WO2022201947A1 - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
WO2022201947A1
WO2022201947A1 PCT/JP2022/005339 JP2022005339W WO2022201947A1 WO 2022201947 A1 WO2022201947 A1 WO 2022201947A1 JP 2022005339 W JP2022005339 W JP 2022005339W WO 2022201947 A1 WO2022201947 A1 WO 2022201947A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
loop operation
closed
gas treatment
amount
Prior art date
Application number
PCT/JP2022/005339
Other languages
French (fr)
Japanese (ja)
Inventor
和芳 糸川
広幸 當山
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN202280005787.3A priority Critical patent/CN116096475A/en
Priority to KR1020237007000A priority patent/KR20230044491A/en
Priority to JP2023508765A priority patent/JP7380946B2/en
Publication of WO2022201947A1 publication Critical patent/WO2022201947A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents

Definitions

  • the present invention relates to an exhaust gas treatment device and an exhaust gas treatment method.
  • Exhaust gas treatment devices called scrubber devices that purify exhaust gas by neutralizing sulfur components in the exhaust gas with a scrubber liquid such as seawater are widely used.
  • Operation of the scrubber device includes open loop operation and closed loop operation.
  • open-loop operation the scrubber device discharges to the outside the spent scrubber liquid that has been used to clean the exhaust gas.
  • closed-loop operation the scrubber apparatus restores the cleaning ability of the spent scrubber liquid by dosing the spent scrubber liquid with an alkaline agent, and circulates the spent scrubber liquid with the restored cleaning ability.
  • Scrubber devices for marine vessels that perform closed-loop operation using magnesium hydroxide or magnesium oxide are known (eg, Patent Document 1).
  • Patent Documents 2 to 4 there is a known technique for controlling the amount of magnesium hydroxide input based on the sulfur content (SO x ) concentration in the purified exhaust gas (for example, , Patent Documents 2 to 4).
  • a pH control technology using an alkaline agent in a scrubber device for example, Patent Documents 5 and 6
  • Patent Documents 7 and 8 a technique for estimating the amount of sulfur component absorbed by the scrubber liquid.
  • Patent Document 1 International Publication WO2017/194645
  • Patent Document 2 Japanese Patent Laid-Open No. 9-66219
  • Patent Document 3 Japanese Patent Laid-Open Publication No.
  • Patent Document 4 Japanese Patent Laid-Open Publication No. 8-196863 Patent Document 5 International Publication WO2012/000790 Patent Document 6 JP-A-3-267114 Patent document 7 International publication WO2014/119513 Patent document 8 International publication WO2016/009549
  • an operation is performed between a closed loop operation for circulating the used liquid used for treating the exhaust gas and an open loop operation for discharging the used liquid to the outside.
  • the exhaust gas treatment device may include a reaction tower.
  • the reaction tower is supplied with exhaust gas and purifies the exhaust gas with liquid.
  • the exhaust gas treatment device may include a reservoir.
  • the storage section may store used liquid that has been used to purify the exhaust gas.
  • the reservoir may supply the spent liquid, which has been purified by the alkaline agent during closed-loop operation, into the reactor.
  • the exhaust gas treatment device may include an inlet. When initiating closed-loop operation, the dosing section may dose the alkaline agent into the reservoir before starting to supply the spent liquid from the reservoir into the reactor.
  • the input unit may input at least one of magnesium oxide and magnesium hydroxide into the storage unit as an alkaline agent.
  • the input unit may input solid powder of at least one of magnesium oxide and magnesium hydroxide into the storage unit as an alkaline agent.
  • the input unit may input magnesium oxide into the storage unit as an alkaline agent.
  • the dosing section is supplied with an amount of magnesium oxide that is greater than the amount of magnesium oxide that can be neutralized with the amount of sulfur that the liquid absorbs in a single circulation. may be introduced into the reservoir.
  • the input unit oxidizes an amount that is 2 times or more and 400 times or less of the amount of sulfur components absorbed by the liquid in one circulation and the amount that can be neutralized. Magnesium may be introduced into the reservoir.
  • the input unit When the operation mode is switched to the closed-loop operation, at the first timing, the input unit introduces magnesium oxide into the storage unit in an amount larger than the amount that can be neutralized with the amount of sulfur component absorbed by the liquid in one circulation. you can put it in.
  • the injection unit may replenish the storage unit with a smaller amount of magnesium oxide than the amount injected at the first timing at a second timing after the first timing while the closed-loop operation continues.
  • the exhaust gas treatment device may further include an adjustment unit.
  • the adjusting unit adjusts the charging amount of magnesium oxide charged into the reservoir before starting the supply of the spent liquid from the reservoir into the reaction column when the operation mode is switched from the open-loop operation to the closed-loop operation. you can
  • the adjustment unit may estimate the sulfur component amount absorbed by the liquid in one circulation based on the output of the combustion device that produces the exhaust gas and the sulfur concentration contained in the fuel oil used in the combustion device. .
  • the adjustment unit may adjust the input amount based on the estimated sulfur content.
  • the adjustment unit adjusts the dosage based on the sulfur content of the gas released from the reactor during open-loop operation and the planned power output of the combustion device that produces the exhaust gas after the operating mode is switched to closed-loop operation. You can
  • the adjustment unit adjusts the hydrogen ion exponent (pH) of each of the liquid supplied to the reactor during open-loop operation and the used liquid discharged from the reactor to the outside, and the exhaust gas after the operation mode is switched to closed-loop operation.
  • the input amount may be adjusted based on the planned output value of the combustion device that produces the
  • the adjustment unit may adjust the input amount based on the amount of magnesium oxide remaining in the reservoir during the previous closed-mode operation.
  • the exhaust gas treatment device may further include a reservoir cleaning mechanism.
  • the reservoir cleaning mechanism may clean the inside of the reservoir.
  • the exhaust gas treatment device may further include a pipe cleaning mechanism.
  • the pipe cleaning mechanism may clean the inside of the pipe between the reaction tower and the reservoir.
  • an exhaust gas treatment capable of switching the operation mode between a closed loop operation for circulating the used liquid used for exhaust gas treatment and an open loop operation for discharging the used liquid to the outside.
  • the exhaust gas treatment method may comprise storing the spent liquid used to clean the exhaust gas.
  • the exhaust gas treatment method may comprise the step of contacting the exhaust gas with the spent liquid, which has been reconstituted with an alkaline agent during closed-loop operation.
  • the exhaust gas treatment method may comprise dosing the stored spent liquid with an alkaline agent prior to feeding the spent liquid into contact with the exhaust gas when closed loop operation is initiated.
  • FIG. 4 shows experimental values of pH increase rate based on MgO concentration.
  • FIG. 4 is a diagram showing an example of experimental values of reaction rate constants; It is a figure explaining schematic structure of the waste gas treatment apparatus 2 of a comparative example.
  • 3 is a flow chart showing an example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1.
  • FIG. 4 is a flow chart showing another example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1.
  • FIG. It is a flow chart which shows an example of an input amount adjustment process. It is a flowchart which shows the other example of an input amount adjustment process. It is a flowchart which shows the other example of an input amount adjustment process. It is a flowchart which shows the other example of an input amount adjustment process. It is a flowchart which shows the other example of an input amount adjustment process.
  • 5 is a flowchart showing an example of cleaning processing;
  • FIG. 1 is a diagram illustrating a schematic configuration of an exhaust gas treatment apparatus 1 according to one embodiment of the present invention.
  • the exhaust gas treatment device 1 reduces sulfur components in the exhaust gas 100 generated in the combustion device 3 to purify the exhaust gas 100 .
  • the combustion device 3 may be an engine or a boiler, preferably an engine, especially a marine engine.
  • the sulfur component may include sulfur compounds such as SOx (sulfur oxides).
  • the exhaust gas treatment device 1 includes a reaction tower 10.
  • the reaction tower 10 the exhaust gas 100 from the combustion device 3 is brought into contact with the scrubber liquid, which is seawater.
  • the scrubber liquid may be a liquid such as seawater or an alkaline aqueous solution.
  • Exhaust gas 100 from the combustion device 3 is introduced into the reaction tower 10 through the combustion gas exhaust pipe 12 .
  • the scrubber liquid is sprayed from a spray nozzle 13 inside the reactor 10 .
  • the scrubber liquid is introduced into the spray nozzle 13 via the scrubber liquid tube 14 .
  • the exhaust gas treatment device 1 is configured so that the operation mode can be switched between open loop operation and closed loop operation.
  • the mode of operation is open loop operation
  • the valve 18 between the spent scrubber line 16 and the discharge line 17 is opened and the valve 20 between the spent scrubber line 16 and the circulation line 19 is closed.
  • open loop operation spent scrubber liquid is directed from the spent scrubber pipe 16 to the discharge pipe 17 and the spent scrubber liquid is discharged from the seawater outlet 21 .
  • seawater is taken in from the seawater intake 22 as scrubber liquid.
  • seawater is introduced into the scrubber liquid line 14 via the seawater line 24 , the valve 32 and the scrubber liquid pump 23 .
  • the valve 32 between the seawater pipe 24 and the scrubber liquid pipe 14 is opened.
  • a valve 33 which will be described later, is closed.
  • spent scrubber liquid is discharged to the outside.
  • the exhaust gas treatment device 1 includes a storage section 30 and an input section 40 .
  • valve 20 between spent scrubber line 16 and circulation line 19 is opened and valve 18 between spent scrubber line 16 and discharge line 17 is closed.
  • the used scrubber liquid is stored in the storage section 30 from the used scrubber pipe 16 via the circulation pipe 19 .
  • the charging unit 40 charges the alkaline agent into the storage unit 30 .
  • the ability of the used scrubber liquid in the storage unit 30 to purify the exhaust gas 100 is recovered.
  • the ability to purify the exhaust gas 100 may refer to the ability to neutralize sulfurous acid or the like in the exhaust gas 100 .
  • the storage unit 30 supplies the used scrubber liquid whose purification ability has been restored by the alkaline agent into the reaction tower 10 during the closed loop operation. Specifically, in the reservoir 30, the used scrubber liquid whose purification ability has been restored is supplied to the reaction tower 10 via the circulating scrubber liquid supply pipe 34, the valve 33, the pump 23, and the scrubber liquid pipe 14. .
  • valve 33 between circulating scrubber liquid supply pipe 34 and scrubber liquid pipe 14 is opened and valve 32 between seawater pipe 24 and scrubber liquid pipe 14 is closed.
  • the valve 32 may be temporarily opened to obtain seawater to replenish the liquid level to the proper level.
  • the reservoir 30 is a tank that stores the used scrubber liquid and supplies the used liquid whose purification ability has been restored to the reaction tower 10 .
  • the reservoir 30 may be a buffer tank.
  • Reaction tower 10, used scrubber pipe 16, circulation pipe 19, reservoir 30, circulating scrubber liquid supply pipe 34, and scrubber liquid pipe 14 form a circulation route, and the scrubber liquid is cyclically flowing in the route.
  • a section 30 is provided.
  • the charging section 40 charges the alkaline agent into the storage section 30 before starting to supply the used scrubber liquid from the storage section 30 into the reaction tower 10 .
  • the input unit 40 injects the alkaline agent into the storage unit 30 .
  • Input unit 40 may input at least one of magnesium oxide (MgO) and magnesium hydroxide (Mg(OH) 2 ) into storage unit 30 as an alkaline agent.
  • MgO magnesium oxide
  • Mg(OH) 2 magnesium hydroxide
  • Magnesium oxide and magnesium hydroxide require a smaller volume of chemicals to purify the exhaust gas 100 than sodium hydroxide, sodium carbonate, sodium bicarbonate, and other sodium-containing alkali agents, so the storage space for the alkali agents can be saved. can be
  • the input unit 40 may input solid powder of at least one of magnesium oxide and magnesium hydroxide into the storage unit 30 as an alkaline agent. Therefore, it is not necessary to previously dissolve magnesium oxide or magnesium hydroxide in the scrubber liquid to form a slurry. This eliminates the need for a space for previously dissolving the magnesium oxide or magnesium hydroxide in the scrubber liquid to form a slurry.
  • the input unit 40 inputs magnesium oxide into the storage unit 30 as an alkaline agent. Magnesium oxide requires less chemical cost than magnesium hydroxide.
  • magnesium oxide When magnesium oxide is dissolved in a water-based scrubber liquid, a hydration reaction of MgO (magnesium oxide)+H 2 O (water) ⁇ Mg(OH) 2 (magnesium hydroxide) occurs. Then, a neutralization reaction of Mg(OH) 2 (magnesium hydroxide)+H 2 SO 3 (sulfurous acid) ⁇ MgSO 3 (magnesium sulfite)+2H 2 O (water) occurs. MgSO 3 (magnesium sulfite) is oxidized to MgSO 4 (magnesium sulfate).
  • MgO magnesium oxide
  • Mg(OH) 2 magnesium hydroxide
  • the pH of a saturated aqueous solution of Mg(OH) 2 is 10.5.
  • the pOH of a saturated aqueous solution of Mg(OH) 2 is represented by Formula 1 below.
  • Equation 2 the concentration of OH ⁇ ions (hydroxide ions) in a saturated aqueous solution of Mg(OH) 2 (magnesium hydroxide) is represented by Equation 2 below.
  • the solubility of MgO is 0.158 ⁇ 10 ⁇ 3 mol/L (liter). This solubility is small compared to sodium-containing alkaline agents. Therefore, it takes time to increase the pH of the scrubber liquid (circulating water) using magnesium oxide (MgO) as an oxidizing agent. By increasing the concentration (input amount) of magnesium oxide (MgO), the solid surface area S can be increased. As shown in the following reaction rate formula, the hydration reaction can be promoted by increasing the fixed surface area (S) of the alkaline agent powder.
  • C Mg(OH) 2 concentration
  • k reaction rate constant
  • S solid surface area.
  • Equation 7 the target value of the dissolution rate dC/dt is expressed by Equation 7 below.
  • Equation 8 the fixed surface area (S) of the alkaline agent powder that reaches the target dC/dt is represented by Equation 8 below.
  • the dissolution rate dC/dt can reach the target dC/dt by making the fixed surface area (S) of the powder of the alkaline agent equal to or greater than the value calculated by Equation 8.
  • the hydration reaction is promoted.
  • the pH of the used scrubber liquid is increased due to MgO, and the time required for obtaining the used scrubber liquid whose purification ability (neutralization ability) has been restored can be shortened.
  • FIG. 2 is a diagram showing experimental values of the pH increase rate based on the concentration of MgO.
  • the horizontal axis indicates elapsed time.
  • the vertical axis indicates the hydrogen ion exponent (pH).
  • water was used as the scrubber liquid.
  • the scrubber liquid had a pH of about 6, but as a result of absorbing 2 mmol/L of sulfur component (SOx), the pH decreased to about 3.
  • SOx sulfur component
  • the input unit 40 When the operation mode is switched to the closed-loop operation, at the first timing t1 in the closed-loop operation, the input unit 40 has an amount larger than the amount of sulfur components that can be neutralized with the amount of sulfur components absorbed by the scrubber liquid in one circulation. of magnesium oxide may be introduced into the reservoir 30 .
  • the amount larger than the amount capable of neutralization reaction may be an amount of 2 to 400 times the amount of the sulfur component and the amount capable of neutralization reaction.
  • the first timing t1 may be the start of operation in closed loop operation.
  • magnesium oxide (MgO) can promote the hydration reaction from magnesium oxide (MgO) to Mg(OH) 2 (magnesium hydroxide) by increasing the solid surface area. . Therefore, by excessive charging of magnesium oxide (MgO) to the reservoir 30, the pH of the scrubber liquid returns to the original level and the time until the exhaust gas 100 purifying ability is recovered can be shortened.
  • FIG. 3 is a diagram showing an example of experimental values of reaction rate constants.
  • the horizontal axis in FIG. 3 is elapsed time (s), and the vertical axis is In(Cs/(Cs ⁇ C)).
  • s elapsed time
  • In In(Cs/(Cs ⁇ C)
  • the target value of the pH of the scrubber liquid was set to 8.1.
  • the retention time that can be retained in the reservoir 30 was set to 120 seconds, and the sulfur component concentration absorbed by the scrubber liquid in one circulation was set to 2 mmol/L.
  • the input unit 40 is designed to remove sulfur absorbed by the scrubber liquid in one circulation before starting to supply the used scrubber liquid from the storage unit 30 into the reaction tower 10.
  • Magnesium oxide in an amount larger than the amount that can be neutralized with the amount of the components may be introduced into the reservoir 30 .
  • the amount of sulfur components absorbed by the scrubber liquid in one circulation and the amount of magnesium oxide that is larger than the amount that can be neutralized is twice the amount of sulfur components that the scrubber liquid absorbs and the amount that can be neutralized in one circulation.
  • the amount of magnesium oxide may be 400 times or less, the amount of magnesium oxide may be 100 times or more and 400 times or less, and more preferably the amount of magnesium oxide may be 300 times or more and 400 times or less. good.
  • FIG. 4 is a diagram illustrating a schematic configuration of an exhaust gas treatment apparatus 2 of a comparative example.
  • the exhaust gas treatment apparatus 2 of the comparative example includes a reaction tower 10, a used scrubber pipe 16, a circulation pipe 19, a reservoir 30, a circulating scrubber liquid supply pipe 34, a scrubber liquid pipe 14, and a preparation section 62 and a storage outside the circulation path.
  • magnesium oxide (MgO) is introduced by the introduction section 60 .
  • the dispensing unit 62 is a tank for dissolving magnesium oxide (MgO)
  • the storage unit 64 is a tank for storing magnesium hydroxide Mg(OH) 2 produced by a hydration reaction by dissolving magnesium oxide (MgO).
  • Magnesium oxide (MgO) melted by dispensing unit 62 is introduced into storage unit 64 by pump 63 .
  • Magnesium hydroxide Mg(OH) 2 stored in storage unit 64 is introduced into circulation pipe 19 by pump 65 .
  • magnesium oxide MgO
  • Mg(OH) 2 magnesium hydroxide
  • the preparation section 62 and the storage section 64 are required, which makes it difficult to achieve space saving.
  • the exhaust gas treatment apparatus 1 may include an adjustment section 50, a control section 51, a storage section 53, and a setting section .
  • the control unit 51 controls the entire exhaust gas treatment apparatus 1 including the valves 18, 20, 32, 33, and the like.
  • the controller 51 may be a computer.
  • the adjustment unit 50 adjusts the amount of magnesium oxide that is introduced into the reservoir 30 before starting to supply the used scrubber liquid from the reservoir 30 into the reaction tower 10 .
  • the exhaust gas treatment apparatus 1 is not necessarily limited to adjusting the charging amount as long as the alkaline agent is excessively charged during the closed loop operation.
  • the setting unit 54 sets the sulfur content concentration of the fuel oil used in the combustion device 3 and the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation.
  • closed-loop operation may reduce the output of combustion device 3 from 80% to 40% of its rating due to a vessel sailing near a port.
  • the planned output value may thus include information on the output value of the combustion device 3 scheduled due to the course of the ship.
  • the setting unit 54 may set the sulfur content concentration of the fuel oil, the planned output value, etc. based on the information input by the user, and sets the sulfur content concentration of the fuel oil, the planned output value, etc. based on the measuring device. May be set.
  • the storage unit 53 may store various types of information set by the setting unit 54, such as the sulfur concentration of the fuel oil and the planned output value of the combustion device 3, as a database.
  • the adjustment unit 50 acquires information set by the setting unit 54 and stored in the storage unit 53, information on the output of the combustion device 3 (engine load, etc.), and information on values detected by various sensors.
  • the adjustment unit 50 adjusts the amount of magnesium oxide, which is an alkaline agent, supplied by the supply unit 40 according to the acquired information.
  • the exhaust gas treatment device 1 may include a pH sensor 35, a pH sensor 36, and a sulfur component sensor 37 as various sensors.
  • the pH sensor 35 measures the pH of the scrubber liquid (seawater) supplied to the reactor 10 during open loop operation. For example, the pH sensor 35 measures the pH of sea water while the ship is underway.
  • the pH sensor 36 measures the pH of the used scrubber liquid discharged from the reaction tower 10 to the outside.
  • Sulfur content sensor 37 measures the amount of sulfur content in the gas discharged from reactor 10 during open loop operation.
  • the adjustment unit 50 adjusts the amount of sulfur component that the liquid absorbs in one circulation.
  • the dosage may be adjusted based on the estimated sulfur content.
  • the larger the estimated value of the amount of sulfur component to be absorbed the more the amount of alkaline agent supplied can be increased, and finer adjustments can be made. It becomes possible.
  • the adjustment unit 50 adjusts the amount of sulfur in the gas released from the reaction tower 10 during open-loop operation, and the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed-loop operation. You can adjust the dosage. If the sulfur content of the gas discharged from the reactor 10 during open loop operation is high, the dosage of the alkali agent may be increased to enhance the absorption of the sulfur content. Also, the lower the planned output value, the smaller the amount of alkaline agent supplied.
  • the adjustment unit 50 adjusts the hydrogen ion exponent (pH) of each of the scrubber liquid (seawater) supplied to the reaction tower 10 and the spent scrubber liquid discharged from the reaction tower 10 during open loop operation, and the operation mode.
  • the input amount may be adjusted based on the planned power output of the combustion device 3 that produces the exhaust gas 100 after being switched to closed-loop operation.
  • the higher the pH value of the scrubber liquid (seawater) supplied to the reaction tower 10 during open-loop operation the lower the dosage of the alkali agent may be.
  • the adjusting unit 50 can also estimate the amount of sulfur in closed-loop operation from information in open-loop operation.
  • the adjustment unit 50 adjusts the input amount based on the amount of magnesium oxide remaining in the storage unit 30 during the previous closed mode operation when the operation mode is switched from the open loop operation to the closed loop operation. you can If a large amount of magnesium oxide from the previous closed mode operation remains, the amount of newly added magnesium oxide may be reduced.
  • the exhaust gas treatment device 1 may include a reservoir cleaning mechanism 38 and a pipe cleaning mechanism 39 .
  • the exhaust gas treatment apparatus 1 is excessively charged with magnesium oxide to increase the solid surface area of the alkaline agent such as magnesium oxide, thereby promoting the hydration reaction. Therefore, magnesium hydroxide and magnesium oxide tend to aggregate in the reservoir 30 , the circulating scrubber liquid supply pipe 34 , the valve 33 , the pump 23 , and the scrubber liquid pipe 14 .
  • Reservoir cleaning mechanism 38 may clean reservoir 30 each time closed-loop operation ends.
  • Reservoir cleaning mechanism 38 may remove aggregated material from within reservoir 30 and out.
  • the storage part cleaning mechanism 38 may inject a cleaning liquid into the storage part 30 to clean it.
  • the pipe cleaning mechanism 39 is configured to clean the circulating scrubber liquid supply pipe 34 between the inlet of the scrubber liquid to the reaction tower 10 and the supply port from the reservoir 30, the valve 33, the pump 23,
  • the scrubber liquid tube 14 may be cleaned.
  • the exhaust gas treatment apparatus 1 configured as described above performs processing as follows.
  • FIG. 5 is a flowchart showing an example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1.
  • the control unit 51 executes the open loop operation (step S12). Specifically, control unit 51 opens valve 18 and valve 32 and closes valve 20 and valve 33 .
  • step S10: NO If there is no open loop operation instruction (step S10: NO) and no closed loop operation instruction (step S14: NO), the process of the control unit 51 returns to step S10.
  • step S10: NO When there is no open-loop operation instruction (step S10: NO) and there is a closed-loop operation instruction (step S14: YES), the exhaust gas treatment device 1 executes the processes from steps S16 to S28.
  • the control unit 51 opens the valve 20 and closes the valve 18. However, the control unit 51 keeps the valve 33 closed and the valve 32 open for a predetermined period of time even if the closed loop operation instruction is given. As a result, the storage unit 30 stores the used scrubber liquid (step S16).
  • step S18 Wait until the storage of the used scrubber liquid reaches a predetermined storage amount in the storage unit 30 (step S18: YES).
  • the adjusting unit 50 may adjust the initial charging amount of the alkaline agent, preferably magnesium oxide (step S20).
  • the processes of step S18 and step S20 may be executed in parallel.
  • the injection unit 40 injects an alkaline agent, preferably magnesium oxide, into the stored used scrubber liquid at a first timing t1 (step S22).
  • the first timing t1 may be one timing in the closed-loop operation, or may be the start of the closed-loop operation.
  • the injection unit 40 injects an alkaline agent, preferably magnesium oxide, into the stored used scrubber liquid before supplying the used scrubber liquid to contact the exhaust gas 100 .
  • the input unit 40 supplies an alkaline agent, preferably magnesium oxide, Put into the used scrubber liquid that is stored.
  • the control unit 51 waits for the scheduled time to pass (step S24: YES), closes the valve 32, and opens the valve 33.
  • the reservoir 30 supplies the scrubber liquid whose cleaning ability has been restored by the introduction of the alkaline agent to the reaction tower 10 (step S26).
  • the scrubber liquid is supplied from the reservoir 30 into the reaction tower 10 via the circulating scrubber liquid supply pipe 34 , the valve 33 , the pump 23 and the scrubber liquid pipe 14 . Thereby, the scrubber liquid comes into contact with the exhaust gas 100 to purify the exhaust gas 100 .
  • the used scrubber liquid returns to the storage section 30 through the storage section 30 , the circulating scrubber liquid supply pipe 34 , the scrubber liquid pipe 14 reaction tower 10 , the used scrubber pipe 16 and the circulation pipe 19 .
  • the charging unit 40 replenishes the reservoir with a smaller amount of magnesium oxide than the charging amount at the first timing t1. (step S28).
  • the process of step S28 may be repeatedly performed while the closed-loop operation continues.
  • FIG. 6 is a flow chart showing another example of the exhaust gas treatment method in the exhaust gas treatment apparatus 1.
  • the control unit 51 executes the open loop operation (step S32).
  • the control section 51 closes the valve 18 and opens the valve 20 .
  • the storage unit 30 stores the used scrubber liquid (step S36).
  • the controller 51 may open the valve 18 and close the valve 20 .
  • the control unit 51 generates a closed-loop operation ready signal, which is a signal indicating that preparations for the closed-loop operation have been completed.
  • step S40 the control unit 51 accepts a closed-loop operation instruction (step S40). If the closed-loop operation instruction has not been issued (step S40: NO), the process returns to step S30.
  • step S40: YES the processing from step S42 to step S49 is executed. Since the processing from step S42 to step S49 is the same as the processing from step S20 to step S28 in FIG. 5, repeated description will be omitted.
  • FIG. 7 is a flowchart showing an example of the input amount adjustment process.
  • FIG. 7 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
  • the adjustment unit 50 acquires the output value of the combustion device 3, for example, the ship's engine (step S50). Further, the adjustment unit 50 acquires information on the concentration of sulfur contained in the fuel oil used in the combustion device 3 from the storage unit 53 (step S52). Information on the concentration of sulfur contained in the fuel oil may be input in advance by the user using the setting unit 54 .
  • the adjustment unit 50 estimates the amount of sulfur component absorbed by the scrubber liquid in one cycle (step S54).
  • the amount of sulfur component absorbed by the scrubber liquid in one circulation means that the scrubber liquid passes through the reservoir 30, the circulating scrubber liquid supply pipe 34, the scrubber liquid pipe 14, the reaction tower 10, the used scrubber pipe 16, and the circulation pipe 19. It is the amount of sulfur component to be absorbed when returning to the reservoir 30 after passage.
  • the adjusting unit 50 may estimate the amount of sulfur component by using the flow rate of the scrubber liquid per hour, the flow rate of the exhaust gas 100 flowing into the reaction tower 10 per unit time, and the amount of sulfur component contained in the exhaust gas 100 .
  • the adjustment unit 50 estimates the amount of sulfur component absorbed by the liquid in one circulation, and adjusts the input amount of magnesium oxide (alkaline agent) based on the estimated amount of sulfur component (step S56).
  • the adjusting unit 50 adjusts the amount of magnesium oxide (alkaline agent) to be fed so that the estimated amount of sulfur component absorbed by the liquid in one circulation and the amount capable of neutralizing reaction are a predetermined multiple.
  • the predetermined magnification may be, for example, a value determined within a range from 2 times to 400 times.
  • FIG. 8 is a flowchart showing another example of the input amount adjustment process.
  • FIG. 8 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
  • the adjustment unit 50 acquires the sulfur component amount of the gas released from the reaction tower 10 during the open loop operation from the sulfur component sensor 37 (step S60).
  • the adjustment unit 50 acquires from the storage unit 53 or the like the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation.
  • the adjustment unit 50 adjusts the input amount of magnesium oxide (alkaline agent) from the amount of sulfur component in the gas released from the reaction tower 10 during open-loop operation and the planned output value of the combustion device 3 during closed-loop operation (step S64).
  • FIG. 9 is a flowchart showing another example of the input amount adjustment process.
  • FIG. 9 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
  • the adjustment unit 50 acquires the pH of the scrubber liquid (seawater) supplied to the reaction tower 10 during open loop operation from the pH sensor 35 (step S70).
  • the adjustment unit 50 acquires the pH of the used scrubber liquid discharged from the reaction tower 10 to the outside from the pH sensor 36 (step S72).
  • the adjustment unit 50 acquires from the storage unit 53 or the like the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation (step S74).
  • the adjustment unit 50 adjusts the pH of each of the scrubber liquid (seawater) supplied to the reaction tower 10 and the used scrubber liquid discharged from the reaction tower 10 during the open-loop operation, and the operation mode is switched to the closed-loop operation.
  • the input amount of magnesium oxide (alkaline agent) is adjusted based on the planned output value of the combustion device 3 (step S76).
  • FIG. 10 is a flowchart showing another example of the input amount adjustment process.
  • FIG. 10 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
  • the adjustment unit 50 acquires the amount of magnesium oxide (alkaline agent) remaining in the storage unit 30 during the previous closed mode operation (step S80).
  • the adjusting unit 50 may adjust the amount of newly added magnesium oxide (alkaline agent) based on the amount of remaining magnesium oxide (alkaline agent).
  • the adjustment unit 50 may adjust the input amount adjustment by using one or more of the input amount adjustment processes in FIGS. 7 to 10 in combination.
  • FIG. 11 is a flowchart showing an example of cleaning processing.
  • the control unit 51 determines whether or not the closed loop operation has switched to the open loop operation (step S90).
  • the reservoir cleaning mechanism 38 cleans the reservoir 30 (step S92).
  • the pipe cleaning mechanism 39 circulates the scrubber liquid between the inlet of the scrubber liquid to the reaction tower 10 and the supply port from the reservoir 30.
  • the supply tube 34, valve 33, pump 23, and scrubber liquid tube 14 may be cleaned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Treating Waste Gases (AREA)

Abstract

Provided is an exhaust gas treatment apparatus that can switch an operation mode between a closed-loop operation in which used liquid that has been used in the treatment of exhaust gas is circulated and an open-loop operation in which the used liquid is externally discharged. The exhaust gas treatment apparatus comprises: a reaction tower to which exhaust gas is supplied and which purifies the exhaust gas by using a liquid; a retention unit which retains used liquid that was used to purify the exhaust gas, and which supplies, into the reaction tower, used liquid for which the purification capability was restored by using an alkaline agent in the closed-loop operation; and an insertion unit which, if a closed-loop operation is to be initiated, inserts the alkaline agent into the retention unit before the supply of used liquid from the storage unit into reaction tower is started.

Description

排ガス処理装置および排ガス処理方法Exhaust gas treatment device and exhaust gas treatment method
 本発明は、排ガス処理装置および排ガス処理方法に関する。 The present invention relates to an exhaust gas treatment device and an exhaust gas treatment method.
 海水等のスクラバー液によって排ガス内の硫黄成分を中和させて浄化するスクラバー装置といわれる排ガス処理装置が広く用いられている。スクラバー装置の動作には、開ループ動作および閉ループ動作がある。開ループ動作では、スクラバー装置は、排ガスの浄化に用いられた使用済みスクラバー液を外部に排出する。閉ループ動作では、スクラバー装置は、使用済みスクラバー液にアルカリ剤を投入することによって使用済みスクラバー液の浄化能力を復活させ、浄化能力を復活させた使用済みスクラバー液を循環させる。水酸化マグネシウムまたは酸化マグネシウムを用いた閉ループ動作を実行する船舶用のスクラバー装置が知られている(例えば、特許文献1)。陸上で使用されるボイラー排ガス等を浄化するスクラバー装置において、浄化済みの排ガス中の硫黄成分量(SO)濃度に基づいて、水酸化マグネシウムの投入量を制御する技術が知られている(例えば、特許文献2から4)。関連する技術として、スクラバー装置において、アルカリ剤を用いたpH制御の技術が知られている(例えば、特許文献5および6)。関連する技術として、スクラバー液が吸収する硫黄成分量を推定する技術(例えば、特許文献7および8)が知られている。
 特許文献1 国際公開WO2017/194645号
 特許文献2 特開平9-66219号公報
 特許文献3 特開平7-275649号公報
 特許文献4 特開平8-196863号公報
 特許文献5 国際公開WO2012/000790号
 特許文献6 特開平3-267114号公報
 特許文献7 国際公開WO2014/119513号
 特許文献8 国際公開WO2016/009549号
2. Description of the Related Art Exhaust gas treatment devices called scrubber devices that purify exhaust gas by neutralizing sulfur components in the exhaust gas with a scrubber liquid such as seawater are widely used. Operation of the scrubber device includes open loop operation and closed loop operation. In open-loop operation, the scrubber device discharges to the outside the spent scrubber liquid that has been used to clean the exhaust gas. In closed-loop operation, the scrubber apparatus restores the cleaning ability of the spent scrubber liquid by dosing the spent scrubber liquid with an alkaline agent, and circulates the spent scrubber liquid with the restored cleaning ability. Scrubber devices for marine vessels that perform closed-loop operation using magnesium hydroxide or magnesium oxide are known (eg, Patent Document 1). In a scrubber device for purifying boiler exhaust gas used on land, there is a known technique for controlling the amount of magnesium hydroxide input based on the sulfur content (SO x ) concentration in the purified exhaust gas (for example, , Patent Documents 2 to 4). As a related technology, there is known a pH control technology using an alkaline agent in a scrubber device (for example, Patent Documents 5 and 6). As a related technique, a technique for estimating the amount of sulfur component absorbed by the scrubber liquid (for example, Patent Documents 7 and 8) is known.
Patent Document 1 International Publication WO2017/194645 Patent Document 2 Japanese Patent Laid-Open No. 9-66219 Patent Document 3 Japanese Patent Laid-Open Publication No. 7-275649 Patent Document 4 Japanese Patent Laid-Open Publication No. 8-196863 Patent Document 5 International Publication WO2012/000790 Patent Document 6 JP-A-3-267114 Patent document 7 International publication WO2014/119513 Patent document 8 International publication WO2016/009549
解決しようとする課題Problem to be solved
 閉ループ動作において、水酸化ナトリウム、炭酸ナトリウム、および炭酸水素ナトリウム等のナトリウム含有アルカリ剤に比べて溶解度、すなわち反応速度が小さいアルカリ剤を用いる場合には、アルカリ剤をスクラバー液に溶解させるために、より長い時間を要する。したがって、ナトリウム含有アルカリ剤を用いる場合に比べて、アルカリ剤を溶解するためにスクラバー液を貯めておくためのバッファタンク(貯留部)を大型化する必要が生じたり、複数のタンクを設ける必要が生じたりする。しかしながら、排ガス処理装置において、貯留部の容量を小型化することが望ましい。 In closed-loop operation, when using an alkaline agent that has a lower solubility or reaction rate than sodium-containing alkaline agents such as sodium hydroxide, sodium carbonate, and sodium bicarbonate, in order to dissolve the alkaline agent in the scrubber liquid, takes longer. Therefore, compared to the case of using a sodium-containing alkaline agent, it is necessary to increase the size of the buffer tank (reservoir) for storing the scrubber liquid for dissolving the alkaline agent, or to provide a plurality of tanks. occur. However, in the exhaust gas treatment apparatus, it is desirable to reduce the capacity of the reservoir.
一般的開示General disclosure
 上記課題を解決するために、本発明の一の態様においては、排ガスの処理に使用された使用済み液体を循環させる閉ループ動作と、使用済み液体を外部に排出する開ループ動作との間で動作モードを切り替え可能な排ガス処理装置を提供する。排ガス処理装置は、反応塔を備えてよい。反応塔は、排ガスが供給されて、液体によって排ガスを浄化する。排ガス処理装置は、貯留部を備えてよい。貯留部は、排ガスの浄化に使用された使用済み液体を貯留してよい。貯留部は、閉ループ動作中にアルカリ剤によって浄化能力を回復した使用済み液体を反応塔内に供給してよい。排ガス処理装置は、投入部を備えてよい。閉ループ動作を開始する場合に、投入部は、使用済み液体を貯留部から反応塔内に供給開始する前に貯留部内にアルカリ剤を投入してよい。 In order to solve the above problems, in one aspect of the present invention, an operation is performed between a closed loop operation for circulating the used liquid used for treating the exhaust gas and an open loop operation for discharging the used liquid to the outside. To provide an exhaust gas treatment device capable of switching modes. The exhaust gas treatment device may include a reaction tower. The reaction tower is supplied with exhaust gas and purifies the exhaust gas with liquid. The exhaust gas treatment device may include a reservoir. The storage section may store used liquid that has been used to purify the exhaust gas. The reservoir may supply the spent liquid, which has been purified by the alkaline agent during closed-loop operation, into the reactor. The exhaust gas treatment device may include an inlet. When initiating closed-loop operation, the dosing section may dose the alkaline agent into the reservoir before starting to supply the spent liquid from the reservoir into the reactor.
 投入部は、アルカリ剤として、酸化マグネシウムおよび水酸化マグネシウムの少なくとも一方を貯留部内に投入してよい。 The input unit may input at least one of magnesium oxide and magnesium hydroxide into the storage unit as an alkaline agent.
 投入部は、アルカリ剤として、酸化マグネシウムおよび水酸化マグネシウムの少なくとも一方のうちの固体粉末を貯留部内に投入してよい。 The input unit may input solid powder of at least one of magnesium oxide and magnesium hydroxide into the storage unit as an alkaline agent.
 投入部は、アルカリ剤として、酸化マグネシウムを貯留部内に投入してよい。 The input unit may input magnesium oxide into the storage unit as an alkaline agent.
 動作モードが閉ループ動作に切り替えられた場合、閉ループ動作での第1のタイミングで、投入部は、一回の循環で液体が吸収する硫黄成分量と中和反応できる量よりも多い量の酸化マグネシウムを貯留部内に投入してよい。 When the mode of operation is switched to closed-loop operation, at a first point in closed-loop operation, the dosing section is supplied with an amount of magnesium oxide that is greater than the amount of magnesium oxide that can be neutralized with the amount of sulfur that the liquid absorbs in a single circulation. may be introduced into the reservoir.
 動作モードが閉ループ動作に切り替えられた場合、第1のタイミングで、投入部は、一回の循環で液体が吸収する硫黄成分量と中和反応できる量の2倍以上400倍以下の量の酸化マグネシウムを貯留部内に投入してよい。 When the operation mode is switched to closed-loop operation, at the first timing, the input unit oxidizes an amount that is 2 times or more and 400 times or less of the amount of sulfur components absorbed by the liquid in one circulation and the amount that can be neutralized. Magnesium may be introduced into the reservoir.
 動作モードが閉ループ動作に切り替えられた場合、第1のタイミングで、投入部は、一回の循環で液体が吸収する硫黄成分量と中和反応できる量よりも多い量の酸化マグネシウムを貯留部内に投入してよい。 When the operation mode is switched to the closed-loop operation, at the first timing, the input unit introduces magnesium oxide into the storage unit in an amount larger than the amount that can be neutralized with the amount of sulfur component absorbed by the liquid in one circulation. you can put it in.
 投入部は、閉ループ動作の継続中における、第1のタイミングよりも後の第2のタイミングにおいて、第1のタイミングにおける投入量に比べて少ない量の酸化マグネシウムを貯留部内に補充してよい。 The injection unit may replenish the storage unit with a smaller amount of magnesium oxide than the amount injected at the first timing at a second timing after the first timing while the closed-loop operation continues.
 排ガス処理装置は、調整部をさらに備えてよい。調整部は、動作モードが開ループ動作から閉ループ動作に切り替えられた場合に、使用済み液体を貯留部から反応塔内に供給開始する前に貯留部内に投入される酸化マグネシウムの投入量を調整してよい。 The exhaust gas treatment device may further include an adjustment unit. The adjusting unit adjusts the charging amount of magnesium oxide charged into the reservoir before starting the supply of the spent liquid from the reservoir into the reaction column when the operation mode is switched from the open-loop operation to the closed-loop operation. you can
 調整部は、排ガスを生じさせる燃焼装置の出力と、燃焼装置に使用される燃料油に含まれる硫黄分濃度とに基づいて、一回の循環で液体が吸収する硫黄成分量を推定してよい。調整部は、推定された硫黄成分量に基づいて、投入量を調整してよい。 The adjustment unit may estimate the sulfur component amount absorbed by the liquid in one circulation based on the output of the combustion device that produces the exhaust gas and the sulfur concentration contained in the fuel oil used in the combustion device. . The adjustment unit may adjust the input amount based on the estimated sulfur content.
 調整部は、開ループ動作中に反応塔から放出されるガスの硫黄成分量と、動作モードが閉ループ動作に切り替えられた後に排ガスを生じさせる燃焼装置の出力計画値とに基づいて投入量を調整してよい。 The adjustment unit adjusts the dosage based on the sulfur content of the gas released from the reactor during open-loop operation and the planned power output of the combustion device that produces the exhaust gas after the operating mode is switched to closed-loop operation. You can
 調整部は、開ループ動作中に反応塔に供給される液体および反応塔から外部に排出される使用済み液体のそれぞれの水素イオン指数(pH)と、動作モードが閉ループ動作に切り替えられた後に排ガスを生じさせる燃焼装置の出力計画値とに基づいて投入量を調整してよい。 The adjustment unit adjusts the hydrogen ion exponent (pH) of each of the liquid supplied to the reactor during open-loop operation and the used liquid discharged from the reactor to the outside, and the exhaust gas after the operation mode is switched to closed-loop operation. The input amount may be adjusted based on the planned output value of the combustion device that produces the
 調整部は、動作モードが開ループ動作から閉ループ動作に切り替えられた場合に、前回の閉モード動作中に貯留部内に残存している酸化マグネシウムの量に基づいて、投入量を調整してよい。 When the operation mode is switched from open-loop operation to closed-loop operation, the adjustment unit may adjust the input amount based on the amount of magnesium oxide remaining in the reservoir during the previous closed-mode operation.
 排ガス処理装置は、貯留部洗浄機構をさらに備えてよい。貯留部洗浄機構は、貯留部内を洗浄してよい。 The exhaust gas treatment device may further include a reservoir cleaning mechanism. The reservoir cleaning mechanism may clean the inside of the reservoir.
 排ガス処理装置は、配管洗浄機構をさらに備えてよい。配管洗浄機構は、反応塔と貯留部との間の配管内を洗浄してよい。 The exhaust gas treatment device may further include a pipe cleaning mechanism. The pipe cleaning mechanism may clean the inside of the pipe between the reaction tower and the reservoir.
 本発明の第2の態様においては、排ガスの処理に使用された使用済み液体を循環させる閉ループ動作と、使用済み液体を外部に排出する開ループ動作との間で動作モードを切り替え可能な排ガス処理方法を提供する。排ガス処理方法は、排ガスの浄化に使用された使用済み液体を貯留する段階を備えてよい。排ガス処理方法は、閉ループ動作中にアルカリ剤によって浄化能力を回復した使用済み液体を排ガスに接触させる段階を備えてよい。排ガス処理方法は、閉ループ動作を開始する場合に、使用済み液体を排ガスに接触させるように供給する前に、貯蔵された使用済み液体にアルカリ剤を投入する段階を備えてよい。 In a second aspect of the present invention, an exhaust gas treatment capable of switching the operation mode between a closed loop operation for circulating the used liquid used for exhaust gas treatment and an open loop operation for discharging the used liquid to the outside. provide a way. The exhaust gas treatment method may comprise storing the spent liquid used to clean the exhaust gas. The exhaust gas treatment method may comprise the step of contacting the exhaust gas with the spent liquid, which has been reconstituted with an alkaline agent during closed-loop operation. The exhaust gas treatment method may comprise dosing the stored spent liquid with an alkaline agent prior to feeding the spent liquid into contact with the exhaust gas when closed loop operation is initiated.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 It should be noted that the above outline of the invention does not list all the necessary features of the present invention. Subcombinations of these feature groups can also be inventions.
本発明の一実施形態の排ガス処理装置1の概略構成を説明する図であるBRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining schematic structure of the waste gas treatment apparatus 1 of one Embodiment of this invention. MgOの濃度に基づくpH増加速度の実験値を示す図である。FIG. 4 shows experimental values of pH increase rate based on MgO concentration. 反応速度定数の実験値の一例を示す図である。FIG. 4 is a diagram showing an example of experimental values of reaction rate constants; 比較例の排ガス処理装置2の概略構成を説明する図である。It is a figure explaining schematic structure of the waste gas treatment apparatus 2 of a comparative example. 排ガス処理装置1における排ガス処理方法の一例を示すフローチャートである。3 is a flow chart showing an example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1. FIG. 排ガス処理装置1における排ガス処理方法の他例を示すフローチャートである。4 is a flow chart showing another example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1. FIG. 投入量調整処理の一例を示すフローチャートである。It is a flow chart which shows an example of an input amount adjustment process. 投入量調整処理の他例を示すフローチャートである。It is a flowchart which shows the other example of an input amount adjustment process. 投入量調整処理の他例を示すフローチャートである。It is a flowchart which shows the other example of an input amount adjustment process. 投入量調整処理の他例を示すフローチャートである。It is a flowchart which shows the other example of an input amount adjustment process. 洗浄処理の一例を示すフローチャートである。5 is a flowchart showing an example of cleaning processing;
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Although the present invention will be described below through embodiments of the invention, the following embodiments do not limit the invention according to the scope of claims. Also, not all combinations of features described in the embodiments are essential for the solution of the invention.
 図1は、本発明の一実施形態の排ガス処理装置1の概略構成を説明する図である。排ガス処理装置1は、燃焼装置3において生じた排ガス100中の硫黄成分を低減して、排ガス100を浄化する。燃焼装置3は、エンジンまたはボイラーであってよく、好ましくはエンジンであり、特に船舶用のエンジンであってよい。硫黄成分は、SOx(酸化硫黄)等の硫黄化合物を含んでよい。 FIG. 1 is a diagram illustrating a schematic configuration of an exhaust gas treatment apparatus 1 according to one embodiment of the present invention. The exhaust gas treatment device 1 reduces sulfur components in the exhaust gas 100 generated in the combustion device 3 to purify the exhaust gas 100 . The combustion device 3 may be an engine or a boiler, preferably an engine, especially a marine engine. The sulfur component may include sulfur compounds such as SOx (sulfur oxides).
 排ガス処理装置1は、反応塔10を備える。反応塔10において、燃焼装置3からの排ガス100と、海水であるスクラバー液とを接触させる。スクラバー液は、海水またはアルカリ性水溶液などの液体であってよい。燃焼装置3からの排ガス100は、燃焼ガス排気管12を経て反応塔10内に導入される。スクラバー液は、反応塔10内においてスプレーノズル13から噴霧される。スクラバー液は、スクラバー液管14を介してスプレーノズル13に導入される。 The exhaust gas treatment device 1 includes a reaction tower 10. In the reaction tower 10, the exhaust gas 100 from the combustion device 3 is brought into contact with the scrubber liquid, which is seawater. The scrubber liquid may be a liquid such as seawater or an alkaline aqueous solution. Exhaust gas 100 from the combustion device 3 is introduced into the reaction tower 10 through the combustion gas exhaust pipe 12 . The scrubber liquid is sprayed from a spray nozzle 13 inside the reactor 10 . The scrubber liquid is introduced into the spray nozzle 13 via the scrubber liquid tube 14 .
 排ガス100とスクラバー液とが気液接触すると、排ガス100中の硫黄成分がスクラバー液中に吸収される。硫黄成分が、スクラバー中に溶けることによって、亜硫酸HSOが生じる。実際には、亜硫酸HSOは、水素イオンHと亜硫酸水素イオンHSO に解離し、酸性を呈する。硫黄成分がスクラバー液中に吸収されることによって排ガス100中の硫黄成分が軽減される。硫黄成分が軽減された浄化済みのガスは、ガス排出部15から外部に放出される。 When the exhaust gas 100 and the scrubber liquid come into gas-liquid contact, sulfur components in the exhaust gas 100 are absorbed into the scrubber liquid. The sulfur component dissolves in the scrubber to form sulfite H 2 SO 3 . In fact, sulfite H 2 SO 3 dissociates into hydrogen ions H + and hydrogen sulfite ions HSO 3 and exhibits acidity. The sulfur content in the exhaust gas 100 is reduced by absorbing the sulfur content in the scrubber liquid. The purified gas with reduced sulfur content is discharged from the gas discharge portion 15 to the outside.
 スクラバー液が海水の場合、海水中のアルカリ成分である、炭酸水素イオン(HCO )および炭酸イオン(CO 2-)と亜硫酸HSOとが中和する。中和反応によりアルカリ成分が不足する状態となったスクラバー液は使用済みスクラバー液(使用済み液体)となり、反応塔10の下部に集められる。使用済みスクラバー液は、使用済みスクラバー配管16を通過する。 When the scrubber liquid is seawater, hydrogen carbonate ions (HCO 3 ), carbonate ions (CO 3 2− ), and sulfite H 2 SO 3 , which are alkaline components in seawater, are neutralized. The scrubber liquid whose alkali component is insufficient due to the neutralization reaction becomes used scrubber liquid (used liquid) and is collected in the lower part of the reaction tower 10 . Spent scrubber liquid passes through the spent scrubber line 16 .
 排ガス処理装置1は、開ループ動作と閉ループ動作との間で動作モードを切り替え可能に構成されている。動作モードが開ループ動作である場合には、使用済みスクラバー配管16と排出管17との間のバルブ18が開けられ、使用済みスクラバー配管16と循環管19との間のバルブ20が閉じられる。開ループ動作においては、使用済みスクラバー液は、使用済みスクラバー配管16から排出管17に送られて、使用済みスクラバー液は、海水排出口21から排出される。また、開ループ動作では、海水がスクラバー液として海水取入口22から取り入れられる。開ループ動作では、海水は、海水管24、バルブ32、およびスクラバー液用のポンプ23を経て、スクラバー液管14に導入される。開ループ動作では、海水管24とスクラバー液管14との間のバルブ32が開かれる。一方、後述するバルブ33は閉じられる。このように、開ループ動作においては、使用済みスクラバー液が外部に排出される。 The exhaust gas treatment device 1 is configured so that the operation mode can be switched between open loop operation and closed loop operation. When the mode of operation is open loop operation, the valve 18 between the spent scrubber line 16 and the discharge line 17 is opened and the valve 20 between the spent scrubber line 16 and the circulation line 19 is closed. In open loop operation, spent scrubber liquid is directed from the spent scrubber pipe 16 to the discharge pipe 17 and the spent scrubber liquid is discharged from the seawater outlet 21 . Also, in open loop operation, seawater is taken in from the seawater intake 22 as scrubber liquid. In open loop operation, seawater is introduced into the scrubber liquid line 14 via the seawater line 24 , the valve 32 and the scrubber liquid pump 23 . In open loop operation, the valve 32 between the seawater pipe 24 and the scrubber liquid pipe 14 is opened. On the other hand, a valve 33, which will be described later, is closed. Thus, in open loop operation, spent scrubber liquid is discharged to the outside.
 排ガス処理装置1は、貯留部30および投入部40を備える。動作モードが閉ループ動作である場合には、使用済みスクラバー配管16と循環管19との間のバルブ20が開けられ、使用済みスクラバー配管16と排出管17との間のバルブ18が閉じられる。 The exhaust gas treatment device 1 includes a storage section 30 and an input section 40 . When the mode of operation is closed loop operation, valve 20 between spent scrubber line 16 and circulation line 19 is opened and valve 18 between spent scrubber line 16 and discharge line 17 is closed.
 使用済みスクラバー液は、使用済みスクラバー配管16から循環管19を介して、貯留部30に貯留される。そして、投入部40は、貯留部30内にアルカリ剤を投入する。投入部40が、貯留部30内の使用済みスクラバー液にアルカリ剤を投入することによって、貯留部30内における使用済みスクラバー液による排ガス100の浄化能力が回復する。排ガス100の浄化能力とは、排ガス100中の亜硫酸等の中和能力を指してよい。貯留部30は、閉ループ動作中にアルカリ剤によって浄化能力を回復した使用済みスクラバー液を反応塔10内に供給する。具体的には、貯留部30内において、浄化能力を回復した使用済みスクラバー液が、循環スクラバー液供給管34、バルブ33、ポンプ23、およびスクラバー液管14を介して反応塔10に供給される。 The used scrubber liquid is stored in the storage section 30 from the used scrubber pipe 16 via the circulation pipe 19 . Then, the charging unit 40 charges the alkaline agent into the storage unit 30 . By the charging unit 40 charging the used scrubber liquid in the storage unit 30 with the alkaline agent, the ability of the used scrubber liquid in the storage unit 30 to purify the exhaust gas 100 is recovered. The ability to purify the exhaust gas 100 may refer to the ability to neutralize sulfurous acid or the like in the exhaust gas 100 . The storage unit 30 supplies the used scrubber liquid whose purification ability has been restored by the alkaline agent into the reaction tower 10 during the closed loop operation. Specifically, in the reservoir 30, the used scrubber liquid whose purification ability has been restored is supplied to the reaction tower 10 via the circulating scrubber liquid supply pipe 34, the valve 33, the pump 23, and the scrubber liquid pipe 14. .
 閉ループ動作中には、基本的に、循環スクラバー液供給管34とスクラバー液管14との間のバルブ33が開かれて、海水管24とスクラバー液管14との間のバルブ32が閉じられる。但し、閉ループ動作の過程で使用済みスクラバーの液量が減った場合に、一時的にバルブ32を開いて海水を取得して液量を適正水準まで補ってもよい。 During closed loop operation, basically valve 33 between circulating scrubber liquid supply pipe 34 and scrubber liquid pipe 14 is opened and valve 32 between seawater pipe 24 and scrubber liquid pipe 14 is closed. However, if the liquid level of the used scrubber is reduced during the course of closed loop operation, the valve 32 may be temporarily opened to obtain seawater to replenish the liquid level to the proper level.
 貯留部30は、使用済みスクラバー液を貯留し、浄化能力を回復した使用済み液体を反応塔10内に供給するタンクである。貯留部30は、バッファタンクであってよい。反応塔10、使用済みスクラバー配管16、循環管19、貯留部30、循環スクラバー液供給管34、スクラバー液管14という循環経路をなして、スクラバー液が循環的に流動している経路において、貯留部30が設けられる。 The reservoir 30 is a tank that stores the used scrubber liquid and supplies the used liquid whose purification ability has been restored to the reaction tower 10 . The reservoir 30 may be a buffer tank. Reaction tower 10, used scrubber pipe 16, circulation pipe 19, reservoir 30, circulating scrubber liquid supply pipe 34, and scrubber liquid pipe 14 form a circulation route, and the scrubber liquid is cyclically flowing in the route. A section 30 is provided.
 閉ループ動作を開始する場合に、投入部40は、使用済みスクラバー液を貯留部30から反応塔10内に供給開始する前に貯留部30内にアルカリ剤を投入する。例えば、バルブ33を閉じた状態のまま、投入部40は、貯留部30内にアルカリ剤を投入する。 When starting the closed-loop operation, the charging section 40 charges the alkaline agent into the storage section 30 before starting to supply the used scrubber liquid from the storage section 30 into the reaction tower 10 . For example, while the valve 33 remains closed, the input unit 40 injects the alkaline agent into the storage unit 30 .
 投入部40は、アルカリ剤として、酸化マグネシウム(MgO)および水酸化マグネシウム(Mg(OH))の少なくとも一方を貯留部30内に投入してよい。酸化マグネシウムおよび水酸化マグネシウムは、排ガス100の浄化に必要な薬品体積が、水酸化ナトリウム、炭酸ナトリウム、および炭酸水素ナトリウム等のナトリウム含有アルカリ剤に比べて小さいので、アルカリ剤の保存スペースを省スペース化できる。 Input unit 40 may input at least one of magnesium oxide (MgO) and magnesium hydroxide (Mg(OH) 2 ) into storage unit 30 as an alkaline agent. Magnesium oxide and magnesium hydroxide require a smaller volume of chemicals to purify the exhaust gas 100 than sodium hydroxide, sodium carbonate, sodium bicarbonate, and other sodium-containing alkali agents, so the storage space for the alkali agents can be saved. can be
 特に、投入部40は、アルカリ剤として、酸化マグネシウムおよび水酸化マグネシウムの少なくとも一方のうちの固体粉末を貯留部30内に投入してよい。したがって、酸化マグネシウムまたは水酸化マグネシウムを予めスクラバー液に溶かしてスラリー状にしておかなくてもよい。これによって、酸化マグネシウムまたは水酸化マグネシウムを予めスクラバー液に溶かしてスラリー状にしておくためのスペースが不要になる。投入部40は、アルカリ剤として、酸化マグネシウムを貯留部30内に投入する.水酸化マグネシウムよりも、酸化マグネシウムの方が、薬品コストが安くて済む。 In particular, the input unit 40 may input solid powder of at least one of magnesium oxide and magnesium hydroxide into the storage unit 30 as an alkaline agent. Therefore, it is not necessary to previously dissolve magnesium oxide or magnesium hydroxide in the scrubber liquid to form a slurry. This eliminates the need for a space for previously dissolving the magnesium oxide or magnesium hydroxide in the scrubber liquid to form a slurry. The input unit 40 inputs magnesium oxide into the storage unit 30 as an alkaline agent. Magnesium oxide requires less chemical cost than magnesium hydroxide.
 酸化マグネシウムを、水を主成分とするスクラバー液にとかすと、MgO(酸化マグネシウム)+HO(水)→Mg(OH)(水酸化マグネシウム)という水和反応が生じる。そして、Mg(OH)(水酸化マグネシウム)+HSO(亜硫酸)→MgSO(亜硫酸マグネシウム)+2HO(水)という中和反応が生じる。MgSO(亜硫酸マグネシウム)は、酸化によりMgSO(硫酸マグネシウム)になる。 When magnesium oxide is dissolved in a water-based scrubber liquid, a hydration reaction of MgO (magnesium oxide)+H 2 O (water)→Mg(OH) 2 (magnesium hydroxide) occurs. Then, a neutralization reaction of Mg(OH) 2 (magnesium hydroxide)+H 2 SO 3 (sulfurous acid)→MgSO 3 (magnesium sulfite)+2H 2 O (water) occurs. MgSO 3 (magnesium sulfite) is oxidized to MgSO 4 (magnesium sulfate).
 アルカリ剤として、酸化マグネシウム(MgO)を用いる場合には、Mg(OH)(水酸化マグネシウム)への水和反応が存在するため、Mg(OH)(水酸化マグネシウム)の溶解度に影響される。Mg(OH)(水酸化マグネシウム)の溶解度は、以下のとおり算出される。 When magnesium oxide (MgO) is used as the alkaline agent, the solubility of Mg(OH) 2 (magnesium hydroxide) is affected by the hydration reaction to Mg(OH) 2 (magnesium hydroxide). be. The solubility of Mg(OH) 2 (magnesium hydroxide) is calculated as follows.
 Mg(OH)(水酸化マグネシウム)の飽和水溶液のpHは、10.5である。Mg(OH)(水酸化マグネシウム)の飽和水溶液のpOHは、下記式1で表される。
Figure JPOXMLDOC01-appb-M000001
The pH of a saturated aqueous solution of Mg(OH) 2 (magnesium hydroxide) is 10.5. The pOH of a saturated aqueous solution of Mg(OH) 2 (magnesium hydroxide) is represented by Formula 1 below.
Figure JPOXMLDOC01-appb-M000001
 上記式1より、Mg(OH)(水酸化マグネシウム)の飽和水溶液のOHイオン(水酸化物イオン)濃度は、下記式2で表される。
Figure JPOXMLDOC01-appb-M000002
From Equation 1 above, the concentration of OH ions (hydroxide ions) in a saturated aqueous solution of Mg(OH) 2 (magnesium hydroxide) is represented by Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
 Mg(OH)(水酸化マグネシウム)におけるOHイオン(水酸化物イオン)の価数は2価である。このため、MgO(酸化マグネシウム)の溶解度をCsとすると、Csは、下記式3で表される。
Figure JPOXMLDOC01-appb-M000003
The valence of OH ion (hydroxide ion) in Mg(OH) 2 (magnesium hydroxide) is 2. Therefore, if the solubility of MgO (magnesium oxide) is Cs, Cs is represented by the following formula 3.
Figure JPOXMLDOC01-appb-M000003
 上記式3より、MgO(酸化マグネシウム)の溶解度は0.158×10-3mol/L(リットル)である。この溶解度は、ナトリウム含有アルカリ剤と比べて小さい。そのため、酸化マグネシウム(MgO)を酸化剤として、スクラバー液(循環水)のpHを増加させるのには時間がかかる。酸化マグネシウム(MgO)の濃度(投入量)を増加させることで、固体表面積Sを増加させることができる。次の反応速度式のとおり、アルカリ剤の粉末の固定表面積(S)を増加させることで、水和反応を促進できる。なお、C:Mg(OH)濃度、k:反応速度定数、S:固体表面積である。
Figure JPOXMLDOC01-appb-M000004
From Equation 3 above, the solubility of MgO (magnesium oxide) is 0.158×10 −3 mol/L (liter). This solubility is small compared to sodium-containing alkaline agents. Therefore, it takes time to increase the pH of the scrubber liquid (circulating water) using magnesium oxide (MgO) as an oxidizing agent. By increasing the concentration (input amount) of magnesium oxide (MgO), the solid surface area S can be increased. As shown in the following reaction rate formula, the hydration reaction can be promoted by increasing the fixed surface area (S) of the alkaline agent powder. C: Mg(OH) 2 concentration, k: reaction rate constant, S: solid surface area.
Figure JPOXMLDOC01-appb-M000004
 スクラバー液にはHSOが含まれるので、スクラバー液に溶解したMg(OH)(水酸化マグネシウム)は、スクラバー液と中和する。このため、式4においてC=0とできる。また、実験結果より算出された純水1Lに対するMgO(酸化マグネシウム)の溶解速度から、kSは2.7×10-4と算出できる(後述)。以上より、式4は、下記式5のとおり表される。
Figure JPOXMLDOC01-appb-M000005
Since the scrubber liquor contains H 2 SO 4 , Mg(OH) 2 (magnesium hydroxide) dissolved in the scrubber liquor is neutralized with the scrubber liquor. Therefore, C=0 can be set in Equation 4. Also, kS can be calculated as 2.7×10 −4 from the dissolution rate of MgO (magnesium oxide) in 1 L of pure water calculated from experimental results (described later). From the above, Formula 4 is expressed as Formula 5 below.
Figure JPOXMLDOC01-appb-M000005
 上記式3および式5より、下記式6が得られる。
Figure JPOXMLDOC01-appb-M000006
The following formula 6 is obtained from the above formulas 3 and 5.
Figure JPOXMLDOC01-appb-M000006
 スクラバー液に、時間tでM[m・mol/L]のMgO(酸化マグネシウム)を溶解することを目標とすると、溶解速度dC/dtの目標値は、下記式7で表される。
Figure JPOXMLDOC01-appb-M000007
If the goal is to dissolve M [m·mol/L] of MgO (magnesium oxide) in the scrubber liquid at time t, the target value of the dissolution rate dC/dt is expressed by Equation 7 below.
Figure JPOXMLDOC01-appb-M000007
 上記式6、7より、目標dC/dtに届くアルカリ剤の粉末の固定表面積(S)は、下記式8で表される。
Figure JPOXMLDOC01-appb-M000008
 アルカリ剤の粉末の固定表面積(S)を、式8により算出される値以上とすることで、溶解速度dC/dtは目標dC/dtに到達できる。その結果、水和反応が促進される。これにより、MgOに起因して、使用済みスクラバー液のpHが高まって、浄化能力(中和能力)を回復した使用済みスクラバー液が得られるまでの時間を短縮することができる。
From Equations 6 and 7 above, the fixed surface area (S) of the alkaline agent powder that reaches the target dC/dt is represented by Equation 8 below.
Figure JPOXMLDOC01-appb-M000008
The dissolution rate dC/dt can reach the target dC/dt by making the fixed surface area (S) of the powder of the alkaline agent equal to or greater than the value calculated by Equation 8. As a result, the hydration reaction is promoted. As a result, the pH of the used scrubber liquid is increased due to MgO, and the time required for obtaining the used scrubber liquid whose purification ability (neutralization ability) has been restored can be shortened.
 図2は、MgOの濃度に基づくpH増加速度の実験値を示す図である。横軸が経過時間を示している。縦軸が水素イオン指数(pH)を示している。本実験例では、スクラバー液として水を用いた。スクラバー液は、pHが6程度であったが、2mmol/Lの硫黄成分(SOx)を吸収した結果、pHが3程度に低下した。このようにpHが低下して、排ガス100の浄化能力が落ちたスクラバー液に対して、濃度AのMgOを加えた場合と、濃度2A(濃度Aの2倍)のMgOを加えた場合とで、スクラバー液のpHが元の水準に戻るまでの時間を比較した。本実験によれば、MgO濃度を2倍にすることで、スクラバー液のpHが元の水準に復帰して排ガス100の浄化能力が回復するまでの時間を1/2以下に短縮できることが示された。 FIG. 2 is a diagram showing experimental values of the pH increase rate based on the concentration of MgO. The horizontal axis indicates elapsed time. The vertical axis indicates the hydrogen ion exponent (pH). In this experimental example, water was used as the scrubber liquid. The scrubber liquid had a pH of about 6, but as a result of absorbing 2 mmol/L of sulfur component (SOx), the pH decreased to about 3. When MgO with a concentration of A is added to the scrubber liquid whose pH is lowered and the ability to purify the exhaust gas 100 is lowered, and when MgO with a concentration of 2A (twice the concentration of A) is added, , the time for the pH of the scrubber liquor to return to its original level. According to this experiment, it is shown that by doubling the MgO concentration, the time required for the pH of the scrubber liquid to return to its original level and the ability to purify the exhaust gas 100 to recover can be shortened to 1/2 or less. rice field.
 動作モードが閉ループ動作に切り替えられた場合、閉ループ動作での第1のタイミングt1で、投入部40は、一回の循環でスクラバー液が吸収する硫黄成分量と中和反応できる量よりも多い量の酸化マグネシウムを、貯留部30に投入してよい。中和反応できる量よりも多い量とは、当該硫黄成分量と中和反応できる量の2倍以上400倍以下の量であってよい。第1のタイミングt1は、閉ループ動作での動作開始時であってよい。 When the operation mode is switched to the closed-loop operation, at the first timing t1 in the closed-loop operation, the input unit 40 has an amount larger than the amount of sulfur components that can be neutralized with the amount of sulfur components absorbed by the scrubber liquid in one circulation. of magnesium oxide may be introduced into the reservoir 30 . The amount larger than the amount capable of neutralization reaction may be an amount of 2 to 400 times the amount of the sulfur component and the amount capable of neutralization reaction. The first timing t1 may be the start of operation in closed loop operation.
 このような酸化マグネシウム(MgO)の超過的な投入によって、固体表面積を増加させることにより、酸化マグネシウム(MgO)からMg(OH)(水酸化マグネシウム)への水和反応を促進することができる。したがって、貯留部30への酸化マグネシウム(MgO)の超過的な投入によって、スクラバー液のpHが元の水準に復帰して排ガス100の浄化能力が回復するまでの時間を短縮することができる。 Such excessive addition of magnesium oxide (MgO) can promote the hydration reaction from magnesium oxide (MgO) to Mg(OH) 2 (magnesium hydroxide) by increasing the solid surface area. . Therefore, by excessive charging of magnesium oxide (MgO) to the reservoir 30, the pH of the scrubber liquid returns to the original level and the time until the exhaust gas 100 purifying ability is recovered can be shortened.
 図3は、反応速度定数の実験値の一例を示す図である。図3の横軸は、経過時間(s)であり、縦軸は、In(Cs/(Cs-C))である。図3に示される純水1L(リットル)に対するMgO2mmolの溶解速度の実験結果によって、反応速度定数kと固体表面積Sの積であるkSを算出すると、kS=2.7×10-4(s-1)が得られた。また、スクラバー液には、HSO(亜硫酸)が存在しており、溶解したMg(OH)(水酸化マグネシウム)は即時に中和反応により消費される。したがって、反応速度式(数1)においてC=0とすることができるので、溶解速度dC/dt=kS×Csとなる。 FIG. 3 is a diagram showing an example of experimental values of reaction rate constants. The horizontal axis in FIG. 3 is elapsed time (s), and the vertical axis is In(Cs/(Cs−C)). Based on the experimental results of the dissolution rate of MgO2mmol in 1L (liter ) of pure water shown in FIG. 1 ) was obtained. In addition, H 2 SO 3 (sulfurous acid) is present in the scrubber liquid, and dissolved Mg(OH) 2 (magnesium hydroxide) is immediately consumed by a neutralization reaction. Therefore, since C can be set to 0 in the reaction rate formula (Equation 1), the dissolution rate dC/dt=kS×Cs.
 スクラバー液のpHを海水と同等のpHにするべく、スクラバー液のpHの目標値を8.1とした。貯留部30内に滞留できる滞留時間を120秒とし、一回の循環でスクラバー液が吸収する硫黄成分濃度を2mmol/Lとした。これらの条件に基づいて、溶解速度dC/dt=kS×Csを計算する。kSの値2.7×10-4(s-1)を用い、一回の循環でスクラバー液が吸収する硫黄成分濃度2mmol/Lと中和反応できる量の酸化マグネシウムの濃度をCsとすると、溶解速度dC/dtは、4.27×10-8(mol/L/s)となる。一方、120秒で、2mmol/LのMgOを溶解することを目標とすると、溶解速度dC/dtの目標値は、0.002mol/L÷120(s)=1.67×10-5(mol/L/s)となる。 In order to make the pH of the scrubber liquid equivalent to that of seawater, the target value of the pH of the scrubber liquid was set to 8.1. The retention time that can be retained in the reservoir 30 was set to 120 seconds, and the sulfur component concentration absorbed by the scrubber liquid in one circulation was set to 2 mmol/L. Based on these conditions, the dissolution rate dC/dt=kS*Cs is calculated. Using the value of kS of 2.7×10 −4 (s −1 ), let Cs be the concentration of magnesium oxide that can be neutralized with the sulfur component concentration of 2 mmol/L absorbed by the scrubber liquid in one circulation, The dissolution rate dC/dt is 4.27×10 −8 (mol/L/s). On the other hand, if the target is to dissolve 2 mmol/L of MgO in 120 seconds, the target value of the dissolution rate dC/dt is 0.002 mol/L/120 (s) = 1.67 × 10 -5 (mol /L/s).
 目標とするpHの値等にも影響を受けるが、投入部40は、使用済みスクラバー液を貯留部30から反応塔10内に供給開始する前に、一回の循環でスクラバー液が吸収する硫黄成分量と中和反応できる量よりも多い量の酸化マグネシウムを貯留部30内に投入してよい。一回の循環でスクラバー液が吸収する硫黄成分量と中和できる量よりも多い量の酸化マグネシウムとは、一回の循環でスクラバー液が吸収する硫黄成分量と中和反応できる量の2倍以上400倍以下の量の酸化マグネシウムであってよく、100倍以上400倍以下の量の酸化マグネシウムであってもよく、さらに好ましくは、300倍以上400倍以下の量の酸化マグネシウムであってもよい。 Although affected by the target pH value, etc., the input unit 40 is designed to remove sulfur absorbed by the scrubber liquid in one circulation before starting to supply the used scrubber liquid from the storage unit 30 into the reaction tower 10. Magnesium oxide in an amount larger than the amount that can be neutralized with the amount of the components may be introduced into the reservoir 30 . The amount of sulfur components absorbed by the scrubber liquid in one circulation and the amount of magnesium oxide that is larger than the amount that can be neutralized is twice the amount of sulfur components that the scrubber liquid absorbs and the amount that can be neutralized in one circulation. The amount of magnesium oxide may be 400 times or less, the amount of magnesium oxide may be 100 times or more and 400 times or less, and more preferably the amount of magnesium oxide may be 300 times or more and 400 times or less. good.
 図4は、比較例の排ガス処理装置2の概略構成を説明する図である。比較例の排ガス処理装置2は、反応塔10、使用済みスクラバー配管16、循環管19、貯留部30、循環スクラバー液供給管34、スクラバー液管14という循環経路の外にある調剤部62および貯蔵部64において、酸化マグネシウム(MgO)を投入部60が投入する。調剤部62は、酸化マグネシウム(MgO)を溶かすためのタンクであり、貯蔵部64は、酸化マグネシウム(MgO)を溶かして水和反応により生成した水酸化マグネシウムMg(OH)を貯蔵するタンクである。調剤部62により溶かされた酸化マグネシウム(MgO)は、ポンプ63により貯蔵部64に導入される。貯蔵部64に貯蔵された水酸化マグネシウムMg(OH)は、ポンプ65により循環管19に導入される。 FIG. 4 is a diagram illustrating a schematic configuration of an exhaust gas treatment apparatus 2 of a comparative example. The exhaust gas treatment apparatus 2 of the comparative example includes a reaction tower 10, a used scrubber pipe 16, a circulation pipe 19, a reservoir 30, a circulating scrubber liquid supply pipe 34, a scrubber liquid pipe 14, and a preparation section 62 and a storage outside the circulation path. In section 64 , magnesium oxide (MgO) is introduced by the introduction section 60 . The dispensing unit 62 is a tank for dissolving magnesium oxide (MgO), and the storage unit 64 is a tank for storing magnesium hydroxide Mg(OH) 2 produced by a hydration reaction by dissolving magnesium oxide (MgO). be. Magnesium oxide (MgO) melted by dispensing unit 62 is introduced into storage unit 64 by pump 63 . Magnesium hydroxide Mg(OH) 2 stored in storage unit 64 is introduced into circulation pipe 19 by pump 65 .
 このように、貯留部30とは異なる循環経路の外の複数のタンクにおいて、酸化マグネシウム(MgO)を溶かし、水酸化マグネシウムMg(OH)(水酸化マグネシウム)を保存しておけば、すでに十分に水和反応を進行させておくことができる。したがって、閉ループ動作を開始する場合に、使用済みスクラバー液を貯留部30から反応塔10内に供給開始する前に、超過的な酸化マグネシウムを投入する必要がない。しかし、比較例によれば、バッファタンクである貯留部30に加えて、さらに調剤部62および貯蔵部64が必要となり、省スペース化を実現することが困難になる。 Thus, dissolving magnesium oxide (MgO) and storing magnesium hydroxide Mg(OH) 2 (magnesium hydroxide) in a plurality of tanks outside the circulation path different from reservoir 30 is already sufficient. Hydration reaction can be allowed to proceed. Therefore, when starting closed-loop operation, it is not necessary to charge excess magnesium oxide before starting the supply of spent scrubber liquid from reservoir 30 into reactor 10 . However, according to the comparative example, in addition to the storage section 30 as a buffer tank, the preparation section 62 and the storage section 64 are required, which makes it difficult to achieve space saving.
 図1に示されるとおり、排ガス処理装置1は、調整部50、制御部51、記憶部53、設定部54を備えてよい。制御部51は、バルブ18、20、32、33等の排ガス処理装置1全体の制御を実行する。制御部51は、コンピュータであってよい。 As shown in FIG. 1, the exhaust gas treatment apparatus 1 may include an adjustment section 50, a control section 51, a storage section 53, and a setting section . The control unit 51 controls the entire exhaust gas treatment apparatus 1 including the valves 18, 20, 32, 33, and the like. The controller 51 may be a computer.
 調整部50は、使用済みスクラバー液を貯留部30から反応塔10内に供給開始する前に貯留部30内に投入される酸化マグネシウムの投入量を調整する。但し、排ガス処理装置1は、閉ループ動作中に、超過的にアルカリ剤を投入するものであればよく、必ずしも投入量を調整するものに限定されない。 The adjustment unit 50 adjusts the amount of magnesium oxide that is introduced into the reservoir 30 before starting to supply the used scrubber liquid from the reservoir 30 into the reaction tower 10 . However, the exhaust gas treatment apparatus 1 is not necessarily limited to adjusting the charging amount as long as the alkaline agent is excessively charged during the closed loop operation.
 設定部54は、燃焼装置3で使用される燃料油の硫黄分濃度、および動作モードが閉ループ動作に切り替えられた後に排ガス100を生じさせる燃焼装置3の出力計画値等を設定する。一例において、閉ループ動作では、船舶が港の近くを航行していることに起因して、燃焼装置3の出力を定格の80%から40%に低下させる場合がある。出力計画値は、このように船舶の航路に起因して予定されている燃焼装置3の出力値の情報を含んでよい。設定部54は、利用者の入力情報に基づいて、燃料油の硫黄分濃度および出力計画値等を設定してもよく、測定装置に基づいて、燃料油の硫黄分濃度および出力計画値等を設定してもよい。記憶部53は、設定部54によって設定された各種情報である燃料油の硫黄分濃度、燃焼装置3の出力計画値をデータベースとして記憶してよい。 The setting unit 54 sets the sulfur content concentration of the fuel oil used in the combustion device 3 and the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation. In one example, closed-loop operation may reduce the output of combustion device 3 from 80% to 40% of its rating due to a vessel sailing near a port. The planned output value may thus include information on the output value of the combustion device 3 scheduled due to the course of the ship. The setting unit 54 may set the sulfur content concentration of the fuel oil, the planned output value, etc. based on the information input by the user, and sets the sulfur content concentration of the fuel oil, the planned output value, etc. based on the measuring device. May be set. The storage unit 53 may store various types of information set by the setting unit 54, such as the sulfur concentration of the fuel oil and the planned output value of the combustion device 3, as a database.
 調整部50は、設定部54によって設定されて記憶部53に記憶されている情報、燃焼装置3の出力の情報(エンジン負荷等)、および各種センサによる検出値についての情報を取得する。調整部50は、取得した情報に応じて、投入部40によるアルカリ剤である酸化マグネシウムの投入量を調整する。排ガス処理装置1は、各種センサとして、pHセンサ35、pHセンサ36、および硫黄成分センサ37を備えてよい。pHセンサ35は、開ループ動作中に反応塔10に供給されるスクラバー液(海水)のpHを測定する。例えば、pHセンサ35は、船舶の航行中の海水のpHを測定する。pHセンサ36は、反応塔10から外部に排出される使用済みスクラバー液のpHを測定する。硫黄成分センサ37は、開ループ動作中に反応塔10から放出されるガスの硫黄成分量を測定する。 The adjustment unit 50 acquires information set by the setting unit 54 and stored in the storage unit 53, information on the output of the combustion device 3 (engine load, etc.), and information on values detected by various sensors. The adjustment unit 50 adjusts the amount of magnesium oxide, which is an alkaline agent, supplied by the supply unit 40 according to the acquired information. The exhaust gas treatment device 1 may include a pH sensor 35, a pH sensor 36, and a sulfur component sensor 37 as various sensors. The pH sensor 35 measures the pH of the scrubber liquid (seawater) supplied to the reactor 10 during open loop operation. For example, the pH sensor 35 measures the pH of sea water while the ship is underway. The pH sensor 36 measures the pH of the used scrubber liquid discharged from the reaction tower 10 to the outside. Sulfur content sensor 37 measures the amount of sulfur content in the gas discharged from reactor 10 during open loop operation.
 調整部50は、排ガス100を生じさせる燃焼装置3の出力と、燃焼装置3に使用される燃料油に含まれる硫黄分濃度とに基づいて、一回の循環で液体が吸収する硫黄成分量を推定し、推定された硫黄成分量に基づいて、投入量を調整してよい。これにより、一回の循環で液体が吸収する硫黄成分量の推定値に基づいて、吸収する硫黄成分量の推定値が大きくなるほど、アルカリ剤の投入量を増加させることができ、よりきめ細かい調整が可能となる。 Based on the output of the combustion device 3 that produces the exhaust gas 100 and the concentration of sulfur contained in the fuel oil used in the combustion device 3, the adjustment unit 50 adjusts the amount of sulfur component that the liquid absorbs in one circulation. The dosage may be adjusted based on the estimated sulfur content. As a result, based on the estimated value of the amount of sulfur component absorbed by the liquid in one cycle, the larger the estimated value of the amount of sulfur component to be absorbed, the more the amount of alkaline agent supplied can be increased, and finer adjustments can be made. It becomes possible.
 調整部50は、開ループ動作中に反応塔10から放出されるガスの硫黄成分量と、動作モードが閉ループ動作に切り替えられた後に排ガス100を生じさせる燃焼装置3の出力計画値とに基づいて投入量を調整してよい。開ループ動作中に反応塔10から放出されるガスの硫黄成分量が多い場合には、アルカリ剤の投入量を増加させて、硫黄成分の吸収を高めてよい。また、出力計画値が低くなるほど、アルカリ剤の投入量を少なくしてもよい。 The adjustment unit 50 adjusts the amount of sulfur in the gas released from the reaction tower 10 during open-loop operation, and the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed-loop operation. You can adjust the dosage. If the sulfur content of the gas discharged from the reactor 10 during open loop operation is high, the dosage of the alkali agent may be increased to enhance the absorption of the sulfur content. Also, the lower the planned output value, the smaller the amount of alkaline agent supplied.
 調整部50は、開ループ動作中に反応塔10に供給されるスクラバー液(海水)および反応塔10から外部に排出される使用済みスクラバー液のそれぞれの水素イオン指数(pH)と、動作モードが閉ループ動作に切り替えられた後に排ガス100を生じさせる燃焼装置3の出力計画値とに基づいて投入量を調整してよい。開ループ動作中に反応塔10に供給されるスクラバー液(海水)のpH値が高くなるほど、アルカリ剤の投入量を少なくしてもよい。反応塔10から外部に排出される使用済みスクラバー液のpHが低くなるほど、アルカリ剤の投入量を多くしてもよい。調整部50は、開ループ動作における情報からでも、閉ループ動作における硫黄成分量を推測することができる。 The adjustment unit 50 adjusts the hydrogen ion exponent (pH) of each of the scrubber liquid (seawater) supplied to the reaction tower 10 and the spent scrubber liquid discharged from the reaction tower 10 during open loop operation, and the operation mode. The input amount may be adjusted based on the planned power output of the combustion device 3 that produces the exhaust gas 100 after being switched to closed-loop operation. The higher the pH value of the scrubber liquid (seawater) supplied to the reaction tower 10 during open-loop operation, the lower the dosage of the alkali agent may be. The lower the pH of the used scrubber liquid discharged from the reaction tower 10 to the outside, the greater the amount of alkali agent introduced. The adjusting unit 50 can also estimate the amount of sulfur in closed-loop operation from information in open-loop operation.
 調整部50は、動作モードが開ループ動作から閉ループ動作に切り替えられた場合に、前回の閉モード動作中に貯留部30内に残存している酸化マグネシウムの量に基づいて、投入量を調整してよい。前回の閉モード動作中の酸化マグネシウムが多く残存している場合には、新たに投入する酸化マグネシウムの投入量を少なくしてもよい。 The adjustment unit 50 adjusts the input amount based on the amount of magnesium oxide remaining in the storage unit 30 during the previous closed mode operation when the operation mode is switched from the open loop operation to the closed loop operation. you can If a large amount of magnesium oxide from the previous closed mode operation remains, the amount of newly added magnesium oxide may be reduced.
 排ガス処理装置1は、貯留部洗浄機構38および配管洗浄機構39を備えてよい。排ガス処理装置1は、酸化マグネシウムを超過的に投入して、酸化マグネシウム等のアルカリ剤の固体表面積を増加させて、水和反応を促進する。したがって、貯留部30、循環スクラバー液供給管34、バルブ33、ポンプ23、およびスクラバー液管14には、水酸化マグネシウムおよび酸化マグネシウムが凝集しやすい。貯留部洗浄機構38は、閉ループ動作が終了するたびに、貯留部30を洗浄してよい。貯留部洗浄機構38は、凝集物質を貯留部30内から外へ除去してよい。貯留部洗浄機構38は、貯留部30に洗浄液を注入して洗浄してよい。 The exhaust gas treatment device 1 may include a reservoir cleaning mechanism 38 and a pipe cleaning mechanism 39 . The exhaust gas treatment apparatus 1 is excessively charged with magnesium oxide to increase the solid surface area of the alkaline agent such as magnesium oxide, thereby promoting the hydration reaction. Therefore, magnesium hydroxide and magnesium oxide tend to aggregate in the reservoir 30 , the circulating scrubber liquid supply pipe 34 , the valve 33 , the pump 23 , and the scrubber liquid pipe 14 . Reservoir cleaning mechanism 38 may clean reservoir 30 each time closed-loop operation ends. Reservoir cleaning mechanism 38 may remove aggregated material from within reservoir 30 and out. The storage part cleaning mechanism 38 may inject a cleaning liquid into the storage part 30 to clean it.
 配管洗浄機構39は、閉ループ動作が終了するたびに、反応塔10へのスクラバー液の導入口と貯留部30からの供給口との間の循環スクラバー液供給管34、バルブ33、ポンプ23、およびスクラバー液管14を洗浄してよい。 Every time the closed-loop operation ends, the pipe cleaning mechanism 39 is configured to clean the circulating scrubber liquid supply pipe 34 between the inlet of the scrubber liquid to the reaction tower 10 and the supply port from the reservoir 30, the valve 33, the pump 23, The scrubber liquid tube 14 may be cleaned.
 以上のように構成される排ガス処理装置1は以下のように処理を実行する。 The exhaust gas treatment apparatus 1 configured as described above performs processing as follows.
 図5は、排ガス処理装置1における排ガス処理方法の一例を示すフローチャートである。制御部51は、開ループ動作指示があった場合(ステップS10:YES)、開ループ動作を実行する(ステップS12)。具体的は、制御部51は、バルブ18およびバルブ32を開いて、バルブ20およびバルブ33を閉じる。 FIG. 5 is a flowchart showing an example of an exhaust gas treatment method in the exhaust gas treatment apparatus 1. FIG. When the open loop operation instruction is given (step S10: YES), the control unit 51 executes the open loop operation (step S12). Specifically, control unit 51 opens valve 18 and valve 32 and closes valve 20 and valve 33 .
 開ループ動作指示がなく(ステップS10:NO)、閉ループ動作指示もない場合には(ステップS14:NO)、制御部51の処理は、ステップS10に戻る。開ループ動作指示がなく(ステップS10:NO)、閉ループ動作指示があった場合には(ステップS14:YES)、排ガス処理装置1は、ステップS16からS28の処理を実行する。 If there is no open loop operation instruction (step S10: NO) and no closed loop operation instruction (step S14: NO), the process of the control unit 51 returns to step S10. When there is no open-loop operation instruction (step S10: NO) and there is a closed-loop operation instruction (step S14: YES), the exhaust gas treatment device 1 executes the processes from steps S16 to S28.
 制御部51は、バルブ20を開いて、バルブ18を閉じる。但し、制御部51は、閉ループ動作指示があっても、予め定められた時間の間は、バルブ33を閉じたままに維持し、バルブ32を開いたままに維持する。この結果、貯留部30は、使用済みスクラバー液を貯留する(ステップS16)。 The control unit 51 opens the valve 20 and closes the valve 18. However, the control unit 51 keeps the valve 33 closed and the valve 32 open for a predetermined period of time even if the closed loop operation instruction is given. As a result, the storage unit 30 stores the used scrubber liquid (step S16).
 貯留部30内に、予め定められた貯留量まで、使用済みスクラバー液の貯留が完了するのを待つ(ステップS18:YES)。調整部50は、アルカリ剤、好ましくは酸化マグネシウムの初期投入量を調整してよい(ステップS20)。ステップS18とステップS20の処理は、並行して実行されてよい。 Wait until the storage of the used scrubber liquid reaches a predetermined storage amount in the storage unit 30 (step S18: YES). The adjusting unit 50 may adjust the initial charging amount of the alkaline agent, preferably magnesium oxide (step S20). The processes of step S18 and step S20 may be executed in parallel.
 投入部40は、アルカリ剤、好ましくは酸化マグネシウムを、貯留されている使用済みスクラバー液に第1のタイミングt1で投入する(ステップS22)。第1のタイミングt1とは、上述したとおり、閉ループ動作での一のタイミングであってよく、閉ループ動作での動作開始時であってもよい。特に、投入部40は、使用済みスクラバー液を排ガス100に接触させるように供給する前に、アルカリ剤、好ましくは酸化マグネシウムを、貯留されている使用済みスクラバー液に投入する。具体的には、バルブ33が閉じられたままであり貯留部30から循環スクラバー液供給管34に使用済みスクラバー液が供給開始される前に、投入部40は、アルカリ剤、好ましくは酸化マグネシウムを、貯留されている使用済みスクラバー液に投入する。 The injection unit 40 injects an alkaline agent, preferably magnesium oxide, into the stored used scrubber liquid at a first timing t1 (step S22). As described above, the first timing t1 may be one timing in the closed-loop operation, or may be the start of the closed-loop operation. In particular, the injection unit 40 injects an alkaline agent, preferably magnesium oxide, into the stored used scrubber liquid before supplying the used scrubber liquid to contact the exhaust gas 100 . Specifically, before the valve 33 remains closed and the used scrubber liquid is started to be supplied from the reservoir 30 to the circulating scrubber liquid supply pipe 34, the input unit 40 supplies an alkaline agent, preferably magnesium oxide, Put into the used scrubber liquid that is stored.
 制御部51は、予定時間が経過するのを待って(ステップS24:YES)、バルブ32を閉じて、バルブ33を開ける。この結果、貯留部30は、アルカリ剤の投入により浄化能力を回復したスクラバー液を反応塔10に供給する(ステップS26)。スクラバー液は、貯留部30から循環スクラバー液供給管34、バルブ33、ポンプ23、およびスクラバー液管14を介して反応塔10内に供給される。これにより、スクラバー液が排ガス100に接触して排ガス100を浄化する。 The control unit 51 waits for the scheduled time to pass (step S24: YES), closes the valve 32, and opens the valve 33. As a result, the reservoir 30 supplies the scrubber liquid whose cleaning ability has been restored by the introduction of the alkaline agent to the reaction tower 10 (step S26). The scrubber liquid is supplied from the reservoir 30 into the reaction tower 10 via the circulating scrubber liquid supply pipe 34 , the valve 33 , the pump 23 and the scrubber liquid pipe 14 . Thereby, the scrubber liquid comes into contact with the exhaust gas 100 to purify the exhaust gas 100 .
 使用済みスクラバー液が、貯留部30、循環スクラバー液供給管34、スクラバー液管14反応塔10、使用済みスクラバー配管16、および循環管19を経て貯留部30に戻ってくる。投入部40は、閉ループ動作の継続中における、第1のタイミングt1よりも後の第2のタイミングt2において、第1のタイミングt1における投入量に比べて少ない量の酸化マグネシウムを貯留部内に補充してよい(ステップS28)。ステップS28の処理は、閉ループ動作の継続中において繰り返し実行されてよい。 The used scrubber liquid returns to the storage section 30 through the storage section 30 , the circulating scrubber liquid supply pipe 34 , the scrubber liquid pipe 14 reaction tower 10 , the used scrubber pipe 16 and the circulation pipe 19 . At a second timing t2 after the first timing t1 during the continuation of the closed-loop operation, the charging unit 40 replenishes the reservoir with a smaller amount of magnesium oxide than the charging amount at the first timing t1. (step S28). The process of step S28 may be repeatedly performed while the closed-loop operation continues.
 図6は、排ガス処理装置1における排ガス処理方法の他例を示すフローチャートである。制御部51は、開ループ動作指示があった場合(ステップS30:YES)、開ループ動作を実行する(ステップS32)。但し、貯留部30に、予め定められた量の使用済みスクラバー液が貯留されていない場合には(ステップS34:NO)、制御部51は、バルブ18を閉じて、バルブ20を開く。この結果、貯留部30は、使用済みスクラバー液を貯留する(ステップS36)。貯留部30に、予め定められた量の使用済みスクラバー液が貯留されるのを待って(ステップS34:YES)、制御部51は、バルブ18を開いて、バルブ20を閉じてよい。制御部51は、閉ループ動作の準備が完了した旨の信号である閉ループ動作準備完了信号を生成する。 FIG. 6 is a flow chart showing another example of the exhaust gas treatment method in the exhaust gas treatment apparatus 1. FIG. When the open loop operation instruction is given (step S30: YES), the control unit 51 executes the open loop operation (step S32). However, when the predetermined amount of used scrubber liquid is not stored in the storage section 30 (step S34: NO), the control section 51 closes the valve 18 and opens the valve 20 . As a result, the storage unit 30 stores the used scrubber liquid (step S36). After waiting for a predetermined amount of used scrubber liquid to be stored in the reservoir 30 (step S34: YES), the controller 51 may open the valve 18 and close the valve 20 . The control unit 51 generates a closed-loop operation ready signal, which is a signal indicating that preparations for the closed-loop operation have been completed.
 閉ループ動作の準備が完了している状態において、制御部51は、閉ループ動作指示を受け付ける(ステップS40)。閉ループ動作指示がされていない場合には(ステップS40:NO)、処理はステップS30に戻る。制御部51が、閉ループ動作指示を受けた場合には(ステップS40:YES)、ステップS42からステップS49の処理が実行される。ステップS42からステップS49の処理は、図5のステップS20からステップS28の処理と同様なので、繰り返しの説明を省略する。 In a state where preparations for closed-loop operation are complete, the control unit 51 accepts a closed-loop operation instruction (step S40). If the closed-loop operation instruction has not been issued (step S40: NO), the process returns to step S30. When the control unit 51 receives the closed loop operation instruction (step S40: YES), the processing from step S42 to step S49 is executed. Since the processing from step S42 to step S49 is the same as the processing from step S20 to step S28 in FIG. 5, repeated description will be omitted.
 図7は、投入量調整処理の一例を示すフローチャートである。図7は、図5のステップS20、または図6のステップS42の処理のサブルーチンであってよい。 FIG. 7 is a flowchart showing an example of the input amount adjustment process. FIG. 7 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
 調整部50は、燃焼装置3、例えば、船舶のエンジンの出力値を取得する(ステップS50)。また、調整部50は、記憶部53から、燃焼装置3に使用される燃料油に含まれる硫黄分濃度の情報を取得する(ステップS52)。燃料油に含まれる硫黄分濃度の情報は、利用者が設定部54を用いて予め入力しておいてよい。 The adjustment unit 50 acquires the output value of the combustion device 3, for example, the ship's engine (step S50). Further, the adjustment unit 50 acquires information on the concentration of sulfur contained in the fuel oil used in the combustion device 3 from the storage unit 53 (step S52). Information on the concentration of sulfur contained in the fuel oil may be input in advance by the user using the setting unit 54 .
 調整部50は、燃焼装置3の出力値と燃料油に含まれる硫黄分濃度とに基づいて、一回の循環でスクラバー液が吸収する硫黄成分量を推定する(ステップS54)。一回の循環でスクラバー液が吸収する硫黄成分量とは、スクラバー液が、貯留部30、循環スクラバー液供給管34、スクラバー液管14反応塔10、使用済みスクラバー配管16、および循環管19を経て貯留部30に戻ってくるときに、吸収する硫黄成分量である。調整部50は、スクラバー液の時間あたりの流量、単位時間あたりに反応塔10に流れる排ガス100の流量、および排ガス100に含まれる硫黄成分量を用いて、硫黄成分量を推定してよい。 Based on the output value of the combustion device 3 and the concentration of sulfur contained in the fuel oil, the adjustment unit 50 estimates the amount of sulfur component absorbed by the scrubber liquid in one cycle (step S54). The amount of sulfur component absorbed by the scrubber liquid in one circulation means that the scrubber liquid passes through the reservoir 30, the circulating scrubber liquid supply pipe 34, the scrubber liquid pipe 14, the reaction tower 10, the used scrubber pipe 16, and the circulation pipe 19. It is the amount of sulfur component to be absorbed when returning to the reservoir 30 after passage. The adjusting unit 50 may estimate the amount of sulfur component by using the flow rate of the scrubber liquid per hour, the flow rate of the exhaust gas 100 flowing into the reaction tower 10 per unit time, and the amount of sulfur component contained in the exhaust gas 100 .
 調整部50は、一回の循環で液体が吸収する硫黄成分量を推定し、推定された硫黄成分量に基づいて、酸化マグネシウム(アルカリ剤)の投入量を調整する(ステップS56)。調整部50は、一回の循環で液体が吸収する硫黄成分量の推定量と中和反応できる量の所定倍になるように酸化マグネシウム(アルカリ剤)の投入量を調整する。所定倍は、例えば、2倍から400倍の範囲で決められる値であってよい。 The adjustment unit 50 estimates the amount of sulfur component absorbed by the liquid in one circulation, and adjusts the input amount of magnesium oxide (alkaline agent) based on the estimated amount of sulfur component (step S56). The adjusting unit 50 adjusts the amount of magnesium oxide (alkaline agent) to be fed so that the estimated amount of sulfur component absorbed by the liquid in one circulation and the amount capable of neutralizing reaction are a predetermined multiple. The predetermined magnification may be, for example, a value determined within a range from 2 times to 400 times.
 図8は、投入量調整処理の他例を示すフローチャートである。図8は、図5のステップS20、または図6のステップS42の処理のサブルーチンであってよい。 FIG. 8 is a flowchart showing another example of the input amount adjustment process. FIG. 8 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
 調整部50は、開ループ動作中に反応塔10から放出されるガスの硫黄成分量を硫黄成分センサ37から取得する(ステップS60)。調整部50は、動作モードが閉ループ動作に切り替えられた後に排ガス100を生じさせる燃焼装置3の出力計画値を記憶部53等から取得する。調整部50は、開ループ動作中に反応塔10から放出されるガスの硫黄成分量と、閉ループ動作中における燃焼装置3の出力計画値とから酸化マグネシウム(アルカリ剤)の投入量を調整する(ステップS64)。 The adjustment unit 50 acquires the sulfur component amount of the gas released from the reaction tower 10 during the open loop operation from the sulfur component sensor 37 (step S60). The adjustment unit 50 acquires from the storage unit 53 or the like the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation. The adjustment unit 50 adjusts the input amount of magnesium oxide (alkaline agent) from the amount of sulfur component in the gas released from the reaction tower 10 during open-loop operation and the planned output value of the combustion device 3 during closed-loop operation ( step S64).
 図9は、投入量調整処理の他例を示すフローチャートである。図9は、図5のステップS20、または図6のステップS42の処理のサブルーチンであってよい。 FIG. 9 is a flowchart showing another example of the input amount adjustment process. FIG. 9 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
 調整部50は、開ループ動作中に反応塔10に供給されるスクラバー液(海水)のpHをpHセンサ35から取得する(ステップS70)。調整部50は、反応塔10から外部に排出される使用済みスクラバー液のpHをpHセンサ36から取得する(ステップS72)。調整部50は、動作モードが閉ループ動作に切り替えられた後に排ガス100を生じさせる燃焼装置3の出力計画値を記憶部53等から取得する(ステップS74)。 The adjustment unit 50 acquires the pH of the scrubber liquid (seawater) supplied to the reaction tower 10 during open loop operation from the pH sensor 35 (step S70). The adjustment unit 50 acquires the pH of the used scrubber liquid discharged from the reaction tower 10 to the outside from the pH sensor 36 (step S72). The adjustment unit 50 acquires from the storage unit 53 or the like the planned output value of the combustion device 3 that produces the exhaust gas 100 after the operation mode is switched to the closed loop operation (step S74).
 調整部50は、開ループ動作中に反応塔10に供給されるスクラバー液(海水)および反応塔10から外部に排出される使用済みスクラバー液のそれぞれのpHと、動作モードが閉ループ動作に切り替えられ後の燃焼装置3の出力計画値とに基づいて酸化マグネシウム(アルカリ剤)の投入量を調整する(ステップS76)。 The adjustment unit 50 adjusts the pH of each of the scrubber liquid (seawater) supplied to the reaction tower 10 and the used scrubber liquid discharged from the reaction tower 10 during the open-loop operation, and the operation mode is switched to the closed-loop operation. The input amount of magnesium oxide (alkaline agent) is adjusted based on the planned output value of the combustion device 3 (step S76).
 図10は、投入量調整処理の他例を示すフローチャートである。図10は、図5のステップS20、または図6のステップS42の処理のサブルーチンであってよい。 FIG. 10 is a flowchart showing another example of the input amount adjustment process. FIG. 10 may be a subroutine of the process of step S20 of FIG. 5 or step S42 of FIG.
 調整部50は、前回の閉モード動作中に貯留部30内に残存していた酸化マグネシウム(アルカリ剤)の量を取得する(ステップS80)。調整部50は、残存していた酸化マグネシウム(アルカリ剤)の量に基づいて、新たに投入する酸化マグネシウム(アルカリ剤)の投入量を調整してよい。 The adjustment unit 50 acquires the amount of magnesium oxide (alkaline agent) remaining in the storage unit 30 during the previous closed mode operation (step S80). The adjusting unit 50 may adjust the amount of newly added magnesium oxide (alkaline agent) based on the amount of remaining magnesium oxide (alkaline agent).
 調整部50は、図7から図10の投入量調整処理の一又は複数の処理を複合的に用いて、投入量調整を調整してもよい。 The adjustment unit 50 may adjust the input amount adjustment by using one or more of the input amount adjustment processes in FIGS. 7 to 10 in combination.
 図11は、洗浄処理の一例を示すフローチャートである。制御部51は、閉ループ動作から開ループ動作に切り替わったか否かを判断する(ステップS90)。閉ループ動作から開ループ動作に切り替わった場合には(ステップS90:YES)、貯留部洗浄機構38は、貯留部30を洗浄する(ステップS92)。閉ループ動作から開ループ動作に切り替わった場合には(ステップS90:YES)、配管洗浄機構39は、反応塔10へのスクラバー液の導入口と貯留部30からの供給口との間の循環スクラバー液供給管34、バルブ33、ポンプ23、およびスクラバー液管14を洗浄してよい。 FIG. 11 is a flowchart showing an example of cleaning processing. The control unit 51 determines whether or not the closed loop operation has switched to the open loop operation (step S90). When the closed-loop operation is switched to the open-loop operation (step S90: YES), the reservoir cleaning mechanism 38 cleans the reservoir 30 (step S92). When the closed-loop operation is switched to the open-loop operation (step S90: YES), the pipe cleaning mechanism 39 circulates the scrubber liquid between the inlet of the scrubber liquid to the reaction tower 10 and the supply port from the reservoir 30. The supply tube 34, valve 33, pump 23, and scrubber liquid tube 14 may be cleaned.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It is obvious to those skilled in the art that various modifications or improvements can be made to the above embodiments. It is clear from the description of the scope of the claims that forms with such modifications or improvements can also be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順序で実施することが必須であることを意味するものではない。 The execution order of each process such as actions, procedures, steps, and stages in devices, systems, programs, and methods shown in claims, specifications, and drawings is etc., and it should be noted that they can be implemented in any order unless the output of a previous process is used in a later process. Regarding the operation flow in the claims, the specification, and the drawings, even if explanations are made using "first," "next," etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 1・・・排ガス処理装置、2・・・排ガス処理装置、3・・・燃焼装置、10・・・反応塔、12・・・燃焼ガス排気管、13・・・スプレーノズル、14・・・スクラバー液管、15・・・ガス排出部、16・・・スクラバー配管、17・・・排出管、18・・・バルブ、19・・・循環管、20・・・バルブ、21・・・海水排出口、22・・・海水取入口、23・・・ポンプ、24・・・海水管、30・・・貯留部、32・・・バルブ、33・・・バルブ、34・・・循環スクラバー液供給管、35・・・pHセンサ、36・・・pHセンサ、37・・・硫黄成分センサ、38・・・貯留部洗浄機構、39・・・配管洗浄機構、40・・・投入部、50・・・調整部、51・・・制御部、53・・・記憶部、54・・・設定部、60・・・投入部、62・・・調剤部、63・・・ポンプ、64・・・貯蔵部、65・・・ポンプ、100・・・排ガス DESCRIPTION OF SYMBOLS 1... Exhaust gas treatment apparatus 2... Exhaust gas treatment apparatus 3... Combustion apparatus 10... Reaction tower 12... Combustion gas exhaust pipe 13... Spray nozzle 14... Scrubber liquid pipe 15 Gas discharge part 16 Scrubber pipe 17 Discharge pipe 18 Valve 19 Circulation pipe 20 Valve 21 Seawater Outlet 22 Seawater intake 23 Pump 24 Seawater pipe 30 Reservoir 32 Valve 33 Valve 34 Circulating scrubber liquid Supply pipe 35 ... pH sensor 36 ... pH sensor 37 ... Sulfur component sensor 38 ... Reservoir cleaning mechanism 39 ... Pipe cleaning mechanism 40 ... Input section 50 ... adjustment unit, 51 ... control unit, 53 ... storage unit, 54 ... setting unit, 60 ... input unit, 62 ... dispensing unit, 63 ... pump, 64 ...・Storage part, 65... Pump, 100... Exhaust gas

Claims (14)

  1.  排ガスの処理に使用された使用済み液体を循環させる閉ループ動作と、前記使用済み液体を外部に排出する開ループ動作との間で動作モードを切り替え可能な排ガス処理装置であって、
     前記排ガスが供給されて、液体によって前記排ガスを浄化する反応塔と、
     前記排ガスの浄化に使用された前記使用済み液体を貯留し、前記閉ループ動作中にアルカリ剤によって浄化能力を回復した使用済み液体を前記反応塔内に供給する貯留部と、
     前記閉ループ動作を開始する場合に、前記使用済み液体を前記貯留部から前記反応塔内に供給開始する前に前記貯留部内に前記アルカリ剤を投入する投入部と、
     を備える排ガス処理装置。
    An exhaust gas treatment apparatus capable of switching an operation mode between a closed loop operation for circulating used liquid used for exhaust gas treatment and an open loop operation for discharging the used liquid to the outside,
    a reaction tower to which the exhaust gas is supplied and which purifies the exhaust gas with a liquid;
    a reservoir for storing the used liquid used for purifying the exhaust gas, and supplying the used liquid whose purification ability has been restored by the alkaline agent during the closed-loop operation to the reaction tower;
    an input unit for inputting the alkaline agent into the reservoir before starting to supply the used liquid from the reservoir into the reaction tower when starting the closed-loop operation;
    Exhaust gas treatment device.
  2.  前記投入部は、前記アルカリ剤として、酸化マグネシウムおよび水酸化マグネシウムの少なくとも一方を前記貯留部内に投入する、請求項1に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to claim 1, wherein the charging section charges at least one of magnesium oxide and magnesium hydroxide into the storage section as the alkaline agent.
  3.  前記投入部は、前記アルカリ剤として、前記酸化マグネシウムおよび前記水酸化マグネシウムの少なくとも一方のうちの固体粉末を前記貯留部内に投入する、請求項2に記載の排ガス処理装置。 3. The exhaust gas treatment apparatus according to claim 2, wherein said charging section charges solid powder of at least one of said magnesium oxide and said magnesium hydroxide into said storage section as said alkaline agent.
  4.  前記投入部は、前記アルカリ剤として、酸化マグネシウムを前記貯留部内に投入する、請求項1から3の何れか一項に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to any one of claims 1 to 3, wherein the charging section charges magnesium oxide into the storage section as the alkaline agent.
  5.  前記動作モードが前記閉ループ動作に切り替えられた場合、前記閉ループ動作での第1のタイミングで、前記投入部は、一回の循環で液体が吸収する硫黄成分量と中和反応できる量よりも多い量の酸化マグネシウムを前記貯留部内に投入する、請求項4に記載の排ガス処理装置。 When the operation mode is switched to the closed-loop operation, at a first timing in the closed-loop operation, the input portion is greater than the amount of sulfur components absorbed by the liquid in one circulation and the amount that can be neutralized. 5. The exhaust gas treatment apparatus according to claim 4, wherein an amount of magnesium oxide is put into said reservoir.
  6.  前記投入部は、前記閉ループ動作の継続中における、前記第1のタイミングよりも後の第2のタイミングにおいて、前記第1のタイミングにおける投入量に比べて少ない量の前記酸化マグネシウムを前記貯留部内に補充する、請求項5に記載の排ガス処理装置。 The injection unit puts a smaller amount of the magnesium oxide into the storage unit than the amount injected at the first timing at a second timing after the first timing during the continuation of the closed-loop operation. The exhaust gas treatment device according to claim 5, which is replenished.
  7.  前記動作モードが前記開ループ動作から前記閉ループ動作に切り替えられた場合に、前記使用済み液体を前記貯留部から前記反応塔内に供給開始する前に前記貯留部内に投入される前記酸化マグネシウムの投入量を調整する調整部をさらに備える、請求項4から6の何れか一項に記載の排ガス処理装置。 When the operation mode is switched from the open-loop operation to the closed-loop operation, the magnesium oxide is introduced into the reservoir before starting to supply the spent liquid from the reservoir into the reaction column. The exhaust gas treatment apparatus according to any one of claims 4 to 6, further comprising an adjustment unit that adjusts the amount.
  8.  前記調整部は、前記排ガスを生じさせる燃焼装置の出力と、前記燃焼装置に使用される燃料油に含まれる硫黄分濃度とに基づいて、一回の循環で液体が吸収する硫黄成分量を推定し、推定された硫黄成分量に基づいて、前記投入量を調整する、請求項7に記載の排ガス処理装置。 The adjustment unit estimates the amount of sulfur component absorbed by the liquid in one circulation based on the output of the combustion device that generates the exhaust gas and the sulfur concentration contained in the fuel oil used in the combustion device. and adjusting the input amount based on the estimated sulfur content.
  9.  前記調整部は、前記開ループ動作中に前記反応塔から排出されるガスの硫黄成分量と、前記動作モードが前記閉ループ動作に切り替えられた後に前記排ガスを生じさせる燃焼装置の出力計画値とに基づいて前記投入量を調整する、請求項7に記載の排ガス処理装置。 The adjustment unit adjusts the sulfur component amount of the gas discharged from the reaction tower during the open-loop operation and the planned output value of the combustion device that produces the exhaust gas after the operation mode is switched to the closed-loop operation. 8. The exhaust gas treatment apparatus according to claim 7, wherein the amount of input is adjusted based on.
  10.  前記調整部は、前記開ループ動作中に前記反応塔に供給される液体および前記反応塔から外部に排出される使用済み液体のそれぞれの水素イオン指数(pH)と、前記動作モードが前記閉ループ動作に切り替えられた後に前記排ガスを生じさせる燃焼装置の出力計画値とに基づいて前記投入量を調整する、請求項7に記載の排ガス処理装置。 The adjustment unit adjusts the hydrogen ion exponent (pH) of each of the liquid supplied to the reaction tower during the open-loop operation and the used liquid discharged from the reaction tower to the outside, and the operation mode is the closed-loop operation. 8. The exhaust gas treatment apparatus according to claim 7, wherein said input amount is adjusted based on a planned output value of a combustion device that generates said exhaust gas after being switched to .
  11.  前記調整部は、前記動作モードが前記開ループ動作から前記閉ループ動作に切り替えられた場合に、前回の閉モード動作中に前記貯留部内に残存している酸化マグネシウムの量に基づいて、前記投入量を調整する、請求項7に記載の排ガス処理装置。 When the operation mode is switched from the open-loop operation to the closed-loop operation, the adjustment unit adjusts the input amount based on the amount of magnesium oxide remaining in the reservoir during the previous closed-mode operation. The exhaust gas treatment device according to claim 7, which adjusts the
  12.  前記動作モードが前記閉ループ動作から前記開ループ動作に切り替えられる毎に、前記貯留部内を洗浄する貯留部洗浄機構をさらに備える、請求項1から10の何れか一項に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to any one of claims 1 to 10, further comprising a reservoir cleaning mechanism that cleans the inside of the reservoir each time the operation mode is switched from the closed-loop operation to the open-loop operation.
  13.  前記動作モードが前記閉ループ動作から前記開ループ動作に切り替えられた場合に、前記反応塔と前記貯留部との間の配管内を洗浄する配管洗浄機構をさらに備える、請求項1から12の何れか一項に記載の排ガス処理装置。 13. Any one of claims 1 to 12, further comprising a pipe cleaning mechanism that cleans the inside of the pipe between the reaction tower and the reservoir when the operation mode is switched from the closed-loop operation to the open-loop operation. The exhaust gas treatment device according to item 1.
  14.  排ガスの処理に使用された使用済み液体を循環させる閉ループ動作と、前記使用済み液体を外部に排出する開ループ動作との間で動作モードを切り替え可能な排ガス処理方法であって、
     排ガスの浄化に使用された前記使用済み液体を貯留する段階と、
     前記閉ループ動作中にアルカリ剤によって浄化能力を回復した使用済み液体を前記排ガスに接触させる段階と、
     前記閉ループ動作を開始する場合に、前記使用済み液体を前記排ガスに接触させるように供給する前に、貯蔵された前記使用済み液体に前記アルカリ剤を投入する段階と、を備える排ガス処理方法。
    An exhaust gas treatment method capable of switching an operation mode between a closed loop operation for circulating the used liquid used for exhaust gas treatment and an open loop operation for discharging the used liquid to the outside,
    storing the spent liquid used to purify the exhaust gas;
    contacting the exhaust gas with the used liquid whose purification ability has been restored by the alkaline agent during the closed-loop operation;
    and when initiating said closed-loop operation, introducing said alkaline agent into said stored used liquid prior to feeding said used liquid into contact with said exhaust gas.
PCT/JP2022/005339 2021-03-23 2022-02-10 Exhaust gas treatment apparatus and exhaust gas treatment method WO2022201947A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280005787.3A CN116096475A (en) 2021-03-23 2022-02-10 Exhaust gas treatment device and exhaust gas treatment method
KR1020237007000A KR20230044491A (en) 2021-03-23 2022-02-10 Exhaust gas treatment device and exhaust gas treatment method
JP2023508765A JP7380946B2 (en) 2021-03-23 2022-02-10 Exhaust gas treatment equipment and exhaust gas treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-049263 2021-03-23
JP2021049263 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022201947A1 true WO2022201947A1 (en) 2022-09-29

Family

ID=83395483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005339 WO2022201947A1 (en) 2021-03-23 2022-02-10 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (4)

Country Link
JP (1) JP7380946B2 (en)
KR (1) KR20230044491A (en)
CN (1) CN116096475A (en)
WO (1) WO2022201947A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966219A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Ph controlling instrument for flue gas desulfurizer
JPH11169657A (en) * 1997-12-09 1999-06-29 Mitsubishi Heavy Ind Ltd Flue gas desulfurizer
CN100335154C (en) * 2005-09-09 2007-09-05 清华大学 Magnesium oxide flue gas desulfurization and outgrowth thick-slurry method oxidation reclaim process
JP2019514678A (en) * 2016-05-11 2019-06-06 ヤラ マリン テクノロジーズ エーエスYara Marine Technologies As Desulfurization of ship exhaust gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972263B2 (en) 1990-03-14 1999-11-08 バブコツク日立株式会社 Absorbent supply amount control apparatus and method for controlling supply amount of absorbent in wet exhaust gas desulfurization device
JPH07275649A (en) 1994-04-11 1995-10-24 Nippon Steel Corp Control of concentration of circulating solution in absorbing tower of exhaust gas desulfurizer
JPH08196863A (en) 1995-01-25 1996-08-06 Mitsubishi Heavy Ind Ltd Oxidation of waste liquid from magnesium process flue gas desulfurization equipment
EP2402288B1 (en) 2010-07-02 2016-11-16 Alfa Laval Corporate AB Cleaning equipment for gas scrubber fluid
WO2014119513A1 (en) 2013-01-29 2014-08-07 富士電機株式会社 Seawater quantity controller for scrubber, seawater quantity control method for scrubber, alkali quantity controller, and alkali quantity control method
CN105899281B (en) 2014-07-18 2018-12-14 富士电机株式会社 The seawater amount control device of washer, the seawater amount control method of washer and alkali number control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0966219A (en) * 1995-08-31 1997-03-11 Mitsubishi Heavy Ind Ltd Ph controlling instrument for flue gas desulfurizer
JPH11169657A (en) * 1997-12-09 1999-06-29 Mitsubishi Heavy Ind Ltd Flue gas desulfurizer
CN100335154C (en) * 2005-09-09 2007-09-05 清华大学 Magnesium oxide flue gas desulfurization and outgrowth thick-slurry method oxidation reclaim process
JP2019514678A (en) * 2016-05-11 2019-06-06 ヤラ マリン テクノロジーズ エーエスYara Marine Technologies As Desulfurization of ship exhaust gas

Also Published As

Publication number Publication date
JP7380946B2 (en) 2023-11-15
CN116096475A (en) 2023-05-09
JPWO2022201947A1 (en) 2022-09-29
KR20230044491A (en) 2023-04-04

Similar Documents

Publication Publication Date Title
JP5939366B1 (en) Scrubber seawater amount control device, scrubber seawater amount control method, and alkali amount control device
KR101530499B1 (en) Scrubber system and method
CN104736225A (en) Seawater quantity controller for scrubber, seawater quantity control method for scrubber, alkali quantity controller, and alkali quantity control method
KR101722982B1 (en) An internal combustion engine, and a method of removing sulphur oxides from exhaust gas
US9821268B2 (en) Exhaust gas treatment device and waste water treatment method for exhaust gas treatment device
US7381389B2 (en) Wet gas purification method and system for practicing the same
KR102502150B1 (en) Electrolytic treatment device and treatment system
EP1252102B1 (en) Fluorine removal by ion exchange
JP2013027864A (en) Method and device for treating exhaust gas
WO2022201947A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP2001170659A (en) Carbon dioxide neutralizing device
EP4112154A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method for exhaust gas treatment apparatus
KR100607436B1 (en) Water treatment device
CN115023280A (en) Exhaust gas purification device
JPH0523543A (en) Denitration apparatus
KR102489285B1 (en) Exhaust gas treatment apparatus and ship having the same
JPS6115933Y2 (en)
JP2004158730A (en) Gas treatment method
US7470413B2 (en) Fluorine removal by ion exchange
JPS6321523B2 (en)
KR20170014287A (en) Apparatus for reducing water and air pollutant
JP2000084351A (en) Desulfurization of waste gas
JP2024011586A (en) Removal equipment of excessive ammonia in vessel, removal method of excessive ammonia in vessel and vessel
JP4883495B2 (en) Fluorine-containing wastewater treatment method and fluorine-containing wastewater treatment equipment
JPS63242322A (en) Method for scrubbing exhaust gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508765

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237007000

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774748

Country of ref document: EP

Kind code of ref document: A1