rの「置換基を有する炭素数6~12のアリール基」の炭素数は6が好ましい。なお、この炭素数は、置換基を除いた部分(アリール基の部分)の炭素数を意味するものである。したがって、Rが「置換基を有する炭素数6~12のアリール基」である場合、Rの炭素数は12を超える場合もあり得る。
 Rの「置換基を有する炭素数6~12のアリール基」のアリール基としては、「無置換の炭素数6~12のアリール基」として示したものと同様のものが挙げられる。
The number of carbon atoms in the “aryl group having 6 to 12 carbon atoms and having a substituent” for R 1 is preferably 6. The number of carbon atoms means the number of carbon atoms in the portion (aryl group portion) excluding the substituents. Therefore, when R 1 is a “substituted aryl group having 6 to 12 carbon atoms”, the number of carbon atoms in R 1 may exceed 12 in some cases.
Examples of the aryl group of the “substituted aryl group having 6 to 12 carbon atoms” for R 1 include the same aryl groups as the “unsubstituted aryl group having 6 to 12 carbon atoms”.
 Rの「置換基を有する炭素数6~12のアリール基」の置換基の原子数(ただし、水素原子の数を除く)は、通常1~30、好ましくは1~20である。
 Rの「置換基を有する炭素数6~12のアリール基」の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基等のアルキル基;塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
The number of substituent atoms (excluding the number of hydrogen atoms) of the “aryl group having 6 to 12 carbon atoms having a substituent” for R 1 is generally 1-30, preferably 1-20.
Examples of substituents of the "aryl group having 6 to 12 carbon atoms having a substituent" for R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, Alkyl groups such as t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group and isooctyl group; halogen atoms such as chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group group; and the like.
 これらの中でも、屈折率が高い硬化性ポリシルセスキオキサン化合物(A)が効率よく得られることから、Rとしては、無置換の炭素数6~12のアリール基が好ましく、フェニル基がより好ましい。 Among these, R 1 is preferably an unsubstituted aryl group having 6 to 12 carbon atoms, more preferably a phenyl group, because a curable polysilsesquioxane compound (A) having a high refractive index can be obtained efficiently. preferable.
 硬化性ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。 The curable polysilsesquioxane compound (A) may have one type of R 1 or two or more types of R 1 .
 硬化性ポリシルセスキオキサン化合物(A)は、更に、上記繰り返し単位(2)を有する。
 繰り返し単位(2)にはRが含まれるため、硬化性ポリシルセスキオキサン化合物(A)を含有する硬化性組成物は、硬化したときにクラックが発生し難いものとなる。
The curable polysilsesquioxane compound (A) further has the repeating unit (2).
Since the repeating unit ( 2 ) contains R2, the curable composition containing the curable polysilsesquioxane compound (A) is less likely to crack when cured.
 Rの「無置換の炭素数3~16のアルキル基」の炭素数は、3~10が好ましく、3~8がより好ましい。
 炭素数が多過ぎるアルキル基を有する硬化性ポリシルセスキオキサン化合物(A)は、合成が困難になる傾向がある。
 Rの「無置換の炭素数3~16のアルキル基」としては、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等が挙げられる。
The number of carbon atoms in the “unsubstituted alkyl group having 3 to 16 carbon atoms” for R 2 is preferably 3 to 10, more preferably 3 to 8.
A curable polysilsesquioxane compound (A) having an alkyl group with too many carbon atoms tends to be difficult to synthesize.
Examples of the “unsubstituted alkyl group having 3 to 16 carbon atoms” for R 2 include n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-octyl group, n-nonyl group, n -decyl group, n-undecyl group, n-dodecyl group and the like.
 硬化性ポリシルセスキオキサン化合物(A)は、1種のRを有するものであっても、2種以上のRを有するものであってもよい。 The curable polysilsesquioxane compound (A) may have one type of R2 or two or more types of R2.
 硬化性ポリシルセスキオキサン化合物(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれであってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、硬化性ポリシルセスキオキサン化合物(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
The curable polysilsesquioxane compound (A) may be a random copolymer, a block copolymer, a graft copolymer, an alternating copolymer, or the like. , random copolymers are preferred.
Further, the structure of the curable polysilsesquioxane compound (A) is any one of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure and a random structure. good too.
 繰り返し単位(1)や繰り返し単位(2)は、下記式(a-3)で示されるものである。 The repeating unit (1) and repeating unit (2) are represented by the following formula (a-3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
〔Gは、R又はRで表される基を表す。R、Rは、それぞれ上記と同じ意味を表す。O1/2とは、酸素原子が隣の繰り返し単位と共有されていることを表す。〕 [G represents a group represented by R 1 or R 2 . R 1 and R 2 each have the same meaning as above. O 1/2 means that an oxygen atom is shared with the adjacent repeating unit. ]
 式(a-3)で示されるように、硬化性ポリシルセスキオキサン化合物(A)は、一般にTサイトと総称される、ケイ素原子に酸素原子が3つ結合し、それ以外の基(Gで表される基)が1つ結合してなる部分構造を有する。 As shown in formula (a-3), the curable polysilsesquioxane compound (A) has three oxygen atoms bonded to a silicon atom, generally referred to as T sites, and other groups (G It has a partial structure in which one group represented by is bonded.
 硬化性ポリシルセスキオキサン化合物(A)においては、繰り返し単位(1)の量は、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、好ましくは50mol%以上、95mol%未満であり、より好ましくは60~93mol%、さらに好ましくは65~91mol%、特に好ましくは70~85mol%である。
 繰り返し単位(1)の量が上記範囲内の硬化性ポリシルセスキオキサン化合物(A)を含有する硬化性組成物は、高い屈折率を有し易く、また、硬化したときにクラックが発生し難くなる。
In the curable polysilsesquioxane compound (A), the amount of the repeating unit (1) is preferably 50 mol% or more and less than 95 mol% with respect to the total amount of the repeating unit (1) and the repeating unit (2). , more preferably 60 to 93 mol %, still more preferably 65 to 91 mol %, and particularly preferably 70 to 85 mol %.
A curable composition containing a curable polysilsesquioxane compound (A) in which the amount of repeating units (1) is within the above range tends to have a high refractive index, and cracks do not occur when cured. it gets harder.
 硬化性ポリシルセスキオキサン化合物(A)中の繰り返し単位(1)と繰り返し単位(2)の合計量は、硬化性ポリシルセスキオキサン化合物(A)の全繰り返し単位中、好ましくは90~100mol%、より好ましくは95~100mol%、更に好ましくは98~100mol%である。
 繰り返し単位(1)と繰り返し単位(2)の合計量が上記範囲内の硬化性ポリシルセスキオキサン化合物(A)を含有する硬化性組成物は、高い屈折率を有し易く、また、硬化したときにクラックが発生し難くなる。
The total amount of repeating units (1) and repeating units (2) in the curable polysilsesquioxane compound (A) is preferably 90 to 100 mol %, more preferably 95 to 100 mol %, still more preferably 98 to 100 mol %.
A curable composition containing a curable polysilsesquioxane compound (A) in which the total amount of repeating units (1) and repeating units (2) is within the above range tends to have a high refractive index and can be cured. Cracks are less likely to occur when
 硬化性ポリシルセスキオキサン化合物(A)の質量平均分子量(Mw)は、好ましくは500~100,000、より好ましくは800~5,000である。
 硬化性ポリシルセスキオキサン化合物(A)の分子量分布(Mw/Mn)は特に限定されないが、通常1.00~10.00、好ましくは1.10~6.00であり、より好ましくは1.15~4.00である。
 質量平均分子量や分子量分布(Mw/Mn)が上記範囲内にある硬化性ポリシルセスキオキサン化合物(A)は、比較的合成し易いものである。
 質量平均分子量(Mw)及び数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる。
The weight average molecular weight (Mw) of the curable polysilsesquioxane compound (A) is preferably 500-100,000, more preferably 800-5,000.
Although the molecular weight distribution (Mw/Mn) of the curable polysilsesquioxane compound (A) is not particularly limited, it is usually 1.00 to 10.00, preferably 1.10 to 6.00, more preferably 1 .15 to 4.00.
A curable polysilsesquioxane compound (A) having a weight average molecular weight and a molecular weight distribution (Mw/Mn) within the above ranges is relatively easy to synthesize.
The mass average molecular weight (Mw) and number average molecular weight (Mn) can be obtained as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent, for example.
 硬化性ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)は、好ましくは1.50~1.56、より好ましくは1.50~1.55である。
 硬化性ポリシルセスキオキサン化合物(A)の25℃における屈折率(nD)が、1.50~1.56の範囲内であることで、屈折率が高い硬化物が得られ易くなる。
 硬化性ポリシルセスキオキサン化合物(A)の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
The refractive index (nD) at 25° C. of the curable polysilsesquioxane compound (A) is preferably 1.50 to 1.56, more preferably 1.50 to 1.55.
When the refractive index (nD) at 25° C. of the curable polysilsesquioxane compound (A) is within the range of 1.50 to 1.56, a cured product having a high refractive index can be easily obtained.
The refractive index (nD) of the curable polysilsesquioxane compound (A) can be measured using an Abbe refractometer.
 硬化性ポリシルセスキオキサン化合物(A)の合成方法は特に限定されない。例えば、下記式(a-4)で示されるシラン化合物(1)の少なくとも1種と、下記式(a-5)で示されるシラン化合物(2)の少なくとも1種を重縮合させることにより、硬化性ポリシルセスキオキサン化合物(A)を合成することができる。 The method for synthesizing the curable polysilsesquioxane compound (A) is not particularly limited. For example, at least one silane compound (1) represented by the following formula (a-4) and at least one silane compound (2) represented by the following formula (a-5) are subjected to polycondensation to cure. polysilsesquioxane compound (A) can be synthesized.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、pは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。) (In the formula, R 1 has the same meaning as above. R 3 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and p represents an integer of 0 to 3. Multiple R 3 , and a plurality of X 1 may be the same or different.)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、qは0~3の整数を表す。複数のR、及び複数のXは、それぞれ、互いに同一であっても、相異なっていてもよい。) (In the formula, R 2 has the same meaning as above. R 4 represents an alkyl group having 1 to 10 carbon atoms, X 2 represents a halogen atom, and q represents an integer of 0 to 3. Multiple R 4 , and a plurality of X 2 may be the same or different.)
 R、Rの「炭素数1~10のアルキル基」としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 X、Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
The "alkyl group having 1 to 10 carbon atoms" for R 3 and R 4 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group. etc.
A chlorine atom, a bromine atom, etc. are mentioned as a halogen atom of X< 1 >, X< 2 >.
 シラン化合物(1)の具体例としては、
 フェニルトリメトキシシラン、フェニルトリエトキシシラン等の無置換のアリールトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルクロロジエトキシシラン、フェニルジクロロメトキシシラン、フェニルジクロロエトキシシラン等の無置換のアリールハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン等の無置換のアリールトリハロゲノシラン化合物類;
 4-メチルフェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、4-クロロフェニルトリメトキシシラン、4-メチルフェニルトリエトキシシラン、4-メトキシフェニルトリエトキシシラン、4-クロロフェニルトリエトキシシラン等の置換基を有するアリールトリアルコキシシラン化合物類;
 4-メチルフェニルクロロジメトキシシラン、4-メトキシフェニルクロロジメトキシシラン、4-クロロフェニルクロロジメトキシシラン、4-メチルフェニルジクロロメトキシシラン、4-メトキシフェニルジクロロメトキシシラン、4-クロロフェニルジクロロメトキシシラン等の置換基を有するアリールハロゲノアルコキシシラン化合物類;
 4-メチルフェニルトリクロロシラン、4-メトキシフェニルトリクロロシラン、4-クロロフェニルトリクロロシラン等の置換基を有するアリールトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(1)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Specific examples of the silane compound (1) include:
unsubstituted aryltrialkoxysilane compounds such as phenyltrimethoxysilane and phenyltriethoxysilane;
unsubstituted arylhalogenoalkoxysilane compounds such as phenylchlorodimethoxysilane, phenylchlorodiethoxysilane, phenyldichloromethoxysilane, phenyldichloroethoxysilane;
unsubstituted aryltrihalogenosilane compounds such as phenyltrichlorosilane;
Substituents such as 4-methylphenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 4-chlorophenyltrimethoxysilane, 4-methylphenyltriethoxysilane, 4-methoxyphenyltriethoxysilane, 4-chlorophenyltriethoxysilane, etc. aryltrialkoxysilane compounds having;
Substituents such as 4-methylphenylchlorodimethoxysilane, 4-methoxyphenylchlorodimethoxysilane, 4-chlorophenylchlorodimethoxysilane, 4-methylphenyldichloromethoxysilane, 4-methoxyphenyldichloromethoxysilane, 4-chlorophenyldichloromethoxysilane, etc. arylhalogenoalkoxysilane compounds having;
aryltrihalogenosilane compounds having a substituent such as 4-methylphenyltrichlorosilane, 4-methoxyphenyltrichlorosilane, 4-chlorophenyltrichlorosilane; and the like.
These silane compounds (1) can be used singly or in combination of two or more.
 シラン化合物(2)の具体例としては、
 n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、n-ドデシルトリプロポキシシラン等の無置換のアルキルトリアルコキシシラン化合物類;
 n-プロピルクロロジメトキシシラン、n-プロピルクロロジエトキシシラン、n-ヘキシルクロロジメトキシシラン、n-ヘキシルクロロジエトキシシラン、n-ヘキシルジクロロメトキシシラン、n-ヘキシルブロモジメトキシシラン、n-ドデシルクロロジメトキシシラン、n-ドデシルクロロジエトキシシラン、n-ドデシルジクロロメトキシシラン、n-ドデシルブロモジメトキシシラン等の無置換のアルキルハロゲノアルコキシシラン化合物類;
 n-プロピルトリクロロシラン、n-プロピルトリブロモシラン、n-ヘキシルトリクロロシラン、n-ヘキシルトリブロモシラン、n-ドデシルトリクロロシラン、n-ドデシルトリブロモシラン等の無置換のアルキルトリハロゲノシラン化合物類;等が挙げられる。
 これらのシラン化合物(2)は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
Specific examples of the silane compound (2) include:
n-propyltrimethoxysilane, n-propyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-dodecyltrimethoxysilane, n-dodecyltriethoxysilane, n-dodecyltripropoxysilane, etc. unsubstituted alkyltrialkoxysilane compounds;
n-propylchlorodimethoxysilane, n-propylchlorodiethoxysilane, n-hexylchlorodimethoxysilane, n-hexylchlorodiethoxysilane, n-hexyldichloromethoxysilane, n-hexylbromodimethoxysilane, n-dodecylchlorodimethoxysilane , n-dodecylchlorodiethoxysilane, n-dodecyldichloromethoxysilane, n-dodecylbromodimethoxysilane and other unsubstituted alkylhalogenoalkoxysilane compounds;
unsubstituted alkyltrihalogenosilane compounds such as n-propyltrichlorosilane, n-propyltribromosilane, n-hexyltrichlorosilane, n-hexyltribromosilane, n-dodecyltrichlorosilane, n-dodecyltribromosilane; etc.
These silane compounds (2) can be used singly or in combination of two or more.
 前記シラン化合物を重縮合させる方法は特に限定されない。例えば、溶媒中、又は無溶媒で、シラン化合物に、所定量の重縮合触媒を添加し、所定温度で撹拌する方法が挙げられる。より具体的には、(a)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌する方法、(b)シラン化合物に、所定量の塩基触媒を添加し、所定温度で撹拌する方法、(c)シラン化合物に、所定量の酸触媒を添加し、所定温度で撹拌した後、過剰量の塩基触媒を添加して、反応系を塩基性とし、所定温度で撹拌する方法等が挙げられる。
 これらの中でも、目的とする硬化性ポリシルセスキオキサン化合物(a)を効率よく得ることができることから、(a)の方法が好ましい。
The method of polycondensing the silane compound is not particularly limited. For example, a method of adding a predetermined amount of a polycondensation catalyst to a silane compound in a solvent or without a solvent and stirring the mixture at a predetermined temperature can be used. More specifically, (a) a method of adding a predetermined amount of an acid catalyst to a silane compound and stirring at a predetermined temperature, (b) adding a predetermined amount of a base catalyst to a silane compound and stirring at a predetermined temperature. (c) a method of adding a predetermined amount of an acid catalyst to a silane compound, stirring at a predetermined temperature, then adding an excess amount of a base catalyst to make the reaction system basic, and stirring at a predetermined temperature; mentioned.
Among these, the method (a) is preferable because the desired curable polysilsesquioxane compound (a) can be obtained efficiently.
 用いる重縮合触媒は、酸触媒及び塩基触媒のいずれであってもよい。また、2以上の重縮合触媒を組み合わせて用いてもよいが、少なくとも酸触媒を用いることが好ましい。
 酸触媒としては、リン酸、塩酸、ホウ酸、硫酸、硝酸等の無機酸;クエン酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸等の有機酸;等が挙げられる。これらの中でも、リン酸、塩酸、ホウ酸、硫酸、クエン酸、酢酸、及びメタンスルホン酸から選ばれる少なくとも1種が好ましい。
The polycondensation catalyst to be used may be either an acid catalyst or a base catalyst. Two or more polycondensation catalysts may be used in combination, but at least an acid catalyst is preferably used.
Acid catalysts include inorganic acids such as phosphoric acid, hydrochloric acid, boric acid, sulfuric acid and nitric acid; organic acids such as citric acid, acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid and p-toluenesulfonic acid; is mentioned. Among these, at least one selected from phosphoric acid, hydrochloric acid, boric acid, sulfuric acid, citric acid, acetic acid, and methanesulfonic acid is preferred.
 塩基触媒としては、アンモニア水;トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include aqueous ammonia; trimethylamine, triethylamine, lithium diisopropylamide, lithium bis(trimethylsilyl)amide, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene, aniline, picoline, 1,4- organic bases such as diazabicyclo[2.2.2]octane and imidazole; organic hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide Metal alkoxides such as; Metal hydrides such as sodium hydride and calcium hydride; Metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; Metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; metal hydrogen carbonates such as sodium hydrogen carbonate and potassium hydrogen carbonate;
 重縮合触媒の使用量は、シラン化合物の総mol量に対して、通常、0.05~10mol%、好ましくは0.1~8mol%の範囲である。 The amount of the polycondensation catalyst used is usually in the range of 0.05-10 mol%, preferably 0.1-8 mol%, relative to the total molar amount of the silane compound.
 重縮合時に溶媒を用いる場合、用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は1種単独で、あるいは2種以上を組み合わせて用いることができる。 When a solvent is used during polycondensation, the solvent to be used can be appropriately selected according to the type of silane compound. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol and t-butyl alcohol; These solvents can be used singly or in combination of two or more.
 溶媒の使用量は、シラン化合物の総モル量1モル当たり、0.1リットル以上10リットル以下、好ましくは0.1リットル以上2リットル以下である。 The amount of the solvent used is 0.1 liters or more and 10 liters or less, preferably 0.1 liters or more and 2 liters or less per mol of the total molar amount of the silane compound.
 シラン化合物を重縮合させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃以上100℃以下の範囲である。反応温度があまりに低いと重縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から30時間で完結する。 The temperature at which the silane compound is polycondensed is usually in the temperature range from 0°C to the boiling point of the solvent used, preferably in the range of 20°C or higher and 100°C or lower. If the reaction temperature is too low, the polycondensation reaction may proceed insufficiently. On the other hand, if the reaction temperature is too high, it becomes difficult to suppress gelation. The reaction is usually completed in 30 minutes to 30 hours.
 なお、特許文献4に記載されているように、脂肪族炭化水素基含有シラン化合物と芳香族炭化水素基含有シラン化合物とを原料化合物として用いても、目的の硬化性ポリシルセスキオキサン化合物(a)が得られず、硬化性を有しないポリシルセスキオキサン化合物が生成する場合がある。
 後述するように、ポリシルセスキオキサン化合物を合成する時の反応系が開放系であるか、密閉系であるかが、ポリシルセスキオキサン化合物の硬化性に影響していると予想される。
In addition, as described in Patent Document 4, even if an aliphatic hydrocarbon group-containing silane compound and an aromatic hydrocarbon group-containing silane compound are used as raw material compounds, the desired curable polysilsesquioxane compound ( In some cases, a) cannot be obtained and a non-curing polysilsesquioxane compound is produced.
As will be described later, it is expected that the curability of the polysilsesquioxane compound is affected by whether the reaction system used to synthesize the polysilsesquioxane compound is an open system or a closed system. .
〔(B)成分〕
 本発明の硬化性組成物を構成する(B)成分は、シランカップリング剤である。
 本発明の硬化性組成物は、(B)成分を含有するものであるため、本発明の硬化性組成物の硬化物は、常温時や高温時における接着性にさらに優れたものとなる。
[(B) Component]
Component (B) constituting the curable composition of the present invention is a silane coupling agent.
Since the curable composition of the present invention contains the component (B), the cured product of the curable composition of the present invention has even better adhesion at room temperature and high temperature.
 シランカップリング剤とは、ケイ素原子と、官能基と、前記ケイ素原子に結合した加水分解性基とを有するシラン化合物をいう。
 官能基とは、他の化合物(主に有機物)と反応性を有する基をいい、例えば、ビニル基、アリル基、エポキシ基、アミノ基、置換アミノ基、アクリル基、メタクリル基、メルカプト基、イソシアネート基、イソシアヌレート構造を有する基、酸無水物構造を有する基等が挙げられる。
 本発明において、シランカップリング剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
A silane coupling agent refers to a silane compound having a silicon atom, a functional group, and a hydrolyzable group bonded to the silicon atom.
The functional group refers to a group having reactivity with other compounds (mainly organic substances), for example, vinyl group, allyl group, epoxy group, amino group, substituted amino group, acrylic group, methacrylic group, mercapto group, isocyanate group, a group having an isocyanurate structure, a group having an acid anhydride structure, and the like.
In the present invention, the silane coupling agents can be used singly or in combination of two or more.
 シランカップリング剤の含有量は、硬化性ポリシルセスキオキサン化合物(A)100質量部に対して、好ましくは0.1~70質量部であり、より好ましくは1~60質量部、更に好ましくは5~55質量部であり、より更に好ましくは10~50質量部であり、特に好ましくは15~45質量部である。
 シランカップリング剤の含有量が上記範囲内である硬化性組成物を用いることで、常温時や高温時における接着性により優れた硬化物を形成することができる。
The content of the silane coupling agent is preferably 0.1 to 70 parts by mass, more preferably 1 to 60 parts by mass, still more preferably 100 parts by mass of the curable polysilsesquioxane compound (A). is 5 to 55 parts by mass, more preferably 10 to 50 parts by mass, and particularly preferably 15 to 45 parts by mass.
By using a curable composition in which the content of the silane coupling agent is within the above range, it is possible to form a cured product having excellent adhesiveness at room temperature and at high temperature.
 シランカップリング剤としては、分子内に窒素原子を有するシランカップリング剤、及び、分子内に酸無水物構造を有するシランカップリング剤が好ましい。 A silane coupling agent having a nitrogen atom in the molecule and a silane coupling agent having an acid anhydride structure in the molecule are preferable as the silane coupling agent.
 分子内に窒素原子を有するシランカップリング剤としては、例えば、下記式(b-1)で表されるトリアルコキシシラン化合物、式(b-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 The silane coupling agent having a nitrogen atom in the molecule includes, for example, a trialkoxysilane compound represented by the following formula (b-1), a dialkoxyalkylsilane compound represented by the formula (b-2), or a dialkoxy arylsilane compounds and the like.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基、1-ナフチル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formula, R a represents an alkoxy group having 1 to 6 carbon atoms such as methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy and t-butoxy. A plurality of R a may be the same or different.
R b is an alkyl group having 1 to 6 carbon atoms such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group; or a phenyl group, 4-chlorophenyl group, 4- An aryl group with or without a substituent such as a methylphenyl group and a 1-naphthyl group;
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、更に他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピル基、N-フェニル-アミノプロピル基等が挙げられる。
R c represents an organic group having 1 to 10 carbon atoms and having a nitrogen atom. In addition, R c may be further bonded to another silicon atom-containing group.
Specific examples of the organic group having 1 to 10 carbon atoms for R c include N-2-(aminoethyl)-3-aminopropyl group, 3-aminopropyl group, N-(1,3-dimethyl-butylidene)amino propyl group, 3-ureidopropyl group, N-phenyl-aminopropyl group and the like.
 上記式(b-1)又は(b-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。 Among the compounds represented by the above formula (b-1) or (b-2), the compound in which R c is an organic group bonded to another silicon atom-containing group includes an isocyanurate skeleton. Examples include those that form an isocyanurate-based silane coupling agent by bonding with other silicon atoms, and those that form a urea-based silane coupling agent by bonding with other silicon atoms via a urea skeleton.
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、接着性により優れる硬化物が得られ易いことから、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、更に、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, as the silane coupling agent having a nitrogen atom in the molecule, an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable, since a cured product having excellent adhesion is easily obtained. , preferably having 4 or more silicon-bonded alkoxy groups in the molecule.
Having 4 or more silicon-bonded alkoxy groups means that the total number of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(b-3)で表される化合物が挙げられる。ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(b-4)で表される化合物が挙げられる。 Examples of isocyanurate-based silane coupling agents having 4 or more silicon-bonded alkoxy groups include compounds represented by the following formula (b-3). Urea-based silane coupling agents having 4 or more silicon-bonded alkoxy groups include compounds represented by the following formula (b-4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式中、Rは上記と同じ意味を表す。t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。 In the formula, Ra has the same meaning as above. Each of t1 to t5 independently represents an integer of 1 to 10, preferably an integer of 1 to 6, particularly preferably 3.
 これらの中でも、分子内に窒素原子を有するシランカップリング剤としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、上記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。 Among these, silane coupling agents having a nitrogen atom in the molecule include 1,3,5-N-tris(3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris(3- triethoxysilylpropyl)isocyanurate (hereinafter referred to as "isocyanurate compound"), N,N'-bis(3-trimethoxysilylpropyl)urea, N,N'-bis(3-triethoxysilylpropyl)urea (hereinafter referred to as "urea compound"), and a combination of the isocyanurate compound and the urea compound.
 本発明の硬化性組成物が分子内に窒素原子を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に窒素原子を有するシランカップリング剤の質量比〔(A)成分:分子内に窒素原子を有するシランカップリング剤〕で、好ましくは100:0.1~100:65、より好ましくは100:0.3~100:60、より好ましくは100:1~100:50、更に好ましくは100:3~100:40、特に好ましくは100:5~100:35となる量である。
 このような割合で(A)成分及び分子内に窒素原子を有するシランカップリング剤を含有する硬化性組成物の硬化物は、耐熱性及び接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having a nitrogen atom in the molecule, the content is not particularly limited, but the amount is the same as the component (A) having a nitrogen atom in the molecule. The mass ratio of the silane coupling agent [component (A): silane coupling agent having a nitrogen atom in the molecule] is preferably 100:0.1 to 100:65, more preferably 100:0.3 to 100: 60, more preferably 100:1 to 100:50, still more preferably 100:3 to 100:40, particularly preferably 100:5 to 100:35.
A cured product of the curable composition containing the component (A) and the silane coupling agent having a nitrogen atom in the molecule in such a ratio has excellent heat resistance and adhesiveness.
 分子内に酸無水物構造を有するシランカップリング剤は、一つの分子中に、酸無水物構造を有する基と、加水分解性基の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(b-5)で表される化合物が挙げられる。 A silane coupling agent with an acid anhydride structure in its molecule is an organosilicon compound that has both a group with an acid anhydride structure and a hydrolyzable group in one molecule. Specific examples include compounds represented by the following formula (b-5).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、Qは酸無水物構造を有する基を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
 Qとしては、下記式
In the formula, Q represents a group having an acid anhydride structure, R d represents an alkyl group having 1 to 6 carbon atoms, or a substituted or unsubstituted phenyl group, and R e represents carbon represents an alkoxy group of numbers 1 to 6 or a halogen atom, i and k represent integers of 1 to 3, j represents an integer of 0 to 2, and i+j+k=4. When j is 2, Rd 's may be the same or different. When k is 2 or 3, a plurality of Re may be the same or different. When i is 2 or 3, multiple Qs may be the same or different.
As Q, the following formula
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。 (Wherein, h represents an integer of 0 to 10.) and the like, and the group represented by (Q1) is particularly preferred.
 分子内に酸無水物構造を有するシランカップリング剤としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Silane coupling agents having an acid anhydride structure in the molecule include 2-(trimethoxysilyl)ethyl succinic anhydride, 2-(triethoxysilyl)ethyl succinic anhydride, and 3-(trimethoxysilyl)propyl succinic anhydride. acids, tri(C1-C6)alkoxysilyl(C2-C8)alkyl succinic anhydrides such as 3-(triethoxysilyl)propyl succinic anhydride;
di(C1-C6)alkoxymethylsilyl(C2-C8)alkyl succinic anhydrides such as 2-(dimethoxymethylsilyl)ethyl succinic anhydride;
(1-6 carbon atoms) alkoxydimethylsilyl (2-8 carbon atoms) alkyl succinic anhydrides, such as 2-(methoxydimethylsilyl)ethyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
trihalogenosilyl (2-8 carbon atoms) alkyl succinic anhydrides such as 2-(trichlorosilyl)ethyl succinic anhydride and 2-(tribromosilyl)ethyl succinic anhydride;
dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2-(dichloromethylsilyl)ethyl succinic anhydride;
2-(chlorodimethylsilyl)ethyl succinic anhydride, halogenodimethylsilyl (2-8 carbon atoms) alkyl succinic anhydride;
 これらの中でも、分子内に酸無水物構造を有するシランカップリング剤としては、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸又は3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。 Among them, the silane coupling agent having an acid anhydride structure in the molecule is preferably tri(C 1-6) alkoxysilyl (C 2-8) alkyl succinic anhydride, 3-(trimethoxysilyl ) propyl succinic anhydride or 3-(triethoxysilyl) propyl succinic anhydride are particularly preferred.
 本発明の硬化性組成物が分子内に酸無水物構造を有するシランカップリング剤を含有する場合、その含有量は特に限定されないが、その量は、上記(A)成分と分子内に酸無水物構造を有するシランカップリング剤の質量比〔(A)成分:分子内に酸無水物構造を有するシランカップリング剤〕で、好ましくは100:0.1~100:30、より好ましくは100:0.3~100:20、より好ましくは100:0.5~100:15、更に好ましくは100:1~100:10となる量である。
 このような割合で(A)成分及び分子内に酸無水物構造を有するシランカップリング剤を含有する硬化性組成物の硬化物は、接着性により優れたものになる。
When the curable composition of the present invention contains a silane coupling agent having an acid anhydride structure in the molecule, its content is not particularly limited, but the amount is the same as the component (A) and the acid anhydride in the molecule. The mass ratio of the silane coupling agent having a compound structure [component (A): a silane coupling agent having an acid anhydride structure in the molecule] is preferably 100:0.1 to 100:30, more preferably 100: 0.3 to 100:20, more preferably 100:0.5 to 100:15, still more preferably 100:1 to 100:10.
A cured product of the curable composition containing the component (A) and the silane coupling agent having an acid anhydride structure in the molecule in such a ratio has excellent adhesiveness.
〔硬化性組成物〕
 本発明の硬化性組成物は、(A)成分と(B)成分の合計量が、硬化性組成物の固形分中50~100質量%であることが好ましく、70~100質量%であることがより好ましい。
 本発明において、固形分とは、硬化性組成物中の溶媒以外の成分をいう。
[Curable composition]
In the curable composition of the present invention, the total amount of component (A) and component (B) is preferably 50 to 100% by mass in the solid content of the curable composition, and 70 to 100% by mass. is more preferred.
In the present invention, the solid content refers to components other than the solvent in the curable composition.
 本発明の硬化性組成物は、溶媒を含有してもよい。
 溶媒は、本発明の硬化性組成物の成分を溶解又は分散し得るものであれば特に限定されない。溶媒は1種類でもよいし、2種類以上を併用してもよい。
The curable composition of the invention may contain a solvent.
The solvent is not particularly limited as long as it can dissolve or disperse the components of the curable composition of the present invention. One type of solvent may be used, or two or more types may be used in combination.
 本発明の硬化性組成物が溶媒を含有する場合、その含有量は、固形分濃度が、好ましくは60質量%以上、100質量%未満、より好ましくは65~98質量%、より更に好ましくは70~95質量%になる量である。 When the curable composition of the present invention contains a solvent, its content is preferably 60% by mass or more and less than 100% by mass, more preferably 65 to 98% by mass, and even more preferably 70% by mass. The amount is ∼95% by mass.
 本発明の硬化性組成物は、本発明の目的を阻害しない範囲で、その他の成分を含有してもよい。
 その他の成分としては、微粒子、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
 これらの成分の含有量は、目的に合わせて適宜決定することができる。
The curable composition of the invention may contain other components as long as the objects of the invention are not impaired.
Other components include fine particles, antioxidants, ultraviolet absorbers, light stabilizers, and the like.
The content of these components can be appropriately determined according to the purpose.
 本発明の硬化性組成物は、例えば、上記(A)成分と(B)成分、及び、所望によりこれら以外の成分を所定割合で混合し、脱泡することにより調製することができる。
 混合方法、脱泡方法は特に限定されず、公知の方法を利用することができる。
The curable composition of the present invention can be prepared, for example, by mixing the components (A) and (B) and, if desired, other components in a predetermined ratio and defoaming.
A mixing method and a defoaming method are not particularly limited, and known methods can be used.
 本発明の硬化性組成物はポリシルセスキオキサン化合物(A)を含有するため、屈折率が高い。
 本発明の硬化性組成物の、25℃における屈折率(nD)は、通常1.50~1.60であり、好ましくは1.50~1.56、より好ましくは1.50~1.54であり、より更に好ましくは1.50~1.53である。
 硬化性組成物の屈折率(nD)は、実施例に記載の方法を用いて測定することができる。
Since the curable composition of the present invention contains the polysilsesquioxane compound (A), it has a high refractive index.
The curable composition of the present invention has a refractive index (nD) at 25° C. of usually 1.50 to 1.60, preferably 1.50 to 1.56, more preferably 1.50 to 1.54. and more preferably 1.50 to 1.53.
The refractive index (nD) of the curable composition can be measured using the method described in Examples.
 本発明の硬化性組成物はポリシルセスキオキサン化合物(A)を含有するため、硬化してもクラックが発生し難いものである。
 本発明の硬化性組成物はシランカップリング剤を含有するため、本発明の硬化性組成物の硬化物は、常温時や高温時における接着性にさらに優れたものとなる。
Since the curable composition of the present invention contains the polysilsesquioxane compound (A), cracks are less likely to occur even when cured.
Since the curable composition of the present invention contains a silane coupling agent, the cured product of the curable composition of the present invention has even better adhesion at room temperature and high temperature.
 これらの特性を有することから、本発明の硬化性組成物は、光学部材の製造原料や、接着剤等として好適に用いられる。 Due to these properties, the curable composition of the present invention is suitably used as a raw material for manufacturing optical members, an adhesive, and the like.
2)硬化物
 本発明の硬化物は、本発明の硬化性組成物が硬化して成るものである。
 本発明の硬化性組成物を硬化させる方法としては加熱硬化が挙げられる。硬化させるときの加熱温度は、通常100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
2) Cured Product The cured product of the present invention is obtained by curing the curable composition of the present invention.
A method for curing the curable composition of the present invention includes heat curing. The heating temperature for curing is usually 100 to 200° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、接着性に優れるものである。
 本発明の硬化物がこれらの特性を有することは、例えば、次のようにして確認することができる。すなわち、シリコンチップのミラー面に、本発明の硬化性組成物を所定量塗布し、塗布面を被着体の上に載せ、圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
The cured product of the present invention has excellent adhesion.
Whether the cured product of the present invention has these properties can be confirmed, for example, as follows. That is, a predetermined amount of the curable composition of the present invention is applied to the mirror surface of a silicon chip, the applied surface is placed on an adherend, pressed, and heat-treated to cure. This is left for 30 seconds on the measurement stage of a bond tester preheated to a predetermined temperature (for example, 23 ° C.), and from a position at a height of 50 μm from the adherend, in the horizontal direction (shearing direction) to the adhesive surface A stress is applied and the adhesion between the test piece and the adherend is measured.
 本発明の硬化物の接着力は、23℃において80N/4mm以上であることが好ましく、100N/4mm以上であることがより好ましい。
 本明細書において、「4mm」とは、「2mm square」、すなわち、2mm×2mm(1辺が2mmの正方形)を意味する。
The adhesive strength of the cured product of the present invention is preferably 80 N/4 mm 2 or more, more preferably 100 N/4 mm 2 or more at 23°C.
As used herein, “4 mm 2 ” means “2 mm square”, that is, 2 mm×2 mm (square with 2 mm sides).
 本発明の硬化物は、屈折率が高いものである。
 本発明の硬化物の、25℃における屈折率(nD)は、好ましくは1.50~1.60であり、好ましくは1.50~1.56、より好ましくは1.50~1.54であり、より更に好ましくは1.50~1.53である。
 硬化物の屈折率(nD)は、アッベ屈折計を用いて測定することができる。
The cured product of the present invention has a high refractive index.
The cured product of the present invention has a refractive index (nD) at 25° C. of preferably 1.50 to 1.60, preferably 1.50 to 1.56, more preferably 1.50 to 1.54. Yes, more preferably 1.50 to 1.53.
The refractive index (nD) of the cured product can be measured using an Abbe refractometer.
 本発明の硬化物は弾性率が低く、クラックの発生が抑制されたものである。
 クラックの発生を抑制し易い観点では、本発明の硬化物の25℃における弾性率は、2.5GPa以下が好ましく、2.0GPa以下がより好ましく、1.4GPa以下がさらに好ましく、0.9GPa以下が特に好ましい。クラックの発生を抑制し易く、高い接着強度も得られ易い観点では、例えば、0.01~2.5GPa、0.01~2.0GPa、0.03~1.4GPa、0.05~0.9GPa、0.1~2.5GPa、0.1~2.0GPaのいずれかであってもよい。
 硬化物の弾性率は、微小表面硬度計を用いて測定することができる。
 硬化物の弾性率を測定する際の試料としては、例えば、スライドガラス上に、硬化性組成物を厚さが約150μmになるように塗布し、得られた塗膜を、120℃で2時間、次いで150℃で3時間の条件で加熱硬化させて得られるものが挙げられる。
The cured product of the present invention has a low elastic modulus and is suppressed from cracking.
From the viewpoint of easily suppressing the occurrence of cracks, the elastic modulus of the cured product of the present invention at 25° C. is preferably 2.5 GPa or less, more preferably 2.0 GPa or less, further preferably 1.4 GPa or less, and 0.9 GPa or less. is particularly preferred. From the viewpoint of easily suppressing the occurrence of cracks and easily obtaining high adhesive strength, for example, 0.01 to 2.5 GPa, 0.01 to 2.0 GPa, 0.03 to 1.4 GPa, and 0.05 to 0.05 GPa. It may be 9 GPa, 0.1 to 2.5 GPa, or 0.1 to 2.0 GPa.
The elastic modulus of the cured product can be measured using a microsurface hardness tester.
As a sample for measuring the elastic modulus of the cured product, for example, the curable composition is coated on a slide glass so that the thickness is about 150 μm, and the resulting coating film is heated at 120 ° C. for 2 hours. and then heat curing at 150° C. for 3 hours.
 硬化物の弾性率は、前記ポリシルセスキオキサン化合物の繰り返し単位(2)におけるRの種類及び繰り返し単位(2)の割合、前記ポリシルセスキオキサン化合物を製造する際の反応条件の変更に伴う当該ポリシルセスキオキサン化合物の構造変化(例えば、質量平均分子量)、前記シランカップリング剤の種類及び含有量、等によって調整することができる。
 具体的には、以下の通りである。
 炭素数が多いRを有するポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、弾性率が小さくなる傾向がある。
 繰り返し単位(2)の割合が多いポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、弾性率が小さくなる傾向がある。
 質量平均分子量が大きいポリシルセスキオキサン化合物を含有する硬化性組成物の硬化物は、弾性率が小さくなる傾向がある。
 シランカップリング剤の含有量が少ない硬化性組成物の硬化物は、弾性率が比較的小さくなる傾向がある。
The elastic modulus of the cured product depends on the type of R2 in the repeating unit (2) of the polysilsesquioxane compound, the ratio of the repeating unit (2), and the change in the reaction conditions when producing the polysilsesquioxane compound. It can be adjusted by the structural change of the polysilsesquioxane compound (for example, mass average molecular weight), the type and content of the silane coupling agent, and the like.
Specifically, it is as follows.
A cured product of a curable composition containing a polysilsesquioxane compound having R 2 with a large number of carbon atoms tends to have a small elastic modulus.
A cured product of a curable composition containing a polysilsesquioxane compound having a high proportion of repeating units (2) tends to have a low elastic modulus.
A cured product of a curable composition containing a polysilsesquioxane compound having a large weight average molecular weight tends to have a small elastic modulus.
A cured product of a curable composition containing a small amount of silane coupling agent tends to have a relatively small elastic modulus.
 上記の特性を有することから、本発明の硬化物は、光素子固定材として好ましく用いられる。 The cured product of the present invention is preferably used as an optical element fixing material because it has the above properties.
 以下、実施例を挙げて本発明を更に詳細に説明する。但し、本発明は、以下の実施例になんら限定されるものではない。 The present invention will be described in more detail below with reference to examples. However, the present invention is by no means limited to the following examples.
(製造例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン12.31g(62.1mmol)とプロピルトリメトキシシラン2.61g(15.5mmol)を仕込んだ後、これを撹拌しながら、蒸留水4.19gに35質量%塩酸0.0202g(フェニルトリメトキシシランとプロピルトリメトキシシランの合計量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して16時間撹拌した。
 反応液を室温(25℃、以下にて同じ)まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機相を分取した。この有機相に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機相をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A1)を得た。
(Production example 1)
After charging 12.31 g (62.1 mmol) of phenyltrimethoxysilane and 2.61 g (15.5 mmol) of propyltrimethoxysilane into a 300 ml eggplant-shaped flask, 4.19 g of distilled water was added to 4.19 g of distilled water while stirring. An aqueous solution of 0.0202 g by mass of hydrochloric acid (0.25 mol % of HCl with respect to the total amount of phenyltrimethoxysilane and propyltrimethoxysilane) was added, and the total volume was heated to 30°C for 2 hours and then to 80°C. It was warmed and stirred for 16 hours.
After the reaction solution was allowed to cool to room temperature (25° C., the same below), 50 g of propyl acetate and 100 g of water were added to separate the layers, and the organic phase containing the reaction product was separated. Drying treatment was performed by adding magnesium sulfate to this organic phase. After removing magnesium sulfate by filtration, the organic phase was concentrated with an evaporator, and the obtained concentrate was vacuum-dried to obtain a polysilsesquioxane compound (A1).
(製造例2)
 製造例1において、塩酸水溶液を加えた後の反応を以下の条件で行ったことを除き、製造例1と同様にして、ポリシルセスキオキサン化合物(A2)を得た。
(反応条件)
 塩酸水溶液を加えた後、全容を25℃にて2時間撹拌し、次いで、酢酸プロピル1.49gと28質量%アンモニア水溶液0.354g(フェニルトリメトキシシランとプロピルトリメトキシシランの合計量に対してアンモニアが7.5mol%)を添加し、そのまま25℃で18時間撹拌した。
(Production example 2)
A polysilsesquioxane compound (A2) was obtained in the same manner as in Production Example 1, except that the reaction after adding the hydrochloric acid aqueous solution was carried out under the following conditions.
(Reaction conditions)
After adding the hydrochloric acid aqueous solution, the whole volume was stirred at 25° C. for 2 hours, and then 1.49 g of propyl acetate and 0.354 g of 28% by weight aqueous ammonia solution (based on the total amount of phenyltrimethoxysilane and propyltrimethoxysilane) were added. 7.5 mol % of ammonia) was added, and the mixture was stirred at 25° C. for 18 hours.
(製造例3)
 300mlのナス型フラスコに、フェニルトリメトキシシラン22.84g(115.2mmol)とヘキシルトリメトキシシラン5.94g(28.8mmol)を仕込んだ後、これを撹拌しながら、蒸留水7.78gに35質量%塩酸0.0376g(フェニルトリメトキシシランとヘキシルトリメトキシシランの合計量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して18時間撹拌した。
 反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機相を分取した。この有機相に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機相をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A3)を得た。
(Production example 3)
After charging 22.84 g (115.2 mmol) of phenyltrimethoxysilane and 5.94 g (28.8 mmol) of hexyltrimethoxysilane into a 300 ml eggplant-shaped flask, 7.78 g of distilled water was added to 7.78 g of distilled water while stirring. An aqueous solution of 0.0376 g by mass of hydrochloric acid (0.25 mol % of HCl with respect to the total amount of phenyltrimethoxysilane and hexyltrimethoxysilane) was added, and the total volume was heated to 30°C for 2 hours and then to 80°C. It was warmed and stirred for 18 hours.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto for liquid separation treatment, and the organic phase containing the reaction product was separated. Drying treatment was performed by adding magnesium sulfate to this organic phase. After removing magnesium sulfate by filtration, the organic phase was concentrated with an evaporator, and the obtained concentrate was vacuum-dried to obtain a polysilsesquioxane compound (A3).
(製造例4)
 製造例3において、塩酸水溶液を加えた後の反応を以下の条件で行ったことを除き、製造例3と同様にしてポリシルセスキオキサン化合物(A4)を得た。
(反応条件)
 塩酸水溶液を加えた後、全容を25℃にて2時間撹拌し、次いで、酢酸プロピル2.88gと28質量%アンモニア水溶液0.657g(フェニルトリメトキシシランとヘキシルトリメトキシシランの合計量に対してアンモニアが7.5mol%)を添加し、そのまま25℃で18時間撹拌した。
(Production example 4)
A polysilsesquioxane compound (A4) was obtained in the same manner as in Production Example 3, except that the reaction after adding the hydrochloric acid aqueous solution was carried out under the following conditions.
(Reaction conditions)
After adding the hydrochloric acid aqueous solution, the whole volume was stirred at 25° C. for 2 hours, and then 2.88 g of propyl acetate and 0.657 g of 28% by weight aqueous ammonia solution (based on the total amount of phenyltrimethoxysilane and hexyltrimethoxysilane) were added. 7.5 mol % of ammonia) was added, and the mixture was stirred at 25° C. for 18 hours.
(製造例5)
 300mlのナス型フラスコに、フェニルトリメトキシシラン10.2g(51.4mmol)とドデシルトリメトキシシラン3.78g(13mmol)を仕込んだ後、これを撹拌しながら、蒸留水3.48gに35質量%塩酸0.0168g(フェニルトリメトキシシランとドデシルトリメトキシシランの合計量に対してHClが0.25mol%)を溶解した水溶液を加え、全容を30℃にて2時間、次いで80℃に昇温して18時間撹拌した。
 反応液を室温まで放冷した後、そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機相を分取した。この有機相に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機相をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(A5)を得た。
(Production example 5)
After charging 10.2 g (51.4 mmol) of phenyltrimethoxysilane and 3.78 g (13 mmol) of dodecyltrimethoxysilane into a 300 ml eggplant-shaped flask, 35% by mass was added to 3.48 g of distilled water while stirring. An aqueous solution of 0.0168 g of hydrochloric acid (0.25 mol % of HCl with respect to the total amount of phenyltrimethoxysilane and dodecyltrimethoxysilane) was added, and the whole volume was heated to 30°C for 2 hours and then to 80°C. The mixture was stirred for 18 hours.
After allowing the reaction solution to cool to room temperature, 50 g of propyl acetate and 100 g of water were added thereto for liquid separation treatment, and the organic phase containing the reaction product was separated. Drying treatment was performed by adding magnesium sulfate to this organic phase. After removing magnesium sulfate by filtration, the organic phase was concentrated with an evaporator, and the obtained concentrate was vacuum-dried to obtain a polysilsesquioxane compound (A5).
(製造例6)
 製造例5において、塩酸水溶液を加えた後の反応を以下の条件で行ったことを除き、製造例5と同様にしてポリシルセスキオキサン化合物(A6)を得た。
(反応条件)
 塩酸水溶液を加えた後、全容を25℃にて2時間撹拌し、次いで、酢酸プロピル1.40gと28質量%アンモニア水溶液0.294g(フェニルトリメトキシシランとドデシルトリメトキシシランの合計量に対してアンモニアが7.5mol%)を添加し、そのまま25℃で18時間撹拌した。
(Production example 6)
A polysilsesquioxane compound (A6) was obtained in the same manner as in Production Example 5, except that the reaction after adding the hydrochloric acid aqueous solution was carried out under the following conditions.
(Reaction conditions)
After adding the hydrochloric acid aqueous solution, the whole volume was stirred at 25° C. for 2 hours, and then 1.40 g of propyl acetate and 0.294 g of 28% by weight aqueous ammonia solution (based on the total amount of phenyltrimethoxysilane and dodecyltrimethoxysilane) were added. 7.5 mol % of ammonia) was added, and the mixture was stirred at 25° C. for 18 hours.
(製造例7)
 300mlのナス型フラスコに、フェニルトリメトキシシラン14.5g(72.9mmol)を仕込んだ後、これを撹拌しながら、蒸留水3.94gに35質量%塩酸0.0188g(フェニルトリメトキシシランの量に対してHClが0.25mol%)を溶解した水溶液を加えた。全容を室温にて2時間撹拌した後、酢酸プロピル1.45gと28質量%アンモニア水溶液0.333g(フェニルトリメトキシシランとドデシルトリメトキシシランの合計量に対してアンモニアが7.5mol%)を添加し、室温で18時間撹拌した。
 そこに、酢酸プロピル50g及び水100gを加えて分液処理を行い、反応生成物を含む有機相を分取した。この有機相に硫酸マグネシウムを加えて乾燥処理を行った。硫酸マグネシウムを濾別除去した後、有機相をエバポレーターで濃縮し、次いで、得られた濃縮物を真空乾燥することにより、ポリシルセスキオキサン化合物(X1)を得た。
(Production Example 7)
After charging 14.5 g (72.9 mmol) of phenyltrimethoxysilane into a 300 ml eggplant-shaped flask, 0.0188 g of 35% by mass hydrochloric acid (the amount of phenyltrimethoxysilane) was added to 3.94 g of distilled water while stirring. 0.25 mol % of HCl) was added. After stirring the whole volume at room temperature for 2 hours, 1.45 g of propyl acetate and 0.333 g of 28% by mass aqueous ammonia solution (7.5 mol % of ammonia with respect to the total amount of phenyltrimethoxysilane and dodecyltrimethoxysilane) were added. and stirred at room temperature for 18 hours.
There, 50 g of propyl acetate and 100 g of water were added to perform liquid separation treatment, and the organic phase containing the reaction product was separated. Drying treatment was performed by adding magnesium sulfate to this organic phase. After the magnesium sulfate was removed by filtration, the organic phase was concentrated with an evaporator, and the obtained concentrate was vacuum-dried to obtain a polysilsesquioxane compound (X1).
 製造例1~7で得られたポリシルセスキオキサン化合物について、それぞれ以下の測定、試験を行った。結果を第1表に示す。 The following measurements and tests were performed on the polysilsesquioxane compounds obtained in Production Examples 1-7. The results are shown in Table 1.
〔平均分子量測定〕
 ポリシルセスキオキサン化合物の質量平均分子量(Mw)及び数平均分子量(Mn)は、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー株式会社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 標準物質:ポリスチレン
 注入量:20μl
 測定温度:40℃
 流速:0.6ml/分
 検出器:示差屈折計
[Average molecular weight measurement]
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the polysilsesquioxane compound were measured using the following equipment and conditions.
Apparatus name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected Solvent: Tetrahydrofuran Standard substance: Polystyrene Injection volume: 20 μl
Measurement temperature: 40°C
Flow rate: 0.6 ml/min Detector: Differential refractometer
〔硬化性試験〕
 各ポリシルセスキオキサン化合物を2つに分け、その一方のポリシルセスキオキサン化合物0.8gにテトラヒドロフラン140gを加えて(固形分0.6質量%)、これを24時間静置した。次いで、テトラヒドロフランに対する不溶成分を単離し、不溶成分量(M1)を秤量した。
 次いで、もう一方のポリシルセスキオキサン化合物を140℃で24時間加熱した後、加熱後のポリシルセスキオキサン化合物0.8gにテトラヒドロフラン140gを加えて(固形分0.6質量%)、これを24時間静置した。次いで、テトラヒドロフランに対する不溶成分を単離し、不溶成分量(M2)を秤量した。
[Curability test]
Each polysilsesquioxane compound was divided into two, and 140 g of tetrahydrofuran was added to 0.8 g of one of the polysilsesquioxane compounds (solid content: 0.6% by mass), and this was allowed to stand for 24 hours. Next, the insoluble component in tetrahydrofuran was isolated and the amount of the insoluble component (M1) was weighed.
Next, after heating the other polysilsesquioxane compound at 140° C. for 24 hours, 140 g of tetrahydrofuran was added to 0.8 g of the polysilsesquioxane compound after heating (solid content: 0.6% by mass). was allowed to stand for 24 hours. Next, the insoluble component in tetrahydrofuran was isolated and the amount of the insoluble component (M2) was weighed.
〔屈折率測定〕
 多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、ポリシルセスキオキサン化合物(液状)の屈折率(nD)を測定した。
[Refractive index measurement]
Using a multi-wavelength Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2), the refractive index (nD) of the polysilsesquioxane compound (liquid) was measured at 25°C.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 これらの実験結果から、製造例1~7で得られたポリシルセスキオキサン化合物はいずれも硬化性を有するものであり、硬化性組成物の硬化性成分として利用可能であることが分かる。 From these experimental results, it can be seen that all of the polysilsesquioxane compounds obtained in Production Examples 1 to 7 have curability and can be used as a curable component of a curable composition.
 実施例、及び比較例で用いた化合物を以下に示す。
シランカップリング剤(B1):1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート
シランカップリング剤(B2):3-(トリメトキシシリル)プロピルコハク酸無水物
The compounds used in Examples and Comparative Examples are shown below.
Silane coupling agent (B1): 1,3,5-N-tris[3-(trimethoxysilyl)propyl]isocyanurate Silane coupling agent (B2): 3-(trimethoxysilyl)propylsuccinic anhydride
〔実施例1〕
 ポリシルセスキオキサン化合物(A1)100質量部に、1,3-ブチレングリコールジアセテート:1,6-ヘキサンジオールジアセテート=1:1(質量比)の混合溶剤を加え、全容を撹拌した。このものに、シランカップリング剤(B1)30質量部、シランカップリング剤(B2)3質量部を加え、全容を十分に混合、脱泡することにより、固形分濃度が85質量%の硬化性組成物を得た。
[Example 1]
A mixed solvent of 1,3-butylene glycol diacetate:1,6-hexanediol diacetate=1:1 (mass ratio) was added to 100 parts by mass of the polysilsesquioxane compound (A1), and the entire mixture was stirred. To this, 30 parts by mass of the silane coupling agent (B1) and 3 parts by mass of the silane coupling agent (B2) are added, and the entire volume is sufficiently mixed and defoamed to obtain a curability with a solid content concentration of 85% by mass. A composition was obtained.
〔実施例2、比較例1、2、7〕
 第2表又は第3表に記載の組成に変更したことを除き、実施例1と同様にして硬化性組成物を調製した。なお、第2表及び第3表中、ポリシルセスキオキサン化合物を「PSQ化合物」と省略している。
[Example 2, Comparative Examples 1, 2 and 7]
A curable composition was prepared in the same manner as in Example 1, except that the composition was changed to that shown in Table 2 or Table 3. In Tables 2 and 3, polysilsesquioxane compounds are abbreviated as "PSQ compounds."
〔実施例3〕
 ポリシルセスキオキサン化合物(A3)100質量部に、シランカップリング剤(B1)30質量部、シランカップリング剤(B2)3質量部を加え、全容を十分に混合、脱泡することにより、硬化性組成物を得た。
[Example 3]
By adding 30 parts by mass of the silane coupling agent (B1) and 3 parts by mass of the silane coupling agent (B2) to 100 parts by mass of the polysilsesquioxane compound (A3), and thoroughly mixing and defoaming the entire volume, A curable composition was obtained.
〔実施例4~6、比較例3~6〕
 第2表又は第3表に記載の組成に変更したことを除き、実施例3と同様にして硬化性組成物を調製した。
[Examples 4 to 6, Comparative Examples 3 to 6]
A curable composition was prepared in the same manner as in Example 3, except that the composition was changed to that shown in Table 2 or Table 3.
 得られた硬化性組成物について、それぞれ以下の測定、試験を行った。結果を第2表、第3表に示す。
 なお、第3表中、※1は、クラック発生により試験片が得られなかったことを表し、※2は、測定を行えるほどの接着強度を有しなかったことを表す。
The following measurements and tests were performed on the obtained curable compositions. The results are shown in Tables 2 and 3.
In Table 3, *1 indicates that no test piece was obtained due to cracking, and *2 indicates that the adhesive strength was not sufficient for measurement.
〔弾性率測定〕
 スライドガラス上に、硬化性組成物を厚さが約150μmになるように塗布した。得られた塗膜を、120℃で2時間、次いで150℃で3時間の条件で加熱硬化させて試験片を得た。
 微小表面硬度計(DUH-211S、島津製作所製)を用いて、作製した試験片について、以下の測定条件で負荷-除荷試験を行い、弾性率を算出した。
温度:25℃
試験力:10mN
負荷速度:0.142mN/s
[Elastic modulus measurement]
A curable composition was applied to a thickness of about 150 μm on a slide glass. The obtained coating film was cured by heating at 120° C. for 2 hours and then at 150° C. for 3 hours to obtain a test piece.
Using a microsurface hardness tester (DUH-211S, manufactured by Shimadzu Corporation), a load-unload test was performed on the prepared test piece under the following measurement conditions, and the elastic modulus was calculated.
Temperature: 25°C
Test force: 10mN
Load speed: 0.142mN/s
〔接着強度評価〕
 一辺の長さが2mmの正方形(面積が4mm)のシリコンチップのミラー面に、実施例及び比較例で得た硬化性組成物を、それぞれ、厚さが約2μmになるように塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、23℃に加熱したボンドテスター(デイジ社製、シリーズ4000)の測定ステージ上に30秒間放置し、被着体から100μmの高さの位置より、スピード200μm/sで接着面に対し水平方向(せん断方向)に応力をかけ、23℃における、試験片と被着体との接着力(N/4mm)を測定した。
[Adhesion strength evaluation]
The curable compositions obtained in Examples and Comparative Examples were each applied to the mirror surface of a square silicon chip with a side length of 2 mm (area of 4 mm 2 ) so as to have a thickness of about 2 μm, The coated surface was placed on an adherend (silver-plated copper plate) and pressure-bonded. Then, it was cured by heat treatment at 170° C. for 2 hours to obtain an adherend with a test piece. This adherend with the test piece is left on the measurement stage of a bond tester (manufactured by Daisy, series 4000) heated to 23 ° C. for 30 seconds, and the speed is 200 μm / s from a position of 100 μm from the adherend. A stress was applied in the horizontal direction (shear direction) to the adhesive surface at , and the adhesive strength (N/4 mm 2 ) between the test piece and the adherend was measured at 23°C.
〔耐クラック性評価〕
 スライドガラス上に、硬化性組成物を厚さが約150μmになるように塗布した。得られた塗膜を、120℃で2時間、次いで150℃で3時間の条件で加熱硬化させ、目視によりクラックの有無を確認した。この試験を、ポリシルセスキオキサン化合物ごとに4回行った。
 第2表、第3表に、(クラックがあった数/4)を示す。
[Crack resistance evaluation]
A curable composition was applied to a thickness of about 150 μm on a slide glass. The obtained coating film was cured by heating at 120° C. for 2 hours and then at 150° C. for 3 hours, and the presence or absence of cracks was visually observed. This test was performed four times for each polysilsesquioxane compound.
Tables 2 and 3 show (number of cracks/4).
〔屈折率測定〕
 多波長アッベ屈折計(株式会社アタゴ製、DR-M2)を用いて、25℃で、硬化性組成物(液状)の屈折率(nD)を測定した。
[Refractive index measurement]
The refractive index (nD) of the curable composition (liquid) was measured at 25° C. using a multi-wavelength Abbe refractometer (manufactured by Atago Co., Ltd., DR-M2).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記実施例、比較例から以下のことが分かる。
 実施例1~6で得られた硬化性組成物は、硬化性ポリシルセスキオキサン化合物(A)及びシランカップリング剤を含有するものである。このため、これらの硬化性組成物は高い屈折率を有し、また、これらの硬化性組成物の硬化物にはクラックが発生せず、かつ、優れた接着強度を示している。
 一方、比較例1で得られた硬化性組成物は、長鎖アルキル基を有しないポリシルセスキオキサン化合物を含有するものであり、この硬化性組成物の硬化物にはクラックが発生している。
 また、比較例2~7で得られた硬化性組成物は、シランカップリング剤を含有しないため、これらの硬化性組成物の硬化物は十分な接着強度を有していない。
The above examples and comparative examples reveal the following.
The curable compositions obtained in Examples 1 to 6 contain a curable polysilsesquioxane compound (A) and a silane coupling agent. Therefore, these curable compositions have a high refractive index, and cured products of these curable compositions do not crack and exhibit excellent adhesive strength.
On the other hand, the curable composition obtained in Comparative Example 1 contained a polysilsesquioxane compound having no long-chain alkyl group, and cracks occurred in the cured product of this curable composition. there is
Moreover, since the curable compositions obtained in Comparative Examples 2 to 7 do not contain a silane coupling agent, the cured products of these curable compositions do not have sufficient adhesive strength.

Claims (8)

  1.  下記(A)成分、及び(B)成分を含有する硬化性組成物。
    (A)成分:下記式(a-1)
    Figure JPOXMLDOC01-appb-C000001
    〔Rは、無置換の炭素数6~12のアリール基、又は、置換基を有する炭素数6~12のアリール基を表す。〕
    で示される繰り返し単位〔繰り返し単位(1)〕、及び、下記式(a-2)
    Figure JPOXMLDOC01-appb-C000002
    〔Rは、無置換の炭素数3~16のアルキル基を表す。〕
    で示される繰り返し単位〔繰り返し単位(2)〕を有する、硬化性ポリシルセスキオキサン化合物
    (B)成分:シランカップリング剤
    A curable composition containing the following components (A) and (B).
    (A) component: the following formula (a-1)
    Figure JPOXMLDOC01-appb-C000001
    [R 1 represents an unsubstituted aryl group having 6 to 12 carbon atoms or a substituted aryl group having 6 to 12 carbon atoms. ]
    A repeating unit represented by [repeating unit (1)], and the following formula (a-2)
    Figure JPOXMLDOC01-appb-C000002
    [R 2 represents an unsubstituted alkyl group having 3 to 16 carbon atoms. ]
    A curable polysilsesquioxane compound (B) component having a repeating unit [repeating unit (2)] represented by: silane coupling agent
  2.  (A)成分中の繰り返し単位(1)の量が、繰り返し単位(1)と繰り返し単位(2)の合計量に対して、50mol%以上、95mol%未満である、請求項1に記載の硬化性組成物。 2. Curing according to claim 1, wherein the amount of repeating unit (1) in component (A) is 50 mol% or more and less than 95 mol% with respect to the total amount of repeating unit (1) and repeating unit (2). sex composition.
  3.  (A)成分中の繰り返し単位(1)と繰り返し単位(2)の合計量が、(A)成分の全繰り返し単位中90~100mol%である、請求項1又は2に記載の硬化性組成物。 The curable composition according to claim 1 or 2, wherein the total amount of repeating units (1) and repeating units (2) in component (A) is 90 to 100 mol% of all repeating units in component (A). .
  4.  (A)成分の質量平均分子量(Mw)が、500~10,000である、請求項1~3のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 3, wherein the weight average molecular weight (Mw) of component (A) is 500 to 10,000.
  5.  (B)成分の含有量が、(A)成分100質量部に対して、0.1~70質量部である、請求項1~4のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 4, wherein the content of component (B) is 0.1 to 70 parts by mass with respect to 100 parts by mass of component (A).
  6.  (A)成分と(B)成分の合計量が、硬化性組成物の固形分中50~100質量%である、請求項1~5のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 5, wherein the total amount of component (A) and component (B) is 50 to 100% by mass based on the solid content of the curable composition.
  7.  25℃における屈折率(nD)が、1.50~1.60である、請求項1~6のいずれかに記載の硬化性組成物。 The curable composition according to any one of claims 1 to 6, which has a refractive index (nD) at 25°C of 1.50 to 1.60.
  8.  請求項1~7のいずれかに記載の硬化性組成物が硬化して成る硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 7.
PCT/JP2022/008186 2021-03-26 2022-02-28 Curable composition and cured object WO2022202119A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508851A JPWO2022202119A1 (en) 2021-03-26 2022-02-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021054375 2021-03-26
JP2021-054375 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202119A1 true WO2022202119A1 (en) 2022-09-29

Family

ID=83395576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008186 WO2022202119A1 (en) 2021-03-26 2022-02-28 Curable composition and cured object

Country Status (3)

Country Link
JP (1) JPWO2022202119A1 (en)
TW (1) TW202300594A (en)
WO (1) WO2022202119A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292627A (en) * 1990-11-20 1992-10-16 Dow Corning Corp Amino-functional silicone resin and composition for hair conditioning
JP2003147219A (en) * 2001-08-28 2003-05-21 Dow Corning Toray Silicone Co Ltd Flame-retardant organic resin composition
JP2003531924A (en) * 2000-02-28 2003-10-28 アドシル・エルシー Silane-based coating compositions, coated products obtained therefrom and methods of using the same
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
JP2012037866A (en) * 2010-07-16 2012-02-23 Jsr Corp Radiation-sensitive composition, protective coat, and interlayer dielectric, and method of forming the same
JP2013515276A (en) * 2009-12-21 2013-05-02 ダウ コーニング コーポレーション Method for producing flexible waveguide using alkyl-functional silsesquioxane resin
CN105647021A (en) * 2014-11-10 2016-06-08 合肥杰事杰新材料股份有限公司 Low-odor, low-volatile and scratch-resistant polypropylene composite material for automotive interiors and preparation method for composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04292627A (en) * 1990-11-20 1992-10-16 Dow Corning Corp Amino-functional silicone resin and composition for hair conditioning
JP2003531924A (en) * 2000-02-28 2003-10-28 アドシル・エルシー Silane-based coating compositions, coated products obtained therefrom and methods of using the same
JP2003147219A (en) * 2001-08-28 2003-05-21 Dow Corning Toray Silicone Co Ltd Flame-retardant organic resin composition
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
JP2013515276A (en) * 2009-12-21 2013-05-02 ダウ コーニング コーポレーション Method for producing flexible waveguide using alkyl-functional silsesquioxane resin
JP2012037866A (en) * 2010-07-16 2012-02-23 Jsr Corp Radiation-sensitive composition, protective coat, and interlayer dielectric, and method of forming the same
CN105647021A (en) * 2014-11-10 2016-06-08 合肥杰事杰新材料股份有限公司 Low-odor, low-volatile and scratch-resistant polypropylene composite material for automotive interiors and preparation method for composite material

Also Published As

Publication number Publication date
JPWO2022202119A1 (en) 2022-09-29
TW202300594A (en) 2023-01-01

Similar Documents

Publication Publication Date Title
JP6779235B2 (en) Curable composition, method of producing curable composition, cured product, method of using curable composition, and optical device
JP5744221B2 (en) Curable composition, cured product and method of using curable composition
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
TWI483995B (en) Polyorganosiloxane and encapsulation material obtained from the polyorganosiloxane and electronic device including the encapsulation material
TWI510556B (en) A hardened resin composition, and a semiconductor device using the same
JP6771258B2 (en) Curable resin composition, method for producing curable resin composition, and method for measuring tack on the surface of viscoelastic material
WO2022202119A1 (en) Curable composition and cured object
JP6830565B1 (en) Curable composition, cured product, and how to use the curable composition
JP6840901B2 (en) Curable composition, cured product, and how to use the curable composition
JP6062120B2 (en) Curable composition, cured product, method of using curable composition, and optical device
JP2021012202A (en) Curable resin composition, method for manufacturing the same and method for measuring tack on surface of viscoelastic material
WO2021060561A1 (en) Curable composition, cured product, and method for using curable composition
JP7420610B2 (en) Curable composition, cured product, and method of using the curable composition
WO2021060562A1 (en) Curable composition, cured product, and method for using curable composition
JP2022151345A (en) Curable polysilsesquioxane compound and cured product
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
JP7310047B2 (en) Curable composition, cured product, method for producing cured product, and method for using curable composition
JP2020158609A (en) Curable composition, cured product and method for using curable composition
CN113574116B (en) Curable composition, cured product, and method for using curable composition
JP6840900B2 (en) Curable composition, cured product, and how to use the curable composition
WO2021193452A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041343A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041340A1 (en) Silane compound polymer, curable composition, cured product, and method for using cured composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774917

Country of ref document: EP

Kind code of ref document: A1