WO2022202001A1 - 処理方法、処理システム、処理プログラム - Google Patents

処理方法、処理システム、処理プログラム Download PDF

Info

Publication number
WO2022202001A1
WO2022202001A1 PCT/JP2022/006438 JP2022006438W WO2022202001A1 WO 2022202001 A1 WO2022202001 A1 WO 2022202001A1 JP 2022006438 W JP2022006438 W JP 2022006438W WO 2022202001 A1 WO2022202001 A1 WO 2022202001A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
envelope
safety
violation
information
Prior art date
Application number
PCT/JP2022/006438
Other languages
English (en)
French (fr)
Inventor
秀則 松崎
宏俊 安岡
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2023508789A priority Critical patent/JPWO2022202001A1/ja
Publication of WO2022202001A1 publication Critical patent/WO2022202001A1/ja
Priority to US18/472,928 priority patent/US20240013659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to processing technology for performing processing related to driving a mobile object.
  • Patent Literature 1 plans operation control related to the navigation operation of the host vehicle according to sensed information regarding the internal and external environments of the host vehicle. Therefore, when it is determined that there is potential responsibility for an accident based on the safety model according to the driving policy and the detection information, the driving control is restricted.
  • Patent Document 1 there is a possibility that the situation recognition between the host vehicle and the target vehicle may be inconsistent. Therefore, there is a possibility that the response to the behavior of the opponent's moving body will be affected.
  • a first aspect of the present disclosure is A processing method executed by a processor to perform processing related to operation of a host mobile communicable with a target mobile, comprising: obtaining alert information from the target mobile that warns of an envelope violation that is a violation of the safety envelope that sets the safety of the intended function between the target mobile and the host mobile; and adjusting a safety envelope with the target vehicle in response to obtaining the alert information.
  • a second aspect of the present disclosure is A processing system that includes a processor and performs processing related to operation of a host mobile that is communicable with a target mobile, The processor obtaining alert information from the target mobile that warns of an envelope violation that is a violation of the safety envelope that sets the safety of the intended function between the target mobile and the host mobile; adjusting a safety envelope with the target vehicle in response to obtaining the alert information.
  • a third aspect of the present disclosure is A processing program stored in a storage medium and containing instructions for execution by a processor to perform processing relating to operation of a host mobile communicable with a target mobile, the program comprising: the instruction is obtaining and causing alert information from the target mobile to warn of an envelope violation that is a violation of a safety envelope that sets the safety of the intended function between the target mobile and the host mobile; , and causing a safety envelope to be adjusted with the target vehicle in response to obtaining the alert information.
  • the target mobile has warning information that warns of an envelope violation, which is a violation of the safety envelope that sets the safety of the intended function between the target mobile and the host mobile. , obtained from the target mobile. Then, in response to obtaining the alert information, the host mobile adjusts its safety envelope with the target mobile. According to this, since the violation of the envelope to which the target moving body warns can also be commonly recognized in the host moving body and reflected in the adjustment of the safety envelope, it is possible to promote the improvement of the ability to respond to the behavior of the other moving body. It is possible.
  • a fourth aspect of the present disclosure is A processing method executed by a processor to perform processing related to operation of a host mobile communicable with a target mobile, comprising: monitoring at the host mobile for envelope violations that are violations of the safety envelope that set the safety of the intended function with the target mobile; and generating alert information for transmission to the target mobile that warns of the envelope violation if the envelope violation is recognized at the host mobile.
  • a fifth aspect of the present disclosure includes: A processing system that includes a processor and performs processing related to operation of a host mobile that is communicable with a target mobile, The processor monitoring at the host mobile for envelope violations that are violations of the safety envelope that set the safety of the intended function with the target mobile; and generating, for transmission to the target mobile, alert information warning of the envelope violation if the envelope violation is recognized at the host mobile.
  • a sixth aspect of the present disclosure is A processing program stored in a storage medium and containing instructions for execution by a processor to perform processing relating to operation of a host mobile communicable with a target mobile, the program comprising: the instruction is having the host mobile monitor for envelope violations that are violations of a safety envelope that sets the safety of the intended function with the target mobile; and generating alert information for transmission to the target mobile that warns of the envelope violation if the envelope violation is recognized at the host mobile.
  • an envelope that is a violation of the safety envelope that sets the safety of the intended function with the target mobile is monitored.
  • the host mobile when an envelope violation is recognized, the host mobile generates alert information to be sent to the target mobile to warn of the envelope violation.
  • the violation of the envelope warned by the host mobile can also be recognized in common by the target mobile, it is possible to promote the improvement of the ability to respond to the behavior of the other mobile.
  • FIG. 2 is a schematic diagram showing a running environment of a vehicle to which the first embodiment is applied;
  • FIG. 2 is a schematic diagram showing a running environment of a vehicle to which the first embodiment is applied;
  • It is a block diagram which shows the processing system of 1st embodiment.
  • the processing system 1 of the first embodiment shown in FIG. 6 performs processing related to driving of a moving object (hereinafter referred to as driving-related processing).
  • the moving object for which the processing system 1 performs driving-related processing is the vehicle 2 shown in FIGS.
  • the vehicles 2 to which the processing system 1 is applied are assumed to be a first vehicle 2a and a second vehicle 2b that can communicate with each other directly or indirectly via a communication infrastructure.
  • the self-vehicle (ego-vehicle) 2a corresponds to the host mobile body
  • the second vehicle 2b that is also the other road user 3 existing in the traveling environment of the self-vehicle 2a corresponds to the target moving body.
  • the own vehicle 2b corresponds to the host mobile body
  • the first vehicle 2a which is also the other road user 3 existing in the traveling environment of the own vehicle 2b. corresponds to the target moving body.
  • the vehicle 2 shown in FIGS. 7 and 8 is a road user, such as an automobile or a truck, on which automatic driving is performed.
  • Automated driving is classified into levels according to the degree of manual intervention by the driver in a dynamic driving task (hereinafter referred to as DDT).
  • Autonomous driving may be achieved through autonomous cruise control, such as conditional driving automation, advanced driving automation, or full driving automation, where the system performs all DDTs when activated.
  • Automated driving may be realized in advanced driving assistance control, such as driving assistance or partial driving automation, in which the driver as a passenger performs some or all of the DDT.
  • Automatic driving may be realized by either one, combination, or switching between autonomous driving control and advanced driving support control.
  • the vehicle 2 is equipped with a sensor system 5, a communication system 6, a map DB (Data Base) 7, and an information presentation system 4 shown in FIGS.
  • the sensor system 5 obtains sensor data that can be used by the processing system 1 by detecting the external and internal worlds in the vehicle 2 . Therefore, the sensor system 5 includes an external sensor 50 and an internal sensor 52 .
  • the external sensor 50 may detect targets existing in the external world of the vehicle 2 .
  • the target detection type external sensor 50 is, for example, at least one type of camera, LiDAR (Light Detection and Ranging/Laser Imaging Detection and Ranging), laser radar, millimeter wave radar, ultrasonic sonar, and the like.
  • the external sensor 50 may detect the state of the atmosphere outside the vehicle 2 .
  • the atmosphere detection type external sensor 50 is at least one of, for example, an external temperature sensor and a humidity sensor.
  • the inner world sensor 52 may detect a specific physical quantity related to vehicle motion (hereinafter referred to as a physical quantity of motion) in the inner world of the vehicle 2 .
  • the physical quantity detection type internal sensor 52 is at least one of, for example, a speed sensor, an acceleration sensor, a gyro sensor, and the like.
  • the internal world sensor 52 may detect the state of the occupant in the internal world of the vehicle 2 .
  • the occupant detection type internal sensor 52 is at least one of, for example, an actuator sensor, a driver status monitor, a biosensor, a seating sensor, an in-vehicle device sensor, and the like.
  • the actuator sensor at least one of an accelerator sensor, a brake sensor, a steering sensor, and the like, which detects the operation state of the occupant with respect to the motion actuator of the vehicle 2, is adopted.
  • the communication system 6 acquires communication data that can be used by the processing system 1 by wireless communication.
  • the communication system 6 may receive positioning signals from artificial satellites of GNSS (Global Navigation Satellite System) existing outside the vehicle 2 .
  • the positioning type communication system 6 is, for example, a GNSS receiver or the like.
  • the communication system 6 may transmit and receive communication signals with a V2X system existing outside the vehicle 2 .
  • the V2X type communication system 6 is, for example, at least one of a DSRC (Dedicated Short Range Communications) communication device, a cellular V2X (C-V2X) communication device, and the like. Communication between the vehicles 2 (2a, 2b) assumed in the first embodiment can be realized via the V2X type communication system 6 in each of the vehicles 2.
  • the communication system 6 may transmit and receive communication signals to and from terminals existing inside the vehicle 2 .
  • the terminal communication type communication system 6 is, for example, at least one of Bluetooth (registered trademark) equipment, Wi-Fi (registered trademark) equipment, infrared communication equipment, and the like.
  • the map DB 7 stores map data that can be used by the processing system 1.
  • the map DB 7 includes at least one type of non-transitory tangible storage medium, such as semiconductor memory, magnetic medium, and optical medium.
  • the map DB 7 may be a locator DB for estimating the self-state quantity of the vehicle 2 including the self-position.
  • the map DB may be a DB of a navigation unit that navigates the travel route of the vehicle 2 .
  • Map DB7 may be constructed
  • the map DB 7 acquires and stores the latest map data through communication with an external center via the V2X type communication system 6, for example.
  • the map data is two-dimensional or three-dimensional data representing the driving environment of the vehicle 2 .
  • Digital data of a high-precision map may be adopted as the three-dimensional map data.
  • the map data may include road data representing at least one of the positional coordinates of the road structure, the shape, the road surface condition, and the like.
  • the map data may include, for example, marking data representing at least one type of position coordinates, shape, etc. of road signs attached to roads, road markings, and lane markings.
  • the marking data included in the map data represents landmarks such as traffic signs, arrow markings, lane markings, stop lines, direction signs, landmark beacons, rectangular signs, business signs, line pattern changes of roads, and the like.
  • the map data may include structure data representing at least one of position coordinates, shapes, etc. of buildings and traffic lights facing roads, for example.
  • the marking data included in the map data may represent landmarks such as streetlights, edges of roads, reflectors, poles, or the back side of road signs.
  • the information presentation system 4 presents notification information to passengers including the driver of the vehicle 2.
  • the information presentation system 4 includes a visual presentation unit, an auditory presentation unit, and a tactile presentation unit.
  • the visual presentation unit presents notification information by stimulating the visual sense of the occupant.
  • the visual presentation unit is at least one of, for example, a HUD (Head-up Display), an MFD (Multi Function Display), a combination meter, a navigation unit, a light emitting unit, and the like.
  • the auditory presentation unit presents the notification information by stimulating the auditory sense of the occupant.
  • the auditory presentation unit is, for example, at least one of a speaker, buzzer, vibration unit, and the like.
  • the cutaneous sensation presentation unit presents notification information by stimulating the passenger's cutaneous sensations.
  • the skin sensation stimulated by the skin sensation presentation unit includes at least one of touch, temperature, wind, and the like.
  • the skin sensation presentation unit is, for example, at least one of a steering wheel vibration unit, a driver's seat vibration unit, a steering wheel reaction force unit, an accelerator pedal reaction force unit, a brake pedal reaction force unit, and an air conditioning unit. is.
  • the processing system 1 connects a sensor system 5, a communication system 6, and a map DB 7 via at least one of a LAN (Local Area Network), a wire harness, an internal bus, a wireless communication line, and the like. , and the information presentation system 4 .
  • the processing system 1 includes at least one dedicated computer.
  • a dedicated computer that configures the processing system 1 may be an integrated ECU (Electronic Control Unit) that integrates operation control of the vehicle 2 .
  • the dedicated computer that constitutes the processing system 1 may be a judgment ECU that judges the DDT in the operation control of the vehicle 2 .
  • a dedicated computer that configures the processing system 1 may be a monitoring ECU that monitors operation control of the vehicle 2 .
  • a dedicated computer that configures the processing system 1 may be an evaluation ECU that evaluates operation control of the vehicle 2 .
  • a dedicated computer that configures the processing system 1 may be a navigation ECU that navigates the travel route of the vehicle 2 .
  • a dedicated computer that configures the processing system 1 may be a locator ECU that estimates self-state quantities including the self-position of the vehicle 2 .
  • the dedicated computer that makes up the processing system 1 may be an actuator ECU that controls the motion actuators of the vehicle 2 .
  • a dedicated computer that configures the processing system 1 may be an HCU (HMI (Human Machine Interface) Control Unit) that controls information presentation in the vehicle 2 .
  • the dedicated computer that constitutes the processing system 1 may be at least one external computer that constructs an external center or a mobile terminal that can communicate via the communication system 6, for example.
  • a dedicated computer that constitutes the processing system 1 has at least one memory 10 and at least one processor 12 .
  • the memory 10 stores computer-readable programs and data non-temporarily, for example, at least one type of non-transitory physical storage medium (non-transitory storage medium) among semiconductor memory, magnetic medium, optical medium, etc. tangible storage medium).
  • the processor 12 includes at least one of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and a RISC (Reduced Instruction Set Computer)-CPU as a core.
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • RISC Reduced Instruction Set Computer
  • the processor 12 executes multiple instructions contained in a processing program stored in the memory 10 as software. Thereby, the processing system 1 constructs a plurality of functional blocks for executing the driving-related processing of the vehicle 2 .
  • a plurality of functional blocks are constructed by causing the processor 12 to execute a plurality of instructions from the processing program stored in the memory 10 in order to perform driving-related processing of the vehicle 2 .
  • a plurality of functional blocks constructed by the processing system 1 include a detection block 100, a planning block 120, a risk monitoring block 140 and a control block 160 as shown in FIG.
  • the detection block 100 acquires sensor data from the external sensor 50 and internal sensor 52 of the sensor system 5 .
  • the detection block 100 acquires communication data from the communication system 6 .
  • the detection block 100 acquires map data from the map DB 7 .
  • the sensing block 100 senses the internal and external environments of the vehicle 2 by fusing these acquired data as inputs. By detecting the internal and external environment, the detection block 100 generates detection information to be given to the planning block 120 and the risk monitoring block 140 in the latter stage. In this way, in generating detection information, the detection block 100 acquires data from the sensor system 5 and the communication system 6, recognizes or understands the meaning of the acquired data, and determines the external environment of the vehicle 2 and its own position in it.
  • Detection block 100 may provide substantially the same detection information to planning block 120 and risk monitoring block 140 . Detection block 100 may provide different detection information to planning block 120 and risk monitoring block 140 .
  • the detection information generated by the detection block 100 describes the state detected for each scene in the driving environment of the vehicle 2 .
  • the detection block 100 may generate detection information of the object by detecting objects including other road users 3 , obstacles, and structures in the external world of the vehicle 2 .
  • the object detection information may represent at least one of, for example, the distance to the object, the relative velocity of the object, the relative acceleration of the object, and the estimated state based on tracking detection of the object.
  • the object detection information may further represent the type recognized or identified from the state of the detected object.
  • the detection block 100 may generate the detection information of the road by detecting the road on which the vehicle 2 is traveling now and in the future.
  • the roadway detection information may represent, for example, at least one type of state among road surface, lane, roadside, free space, and the like.
  • the detection block 100 may generate the detection information of the self-state quantity by localization that presumably detects the self-state quantity including the self-position of the vehicle 2 .
  • the detection block 100 may generate update information of the map data regarding the running route of the vehicle 2 at the same time as the detection information of the self-state quantity, and feed back the update information to the map DB 7 .
  • the detection block 100 may detect signs associated with the track of the vehicle 2 to generate detection information for the signs.
  • the sign detection information may represent the state of at least one of, for example, signs, lane markings, traffic lights, and the like.
  • the sign detection information may also represent traffic rules that are recognized or identified from the state of the sign.
  • the detection block 100 may generate detection information of weather conditions by detecting weather conditions for each scene in which the vehicle 2 travels.
  • the detection block 100 may detect the time for each driving scene of the vehicle 2 to generate the detection information of the time.
  • the planning block 120 acquires detection information from the detection block 100 .
  • the planning block 120 plans operation control of the vehicle 2 according to the acquired detection information.
  • control commands are generated for navigation operations of the vehicle 2 and driver assistance operations. That is, planning block 120 implements a DDT function that generates control commands as motion control requests for vehicle 2 .
  • the control commands generated by planning block 120 may include control parameters for controlling the motion actuators of vehicle 2 .
  • Motion actuators to which control commands are output include, for example, at least one of an internal combustion engine, an electric motor, a power train in which these are combined, a braking device, a steering device, and the like.
  • the planning block 120 may generate a control command that conforms to the driving policy by using a safety model described according to the driving policy and its safety.
  • the driving policy followed by the safety model is defined, for example, based on a vehicle-level safety strategy that guarantees the safety of the intended functionality (Safety Of The Intended Functionality: hereinafter referred to as SOTIF).
  • SOTIF vehicle-level safety strategy that guarantees the safety of the intended functionality
  • the safety model is described by following driving policies that implement vehicle-level safety strategies and by modeling the SOTIF.
  • Planning block 120 may train the safety model with a machine learning algorithm that backpropagates operational control results to the safety model.
  • As the safety model to be trained at least one type of learning model may be used among deep learning by a neural network such as DNN (Deep Neural Network), reinforcement learning, and the like.
  • the safety model referred to here may be the safety-related model itself, or may be a model forming part of the safety-related model.
  • the planning block 120 may plan a route for the vehicle 2 to travel in the future through operation control prior to generating the control command. Route planning may be performed, for example, by computation, such as simulation, to navigate the vehicle 2 based on sensed information. That is, planning block 120 may implement a DDT function, planning a route as a tactical maneuver of vehicle 2 . The planning block 120 may also plan a proper trajectory for the vehicle 2 following the planned route based on the acquired sensed information prior to generating the control commands. That is, planning block 120 may implement a DDT function that plans the trajectory of vehicle 2 .
  • the trajectory planned by the planning block 120 may define at least one kind of movement physical quantity relating to the vehicle 2, such as running position, speed, acceleration, and yaw rate, in chronological order.
  • a chronological trajectory plan builds a scenario of future travel by navigating the vehicle 2 .
  • the planning block 120 may generate the trajectory by planning using the safety model.
  • a safety model may be trained by a machine learning algorithm based on the computation result by computing a cost function that gives a cost to the generated trajectory.
  • the planning block 120 may plan the adjustment of the level of automated driving in the vehicle 2 according to the acquired detection information. Adjusting the level of automated driving may also include handover between automated driving and manual driving.
  • the handover between automatic operation and manual operation may be realized in a scenario accompanying entry into or exit from the operation design area by setting the operation design area in which automatic operation is performed.
  • an irrational situation where it is determined that irrational risks exist based on, for example, a safety model, is a use case.
  • the planning block 120 may plan a DDT fallback for the driver who will be the fallback reserve user to impart a minimum risk maneuver to the vehicle 2 to transition the vehicle 2 to a minimum risk condition.
  • the adjustment of the automated driving level may include degeneracy of the vehicle 2.
  • a degenerate driving scenario an irrational situation where it is determined, for example, based on a safety model that there is an irrational risk by handing over to manual driving, is a use case.
  • planning block 120 may plan a DDT fallback to transition vehicle 2 to a minimum risk state through autonomous driving and autonomous stopping.
  • the DDT fallback for shifting the vehicle 2 to the minimum risk state is not only realized in the adjustment to lower the automatic driving level, but also the adjustment to maintain the automatic driving level and degenerate running, such as MRM (Minimum Risk Maneuver) etc. may be implemented in
  • the DDT fallback for transitioning the vehicle 2 to the minimum risk state may enhance the prominence of the transition situation by at least one of, for example, lighting, horns, signals, and gestures.
  • the risk monitoring block 140 acquires detection information from the detection block 100.
  • the risk monitoring block 140 monitors the risk between the vehicle 2 and the other road user 3 for each scene based on the acquired detection information.
  • the risk monitoring block 140 performs risk monitoring based on detection information in time series so as to guarantee the SOTIF of the vehicle 2 to the other road user 3 .
  • Other road users 3 assumed in risk monitoring include, for example, non-vulnerable road users such as automobiles, trucks, motorbikes, and bicycles, and vulnerable road users such as pedestrians.
  • Other road users 3 assumed in risk monitoring may also include animals.
  • the risk monitoring block 140 sets a safety envelope that guarantees SOTIF in the vehicle 2, for example, based on a vehicle-level safety strategy, etc., based on the acquired detection information for each scene.
  • the risk monitoring block 140 may use the safety model according to the driving policy described above to set up a safety envelope between the vehicle 2 and other road users 3 .
  • the safety model used to set the safety envelope may be designed to avoid potential accident liability resulting from unreasonable risk or road user misuse, subject to accident liability rules.
  • the safety model may be designed such that the vehicle 2 complies with accident liability rules according to driving policy.
  • Such a safety model includes, for example, a Responsibility Sensitive Safety model as disclosed in Patent Document 1.
  • a safe distance may be assumed from a profile relating to at least one type of motion physical quantity based on a safety model for the vehicle 2 and other road users 3 that are assumed to follow the driving policy.
  • the safe distance defines a physics-based marginal boundary around the vehicle 2 for the expected movement of other road users 3 .
  • a safe distance may be assumed, taking into account the reaction time until an appropriate response is carried out by each of the vehicle 2 and the other road users 3 .
  • a safe distance may be assumed to comply with accident liability regulations.
  • a safe distance for avoiding the risk of rear-end collision and frontal collision in the longitudinal direction of the vehicle 2 and a safe distance for avoiding the risk of side collision in the lateral direction of the vehicle 2 are calculated.
  • a safe distance that avoids the risk of track collision in any direction of the vehicle 2 may be calculated.
  • the risk monitoring block 140 may identify the scene-by-scene situation of relative motion between the vehicle 2 and the other road user 3 prior to setting the safety envelope described above. For example, in a scene in which a lane structure such as a lane exists, a situation in which the risk of rear-end collision and head-on collision is assumed in the longitudinal direction and a situation in which the risk of side collision is assumed in the lateral direction may be specified. In these vertical and horizontal situation determinations, state quantities relating to the vehicle 2 and other road users 3 may be converted into a coordinate system that assumes straight lanes. On the other hand, in a scene where there is no lane structure, a situation in which there is a risk of track collision in any direction of the vehicle 2 may be specified. At least part of the situation identification function described above may be executed by the detection block 100, and the situation identification result may be given to the risk monitoring block 140 as detection information.
  • the risk monitoring block 140 executes safety judgment between the vehicle 2 and the other road user 3 based on the set safety envelope and the acquired detection information for each scene. That is, the risk monitoring block 140 makes a safety judgment by testing whether or not there is an envelope violation that is a violation of the safety envelope in the driving scene interpreted based on the detection information between the vehicle 2 and the other road user 3. come true. If a safe distance is assumed in setting the safety envelope, it may be determined that there is no violation of the envelope when the actual distance between the vehicle 2 and the other road user 3 exceeds the safe distance. On the other hand, when the actual distance between the vehicle 2 and the other road user 3 becomes equal to or less than the safe distance, it may be determined that there is an envelope violation.
  • the risk monitoring block 140 may calculate, through simulation, a rational scenario for giving the vehicle 2 appropriate actions to take as an appropriate response when it is determined that there is an envelope violation.
  • a rational scenario for giving the vehicle 2 appropriate actions to take as an appropriate response when it is determined that there is an envelope violation.
  • a limit value assumed for the physical quantity of motion may be calculated so as to limit at least one type of physical quantity of motion given to the vehicle 2 as a constraint on the vehicle 2 .
  • the risk monitoring block 140 determines limit values for complying with accident liability rules from profiles relating to at least one type of motion physical quantity based on a safety model for the vehicle 2 and other road users 3 assuming that they follow the driving policy. can be calculated directly. It can be said that the direct calculation of the limit value itself is the setting of the safety envelope and the setting of constraints on the operation control. Therefore, if an actual value that is safer than the limit value is detected, it may be determined that the envelope is not violated. On the other hand, if the actual value outside the limit value is detected, it may be determined that the envelope is violated.
  • the risk monitoring block 140 includes, for example, detection information used to set the safety envelope, determination information representing the determination result of the safety envelope, detection information that influenced the determination result, and simulated scenarios.
  • Evidence information may be stored in memory 10 .
  • the memory 10 for storing the evidence information may be installed in the vehicle 2 according to the type of dedicated computer that constitutes the processing system 1, or may be installed in an external center outside the vehicle 2, for example. good.
  • Evidence information may be stored unencrypted, encrypted or hashed. Storing evidence information is performed at least in the case of a determination that there is an envelope violation. Of course, the storage of evidence information may be executed even when it is determined that there is no envelope violation.
  • Evidence information in the case of determination of no envelope violation can be used as a lagging indicator at the time of memorization, and can be used as a leading indicator in the future.
  • the control block 160 obtains control instructions from the planning block 120 .
  • Control block 160 obtains decision information regarding the safety envelope from risk monitoring block 140 .
  • Control block 160 implements the DDT function, which controls the motion of vehicle 2 .
  • the control block 160 executes the planned driving control of the vehicle 2 in accordance with the control command when the determination information indicating that there is no violation of the envelope is acquired.
  • control block 160 when the control block 160 acquires determination information indicating that there is an envelope violation, the control block 160 imposes constraints on the planned driving control of the vehicle 2 according to the driving policy based on the determination information.
  • Restrictions on driving control may be functional restrictions.
  • Constraints on operational control may be degraded constraints.
  • Restrictions on operational control may be restrictions different from these. Constraints are given to the operational control by limiting the control commands. If a reasonable scenario has been simulated by risk monitoring block 140, control block 160 may limit control commands according to that scenario. At this time, if a limit value is set for the physical quantity of motion of the vehicle 2, the control parameter of the motion actuator included in the control command may be corrected based on the limit value.
  • the first embodiment assumes a lane structure Ls with separated lanes.
  • the lane structure Ls regulates the movement of the vehicle 2 and the other road user 3 with the direction in which the lane extends as the longitudinal direction.
  • the lane structure Ls regulates the movement of the vehicle 2 and the other road user 3 with the width direction or the line-up direction of the lanes as the lateral direction.
  • the driving policy in the lane structure Ls is, for example, between the first vehicle 2a and the second vehicle 2b, where one is assumed to be the vehicle 2 and the other is the other road user 3, the following (A) to (E) etc.
  • the forward direction with respect to the vehicle 2 is, for example, the traveling direction on a turning circle at the current steering angle of the vehicle 2, the traveling direction of a straight line passing through the center of gravity of the vehicle perpendicular to the axle of the vehicle 2, or the sensor system 5 of the vehicle 2. Of these, it means the advancing direction on the axis line of the FOE (Focus of Expansion) of the camera from the front camera module.
  • FOE Fulls of Expansion
  • Vehicles 2 do not forcibly cut in between other vehicles 2 .
  • Vehicles 2 yield to other vehicles 2 depending on the situation, even if the vehicle 2 has priority.
  • Vehicle 2 should be driven carefully in places with poor visibility.
  • E Regardless of whether the vehicle 2 is responsible for itself or others, if the situation is such that it is possible for the vehicle 2 to prevent the accident by itself, it will take reasonable actions for that purpose.
  • the modeled safety model of SOTIF assumes road user behavior that does not lead to unreasonable situations as appropriate and rational behavior to be taken.
  • the unreasonable situations between the vehicle 2 and the other road user 3 in the lane structure Ls are head-on collision, rear-end collision, and side collision.
  • a rational behavior in a head-on collision is, for example, that between the first vehicle 2a and the second vehicle 2b, one of which is the other road user 3, the vehicle 2a or 2b running in the opposite direction brakes.
  • Including, such as multiplying Reasonable behavior in a rear-end collision is, for example, between the first vehicle 2a and the second vehicle 2b, that the vehicle 2a or 2b running in front should not apply sudden braking above a certain level, and that, on the premise of that, the vehicle running behind avoiding a rear-end collision by the vehicle 2b or 2a, etc.
  • Reasonable actions in a side collision include, for example, steering the vehicles 2a and 2b running side by side in a direction separating from each other between the first vehicle 2a and the second vehicle 2b.
  • the state quantity regarding the vehicle 2 and the other road user 3 is a linear and planar lane structure regardless of whether the lane structure Ls is curved or the lane structure Ls is undulating. It is transformed into a Cartesian coordinate system, assuming Ls to define the vertical and horizontal directions.
  • the safety model should be designed in accordance with the accident liability rules, which assumes that a mobile object that does not act rationally is responsible for an accident.
  • the safety model used to monitor the risks between the vehicle 2 and other road users 3 under the accident liability rule in the lane structure Ls is to ensure that the safety Set envelope. Therefore, the risk monitoring block 140 when the entire processing system 1 of the vehicle 2 is normal, compares the actual distance between the vehicle 2 and the other road user 3 with the safe distance based on the safety model for each driving scene. Thus, it is determined whether or not there is an envelope violation.
  • the risk monitoring block 140 simulates scenarios to give the vehicle 2 reasonable action if there is an envelope violation. Based on the simulation, the risk monitoring block 140 sets, as constraints on the operation control in the control block 160, a limit value relating to at least one of speed and acceleration, for example.
  • the first vehicle 2a and the second vehicle 2b which are assumed to be the paired vehicles 2 that directly or indirectly communicate with each other, operate the driving-related processing by jointly using the functional blocks constructed by the respective processing systems 1. are executed according to the flow charts shown in FIGS. 14 and 15, respectively.
  • the processing method of the first embodiment is repeatedly executed in each vehicle 2a, 2b while the mutual distance between the first vehicle 2a and the second vehicle 2b is within the monitoring range of the safety envelope.
  • Each "S" in the processing method in the following description means a plurality of steps executed by a plurality of instructions included in the processing program in the processing system 1 of each vehicle 2a, 2b.
  • the risk monitoring blocks 140 of the first vehicle 2a and the second vehicle 2b mutually authenticate by exchanging user IDs including authentication keys through mutual communication.
  • This mutual authentication may be simply confirmation of security and confirmation of whether or not communication is possible.
  • This mutual authentication may involve confirmation of whether or not the adopted safety model or driving policy has a safety envelope setting function, in addition to confirmation of security and confirmation of communication availability.
  • the risk monitoring block 140 of the first vehicle 2a sets the SOTIF between the first vehicle 2a and the second vehicle 2b according to the driving policy. Envelope violations are monitored based on the safety model of the first vehicle 2a. As indicated by the solid circle in FIG. 12, if at least a portion of the second vehicle 2b is within the safe distance that defines the safety envelope based on the safety model of the first vehicle 2a, then the envelope is violated. is recognized. Therefore, in S101, when the risk monitoring block 140 of the first vehicle 2a determines that there is an envelope violation, as shown in FIG. . That is, S102 and S103 are executed when an envelope violation between the first vehicle 2a and the second vehicle 2b is recognized.
  • the risk monitoring block 140 of the first vehicle 2a generates warning information Iw for warning the second vehicle 2b of the envelope violation.
  • the warning information Iw may include notification information In that pushes notification from the first vehicle 2a to the second vehicle 2b that an event of envelope violation has occurred.
  • the warning information Iw may be composite information in which the status information Is is added to the notification information In.
  • the situation information Is may include envelope information Ise relating to the safety envelope set in the first vehicle 2a.
  • the envelope information Ise may represent the range of the safety envelope including the safety distance, which is the criterion for determining the violation of the envelope in the first vehicle 2a.
  • the envelope information Ise is assumed as the relative state between the first vehicle 2a and the second vehicle 2b by a safety model that defines the safety envelope that is the criterion for determining the violation of the envelope, such as rear-end collision risk, frontal collision risk, side
  • At least one kind of risk type may be represented among collision risk, crossing risk, blind spot risk, and their detailed situations.
  • the envelope information Ise is the detection information of the first vehicle 2a detected by the detection block 100 of the first vehicle 2a in the scene where the envelope is violated. It may represent at least one of acceleration/deceleration, relative velocity, relative acceleration, estimated states including their vectors, and types.
  • the envelope information Ise is a physical quantity of motion that violates the envelope, which is out of the limit value set by the constraint setting of the risk monitoring block 140 in the first vehicle 2a. may represent at least one type of detection information detected by the detection block 100 of the .
  • the envelope information Ise is detection information of the second vehicle 2b detected by the detection block 100 of the first vehicle 2a in the scene of the violation of the envelope. At least one of the estimated state including the vector and the type may be represented.
  • the envelope information Ise, out of the speed and acceleration/deceleration of the second vehicle 2b, is used as a physical quantity of motion that violates the envelope outside the limit values set by the constraint setting of the risk monitoring block 140 in the first vehicle 2a.
  • the envelope information Ise may include an image or video including the second vehicle 2b captured by the camera, which is the external sensor 50 of the first vehicle 2a, in the scene of the envelope violation.
  • the situation information Is includes, for example, the route, trajectory, control parameters, automatic driving level (if manual driving is set to level 0 including), etc., may represent at least one type.
  • the situation information Is includes, for example, traffic rules, signs, road structure, location, sections, road surface conditions, light and shade conditions, construction conditions, congestion conditions, presence of obstacles including falling objects, road conditions in scenes where the envelope is violated, road conditions It may represent at least one of a surrounding feature structure and a blind spot or the like caused by the feature structure or the moving object type.
  • the situation information Is may represent at least one of, for example, the time of day, the time zone of the violating scene including distinction between day and night, and the weather conditions (i.e., weather) of the violating scene in the scene of the violating envelope.
  • the warning information Iw generated in S102 can be transmitted from the first vehicle 2a to the second vehicle 2b according to the control of the communication system 6 by the risk monitoring block 140 of the first vehicle 2a.
  • the risk monitoring block 140 of the first vehicle 2a transmits the envelope violation warning information Iw in real time from the first vehicle 2a to the second vehicle 2b in response to the determination that the envelope is violated.
  • the transmission between the vehicles 2a and 2b may be directly realized by the communication system 6 such as V2V type, or indirectly via a remote center such as a cloud server. Alternatively, it may be implemented via a mesh network configured between a plurality of vehicles including the vehicles 2a and 2b.
  • the risk monitoring block 140 of the first vehicle 2a stores the generated warning information Iw in the memory 10 of the first vehicle 2a.
  • the warning information Iw may be stored in association with a time stamp representing the generation time or transmission time in the first vehicle 2a, thereby accumulating the warning information Iw at a plurality of points in time.
  • the warning information Iw may be stored through encryption processing or hashing processing in the first vehicle 2a.
  • the warning information Iw may be stored as evidence information.
  • the warning information Iw may be deleted after a set period has elapsed from the time of generation or transmission in the first vehicle 2a.
  • the risk monitoring block 140 of the second vehicle 2b sets the SOTIF between the second vehicle 2b and the first vehicle 2a according to the driving policy, the safety envelope based on the safety model of the second vehicle 2b.
  • the risk monitoring block 140 of the second vehicle 2b determines in S111 that there is no violation of the envelope, as shown in FIG. 15, the current flow in the second vehicle 2b proceeds to S114.
  • the risk monitoring block 140 of the second vehicle 2b determines whether or not the warning information Iw from the first vehicle 2a has been received through the communication system 6 of the second vehicle 2b. In S114, when the risk monitoring block 140 of the second vehicle 2b determines that the warning information Iw has not been acquired, the flow for this time in the second vehicle 2b ends.
  • the risk monitoring block 140 of the second vehicle 2b stores the acquired warning information Iw in the memory 10 of the second vehicle 2b.
  • the warning information Iw is stored in association with a time stamp representing the generation time or transmission time in the first vehicle 2a, or the acquisition time (i.e., reception time) in the second vehicle 2b, so that warning information at a plurality of points in time can be stored. Iw may be accumulated.
  • the warning information Iw may be stored through encryption processing or hashing processing in the second vehicle 2b.
  • the warning information Iw may be stored as evidence information.
  • the warning information Iw may be deleted when a set period elapses from the time of generation or transmission in the first vehicle 2a, or the time of acquisition in the second vehicle 2b.
  • the risk monitoring block 140 of the second vehicle 2b in S116 adjusts the safety envelope set according to the driving policy for the SOTIF between the second vehicle 2b and the first vehicle 2a.
  • Tuning of the safety envelope may be performed by correcting setting parameters or learning parameters in the safety model.
  • the correction amount for updating the parameters by verification and validation of the safety model of the second vehicle 2b based on at least the envelope information Ise of the warning information Iw from the first vehicle 2a. should be determined.
  • the risk monitoring block 140 of the second vehicle 2b executes the process of generating the warning information Iw by reversing the first vehicle 2a and the second vehicle 2b in the description of S102.
  • the risk monitoring block 140 of the second vehicle 2b executes a process in which the first vehicle 2a and the second vehicle 2b in the description of S103 are read in reverse as the process of storing the warning information Iw.
  • the current flow for the second vehicle 2b ends.
  • the risk monitoring block 140 of the second vehicle 2b executes the acquisition determination processing of the warning information Iw according to S114, thereby detecting the scene with the envelope violation.
  • a common recognition with the first vehicle 2a may be achieved.
  • the risk monitoring block 140 of the first vehicle 2a executes the acquisition determination process of the warning information Iw in accordance with S114 before the execution of S103 described above or before the end of the current flow after the execution of S103 described above. Therefore, the second vehicle 2b and the second vehicle 2b may share the recognition of the scene where the envelope is violated.
  • S104 when the risk monitoring block 140 of the first vehicle 2a determines that the warning information Iw has been acquired, the current flow in the first vehicle 2a sequentially shifts to S105 and S106. That is, in S105 and S106, as shown in FIG. 13, despite the fact that the second vehicle 2b has recognized the violation of the envelope between the first vehicle 2a and the second vehicle 2b, the first vehicle 2a and the second vehicle 2b It is performed relative to real time in response to obtaining the warning information Iw if the envelope violation was unrecognized.
  • FIG. 13 shows that the safety distance that defines the safety envelope based on the safety model in the first vehicle 2a is smaller than the safety distance that defines the safety envelope based on the safety model in the second vehicle 2b. shows an example where
  • the risk monitoring block 140 for the first vehicle 2a performs a process in which the first vehicle 2a and the second vehicle 2b in the description of S115 are read in reverse as the warning information Iw storage process. ,Run.
  • the risk monitoring block 140 of the first vehicle 2a executes the process of reversing the first vehicle 2a and the second vehicle 2b in the description of S116 as the safety envelope adjustment process.
  • the current flow for the first vehicle 2a ends.
  • the first vehicle 2a as the host mobile body and the second vehicle 2b as the target mobile body are in a safe state in which SOTIF is set. Envelopes are monitored for violations. Therefore, when the envelope violation is recognized, the first vehicle 2a generates warning information Iw for warning of the envelope violation so as to be transmitted to the second vehicle 2b. According to this, since the violation of the envelope warned by the first vehicle 2a can also be commonly recognized by the second vehicle 2b, it is possible to promote an improvement in the ability to respond to the behavior of the other vehicle.
  • SOTIF is set between the first vehicle 2a as the target mobile body and the second vehicle 2b.
  • Warning information Iw warning of an envelope violation which is a violation of the safety envelope, is obtained from the first vehicle 2a. Therefore, in response to the acquisition of the warning information Iw, the second vehicle 2b adjusts the safety envelope with the first vehicle 2a. According to this, the violation of the envelope warned by the first vehicle 2a can be commonly recognized in the second vehicle 2b as well, and can be reflected in the adjustment of the safety envelope. It is possible.
  • the second vehicle 2b as the host mobile body violates the safety envelope in which the SOTIF is set with the first vehicle 2a as the target mobile body. will be monitored. Therefore, when the envelope violation is recognized, the second vehicle 2b also generates warning information Iw for warning of the envelope violation so as to be transmitted to the first vehicle 2a. According to this, the envelope violation warned by the second vehicle 2b can also be recognized in common by the first vehicle 2a, so that it is possible to promote improvement of the ability to respond to the behavior of the other vehicle.
  • the first vehicle 2a in the first vehicle 2a as the host mobile body, SOTIF is set between the second vehicle 2b as the target mobile body and the first vehicle 2a.
  • Warning information Iw warning of a violation of the safety envelope which is a violation of the envelope, will be obtained from the second vehicle 2b. Therefore, in response to the acquisition of the warning information Iw, the first vehicle 2a also adjusts the safety envelope with the second vehicle 2b. According to this, the violation of the envelope warned by the second vehicle 2b is commonly recognized in the first vehicle 2a as well, and can be reflected in the adjustment of the safety envelope. It is possible.
  • the second embodiment is a modification of the first embodiment.
  • the risk monitoring block 140 of the second vehicle 2b generates feedback information If for feeding back the acquisition of the warning information Iw to the first vehicle 2a.
  • the feedback information If may include notification information In that push-notifies the acquisition of the warning information Iw from the second vehicle 2b to the first vehicle 2a.
  • the feedback information If may be composite information in which the situation information Is obtained by reading the first vehicle 2a and the second vehicle 2b reversely in the description of S102 is added to the notification information In. That is, the situation information Is may include envelope information Ise regarding the safety envelope set in the second vehicle 2b.
  • the warning information Iw generated in S2117 can be transmitted from the second vehicle 2b to the first vehicle 2a according to the control of the communication system 6 by the risk monitoring block 140 of the second vehicle 2b.
  • the risk monitoring block 140 of the second vehicle 2b transmits the feedback information If for the warning information Iw from the second vehicle 2b to the first vehicle 2a in real time in response to the acquisition of the warning information Iw. , to generate When the execution of S2117 is completed, the current flow for the second vehicle 2b ends.
  • the risk monitoring block 140 of the first vehicle 2a monitors the feedback information If from the second vehicle 2b within a set time from the transmission of the warning information Iw. It is determined whether or not it is acquired by receiving through the communication system 6 . In S2108, when the risk monitoring block 140 of the first vehicle 2a determines that the feedback information If has been acquired, the current flow in the first vehicle 2a ends.
  • the risk monitoring block 140 of the first vehicle 2a can check whether the second vehicle 2b and the second vehicle 2b have shared recognition of the scene with the envelope violation.
  • the risk monitoring block 140 of the first vehicle 2a may delete the warning information Iw corresponding to the acquisition of the feedback information If from the memory 10 of the first vehicle 2a in response to the acquisition of the feedback information If.
  • the risk monitoring block 140 of the first vehicle 2a may store the feedback information If acquired corresponding to the warning information Iw of S103 in the memory 10 of the first vehicle 2a.
  • the risk monitoring block 140 of the first vehicle 2a determines in S2108 that the feedback information If has not been acquired, the current flow in the first vehicle 2a proceeds to S2109.
  • the restriction for risk avoidance may be a degeneracy command to the control block 160 of the first vehicle 2a that causes the first vehicle 2a to perform degeneracy, such as emergency evacuation action or MRM, on a best effort basis.
  • a constraint for risk avoidance may be a limit command to the control block 160 of the first vehicle 2a that provides a constraint for transitioning the first vehicle 2a to a minimum risk state.
  • the restriction for risk avoidance may be at least one minor restriction of the speed limit of the first vehicle 2a, the acceleration limit, and the first vehicle 2a moving away from the second vehicle 2b.
  • Such constraint setting processing is performed when the first vehicle 2a receives warning information Iw from itself due to factors such as the processing system 1 not being applied to the second vehicle 2b or the communication system 6 not being installed in the second vehicle 2b.
  • the feedback information If cannot be acquired for the transmission, safer risk avoidance behavior is enabled.
  • the execution of S2109 is completed, the current flow for the first vehicle 2a ends.
  • the risk monitoring block 140 of the first vehicle 2a executes the process of generating the feedback information If by reversing the first vehicle 2a and the second vehicle 2b in the description of S2117.
  • the current flow for the first vehicle 2a ends.
  • the risk monitoring block 140 of the second vehicle 2b reverses the first vehicle 2a and the second vehicle 2b in the description of S2108 as the acquisition determination processing of the feedback information If. Execute the modified process. Therefore, in S2118, when the risk monitoring block 140 of the second vehicle 2b determines that the feedback information If has been acquired, the current flow for the second vehicle 2b ends.
  • the risk monitoring block 140 of the second vehicle 2b can check whether the first vehicle 2a and the first vehicle 2a have shared recognition of the scene with the envelope violation.
  • the risk monitoring block 140 of the second vehicle 2b may delete the warning information Iw corresponding to the acquisition of the feedback information If from the memory 10 of the second vehicle 2b in response to the acquisition of the feedback information If.
  • the risk monitoring block 140 of the second vehicle 2b may store the feedback information If acquired corresponding to the warning information Iw of S103 in the memory 10 of the second vehicle 2b.
  • the risk monitoring block 140 of the second vehicle 2b determines in 2118 that the feedback information If has not been acquired, the current flow in the second vehicle 2b proceeds to S2119.
  • the risk monitoring block 140 of the second vehicle 2b executes a process in which the first vehicle 2a and the second vehicle 2b in the description of S2109 are reversely read as a restriction setting process for risk avoidance.
  • a restriction setting process is performed when the second vehicle 2b receives the warning information Iw from itself due to factors such as the processing system 1 not being applied to the first vehicle 2a or the communication system 6 not being installed in the first vehicle 2a.
  • the processing methods in which S2107 to S2109 and S2117 to S2119 are added to the first embodiment are performed mainly by the risk monitoring blocks 140 of the first vehicle 2a and the second vehicle 2b. be done. Therefore, it is possible to promote the improvement of the ability to respond to the behavior of the opponent vehicle.
  • the third embodiment is a modification of the first embodiment.
  • the process of obtaining judgment information regarding the safety envelope from the risk monitoring block 140 is omitted. Therefore, the planning block 3120 of the third embodiment obtains decision information regarding the safety envelope from the risk monitoring block 140 .
  • the planning block 3120 plans the operation control of the vehicle 2 according to the planning block 120 when the judgment information indicating that there is no violation of the envelope is acquired.
  • the planning block 3120 imposes restrictions on the operation control based on the determination information in the stage of planning the operation control according to the planning block 120 . In other words, the planning block 3120 imposes restrictions on the operational control to be planned. In either case, control block 3160 performs the operational control of vehicle 2 planned by planning block 3120 .
  • the processing methods according to the first embodiment are executed mainly by the risk monitoring blocks 140 of the first vehicle 2a and the second vehicle 2b. Therefore, it is possible to promote the improvement of the ability to respond to the behavior of the opponent vehicle.
  • the third embodiment described so far may be combined with the second embodiment.
  • the fourth embodiment is a modification of the third embodiment.
  • the planning block 4120 of the fourth embodiment incorporates the function of the risk monitoring block 140 as a risk monitoring sub-block 4140.
  • the planning block 4120 plans operation control of the vehicle 2 in accordance with the planning block 120 when the risk monitoring sub-block 4140 acquires determination information that the envelope is not violated.
  • the planning block 4120 imposes restrictions on the operation control based on the determination information in the stage of planning the operation control according to the planning block 120. . That is, the planning block 4120 imposes restrictions on the operational control to be planned. In either case, control block 3160 performs the operational control of vehicle 2 planned by planning block 4120 .
  • the processing methods according to the first embodiment are executed mainly by the risk monitoring sub-blocks 4140 of the first vehicle 2a and the second vehicle 2b. Therefore, it is possible to promote the improvement of the ability to respond to the behavior of the opponent vehicle.
  • the fourth embodiment described so far may be combined with the second embodiment.
  • the fifth embodiment is a modification of the first embodiment.
  • the process of obtaining determination information regarding the safety envelope from the risk monitoring block 5140 is omitted. Therefore, the risk monitoring block 5140 of the fourth embodiment acquires information representing the result of operation control executed by the control block 5160 on the vehicle 2 .
  • the risk monitoring block 5140 evaluates an operational control by performing an envelope violation determination on the operational control results.
  • the processing methods according to the first embodiment are executed mainly by the risk monitoring blocks 5140 of the first vehicle 2a and the second vehicle 2b.
  • the adjustment processing of the safety envelope in S106 and S116 can improve the evaluation accuracy of the operation control. Therefore, it is possible to promote the improvement of the ability to respond to the behavior of the opponent vehicle.
  • the fifth embodiment described so far may be combined with the second embodiment. However, when the fifth embodiment is combined with the second embodiment, in S2109 and S2119, evaluation of operational control based on the set constraints is performed.
  • the sixth embodiment is a modification of the first embodiment.
  • test block 6180 is added to the sixth embodiment to test the operation control by the control block 160, for example for safety approval.
  • the test block 6180 is provided with functions equivalent to those of the detection block 100 and the risk monitoring block 140 .
  • Test block 6180 may be constructed by processing system 1 shown in FIG.
  • the test block 6180 executes a test processing program different from the processing program that constructs the blocks 100, 120, 140, and 160 by a test processing system 6001 that is different from the processing system 1 as shown in FIG. It may be constructed by
  • the test processing system 6001 is connected to the processing system 1 for testing operation control (not shown in the case of connection through the communication system 6), and has at least one memory 10 and a processor 12. It may be configured by a dedicated computer.
  • the processing methods according to the first embodiment are executed mainly for each test block 6180 of the first vehicle 2a and the second vehicle 2b.
  • the safety envelope adjustment processing in S106 and S116 can improve the evaluation accuracy of the operation control in the test. Therefore, it is possible to promote the improvement of the ability to respond to the behavior of the opponent vehicle.
  • the sixth embodiment described so far may be combined with the second embodiment. However, when the sixth embodiment is combined with the second embodiment, in S2109 and S2119, the operation control is evaluated as a test based on the set constraints. (Other embodiments)
  • the dedicated computer that constitutes the processing system 1 may include at least one of a digital circuit and an analog circuit as a processor.
  • Digital circuits here include, for example, ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array), SOC (System on a Chip), PGA (Programmable Gate Array), and CPLD (Complex Programmable Logic Device). , at least one Such digital circuits may also have a memory that stores the program.
  • the storage processing of the warning information Iw in S103 and S113 may be omitted.
  • the storage processing of the warning information Iw in S105 and S115 may be omitted.
  • the mutual authentication processing of S100 and S110 may be omitted in the first embodiment according to the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行するために、プロセッサにより実行される処理方法は、ターゲット移動体においてホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報を、ターゲット移動体から取得することと、警告情報の取得に応答して、ターゲット移動体との間での安全エンベロープを調整することとを、含む。

Description

処理方法、処理システム、処理プログラム 関連出願の相互参照
 この出願は、2021年3月26日に日本に出願された特許出願第2021-53969号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本開示は、移動体の運転に関する処理を遂行するための、処理技術に関する。
 特許文献1に開示される技術は、ホスト車両のナビゲーション動作に関する運転制御を、ホスト車両の内外環境に関する検知情報に応じて計画している。そこで、運転ポリシに従う安全モデルと検知情報とに基づき潜在的な事故責任があると判断される場合には、運転制御に対して制約が与えられている。
特許第6708793号公報
 しかし、特許文献1の開示技術では、ホスト車両とターゲット車両との状況認識に、齟齬の生じる可能性がある。そのため、相手の移動体の挙動に対する対応に影響の出るおそれがある。
 本開示の課題は、相手の移動体の挙動に対する対応力の向上を促進する処理方法を、提供することにある。本開示のさらに別の課題は、相手の移動体の挙動に対する対応力の向上を促進する処理システムを、提供することにある。本開示のまたさらに別の課題は、相手の移動体の挙動に対する対応力の向上を促進する処理プログラムを、提供することにある。
 以下、課題を解決するための本開示の技術的手段について、説明する。
 本開示の第一態様は、
 ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行するために、プロセッサにより実行される処理方法であって、
 ターゲット移動体においてホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報を、ターゲット移動体から取得することと、
 警告情報の取得に応答して、ターゲット移動体との間での安全エンベロープを調整することとを、含む。
 本開示の第二態様は、
 プロセッサを含み、ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行する処理システムであって、
 プロセッサは、
 ターゲット移動体においてホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報を、ターゲット移動体から取得することと、
 警告情報の取得に応答して、ターゲット移動体との間での安全エンベロープを調整することとを、実行するように構成される。
 本開示の第三態様は、
 記憶媒体に記憶され、ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行するために、プロセッサに実行させる命令を含む処理プログラムであって、
 命令は、
 ターゲット移動体においてホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報を、ターゲット移動体から取得させることと、させることと、
 警告情報の取得に応答して、ターゲット移動体との間での安全エンベロープを調整させることとを、含む。
 これら第一~第三態様のホスト移動体では、ターゲット移動体においてホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報が、ターゲット移動体から取得される。そこで、警告情報の取得に応答してホスト移動体では、ターゲット移動体との間での安全エンベロープが調整される。これによれば、ターゲット移動体の警告するエンベロープ違反がホスト移動体においても共通認識されて、安全エンベロープの調整に反映され得るので、相手の移動体の挙動に対する対応力の向上を促進することが可能である。
 本開示の第四態様は、
 ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行するために、プロセッサにより実行される処理方法であって、
 ホスト移動体においてターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視することと、
 ホスト移動体においてエンベロープ違反が認識された場合に、エンベロープ違反を警告する警告情報を、ターゲット移動体へ送信するように生成することとを、含む。
 本開示の第五態様は、
 プロセッサを含み、ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行する処理システムであって、
 プロセッサは、
 ホスト移動体においてターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視することと、
 ホスト移動体においてエンベロープ違反が認識された場合に、エンベロープ違反を警告する警告情報を、ターゲット移動体へ送信するように生成することとを、実行するように構成される。
 本開示の第六態様は、
 記憶媒体に記憶され、ターゲット移動体と通信可能なホスト移動体の運転に関する処理を遂行するために、プロセッサに実行させる命令を含む処理プログラムであって、
 命令は、
 ホスト移動体においてターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視させることと、
 ホスト移動体においてエンベロープ違反が認識された場合に、エンベロープ違反を警告する警告情報を、ターゲット移動体へ送信するように生成させることとを、含む。
 これら第四~第六態様のホスト移動体では、ターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープが監視される。そこで、エンベロープ違反が認識された場合にホスト移動体は、エンベロープ違反を警告する警告情報を、ターゲット移動体へと送信するように生成する。これによれば、ホスト移動体の警告するエンベロープ違反がターゲット移動体においても共通認識され得るので、相手の移動体の挙動に対する対応力の向上を促進することが可能となる。
本開示における用語の説明を示す説明表である。 本開示における用語の説明を示す説明表である。 本開示における用語の説明を示す説明表である。 本開示における用語の定義を示す説明表である。 本開示における用語の定義を示す説明表である。 第一実施形態の処理システムを示すブロック図である。 第一実施形態の適用される車両の走行環境を示す模式図である。 第一実施形態の適用される車両の走行環境を示す模式図である。 第一実施形態の処理システムを示すブロック図である。 第一実施形態の車線構造例及び処理方法を示す模式図である。 第一実施形態の車線構造例及び処理方法を示す模式図である。 第一実施形態の車線構造例及び処理方法を示す模式図である。 第一実施形態の車線構造例及び処理方法を示す模式図である。 第一実施形態の処理方法を示すフローチャートである。 第一実施形態の処理方法を示すフローチャートである。 第二実施形態の処理方法を示すフローチャートである。 第二実施形態の処理方法を示すフローチャートである。 第三実施形態の処理システムを示すブロック図である。 第四実施形態の処理システムを示すブロック図である。 第五実施形態の処理システムを示すブロック図である。 第六実施形態の処理システムを示すブロック図である。 第六実施形態の処理システムを示すブロック図である。
 以下、本開示による複数の実施形態を、図面に基づき説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。また、各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。さらに、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。
 図1~5は、本開示の各実施形態に関連する用語の説明を、示している。但し、用語の定義は、図1~5に示される説明に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において解釈されるものである。
 (第一実施形態)
 図6に示される第一実施形態の処理システム1は、移動体の運転に関する処理(以下、運転関連処理と表記)を、遂行する。処理システム1が運転関連処理の対象とする移動体は、図7,8に示される車両2である。第一実施形態では、処理システム1の適用される車両2として、互いに直接的に又は通信インフラを介して間接的に通信可能な、第一車両2a及び第二車両2bが想定される。図7に示される第一車両2aの視点では、自車両(ego-vehicle)2aがホスト移動体に相当する一方、当該自車両2aの走行環境に存在する他道路ユーザ3でもある第二車両2bがターゲット移動体に相当する。これに対して、図8に示される第二車両2bの視点では、自車両2bがホスト移動体に相当する一方、当該自車両2bの走行環境に存在する他道路ユーザ3でもある第一車両2aがターゲット移動体に相当する。
 図7,8に示される車両2は、自動運転の実行される、例えば自動車、又はトラック等の道路ユーザである。自動運転は、動的運転タスク(Dynamic Driving Task:以下、DDTと表記)における乗員の手動介入度に応じて、レベル分けされる。自動運転は、条件付運転自動化、高度運転自動化、又は完全運転自動化といった、作動時のシステムが全てのDDTを実行する自律走行制御により、実現されてもよい。自動運転は、運転支援、又は部分運転自動化といった、乗員としてのドライバが一部若しくは全てのDDTを実行する高度運転支援制御において、実現されてもよい。自動運転は、それら自律走行制御と高度運転支援制御とのいずれか一方、組み合わせ、又は切り替えにより実現されてもよい。
 車両2には、図6,9に示されるセンサ系5、通信系6、及び地図DB(Data Base)7、及び情報提示系4が搭載される。センサ系5は、処理システム1により利用可能なセンサデータを、車両2における外界及び内界の検出により取得する。そのためにセンサ系5は、外界センサ50及び内界センサ52を含んで構成される。
 外界センサ50は、車両2の外界に存在する物標を、検出してもよい。物標検出タイプの外界センサ50は、例えばカメラ、LiDAR(Light Detection and Ranging / Laser Imaging Detection and Ranging)、レーザレーダ、ミリ波レーダ、及び超音波ソナー等のうち、少なくとも一種類である。外界センサ50は、車両2の外界における大気の状態を、検出してもよい。大気検出タイプの外界センサ50は、例えば外気温センサ、及び湿度センサ等のうち、少なくとも一種類である。
 内界センサ52は、車両2の内界において車両運動に関する特定の物理量(以下、運動物理量と表記)を、検出してもよい。物理量検出タイプの内界センサ52は、例えば速度センサ、加速度センサ、及びジャイロセンサ等のうち、少なくとも一種類である。内界センサ52は、車両2の内界における乗員の状態を、検出してもよい。乗員検出タイプの内界センサ52は、例えばアクチュエータセンサ、ドライバステータスモニタ、生体センサ、着座センサ、及び車内機器センサ等のうち、少なくとも一種類である。ここで特にアクチュエータセンサとしては、車両2の運動アクチュエータに関する乗員の操作状態を検出する、例えばアクセルセンサ、ブレーキサンサ、及び操舵センサ等のうち、少なくとも一種類が採用される。
 通信系6は、処理システム1により利用可能な通信データを、無線通信により取得する。通信系6は、車両2の外界に存在するGNSS(Global Navigation Satellite System)の人工衛星から、測位信号を受信してもよい。測位タイプの通信系6は、例えばGNSS受信機等である。通信系6は、車両2の外界に存在するV2Xシステムとの間において、通信信号を送受信してもよい。V2Xタイプの通信系6は、例えばDSRC(Dedicated Short Range Communications)通信機、及びセルラV2X(C-V2X)通信機等のうち、少なくとも一種類である。第一実施形態において想定される車両2(2a,2b)間の通信は、それら車両2の各々におけるV2Xタイプの通信系6を介して実現可能となる。通信系6は、車両2の内界に存在する端末との間において、通信信号を送受信してもよい。端末通信タイプの通信系6は、例えばブルートゥース(Bluetooth:登録商標)機器、Wi-Fi(登録商標)機器、及び赤外線通信機器等のうち、少なくとも一種類である。
 地図DB7は、処理システム1により利用可能な地図データを、記憶する。地図DB7は、例えば半導体メモリ、磁気媒体、及び光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)を含んで構成される。地図DB7は、自己位置を含んだ車両2の自己状態量を推定するロケータの、DBであってもよい。地図DBは、車両2の走行経路をナビゲートするナビゲーションユニットの、DBであってもよい。地図DB7は、複数種類のDBの組み合わせにより、構築されてもよい。
 地図DB7は、例えばV2Xタイプの通信系6を介した外部センタとの通信等により、最新の地図データを取得して記憶する。地図データは、車両2の走行環境を表すデータとして、二次元又は三次元にデータ化されている。三次元の地図データとしては、高精度地図のデジタルデータが採用されてもよい。地図データは、例えば道路構造の位置座標、形状、及び路面状態等のうち、少なくとも一種類を表した道路データを含んでいてもよい。地図データは、例えば道路に付属する道路標識、道路表示、及び区画線の、位置座標並びに形状等のうち、少なくとも一種類を表した標示データを含んでいてもよい。地図データに含まれる標示データは、ランドマークのうち、例えば交通標識、矢印マーキング、車線マーキング、停止線、方向標識、ランドマークビーコン、長方形標識、ビジネス標識、又は道路のラインパターン変化等を表していてもよい。地図データは、例えば道路に面する建造物及び信号機の、位置座標並びに形状等のうち、少なくとも一種類を表した構造物データを含んでいてもよい。地図データに含まれる標示データは、ランドマークのうち、例えば街灯、道路のエッジ、反射板、ポール、又は道路標識の裏側等を表していてもよい。
 情報提示系4は、車両2のドライバを含む乗員へ向けた報知情報を提示する。情報提示系4は、視覚提示ユニット、聴覚提示ユニット、及び皮膚感覚提示ユニットを含んで構成される。視覚提示ユニットは、乗員の視覚を刺激することより、報知情報を提示する。視覚提示ユニットは、例えばHUD(Head-up Display)、MFD(Multi Function Display)、コンビネーションメータ、ナビゲーションユニット、及び発光ユニット等のうち、少なくとも一種類である。聴覚提示ユニットは、乗員の聴覚を刺激することにより、報知情報を提示する。聴覚提示ユニットは、例えばスピーカ、ブザー、及びバイブレーションユニット等のうち、少なくとも一種類である。皮膚感覚提示ユニットは、乗員の皮膚感覚を刺激することにより、報知情報を提示する。皮膚感覚提示ユニットにより刺激される皮膚感覚には、例えば触覚、温度覚、及び風覚等のうち、少なくとも一種類が含まれる。皮膚感覚提示ユニットは、例えばステアリングホイールのバイブレーションユニット、運転席のバイブレーションユニット、ステアリングホイールの反力ユニット、アクセルペダルの反力ユニット、ブレーキペダルの反力ユニット、及び空調ユニット等のうち、少なくとも一種類である。
 図6に示されるように処理システム1は、例えばLAN(Local Area Network)、ワイヤハーネス、内部バス、及び無線通信回線等のうち、少なくとも一種類を介してセンサ系5、通信系6、地図DB7、及び情報提示系4に接続される。処理システム1は、少なくとも一つの専用コンピュータを含んで構成される。処理システム1を構成する専用コンピュータは、車両2の運転制御を統合する、統合ECU(Electronic Control Unit)であってもよい。処理システム1を構成する専用コンピュータは、車両2の運転制御におけるDDTを判断する、判断ECUであってもよい。処理システム1を構成する専用コンピュータは、車両2の運転制御を監視する、監視ECUであってもよい。処理システム1を構成する専用コンピュータは、車両2の運転制御を評価する、評価ECUであってもよい。
 処理システム1を構成する専用コンピュータは、車両2の走行経路をナビゲートする、ナビゲーションECUであってもよい。処理システム1を構成する専用コンピュータは、車両2の自己位置を含む自己状態量を推定する、ロケータECUであってもよい。処理システム1を構成する専用コンピュータは、車両2の運動アクチュエータを制御する、アクチュエータECUであってもよい。処理システム1を構成する専用コンピュータは、車両2における情報提示を制御する、HCU(HMI(Human Machine Interface) Control Unit)であってもよい。処理システム1を構成する専用コンピュータは、例えば通信系6を介して通信可能な外部センタ又はモバイル端末等を構築する、少なくとも一つの外部コンピュータであってもよい。
 処理システム1を構成する専用コンピュータは、メモリ10及びプロセッサ12を、少なくとも一つずつ有している。メモリ10は、コンピュータにより読み取り可能なプログラム及びデータ等を非一時的に記憶する、例えば半導体メモリ、磁気媒体、及び光学媒体等のうち、少なくとも一種類の非遷移的実体的記憶媒体(non-transitory tangible storage medium)である。プロセッサ12は、例えばCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、及びRISC(Reduced Instruction Set Computer)-CPU等のうち、少なくとも一種類をコアとして含む。
 プロセッサ12は、ソフトウェアとしてメモリ10に記憶された処理プログラムに含まれる複数の命令を、実行する。これにより処理システム1は、車両2の運転関連処理を遂行するための機能ブロックを、複数構築する。このように処理システム1では、車両2の運転関連処理を遂行するためにメモリ10に記憶された処理プログラムが複数の命令をプロセッサ12に実行させることにより、複数の機能ブロックが構築される。処理システム1により構築される複数の機能ブロックには、図8に示されるように検知ブロック100、計画ブロック120、リスク監視ブロック140、及び制御ブロック160が含まれる。
 検知ブロック100は、センサ系5の外界センサ50及び内界センサ52からセンサデータを取得する。検知ブロック100は、通信系6から通信データを取得する。検知ブロック100は、地図DB7から地図データを取得する。検知ブロック100は、これらの取得データを入力としてフュージョンすることにより、車両2の内外環境を検知する。内外環境の検知により検知ブロック100は、後段の計画ブロック120とリスク監視ブロック140とへ与える検知情報を生成する。このように検知情報の生成に当たって検知ブロック100は、センサ系5及び通信系6からデータを取得し、取得データの意味を認識又は理解し、車両2の外界状況及びその中での自己の置かれた状況、並びに車両2の内界状況を含む状況全般を、取得データを統合して把握するといえる。検知ブロック100は、計画ブロック120とリスク監視ブロック140とへ実質同一の検知情報を与えてもよい。検知ブロック100は、計画ブロック120とリスク監視ブロック140とへ相異なる検知情報を与えてもよい。
 検知ブロック100が生成する検知情報は、車両2の走行環境においてシーン毎に検知される状態を、記述している。検知ブロック100は、車両2の外界における他道路ユーザ3、障害物、及び構造物を含んだ物体を検知することにより、当該物体の検知情報を生成してもよい。物体の検知情報は、例えば物体までの距離、物体の相対速度、物体の相対加速度、物体の追尾検知による推定状態等のうち、少なくとも一種類を表していてもよい。物体の検知情報はさらに、検知された物体の状態から認識又は特定される種別を、表していてもよい。検知ブロック100は、車両2の現在及び将来に走行する走路を検知することにより、当該走路の検知情報を生成してもよい。走路の検知情報は、例えば路面、車線、道路端、及びフリースペース等のうち、少なくとも一種類の状態を表していてもよい。
 検知ブロック100は、車両2の自己位置を含む自己状態量を推定的に検知するローカリゼーションにより、当該自己状態量の検知情報を生成してもよい。検知ブロック100は、自己状態量の検知情報と同時に、車両2の走路に関する地図データの更新情報を生成して、当該更新情報を地図DB7へフィードバックしてもよい。検知ブロック100は、車両2の走路に関連付けられた標示を検知することにより、当該標示の検知情報を生成してもよい。標示の検知情報は、例えば標識、区画線、及び信号機等のうち、少なくとも一種類の状態を表していてもよい。標示の検知情報はさらに、標示の状態から認識又は特定される交通ルールを、表していてもよい。検知ブロック100は、車両2の走行するシーン毎の気象状況を検知することにより、当該気象状況の検知情報を生成してもよい。検知ブロック100は、車両2の走行シーン毎の時刻を検知することにより、当該時刻の検知情報を生成してもよい。
 計画ブロック120は、検知ブロック100から検知情報を取得する。計画ブロック120は、取得した検知情報に応じて車両2の運転制御を計画する。運転制御の計画では、車両2のナビゲーション動作及びドライバの支援動作に関する制御指令が生成される。即ち計画ブロック120は、車両2の運動制御要求として制御指令を生成する、DDT機能を実現する。計画ブロック120が生成する制御指令は、車両2の運動アクチュエータを制御するための制御パラメータを、含んでいてもよい。制御指令の出力対象となる運動アクチュエータとしては、例えば内燃機関、電動モータ、及びそれらが組み合わされたパワトレイン、ブレーキ装置、並びに操舵装置等のうち、少なくとも一種類が挙げられる。
 計画ブロック120は、運転ポリシとその安全性に従って記述された安全モデルを用いることにより、当該運転ポリシと適合するように制御指令を生成してもよい。安全モデルの従う運転ポリシとは、例えば意図された機能の安全性(Safety Of The Intended Functionality:以下、SOTIFと表記)を保証する車両レベル安全戦略を踏まえて、規定される。換言すれば安全モデルは、車両レベル安全戦略の実装となる運転ポリシに従うことにより、且つSOTIFをモデリングすることにより、記述される。計画ブロック120は、運転制御結果を安全モデルに逆伝播させる機械学習アルゴリズムにより、安全モデルをトレーニングしてもよい。トレーニングされる安全モデルとしては、例えばDNN(Deep Neural Network)といったニュラーラルネットワークによるディープラーニング、及び強化学習等のうち、少なくとも一種類の学習モデルが、用いられてもよい。ここでいう安全モデルは、安全関連モデル(safety-related models)そのものであってもよく、安全関連モデルのうちの一部を構成するモデルであってもよい。
 計画ブロック120は、運転制御によって車両2に将来走行させる経路を、制御指令の生成に先立って計画してもよい。経路計画は、検知情報に基づいて車両2をナビゲートするために、例えばシミュレーション等の演算によって実行されてもよい。即ち計画ブロック120は、車両2の戦術的行動として経路を計画する、DDT機能を実現してもよい。計画ブロック120はさらに、計画経路を辿る車両2に対して、取得した検知情報に基づく適正な軌道を、制御指令の生成に先立って計画してもよい。即ち計画ブロック120は、車両2の軌道を計画する、DDT機能を実現してもよい。計画ブロック120が計画する軌道は、車両2に関する運動物理量として、例えば走行位置、速度、加速度、及びヨーレート等のうち、少なくとも一種類を時系列に規定してもよい。時系列な軌道計画は、車両2のナビゲートによる将来走行のシナリオを、構築する。計画ブロック120は、安全モデルを用いた計画によって軌道を生成してもよい。この場合には、生成された軌道に対してコストを与えるコスト関数が演算されることにより、当該演算結果に基づく機械学習アルゴリズムによって安全モデルがトレーニングされてもよい。
 計画ブロック120は、車両2における自動運転レベルの調整を、取得した検知情報に応じて計画してもよい。自動運転レベルの調整には、自動運転と手動運転との間での引き継ぎも含まれていてもよい。自動運転と手動運転との間での引き継ぎは、自動運転を実行する運行設計領域の設定により、当該運行設計領域に対する進入又は退出に伴うシナリオにおいて実現されてもよい。運行設計領域からの退出シナリオ、即ち自動運転から手動運転への引き継ぎシナリオでは、例えば安全モデル等に基づき不合理なリスクが存在すると判断される不合理な状況が、ユースケースとして挙げられる。このユースケースにおいて計画ブロック120は、フォールバック予備ユーザとなるドライバが最小リスク操作を車両2に与えて車両2を最小リスク状態へ移行させるためのDDTフォールバックを、計画してもよい。
 自動運転レベルの調整には、車両2の縮退走行が含まれてもよい。縮退走行のシナリオでは、手動運転への引き継ぎによっては不合理なリスクが存在すると、例えば安全モデル等に基づき判断される不合理な状況が、ユースケースとして挙げられる。このユースケースにおいて計画ブロック120は、自律走行及び自律停止により車両2を最小リスク状態へ移行させるためのDDTフォールバックを、計画してもよい。車両2を最小リスク状態へ移行させるためのDDTフォールバックは、自動運転レベルを引き下げる調整において実現されるだけでなく、自動運転レベルを維持して縮退走行させる調整、例えばMRM(Minimum Risk Maneuver)等において実現されてもよい。車両2を最小リスク状態へ移行させるためのDDTフォールバックでは、例えば照明、ホーン音、信号、及びジェスチャー等のうち、少なくとも一種類により当該移行状況の目立ち易さが高められてもよい。
 リスク監視ブロック140は、検知ブロック100から検知情報を取得する。リスク監視ブロック140は、取得した検知情報に基づくことにより、車両2と他道路ユーザ3との間におけるリスクを、シーン毎に監視する。リスク監視ブロック140は、他道路ユーザ3に対して車両2のSOTIFを保証するように、検知情報に基づくリスク監視を時系列に実行する。リスク監視において想定される他道路ユーザ3には、例えば自動車、トラック、バイク、及び自転車といった脆弱性のない道路ユーザと、歩行者といった脆弱な道路ユーザとが、含まれる。リスク監視において想定される他道路ユーザ3にはさらに、動物が含まれてもよい。
 リスク監視ブロック140は、車両2においてSOTIFを保証する、例えば車両レベル安全戦略等を踏まえた安全エンベロープを、取得したシーン毎の検知情報に基づき設定する。リスク監視ブロック140は、上述の運転ポリシに従う安全モデルを用いて、車両2及び他道路ユーザ3間における安全エンべーロープを設定してもよい。安全エンベロープの設定に用いられる安全モデルは、不合理なリスク又は道路ユーザの誤用に起因する潜在的な事故責任を、事故責任規則に則って回避するように設計されてもよい。換言すれば安全モデルは、運転ポリシに従う事故責任規則を車両2が遵守するように設計されてもよい。こうした安全モデルとしては、例えば特許文献1に開示されるような責任敏感型安全性モデル(Responsibility Sensitive Safety model)等が、挙げられる。
 安全エンベロープの設定では、運転ポリシに従うと仮定した車両2及び他道路ユーザ3に対する安全モデルに基づくことにより、少なくとも一種類の運動物理量に関するプロファイルから、安全距離が想定されてもよい。安全距離は、予測される他道路ユーザ3の運動に対して、車両2の周囲に物理ベースのマージンを確保した境界を、画定する。安全距離は、車両2及び他道路ユーザ3の各々により適切な応答が実行されるまでの反応時間を加味して、想定されてもよい。安全距離は、事故責任規則を遵守するように、想定されてもよい。例えば車線等の車線構造が存在するシーンでは、車両2の縦方向において追突及び正面衝突のリスクを回避する安全距離と、車両2の横方向において側面衝突のリスクを回避する安全距離とが、演算されてもよい。一方、車線構造が存在しないシーンでは、車両2の任意方向において軌道の衝突するリスクを回避する安全距離が、演算されてもよい。
 リスク監視ブロック140は、車両2及び他道路ユーザ3間における相対運動のシーン毎での状況を、上述した安全エンベロープの設定に先立って特定してもよい。例えば車線等の車線構造が存在するシーンでは、縦方向において追突及び正面衝突のリスクが想定される状況と、横方向において側面衝突のリスクが想定される状況とが、特定されてもよい。これら縦方向及び横方向の状況特定では、直線状の車線を前提とする座標系へ、車両2及び他道路ユーザ3に関する状態量が変換されてもよい。一方、車線構造が存在しないシーンでは、車両2の任意方向において軌道が衝突するリスクの想定される状況が、特定されてもよい。尚、以上の状況特定機能については、検知ブロック100により少なくとも一部が実行されることにより、状況特定結果が検知情報としてリスク監視ブロック140に与えられてもよい。
 リスク監視ブロック140は、車両2及び他道路ユーザ3間における安全判定を、設定した安全エンベロープと、取得したシーン毎の検知情報とに基づき、実行する。即ちリスク監視ブロック140は、車両2及び他道路ユーザ3間において検知情報に基づき解釈される走行シーンには、安全エンベロープの違反となるエンベロープ違反があるか否かをテストすることにより、安全判定を実現する。安全エンベロープの設定において安全距離が想定される場合には、車両2及び他道路ユーザ3間の現実距離が当該安全距離超過となることにより、エンベロープ違反はないとの判定が下されてもよい。一方、車両2及び他道路ユーザ3間の現実距離が安全距離以下となることにより、エンベロープ違反があるとの判定が下されてもよい。
 リスク監視ブロック140は、エンベロープ違反ありの判定を下した場合に、適切な応答として取るべき適正な行動を車両2へ与えるための合理的なシナリオを、シミュレーションにより演算してもよい。合理的シナリオのシミュレーションでは、車両2及び他道路ユーザ3間での状態遷移が推定されることにより、遷移する状態毎に取るべき行動が、車両2に対する制約(後に詳述)として設定されてもよい。行動の設定では、車両2へ与える少なくとも一種類の運動物理量を、車両2に対する制約として制限するように、当該運動物理量に対して仮定される制限値が演算されてもよい。
 リスク監視ブロック140は、運転ポリシに従うと仮定した車両2及び他道路ユーザ3に対しての安全モデルに基づくことにより、少なくとも一種類の運動物理量に関するプロファイルから、事故責任規則を遵守するための制限値を直接的に演算してもよい。直接的な制限値の演算は、それ自体が安全エンべーロープの設定であって、運転制御に対する制約の設定でもあるといえる。そこで、制限値よりも安全側の現実値が検知される場合、エンベロープ違反なしの判定が下されてもよい。一方、制限値を外れる側の現実値が検知される場合、エンベロープ違反ありの判定が下されてもよい。
 リスク監視ブロック140は、例えば安全エンベロープの設定に用いられた検知情報、安全エンベロープの判定結果を表す判定情報、当該判定結果を左右した検知情報、及びシミュレートしたシナリオ等のうち、少なくとも一種類のエビデンス情報をメモリ10に記憶してもよい。エビデンス情報の記憶されるメモリ10は、処理システム1を構成する専用コンピュータの種類に応じて、車両2内に搭載されていてもよいし、例えば車両2外の外部センタ等に設置されていてもよい。エビデンス情報は、非暗号化状態で記憶されてもよいし、暗号化又はハッシュ化されて記憶されてもよい。エビデンス情報の記憶は、エンベロープ違反ありの判定の場合に、少なくとも実行される。勿論、エンベロープ違反なしの判定の場合にも、エビデンス情報の記憶は実行されてもよい。エンベロープ違反なしの判定の場合におけるエビデンス情報は、記憶時点では遅行型指標として利活用可能であり、将来に対しては先行型指標としても利活用可能となる。
 制御ブロック160は、計画ブロック120から制御指令を取得する。制御ブロック160は、リスク監視ブロック140から安全エンベロープに関する判定情報を取得する。制御ブロック160は、車両2の運動を制御する、DDT機能を実現する。制御ブロック160は、エンベロープ違反なしの判定情報を取得した場合に、計画された車両2の運転制御を、制御指令に従って実行する。
 これに対して制御ブロック160は、エンベロープ違反ありの判定情報を取得した場合に、計画された車両2の運転制御に対して、判定情報に基づき運転ポリシに従う制約を与える。運転制御に対する制約は、機能的な制約(functional restriction)であってもよい。運転制御に対する制約は、縮退した制約(degraded constraints)であってもよい。運転制御に対する制約は、これらとは別の制約であってもよい。運転制御に対して制約は、制御指令の制限によって与えられる。合理的なシナリオがリスク監視ブロック140によりシミュレートされている場合に制御ブロック160は、当該シナリオに従って制御指令を制限してもよい。このとき、車両2の運動物理量に関して制限値が設定されている場合には、制御指令に含まれる運動アクチュエータの制御パラメータが、当該制限値に基づき補正されてもよい。
 以下、第一実施形態の詳細を説明する。
 図7,8,10~13に示されるように第一実施形態は、車線の区切られた車線構造Lsを、想定する。車線構造Lsは、車線の延伸する方向を縦方向として、車両2及び他道路ユーザ3の運動を規制する。車線構造Lsは、車線の幅方向又は並ぶ方向を横方向として、車両2及び他道路ユーザ3の運動を規制する。
 車線構造Lsにおける運転ポリシは、例えば車両2として想定される一方に対して他方が他道路ユーザ3となる、第一車両2a及び第二車両2bの間では、次の(A)~(E)等に規定される。尚、車両2を基準とする前方とは、例えば車両2の現在舵角における旋回円上の進行方向、車両2における車軸と直交する車両重心を通る直線の進行方向、又は車両2におけるセンサ系5のうちフロントカメラモジュールから同カメラのFOE(Focus of Expansion)の軸線上における進行方向等を、意味する。
(A) 車両2は、前方を走行している車両2に、後方から追突しない。
(B) 車両2は、他の車両2間に強引な割り込みをしない。
(C) 車両2は、自己が優先の場合でも、状況に応じて他の車両2と譲り合う。
(D) 車両2は、見通しの悪い場所では、慎重に運転する。
(E) 車両2は、自責他責に関わらず、自己で事故を防止可能な状況であれば、そのために合理的行動を取る。
 運転ポリシに従うモデルであって、SOTIFのモデリングされた安全モデルは、不合理な状況には至らない道路ユーザの行動を、取るべき適正な合理的行動として想定する。車線構造Lsにおける車両2及び他道路ユーザ3間での不合理な状況とは、正面衝突、追突、及び側面衝突である。正面衝突における合理的行動は、例えば車両2のうち、一方に対して他方が他道路ユーザ3となる第一車両2a及び第二車両2bの間では、逆走している車両2a又は2bがブレーキを掛けること等を、含む。追突における合理的行動は、例えば第一車両2a及び第二車両2bの間では、前方を走行している車両2a又は2bが一定以上の急ブレーキを掛けないこと、及びそれを前提として後方を走行している車両2b又は2aが追突を回避すること等を、含む。側面衝突における合理的行動は、例えば第一車両2a及び第二車両2bの間では、並走する車両2a,2b同士が互いの離間方向へ操舵すること等を、含む。合理的行動の想定に際して車両2及び他道路ユーザ3に関する状態量は、車線がカーブする車線構造Lsと、車線が高低する車線構造Lsとのいずれであっても、直線状且つ平面状の車線構造Lsを仮定して縦方向及び横方向を規定する、直交座標系に変換される。
 安全モデルは、合理的行動を取らなかった移動体が事故責任を負うとする、事故責任規則に則って設計されるとよい。車線構造Lsでの事故責任規則下、車両2及び他道路ユーザ3間のリスクを監視するために用いられる安全モデルは、合理的行動によって潜在的な事故責任を回避するように、車両2に対する安全エンベロープを設定する。そこで、車両2において処理システム1の全体が正常な状況でのリスク監視ブロック140は、車両2及び他道路ユーザ3間の現実距離に対して、走行シーン毎に安全モデルに基づく安全距離を照らし合わせることにより、エンベロープ違反の有無を判定する。エンベロープ違反がある場合にリスク監視ブロック140は、合理的行動を車両2へ与えるためのシナリオを、シミュレーションする。シミュレーションによりリスク監視ブロック140は、制御ブロック160での運転制御に対する制約として、例えば速度及び加速度等のうち少なくとも一方に関する制限値を、設定する。
 第一実施形態において、直接的又は間接的に相互間通信をするペア車両2として想定の第一車両2a及び第二車両2bでは、各々の処理システム1が構築する機能ブロックの共同により運転関連処理を遂行する処理方法が、それぞれ図14,15に示されるフローチャートに従って実行される。第一実施形態の処理方法は、第一車両2aと第二車両2bとの相互間距離が安全エンベロープの監視範囲内となる間、それら各車両2a,2bにおいて繰り返し実行される。尚、以下の説明における処理方法の各「S」は、各車両2a,2bの処理システム1において処理プログラムに含まれた複数命令によって実行される複数ステップを、それぞれ意味する。
 図14,15に示されるS100,S110において、第一車両2a及び第二車両2bの各リスク監視ブロック140は、認証キーを含むユーザIDを、相互間通信を通じて交換することにより、相互認証する。この相互認証は、単なるセキュリティの確認及び通信可否の確認であってもよい。この相互認証は、セキュリティの確認及び通信可否の確認に加えて、採用されている安全モデル又は運転ポリシが安全エンベロープの設定機能を有しているか否かの確認を伴っていてもよい。
 図14に示されるように、処理方法のS100に続くS101において第一車両2aのリスク監視ブロック140は、第一車両2aにおいて第二車両2bとの間でのSOTIFを運転ポリシに従って設定した、安全エンベロープに関するエンベロープ違反を、第一車両2aの安全モデルに基づき監視する。図12に実線円で示されるように、第一車両2aの安全モデルに基づき安全エンベロープを規定する安全距離の範囲内に、第二車両2bの少なくとも一部分が存在している場合には、エンベロープ違反が認識される。そこでS101において、エンベロープ違反ありの判定を第一車両2aのリスク監視ブロック140が下した場合には、図14に示されるように、第一車両2aでの今回フローがS102,S103へ順次移行する。即ちS102,S103は、第一車両2aにおいて第二車両2bとの間のエンベロープ違反が認識された場合に、実行される。
 S102において第一車両2aのリスク監視ブロック140は、エンベロープ違反を第二車両2bへ警告するための警告情報Iwを、生成する。警告情報Iwは、エンベロープ違反という事象の発生を、第一車両2aから第二車両2bに対してプッシュ通知する、通知情報Inを含んでいてもよい。警告情報Iwは、通知情報Inに対して状況情報Isの付加された、複合的な情報であってもよい。状況情報Isは、第一車両2aにおいて設定された安全エンベロープに関するエンベロープ情報Iseを、含んでいてもよい。
 エンベロープ情報Iseは、第一車両2aにおいてエンベロープ違反の判定基準となった、安全距離を含む安全エンベロープの範囲を、表していてもよい。エンベロープ情報Iseは、エンベロープ違反の判定基準となった安全エンベロープを規定する安全モデルにより、第一車両2a及び第二車両2b間での相対状態として想定された、例えば追突リスク、正面衝突リスク、側面衝突リスク、交差リスク、死角リスク、及びそれらの詳細状況のうち、少なくとも一種類のリスク種別を表していてもよい。
 エンベロープ情報Iseは、エンベロープ違反のシーンにおいて第一車両2aの検知ブロック100により検知された第一車両2aの検知情報として、例えば位置を含む自己状態量(即ち、ローカリゼーション推定値)、距離、速度、加減速度、相対速度、相対加速度、及びそれらのベクトルを含む推定状態、並びに種別等のうち、少なくとも一種類を表していてもよい。特にエンベロープ情報Iseは、第一車両2aにおいてリスク監視ブロック140の制約設定による制限値から外れた、エンベロープ違反の運動物理量として、第一車両2aの速度、及び加減速度等のうち、第一車両2aの検知ブロック100により検知された少なくとも一種類の検出情報を表していてもよい。
 エンベロープ情報Iseは、エンベロープ違反のシーンにおいて第一車両2aの検知ブロック100により検知された第二車両2bの検知情報として、例えば位置、距離、速度、加減速度、相対速度、相対加速度、及びそれらのベクトルを含む推定状態、並びに種別等のうち、少なくとも一種類を表していてもよい。特にエンベロープ情報Iseは、第一車両2aにおいてリスク監視ブロック140の制約設定による制限値から外れた、エンベロープ違反の運動物理量として、第二車両2bの速度、及び加減速度等のうち、第一車両2aの検知ブロック100により検知された少なくとも一種類の検出情報を表していてもよい。エンベロープ情報Iseは、エンベロープ違反のシーンにおいて第一車両2aの外界センサ50であるカメラによって撮影された、第二車両2bを含む画像又は映像を、含んでいてもよい。
 エンベロープ情報Ise以外として、状況情報Isは、エンベロープ違反のシーンにおける第一車両2aの計画ブロック120での計画状況として、例えば経路、軌道、制御パラメータ、自動運転レベル(手動運転をレベル0とした場合を含む)等のうち、少なくとも一種類を表していてもよい。状況情報Isは、エンベロープ違反のシーンにおける道路状況として、例えば交通ルール、標示、道路構造、ロケーション、区間、路面状態、明暗状況、工事状況、渋滞状況、落下物を含む障害物の存在状況、道路周辺の地物構造、及び当該地物構造又は移動体種別に起因する死角等のうち、少なくとも一種類を表していてもよい。状況情報Isは、エンベロープ違反のシーンにおける、例えば時刻、昼夜の区別を含む違反シーンの時間帯、及び違反シーンの気象状況(即ち、天候)等のうち、少なくとも一種類を表していてもよい。
 S102において生成された警告情報Iwは、第一車両2aのリスク監視ブロック140による通信系6の制御に従って、第一車両2aから第二車両2bへ送信可能となる。換言すれば、第一車両2aのリスク監視ブロック140は、エンベロープ違反の警告情報Iwを、エンベロープ違反ありの判定に応答して第一車両2aから第二車両2bへとリアルタイムに送信するように、生成する。ここで、本実施形態において各車両2a,2b間での送信は、V2Vタイプ等の通信系6同士により直接的に実現されてもよいし、クラウドサーバ等のリモートセンタを経由して間接的に実現されてもよいし、車両2a,2bを含む複数の車両間において構成されたメッシュネットワークを経由して実現されてもよい。
 S103において第一車両2aのリスク監視ブロック140は、生成した警告情報Iwを、第一車両2aのメモリ10に記憶する。警告情報Iwは、第一車両2aでの生成時刻又は送信時刻を表すタイムスタンプと関連付けて記憶されることにより、複数時点での警告情報Iwが蓄積されていってもよい。警告情報Iwは、第一車両2aでの暗号化処理又はハッシュ化処理を経て、記憶されてもよい。警告情報Iwは、エビデンス情報として記憶されてもよい。警告情報Iwは、第一車両2aでの生成時刻又は送信時刻から設定期間の経過により、削除されてもよい。S103の実行が完了すると、第一車両2aでの今回フローが終了する。
 図15に示されるように上述のS110に続くS111では、第二車両2bのリスク監視ブロック140は、第二車両2bにおいて第一車両2aとの間でのSOTIFを運転ポリシに従って設定した、安全エンベロープに関するエンベロープ違反を、第二車両2bの安全モデルに基づき監視する。図10~12に破線円で示されるように、第二車両2bにおいて安全モデルに基づき安全エンベロープを規定する安全距離の範囲外に、第一車両2aの全体が存在している場合には、第二車両2bにおいてエンベロープ違反は認識外となる。そこでS111において、エンベロープ違反なしの判定を第二車両2bのリスク監視ブロック140が下した場合には、図15に示されるように、第二車両2bでの今回フローがS114へ移行する。
 S114において第二車両2bのリスク監視ブロック140は、第一車両2aからの警告情報Iwを、第二車両2bの通信系6を通じた受信により取得したか否かを、判定する。S114において、警告情報Iwを取得していないとの判定を第二車両2bのリスク監視ブロック140が下した場合には、第二車両2bでの今回フローが終了する。
 一方でS114において、警告情報Iwを取得したとの判定を第二車両2bのリスク監視ブロック140が下した場合には、第二車両2bでの今回フローがS115,S116へ順次移行する。即ちS115,S116は、図12に示されるように第一車両2aにおいて第二車両2bとの間のエンベロープ違反が認識されたにも関わらず、第二車両2bにおいて第一車両2aとの間のエンベロープ違反が認識外であった場合に、警告情報Iwの取得にリアルタイムに対して応答して実行される。ここで図12は、第一車両2aにおいて安全モデルに基づき安全エンベロープを規定する安全距離よりも、第二車両2bにおいて安全モデルに基づき安全エンベロープを規定する安全距離が小さいことにより、認識結果に違いが生じた例を示している。
 図15に示されるようにS115では、第二車両2bのリスク監視ブロック140は、取得した警告情報Iwを、第二車両2bのメモリ10に記憶する。警告情報Iwは、第一車両2aでの生成時刻若しくは送信時刻、又は第二車両2bでの取得時刻(即ち受信時刻)を表すタイムスタンプと関連付けて記憶されることにより、複数時点での警告情報Iwが蓄積されていってもよい。警告情報Iwは、第二車両2bでの暗号化処理又はハッシュ化処理を経て、記憶されてもよい。警告情報Iwは、エビデンス情報として記憶されてもよい。警告情報Iwは、第一車両2aでの生成時刻若しくは送信時刻、又は第二車両2bでの取得時刻から設定期間の経過により、削除されてもよい。
 S116における第二車両2bのリスク監視ブロック140は、第二車両2bにおいて第一車両2aとの間でのSOTIFを運転ポリシに従って設定した安全エンベロープを、調整する。安全エンベロープの調整は、安全モデルにおける設定用パラメータ又は学習用パラメータを補正することにより、実行されてもよい。この場合には、第一車両2aからの警告情報Iwのうち少なくともエンベロープ情報Iseに基づいた、第二車両2bの安全モデルに対する検証及び妥当性確認(Verification and Validation)によって、パラメータを更新する補正量が決定されるとよい。S116の実行が完了すると、第二車両2bでの今回フローが終了する。
 ここまで、第一車両2aが警告情報Iwの送信側且つ第二車両2bが警告情報Iwの受信側となる場合を、説明した。続いて、第二車両2bが警告情報Iwの送信側且つ第一車両2aが警告情報Iwの受信側となる場合を、説明する。
 図13に破線円で示されるように、第二車両2bにおいて安全モデルに基づき安全エンベロープを規定する安全距離の範囲内に、第一車両2aの少なくとも一部分が存在している場合には、エンベロープ違反が認識される。そこで上述のS111において、エンベロープ違反ありの判定を第二車両2bのリスク監視ブロック140が下した場合には、図15に示されるように、第二車両2bでの今回フローがS112,S113へ順次移行する。即ちS112,S113は、第二車両2bにおいて第一車両2aとの間のエンベロープ違反が認識された場合に、実行される。
 S112において第二車両2bのリスク監視ブロック140は、警告情報Iwの生成処理として、S102の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。S113において第二車両2bのリスク監視ブロック140は、警告情報Iwの記憶処理として、S103の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。S113の実行が完了すると、第二車両2bでの今回フローが終了する。
 S113の実行前、又はS113の実行後の今回フロー終了前に第二車両2bのリスク監視ブロック140は、S114に準じて警告情報Iwの取得判定処理を実行することにより、エンベロープ違反ありのシーンに対して第一車両2aとの共通認識を図ってもよい。それと同様に、上述したS103の実行前、又は上述したS103の実行後の今回フロー終了前に第一車両2aのリスク監視ブロック140は、S114に準じて警告情報Iwの取得判定処理を実行することにより、エンベロープ違反ありのシーンに対して第二車両2bとの共通認識を図ってもよい。
 図10,11,13に実線円で示されるように、第一車両2aの安全モデルに基づき安全エンベロープを規定する安全距離の範囲外に、第二車両2bの全体が存在している場合には、第一車両2aにおいてエンベロープ違反は認識外となる。そこで上述のS101において、エンベロープ違反なしの判定を第一車両2aのリスク監視ブロック140が下した場合には、図14に示されるように、第一車両2aでの今回フローがS104へ移行する。S104において第一車両2aのリスク監視ブロック140は、警告情報Iwの取得判定処理として、S114の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。そこでS104において、警告情報Iwを取得していないとの判定を第一車両2aのリスク監視ブロック140が下した場合には、第一車両2aでの今回フローが終了する。
 一方でS104において、警告情報Iwを取得したとの判定を第一車両2aのリスク監視ブロック140が下した場合には、第一車両2aでの今回フローがS105,S106へ順次移行する。即ちS105,S106は、図13に示されるように第二車両2bにおいて第一車両2aとの間のエンベロープ違反が認識されたにも関わらず、第一車両2aにおいて第二車両2bとの間のエンベロープ違反が認識外であった場合に、警告情報Iwの取得にリアルタイムに対して応答して実行される。ここで図13は、第二車両2bにおいて安全モデルに基づき安全エンベロープを規定する安全距離よりも、第一車両2aにおいて安全モデルに基づき安全エンベロープを規定する安全距離が小さいことにより、認識結果に違いが生じた例を示している。
 図14に示されるように、S105において第一車両2aのリスク監視ブロック140は、警告情報Iwの記憶処理として、S115の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。S106において第一車両2aのリスク監視ブロック140は、安全エンベロープの調整処理として、S116の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。S106の実行が完了すると、第一車両2aでの今回フローが終了する。
 以上説明したように、第一実施形態において第一車両2aの視点によると、ホスト移動体としての第一車両2aでは、ターゲット移動体としての第二車両2bとの間でのSOTIFを設定した安全エンベロープの、違反であるエンベロープが監視される。そこで、エンベロープ違反が認識された場合に第一車両2aは、エンベロープ違反を警告する警告情報Iwを、第二車両2bへと送信するように生成する。これによれば、第一車両2aの警告するエンベロープ違反が第二車両2bにおいても共通認識され得るので、相手車両の挙動に対する対応力の向上を促進することが可能となる。
 一方、第一実施形態において第二車両2bの視点によると、ホスト移動体としての第二車両2bでは、ターゲット移動体としての第一車両2aにおいて第二車両2bとの間でのSOTIFを設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報Iwが、第一車両2aから取得される。そこで、警告情報Iwの取得に応答して第二車両2bでは、第一車両2aとの間での安全エンベロープが調整される。これによれば、第一車両2aの警告するエンベロープ違反が第二車両2bにおいても共通認識されて、安全エンベロープの調整に反映され得るので、相手車両の挙動に対する対応力の向上を促進することが可能である。
 また、第一実施形態において第二車両2bの視点によると、ホスト移動体としての第二車両2bでは、ターゲット移動体としての第一車両2aとの間でのSOTIFを設定した安全エンベロープの、違反であるエンベロープが監視されることになる。そこで、エンベロープ違反が認識された場合に第二車両2bは、エンベロープ違反を警告する警告情報Iwを、第一車両2aへと送信するように生成することにもなる。これによれば、第二車両2bの警告するエンベロープ違反が第一車両2aにおいても共通認識され得るので、相手車両の挙動に対する対応力の向上を促進することが可能となる。
 一方、第一実施形態において第一車両2aの視点によると、ホスト移動体としての第一車両2aでは、ターゲット移動体としての第二車両2bにおいて第一車両2aとの間でのSOTIFを設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報Iwが、第二車両2bから取得されることになる。そこで、警告情報Iwの取得に応答して第一車両2aでは、第二車両2bとの間での安全エンベロープが調整されることにもなる。これによれば、第二車両2bの警告するエンベロープ違反が第一車両2aにおいても共通認識されて、安全エンベロープの調整に反映され得るので、相手車両の挙動に対する対応力の向上を促進することが可能である。
 (第二実施形態)
 第二実施形態は、第一実施形態の変形例である。
 図16,17にそれぞれ第一車両2a及び第二車両2bの場合が示される第二実施形態の処理方法では、S100,S110の実行が省かれている。それに応じて処理方法では、第一車両2aでのS2107~2109及び第二車両2bでのS2117~S2119が追加されている。
 図17に示されるように、S116に続くS2117において第二車両2bのリスク監視ブロック140は、警告情報Iwの取得を第一車両2aへフィードバックするためのフィードバック情報Ifを、生成する。フィードバック情報Ifは、警告情報Iwの取得を第二車両2bから第一車両2aに対してプッシュ通知する、通知情報Inを含んでいてもよい。フィードバック情報Ifは、S102の説明において第一車両2aと第二車両2bとを逆に読み替えた状況情報Isが通知情報Inに付加された、複合的な情報であってもよい。即ち状況情報Isは、第二車両2bにおいて設定された安全エンベロープに関するエンベロープ情報Iseを、含んでいてもよい。
 S2117において生成された警告情報Iwは、第二車両2bのリスク監視ブロック140による通信系6の制御に従って、第二車両2bから第一車両2aへ送信可能となる。換言すれば、第二車両2bのリスク監視ブロック140は、警告情報Iwに対するフィードバック情報Ifを、警告情報Iwの取得に応答して第二車両2bから第一車両2aへとリアルタイムに送信するように、生成する。S2117の実行が完了すると、第二車両2bでの今回フローが終了する。
 図16に示されるように、S103に続くS2108において第一車両2aのリスク監視ブロック140は、警告情報Iwの送信から設定時間内において第二車両2bからのフィードバック情報Ifを、第一車両2aの通信系6を通じた受信により取得したか否かを、判定する。S2108において、フィードバック情報Ifは取得されたとの判定を第一車両2aのリスク監視ブロック140が下した場合には、第一車両2aでの今回フローが終了する。
 こうしたS2108により第一車両2aのリスク監視ブロック140は、エンベロープ違反ありのシーンに対して第二車両2bとの共通認識が図られたことを、チェック可能となる。尚、S2108において第一車両2aのリスク監視ブロック140は、フィードバック情報Ifの取得に応答して、当該取得に対応する警告情報Iwを第一車両2aのメモリ10から削除してもよい。あるいはS2108において第一車両2aのリスク監視ブロック140は、S103の警告情報Iwに対応して取得されたフィードバック情報Ifを、第一車両2aのメモリ10に記憶してもよい。
 一方でS2108において、フィードバック情報Ifは取得されていないとの判定を第一車両2aのリスク監視ブロック140が下した場合には、第一車両2aでの今回フローがS2109へ移行する。S2109において第一車両2aのリスク監視ブロック140は、不合理なリスクを回避させるための制約を、第一車両2aの運動制御に対して設定する。リスク回避のための制約は、第一車両2aに対するベストエフォートで、例えば緊急退避行動又はMRM等の縮退走行を実行させる、第一車両2aの制御ブロック160に対する縮退指令であってもよい。リスク回避のための制約は、第一車両2aを最小リスク状態へと移行させるための制約を与える、第一車両2aの制御ブロック160に対する制限指令であってもよい。また、リスク回避のための制約は、第一車両2aの速度の制限、加速度の制限、及び第一車両2aが第二車両2bから遠ざかることのうち少なくとも一つの、軽微な制約であってもよい。このような制約設定処理は、例えば第二車両2bに処理システム1が非適用、又は第二車両2bに通信系6が非搭載等の要因により、第一車両2aが自らからの警告情報Iwの送信に対してフィードバック情報Ifを取得できなかった場合には、より安全側のリスク回避行動を可能にする。S2109の実行が完了すると、第一車両2aでの今回フローが終了する。尚、こうしてフィードバック情報Ifが取得されずに今回フローが終了した第一車両2aでは、次回フローのS101においてもエンベロープ違反が継続している場合、次回フローのS102において警告情報Iwの生成及び送信が繰り返される。
 ここまで、第二車両2bがフィードバック情報Ifの送信側且つ第一車両2aがフィードバック情報Ifの受信側となる場合を、説明した。続いて、第一車両2aがフィードバック情報Ifの送信側且つ第二車両2bがフィードバック情報Ifの受信側となる場合を、説明する。
 S106に続くS2107において第一車両2aのリスク監視ブロック140は、フィードバック情報Ifの生成処理として、S2117の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。S2107の実行が完了すると、第一車両2aでの今回フローが終了する。
 図17に示されるように、S113に続くS2118において第二車両2bのリスク監視ブロック140は、フィードバック情報Ifの取得判定処理として、S2108の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。そこでS2118において、フィードバック情報Ifを取得したとの判定を第二車両2bのリスク監視ブロック140が下した場合には、第二車両2bでの今回フローが終了する。
 こうしたS2118により第二車両2bのリスク監視ブロック140は、エンベロープ違反ありのシーンに対して第一車両2aとの共通認識が図られたことを、チェック可能となる。尚、S2118において第二車両2bのリスク監視ブロック140は、フィードバック情報Ifの取得に応答して、当該取得に対応する警告情報Iwを第二車両2bのメモリ10から削除してもよい。あるいはS2118において第二車両2bのリスク監視ブロック140は、S103の警告情報Iwに対応して取得されたフィードバック情報Ifを、第二車両2bのメモリ10に記憶してもよい。
 一方で2118において、フィードバック情報Ifを取得していないとの判定を第二車両2bのリスク監視ブロック140が下した場合には、第二車両2bでの今回フローがS2119へ移行する。S2119において第二車両2bのリスク監視ブロック140は、リスク回避のための制約設定処理として、S2109の説明における第一車両2aと第二車両2bとを逆に読み替えた処理を、実行する。このような制約設定処理は、例えば第一車両2aに処理システム1が非適用、又は第一車両2aに通信系6が非搭載等の要因により、第二車両2bが自らからの警告情報Iwの送信に対してフィードバック情報Ifを取得できなかった場合には、より安全側のリスク回避行動を可能にする。S2119の実行が完了すると、第二車両2bでの今回フローが終了する。尚、こうしてフィードバック情報Ifが取得されずに今回フローが終了した第二車両2bでは、次回フローのS111においてもエンベロープ違反が継続している場合、次回フローのS112において警告情報Iwの生成及び送信が繰り返される。
 このような第二実施形態では、第一車両2a及び第二車両2bの各リスク監視ブロック140を主体として、第一実施形態にS2107~2109及びS2117~S2119のそれぞれ追加された処理方法が、実行される。故に、相手車両の挙動に対する対応力の向上を促進することが可能である。
 (第三実施形態)
 第三実施形態は、第一実施形態の変形例である。
 図18に示されるように第三実施形態の制御ブロック3160では、リスク監視ブロック140から安全エンベロープに関する判定情報の取得処理が、省かれている。そこで第三実施形態の計画ブロック3120は、リスク監視ブロック140から安全エンベロープに関する判定情報を取得する。計画ブロック3120は、エンベロープ違反なしとの判定情報を取得した場合に、計画ブロック120に準じて車両2の運転制御を計画する。一方、エンベロープ違反ありとの判定情報を取得した場合に計画ブロック3120は、計画ブロック120に準じた運転制御を計画する段階において、判定情報に基づく制約を当該運転制御に与える。即ち計画ブロック3120は、計画する運転制御に対して制限を与える。いずれの場合においても、計画ブロック3120により計画された車両2の運転制御を、制御ブロック3160が実行する。
 このような第三実施形態では、第一車両2a及び第二車両2bの各リスク監視ブロック140を主体として、第一実施形態に準ずる処理方法がそれぞれ実行される。故に、相手車両の挙動に対する対応力の向上を促進することが可能である。尚、ここまでの第三実施形態は、第二実施形態と組み合わされてもよい。
 (第四実施形態)
 第四実施形態は、第三実施形態の変形例である。
 図19に示されるように第四実施形態の計画ブロック4120には、リスク監視ブロック140による機能がリスク監視サブブロック4140として取り込まれている。計画ブロック4120は、リスク監視サブブロック4140によりエンベロープ違反なしとの判定情報を取得した場合に、計画ブロック120に準じて車両2の運転制御を計画する。一方、リスク監視サブブロック4140によりエンベロープ違反ありとの判定情報を取得した場合に計画ブロック4120は、計画ブロック120に準じた運転制御を計画する段階において、判定情報に基づく制約を当該運転制御に与える。即ち計画ブロック4120は、計画する運転制御に対して制限を与える。いずれの場合においても、計画ブロック4120により計画された車両2の運転制御を、制御ブロック3160が実行する。
 このような第四実施形態では、第一車両2a及び第二車両2bの各リスク監視サブブロック4140を主体として、第一実施形態に準ずる処理方法がそれぞれ実行される。故に、相手車両の挙動に対する対応力の向上を促進することが可能である。尚、ここまでの第四実施形態は、第二実施形態と組み合わされてもよい。
 (第五実施形態)
 第五実施形態は、第一実施形態の変形例である。
 図20に示されるように第五実施形態の制御ブロック5160では、リスク監視ブロック5140から安全エンベロープに関する判定情報の取得処理が、省かれている。そこで第四実施形態のリスク監視ブロック5140は、車両2に対して制御ブロック5160により実行された運転制御の結果を表す情報を、取得する。リスク監視ブロック5140は、運転制御の結果に対してエンベロープ違反の判定を実行することにより、当該運転制御を評価する。
 このような第五実施形態では、第一車両2a及び第二車両2bの各リスク監視ブロック5140を主体として、第一実施形態に準ずる処理方法がそれぞれ実行される。このとき特に、S106,S116による安全エンベロープの調整処理は、運転制御の評価精度を高めることができる。故に、相手車両の挙動に対する対応力の向上を促進することが可能である。尚、ここまでの第五実施形態は、第二実施形態と組み合わされてもよい。但し、第五実施形態が第二実施形態と組み合わされる場合、S2109,S2119では、設定された制約に基づく運転制御の評価が実行される。
 (第六実施形態)
 第六実施形態は、第一実施形態の変形例である。
 図21,22に示されるように第六実施形態には、制御ブロック160による運転制御を、例えば安全性認可用等にテストするテストブロック6180が、追加されている。テストブロック6180には、検知ブロック100及びリスク監視ブロック140に準ずる機能が、与えられる。テストブロック6180は、各ブロック100,120,140,160を構築する処理プログラムに追加されるテストプログラムを、図21に示される処理システム1が実行することにより、構築されてもよい。テストブロック6180は、各ブロック100,120,140,160を構築する処理プログラムとは異なるテスト用の処理プログラムを、図22に示されるように処理システム1とは異なるテスト用の処理システム6001が実行することにより、構築されてもよい。ここでテスト用の処理システム6001は、運転制御をテストするために処理システム1と接続される(通信系6を通じた接続の場合の図示は省略)、メモリ10及びプロセッサ12を有した少なくとも一つの専用コンピュータにより、構成されるとよい。
 このような第六実施形態では、第一車両2a及び第二車両2bの各テストブロック6180を主体として、第一実施形態に準ずる処理方法がそれぞれ実行される。このとき特に、S106,S116による安全エンベロープの調整処理は、テストにおける運転制御の評価精度を高めることができる。故に、相手車両の挙動に対する対応力の向上を促進することが可能である。尚、ここまでの第六実施形態は、第二実施形態と組み合わされてもよい。但し、第六実施形態が第二実施形態と組み合わされる場合、S2109,S2119では、設定された制約に基づくことにより、テストとしての運転制御の評価が実行される。
 (他の実施形態)
 以上、複数の実施形態について説明したが、本開示は、それらの実施形態に限定して解釈されるものではなく、本開示の要旨を逸脱しない範囲内において種々の実施形態及び組み合わせに適用することができる。
 変形例において処理システム1を構成する専用コンピュータは、デジタル回路、及びアナログ回路のうち、少なくとも一方をプロセッサとして含んでいてもよい。ここでデジタル回路とは、例えばASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、SOC(System on a Chip)、PGA(Programmable Gate Array)、及びCPLD(Complex Programmable Logic Device)等のうち、少なくとも一種類である。またこうしたデジタル回路は、プログラムを記憶したメモリを、有していてもよい。
 変形例の処理方法では、S103,S113による警告情報Iwの記憶処理が省かれてもよい。変形例の処理方法では、S105,S115による警告情報Iwの記憶処理が省かれてもよい。変形例の処理方法では、第二実施形態に準じて第一実施形態においても、S100,S110による相互認証処理が省かれてもよい。

Claims (18)

  1.  ターゲット移動体(2a,2b)と通信可能なホスト移動体(2b,2a)の運転に関する処理を遂行するために、プロセッサ(12)により実行される処理方法であって、
     前記ターゲット移動体において前記ホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体から取得することと、
     前記警告情報の取得に応答して、前記ターゲット移動体との間での前記安全エンベロープを調整することとを、含む処理方法。
  2.  前記安全エンベロープを調整することは、
     前記ホスト移動体において前記エンベロープ違反が認識外であった場合に、前記警告情報の取得に応答して、前記ターゲット移動体との間の前記安全エンベロープを調整することを、含む請求項1に記載の処理方法。
  3.  意図された機能の安全性をモデリングした安全モデルに基づき、前記エンベロープ違反を監視することを、さらに含み、
     前記安全エンベロープを調整することは、
     前記ホスト移動体において前記エンベロープ違反が認識外であった場合に、前記安全モデルを補正することにより、前記ターゲット移動体との間での前記安全エンベロープを調整することを、含む請求項2に記載の処理方法。
  4.  前記警告情報を取得することは、
     前記ターゲット移動体から前記エンベロープ違反をプッシュ通知する前記警告情報を、取得することを、含む請求項1~3のいずれか一項に記載の処理方法。
  5.  前記警告情報を取得することは、
     前記ターゲット移動体において設定された前記安全エンベロープに関するエンベロープ情報(Ise)の、付加された前記警告情報を取得することを、含む請求項1~4のいずれか一項に記載の処理方法。
  6.  取得した前記警告情報を記憶することを、さらに含む請求項1~5のいずれか一項に記載の処理方法。
  7.  前記警告情報の取得を前記ターゲット移動体へフィードバックするフィードバック情報(If)を、送信するように生成することを、さらに含む請求項1~6のいずれか一項に記載の処理方法。
  8.  プロセッサ(12)を含み、ターゲット移動体(2a,2b)と通信可能なホスト移動体(2b,2a)の運転に関する処理を遂行する処理システム(1)であって、
     前記プロセッサは、
     前記ターゲット移動体において前記ホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体から取得することと、
     前記警告情報の取得に応答して、前記ターゲット移動体との間での前記安全エンベロープを調整することとを、実行するように構成される処理システム。
  9.  記憶媒体(10)に記憶され、ターゲット移動体(2a,2b)と通信可能なホスト移動体(2b,2a)の運転に関する処理を遂行するために、プロセッサ(12)に実行させる命令を含む処理プログラムであって、
     前記命令は、
     前記ターゲット移動体において前記ホスト移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体から取得させることと、させることと、
     前記警告情報の取得に応答して、前記ターゲット移動体との間での前記安全エンベロープを調整させることとを、含む処理プログラム。
  10.  ターゲット移動体(2b,2a)と通信可能なホスト移動体(2a,2b)の運転に関する処理を遂行するために、プロセッサ(12)により実行される処理方法であって、
     前記ホスト移動体において前記ターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視することと、
     前記ホスト移動体において前記エンベロープ違反が認識された場合に、前記エンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体へ送信するように生成することとを、含む処理方法。
  11.  前記エンベロープ違反を監視することは、
     意図された機能の安全性をモデリングした安全モデルに基づき、前記エンベロープ違反を監視することを、含む請求項10に記載の処理方法。
  12.  前記警告情報を生成することは、
     前記ターゲット移動体に対して前記エンベロープ違反をプッシュ通知する前記警告情報を、生成することを、含む請求項10又は11に記載の処理方法。
  13.  前記警告情報を生成することは、
     前記ホスト移動体において設定された前記安全エンベロープに関するエンベロープ情報(Ise)の、付加された前記警告情報を生成することを、含む請求項10~12のいずれか一項に記載の処理方法。
  14.  生成した前記警告情報を記憶することを、さらに含む請求項10~13のいずれか一項に記載の処理方法。
  15.  前記ターゲット移動体から前記警告情報の取得をフィードバックするフィードバック情報(If)を、取得することを、さらに含む請求項10~14のいずれか一項に記載の処理方法。
  16.  前記フィードバック情報が取得されない場合に、前記ホスト移動体に対する制約を設定することを、さらに含む請求項15に記載の処理方法。
  17.  プロセッサ(12)を含み、ターゲット移動体(2b,2a)と通信可能なホスト移動体(2a,2b)の運転に関する処理を遂行する処理システム(1)であって、
     前記プロセッサは、
     前記ホスト移動体において前記ターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視することと、
     前記ホスト移動体において前記エンベロープ違反が認識された場合に、前記エンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体へ送信するように生成することとを、実行するように構成される処理システム。
  18.  記憶媒体(10)に記憶され、ターゲット移動体(2b,2a)と通信可能なホスト移動体(2a,2b)の運転に関する処理を遂行するために、プロセッサ(12)に実行させる命令を含む処理プログラムであって、
     前記命令は、
     前記ホスト移動体において前記ターゲット移動体との間での意図された機能の安全性を設定した安全エンベロープの、違反であるエンベロープ違反を監視させることと、
     前記ホスト移動体において前記エンベロープ違反が認識された場合に、前記エンベロープ違反を警告する警告情報(Iw)を、前記ターゲット移動体へ送信するように生成させることとを、含む処理プログラム。
PCT/JP2022/006438 2021-03-26 2022-02-17 処理方法、処理システム、処理プログラム WO2022202001A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023508789A JPWO2022202001A1 (ja) 2021-03-26 2022-02-17
US18/472,928 US20240013659A1 (en) 2021-03-26 2023-09-22 Processing method, processing system, and storage medium storing processing program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053969 2021-03-26
JP2021-053969 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/472,928 Continuation US20240013659A1 (en) 2021-03-26 2023-09-22 Processing method, processing system, and storage medium storing processing program

Publications (1)

Publication Number Publication Date
WO2022202001A1 true WO2022202001A1 (ja) 2022-09-29

Family

ID=83396946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006438 WO2022202001A1 (ja) 2021-03-26 2022-02-17 処理方法、処理システム、処理プログラム

Country Status (3)

Country Link
US (1) US20240013659A1 (ja)
JP (1) JPWO2022202001A1 (ja)
WO (1) WO2022202001A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168640A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd カーナビゲーション装置
JP2009059200A (ja) * 2007-08-31 2009-03-19 Denso Corp 運転支援システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168640A (ja) * 2000-11-30 2002-06-14 Matsushita Electric Ind Co Ltd カーナビゲーション装置
JP2009059200A (ja) * 2007-08-31 2009-03-19 Denso Corp 運転支援システム

Also Published As

Publication number Publication date
JPWO2022202001A1 (ja) 2022-09-29
US20240013659A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
JP6745294B2 (ja) 車両制御装置、車両制御方法、及びプログラム
US20180056998A1 (en) System and Method for Multi-Vehicle Path Planning Technical Field
EP3882100B1 (en) Method for operating an autonomous driving vehicle
US11755022B2 (en) Vehicle control device
WO2020031689A1 (ja) 情報処理装置及び情報処理方法、コンピュータプログラム、情報処理システム、並びに移動体装置
US20230406355A1 (en) Processing method, processing system, and storage medium storing processing program
JP7435787B2 (ja) 経路確認装置および経路確認方法
WO2022202001A1 (ja) 処理方法、処理システム、処理プログラム
WO2022202002A1 (ja) 処理方法、処理システム、処理プログラム
JP7226238B2 (ja) 車両制御システム
WO2022168671A1 (ja) 処理装置、処理方法、処理プログラム、処理システム
WO2022168672A1 (ja) 処理装置、処理方法、処理プログラム、処理システム
JP7364111B2 (ja) 処理方法、処理システム、処理プログラム
WO2022158272A1 (ja) 処理方法、処理システム、処理プログラム、処理装置
WO2022168883A1 (ja) 処理方法、処理システム、処理プログラム、処理装置
WO2023189680A1 (ja) 処理方法、運転システム、処理装置、処理プログラム
WO2023120505A1 (ja) 方法、処理システム及び記録装置
WO2022244604A1 (ja) 処理方法、処理システム、処理プログラム
WO2023042424A1 (ja) 移動制御システム、移動制御方法、移動制御装置及び情報処理装置
WO2023228781A1 (ja) 処理システム及び情報提示装置
WO2023149089A1 (ja) 学習装置、学習方法及び学習プログラム
KR20220158108A (ko) 운전자 상태에 따른 차량 제어 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774801

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774801

Country of ref document: EP

Kind code of ref document: A1