WO2015041340A1 - Silane compound polymer, curable composition, cured product, and method for using cured composition - Google Patents

Silane compound polymer, curable composition, cured product, and method for using cured composition Download PDF

Info

Publication number
WO2015041340A1
WO2015041340A1 PCT/JP2014/074934 JP2014074934W WO2015041340A1 WO 2015041340 A1 WO2015041340 A1 WO 2015041340A1 JP 2014074934 W JP2014074934 W JP 2014074934W WO 2015041340 A1 WO2015041340 A1 WO 2015041340A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
silane compound
compound polymer
carbon atoms
formula
Prior art date
Application number
PCT/JP2014/074934
Other languages
French (fr)
Japanese (ja)
Inventor
秀一 中山
優美 松井
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2015041340A1 publication Critical patent/WO2015041340A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Definitions

  • the present invention relates to a silane compound polymer having a sulfur atom-containing functional group, useful as a main component of a curable composition, a curable composition containing the silane compound polymer, and a cured product obtained by curing the composition.
  • the present invention relates to a method of using the composition as an optical element adhesive or an optical element sealant.
  • a curable composition has been used as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealing agent when producing an optical element sealing body.
  • the optical element include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit.
  • LD semiconductor laser
  • LED light emitting diode
  • blue and white light optical elements having a shorter peak emission wavelength have been developed and widely used. Such a light emitting element with a short peak wavelength of light emission has been dramatically increased in brightness, and accordingly, the amount of heat generated by the optical element tends to be further increased.
  • Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a polysilsesquioxane compound as a main component.
  • a polysilsesquioxane compound as a main component.
  • the cured product of the composition for optical element fixing materials mainly composed of the polysilsesquioxane compound described in Patent Documents 1 to 3 may have difficulty in maintaining sufficient adhesive strength. It was. Therefore, development of the curable composition from which the hardened
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A
  • the present invention was made in view of the situation of such prior art, and is useful as a main component of a curable composition, containing a silane compound polymer having a sulfur atom-containing functional group, the silane compound polymer, Provided are a curable composition from which a cured product having excellent adhesiveness can be obtained, a cured product obtained by curing the composition, and a method of using the composition as an adhesive for optical elements or an encapsulant for optical elements. This is the issue.
  • the present inventors have intensively studied to solve the above problems.
  • the curable composition containing a specific silane compound polymer having a sulfur atom-containing functional group is extremely excellent in adhesiveness even if it does not contain other additives. It discovered that it became a hardened
  • silane compound polymers [1] to [10], curable compositions [11] to [12], cured products [13] and [14], [15], [15] The method of using the curable composition of 16] is provided.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X 0 represents a sulfur atom-containing functional group
  • D represents a single bond, or an unsubstituted or substituted carbon number.
  • R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group) or an unsubstituted or substituted phenyl group.
  • Z 1 represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms
  • Z 2 represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms or a halogen atom.
  • n, o, p, q, and r each independently represent 0 or a positive integer.
  • the sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
  • R ′ represents a monovalent organic group having 1 to 20 carbon atoms.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • X 0 represents a sulfur atom-containing functional group
  • D represents a single bond, or an unsubstituted or substituted carbon number.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms.
  • the sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
  • R ′ represents a monovalent organic group having 1 to 20 carbon atoms.
  • the silane compound polymer according to [6] obtained by condensing a mixture of silane compounds containing at least one of the silane compounds (2) represented by [9]
  • the molar ratio of the silane compound (1) and the silane compound (2) contained in the mixture of silane compounds [silane compound (1): silane compound (2)] is 5:95 to 80:20.
  • the silane compound polymer according to [6] having a weight average molecular weight of 1,000 to 30,000.
  • the curable composition according to [11] which is a composition for an optical element fixing material.
  • [13] A cured product obtained by curing the curable composition according to [11].
  • the cured product according to [13] which is an optical element fixing material.
  • [15] A method of using the curable composition according to [11] as an adhesive for an optical element fixing material.
  • the silane compound polymer of the present invention is useful as a main component of curable compositions such as optical element adhesives and optical element sealants.
  • curable compositions such as optical element adhesives and optical element sealants.
  • cured material which is extremely excellent in adhesiveness can be obtained.
  • the curable composition of this invention can be used when forming an optical element fixing material, and can be used especially suitably as an adhesive for optical elements and an encapsulant for optical elements.
  • silane compound polymer of the present invention is a silane compound polymer represented by the formula (a-1) (hereinafter sometimes referred to as “silane compound polymer (A)”) or the above.
  • a silane compound polymer obtained by a condensation reaction using at least one silane compound (1) represented by the formula (1) as a monomer (hereinafter, sometimes referred to as “silane compound polymer (A ′)”). is there.
  • silane compound polymer (A) is a silane compound polymer represented by the following formula (a-1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and n-pentyl. Group, n-hexyl group and the like.
  • R 1 is preferably a hydrogen atom.
  • X 0 represents a sulfur atom-containing functional group.
  • the sulfur atom-containing functional group is not particularly limited as long as it is an organic group containing a sulfur atom.
  • the group shown by following formula (i) or formula (ii), or group derived from these groups is mentioned.
  • the “group derived from these groups” means a group formed by a reaction of the group represented by the formula (i) or the formula (ii) by a side reaction in producing the silane compound polymer.
  • R ′ represents a monovalent organic group having 1 to 20 carbon atoms.
  • the monovalent organic group having 1 to 20 carbon atoms is not particularly limited as long as —CO—R ′ can function as a protecting group.
  • Examples of the substituent of the unsubstituted or substituted phenyl group of R ′ include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group; a fluorine atom, a chlorine atom, and a bromine atom Halogen atoms such as alkoxy groups such as methoxy groups and ethoxy groups.
  • R ′ is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • the X 0, as the sulfur-containing functional group, a group represented by the formula (i) are particularly preferred.
  • D represents a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which is unsubstituted or has a substituent.
  • the divalent hydrocarbon group having 1 to 20 carbon atoms include alkylene groups having 1 to 20 carbon atoms, alkenylene groups having 2 to 20 carbon atoms, alkynylene groups having 2 to 20 carbon atoms, and arylene groups having 6 to 20 carbon atoms. , (An alkylene group, an alkenylene group, or an alkynylene group) and an arylene group, and a divalent group having 7 to 20 carbon atoms.
  • Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
  • Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
  • Examples of the alkynylene group having 2 to 20 carbon atoms include an ethynylene group and a propynylene group.
  • Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
  • alkylene groups having 1 to 20 carbon atoms, alkenylene groups having 2 to 20 carbon atoms, and alkynylene groups having 2 to 20 carbon atoms include halogen atoms such as fluorine atoms and chlorine atoms; methoxy groups, ethoxy groups Alkoxy groups such as a group; alkoxycarbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group; and the like.
  • substituents for the arylene group having 6 to 20 carbon atoms include nitro groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; alkyl groups such as methyl groups and ethyl groups; alkoxy groups such as methoxy groups and ethoxy groups Alkylthio groups such as a methylthio group and an ethylthio group; These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
  • the divalent group consisting of a combination of an unsubstituted or substituted group (an alkylene group, an alkenylene group, or an alkynylene group) and an unsubstituted or substituted arylene group includes the aforementioned unsubstituted or substituted group (alkylene group).
  • Group, an alkenylene group, or an alkynylene group) and at least one kind of the unsubstituted or substituted arylene group are connected in series. Specific examples include groups represented by the following formula.
  • D is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and a methylene group or an ethylene group, because a cured product having higher adhesion can be obtained. Is particularly preferred.
  • R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group), or an unsubstituted or substituted phenyl group.
  • alkyl group having 1 to 20 carbon atoms of R 2 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group. N-hexyl group, n-octyl group, isooctyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like.
  • Examples of the substituent of the alkyl group having 1 to 20 carbon atoms having a substituent of R 2 include alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group; phenyl group, 4-methylphenyl group, 3-methoxy Phenyl groups, 2,4-dichlorophenyl groups, 1-naphthyl groups, 2-naphthyl groups and other unsubstituted or substituted aryl groups; fluorine atoms, chlorine atoms and other halogen atoms; cyano groups; acetoxy groups, benzoyl groups, etc.
  • Examples of the substituent of the phenyl group having a substituent of R 2 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group; alkoxy groups such as methoxy group and ethoxy group; fluorine Examples thereof include halogen atoms such as atoms and chlorine atoms.
  • R 2 is preferably an alkyl group having 1 to 20 carbon atoms or an unsubstituted or substituted phenyl group, more preferably an alkyl group having 1 to 6 carbon atoms or an unsubstituted or substituted phenyl group.
  • An alkyl group having 1 to 6 carbon atoms or a phenyl group is particularly preferable.
  • Z 1 represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.
  • the alkoxy group having 1 to 10 carbon atoms of Z 1 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a t-butoxy group, a pentyloxy group, a hexyloxy group, and an octyloxy group. It is done.
  • Z 1 is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • Z 2 represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • the alkoxy group having 1 to 10 carbon atoms of Z 2 include the same as those shown as the alkoxy group having 1 to 10 carbon atoms of Z 1 .
  • the halogen atom for Z 2 include a chlorine atom and a bromine atom.
  • Z 2 is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • n represents a positive integer.
  • n, o, p, q, and r each independently represent 0 or a positive integer. Of these, n is preferably a positive integer.
  • n is preferably a positive integer.
  • the ratio of (m + o + q) to (n + p + r) [(m + o + q) :( n + p + r)] is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and further 20:80 to 65:35 30:70 to 60:40 is particularly preferable.
  • the ratio of m to n (m: n) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and further preferably 20:80 to 65:35. 30:70 to 60:40 is particularly preferable. These values can be quantified by measuring the NMR spectrum of the silane compound polymer (A), for example.
  • the silane compound polymer (A) is a copolymer
  • the silane compound polymer (A) is any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer. It may be. Among these, a random copolymer is preferable.
  • the structure of the silane compound polymer (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
  • the weight average molecular weight (Mw) of the silane compound polymer (A) is preferably in the range of 400 to 30,000, more preferably 600 to 10,000, and particularly preferably in the range of 800 to 3,000. is there.
  • a cured product having better adhesion can be obtained.
  • a weight average molecular weight (Mw) can be calculated
  • the molecular weight distribution (Mw / Mn) of the silane compound polymer (A) is not particularly limited, but is usually 1.0 to 3.0, preferably 1.1 to 2.0. By curing the curable composition containing the silane compound polymer (A) having a molecular weight distribution within such a range, a cured product that is superior in adhesiveness can be obtained.
  • the silane compound polymer (A) of the present invention can be produced, for example, by condensing the silane compound (1) or the like as in the production method of the silane compound polymer (A ′) described later.
  • silane compound polymer (A) is obtained by condensation (reaction) as in the production method of the silane compound polymer (A ′) described later, dehydration and / or dealcoholization of OR 3 of the silane compound (1)
  • the portion that was not left remains in the silane compound polymer (A). That is, when there is one remaining OR 3 , in the formula (a-1), (CHR 1 X 0 -D-SiZ 1 O 2/2 ) remains, and two remaining OR 3 In some cases, it remains as (CHR 1 X 0 -D-SiZ 1 2 O 1/2 ) in the formula (a-1).
  • the portion of the OR 4 or X 1 that has not been dehydrated and / or dealcoholized remains in the silane compound polymer (A). That is, when the remaining OR 4 or X 1 is 1, in formula (a-1), it remains as (R 2 SiZ 2 O 2/2 ), and the remaining OR 4 or X 1 is two. In some cases, it remains as (R 2 SiZ 2 2 O 1/2 ) in formula (a-1).
  • the silane compound polymer (A ′) is a condensation product using at least one silane compound (1) represented by the formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3 as a monomer. It is a silane compound polymer obtained by reaction.
  • the silane compound (1) is a compound represented by the formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3 .
  • R 1 , X 0 and D represent the same meaning as described above.
  • R 3 represents an alkyl group having 1 to 10 carbon atoms. OR 3 may be the same or different.
  • Examples of the alkyl group having 1 to 10 carbon atoms of R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group. And n-hexyl group.
  • examples of the silane compound in which X 0 is a group represented by the formula (i) include mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltri Mercaptoalkyltrialkoxysilanes such as methoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane Is mentioned.
  • examples of the silane compound in which X 0 is a group represented by the formula (ii) include 2-hexanoylthioethyltrimethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octa Noylthioethyltrimethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltrimethoxysilane, 2-decanoylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-hexa Alkanoylthio such as noylthiopropyltriethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoy
  • the silane compound (1) is preferably a silane compound in which X 0 is a group represented by the formula (i) because a cured product having better adhesiveness can be obtained.
  • the silane compound polymer (A ′) includes at least one of the silane compounds (1) and a silane compound (2) represented by the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v More preferred are those obtained by condensing a mixture of silane compounds containing at least one of the above. By curing the curable composition containing the silane compound polymer (A ′) obtained by condensing such a mixture, a cured product having better adhesion can be obtained.
  • “condensation” is used in a broad concept including hydrolysis and polycondensation reactions.
  • the silane compound (2) is a compound represented by the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v .
  • R 2 represents the same meaning as described above.
  • R 4 represents the same alkyl group having 1 to 10 carbon atoms as R 3
  • X 1 represents a halogen atom such as a chlorine atom or a bromine atom
  • v represents an integer of 0 to 3.
  • OR 4 may be the same or different.
  • (3-v) is 2 or more, X 1 may be the same or different.
  • silane compound (2) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane, chloromethyltrimethoxysilane, bromomethyltriethoxysilane, 2- Chloroethyltripropoxysilane, 2-bromoethyltributoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltrimeth
  • Phenyltrialkoxysilane compounds having a group Phenylhalogenodialkoxysilane compounds having no substituent or a substituent, such as phenylchlorodimethoxysilane, phenylchloromethoxyethoxysilane, and phenylchlorodiethoxysilane; Phenyldihalogenoalkoxysilane compounds having no substituent or a substituent, such as phenyldichloromethoxysilane and phenyldichloroethoxysilane; Ph
  • silane compounds (2) can be used singly or in combination of two or more.
  • the silane compound (2) is preferably an unsubstituted or substituted alkyltrialkoxysilane compound having 1 to 6 carbon atoms, or an unsubstituted or substituted phenyltrialkoxysilane compound.
  • the condensation reaction may be performed using only the silane compound (1), or the condensation reaction using a mixture of the silane compound (1) and the silane compound (2). May be performed. Further, the condensation reaction may be carried out by further using other silane compounds within the range not impairing the object of the present invention, but it is preferable not to use a silane compound other than the silane compound (1) and the silane compound (2). .
  • the molar ratio of the silane compound (1) and the silane compound (2) contained in the mixture composed of the silane compound (1) and the silane compound (2) [Silane compound (1): the silane compound (2) is cured with better adhesion. From the viewpoint of obtaining a product, it is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, still more preferably 20:80 to 65:35, and particularly preferably 30:70 to 60:40.
  • the method for condensing the silane compound (1) and the like is not particularly limited, and examples thereof include a method of dissolving a silane compound such as the silane compound (1) in a solvent, adding a predetermined amount of catalyst, and stirring at a predetermined temperature. .
  • the catalyst used may be either an acid catalyst or a base catalyst.
  • the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, and trifluoroacetic acid; It is done.
  • Base catalysts include trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2]
  • Organic bases such as octane and imidazole;
  • Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide;
  • Metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide, and potassium t-butoxide Alkoxides; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide;
  • metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; carbonated water And the like are; sodium, metal hydrogen carbonates such as potassium hydrogen carbonate
  • the amount of catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound.
  • the solvent to be used can be appropriately selected according to the type of the silane compound.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone; methyl And alcohols such as alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol and t-butyl alcohol.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate
  • ketones such as acetone, methyl ethyl ket
  • the amount of the solvent used is such that the total molar amount of the silane compound per liter of solvent is usually 0.1 mol to 10 mol, preferably 0.5 mol to 10 mol.
  • the temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
  • the target silane compound polymer can be obtained by performing summation and removing the salt produced by filtration or washing with water.
  • the weight average molecular weight (Mw) of the silane compound polymer (A ′) is preferably in the range of 400 to 30,000, more preferably in the range of 600 to 10,000, from the viewpoint of obtaining a cured product superior in adhesiveness. Particularly preferably in the range of 800 to 3,000.
  • the molecular weight distribution (Mw / Mn) of the silane compound polymer (A ′) is not particularly limited, but it is usually 1.0 to 3.0, preferably 1.1 to 3.0 from the viewpoint of obtaining a cured product having better adhesion. The range is 2.0.
  • silane compound polymer (A) or the silane compound polymer (A ′) is a polymer having a ladder structure
  • the silane compound polymer (A) or the silane compound polymer (A ′) is present in the molecule.
  • R 1 , R 2 , D, and X 0 represent the same meaning as described above
  • the molar ratio of [R 1 —CH (X 0 ) —D]: [R 2 ] 5: 95 to 80:20 is preferable, 10:90 to 70:30 is more preferable, and 20:80 to 65: 35 is more preferable, and 30:70 to 60:40 is particularly preferable.
  • the silane compound polymer (A) and the silane compound polymer (A ′) may have one or more repeating units represented by (i), (ii), and (iii), respectively. It may be.
  • the second of the present invention is a curable composition containing the silane compound polymer of the present invention.
  • the curable composition of the present invention preferably contains the silane compound polymer of the present invention as a main component. “Containing as a main component” means containing one or more of the silane compound polymers of the present invention in an amount of 50% by mass or more based on the entire curable composition.
  • the content of the silane compound polymer of the present invention is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more with respect to the entire curable composition.
  • the upper limit of the content of the silane compound polymer of the present invention is not particularly limited, and the curable composition of the present invention comprises the silane compound polymer of the present invention (the content of the silane compound polymer of the present invention is 100% by mass). ).
  • the curable composition of the present invention contains other additive components
  • examples of the other additive components include antioxidants, ultraviolet absorbers, light stabilizers, and diluents.
  • An antioxidant is added to prevent oxidative degradation during heating.
  • examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.
  • Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
  • sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate.
  • antioxidants can be used alone or in combination of two or more.
  • the usage-amount of antioxidant is 10 mass% or less normally with respect to (A) component (or (A ') component).
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types. The usage-amount of a ultraviolet absorber is 10 mass% or less normally with respect to (A) component (or (A ') component).
  • the light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like.
  • light stabilizers can be used alone or in combination of two or more.
  • the usage-amount of a light stabilizer is 10 mass% or less normally with respect to (A) component (or (A ') component).
  • a diluent is added in order to adjust the viscosity of the curable composition.
  • the diluent include glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, and polypropylene glycol diglycidyl ether.
  • Examples include ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like. These diluents can be used alone or in combination of two or more.
  • the curable composition of the present invention is obtained, for example, by blending the above-mentioned (A) (or (A ′) component) and other components at a predetermined ratio if desired, and mixing and defoaming by a known method. be able to.
  • curable composition of the present invention obtained as described above, a cured product having a high adhesive force over a long period of time even when irradiated with high energy light or placed in a high temperature state.
  • a curable composition containing a silane compound polymer obtained using 2-cyanoethyltrimethoxysilane or the like as a raw material gives a cured product having excellent adhesion.
  • 2-cyanoethyltrimethoxysilane and the like are low in toxicity, their use may be restricted because they are designated as deleterious substances.
  • the curable composition of the present invention contains a silane compound polymer obtained without using the raw materials specified for such deleterious substances, but gives a cured product having extremely excellent adhesiveness. .
  • the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
  • the curable composition of the present invention can be suitably used as an optical element fixing composition. .
  • cured material 3rd of this invention is a hardened
  • Heat curing is mentioned as a method of hardening the curable composition of this invention.
  • the heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the cured product of the present invention has excellent adhesiveness.
  • the cured product of the present invention is excellent in adhesiveness even if it is obtained by curing a curable composition not containing an additive such as a silane coupling agent. Therefore, when producing a cured product using the silane compound polymer of the present invention, if necessary, the step of adding an additive to the silane compound polymer can be omitted. It can be obtained efficiently.
  • the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, and the coated surface is placed on the adherend and pressure-bonded, and then heated and cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 ⁇ m high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
  • a predetermined temperature for example, 23 ° C., 100 ° C.
  • the adhesive strength of the cured product is preferably 50 N / 2 mm ⁇ or more at 23 ° C., and more preferably 100 N / 2 mm ⁇ or more. Moreover, it is preferable that the adhesive force of hardened
  • the cured product of the present invention can solve problems related to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element, and therefore can be suitably used as an optical element fixing material.
  • it is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, a sealing material and the like.
  • the fourth aspect of the present invention is a method of using the curable composition of the present invention as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealant. It is.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the curable composition of this invention can be used conveniently as an adhesive agent for optical elements.
  • the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate), followed by pressure bonding. Then, the method of making it heat-cure and adhere
  • Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals , Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate polymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, And synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, and glass epoxy resin;
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of this invention can be used suitably as a sealing agent of an optical element sealing body.
  • a method of using the curable composition of the present invention as an encapsulant for optical elements for example, the composition is molded into a desired shape to obtain a molded body containing the optical element, and then heated.
  • cure are mentioned.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical element sealing body uses the curable composition of the present invention, an optical element having a short peak wavelength of 400 to 490 nm, such as white or blue light emitting LED, is used.
  • an optical element having a short peak wavelength of 400 to 490 nm such as white or blue light emitting LED, is used.
  • the adhesiveness is not easily lowered by heat or light.
  • the weight average molecular weight (Mw) of the silane compound polymer obtained in the following examples was a standard polystyrene conversion value, and was measured using the following apparatus and conditions.
  • IR spectrum of the silane compound polymer obtained in the production example was measured using the following apparatus. Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer)
  • Example 1 In a 500 ml eggplant-shaped flask, 26.77 g (135 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd., the same applies below) and 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name “KBM-”) 803 ", the same below) 2.95 g (15 mmol), and 120 g of acetone and 30 g of distilled water as the solvent were added, and the contents were stirred and phosphoric acid (manufactured by Kanto Chemical Co., Ltd. And 0.15 g (1.5 mmol) was added, and stirring was continued at 25 ° C. for another 16 hours.
  • phenyltrimethoxysilane manufactured by Tokyo Chemical Industry Co., Ltd., the same applies below
  • 3-mercaptopropyltrimethoxysilane manufactured by Shin-Etsu Chemical Co., Ltd.
  • silane compound polymer (A1) The weight average molecular weight (Mw) of the silane compound polymer (A1) was 1,200. IR spectrum data of the silane compound polymer (A1) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , S—H: (Cannot be detected because the amount of repeating units derived from 3-mercaptopropyltrimethoxysilane is small)
  • Example 2 In Example 1, the amount of phenyltrimethoxysilane used was 22.31 g (112.5 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 7.36 g (37.5 mmol). Similarly, a silane compound polymer (A2) was obtained. The weight average molecular weight (Mw) of the silane compound polymer (A2) was 2,700. IR spectrum data of the silane compound polymer (A2) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , S—H: 2567 cm ⁇ 1
  • Example 3 In Example 1, the amount of phenyltrimethoxysilane used was 14.87 g (75.0 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 14.72 g (75.0 mmol). Similarly, a silane compound polymer (A3) was obtained. The weight average molecular weight (Mw) of the silane compound polymer (A3) was 1,700. In addition, IR spectrum data of the silane compound polymer (A3) is shown below. Si—Ph: 699 cm ⁇ 1 , 741 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , S—H: 2567 cm ⁇ 1
  • Example 4 Example 1 was the same as Example 1 except that the amount of phenyltrimethoxysilane used was 29.45 g (148.5 mmol) and the amount of 3-mercaptopropyltrimethoxysilane used was 0.29 g (1.5 mmol). Similarly, a silane compound polymer (A4) was obtained. The weight average molecular weight (Mw) of the silane compound polymer (A4) was 900. In addition, IR spectrum data of the silane compound polymer (A4) is shown below.
  • Example 5 In Example 1, the amount of phenyltrimethoxysilane used was 28.26 g (142.5 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 1.47 g (7.5 mmol). Similarly, a silane compound polymer (A5) was obtained. The weight average molecular weight (Mw) of the silane compound polymer (A5) was 900. Moreover, IR spectrum data of a silane compound polymer (A5) are shown below.
  • Example 6 The silane compound polymer (A6) was prepared in the same manner as in Example 1 except that phenyltrimethoxysilane was not used and 29.45 g (150.0 mmol) of 3-mercaptopropyltrimethoxysilane was used. Obtained. The weight average molecular weight (Mw) of the silane compound polymer (A6) was 1800. In addition, IR spectrum data of the silane compound polymer (A6) is shown below. Si—O: 1132 cm ⁇ 1 , S—H: 2567 cm ⁇ 1
  • Example 7 Example 1 was the same as Example 1 except that phenyltrimethoxysilane was used in an amount of 7.43 g (37.5 mmol) and 3-mercaptopropyltrimethoxysilane was used in an amount of 22.09 g (112.5 mmol). Similarly, a silane compound polymer (A7) was obtained. The weight average molecular weight (Mw) of the silane compound polymer (A7) was 1100. In addition, IR spectrum data of the silane compound polymer (A7) is shown below. Si—Ph: 699 cm ⁇ 1 , 741 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , S—H: 2567 cm ⁇ 1
  • the reaction solution was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added to the concentrate, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation.
  • silane compound polymer (A8) The weight average molecular weight (Mw) of the silane compound polymer (A8) was 1,900. IR spectrum data of the silane compound polymer (A8) are shown below. Si—Ph: 698 cm ⁇ 1 , 740 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , —CN: 2259 cm ⁇ 1
  • the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain 14.7 g of a silane compound polymer (A9).
  • MEK methyl ethyl ketone
  • the weight average molecular weight (Mw) of the silane compound polymer (A9) was 2,700.
  • IR spectrum data of the silane compound polymer (A9) is shown below. Si—Ph: 699 cm ⁇ 1 , 741 cm ⁇ 1 , Si—O: 1132 cm ⁇ 1 , —CO: 1738 cm ⁇ 1
  • the weight average molecular weight (Mw) of the silane compound polymer (A10) was 3,000.
  • IR spectrum data of the silane compound polymer (A10) is shown below. Si-Ph: 700cm -1, 741cm -1, Si-O: 1132cm -1, -Cl: 648cm -1
  • the test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 ⁇ m from the adherend. From the position, stress was applied in the horizontal direction (shear direction) to the bonded surface at a speed of 200 ⁇ m / s, and the adhesive force (N / 2 mm ⁇ ) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .

Abstract

The present invention is: a silane compound copolymer represented by formula (a-1) [In the formula, R1 represents a hydrogen atom or a C1-6 alkyl group; X0 represents a sulfur atom-containing functional group; D represents a C1-20 bivalent organic group having a single bond, or an unsubstituted or substituted group; R2 represents a C1-20 alkyl group having an unsubstituted or substituted group (excluding a sulfur atom-containing functional group), or a phenyl group having an unsubstituted or substituted group; Z1 represents a hydroxyl group or a C1-10 alkoxy group; Z2 represents a hydroxyl group, a C1-10 alkoxy group, or a halogen atom; m represents a positive integer; and n, o, p, q, and r each independently represents a 0 or a positive integer.]; a curable composition containing the aforementioned silane compound polymer; a cured product obtained by curing said composition; and a method for using said composition as an adhesive agent for an optical element or a sealing agent for an optical element. Formula (a-1) is (CHR1X0-D-SiO3/2)m(R2SiO3/2)n(CHR1X0-D-SiZ1O2/2)o(R2SiZ2O2/2)p(CHR1X0-D-SiZ1 2O1/2)q(R2SiZ2 2O1/2)r.

Description

シラン化合物重合体、硬化性組成物、硬化物および硬化性組成物の使用方法Silane compound polymer, curable composition, cured product, and method of using curable composition
 本発明は、硬化性組成物の主成分として有用な、硫黄原子含有官能基を有するシラン化合物重合体、このシラン化合物重合体を含有する硬化性組成物、この組成物を硬化してなる硬化物、並びに、前記組成物を光素子用接着剤又は光素子用封止剤として使用する方法に関する。 The present invention relates to a silane compound polymer having a sulfur atom-containing functional group, useful as a main component of a curable composition, a curable composition containing the silane compound polymer, and a cured product obtained by curing the composition. In addition, the present invention relates to a method of using the composition as an optical element adhesive or an optical element sealant.
 近年、硬化性組成物は、光素子封止体を製造する際に、光素子用接着剤や光素子用封止剤等の光素子固定材用組成物として利用されてきている。
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。
In recent years, a curable composition has been used as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealing agent when producing an optical element sealing body.
Examples of the optical element include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit. In recent years, blue and white light optical elements having a shorter peak emission wavelength have been developed and widely used. Such a light emitting element with a short peak wavelength of light emission has been dramatically increased in brightness, and accordingly, the amount of heat generated by the optical element tends to be further increased.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間晒されることで、劣化して、クラックが発生したり、接着力が低下したりするという問題が生じた。 However, with the recent increase in brightness of optical elements, the cured product of the composition for optical element fixing materials deteriorates due to exposure to higher energy light and higher temperature heat generated from the optical element for a long time. As a result, problems such as generation of cracks and decrease in adhesive strength occurred.
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が提案されている。
 しかしながら、特許文献1~3に記載されたポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物の硬化物であっても、十分な接着力を保つのが困難な場合があった。
 従って、接着性により優れる硬化物が得られる硬化性組成物の開発が切望されている。
In order to solve this problem, Patent Documents 1 to 3 propose compositions for optical element fixing materials containing a polysilsesquioxane compound as a main component.
However, even the cured product of the composition for optical element fixing materials mainly composed of the polysilsesquioxane compound described in Patent Documents 1 to 3 may have difficulty in maintaining sufficient adhesive strength. It was.
Therefore, development of the curable composition from which the hardened | cured material excellent in adhesiveness is obtained is earnestly desired.
特開2004-359933号公報JP 2004-359933 A 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、硬化性組成物の主成分として有用な、硫黄原子含有官能基を有するシラン化合物重合体、このシラン化合物重合体を含有する、接着性に優れる硬化物が得られる硬化性組成物、この組成物を硬化してなる硬化物、並びに、前記組成物を光素子用接着剤又は光素子用封止剤として使用する方法を提供することを課題とする。 The present invention was made in view of the situation of such prior art, and is useful as a main component of a curable composition, containing a silane compound polymer having a sulfur atom-containing functional group, the silane compound polymer, Provided are a curable composition from which a cured product having excellent adhesiveness can be obtained, a cured product obtained by curing the composition, and a method of using the composition as an adhesive for optical elements or an encapsulant for optical elements. This is the issue.
 本発明者らは上記課題を解決すべく鋭意研究を重ねた。その結果、以下に述べるように、硫黄原子含有官能基を有する特定のシラン化合物重合体を含有する硬化性組成物は、他の添加剤等を含有しないものであっても、接着性に極めて優れる硬化物となることを見出し、本発明を完成するに至った。 The present inventors have intensively studied to solve the above problems. As a result, as described below, the curable composition containing a specific silane compound polymer having a sulfur atom-containing functional group is extremely excellent in adhesiveness even if it does not contain other additives. It discovered that it became a hardened | cured material and came to complete this invention.
 かくして本発明によれば、下記〔1〕~〔10〕のシラン化合物重合体、〔11〕~〔12〕の硬化性組成物、〔13〕、〔14〕の硬化物、〔15〕、〔16〕の硬化性組成物の使用方法が提供される。 Thus, according to the present invention, the following silane compound polymers [1] to [10], curable compositions [11] to [12], cured products [13] and [14], [15], [15] The method of using the curable composition of 16] is provided.
〔1〕下記式(a-1)で示されるシラン化合物重合体。 [1] A silane compound polymer represented by the following formula (a-1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Xは、硫黄原子含有官能基を表し、Dは、単結合、又は無置換若しくは置換基を有する炭素数1~20の2価の炭化水素基を表す。Rは、無置換若しくは置換基(ただし硫黄原子含有官能基を除く)を有する炭素数1~20のアルキル基又は無置換若しくは置換基を有するフェニル基を表す。Zは、水酸基又は炭素数1~10のアルコキシ基を表し、Zは、水酸基、炭素数1~10のアルコキシ基又はハロゲン原子を表す。mは正の整数を表す。n、o、p、q、rはそれぞれ独立して、0または正の整数を表す。〕
〔2〕Xの硫黄原子含有官能基が、下記式(i)若しくは式(ii)
[Wherein, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X 0 represents a sulfur atom-containing functional group, and D represents a single bond, or an unsubstituted or substituted carbon number. Represents a divalent hydrocarbon group of 1 to 20; R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group) or an unsubstituted or substituted phenyl group. Z 1 represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms, and Z 2 represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms or a halogen atom. m represents a positive integer. n, o, p, q, and r each independently represent 0 or a positive integer. ]
[2] The sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
〔式中、R’は、炭素数1~20の1価の有機基を表す。〕
で示される基、又はこれらの基から誘導される基である、〔1〕に記載のシラン化合物重合体。
〔3〕nが正の整数である、〔1〕に記載のシラン化合物重合体。
〔4〕(m+o+q)と(n+p+r)の割合〔(m+o+q):(n+p+r)〕が、5:95~80:20である、〔1〕に記載のシラン化合物重合体。
〔5〕重量平均分子量が、1,000~30,000である、〔1〕に記載のシラン化合物重合体。
〔6〕式(1):R-CH(X)-D-Si(OR
〔式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Xは、硫黄原子含有官能基を表し、Dは、単結合、又は無置換若しくは置換基を有する炭素数1~20の2価の炭化水素基を表す。Rは、炭素数1~10のアルキル基を表す。〕
で示されるシラン化合物(1)の少なくとも一種を単量体として用いる縮合反応により得られるシラン化合物重合体。
〔7〕Xの硫黄原子含有官能基が、下記式(i)又は式(ii)
[Wherein, R ′ represents a monovalent organic group having 1 to 20 carbon atoms. ]
The silane compound polymer according to [1], which is a group represented by the formula: or a group derived from these groups.
[3] The silane compound polymer according to [1], wherein n is a positive integer.
[4] The silane compound polymer according to [1], wherein a ratio [(m + o + q) :( n + p + r)] of (m + o + q) to (n + p + r) is 5:95 to 80:20.
[5] The silane compound polymer according to [1], having a weight average molecular weight of 1,000 to 30,000.
[6] Formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3
[Wherein, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X 0 represents a sulfur atom-containing functional group, and D represents a single bond, or an unsubstituted or substituted carbon number. Represents a divalent hydrocarbon group of 1 to 20; R 3 represents an alkyl group having 1 to 10 carbon atoms. ]
A silane compound polymer obtained by a condensation reaction using at least one of the silane compounds (1) represented by the formula:
[7] The sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
〔式中、R’は、炭素数1~20の1価の有機基を表す。〕
で示される基である、〔6〕に記載のシラン化合物重合体。
〔8〕前記シラン化合物(1)の少なくとも一種、及び
式(2):RSi(OR(X3-v
〔式中、Rは、無置換若しくは置換基(ただし硫黄原子含有官能基を除く)を有する炭素数1~20のアルキル基、又は無置換若しくは置換基を有するフェニル基を表し、Rは、炭素数1~10のアルキル基を表し、Xは、ハロゲン原子を表し、vは0~3の整数を表す。〕
で示されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、〔6〕に記載のシラン化合物重合体。
〔9〕前記シラン化合物の混合物に含まれるシラン化合物(1)とシラン化合物(2)のモル比〔シラン化合物(1):シラン化合物(2)〕が、5:95~80:20である、〔8〕に記載のシラン化合物重合体。
〔10〕重量平均分子量が、1,000~30,000である、〔6〕に記載のシラン化合物重合体。
〔11〕前記〔1〕~〔10〕のいずれかに記載のシラン化合物重合体を含有する硬化性組成物。
〔12〕光素子固定材用組成物である〔11〕に記載の硬化性組成物。
〔13〕前記〔11〕に記載の硬化性組成物を硬化してなる硬化物。
〔14〕光素子固定材である〔13〕に記載の硬化物。
〔15〕前記〔11〕に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔16〕前記〔11〕に記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。
[Wherein, R ′ represents a monovalent organic group having 1 to 20 carbon atoms. ]
The silane compound polymer according to [6], which is a group represented by:
[8] At least one of the silane compounds (1) and the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v
[Wherein R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group) or an unsubstituted or substituted phenyl group, and R 4 represents Represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and v represents an integer of 0 to 3. ]
The silane compound polymer according to [6], obtained by condensing a mixture of silane compounds containing at least one of the silane compounds (2) represented by
[9] The molar ratio of the silane compound (1) and the silane compound (2) contained in the mixture of silane compounds [silane compound (1): silane compound (2)] is 5:95 to 80:20. [8] The silane compound polymer according to [8].
[10] The silane compound polymer according to [6], having a weight average molecular weight of 1,000 to 30,000.
[11] A curable composition containing the silane compound polymer according to any one of [1] to [10].
[12] The curable composition according to [11], which is a composition for an optical element fixing material.
[13] A cured product obtained by curing the curable composition according to [11].
[14] The cured product according to [13], which is an optical element fixing material.
[15] A method of using the curable composition according to [11] as an adhesive for an optical element fixing material.
[16] A method of using the curable composition according to [11] as a sealant for an optical element fixing material.
 本発明のシラン化合物重合体は、光素子用接着剤、光素子用封止剤等の硬化性組成物の主成分として有用である。
 本発明の硬化性組成物によれば、接着性に極めて優れる硬化物を得ることができる。
 本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子用接着剤、及び光素子用封止剤として好適に使用することができる。
The silane compound polymer of the present invention is useful as a main component of curable compositions such as optical element adhesives and optical element sealants.
According to the curable composition of this invention, the hardened | cured material which is extremely excellent in adhesiveness can be obtained.
The curable composition of this invention can be used when forming an optical element fixing material, and can be used especially suitably as an adhesive for optical elements and an encapsulant for optical elements.
 以下、本発明を、1)シラン化合物重合体、2)硬化性組成物、3)硬化物、及び、4)硬化性組成物の使用方法、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing into 1) a silane compound polymer, 2) a curable composition, 3) a cured product, and 4) a method for using the curable composition.
1)シラン化合物重合体
 本発明のシラン化合物重合体は、前記式(a-1)で示されるシラン化合物重合体(以下、「シラン化合物重合体(A)」ということがある。)、又は前記式(1)で示されるシラン化合物(1)の少なくとも一種を単量体として用いる縮合反応により得られるシラン化合物重合体(以下、「シラン化合物重合体(A’)」ということがある。)である。
1) Silane Compound Polymer The silane compound polymer of the present invention is a silane compound polymer represented by the formula (a-1) (hereinafter sometimes referred to as “silane compound polymer (A)”) or the above. A silane compound polymer obtained by a condensation reaction using at least one silane compound (1) represented by the formula (1) as a monomer (hereinafter, sometimes referred to as “silane compound polymer (A ′)”). is there.
[シラン化合物重合体(A)]
 シラン化合物重合体(A)は、下記式(a-1)で示されるシラン化合物重合体である。
[Silane Compound Polymer (A)]
The silane compound polymer (A) is a silane compound polymer represented by the following formula (a-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 上記式(a-1)において、式:-(CHR-D-SiO3/2)-で表される繰り返し単位、式:-(RSiO3/2)-で表される繰り返し単位、式:-(CHR-D-SiZ2/2)-で表される繰り返し単位、式:-(RSiZ2/2)-で表される繰り返し単位、式:-(CHR-D-SiZ 1/2)-で表される繰り返し単位、及び、式:-(RSiZ 1/2)-で表される繰り返し単位は、それぞれ、下記(a11)~(a16)で表すことができる。なお(a11)~(a16)において、「-O-」は、隣接する2つのSi原子に共有されている酸素原子を表す。 In the above formula (a-1), a repeating unit represented by the formula:-(CHR 1 X 0 -D-SiO 3/2 )-, a repeating unit represented by the formula:-(R 2 SiO 3/2 )- Unit, repeating unit represented by formula: — (CHR 1 X 0 —D—SiZ 1 O 2/2 ) —, repeating unit represented by formula: — (R 2 SiZ 2 O 2/2 ) —, formula :-( CHR 1 X 0 -D-SiZ 1 2 O 1/2 )-and the repeating unit represented by the formula:-(R 2 SiZ 2 2 O 1/2 )- These can be represented by the following (a11) to (a16), respectively. In (a11) to (a16), “—O—” represents an oxygen atom shared by two adjacent Si atoms.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 本発明に用いるシラン化合物共重合体(A)において、前記式(a-1)中、m、n、o、p、q、rがそれぞれ2以上のとき、前記式(a11)~(a16)で表される繰り返し単位同士はそれぞれ、同一であっても相異なっていてもよい。 In the silane compound copolymer (A) used in the present invention, when m, n, o, p, q, and r are each 2 or more in the formula (a-1), the formulas (a11) to (a16) Each of the repeating units represented by may be the same or different.
 式(a-1)中、Rは、水素原子又は炭素数1~6のアルキル基を表す。
 Rの、炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
 これらの中でも、Rとしては水素原子が好ましい。
In formula (a-1), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Examples of the alkyl group having 1 to 6 carbon atoms of R 1 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, and n-pentyl. Group, n-hexyl group and the like.
Among these, R 1 is preferably a hydrogen atom.
 Xは、硫黄原子含有官能基を表す。
 硫黄原子含有官能基は、硫黄原子を含有する有機基であれば特に制約はない。例えば、下記式(i)若しくは式(ii)で示される基、又はこれらの基から誘導される基が挙げられる。「これらの基から誘導される基」とは、シラン化合物重合体を製造する際の副反応により、式(i)又は式(ii)で示される基が反応して生成する基を意味する。
X 0 represents a sulfur atom-containing functional group.
The sulfur atom-containing functional group is not particularly limited as long as it is an organic group containing a sulfur atom. For example, the group shown by following formula (i) or formula (ii), or group derived from these groups is mentioned. The “group derived from these groups” means a group formed by a reaction of the group represented by the formula (i) or the formula (ii) by a side reaction in producing the silane compound polymer.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、R’は、炭素数1~20の1価の有機基を表す。炭素数1~20の1価の有機基としては、-CO-R’が保護基として機能し得るものであれば特に制限されない。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等のアルキル基;無置換若しくは置換基を有するフェニル基;等が挙げられる。
 R’の、無置換若しくは置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
 R’としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。
In the formula, R ′ represents a monovalent organic group having 1 to 20 carbon atoms. The monovalent organic group having 1 to 20 carbon atoms is not particularly limited as long as —CO—R ′ can function as a protecting group. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n -An alkyl group such as an octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group and an n-dodecyl group; an unsubstituted or substituted phenyl group; and the like.
Examples of the substituent of the unsubstituted or substituted phenyl group of R ′ include alkyl groups such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group; a fluorine atom, a chlorine atom, and a bromine atom Halogen atoms such as alkoxy groups such as methoxy groups and ethoxy groups.
R ′ is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
 本発明においては、Xの、硫黄原子含有官能基としては、式(i)で示される基が特に好ましい。 In the present invention, the X 0, as the sulfur-containing functional group, a group represented by the formula (i) are particularly preferred.
 Dは、単結合、又は無置換若しくは置換基を有する炭素数1~20の2価の炭化水素基を表す。
 炭素数1~20の2価の炭化水素基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる炭素数7~20の2価の基等が挙げられる。
D represents a single bond or a divalent hydrocarbon group having 1 to 20 carbon atoms which is unsubstituted or has a substituent.
Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms include alkylene groups having 1 to 20 carbon atoms, alkenylene groups having 2 to 20 carbon atoms, alkynylene groups having 2 to 20 carbon atoms, and arylene groups having 6 to 20 carbon atoms. , (An alkylene group, an alkenylene group, or an alkynylene group) and an arylene group, and a divalent group having 7 to 20 carbon atoms.
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基等が挙げられる。
Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
Examples of the alkynylene group having 2 to 20 carbon atoms include an ethynylene group and a propynylene group.
Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
 これらの炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、及び炭素数2~20のアルキニレン基が有する置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。 The substituents of these alkylene groups having 1 to 20 carbon atoms, alkenylene groups having 2 to 20 carbon atoms, and alkynylene groups having 2 to 20 carbon atoms include halogen atoms such as fluorine atoms and chlorine atoms; methoxy groups, ethoxy groups Alkoxy groups such as a group; alkoxycarbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group; and the like.
 前記炭素数6~20のアリーレン基の置換基としては、ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基、エチルチオ基等のアルキルチオ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。
Examples of the substituent for the arylene group having 6 to 20 carbon atoms include nitro groups; halogen atoms such as fluorine atoms, chlorine atoms and bromine atoms; alkyl groups such as methyl groups and ethyl groups; alkoxy groups such as methoxy groups and ethoxy groups Alkylthio groups such as a methylthio group and an ethylthio group;
These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
 無置換若しくは置換基を有する(アルキレン基、アルケニレン基、又はアルキニレン基)と無置換若しくは置換基を有するアリーレン基との組み合わせからなる2価の基としては、前記無置換若しくは置換基を有する(アルキレン基、アルケニレン基、又はアルキニレン基)の少なくとも一種と、前記無置換若しくは置換基を有するアリーレン基の少なくとも一種とが直列に結合した基等が挙げられる。具体的には、下記式で表される基等が挙げられる。 The divalent group consisting of a combination of an unsubstituted or substituted group (an alkylene group, an alkenylene group, or an alkynylene group) and an unsubstituted or substituted arylene group includes the aforementioned unsubstituted or substituted group (alkylene group). Group, an alkenylene group, or an alkynylene group) and at least one kind of the unsubstituted or substituted arylene group are connected in series. Specific examples include groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 これらの中でも、Dとしては、より高い接着力を有する硬化物が得られることから、炭素数1~10のアルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましく、メチレン基又はエチレン基が特に好ましい。 Among these, D is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 6 carbon atoms, and a methylene group or an ethylene group, because a cured product having higher adhesion can be obtained. Is particularly preferred.
 Rは、無置換若しくは置換基(ただし硫黄原子含有官能基を除く)を有する炭素数1~20のアルキル基、又は無置換若しくは置換基を有するフェニル基を表す。 R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group), or an unsubstituted or substituted phenyl group.
 Rの炭素数1~20のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、イソオクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。 Examples of the alkyl group having 1 to 20 carbon atoms of R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group. N-hexyl group, n-octyl group, isooctyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like.
 Rの、置換基を有する炭素数1~20のアルキル基の置換基としては、メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;フェニル基、4-メチルフェニル基、3-メトキシフェニル基、2,4-ジクロロフェニル基、1-ナフチル基、2-ナフチル基等の無置換若しくは置換基を有するアリール基;フッ素原子、塩素原子等のハロゲン原子;シアノ基;アセトキシ基、ベンゾイル基等の式OGで表される基(式中、Gは水酸基の保護基を表す。);等が挙げられる。 Examples of the substituent of the alkyl group having 1 to 20 carbon atoms having a substituent of R 2 include alkoxy groups having 1 to 6 carbon atoms such as methoxy group and ethoxy group; phenyl group, 4-methylphenyl group, 3-methoxy Phenyl groups, 2,4-dichlorophenyl groups, 1-naphthyl groups, 2-naphthyl groups and other unsubstituted or substituted aryl groups; fluorine atoms, chlorine atoms and other halogen atoms; cyano groups; acetoxy groups, benzoyl groups, etc. A group represented by the formula OG: (wherein G represents a hydroxyl-protecting group); and the like.
 Rの、置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;フッ素原子、塩素原子等のハロゲン原子等が挙げられる。 Examples of the substituent of the phenyl group having a substituent of R 2 include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group and n-butyl group; alkoxy groups such as methoxy group and ethoxy group; fluorine Examples thereof include halogen atoms such as atoms and chlorine atoms.
 これらの中でも、Rは、炭素数1~20のアルキル基又は無置換若しくは置換基を有するフェニル基が好ましく、炭素数1~6のアルキル基又は無置換若しくは置換基を有するフェニル基がより好ましく、炭素数1~6のアルキル基又はフェニル基が特に好ましい。 Among these, R 2 is preferably an alkyl group having 1 to 20 carbon atoms or an unsubstituted or substituted phenyl group, more preferably an alkyl group having 1 to 6 carbon atoms or an unsubstituted or substituted phenyl group. An alkyl group having 1 to 6 carbon atoms or a phenyl group is particularly preferable.
 Zは、水酸基又は炭素数1~10のアルコキシ基を表す。
 Zの、炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられる。
 これらの中でも、Zは、水酸基又は炭素数1~6のアルコキシ基が好ましい。
Z 1 represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.
Examples of the alkoxy group having 1 to 10 carbon atoms of Z 1 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a t-butoxy group, a pentyloxy group, a hexyloxy group, and an octyloxy group. It is done.
Among these, Z 1 is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
 Zは、水酸基、炭素数1~10のアルコキシ基又はハロゲン原子を表す。
 Zの、炭素数1~10のアルコキシ基としては、Zの炭素数1~10のアルコキシ基として示したものと同様のものが挙げられる。
 Zの、ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 これらの中でも、Zは、水酸基又は炭素数1~6のアルコキシ基が好ましい。
Z 2 represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
Examples of the alkoxy group having 1 to 10 carbon atoms of Z 2 include the same as those shown as the alkoxy group having 1 to 10 carbon atoms of Z 1 .
Examples of the halogen atom for Z 2 include a chlorine atom and a bromine atom.
Among these, Z 2 is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
 mは正の整数を表す。
 n、o、p、q、rはそれぞれ独立して、0又は正の整数を表す。なかでも、nは正の整数が好ましい。nが正の整数であるシラン化合物重合体(A)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。
 (m+o+q)と(n+p+r)の割合〔(m+o+q):(n+p+r)〕は、5:95~80:20が好ましく、10:90~70:30がより好ましく、20:80~65:35がさらに好ましく、30:70~60:40が特に好ましい。(m+o+q)と(n+p+r)の割合がこのような範囲内にあるシラン化合物重合体(A)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。
 また、同様の理由により、mとnの割合(m:n)は、5:95~80:20が好ましく、10:90~70:30がより好ましく、20:80~65:35がさらに好ましく、30:70~60:40が特に好ましい。
 これらの値は、例えば、シラン化合物重合体(A)のNMRスペクトルを測定して定量することができる。
m represents a positive integer.
n, o, p, q, and r each independently represent 0 or a positive integer. Of these, n is preferably a positive integer. By curing the curable composition containing the silane compound polymer (A) in which n is a positive integer, a cured product that is superior in adhesiveness can be obtained.
The ratio of (m + o + q) to (n + p + r) [(m + o + q) :( n + p + r)] is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and further 20:80 to 65:35 30:70 to 60:40 is particularly preferable. By curing the curable composition containing the silane compound polymer (A) in which the ratio of (m + o + q) and (n + p + r) is within such a range, a cured product that is superior in adhesiveness can be obtained.
For the same reason, the ratio of m to n (m: n) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, and further preferably 20:80 to 65:35. 30:70 to 60:40 is particularly preferable.
These values can be quantified by measuring the NMR spectrum of the silane compound polymer (A), for example.
 シラン化合物重合体(A)が共重合体である場合、シラン化合物重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよい。これらの中でも、ランダム共重合体が好ましい。また、シラン化合物重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。 When the silane compound polymer (A) is a copolymer, the silane compound polymer (A) is any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer. It may be. Among these, a random copolymer is preferable. The structure of the silane compound polymer (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
 シラン化合物重合体(A)の重量平均分子量(Mw)は、好ましくは400~30,000の範囲であり、より好ましくは600~10,000であり、特に好ましくは800~3,000の範囲である。このような範囲内の重量平均分子量を有するシラン化合物重合体(A)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。
 重量平均分子量(Mw)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる(以下にて同じである。)。
The weight average molecular weight (Mw) of the silane compound polymer (A) is preferably in the range of 400 to 30,000, more preferably 600 to 10,000, and particularly preferably in the range of 800 to 3,000. is there. By curing the curable composition containing the silane compound polymer (A) having a weight average molecular weight within such a range, a cured product having better adhesion can be obtained.
A weight average molecular weight (Mw) can be calculated | required as a standard polystyrene conversion value by the gel permeation chromatography (GPC) which uses tetrahydrofuran (THF) as a solvent, for example (it is the same below).
 シラン化合物重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~3.0、好ましくは1.1~2.0の範囲である。このような範囲内の分子量分布を有するシラン化合物重合体(A)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。 The molecular weight distribution (Mw / Mn) of the silane compound polymer (A) is not particularly limited, but is usually 1.0 to 3.0, preferably 1.1 to 2.0. By curing the curable composition containing the silane compound polymer (A) having a molecular weight distribution within such a range, a cured product that is superior in adhesiveness can be obtained.
 本発明のシラン化合物重合体(A)は、例えば、後述するシラン化合物重合体(A’)の製造法のように、シラン化合物(1)等を縮合させることで製造することができる。 The silane compound polymer (A) of the present invention can be produced, for example, by condensing the silane compound (1) or the like as in the production method of the silane compound polymer (A ′) described later.
 シラン化合物重合体(A)を、後述するシラン化合物重合体(A’)の製造法のように縮合(反応)により得る際、シラン化合物(1)のORのうち、脱水及び/又は脱アルコールされなかった部分は、シラン化合物重合体(A)中に残存する。すなわち、残存するORが1つである場合は、前記式(a-1)において、(CHR-D-SiZ2/2)として残存し、残存するORが2つである場合は、式(a-1)において、(CHR-D-SiZ 1/2)として残存する。
 シラン化合物(2)についても同様に、OR又はXのうち、脱水及び/又は脱アルコールされなかった部分は、シラン化合物重合体(A)中に残存する。すなわち、残存するOR又はXが1つである場合は、式(a-1)において、(RSiZ2/2)として残存し、残存するOR又はXが2つである場合は、式(a-1)において、(RSiZ 1/2)として残存する。
When the silane compound polymer (A) is obtained by condensation (reaction) as in the production method of the silane compound polymer (A ′) described later, dehydration and / or dealcoholization of OR 3 of the silane compound (1) The portion that was not left remains in the silane compound polymer (A). That is, when there is one remaining OR 3 , in the formula (a-1), (CHR 1 X 0 -D-SiZ 1 O 2/2 ) remains, and two remaining OR 3 In some cases, it remains as (CHR 1 X 0 -D-SiZ 1 2 O 1/2 ) in the formula (a-1).
Similarly for the silane compound (2), the portion of the OR 4 or X 1 that has not been dehydrated and / or dealcoholized remains in the silane compound polymer (A). That is, when the remaining OR 4 or X 1 is 1, in formula (a-1), it remains as (R 2 SiZ 2 O 2/2 ), and the remaining OR 4 or X 1 is two. In some cases, it remains as (R 2 SiZ 2 2 O 1/2 ) in formula (a-1).
[シラン化合物重合体(A’)]
 シラン化合物重合体(A’)は、式(1):R-CH(X)-D-Si(ORで示されるシラン化合物(1)の少なくとも一種を単量体として用いる縮合反応により得られるシラン化合物重合体である。
[Silane Compound Polymer (A ′)]
The silane compound polymer (A ′) is a condensation product using at least one silane compound (1) represented by the formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3 as a monomer. It is a silane compound polymer obtained by reaction.
〔シラン化合物(1)〕
 シラン化合物(1)は、式(1):R-CH(X)-D-Si(ORで示される化合物である。シラン化合物(1)を用いることにより、硬化後においても透明性、接着力が良好なシラン化合物重合体を得ることができる。
[Silane compound (1)]
The silane compound (1) is a compound represented by the formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3 . By using the silane compound (1), it is possible to obtain a silane compound polymer having good transparency and adhesion even after curing.
 式(1)中、R、X、及びDは、前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表す。OR同士は同一であっても相異なっていてもよい。 In formula (1), R 1 , X 0 and D represent the same meaning as described above. R 3 represents an alkyl group having 1 to 10 carbon atoms. OR 3 may be the same or different.
 Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、及びn-ヘキシル基等が挙げられる。 Examples of the alkyl group having 1 to 10 carbon atoms of R 3 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, and n-pentyl group. And n-hexyl group.
 シラン化合物(1)のうち、Xが前記式(i)で示される基であるシラン化合物としては、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン等のメルカプトアルキルトリアルコキシシラン類が挙げられる。 Among the silane compounds (1), examples of the silane compound in which X 0 is a group represented by the formula (i) include mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltri Mercaptoalkyltrialkoxysilanes such as methoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane Is mentioned.
 シラン化合物(1)のうち、Xが前記式(ii)で示される基であるシラン化合物としては、2-ヘキサノイルチオエチルトリメトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリエトキシシラン等のアルカノイルチオトリアルコキシシラン化合物類が挙げられる。
 これらのシラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Among the silane compounds (1), examples of the silane compound in which X 0 is a group represented by the formula (ii) include 2-hexanoylthioethyltrimethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octa Noylthioethyltrimethoxysilane, 2-octanoylthioethyltriethoxysilane, 2-decanoylthioethyltrimethoxysilane, 2-decanoylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-hexa Alkanoylthio such as noylthiopropyltriethoxysilane, 3-octanoylthiopropyltrimethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltrimethoxysilane, 3-decanoylthiopropyltriethoxysilane Thoria Examples include lucoxysilane compounds.
These silane compounds (1) can be used singly or in combination of two or more.
 これらの中でも、シラン化合物(1)としては、より優れた接着性を有する硬化物が得られることから、Xが前記式(i)で示される基であるシラン化合物が好ましい。 Among these, the silane compound (1) is preferably a silane compound in which X 0 is a group represented by the formula (i) because a cured product having better adhesiveness can be obtained.
 シラン化合物重合体(A’)としては、前記シラン化合物(1)の少なくとも一種、及び、式(2):RSi(OR(X3-vで示されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られるものがより好ましい。このような混合物を縮合させて得られるシラン化合物重合体(A’)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。ここで、「縮合」は、加水分解及び重縮合反応を含む広い概念で用いている。 The silane compound polymer (A ′) includes at least one of the silane compounds (1) and a silane compound (2) represented by the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v More preferred are those obtained by condensing a mixture of silane compounds containing at least one of the above. By curing the curable composition containing the silane compound polymer (A ′) obtained by condensing such a mixture, a cured product having better adhesion can be obtained. Here, “condensation” is used in a broad concept including hydrolysis and polycondensation reactions.
〔シラン化合物(2)〕
 シラン化合物(2)は、式(2):RSi(OR(X3-vで示される化合物である。
 式(2)中、Rは、前記と同じ意味を表す。Rは、前記Rと同様の炭素数1~10のアルキル基を表し、Xは、塩素原子、臭素原子等のハロゲン原子を表し、vは0~3の整数を表す。
 vが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-v)が2以上のとき、X同士は同一であっても相異なっていてもよい。
[Silane compound (2)]
The silane compound (2) is a compound represented by the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v .
In formula (2), R 2 represents the same meaning as described above. R 4 represents the same alkyl group having 1 to 10 carbon atoms as R 3 , X 1 represents a halogen atom such as a chlorine atom or a bromine atom, and v represents an integer of 0 to 3.
When v is 2 or more, OR 4 may be the same or different. When (3-v) is 2 or more, X 1 may be the same or different.
 シラン化合物(2)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-ブチルトリエトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン、ドデシルトリメトキシシラン、メチルジメトキシエトキシシラン、メチルジエトキシメトキシシラン、クロロメチルトリメトキシシラン、ブロモメチルトリエトキシシラン、2-クロロエチルトリプロポキシシラン、2-ブロモエチルトリブトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-アセトキシプロピルトリメトキシシラン、3-アセトキシプロピルトリエトキシシラン、3-アセトキシプロピルトリプロポキシシラン等の、無置換若しくは置換基を有するアルキルトリアルコキシシラン化合物類;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、エチルクロロジメトキシシラン、n-プロピルクロロジメトキシシラン、ブロモメチルブロモジメトキシシラン、3-アセトキシプロピルクロロジメトキシシラン等の、無置換若しくは置換基を有するアルキルハロゲノジアルコキシシラン化合物類;
メチルジクロロメトキシシラン、メチルジクロロメトキシシラン、エチルジクロロメトキシシラン、n-プロピルジクロロメトキシシラン、2-クロロエチルジクロロメトキシシラン、2-ブロモエチルジクロロエトキシシラン、3-クロロプロピルジクロロメトキシシラン、3-アセトキシプロピルジクロロメトキシシラン、3-アセトキシプロピルジクロロエトキシシラン等の、無置換若しくは置換基を有するアルキルジハロゲノアルコキシシラン化合物類;
Specific examples of the silane compound (2) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, isobutyltrimethoxysilane, n-pentyltriethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane, dodecyltrimethoxysilane, methyldimethoxyethoxysilane, methyldiethoxymethoxysilane, chloromethyltrimethoxysilane, bromomethyltriethoxysilane, 2- Chloroethyltripropoxysilane, 2-bromoethyltributoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3-acetoxypropyltrimethoxy Silane, 3-acetoxy propyl triethoxy silane, 3-, such as acetoxy propyl tripropoxysilane, unsubstituted or alkyl trialkoxysilane compounds having a substituent;
Alkyl halogenodialkoxy having unsubstituted or substituted groups such as methylchlorodimethoxysilane, methylchlorodiethoxysilane, ethylchlorodimethoxysilane, n-propylchlorodimethoxysilane, bromomethylbromodimethoxysilane, 3-acetoxypropylchlorodimethoxysilane Silane compounds;
Methyldichloromethoxysilane, methyldichloromethoxysilane, ethyldichloromethoxysilane, n-propyldichloromethoxysilane, 2-chloroethyldichloromethoxysilane, 2-bromoethyldichloroethoxysilane, 3-chloropropyldichloromethoxysilane, 3-acetoxypropyl Unsubstituted or substituted alkyldihalogenoalkoxysilane compounds such as dichloromethoxysilane and 3-acetoxypropyldichloroethoxysilane;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン、クロロメチルトリクロロシラン、3-クロロプロピルトリクロロシラン、3-クロロプロピルトリブロモシラン、3-アセトキシプロピルトリクロロシラン、3-アセトキシプロピルトリブロモシラン等の、無置換若しくは置換基を有するアルキルトリハロゲノシラン化合物類; Methyltrichlorosilane, methyltribromosilane, ethyltrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane, chloromethyltrichlorosilane, 3-chloropropyltrichlorosilane, 3-chloropropyltribromosilane, 3-acetoxypropyltrichlorosilane Alkyltrihalogenosilane compounds having an unsubstituted or substituted group, such as 3-acetoxypropyltribromosilane;
 フェニルトリメトキシシラン、4-メトキシフェニルトリメトキシシラン、2-クロロフェニルトリメトキシシラン、フェニルトリエトキシシラン、2-メトキシフェニルトリエトキシシラン、フェニルジメトキシエトキシシラン、フェニルジエトキシメトキシシラン等の、無置換若しくは置換基を有するフェニルトリアルコキシシラン化合物類;
 フェニルクロロジメトキシシラン、フェニルクロロメトキシエトキシシラン、フェニルクロロジエトキシシラン等の、無置換若しくは置換基を有するフェニルハロゲノジアルコキシシラン化合物類;
フェニルジクロロメトキシシラン、フェニルジクロロエトキシシラン等の、無置換若しくは置換基を有するフェニルジハロゲノアルコキシシラン化合物類;
 フェニルトリクロロシラン、フェニルトリブロモシラン、4-メトキシフェニルトリクロロシラン、フェニルトリクロロシラン、2-エトキシフェニルトリクロロシラン、2-クロロフェニルトリクロロシラン等の、無置換若しくは置換基を有するフェニルトリハロゲノシラン化合物;が挙げられる。
Unsubstituted or substituted such as phenyltrimethoxysilane, 4-methoxyphenyltrimethoxysilane, 2-chlorophenyltrimethoxysilane, phenyltriethoxysilane, 2-methoxyphenyltriethoxysilane, phenyldimethoxyethoxysilane, phenyldiethoxymethoxysilane Phenyltrialkoxysilane compounds having a group;
Phenylhalogenodialkoxysilane compounds having no substituent or a substituent, such as phenylchlorodimethoxysilane, phenylchloromethoxyethoxysilane, and phenylchlorodiethoxysilane;
Phenyldihalogenoalkoxysilane compounds having no substituent or a substituent, such as phenyldichloromethoxysilane and phenyldichloroethoxysilane;
Phenyltrihalogenosilane compounds having no substituents or substituents, such as phenyltrichlorosilane, phenyltribromosilane, 4-methoxyphenyltrichlorosilane, phenyltrichlorosilane, 2-ethoxyphenyltrichlorosilane, 2-chlorophenyltrichlorosilane; It is done.
 これらのシラン化合物(2)は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの中でも、シラン化合物(2)としては、無置換若しくは置換基を有する炭素数1~6のアルキルトリアルコキシシラン化合物類、無置換若しくは置換基を有するフェニルトリアルコキシシラン化合物類が好ましい。
These silane compounds (2) can be used singly or in combination of two or more.
Of these, the silane compound (2) is preferably an unsubstituted or substituted alkyltrialkoxysilane compound having 1 to 6 carbon atoms, or an unsubstituted or substituted phenyltrialkoxysilane compound.
〔縮合反応〕
 シラン化合物重合体(A’)を製造する際は、シラン化合物(1)のみを用いて縮合反応を行ってもよく、シラン化合物(1)及びシラン化合物(2)からなる混合物を用いて縮合反応を行ってもよい。また、本発明の目的を阻害しない範囲で、その他のシラン化合物をさらに用いて縮合反応を行ってもよいが、シラン化合物(1)及びシラン化合物(2)以外のシラン化合物を用いないことが好ましい。
[Condensation reaction]
When producing the silane compound polymer (A ′), the condensation reaction may be performed using only the silane compound (1), or the condensation reaction using a mixture of the silane compound (1) and the silane compound (2). May be performed. Further, the condensation reaction may be carried out by further using other silane compounds within the range not impairing the object of the present invention, but it is preferable not to use a silane compound other than the silane compound (1) and the silane compound (2). .
 シラン化合物(1)及びシラン化合物(2)からなる混合物に含まれるシラン化合物(1)とシラン化合物(2)のモル比〔シラン化合物(1):シラン化合物(2)は、接着性により優れる硬化物が得られる観点から、5:95~80:20が好ましく、10:90~70:30がより好ましく、20:80~65:35がさらに好ましく、30:70~60:40が特に好ましい。
 この範囲内で反応させて得られるシラン化合物重合体(A’)を含有する硬化性組成物を硬化することで、接着性により優れる硬化物が得られる。
The molar ratio of the silane compound (1) and the silane compound (2) contained in the mixture composed of the silane compound (1) and the silane compound (2) [Silane compound (1): the silane compound (2) is cured with better adhesion. From the viewpoint of obtaining a product, it is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, still more preferably 20:80 to 65:35, and particularly preferably 30:70 to 60:40.
By curing the curable composition containing the silane compound polymer (A ′) obtained by reacting within this range, a cured product having better adhesion can be obtained.
 シラン化合物(1)等を縮合させる方法としては、特に限定されないが、シラン化合物(1)等のシラン化合物を溶媒に溶解し、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。 The method for condensing the silane compound (1) and the like is not particularly limited, and examples thereof include a method of dissolving a silane compound such as the silane compound (1) in a solvent, adding a predetermined amount of catalyst, and stirring at a predetermined temperature. .
 用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
 酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
The catalyst used may be either an acid catalyst or a base catalyst.
Examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, and trifluoroacetic acid; It is done.
 塩基触媒としては、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1,4-diazabicyclo [2 2.2] Organic bases such as octane and imidazole; Organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; Metals such as sodium methoxide, sodium ethoxide, sodium t-butoxide, and potassium t-butoxide Alkoxides; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; metal carbonates such as sodium carbonate, potassium carbonate and magnesium carbonate; carbonated water And the like are; sodium, metal hydrogen carbonates such as potassium hydrogen carbonate.
 触媒の使用量は、シラン化合物の総モル量に対して、通常、0.1mol%~10mol%、好ましくは1mol%~5mol%の範囲である。 The amount of catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound.
 用いる溶媒は、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルi-ブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、i-プロピルアルコール、n-ブチルアルコール、i-ブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。 The solvent to be used can be appropriately selected according to the type of the silane compound. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl i-butyl ketone and cyclohexanone; methyl And alcohols such as alcohol, ethyl alcohol, n-propyl alcohol, i-propyl alcohol, n-butyl alcohol, i-butyl alcohol, s-butyl alcohol and t-butyl alcohol. These solvents can be used alone or in combination of two or more.
 溶媒の使用量は、溶媒1リットルあたり、シラン化合物の総モル量が、通常0.1mol~10mol、好ましくは0.5mol~10molとなる量である。 The amount of the solvent used is such that the total molar amount of the silane compound per liter of solvent is usually 0.1 mol to 10 mol, preferably 0.5 mol to 10 mol.
 シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。 The temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物重合体を得ることができる。 After completion of the reaction, when an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution. When a base catalyst is used, the reaction solution is added with an acid such as hydrochloric acid. The target silane compound polymer can be obtained by performing summation and removing the salt produced by filtration or washing with water.
 シラン化合物重合体(A’)の重量平均分子量(Mw)は、接着性により優れる硬化物が得られる観点から、好ましくは400~30,000の範囲であり、より好ましくは600~10,000であり、特に好ましくは800~3,000の範囲である。
 シラン化合物重合体(A’)の分子量分布(Mw/Mn)は、特に制限されないが、接着性により優れる硬化物が得られる観点から、通常1.0~3.0、好ましくは1.1~2.0の範囲である。
The weight average molecular weight (Mw) of the silane compound polymer (A ′) is preferably in the range of 400 to 30,000, more preferably in the range of 600 to 10,000, from the viewpoint of obtaining a cured product superior in adhesiveness. Particularly preferably in the range of 800 to 3,000.
The molecular weight distribution (Mw / Mn) of the silane compound polymer (A ′) is not particularly limited, but it is usually 1.0 to 3.0, preferably 1.1 to 3.0 from the viewpoint of obtaining a cured product having better adhesion. The range is 2.0.
 上記シラン化合物重合体(A)やシラン化合物重合体(A’)が、ラダー型構造の重合体である場合、シラン化合物重合体(A)やシラン化合物重合体(A’)は、分子内に、下記式(i)、(ii)及び(iii) When the silane compound polymer (A) or the silane compound polymer (A ′) is a polymer having a ladder structure, the silane compound polymer (A) or the silane compound polymer (A ′) is present in the molecule. , The following formulas (i), (ii) and (iii)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式中、R、R、D、及びXは前記と同じ意味を表す。)で示される繰り返し単位のうち、(i)及び(ii)、(i)及び(iii)、(ii)及び(iii)、又は(i)、(ii)及び(iii)の繰り返し単位を有するシラン化合物重合体が好ましい。 (Wherein R 1 , R 2 , D, and X 0 represent the same meaning as described above), (i) and (ii), (i) and (iii), (ii) ) And (iii), or a silane compound polymer having a repeating unit of (i), (ii) and (iii) is preferred.
 このとき、式:R-CH(X)-D-で表される基の存在量(〔R-CH(X)-D〕)とRの存在量(〔R〕)が、モル比で〔R-CH(X)-D〕:〔R〕=5:95~80:20が好ましく、10:90~70:30がより好ましく、20:80~65:35がさらに好ましく、30:70~60:40が特に好ましい。この範囲内にあるシラン化合物重合体を含有する硬化性組成物を硬化させることで、接着性により優れる硬化物が得られる。
 シラン化合物重合体(A)やシラン化合物重合体(A’)は、(i)、(ii)、(iii)で表される繰り返し単位をそれぞれ一種有していてもよく、二種以上有していてもよい。
In this case, the formula: R 1 -CH (X 0) abundance of the group represented by-D-([R 1 -CH (X 0) -D]) and abundance of R 2 ([R 2]) However, the molar ratio of [R 1 —CH (X 0 ) —D]: [R 2 ] = 5: 95 to 80:20 is preferable, 10:90 to 70:30 is more preferable, and 20:80 to 65: 35 is more preferable, and 30:70 to 60:40 is particularly preferable. By curing a curable composition containing a silane compound polymer within this range, a cured product having better adhesion can be obtained.
The silane compound polymer (A) and the silane compound polymer (A ′) may have one or more repeating units represented by (i), (ii), and (iii), respectively. It may be.
2)硬化性組成物
 本発明の第2は、本発明のシラン化合物重合体を含有する硬化性組成物である。
 本発明の硬化性組成物は、本発明のシラン化合物重合体を主成分として含有することが好ましい。「主成分として含有する」とは、本発明のシラン化合物重合体の一種又は二種以上を、硬化性組成物全体に対して、50質量%以上含有することをいう。本発明のシラン化合物重合体の含有量は、好ましくは、硬化性組成物全体に対して、70質量%以上、より好ましくは80質量%以上、さらに好ましくは90質量%以上である。本発明のシラン化合物重合体の含有量の上限は特になく、本発明の硬化性組成物は、本発明のシラン化合物重合体からなるもの(本発明のシラン化合物重合体の含有量が100質量%)であってもよい。
2) Curable composition The second of the present invention is a curable composition containing the silane compound polymer of the present invention.
The curable composition of the present invention preferably contains the silane compound polymer of the present invention as a main component. “Containing as a main component” means containing one or more of the silane compound polymers of the present invention in an amount of 50% by mass or more based on the entire curable composition. The content of the silane compound polymer of the present invention is preferably 70% by mass or more, more preferably 80% by mass or more, and further preferably 90% by mass or more with respect to the entire curable composition. The upper limit of the content of the silane compound polymer of the present invention is not particularly limited, and the curable composition of the present invention comprises the silane compound polymer of the present invention (the content of the silane compound polymer of the present invention is 100% by mass). ).
 本発明の硬化性組成物が他の添加成分を含有する場合、他の添加成分としては、酸化防止剤、紫外線吸収剤、光安定剤、希釈剤等が挙げられる。 When the curable composition of the present invention contains other additive components, examples of the other additive components include antioxidants, ultraviolet absorbers, light stabilizers, and diluents.
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 An antioxidant is added to prevent oxidative degradation during heating. Examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants, and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。
 フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。
 硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。
Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
Examples of phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
Examples of the sulfur-based antioxidant include dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate.
 これら酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分(又は(A’)成分)に対して、通常、10質量%以下である。 These antioxidants can be used alone or in combination of two or more. The usage-amount of antioxidant is 10 mass% or less normally with respect to (A) component (or (A ') component).
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分(又は(A’)成分)に対して、通常、10質量%以下である。
The ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
The usage-amount of a ultraviolet absorber is 10 mass% or less normally with respect to (A) component (or (A ') component).
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
The light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6 , 6-tetramethyl-4-piperidine) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidine) imino}] and the like.
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 光安定剤の使用量は、(A)成分(又は(A’)成分)に対して、通常、10質量%以下である。
These light stabilizers can be used alone or in combination of two or more.
The usage-amount of a light stabilizer is 10 mass% or less normally with respect to (A) component (or (A ') component).
 希釈剤は、硬化性組成物の粘度を調整するため添加される。
 希釈剤としては、例えば、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
A diluent is added in order to adjust the viscosity of the curable composition.
Examples of the diluent include glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether, and polypropylene glycol diglycidyl ether. Examples include ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like.
These diluents can be used alone or in combination of two or more.
 本発明の硬化性組成物は、例えば、前記(A)(又は(A’)成分)と、所望により他の成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。 The curable composition of the present invention is obtained, for example, by blending the above-mentioned (A) (or (A ′) component) and other components at a predetermined ratio if desired, and mixing and defoaming by a known method. be able to.
 以上のようにして得られる本発明の硬化性組成物によれば、高エネルギーの光が照射される場合や高温状態に置かれた場合であっても、長期にわたって高い接着力を有する硬化物を得ることができる。
 2-シアノエチルトリメトキシシラン等を原材料として得られるシラン化合物重合体を含む硬化性組成物は、接着性に優れる硬化物を与える。しかし、2-シアノエチルトリメトキシシラン等は、毒性は低いものの劇物に指定されているためその使用が制限されるおそれがある。本発明の硬化性組成物は、そのような劇物に指定されている原材料を用いることなく得られるシラン化合物重合体を含有するものであるが、接着性に極めて優れる硬化物を与えるものである。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定用組成物として好適に使用することができる。
According to the curable composition of the present invention obtained as described above, a cured product having a high adhesive force over a long period of time even when irradiated with high energy light or placed in a high temperature state. Obtainable.
A curable composition containing a silane compound polymer obtained using 2-cyanoethyltrimethoxysilane or the like as a raw material gives a cured product having excellent adhesion. However, although 2-cyanoethyltrimethoxysilane and the like are low in toxicity, their use may be restricted because they are designated as deleterious substances. The curable composition of the present invention contains a silane compound polymer obtained without using the raw materials specified for such deleterious substances, but gives a cured product having extremely excellent adhesiveness. .
Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as an optical element fixing composition. .
3)硬化物
 本発明の第3は、本発明の硬化性組成物を硬化してなる硬化物である。
 本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
3) Hardened | cured material 3rd of this invention is a hardened | cured material formed by hardening | curing the curable composition of this invention.
Heat curing is mentioned as a method of hardening the curable composition of this invention. The heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、接着性に優れるものである。特に、本発明の硬化物は、シランカップリング剤等の添加剤を含有しない硬化性組成物を硬化させて得られたものであっても、接着性に優れるものである。したがって、本発明のシラン化合物重合体を用いて硬化物を製造する場合、必要に応じて、シラン化合物重合体に添加剤を添加する工程を省略することができるため、接着性に優れる硬化物を効率よく得ることができる。 The cured product of the present invention has excellent adhesiveness. In particular, the cured product of the present invention is excellent in adhesiveness even if it is obtained by curing a curable composition not containing an additive such as a silane coupling agent. Therefore, when producing a cured product using the silane compound polymer of the present invention, if necessary, the step of adding an additive to the silane compound polymer can be omitted. It can be obtained efficiently.
 本発明の硬化性組成物を硬化してなる硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃において、50N/2mm□以上であることが好ましく、100N/2mm□以上であることがより好ましい。また、硬化物の接着力は、100℃において50N/2mm□以上であることが好ましく、70N/2mm□以上であることがより好ましい。
It can be confirmed that the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, and the coated surface is placed on the adherend and pressure-bonded, and then heated and cured. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 μm high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
The adhesive strength of the cured product is preferably 50 N / 2 mm □ or more at 23 ° C., and more preferably 100 N / 2 mm □ or more. Moreover, it is preferable that the adhesive force of hardened | cured material is 50 N / 2mm □ or more in 100 degreeC, and it is more preferable that it is 70 N / 2mm □ or more.
 本発明の硬化物は、光素子の高輝度化に伴う光素子固定材の劣化に関する問題を解決することができることから、光素子固定材として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤、封止材等として好適に使用される。 The cured product of the present invention can solve problems related to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element, and therefore can be suitably used as an optical element fixing material. For example, it is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, a sealing material and the like.
4)硬化性組成物の使用方法
 本発明の第4は、本発明の硬化性組成物を、光素子用接着剤又は光素子用封止剤等の光素子固定材用組成物として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
4) Method of using curable composition The fourth aspect of the present invention is a method of using the curable composition of the present invention as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealant. It is.
Examples of optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
〈光素子用接着剤〉
 本発明の硬化性組成物は、光素子用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
<Adhesive for optical elements>
The curable composition of this invention can be used conveniently as an adhesive agent for optical elements.
As a method of using the curable composition of the present invention as an adhesive for optical elements, the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate), followed by pressure bonding. Then, the method of making it heat-cure and adhere | attach the materials made into the object of adhesion | attachment firmly is mentioned.
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and alloys of these metals , Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate polymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyetheretherketone, And synthetic resins such as polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, and glass epoxy resin;
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
〈光素子用封止剤〉
 本発明の硬化性組成物は、光素子封止体の封止剤として好適に用いることができる。
 本発明の硬化性組成物を光素子用封止剤として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Sealant for optical elements>
The curable composition of this invention can be used suitably as a sealing agent of an optical element sealing body.
As a method of using the curable composition of the present invention as an encapsulant for optical elements, for example, the composition is molded into a desired shape to obtain a molded body containing the optical element, and then heated. The method etc. which manufacture an optical element sealing body by making it harden | cure are mentioned.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、光素子に、白色や青色発光LED等の、発光のピーク波長が400~490nmと短波長のものを用いても、熱や光により接着性が低下しにくいものである。 Since the obtained optical element sealing body uses the curable composition of the present invention, an optical element having a short peak wavelength of 400 to 490 nm, such as white or blue light emitting LED, is used. However, the adhesiveness is not easily lowered by heat or light.
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
(重量平均分子量測定)
 下記実施例で得たシラン化合物重合体の重量平均分子量(Mw)は標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(Weight average molecular weight measurement)
The weight average molecular weight (Mw) of the silane compound polymer obtained in the following examples was a standard polystyrene conversion value, and was measured using the following apparatus and conditions.
Device name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected Solvent: Tetrahydrofuran Injection volume: 80 μl
Measurement temperature: 40 ° C
Flow rate: 1 ml / min Detector: Differential refractometer
(IRスペクトルの測定)
 製造例で得たシラン化合物重合体のIRスペクトルは、以下の装置を使用して測定した。
フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)
(Measurement of IR spectrum)
The IR spectrum of the silane compound polymer obtained in the production example was measured using the following apparatus.
Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by PerkinElmer)
(実施例1)
 500mlのナス型フラスコに、フェニルトリメトキシシラン(東京化成工業社製、以下にて同じ)26.77g(135mmol)と、3-メルカプトプロピルトリメトキシシラン(信越化学工業社製、製品名「KBM-803」、以下にて同じ)2.95g(15mmol)、並びに、溶媒として、アセトン120g及び蒸留水30gを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸(関東化学社製、以下にて同じ)0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌を継続した。
Example 1
In a 500 ml eggplant-shaped flask, 26.77 g (135 mmol) of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd., the same applies below) and 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name “KBM-”) 803 ", the same below) 2.95 g (15 mmol), and 120 g of acetone and 30 g of distilled water as the solvent were added, and the contents were stirred and phosphoric acid (manufactured by Kanto Chemical Co., Ltd. And 0.15 g (1.5 mmol) was added, and stirring was continued at 25 ° C. for another 16 hours.
 反応終了後、反応液に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、得られた濃縮物を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、シラン化合物重合体(A1)を得た。
 シラン化合物重合体(A1)の重量平均分子量(Mw)は1,200であった。
 シラン化合物重合体(A1)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,S-H:(3-メルカプトプロピルトリメトキシシラン由来の繰り返し単位量が少ないため、検出できず)
After completion of the reaction, 100 ml of ethyl acetate was added to the reaction solution, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain a silane compound polymer (A1).
The weight average molecular weight (Mw) of the silane compound polymer (A1) was 1,200.
IR spectrum data of the silane compound polymer (A1) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , S—H: (Cannot be detected because the amount of repeating units derived from 3-mercaptopropyltrimethoxysilane is small)
(実施例2)
 実施例1において、フェニルトリメトキシシランの使用量を22.31g(112.5mmol)とし、3-メルカプトプロピルトリメトキシシランの使用量を7.36g(37.5mmol)とした以外は実施例1と同様にして、シラン化合物重合体(A2)を得た。
 シラン化合物重合体(A2)の重量平均分子量(Mw)は2,700であった。
 シラン化合物重合体(A2)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,S-H:2567cm-1
(Example 2)
In Example 1, the amount of phenyltrimethoxysilane used was 22.31 g (112.5 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 7.36 g (37.5 mmol). Similarly, a silane compound polymer (A2) was obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A2) was 2,700.
IR spectrum data of the silane compound polymer (A2) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , S—H: 2567 cm −1
(実施例3)
 実施例1において、フェニルトリメトキシシランの使用量を14.87g(75.0mmol)とし、3-メルカプトプロピルトリメトキシシランの使用量を14.72g(75.0mmol)とした以外は実施例1と同様にして、シラン化合物重合体(A3)を得た。
 シラン化合物重合体(A3)の重量平均分子量(Mw)は1,700であった。
 また、シラン化合物重合体(A3)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,S-H:2567cm-1
Example 3
In Example 1, the amount of phenyltrimethoxysilane used was 14.87 g (75.0 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 14.72 g (75.0 mmol). Similarly, a silane compound polymer (A3) was obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A3) was 1,700.
In addition, IR spectrum data of the silane compound polymer (A3) is shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , S—H: 2567 cm −1
(実施例4)
 実施例1において、フェニルトリメトキシシランの使用量を29.45g(148.5mmol)とし、3-メルカプトプロピルトリメトキシシランの使用量を0.29g(1.5mmol)とした以外は実施例1と同様にして、シラン化合物重合体(A4)を得た。
 シラン化合物重合体(A4)の重量平均分子量(Mw)は900であった。
 また、シラン化合物重合体(A4)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,S-H:(3-メルカプトプロピルトリメトキシシラン由来の繰り返し単位量が少ないため、検出できず)
Example 4
Example 1 was the same as Example 1 except that the amount of phenyltrimethoxysilane used was 29.45 g (148.5 mmol) and the amount of 3-mercaptopropyltrimethoxysilane used was 0.29 g (1.5 mmol). Similarly, a silane compound polymer (A4) was obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A4) was 900.
In addition, IR spectrum data of the silane compound polymer (A4) is shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , S—H: (Cannot be detected because the amount of repeating units derived from 3-mercaptopropyltrimethoxysilane is small)
(実施例5)
 実施例1において、フェニルトリメトキシシランの使用量を28.26g(142.5mmol)とし、3-メルカプトプロピルトリメトキシシランの使用量を1.47g(7.5mmol)とした以外は実施例1と同様にして、シラン化合物重合体(A5)を得た。
 シラン化合物重合体(A5)の重量平均分子量(Mw)は900であった。
 また、シラン化合物重合体(A5)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,S-H:(3-メルカプトプロピルトリメトキシシラン由来の繰り返し単位量が少ないため、検出できず)
(Example 5)
In Example 1, the amount of phenyltrimethoxysilane used was 28.26 g (142.5 mmol), and the amount of 3-mercaptopropyltrimethoxysilane used was 1.47 g (7.5 mmol). Similarly, a silane compound polymer (A5) was obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A5) was 900.
Moreover, IR spectrum data of a silane compound polymer (A5) are shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , S—H: (Cannot be detected because the amount of repeating units derived from 3-mercaptopropyltrimethoxysilane is small)
(実施例6)
 実施例1において、フェニルトリメトキシシランを使用せず、3-メルカプトプロピルトリメトキシシランを29.45g(150.0mmol)使用した以外は実施例1と同様にして、シラン化合物重合体(A6)を得た。
 シラン化合物重合体(A6)の重量平均分子量(Mw)は1800であった。
 また、シラン化合物重合体(A6)のIRスペクトルデータを以下に示す。
Si-O:1132cm-1,S-H:2567cm-1
(Example 6)
The silane compound polymer (A6) was prepared in the same manner as in Example 1 except that phenyltrimethoxysilane was not used and 29.45 g (150.0 mmol) of 3-mercaptopropyltrimethoxysilane was used. Obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A6) was 1800.
In addition, IR spectrum data of the silane compound polymer (A6) is shown below.
Si—O: 1132 cm −1 , S—H: 2567 cm −1
(実施例7)
 実施例1において、フェニルトリメトキシシランの使用量を7.43g(37.5mmol)とし、3-メルカプトプロピルトリメトキシシランの使用量を22.09g(112.5mmol)とした以外は実施例1と同様にして、シラン化合物重合体(A7)を得た。
 シラン化合物重合体(A7)の重量平均分子量(Mw)は1100であった。
 また、シラン化合物重合体(A7)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,S-H:2567cm-1
(Example 7)
Example 1 was the same as Example 1 except that phenyltrimethoxysilane was used in an amount of 7.43 g (37.5 mmol) and 3-mercaptopropyltrimethoxysilane was used in an amount of 22.09 g (112.5 mmol). Similarly, a silane compound polymer (A7) was obtained.
The weight average molecular weight (Mw) of the silane compound polymer (A7) was 1100.
In addition, IR spectrum data of the silane compound polymer (A7) is shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , S—H: 2567 cm −1
(比較例1)
 300mlのナス型フラスコに、フェニルトリメトキシシラン20.2g(102mmol)と、2-シアノエチルトリメトキシシラン(アヅマックス社製、以下にて同じ)3.15g(18mmol)、並びに、溶媒として、アセトン96ml及び蒸留水24mlを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌を継続した。
(Comparative Example 1)
In a 300 ml eggplant-shaped flask, 20.2 g (102 mmol) of phenyltrimethoxysilane, 3.15 g (18 mmol) of 2-cyanoethyltrimethoxysilane (manufactured by AMAX Co., the same applies below), and 96 ml of acetone as a solvent After charging 24 ml of distilled water, 0.15 g (1.5 mmol) of phosphoric acid was added as a catalyst while stirring the contents, and stirring was further continued at 25 ° C. for 16 hours.
 反応終了後、反応液をエバポレーターで50mlまで濃縮し、濃縮物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、得られた濃縮物を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、シラン化合物重合体(A8)を得た。
 シラン化合物重合体(A8)の重量平均分子量(Mw)は1,900であった。
 シラン化合物重合体(A8)のIRスペクトルデータを以下に示す。
Si-Ph:698cm-1,740cm-1,Si-O:1132cm-1,-CN:2259cm-1
After completion of the reaction, the reaction solution was concentrated to 50 ml with an evaporator, 100 ml of ethyl acetate was added to the concentrate, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain a silane compound polymer (A8).
The weight average molecular weight (Mw) of the silane compound polymer (A8) was 1,900.
IR spectrum data of the silane compound polymer (A8) are shown below.
Si—Ph: 698 cm −1 , 740 cm −1 , Si—O: 1132 cm −1 , —CN: 2259 cm −1
(比較例2)
 300mlのナス型フラスコに、フェニルトリメトキシシラン20.2g(102mmol)と、3-アセトキシプロピルトリメトキシシラン(アヅマックス社製)4.0g(18mmol)、並びに、溶媒としてトルエン60ml及び蒸留水30mlを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌を継続した。
 反応終了後、反応混合物に酢酸エチル100mlを加え、飽和炭酸水素ナトリウム水溶液にて中和した。しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液をエバポレーターにて50mlまで濃縮し、得られた濃縮物を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、シラン化合物重合体(A9)を14.7g得た。
 シラン化合物重合体(A9)の重量平均分子量(Mw)は2,700であった。
 また、シラン化合物重合体(A9)のIRスペクトルデータを以下に示す。
Si-Ph:699cm-1,741cm-1,Si-O:1132cm-1,-CO:1738cm-1
(Comparative Example 2)
A 300 ml eggplant-shaped flask was charged with 20.2 g (102 mmol) of phenyltrimethoxysilane, 4.0 g (18 mmol) of 3-acetoxypropyltrimethoxysilane (manufactured by Amax Co.), 60 ml of toluene and 30 ml of distilled water as a solvent. Thereafter, while stirring the contents, 0.15 g (1.5 mmol) of phosphoric acid was added as a catalyst, and stirring was further continued at 25 ° C. for 16 hours.
After completion of the reaction, 100 ml of ethyl acetate was added to the reaction mixture and neutralized with a saturated aqueous sodium hydrogen carbonate solution. After leaving still for a while, the organic layer was fractionated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After magnesium sulfate was filtered off, the filtrate was concentrated to 50 ml with an evaporator, and the resulting concentrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain 14.7 g of a silane compound polymer (A9).
The weight average molecular weight (Mw) of the silane compound polymer (A9) was 2,700.
In addition, IR spectrum data of the silane compound polymer (A9) is shown below.
Si—Ph: 699 cm −1 , 741 cm −1 , Si—O: 1132 cm −1 , —CO: 1738 cm −1
(比較例3)
 300mlのナス型フラスコに、フェニルトリメトキシシラン20.2g(102mmol)と、3-クロロプロピルトリメトキシシラン(東京化成工業社製)3.58g(18mmol)、並びに、溶媒としてトルエン60ml及び蒸留水30mlを仕込んだ後、内容物を攪拌しながら、触媒としてリン酸0.15g(1.5mmol)を加え、25℃でさらに16時間攪拌を継続した。
 反応終了後、反応混合物を飽和炭酸水素ナトリウム水溶液にて中和した。これに酢酸エチル100mlを加えて撹拌し、しばらく静置した後、有機層を分取した。次いで、有機層を蒸留水にて2回洗浄した後、無水硫酸マグネシウムで乾燥した。硫酸マグネシウムをろ別後、ろ液を多量のn-ヘキサン中に滴下して沈殿させ、沈殿物をデカンテーションにより分離した。得られた沈殿物をメチルエチルケトン(MEK)に溶解させて回収し、エバポレーターで溶媒を減圧留去した。残留物を真空乾燥することにより、シラン化合物重合体(A10)を得た。
 シラン化合物重合体(A10)の重量平均分子量(Mw)は3,000であった。
 また、シラン化合物重合体(A10)のIRスペクトルデータを以下に示す。
Si-Ph:700cm-1,741cm-1,Si-O:1132cm-1,-Cl:648cm-1
(Comparative Example 3)
In a 300 ml eggplant type flask, 20.2 g (102 mmol) of phenyltrimethoxysilane, 3.58 g (18 mmol) of 3-chloropropyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 60 ml of toluene and 30 ml of distilled water as a solvent Then, 0.15 g (1.5 mmol) of phosphoric acid was added as a catalyst while stirring the contents, and stirring was further continued at 25 ° C. for 16 hours.
After completion of the reaction, the reaction mixture was neutralized with a saturated aqueous sodium hydrogen carbonate solution. To this was added 100 ml of ethyl acetate, and the mixture was stirred and allowed to stand for a while, and then the organic layer was separated. Next, the organic layer was washed twice with distilled water and then dried over anhydrous magnesium sulfate. After filtering off magnesium sulfate, the filtrate was dropped into a large amount of n-hexane to precipitate, and the precipitate was separated by decantation. The obtained precipitate was dissolved in methyl ethyl ketone (MEK) and collected, and the solvent was distilled off under reduced pressure using an evaporator. The residue was vacuum dried to obtain a silane compound polymer (A10).
The weight average molecular weight (Mw) of the silane compound polymer (A10) was 3,000.
In addition, IR spectrum data of the silane compound polymer (A10) is shown below.
Si-Ph: 700cm -1, 741cm -1, Si-O: 1132cm -1, -Cl: 648cm -1
 実施例1~7及び比較例1~3で得たシラン化合物重合体(A1)~(A10)をそのまま用いて、下記の方法により接着力を測定した。測定結果を下記第1表に示す。
(接着力試験)
 2mm角のシリコンチップのミラー面に、実施例1~7及び比較例1~3で得たシラン化合物重合体のそれぞれを厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着力(N/2mm□)を測定した。
Using the silane compound polymers (A1) to (A10) obtained in Examples 1 to 7 and Comparative Examples 1 to 3, the adhesive strength was measured by the following method. The measurement results are shown in Table 1 below.
(Adhesion test)
Each of the silane compound polymers obtained in Examples 1 to 7 and Comparative Examples 1 to 3 was applied to a mirror surface of a 2 mm square silicon chip so as to have a thickness of about 2 μm. It was placed on a plated copper plate and pressure-bonded. Then, it heat-processed at 170 degreeC for 2 hours, it was made to harden | cure, and the adherend with a test piece was obtained. The test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 μm from the adherend. From the position, stress was applied in the horizontal direction (shear direction) to the bonded surface at a speed of 200 μm / s, and the adhesive force (N / 2 mm □) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 第1表から以下のことが分かる。
 実施例1~7のシラン化合物重合体を用いて得られた硬化物は、23℃、100℃のいずれの場合でも、接着性に優れている。
 一方、比較例1~3のシラン化合物重合体を用いて得られた硬化物は、23℃、100℃の両方で、接着性に劣っている。
The following can be seen from Table 1.
The cured products obtained using the silane compound polymers of Examples 1 to 7 are excellent in adhesiveness at both 23 ° C. and 100 ° C.
On the other hand, the cured products obtained using the silane compound polymers of Comparative Examples 1 to 3 have poor adhesion at both 23 ° C. and 100 ° C.

Claims (16)

  1.  下記式(a-1)で示されるシラン化合物重合体。
    〔式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Xは、硫黄原子含有官能基を表し、Dは、単結合、又は無置換若しくは置換基を有する炭素数1~20の2価の炭化水素基を表す。Rは、無置換若しくは置換基(ただし硫黄原子含有官能基を除く)を有する炭素数1~20のアルキル基又は無置換若しくは置換基を有するフェニル基を表す。Zは、水酸基又は炭素数1~10のアルコキシ基を表し、Zは、水酸基、炭素数1~10のアルコキシ基又はハロゲン原子を表す。mは正の整数を表す。n、o、p、q、rはそれぞれ独立して、0または正の整数を表す。〕
    A silane compound polymer represented by the following formula (a-1):
    [Wherein, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X 0 represents a sulfur atom-containing functional group, and D represents a single bond, or an unsubstituted or substituted carbon number. Represents a divalent hydrocarbon group of 1 to 20; R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group) or an unsubstituted or substituted phenyl group. Z 1 represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms, and Z 2 represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms or a halogen atom. m represents a positive integer. n, o, p, q, and r each independently represent 0 or a positive integer. ]
  2.  Xの硫黄原子含有官能基が、下記式(i)若しくは式(ii)
    Figure JPOXMLDOC01-appb-C000002
    〔式中、R’は、炭素数1~20の1価の有機基を表す。〕
    で示される基、又はこれらの基から誘導される基である、請求項1に記載のシラン化合物重合体。
    The sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
    Figure JPOXMLDOC01-appb-C000002
    [Wherein, R ′ represents a monovalent organic group having 1 to 20 carbon atoms. ]
    The silane compound polymer according to claim 1, which is a group represented by the above formula or a group derived from these groups.
  3.  nが正の整数である、請求項1に記載のシラン化合物重合体。 The silane compound polymer according to claim 1, wherein n is a positive integer.
  4.  (m+o+q)と(n+p+r)の割合〔(m+o+q):(n+p+r)〕が、5:95~80:20である、請求項1に記載のシラン化合物重合体。 The silane compound polymer according to claim 1, wherein a ratio ((m + o + q) :( n + p + r)) of (m + o + q) to (n + p + r) is 5:95 to 80:20.
  5.  重量平均分子量が、1,000~30,000である、請求項1に記載のシラン化合物重合体。 2. The silane compound polymer according to claim 1, wherein the weight average molecular weight is 1,000 to 30,000.
  6.  式(1):R-CH(X)-D-Si(OR
    〔式中、Rは、水素原子又は炭素数1~6のアルキル基を表し、Xは、硫黄原子含有官能基を表し、Dは、単結合、又は無置換若しくは置換基を有する炭素数1~20の2価の炭化水素基を表す。Rは炭素数1~10のアルキル基を表す。〕
    で示されるシラン化合物(1)の少なくとも一種を単量体として用いる縮合反応により得られるシラン化合物重合体。
    Formula (1): R 1 —CH (X 0 ) —D—Si (OR 3 ) 3
    [Wherein, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, X 0 represents a sulfur atom-containing functional group, and D represents a single bond, or an unsubstituted or substituted carbon number. Represents a divalent hydrocarbon group of 1 to 20; R 3 represents an alkyl group having 1 to 10 carbon atoms. ]
    A silane compound polymer obtained by a condensation reaction using at least one of the silane compounds (1) represented by the formula:
  7.  Xの硫黄原子含有官能基が、下記式(i)又は式(ii)
    Figure JPOXMLDOC01-appb-C000003
    〔式中、R’は、炭素数1~20の1価の有機基を表す。〕
    で示される基である、請求項6に記載のシラン化合物重合体。
    The sulfur atom-containing functional group of X 0 is represented by the following formula (i) or formula (ii)
    Figure JPOXMLDOC01-appb-C000003
    [Wherein, R ′ represents a monovalent organic group having 1 to 20 carbon atoms. ]
    The silane compound polymer of Claim 6 which is group shown by these.
  8.  前記シラン化合物(1)の少なくとも一種、及び
    式(2):RSi(OR(X3-v
    〔式中、Rは、無置換若しくは置換基(ただし硫黄原子含有官能基を除く)を有する炭素数1~20のアルキル基、又は無置換若しくは置換基を有するフェニル基を表し、Rは、炭素数1~10のアルキル基を表し、Xは、ハロゲン原子を表し、vは0~3の整数を表す。〕
    で示されるシラン化合物(2)の少なくとも一種を含むシラン化合物の混合物を縮合させて得られる、請求項6に記載のシラン化合物重合体。
    At least one of the silane compounds (1) and the formula (2): R 2 Si (OR 4 ) v (X 1 ) 3-v
    [Wherein R 2 represents an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms (excluding a sulfur atom-containing functional group) or an unsubstituted or substituted phenyl group, and R 4 represents Represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and v represents an integer of 0 to 3. ]
    The silane compound polymer of Claim 6 obtained by condensing the mixture of the silane compound containing at least 1 type of the silane compound (2) shown by these.
  9.  前記シラン化合物の混合物に含まれるシラン化合物(1)とシラン化合物(2)のモル比〔シラン化合物(1):シラン化合物(2)〕が、5:95~80:20である、請求項8に記載のシラン化合物重合体。 The molar ratio [silane compound (1): silane compound (2)] of the silane compound (1) and the silane compound (2) contained in the mixture of silane compounds is 5:95 to 80:20. The silane compound polymer described in 1.
  10.  重量平均分子量が、1,000~30,000である、請求項6に記載のシラン化合物重合体。 The silane compound polymer according to claim 6, having a weight average molecular weight of 1,000 to 30,000.
  11.  請求項1~10のいずれかに記載のシラン化合物重合体を含有する硬化性組成物。 A curable composition containing the silane compound polymer according to any one of claims 1 to 10.
  12.  光素子固定材用組成物である請求項11に記載の硬化性組成物。 The curable composition according to claim 11, which is a composition for an optical element fixing material.
  13.  請求項11に記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to claim 11.
  14.  光素子固定材である請求項13に記載の硬化物。 The cured product according to claim 13, which is an optical element fixing material.
  15.  請求項11に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 A method of using the curable composition according to claim 11 as an adhesive for an optical element fixing material.
  16.  請求項11に記載の硬化性組成物を、光素子固定材用封止剤として使用する方法。 A method of using the curable composition according to claim 11 as a sealant for an optical element fixing material.
PCT/JP2014/074934 2013-09-20 2014-09-19 Silane compound polymer, curable composition, cured product, and method for using cured composition WO2015041340A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-195834 2013-09-20
JP2013195834 2013-09-20

Publications (1)

Publication Number Publication Date
WO2015041340A1 true WO2015041340A1 (en) 2015-03-26

Family

ID=52688987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074934 WO2015041340A1 (en) 2013-09-20 2014-09-19 Silane compound polymer, curable composition, cured product, and method for using cured composition

Country Status (2)

Country Link
TW (1) TW201522516A (en)
WO (1) WO2015041340A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130393A (en) * 1996-09-03 1998-05-19 Showa Denko Kk Wholly side-chain mercapto group-bearing polyorganosilsesquioxane and its production
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those
JP2008248236A (en) * 2007-03-02 2008-10-16 Lintec Corp Adhesive comprising ladder type polysilsesquioxane and adhesive sheet
JP2008308541A (en) * 2007-06-13 2008-12-25 Toray Fine Chemicals Co Ltd Silicone copolymer having sulfur functional group and method for producing the same
JP2010155896A (en) * 2008-12-26 2010-07-15 Arakawa Chem Ind Co Ltd Transparent adhesive
JP2012155226A (en) * 2011-01-27 2012-08-16 Jsr Corp Positive type radiation-sensitive composition, cured film, method for forming cured film, display element, and polysiloxane for forming cured film
JP2012180464A (en) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd Method for producing thiol group-containing silsesquioxane, curable resin composition containing thiol group-containing silsesquioxane, cured product of the resin composition and various goods derived therefrom

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130393A (en) * 1996-09-03 1998-05-19 Showa Denko Kk Wholly side-chain mercapto group-bearing polyorganosilsesquioxane and its production
WO2007013329A1 (en) * 2005-07-28 2007-02-01 Arakawa Chemical Industries, Ltd. Curable resin composition, cured product thereof, various articles derived from those
JP2008248236A (en) * 2007-03-02 2008-10-16 Lintec Corp Adhesive comprising ladder type polysilsesquioxane and adhesive sheet
JP2008308541A (en) * 2007-06-13 2008-12-25 Toray Fine Chemicals Co Ltd Silicone copolymer having sulfur functional group and method for producing the same
JP2010155896A (en) * 2008-12-26 2010-07-15 Arakawa Chem Ind Co Ltd Transparent adhesive
JP2012155226A (en) * 2011-01-27 2012-08-16 Jsr Corp Positive type radiation-sensitive composition, cured film, method for forming cured film, display element, and polysiloxane for forming cured film
JP2012180464A (en) * 2011-03-02 2012-09-20 Arakawa Chem Ind Co Ltd Method for producing thiol group-containing silsesquioxane, curable resin composition containing thiol group-containing silsesquioxane, cured product of the resin composition and various goods derived therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIFUMI KAGEYAMA ET AL.: "Glycidyl-ki o Fukumu Takannosei Polysilsesquioxane no Gosei", 87TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING KOEN YOKOSHU II, vol. 87, 2007, pages 1498 *

Also Published As

Publication number Publication date
TW201522516A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5744221B2 (en) Curable composition, cured product and method of using curable composition
KR101768246B1 (en) Curable composition, hardened material, and method for using curable composition
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
JP5940456B2 (en) Curable composition, cured product and method of using curable composition
JP5550162B1 (en) Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
JP6779235B2 (en) Curable composition, method of producing curable composition, cured product, method of using curable composition, and optical device
JP6046898B2 (en) Curable composition, cured product and method of using curable composition
KR102105811B1 (en) Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
JP5981668B2 (en) Curable polysilsesquioxane compound, production method thereof, curable composition, cured product, and method of using curable composition, etc.
WO2015041339A1 (en) Curable composition, cured product, and method for using curable composition
JP6430388B2 (en) Curable composition, cured product and method of using curable composition
KR101757497B1 (en) Curable composition, cured article, and use of curable composition
WO2015041340A1 (en) Silane compound polymer, curable composition, cured product, and method for using cured composition
WO2015041343A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14846233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14846233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP