WO2022201937A1 - Magnet for detecting tire wear, tire wear sensor using magnet, and tire - Google Patents

Magnet for detecting tire wear, tire wear sensor using magnet, and tire Download PDF

Info

Publication number
WO2022201937A1
WO2022201937A1 PCT/JP2022/005208 JP2022005208W WO2022201937A1 WO 2022201937 A1 WO2022201937 A1 WO 2022201937A1 JP 2022005208 W JP2022005208 W JP 2022005208W WO 2022201937 A1 WO2022201937 A1 WO 2022201937A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
tire
magnetic layer
magnetism
tire wear
Prior art date
Application number
PCT/JP2022/005208
Other languages
French (fr)
Japanese (ja)
Inventor
学 田村
裕樹 大野
寿人 小柴
章伸 小島
徳男 中村
佑貴 今井
利恵 黒澤
貴史 野口
広人 瀬戸川
睦樹 杉本
Original Assignee
アルプスアルパイン株式会社
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社, 住友ゴム工業株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2023508757A priority Critical patent/JP7356619B2/en
Publication of WO2022201937A1 publication Critical patent/WO2022201937A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a tire wear detection magnet embedded in a tire to detect tire wear, a tire wear sensor using a magnet, and a tire.
  • a tire wear detection system measures the degree of wear of a tire by a method other than visual observation and detects that the performance of the tire has deteriorated.
  • a magnetic sensor capable of detecting magnetism emitted by a tire wear detection magnet embedded in the tread portion of a tire is provided at a position facing the tire wear detection magnet on the inner surface of the tire.
  • a tire wear sensor is described. This device detects the degree of tire wear by measuring changes in the magnetism of magnets that wear along with the tread.
  • the tire wear sensor described in Patent Literature 1 measures the degree of wear of the tread portion based on changes in magnetism due to wear of magnets embedded in the tread portion. For this reason, the magnet is embedded in the tire so that one of the magnets is exposed on the surface of the tread portion so that it wears together with the tread portion. Therefore, there is a possibility that the tire may be damaged by an iron nail or the like attracted by the magnetism of the magnet exposed on the tread surface.
  • An object of the present invention is to provide a tire wear detection magnet, a tire wear sensor using the same, and a tire that suppress the attraction of iron or the like by the magnetism of the magnet exposed on the surface of the tread portion.
  • a magnet for detecting tire wear that is embedded in a tread portion of a tire, and includes a soft magnetic layer made of a soft magnetic material. and a hard magnetic layer made of a hard magnetic material, and is magnetized in the stacking direction of the soft magnetic layer and the hard magnetic layer.
  • magnetism from the hard magnetic layer is induced by the soft magnetic layer in a direction intersecting the lamination direction.
  • the magnetism in the lamination direction can be made smaller than that of the magnet. Therefore, when the magnet is embedded so that the radial direction of the tire is aligned with the stacking direction, the attraction force that attracts iron or the like to the exposed surface of the tread portion can be suppressed.
  • the soft magnetic layers and the hard magnetic layers are alternately stacked along the stacking direction, and the soft magnetic layers and the hard magnetic layers are paired.
  • the thickness of the soft magnetic layer is smaller than the thickness of the hard magnetic layer.
  • One end in the stacking direction may be the hard magnetic layer.
  • One end in the magnetization direction may be the hard magnetic layer and the other end may be the soft magnetic layer.
  • By forming one end of the magnet as a hard magnetic layer it is possible to efficiently detect the degree of wear of the magnet based on the change in magnetism on the one end side. Further, if the other end is formed of a soft magnetic layer, the intensity and range of magnetism on the other end side can be made smaller than those on the one end side.
  • a cross-sectional area of a cut surface orthogonal to the stacking direction increases from the one end toward the other end. It is preferable that the cut surface has a circular shape.
  • the hard magnetic layer is ferrite, and the soft magnetic layer is sendust.
  • the tire wear sensor of the present invention is arranged at a position facing the magnet of the present invention embedded in the tread portion of the tire and the magnet on the inner surface of the tire, and is capable of detecting magnetism emitted by the magnet.
  • a magnetic sensor wherein the magnetic sensor measures the magnetism in a direction intersecting the lamination direction of the magnets to measure the amount of wear of the tire.
  • the soft magnetic layers and the hard magnetic layers are alternately laminated along the lamination direction, the soft magnetic layers and the hard magnetic layers are paired, and the soft magnetic layers
  • the thickness of the layer is preferably smaller than the thickness of the hard magnetic layer.
  • one end of the magnet in the stacking direction is the hard magnetic layer
  • the other end is the soft magnetic layer
  • the one end is arranged to face the magnetic sensor.
  • the degree of wear can be detected based on the change in magnetism on the one end side.
  • the other end is formed of a soft magnetic layer, the intensity and range of magnetism on the other end side can be made smaller than those on the one end side.
  • the tire wear sensor has an induction member made of a magnetic material, and the magnetic detection section of the magnetic sensor is arranged between the induction member and the magnet. Since the induction member guides the magnetism of the magnet, it is possible to more accurately measure the change in magnetism accompanying the progress of wear of the magnet.
  • the magnetic sensor includes two magnetic detection units and detects the magnetism based on differential signals from the two magnetic detection units. It is preferable that the two magnetic detection units are arranged at positions that are point-symmetrical with respect to the central point of the magnetism of the magnet when viewed from the lamination direction. By using the differential signals from the two magnetic detection units, the influence of geomagnetism can be suppressed, and magnetism can be detected with high accuracy.
  • the cross-sectional area of the magnet perpendicular to the stacking direction increases from one end to the other end. It is preferable that a cross section of the magnet perpendicular to the stacking direction has a circular shape.
  • the tire of the present invention is characterized in that the magnet of the present invention is embedded in the tread portion.
  • the magnet of the present invention is embedded in the tread portion.
  • the magnetism of the exposed surface of the magnet in the tread portion of the tire can be reduced in the stacking direction. Therefore, the attraction of the exposed surface of the magnet to iron or the like is suppressed, and the risk of the tire being damaged by iron or the like can be reduced.
  • FIG. 3 is a plan view showing the positional relationship between the magnetic detector, the induction member, and the magnet in the tire wear sensor; (a) Graph showing the relationship between the height of the magnet and the output of the tire wear sensor using the magnet, (b) Graph showing the relationship between the height of the magnet and the attraction force (a) Graph showing simulation results of changes in magnet height and magnetic flux density on the side of the tire wear sensor, (b) Graph showing simulation results of changes in magnet height and magnetic flux density on the side exposed to the tire surface (a) Simulation result of the magnet of Comparative Example 2, (b) Simulation result of the magnet of Example 3 (a) Simulation result of the magnet of Comparative Example 3, (b) Simulation result of the magnet of Example 4
  • FIG. 1(a) is a cross-sectional view schematically showing the structure of a magnet 1 for tire wear detection and a tire 2 provided with the magnet 1, and FIG. be.
  • the tire wear detection magnet 1 includes a soft magnetic layer 11 made of a soft magnetic material and a hard magnetic layer 12 made of a hard magnetic material.
  • the magnet 1 is embedded in the tire 2 so that the lamination direction of the soft magnetic layer 11 and the hard magnetic layer 12 is aligned with the radial direction (Y-axis direction) of the tire 2 .
  • the magnet 1 is magnetized in the stacking direction, and the magnetic pole ends 13 and 14 at both ends in the magnetization direction are composed of different magnetic poles.
  • the magnetism from the hard magnetic layer 12 is induced by the soft magnetic layer 11 in a direction deviating from the lamination direction in which the magnet 1 is magnetized. Therefore, the magnetism from the pole tip 14 of the magnet 1 in the stacking direction can be suppressed, and the force with which the pole tip 14 exposed on the surface of the tread portion 21 attracts iron or the like can be reduced.
  • the material forming the soft magnetic layer 11 is not particularly limited as long as it is a soft magnetic material.
  • Examples include permalloy (Fe--Ni alloy), sendust (Fe--Si--Al alloy) which is another iron-based material, iron-based or non-ferrous amorphous magnetic alloy, and ferrite (soft ferrite).
  • Sendust is preferable from the viewpoint of suppressing magnetism in the Y-axis direction from the pole tip 14 .
  • the hard magnetic layer 12 is not particularly limited as long as it is made of a hard magnetic material.
  • examples include ferrite (hard ferrite) containing iron oxide as a main component, alnico (Al--Ni--Co alloy), and samarium-cobalt.
  • ferrite is preferable from the viewpoint of suppressing magnetism in the Y-axis direction from the pole tip 14 .
  • the pole tip 13 is one end on the center side of the tire 2 in the stacking direction of the magnet 1 and is composed of the hard magnetic layer 12 .
  • the magnetic field generated by the magnet 1 spreads closer to the center of the tire 2 when the magnetic pole tip 13 is made of the hard magnetic layer 12 than when the magnetic pole tip 13 is made of the soft magnetic layer 11. be able to. Therefore, the magnetism of the magnet 1 can be detected more easily by the magnetic sensor 6 (see FIGS. 3A and 3B) arranged so as to face the pole tip 13 made of the hard magnetic layer 12. can be done.
  • the pole tip 14 is the other end on the surface side of the tread portion 21 in the lamination direction of the magnet 1 .
  • the magnetism from the pole tip 14 is induced in the direction intersecting the stacking direction by the soft magnetic layer 11 provided adjacent to the hard magnetic layer 12, thereby reducing the magnetism in the stacking direction. Therefore, the force of attracting iron or the like to the pole tip 14 is smaller than that of a conventional magnet made only of a hard magnetic material.
  • the effect changes when progressing. If the soft magnetic layer 11 is provided near the pole tip 14 on the surface side of the tread portion 21, the effect at the start of use is enhanced. If the soft magnetic layer 11 is provided near the pole tip 13 on the inner surface 22 side of the tire 2, the effect of suppressing the magnetism in the stacking direction from the pole tip 14 when the wear of the magnet 1 progresses increases. If the soft magnetic layer 11 is used as the pole tip 13, the magnetism in the lamination direction can be suppressed until the hard magnetic layer 12 disappears. By providing the soft magnetic layer 11, the above two effects can be balanced.
  • the magnet 1 is formed by laminating a soft magnetic layer 11 and a hard magnetic layer 12 formed by dispersing particles (magnetic powder) of a soft magnetic material and a hard magnetic material in a polymer material. It is composed of magnets. It is embedded in the tread portion 21 in such a posture that its magnetization direction matches the radial direction (Y-axis direction) of the tire 2 .
  • a rubber material having the same composition as the tread rubber composition used for the tread portion 21 is preferable.
  • the magnet 1 preferably has a magnetic flux density of 1 mT or more on the surface of the pole tip 13. From the viewpoint of preventing the magnetism of the magnet 1 from adversely affecting other electronic devices mounted on the vehicle, the surface magnetic flux density at the pole tip 13 of the magnet 1 is preferably 600 mT or less. The surface magnetic flux density at the pole tip 14 of the magnet 1 is preferably 60 mT or less from the viewpoint of preventing metal pieces such as iron nails falling on the road surface from being attracted while traveling on the road. The surface magnetic flux density is a value measured by directly contacting the magnetized surface of the magnet 1 with a Tesla meter.
  • FIGS. 2(a) and 2(b) are sectional views schematically showing magnets 3 and 4 as modifications of the magnet 1 shown in FIG. 1(b). As shown in these figures, in both the magnets 3 and 4, the soft magnetic layers 11 and the hard magnetic layers 12 are alternately laminated along the lamination direction in an unused (unworn) state. It has a laminated structure.
  • the magnets 3 and 4 have the hard magnetic layer 12 at the magnetic pole tip 13 at one end in the stacking direction, and the soft magnetic layer 11 at the magnetic pole tip 14 at the other end.
  • the soft magnetic layer 11 is preferably thinner than the hard magnetic layer 12 .
  • the thickness L 11 of the soft magnetic layer 11 By making the thickness L 11 of the soft magnetic layer 11 smaller than the thickness L 12 of the hard magnetic layer 12 , a magnetic path is easily formed in the soft magnetic layer 11 . Therefore, the soft magnetic layer 11 can easily induce the magnetism from the hard magnetic layer 12 in a direction other than the lamination direction. Therefore, in a state where the magnets 3 and 4 are embedded in the tire 2 (see FIG. 1A), the magnetic flux density in the stacking direction from the pole tip 14 appearing on the surface of the tread portion 21 can be reduced. .
  • the ratio L11 / L12 between the thickness L11 and the thickness L12 is preferably 1/100 or more and less than 1/1. It is more preferably 10 or more and less than 1/2, and still more preferably 1/7 or more and less than 1/3.
  • the thickness L 11 of the soft magnetic layer 11 is preferably 0.05 mm or more and 1 mm or less, more preferably 0.1 mm or more and 0.5 mm or less, and even more preferably 0.15 mm or more and 0.3 mm or less.
  • the thickness L 12 of the hard magnetic layer 12 is preferably 0.1 mm or more and 5 mm or less, more preferably 0.3 mm or more and 3 mm or less, and even more preferably 0.5 mm or more and 2 mm or less.
  • the magnet 4 having a shape (substantially frustum shape) in which the area of the cross section perpendicular to the stacking direction increases from the center of the tire 2 toward the outside has a greater effect on the magnetism from the pole tip 13 and the tire 2 than the magnet 3 with a uniform shape. high linearity with the degree of wear. Moreover, the magnet 4 has a high effect of suppressing magnetism in the stacking direction formed on the magnetic pole tip 14 side, and has the advantage of being easily embedded in the tire 2 .
  • the shape of the magnet 4 is a truncated cone in which the width W in the X-axis direction of the cross section parallel to the Y-axis direction increases continuously from the pole tip 13 to the pole tip 14, and is orthogonal to the Y-axis, which is the magnetization direction.
  • the cross-sectional area of the cut surface cut along the XZ plane increases continuously from the pole tip 13 toward the pole tip 14 .
  • FIG. 2B shows a truncated cone with straight side surfaces, the side surfaces may be constricted inward or bulging outward.
  • the soft magnetic layers 11 and the hard magnetic layers 12 are alternately laminated along the stacking direction from the viewpoint of reducing the force that attracts iron or the like to the surface of the pole tip 14 . It is preferably paired with the body layer 12 . By alternately laminating the soft magnetic layers 11 and the hard magnetic layers 12 as a set, the soft magnetic layers 11 effectively direct the magnetism from the hard magnetic layers 12 in the direction crossing the magnetization direction. can be induced.
  • the total number of laminated layers of the soft magnetic layers 11 and the hard magnetic layers 12 is preferably 4 or more, more preferably 10 or more, and even more preferably 20 or more.
  • the upper limit of the number of layers may be set to an appropriate number from the viewpoint of the length of the magnets 3 and 4 in the stacking direction, the effect of suppressing the attractive force, and the manufacturing efficiency.
  • FIG. 3(a) is a cross-sectional view schematically showing the configuration of a tire wear sensor 5 having a magnet 1
  • FIG. 3(b) is a cross-sectional view showing the tire wear sensor 5 in an enlarged manner.
  • the tire wear sensor 5 includes a tire wear detection magnet 1 and a magnetic sensor 6.
  • the magnetic sensor 6 detects changes in the magnetism emitted by the magnet 1 and detects the wear amount of the tire 2. to measure
  • the tire wear sensor 5 may be configured using the magnets 3 and 4 shown in FIGS. 2(a) and 2(b) instead of the magnet 1.
  • the magnetic sensor 6 is arranged on the inner surface 22 of the tire 2 at a position facing the magnet 1 and capable of detecting the magnetism emitted by the magnet 1 . As the magnet 1 wears together with the tread portion 21 of the tire, the magnetism of the magnet 1 changes.
  • the tire wear sensor 5 can detect the amount of wear of the tire 2 by detecting a change in magnetism accompanying wear of the tread portion 21 with the magnetic sensor 6 .
  • the magnetic sensor 6 detects magnetism in the X-axis direction that intersects the lamination direction (Y-axis direction) of the magnet 1 .
  • the soft magnetic layer 11 reduces the magnetism in the Y-axis direction, which is the magnetization direction, of the magnetism from the magnet 1 . Therefore, the magnetic sensor 6 measures the magnetism in the X-axis direction perpendicular to the magnetization direction of the magnet 1, thereby improving the accuracy in measuring the wear amount of the tire 2.
  • the magnetic sensor 6 has an induction member 61 made of a magnetic material, and a magnetic detection part 62 is arranged between the induction member 61 and the magnet 1 .
  • the configuration of the magnet 1 reduces the magnetism in the Y-axis direction from the magnetic pole tip 14 on the surface side of the tread portion 21 of the tire 2, and the arrangement position of the magnetic detection portion 62 is devised to improve the sensitivity of the magnetic sensor 6. can do.
  • the magnetic sensor 6 includes two magnetic detection units 62. Based on the differential signals from the two magnetic detection units 62, the magnetic field of the magnet 1 is detected. to detect. By using the difference output of the magnetism detected by the magnetism detector 62, the degree of wear of the tire 2 can be detected with high accuracy.
  • FIG. 4 is a plan view schematically showing the positional relationship between the magnet 1, the magnetic detection portion 62 of the magnetic sensor 6, and the guide member 61 in the tire wear sensor 5 of FIGS. 3(a) and 3(b). It is a diagram. This figure schematically shows the positional relationship viewed from the Y-axis direction, which is the magnetization direction of the magnet 1 . As shown in the figure and FIG. 3(b), the magnetic detector 62 is arranged between the magnet 1 and the guide member 61. As shown in FIG. Moreover, the magnetic detection part 62 is arranged so as to have a portion positioned outside the outer shell of the magnet 1 when viewed from the magnetization direction.
  • the tire wear sensor 5 can accurately measure changes in magnetism in the X-axis direction as the degree of wear of the tire 2 progresses. This is because the magnetic field generated by the magnet 1 is induced from the magnet 1 to the induction member 61, so the magnetic field induced from the magnet 1 to the induction member 61, that is, the magnetic field at the location where the magnetic detection unit 62 is arranged has a high magnetic flux density. It is because, since the guiding member 61 is arranged at a position away from the magnet 1 in the X direction, the magnetism of the magnetic field at the location where the magnetic detection unit 62 is arranged is the X-axis direction detectable by the magnetic detection unit 62. This is because it always contains the components of
  • the two magnetic detection parts 62 are arranged at points symmetrical with respect to the central point of the magnetism from the magnet 1 , that is, the central axis of the magnet 1 when viewed from the magnetization direction of the magnet 1 .
  • the two magnetic detectors 62 and the two guide members 61 are positioned on a straight line L parallel to the X-axis connecting their centers.
  • the two magnetic detection units 62 are arranged point-symmetrically with respect to the center point O of the cross-sectional circle obtained by cutting the magnet 1 along the XZ plane.
  • the two guide members 61 are also arranged symmetrically with respect to the center point O. As shown in FIG.
  • the emitted magnetism Ma of the magnet 1 detected by one magnetic detector 62 and the emitted magnetism Mb of the magnet 1 detected by the other magnetic detector 62 have the same magnetic flux density and magnetic direction. is reversed. Therefore, wear of the tire 2 can be detected based on only one of the emitted magnetism Ma and Mb detected by the two magnetic detectors 62, so the redundancy of the tire wear sensor 5 is improved.
  • the external magnetism that becomes noise in the measurement of magnetism by the tire wear sensor 5 has the same effect on the two magnetism detection units 62 . Therefore, by using the output difference (difference, differential signal) from the two magnetic detectors 62, the components of the external magnetic field are canceled and the influence of the external magnetism can be removed. Since the outputs from the two magnetic detectors 62 have opposite magnetic directions, by using the difference between the two outputs, the magnitude of the output from one magnetic detector 62 can be doubled while eliminating the influence of noise. gives the output of Therefore, by using the difference in the output of the magnetism detecting section 62, the influence of noise such as external magnetism can be removed and the output can be increased, so that the degree of wear of the tire 2 can be measured with high accuracy.
  • the magnet 1 is configured to have a magnetic flux density of 0.05 mT or more at the measurement position where the magnetic detectors 62 are arranged in order to reliably measure the magnetic flux density with the two magnetic detectors 62 without being affected by the geomagnetism. and more preferably configured to have a magnetic flux density of 0.5 mT or more.
  • Example 1> Using a truncated cone-shaped magnet (see FIG. 2(b)) having the following shape, the X-axis direction (FIG. 3(a), 3(b)), and changes in the magnetic attraction force (magnetic flux density in the Y-axis direction) to the iron on the bottom surface side were measured.
  • Initial shape Upper bottom diameter 16 mm, lower bottom diameter 24 mm, height 18 mm, 1 mm thick soft magnetic layer and 1 mm thick hard magnetic layer are alternately laminated (18 layers).
  • Soft magnetic layer permalloy
  • Hard magnetic layer ferrite (hard ferrite)
  • Example 2 Regarding the shape of the magnet, the same magnet as in Example 1 was used except that the diameter of the upper bottom surface was changed from 16 mm to 22 mm. The change in adsorption force for iron was measured.
  • Example 1 A truncated conical magnet similar to that of Example 1 was formed using only the hard magnetic layer, and changes in the output of the magnetic sensor and the adsorption force on the bottom surface side were measured as the wear progressed from the bottom surface side.
  • FIG. 5(a) is a graph showing the relationship between the height (thickness) of a tire wear detection magnet and the output of a tire wear sensor using the tire wear detection magnet
  • FIG. 3 is a graph showing the relationship between the height (thickness) of a magnet for tire wear detection and the attraction force.
  • the measured values in FIGS. 5(a) and 5(b) are both shown as a ratio (%) to the initial sensor output and adsorption force (100%) in Comparative Example 1.
  • the sensor output changes linearly with the progress of wear, similarly to when the magnet of Comparative Example 1 is used. did. That is, even when using a magnet in which soft magnetic layers and hard magnetic layers are alternately laminated, the linearity between the progress of wear and the sensor output is similar to the case where a magnet consisting of only hard magnetic layers is used. was good.
  • Example 3> Using a truncated cone-shaped magnet (see FIG. 2(b)) having the following shape, the X-axis direction (FIG. 3(a), 3(b)), the output of the magnetic sensor and the change in the adsorption force on the bottom surface side were measured.
  • Initial shape 15 layers of soft magnetic layers with an upper bottom diameter of 16 mm, a lower bottom diameter of 28 mm, a height of 18 mm, and a thickness of 1 mm and a hard magnetic layer with a thickness of 0.2 mm are alternately laminated (number of layers) 30)
  • Soft magnetic layer Sendust Hard magnetic layer: Ferrite (hard ferrite)
  • Example 2 A truncated conical magnet similar to that of Example 3 was formed using only the hard magnetic layer, and changes in the output of the magnetic sensor and the attractive force on the bottom surface side were measured as the wear progressed from the bottom surface side.
  • FIG. 6(a) is a graph showing simulation results of changes in magnetic flux density on the sensor side with changes in the height (thickness) of the magnet
  • FIG. 2 is a graph showing simulation results of changes in magnetic flux density at the other end (on the tread surface side of the tire). The measured values obtained by simulation in these graphs are shown as a ratio (%) to the initial value (100%) of Comparative Example 2, as in FIGS. 5(a) and 5(b).
  • FIG. 7(a) and 7(b) are simulation results of the magnetism generated in the magnet, and the arrows shown in each figure indicate the direction of the magnetism.
  • FIG. 7(a) shows the magnetism simulation results for the magnet of Comparative Example 2 consisting of only hard magnetic layers
  • FIG. FIG. 10 is a simulation result of magnetism in the magnet of Example 3.
  • FIG. 7(a) shows the magnetism simulation results for the magnet of Comparative Example 2 consisting of only hard magnetic layers
  • FIG. 10 is a simulation result of magnetism in the magnet of Example 3.
  • FIG. 7(a) shows the magnetism parallel to the Y-axis direction, which is the direction of magnetization
  • FIG. 7(a) On the other hand, in the magnet of Example 3 in which the soft magnetic layers and the hard magnetic layers are alternately laminated, as shown in FIG. It has been shown that the magnetism is induced in the cross-direction.
  • Example 4 Magnetism in a cylindrical magnet (see FIG. 2(a)) with the following shape was simulated.
  • Initial shape 13 soft magnetic layers with a bottom diameter of 18 mm, a height of 18 mm, and a thickness of 1 mm and hard magnetic layers with a thickness of 0.2 mm are alternately laminated (26 layers).
  • Soft magnetic layer Sendust
  • Hard magnetic layer Ferrite (hard ferrite)
  • FIG. 8(a) shows the magnetism simulation results for the magnet of Comparative Example 3 consisting of only hard magnetic layers
  • FIG. FIG. 10 is a simulation result of magnetism in the magnet of Example 4.
  • FIG. 8(a) and 8(b) schematically show the positional relationship between the magnetism of the magnet and the magnetic sensor 6 obtained by simulation.
  • the magnetic sensor 6 has two magnetic detection portions 62, each of which is provided outside the center of the magnet. It also has a guide member 61 that guides the magnetism from the magnet. Therefore, the magnetic direction oblique to the Y-axis has little effect on the detection result of the magnetic detection unit 62 .
  • the attraction force with which the pole tip 14 exposed on the tread portion 21 of the magnet 1 attracts iron or the like is proportional to the magnitude of magnetism in the Y-axis direction. It is thought that the magnetism in the Y-axis direction decreased because the direction of magnetism was induced in the direction crossing the Y-axis by the soft magnetic layer 11 (see FIG. 1), and the attractive force of the pole tip 14 decreased. .
  • the present invention can be applied to a magnet for detecting tire wear, a tire wear sensor, and a tire that can measure the wear state of a tire without visual inspection.

Abstract

In a magnet 1 for detecting tire wear according to the present invention, the attraction of iron or the like due to the magnetism of a magnet exposed on the surface of a tread is suppressed, the magnet 1 for detecting tire wear being embedded in a tread 21 of a tire 2 and comprising a soft magnetic material layer 11 containing a soft magnetic material and a hard magnetic material layer 12 containing a hard magnetic material, wherein the magnet is magnetized in a Y-axis direction which is the layering direction of the soft magnetic material layer 11 and the hard magnetic material layer 12. Since the magnetism in the Y-axis direction emitted from a magnetic pole end 14 is reduced by the soft magnetic material layer 11, the attraction force that attracts iron or the like can be suppressed.

Description

タイヤ摩耗検知用の磁石、磁石を用いたタイヤ摩耗センサおよびタイヤMagnets for tire wear detection, tire wear sensors and tires using magnets
 本発明は、タイヤの摩耗を検知するためにタイヤに埋設させて用いられるタイヤ摩耗検知用の磁石、磁石を用いたタイヤ摩耗センサおよびタイヤに関する。 The present invention relates to a tire wear detection magnet embedded in a tire to detect tire wear, a tire wear sensor using a magnet, and a tire.
 タイヤの摩耗が進行すると、路面を走行するときのグリップ性能や、濡れた路面を走行するときのタイヤと路面との間の水を排出する排水性能が低下する。そこで、運転者や車両管理者は、タイヤのトレッド部の摩耗状態を目視で点検し、安全性を確保するために使用限度を超える前にタイヤを交換する必要がある。目視による点検は、タイヤの溝に設けられたスリップサインの確認などにより行われるが、摩耗状態を誤って評価するおそれがある。また、点検作業は煩雑であるため、ユーザーによっては点検しないことも考えられる。トレッド部の摩耗状態が誤って評価されたり、評価されなかったりすると、使用限度を超えたタイヤが継続して使用されるおそれがあり、安全性の観点から好ましくない。
 そこで、目視以外の方法によってタイヤの摩耗の程度を測定し、タイヤの性能が低下したことを検知するタイヤ摩耗検知システムが提案されている。たとえば、特許文献1には、タイヤのトレッド部に埋設されたタイヤ摩耗検知用の磁石が放出する磁気を検知可能な磁気センサを、タイヤの内側面におけるタイヤ摩耗検知用の磁石に対向する位置に備えたタイヤ摩耗センサが記載されている。この装置はトレッド部とともに摩耗する磁石の磁気の変化を測定してタイヤの摩耗度を検知する。
As tire wear progresses, grip performance when driving on a road surface and drainage performance for discharging water between the tire and the road surface when driving on a wet road surface deteriorate. Therefore, it is necessary for drivers and vehicle managers to visually inspect the worn state of the tread portion of the tire and replace the tire before the usage limit is exceeded in order to ensure safety. Visual inspection is performed by confirming the slip sign provided in the groove of the tire, but there is a risk of erroneously evaluating the state of wear. Moreover, since the inspection work is complicated, it is conceivable that some users do not perform the inspection. If the wear state of the tread portion is incorrectly evaluated or not evaluated, the tire exceeding the service limit may continue to be used, which is undesirable from the viewpoint of safety.
Therefore, a tire wear detection system has been proposed that measures the degree of wear of a tire by a method other than visual observation and detects that the performance of the tire has deteriorated. For example, in Patent Document 1, a magnetic sensor capable of detecting magnetism emitted by a tire wear detection magnet embedded in the tread portion of a tire is provided at a position facing the tire wear detection magnet on the inner surface of the tire. A tire wear sensor is described. This device detects the degree of tire wear by measuring changes in the magnetism of magnets that wear along with the tread.
特開2019-203831号公報JP 2019-203831 A
 特許文献1に記載のタイヤ摩耗センサは、トレッド部に埋め込まれた磁石の摩耗による磁気の変化に基づいてトレッド部の摩耗度を測定する。このため、磁石は、トレッド部とともに摩耗するように、その一方がトレッド部の表面に露出するようにタイヤに埋め込まれる。したがって、トレッド部表面に露出した磁石の磁気によって引き寄せられた鉄の釘などによりタイヤが傷つけられるおそれがあった。
 本発明の目的は、トレッド部の表面に露出した磁石の磁気によって鉄などが引き寄せられることを抑えた、タイヤ摩耗検知用の磁石、それを用いたタイヤ摩耗センサおよびタイヤを提供することにある。
The tire wear sensor described in Patent Literature 1 measures the degree of wear of the tread portion based on changes in magnetism due to wear of magnets embedded in the tread portion. For this reason, the magnet is embedded in the tire so that one of the magnets is exposed on the surface of the tread portion so that it wears together with the tread portion. Therefore, there is a possibility that the tire may be damaged by an iron nail or the like attracted by the magnetism of the magnet exposed on the tread surface.
SUMMARY OF THE INVENTION An object of the present invention is to provide a tire wear detection magnet, a tire wear sensor using the same, and a tire that suppress the attraction of iron or the like by the magnetism of the magnet exposed on the surface of the tread portion.
 上記課題を解決すべく提供される本発明の一態様に係るタイヤ摩耗検知用の磁石は、タイヤのトレッド部に埋設されるタイヤ摩耗検知用の磁石において、軟磁性体からなる軟磁性体層と、硬磁性体からなる硬磁性体層と、を備えており、前記軟磁性体層と前記硬磁性体層との積層方向に着磁されていることを特徴とする。
 軟磁性体層と硬磁性体層とを積層することにより、硬磁性体層からの磁気が軟磁性体層により積層方向と交差する方向に誘導されるため、硬磁性体層のみからなる従来の磁石よりも積層方向の磁気を小さくすることができる。このため、タイヤの径方向が積層方向になるように磁石を埋設した場合に、トレッド部の表面に露出した面に鉄などを引き付ける吸着力を抑えることができる。
A magnet for detecting tire wear according to one aspect of the present invention provided to solve the above problems is a magnet for detecting tire wear that is embedded in a tread portion of a tire, and includes a soft magnetic layer made of a soft magnetic material. and a hard magnetic layer made of a hard magnetic material, and is magnetized in the stacking direction of the soft magnetic layer and the hard magnetic layer.
By stacking the soft magnetic layer and the hard magnetic layer, magnetism from the hard magnetic layer is induced by the soft magnetic layer in a direction intersecting the lamination direction. The magnetism in the lamination direction can be made smaller than that of the magnet. Therefore, when the magnet is embedded so that the radial direction of the tire is aligned with the stacking direction, the attraction force that attracts iron or the like to the exposed surface of the tread portion can be suppressed.
 前記軟磁性体層と前記硬磁性体層とが、前記積層方向に沿って交互に積層されており、前記軟磁性体層と前記硬磁性体層とが対になっていることが好ましい。
 前記軟磁性体層の厚さが、前記硬磁性体層の厚さよりも小さいことが好ましい。
 この構成により、磁石の露出面における積層方向の磁気を小さくして鉄などに対する吸着力を抑えるとともに、磁石の摩耗に伴う磁気の変化に基づいてタイヤの摩耗を検知し易くすることができる。
Preferably, the soft magnetic layers and the hard magnetic layers are alternately stacked along the stacking direction, and the soft magnetic layers and the hard magnetic layers are paired.
Preferably, the thickness of the soft magnetic layer is smaller than the thickness of the hard magnetic layer.
With this configuration, the magnetism of the exposed surface of the magnet in the stacking direction can be reduced to suppress the attraction force to iron or the like, and the wear of the tire can be easily detected based on the change in magnetism accompanying the wear of the magnet.
 前記積層方向における一端が前記硬磁性体層であってもよい。
 前記磁化方向における一端が前記硬磁性体層であり、他端が前記軟磁性体層であってもよい。
 磁石の一端を硬磁性体層とすることにより、一端側の磁気の変化に基づいて磁石の摩耗度を効率よく検知することができる。また、他端を軟磁性体層で形成すれば、他端側の磁気の強さや範囲を一端側よりも小さくすることができる。
One end in the stacking direction may be the hard magnetic layer.
One end in the magnetization direction may be the hard magnetic layer and the other end may be the soft magnetic layer.
By forming one end of the magnet as a hard magnetic layer, it is possible to efficiently detect the degree of wear of the magnet based on the change in magnetism on the one end side. Further, if the other end is formed of a soft magnetic layer, the intensity and range of magnetism on the other end side can be made smaller than those on the one end side.
 前記積層方向に直交する切断面の断面積が、前記一端から前記他端に向かうにしたがって大きくなることが好ましい。
 前記切断面の形状が円形であることが好ましい。
 前記硬磁性体層はフェライトであり、前記軟磁性体層はセンダストであることが好ましい。
 これらの構成により、磁石の露出面における鉄などに対する吸着力を抑制しつつ、磁石の摩耗度と磁気の変化との対応を良好にすることができる。
It is preferable that a cross-sectional area of a cut surface orthogonal to the stacking direction increases from the one end toward the other end.
It is preferable that the cut surface has a circular shape.
Preferably, the hard magnetic layer is ferrite, and the soft magnetic layer is sendust.
With these configurations, it is possible to improve the correspondence between the degree of wear of the magnet and the change in magnetism while suppressing the attracting force of the exposed surface of the magnet to iron or the like.
 本発明のタイヤ摩耗センサは、前記タイヤの前記トレッド部に埋設された、本発明の前記磁石と、前記タイヤの内側面における前記磁石と対向する位置に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を備え、前記磁気センサが、前記磁石の前記積層方向と交差する方向の前記磁気を測定して、前記タイヤの摩耗量を計測することを特徴とする。
 磁石が軟磁性体層を備えることにより、着磁方向である積層方向と交差する方向に硬磁性体層からの磁気を誘導することができる。したがって、積層方向の磁気を小さくして磁石の露出面への鉄などの吸着を抑えるとともに、磁石の摩耗度に対応して変化する積層方向と交差する方向の磁気を磁気センサで測定することにより、タイヤの摩耗度を測定することができる。
The tire wear sensor of the present invention is arranged at a position facing the magnet of the present invention embedded in the tread portion of the tire and the magnet on the inner surface of the tire, and is capable of detecting magnetism emitted by the magnet. a magnetic sensor, wherein the magnetic sensor measures the magnetism in a direction intersecting the lamination direction of the magnets to measure the amount of wear of the tire.
By including the soft magnetic layer in the magnet, the magnetism from the hard magnetic layer can be induced in the direction intersecting the stacking direction, which is the magnetization direction. Therefore, by reducing the magnetism in the stacking direction and suppressing the attraction of iron or the like to the exposed surface of the magnet, by measuring the magnetism in the direction intersecting the stacking direction, which changes according to the degree of wear of the magnet, with a magnetic sensor. , tire wear can be measured.
 前記軟磁性体層と前記硬磁性体層とが、前記積層方向に沿って交互に積層されており、前記軟磁性体層と前記硬磁性体層とが対になっており、前記軟磁性体層の厚さが、前記硬磁性体層の厚さよりも小さいことが好ましい。
 この構成により、磁石の露出面における積層方向の磁気を小さくするとともに、磁石の摩耗の進行に伴う磁気の変化を大きくすることができる。したがって、磁石の露出面が鉄などを吸着する力を抑えるとともに、タイヤの摩耗度を精度よく検知することができる。
The soft magnetic layers and the hard magnetic layers are alternately laminated along the lamination direction, the soft magnetic layers and the hard magnetic layers are paired, and the soft magnetic layers The thickness of the layer is preferably smaller than the thickness of the hard magnetic layer.
With this configuration, it is possible to reduce the magnetism in the stacking direction on the exposed surface of the magnet and increase the change in magnetism as the wear of the magnet progresses. Therefore, the exposed surface of the magnet can suppress the force of attracting iron or the like, and the degree of wear of the tire can be detected with high accuracy.
 前記磁石は、前記積層方向における一端が前記硬磁性体層であり、他端が前記軟磁性体層であり、前記一端が、前記磁気センサに対向して配置されていることが好ましい。
 磁石の一端を硬磁性体層とすることにより、一端側の磁気の変化に基づいて摩耗度を検知することができる。また、他端を軟磁性体層で形成すれば、他端側の磁気の強さや範囲を一端側よりも小さくすることができる。
It is preferable that one end of the magnet in the stacking direction is the hard magnetic layer, the other end is the soft magnetic layer, and the one end is arranged to face the magnetic sensor.
By forming one end of the magnet as a hard magnetic layer, the degree of wear can be detected based on the change in magnetism on the one end side. Further, if the other end is formed of a soft magnetic layer, the intensity and range of magnetism on the other end side can be made smaller than those on the one end side.
 タイヤ摩耗センサは磁性体からなる誘導部材を有し、前記磁気センサの磁気検知部は、前記誘導部材と前記磁石との間に配置されていることが好ましい。
 誘導部材が磁石の磁気を誘導することにより、磁石の摩耗進行に伴う磁気の変化をより精度よく測定することができる。
It is preferable that the tire wear sensor has an induction member made of a magnetic material, and the magnetic detection section of the magnetic sensor is arranged between the induction member and the magnet.
Since the induction member guides the magnetism of the magnet, it is possible to more accurately measure the change in magnetism accompanying the progress of wear of the magnet.
 前記磁気センサは、磁気検知部を二つ備え、二つの前記磁気検知部からの差動信号に基づいて、前記磁気を検知することが好ましい。
 二つの前記磁気検知部は、前記積層方向からみたときに、前記磁石の前記磁気の中心点に対して点対称となる位置に配置されていることが好ましい。
 二つの磁気検知部からの差動信号を用いることにより、地磁気などの影響を抑えて、磁気を精度よく検知することができる。
Preferably, the magnetic sensor includes two magnetic detection units and detects the magnetism based on differential signals from the two magnetic detection units.
It is preferable that the two magnetic detection units are arranged at positions that are point-symmetrical with respect to the central point of the magnetism of the magnet when viewed from the lamination direction.
By using the differential signals from the two magnetic detection units, the influence of geomagnetism can be suppressed, and magnetism can be detected with high accuracy.
 前記磁石の前記積層方向に直交する切断面の断面積が、一端から他端に向かうにしたがって大きくなることが好ましい。
 前記磁石の前記積層方向に直交する切断面の形状が円形であることが好ましい。
 これらの構成により、磁石の露出面における鉄などに対する吸着力を抑制しつつ、磁石の摩耗度と磁気の変化との対応関係を向上させることができる。
It is preferable that the cross-sectional area of the magnet perpendicular to the stacking direction increases from one end to the other end.
It is preferable that a cross section of the magnet perpendicular to the stacking direction has a circular shape.
With these configurations, it is possible to improve the correspondence relationship between the degree of wear of the magnet and the change in magnetism while suppressing the attracting force of the exposed surface of the magnet to iron or the like.
 本発明のタイヤは、本発明の前記磁石が、前記トレッド部に埋設されていることを特徴とする。
 硬磁性体層に軟磁性体層を積層したことにより、トレッド部の表面に露出した磁石に鉄などを引き付けることが抑えられる。
The tire of the present invention is characterized in that the magnet of the present invention is embedded in the tread portion.
By laminating the soft magnetic layer on the hard magnetic layer, it is possible to suppress the attraction of iron or the like to the magnet exposed on the surface of the tread portion.
 本発明は、硬磁性体層に加えて軟磁性体層を備えた磁石を用いることにより、タイヤのトレッド部における磁石の露出面の積層方向の磁気を小さくすることができる。したがって、磁石の露出面の鉄などに対する吸着力が抑えられ、鉄などによってタイヤが傷つく危険を小さくすることができる。 According to the present invention, by using a magnet having a soft magnetic layer in addition to a hard magnetic layer, the magnetism of the exposed surface of the magnet in the tread portion of the tire can be reduced in the stacking direction. Therefore, the attraction of the exposed surface of the magnet to iron or the like is suppressed, and the risk of the tire being damaged by iron or the like can be reduced.
(a)タイヤ摩耗検知用の磁石および磁石を備えたタイヤの構成を模式的に示す断面図、(b)磁石を拡大して示す断面図(a) Cross-sectional view schematically showing a configuration of a magnet for tire wear detection and a tire provided with the magnet, (b) Cross-sectional view showing an enlarged magnet (a)(b)磁石の変形例の構成を模式的に示す断面図(a) (b) Cross-sectional view schematically showing the configuration of a modification of the magnet 磁石を備えたタイヤ摩耗センサの構成を模式的に示す断面図、(b)タイヤ摩耗センサを拡大して示す断面図Cross-sectional view schematically showing the configuration of a tire wear sensor provided with a magnet, (b) Cross-sectional view showing an enlarged tire wear sensor タイヤ摩耗センサにおける、磁気検知部と誘導部材と磁石との位置関係を示す平面図FIG. 3 is a plan view showing the positional relationship between the magnetic detector, the induction member, and the magnet in the tire wear sensor; (a)磁石の高さと磁石を用いたタイヤ摩耗センサの出力との関係を示すグラフ、(b)磁石の高さと吸着力との関係を示すグラフ(a) Graph showing the relationship between the height of the magnet and the output of the tire wear sensor using the magnet, (b) Graph showing the relationship between the height of the magnet and the attraction force (a)磁石の高さとタイヤ摩耗センサ側の磁束密度の変化のシミュレーション結果を示すグラフ、(b)磁石の高さとタイヤ表面に露出する側の磁束密度の変化のシミュレーション結果を示すグラフ(a) Graph showing simulation results of changes in magnet height and magnetic flux density on the side of the tire wear sensor, (b) Graph showing simulation results of changes in magnet height and magnetic flux density on the side exposed to the tire surface (a)比較例2の磁石のシミュレーション結果、(b)実施例3の磁石のシミュレーション結果(a) Simulation result of the magnet of Comparative Example 2, (b) Simulation result of the magnet of Example 3 (a)比較例3の磁石のシミュレーション結果、(b)実施例4の磁石のシミュレーション結果(a) Simulation result of the magnet of Comparative Example 3, (b) Simulation result of the magnet of Example 4
 以下、本発明の実施形態について、添付図面を参照して説明する。各図面において同じ部材には同じ番号を付して、適宜、説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same numbers are assigned to the same members in each drawing, and the description thereof is omitted as appropriate.
<タイヤ摩耗検知用の磁石>
 図1(a)は、タイヤ摩耗検知用の磁石1および磁石1を備えたタイヤ2の構成を模式的に示す断面図であり、図1(b)は磁石1を拡大して示す断面図である。
<Magnet for tire wear detection>
FIG. 1(a) is a cross-sectional view schematically showing the structure of a magnet 1 for tire wear detection and a tire 2 provided with the magnet 1, and FIG. be.
 タイヤ摩耗検知用の磁石1は、軟磁性体からなる軟磁性体層11と、硬磁性体からなる硬磁性体層12と、を備えている。磁石1は、軟磁性体層11と硬磁性体層12との積層方向が、タイヤ2の径方向(Y軸方向)となるようにタイヤ2に埋設される。磁石1は、積層方向に着磁され、磁化方向両端の磁極端13と磁極端14とが異なる磁極で構成されている。 The tire wear detection magnet 1 includes a soft magnetic layer 11 made of a soft magnetic material and a hard magnetic layer 12 made of a hard magnetic material. The magnet 1 is embedded in the tire 2 so that the lamination direction of the soft magnetic layer 11 and the hard magnetic layer 12 is aligned with the radial direction (Y-axis direction) of the tire 2 . The magnet 1 is magnetized in the stacking direction, and the magnetic pole ends 13 and 14 at both ends in the magnetization direction are composed of different magnetic poles.
 硬磁性体層12からの磁気は、軟磁性体層11によって磁石1が着磁された積層方向から逸れる方向に誘導される。このため、磁石1の磁極端14からの積層方向への磁気を抑えて、トレッド部21の表面に露出した磁極端14が鉄などを吸着する力を小さくすることができる。 The magnetism from the hard magnetic layer 12 is induced by the soft magnetic layer 11 in a direction deviating from the lamination direction in which the magnet 1 is magnetized. Therefore, the magnetism from the pole tip 14 of the magnet 1 in the stacking direction can be suppressed, and the force with which the pole tip 14 exposed on the surface of the tread portion 21 attracts iron or the like can be reduced.
 軟磁性体層11を構成する材料は、軟磁性材料であれば特に限定されない。パーマロイ(Fe-Ni合金)、他の鉄系材料であるセンダスト(Fe-Si-Al合金)、鉄系または非鉄系のアモルファス磁性合金、フェライト(ソフト・フェライト)などが例示される。これら例示した材料のうち、磁極端14からのY軸方向の磁気を抑制する観点から、センダストが好ましい。 The material forming the soft magnetic layer 11 is not particularly limited as long as it is a soft magnetic material. Examples include permalloy (Fe--Ni alloy), sendust (Fe--Si--Al alloy) which is another iron-based material, iron-based or non-ferrous amorphous magnetic alloy, and ferrite (soft ferrite). Among these exemplified materials, Sendust is preferable from the viewpoint of suppressing magnetism in the Y-axis direction from the pole tip 14 .
 硬磁性体層12は、硬磁性材料であれば特に限定されない。酸化鉄を主成分とするフェライト(ハード・フェライト)、アルニコ(Al-Ni-Co合金)、サマリウムコバルトが挙げられる。これら例示した材料のうち、磁極端14からのY軸方向の磁気を抑制する観点から、フェライトが好ましい。 The hard magnetic layer 12 is not particularly limited as long as it is made of a hard magnetic material. Examples include ferrite (hard ferrite) containing iron oxide as a main component, alnico (Al--Ni--Co alloy), and samarium-cobalt. Among these exemplified materials, ferrite is preferable from the viewpoint of suppressing magnetism in the Y-axis direction from the pole tip 14 .
 磁極端13は、磁石1の積層方向におけるタイヤ2の中心側の一端であり、硬磁性体層12からなる。仮に磁極端13を軟磁性体層11で構成した場合に比べて、磁極端13を硬磁性体層12で構成した場合の方が、磁石1の発する磁界をタイヤ2の中心に近い側へ広げることができる。そのため、硬磁性体層12からなる磁極端13に対向するように配置された磁気センサ6(図3(a)、図3(b)参照)によって、磁石1の磁気をより検知しやすくすることができる。 The pole tip 13 is one end on the center side of the tire 2 in the stacking direction of the magnet 1 and is composed of the hard magnetic layer 12 . The magnetic field generated by the magnet 1 spreads closer to the center of the tire 2 when the magnetic pole tip 13 is made of the hard magnetic layer 12 than when the magnetic pole tip 13 is made of the soft magnetic layer 11. be able to. Therefore, the magnetism of the magnet 1 can be detected more easily by the magnetic sensor 6 (see FIGS. 3A and 3B) arranged so as to face the pole tip 13 made of the hard magnetic layer 12. can be done.
 磁極端14は、磁石1の積層方向におけるトレッド部21の表面側の他端である。磁極端14からの磁気が、硬磁性体層12に隣接して設けられている軟磁性体層11によって積層方向と交差する方向に誘導されることで、積層方向の磁気が小さくなる。したがって、磁極端14に鉄などを吸着する力が硬磁性体のみからなる従来の磁石よりも小さくなる。 The pole tip 14 is the other end on the surface side of the tread portion 21 in the lamination direction of the magnet 1 . The magnetism from the pole tip 14 is induced in the direction intersecting the stacking direction by the soft magnetic layer 11 provided adjacent to the hard magnetic layer 12, thereby reducing the magnetism in the stacking direction. Therefore, the force of attracting iron or the like to the pole tip 14 is smaller than that of a conventional magnet made only of a hard magnetic material.
 図1(b)に示す、軟磁性体層11が硬磁性体層12の間に挟まれた構造とする場合、軟磁性体層11の位置によって、磁石1の使用開始時の効果と、摩耗が進んだ時における効果とが変化する。軟磁性体層11をトレッド部21の表面側の磁極端14の近くに設ければ、使用開始時における効果が大きくなる。軟磁性体層11をタイヤ2の内側面22側の磁極端13の近くに設ければ、磁石1の摩耗が進んだ時における磁極端14からの積層方向の磁気を抑制する効果が大きくなる。磁極端13を軟磁性体層11とすれば、硬磁性体層12が消滅するまで積層方向の磁気を抑制できるが、図1(b)に示すように磁極端13と磁極端14の中間に軟磁性体層11を設ければ、上記二つの効果のバランスをとることができる。 In the case of the structure shown in FIG. The effect changes when progressing. If the soft magnetic layer 11 is provided near the pole tip 14 on the surface side of the tread portion 21, the effect at the start of use is enhanced. If the soft magnetic layer 11 is provided near the pole tip 13 on the inner surface 22 side of the tire 2, the effect of suppressing the magnetism in the stacking direction from the pole tip 14 when the wear of the magnet 1 progresses increases. If the soft magnetic layer 11 is used as the pole tip 13, the magnetism in the lamination direction can be suppressed until the hard magnetic layer 12 disappears. By providing the soft magnetic layer 11, the above two effects can be balanced.
 磁石1は、軟磁性材料および硬磁性材料の粉粒体(磁性粉)が高分子材料中に分散されて形成された軟磁性体層11および硬磁性体層12が積層され、積層方向に着磁されて構成されている。その磁化方向がタイヤ2の半径方向(Y軸方向)と一致するような姿勢でトレッド部21に埋設される。高分子材料としては、トレッド部21に用いられるトレッドゴム組成物と同じ配合のゴム材料などが好ましい。 The magnet 1 is formed by laminating a soft magnetic layer 11 and a hard magnetic layer 12 formed by dispersing particles (magnetic powder) of a soft magnetic material and a hard magnetic material in a polymer material. It is composed of magnets. It is embedded in the tread portion 21 in such a posture that its magnetization direction matches the radial direction (Y-axis direction) of the tire 2 . As the polymeric material, a rubber material having the same composition as the tread rubber composition used for the tread portion 21 is preferable.
 磁石1は、磁極端13の表面において1mT以上の磁束密度を有することが好ましい。また、磁石1の磁気によって、車載される他の電子機器などに悪影響を与えないようにする観点から、磁石1の磁極端13における表面磁束密度は600mT以下であることが好ましい。道路走行時に路面に落ちている鉄釘などの金属片を吸着しないようにするという観点から、磁石1の磁極端14における表面磁束密度は60mT以下であることが好ましい。なお、表面磁束密度は、着磁された磁石1の表面にテスラメーターを直接接触させることにより測定される値である。 The magnet 1 preferably has a magnetic flux density of 1 mT or more on the surface of the pole tip 13. From the viewpoint of preventing the magnetism of the magnet 1 from adversely affecting other electronic devices mounted on the vehicle, the surface magnetic flux density at the pole tip 13 of the magnet 1 is preferably 600 mT or less. The surface magnetic flux density at the pole tip 14 of the magnet 1 is preferably 60 mT or less from the viewpoint of preventing metal pieces such as iron nails falling on the road surface from being attracted while traveling on the road. The surface magnetic flux density is a value measured by directly contacting the magnetized surface of the magnet 1 with a Tesla meter.
 図2(a)および図2(b)は、図1(b)に示した磁石1の変形例としての、磁石3および磁石4を模式的に示す断面図である。これらの図に示すように、磁石3および磁石4はいずれも、未使用(未摩耗)状態においては軟磁性体層11と硬磁性体層12とが、積層方向に沿って交互に積層された積層構造を備えている。 FIGS. 2(a) and 2(b) are sectional views schematically showing magnets 3 and 4 as modifications of the magnet 1 shown in FIG. 1(b). As shown in these figures, in both the magnets 3 and 4, the soft magnetic layers 11 and the hard magnetic layers 12 are alternately laminated along the lamination direction in an unused (unworn) state. It has a laminated structure.
 磁石3および磁石4は、積層方向における一端の磁極端13が硬磁性体層12であり、他端の磁極端14が軟磁性体層11である。この構成により、未使用のタイヤ2(磁石1の摩耗前)において、磁極端13側に比べて磁極端14側に形成される積層方向の磁気を抑え、磁極端14に鉄釘などが吸着されて、トレッド部21の表面に傷がついたり、タイヤ2がパンクしたりする危険を小さくすることができる。 The magnets 3 and 4 have the hard magnetic layer 12 at the magnetic pole tip 13 at one end in the stacking direction, and the soft magnetic layer 11 at the magnetic pole tip 14 at the other end. With this configuration, in the unused tire 2 (before the magnet 1 is worn), the magnetism in the stacking direction formed on the pole tip 14 side is suppressed compared to the pole tip 13 side, and an iron nail or the like is attracted to the pole tip 14. Therefore, the risk of the surface of the tread portion 21 being damaged or the tire 2 being punctured can be reduced.
 図2(a)および図2(b)に示すように、軟磁性体層11は硬磁性体層12よりも薄いことが好ましい。軟磁性体層11の厚さL11を硬磁性体層12の厚さL12よりも小さくすることにより、軟磁性体層11に磁路が形成され易くなる。このため、軟磁性体層11は、硬磁性体層12からの磁気を積層方向以外の方向に誘導しやすくなる。したがって、磁石3、磁石4がタイヤ2(図1(a)参照)に埋設された状態において、トレッド部21の表面に現れる磁極端14からの積層方向の磁気の磁束密度を小さくすることができる。 As shown in FIGS. 2A and 2B, the soft magnetic layer 11 is preferably thinner than the hard magnetic layer 12 . By making the thickness L 11 of the soft magnetic layer 11 smaller than the thickness L 12 of the hard magnetic layer 12 , a magnetic path is easily formed in the soft magnetic layer 11 . Therefore, the soft magnetic layer 11 can easily induce the magnetism from the hard magnetic layer 12 in a direction other than the lamination direction. Therefore, in a state where the magnets 3 and 4 are embedded in the tire 2 (see FIG. 1A), the magnetic flux density in the stacking direction from the pole tip 14 appearing on the surface of the tread portion 21 can be reduced. .
 磁極端14からの積層方向の磁気の磁束密度を小さくする観点から、厚さL11と厚さL12との比L11/L12は、1/100以上1/1未満が好ましく、1/10以上1/2未満がより好ましく、1/7以上1/3未満がさらに好ましい。 From the viewpoint of reducing the magnetic flux density in the stacking direction from the pole tip 14 , the ratio L11 / L12 between the thickness L11 and the thickness L12 is preferably 1/100 or more and less than 1/1. It is more preferably 10 or more and less than 1/2, and still more preferably 1/7 or more and less than 1/3.
 同様の観点から、軟磁性体層11の厚さL11は、0.05mm以上1mm以下が好ましく、0.1mm以上0.5mm以下がより好ましく、0.15mm以上0.3mm以下がさらに好ましい。また、硬磁性体層12の厚さL12は、0.1mm以上5mm以下が好ましく、0.3mm以上3mm以下がより好ましく、0.5mm以上2mm以下がさらに好ましい。 From the same point of view, the thickness L 11 of the soft magnetic layer 11 is preferably 0.05 mm or more and 1 mm or less, more preferably 0.1 mm or more and 0.5 mm or less, and even more preferably 0.15 mm or more and 0.3 mm or less. The thickness L 12 of the hard magnetic layer 12 is preferably 0.1 mm or more and 5 mm or less, more preferably 0.3 mm or more and 3 mm or less, and even more preferably 0.5 mm or more and 2 mm or less.
 積層方向に直交する断面の面積がタイヤ2の中心から外側に向かって大きくなる形状(略錐台形状)の磁石4は、均一な形状の磁石3よりも、磁極端13からの磁気とタイヤ2の摩耗度との線形性が高い。また、磁石4には、磁極端14側に形成される積層方向の磁気抑制効果が高く、タイヤ2への埋設が容易であるという特長がある。磁石4の形状は、Y軸方向に平行な断面のX軸方向の幅Wが磁極端13から磁極端14に向かって連続的に大きくなる円錐台であり、磁化方向であるY軸に直交するXZ平面で切断した切断面の断面積が磁極端13から磁極端14に向かって連続的に大きくなる。なお、図2(b)には、側面が直線状の円錐台を示したが、側面が内側へ向かってくびれた形状や、外側へ向かって膨らんだ形状としてもよい。 The magnet 4 having a shape (substantially frustum shape) in which the area of the cross section perpendicular to the stacking direction increases from the center of the tire 2 toward the outside has a greater effect on the magnetism from the pole tip 13 and the tire 2 than the magnet 3 with a uniform shape. high linearity with the degree of wear. Moreover, the magnet 4 has a high effect of suppressing magnetism in the stacking direction formed on the magnetic pole tip 14 side, and has the advantage of being easily embedded in the tire 2 . The shape of the magnet 4 is a truncated cone in which the width W in the X-axis direction of the cross section parallel to the Y-axis direction increases continuously from the pole tip 13 to the pole tip 14, and is orthogonal to the Y-axis, which is the magnetization direction. The cross-sectional area of the cut surface cut along the XZ plane increases continuously from the pole tip 13 toward the pole tip 14 . Although FIG. 2B shows a truncated cone with straight side surfaces, the side surfaces may be constricted inward or bulging outward.
 磁極端14の表面に鉄などを吸着する力を小さくする観点から、軟磁性体層11と硬磁性体層12とは、積層方向に沿って交互に積層され、軟磁性体層11と硬磁性体層12とが対になっていることが好ましい。軟磁性体層11と硬磁性体層12とを一組として交互に積層することにより、軟磁性体層11によって、硬磁性体層12からの磁気を着磁方向と交差する方向に効果的に誘導することができる。 The soft magnetic layers 11 and the hard magnetic layers 12 are alternately laminated along the stacking direction from the viewpoint of reducing the force that attracts iron or the like to the surface of the pole tip 14 . It is preferably paired with the body layer 12 . By alternately laminating the soft magnetic layers 11 and the hard magnetic layers 12 as a set, the soft magnetic layers 11 effectively direct the magnetism from the hard magnetic layers 12 in the direction crossing the magnetization direction. can be induced.
 軟磁性体層11と硬磁性体層12とを合わせた積層数は、4以上が好ましく、10以上がより好ましく、20以上がさらに好ましい。積層数の上限は、磁石3および磁石4の積層方向の長さ、吸着力を抑える効果、製造効率などの観点から適切な数とすればよいが、例えば、40以下とすればよい。 The total number of laminated layers of the soft magnetic layers 11 and the hard magnetic layers 12 is preferably 4 or more, more preferably 10 or more, and even more preferably 20 or more. The upper limit of the number of layers may be set to an appropriate number from the viewpoint of the length of the magnets 3 and 4 in the stacking direction, the effect of suppressing the attractive force, and the manufacturing efficiency.
<タイヤ摩耗センサ>
 図3(a)は、磁石1を備えたタイヤ摩耗センサ5の構成を模式的に示す断面図であり、図3(b)はタイヤ摩耗センサ5を拡大して示す断面図である。同図に示すように、タイヤ摩耗センサ5は、タイヤ摩耗検知用の磁石1と磁気センサ6とを備えており、磁気センサ6が磁石1の発する磁気の変化を検知してタイヤ2の摩耗量を計測する。
<Tire wear sensor>
FIG. 3(a) is a cross-sectional view schematically showing the configuration of a tire wear sensor 5 having a magnet 1, and FIG. 3(b) is a cross-sectional view showing the tire wear sensor 5 in an enlarged manner. As shown in the figure, the tire wear sensor 5 includes a tire wear detection magnet 1 and a magnetic sensor 6. The magnetic sensor 6 detects changes in the magnetism emitted by the magnet 1 and detects the wear amount of the tire 2. to measure
 タイヤ2のトレッド部21に埋設された磁石1は、硬磁性体層12に加えて軟磁性体層11を備えているため、トレッド部21の表面に露出する磁極端14からのY軸方向の磁気を小さくすることができる。なお、磁石1に代えて、図2(a)、図2(b)に示した磁石3、磁石4等を用いてタイヤ摩耗センサ5を構成してもよい。 Since the magnet 1 embedded in the tread portion 21 of the tire 2 includes the soft magnetic layer 11 in addition to the hard magnetic layer 12 , the Y-axis direction from the pole tip 14 exposed on the surface of the tread portion 21 is magnetism can be reduced. The tire wear sensor 5 may be configured using the magnets 3 and 4 shown in FIGS. 2(a) and 2(b) instead of the magnet 1.
 磁気センサ6は、タイヤ2の内側面22において、磁石1と対向し、かつ磁石1が発する磁気を検知可能な位置に配置されている。タイヤのトレッド部21とともに磁石1が摩耗することにより、磁石1の磁気が変化する。タイヤ摩耗センサ5は、トレッド部21の摩耗に伴う磁気の変化を磁気センサ6により検知して、タイヤ2の摩耗量を検出することができる。 The magnetic sensor 6 is arranged on the inner surface 22 of the tire 2 at a position facing the magnet 1 and capable of detecting the magnetism emitted by the magnet 1 . As the magnet 1 wears together with the tread portion 21 of the tire, the magnetism of the magnet 1 changes. The tire wear sensor 5 can detect the amount of wear of the tire 2 by detecting a change in magnetism accompanying wear of the tread portion 21 with the magnetic sensor 6 .
 磁気センサ6は、磁石1の積層方向(Y軸方向)と交差するX軸方向の磁気を検知する。軟磁性体層11によって、磁石1からの磁気のうち着磁方向であるY軸方向の磁気が小さくなる。そこで、磁気センサ6は、磁石1の着磁方向に直交するX軸方向の磁気を測定することで、タイヤ2の摩耗量の測定における精度を向上させている。 The magnetic sensor 6 detects magnetism in the X-axis direction that intersects the lamination direction (Y-axis direction) of the magnet 1 . The soft magnetic layer 11 reduces the magnetism in the Y-axis direction, which is the magnetization direction, of the magnetism from the magnet 1 . Therefore, the magnetic sensor 6 measures the magnetism in the X-axis direction perpendicular to the magnetization direction of the magnet 1, thereby improving the accuracy in measuring the wear amount of the tire 2. FIG.
 磁気センサ6は、磁性体からなる誘導部材61を有しており、誘導部材61と磁石1との間に磁気検知部62が配置されている。磁石1の構成により、タイヤ2のトレッド部21の表面側の磁極端14からのY軸方向の磁気を小さくしつつ、磁気検知部62の配置位置の工夫により、磁気センサ6の感度を良好にすることができる。 The magnetic sensor 6 has an induction member 61 made of a magnetic material, and a magnetic detection part 62 is arranged between the induction member 61 and the magnet 1 . The configuration of the magnet 1 reduces the magnetism in the Y-axis direction from the magnetic pole tip 14 on the surface side of the tread portion 21 of the tire 2, and the arrangement position of the magnetic detection portion 62 is devised to improve the sensitivity of the magnetic sensor 6. can do.
 図3(a)および図3(b)に示すように、磁気センサ6は、磁気検知部62を二つ備えており、二つの磁気検知部62からの差動信号に基づいて磁石1の磁気を検知する。磁気検知部62の検知した磁気の差分出力を用いることにより、タイヤ2の摩耗度を精度よく検知することができる。 As shown in FIGS. 3(a) and 3(b), the magnetic sensor 6 includes two magnetic detection units 62. Based on the differential signals from the two magnetic detection units 62, the magnetic field of the magnet 1 is detected. to detect. By using the difference output of the magnetism detected by the magnetism detector 62, the degree of wear of the tire 2 can be detected with high accuracy.
 図4は、図3(a)、図3(b)のタイヤ摩耗センサ5における、磁石1と、磁気センサ6における磁気検知部62と、誘導部材61との位置関係を模式的に示した平面図である。同図は、磁石1の磁化方向であるY軸方向から平面視した位置関係を模式的に示している。同図および図3(b)に示すように、磁気検知部62は磁石1と誘導部材61との間に配置されている。また、磁気検知部62は、磁化方向からみたときに、磁石1の外郭よりも外側に位置する部分を備えるように配置されている。この構成により、タイヤ摩耗センサ5は、タイヤ2の摩耗度の進行に伴うX軸方向の磁気の変化を精度良く測定することができる。これは、磁石1が発する磁界は磁石1から誘導部材61に誘導されるため、磁石1から誘導部材61に誘導される磁界、すなわち磁気検知部62が配置された箇所における磁界は磁束密度が高くなっているからである。また、誘導部材61がX方向において磁石1に対して離れた位置に配置されているため、磁気検知部62が配置された箇所における磁界の磁気は、磁気検知部62が検知可能なX軸方向の成分を必ず含んでいるからである。 FIG. 4 is a plan view schematically showing the positional relationship between the magnet 1, the magnetic detection portion 62 of the magnetic sensor 6, and the guide member 61 in the tire wear sensor 5 of FIGS. 3(a) and 3(b). It is a diagram. This figure schematically shows the positional relationship viewed from the Y-axis direction, which is the magnetization direction of the magnet 1 . As shown in the figure and FIG. 3(b), the magnetic detector 62 is arranged between the magnet 1 and the guide member 61. As shown in FIG. Moreover, the magnetic detection part 62 is arranged so as to have a portion positioned outside the outer shell of the magnet 1 when viewed from the magnetization direction. With this configuration, the tire wear sensor 5 can accurately measure changes in magnetism in the X-axis direction as the degree of wear of the tire 2 progresses. This is because the magnetic field generated by the magnet 1 is induced from the magnet 1 to the induction member 61, so the magnetic field induced from the magnet 1 to the induction member 61, that is, the magnetic field at the location where the magnetic detection unit 62 is arranged has a high magnetic flux density. It is because In addition, since the guiding member 61 is arranged at a position away from the magnet 1 in the X direction, the magnetism of the magnetic field at the location where the magnetic detection unit 62 is arranged is the X-axis direction detectable by the magnetic detection unit 62. This is because it always contains the components of
 二つの磁気検知部62は、磁石1の磁化方向からみたときに、磁石1からの磁気の中心点すなわち磁石1の中心軸に対して点対称となる位置に配置されている。二つの磁気検知部62および二つの誘導部材61は、これらの中心を結んだX軸に平行な直線L上に位置している。また、2つの磁気検知部62は、磁石1をXZ平面で切断した断面円の中心点Oに対して点対称に配置されている。2つの誘導部材61も、中心点Oに対して対称に配置されている。 The two magnetic detection parts 62 are arranged at points symmetrical with respect to the central point of the magnetism from the magnet 1 , that is, the central axis of the magnet 1 when viewed from the magnetization direction of the magnet 1 . The two magnetic detectors 62 and the two guide members 61 are positioned on a straight line L parallel to the X-axis connecting their centers. The two magnetic detection units 62 are arranged point-symmetrically with respect to the center point O of the cross-sectional circle obtained by cutting the magnet 1 along the XZ plane. The two guide members 61 are also arranged symmetrically with respect to the center point O. As shown in FIG.
 上述した構成により、一方の磁気検知部62により検知される磁石1の放出磁気Maと、他方の磁気検知部62により検知される磁石1の放出磁気Mbとは、磁束密度が同じで磁気の向きが逆になる。したがって、2つの磁気検知部62が検知した放出磁気MaおよびMbの一方のみに基づいて、タイヤ2の摩耗を検知することができるため、タイヤ摩耗センサ5の冗長性が向上する。 With the above-described configuration, the emitted magnetism Ma of the magnet 1 detected by one magnetic detector 62 and the emitted magnetism Mb of the magnet 1 detected by the other magnetic detector 62 have the same magnetic flux density and magnetic direction. is reversed. Therefore, wear of the tire 2 can be detected based on only one of the emitted magnetism Ma and Mb detected by the two magnetic detectors 62, so the redundancy of the tire wear sensor 5 is improved.
 また、タイヤ摩耗センサ5による磁気の測定においてノイズとなる外部磁気は、2つの磁気検知部62に対して同じ影響を及ぼす。このため、二つの磁気検知部62からの出力差(差分、差動信号)を用いれば、外部磁場の成分は相殺され、外部磁気の影響を取り除くことができる。二つの磁気検知部62からの出力は磁気の向きが逆であるから、両出力の差を用いることにより、ノイズの影響を取り除きながら、一つの磁気検知部62からの出力の二倍の大きさの出力が得られる。したがって、磁気検知部62の出力の差を用いることにより、外部磁気のようなノイズの影響を取り除くとともに出力を大きくして、タイヤ2の摩耗度を精度よく測定することができる。 In addition, the external magnetism that becomes noise in the measurement of magnetism by the tire wear sensor 5 has the same effect on the two magnetism detection units 62 . Therefore, by using the output difference (difference, differential signal) from the two magnetic detectors 62, the components of the external magnetic field are canceled and the influence of the external magnetism can be removed. Since the outputs from the two magnetic detectors 62 have opposite magnetic directions, by using the difference between the two outputs, the magnitude of the output from one magnetic detector 62 can be doubled while eliminating the influence of noise. gives the output of Therefore, by using the difference in the output of the magnetism detecting section 62, the influence of noise such as external magnetism can be removed and the output can be increased, so that the degree of wear of the tire 2 can be measured with high accuracy.
 二つの磁気検知部62で地磁気に影響されず確実に磁束密度を測定するために、磁気検知部62が配置されている測定位置において、磁石1は0.05mT以上の磁束密度を有するように構成されていることが好ましく、0.5mT以上の磁束密度を有するように構成されていることがより好ましい。 The magnet 1 is configured to have a magnetic flux density of 0.05 mT or more at the measurement position where the magnetic detectors 62 are arranged in order to reliably measure the magnetic flux density with the two magnetic detectors 62 without being affected by the geomagnetism. and more preferably configured to have a magnetic flux density of 0.5 mT or more.
 本明細書において開示された実施形態は、全ての点で例示であってこの実施形態に制限されるものではない。本発明の範囲は、上記した実施形態のみの説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。 The embodiments disclosed in this specification are illustrative in all respects and are not limited to these embodiments. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
<実施例1>
 以下の形状を備えた円錐台形状の磁石(図2(b)参照)を用いて、下底面側からの摩耗の進行による磁束密度の変化に伴う、X軸方向(図3(a)、図3(b)参照)の磁気に対する磁気センサの出力および下底面側の鉄に対する吸着力(Y軸方向の磁束密度)の変化を測定した。
 初期形状:上底面の直径16mm、下底面の直径24mm、高さ18mm、厚さ1mmの軟磁性体層と、厚さ1mmの硬磁性体層とが交互に各9層積層(積層数18)
 軟磁性体層:パーマロイ
 硬磁性体層:フェライト(ハード・フェライト)
<Example 1>
Using a truncated cone-shaped magnet (see FIG. 2(b)) having the following shape, the X-axis direction (FIG. 3(a), 3(b)), and changes in the magnetic attraction force (magnetic flux density in the Y-axis direction) to the iron on the bottom surface side were measured.
Initial shape: Upper bottom diameter 16 mm, lower bottom diameter 24 mm, height 18 mm, 1 mm thick soft magnetic layer and 1 mm thick hard magnetic layer are alternately laminated (18 layers).
Soft magnetic layer: permalloy Hard magnetic layer: ferrite (hard ferrite)
<実施例2>
 磁石の形状について上底面の直径を16mmから22mmに変更したこと以外は、実施例1と同じ磁石を用いて、下底面側からの摩耗の進行に伴う、磁気センサの出力、および下底面側の鉄に対する吸着力の変化を測定した。
<Example 2>
Regarding the shape of the magnet, the same magnet as in Example 1 was used except that the diameter of the upper bottom surface was changed from 16 mm to 22 mm. The change in adsorption force for iron was measured.
<比較例1>
 実施例1と同じ円錐台形状の磁石を硬磁性体層のみを用いて形成し、下底面側からの摩耗の進行に伴う、磁気センサの出力および下底面側の吸着力の変化を測定した。
<Comparative Example 1>
A truncated conical magnet similar to that of Example 1 was formed using only the hard magnetic layer, and changes in the output of the magnetic sensor and the adsorption force on the bottom surface side were measured as the wear progressed from the bottom surface side.
 図5(a)は、タイヤ摩耗検知用の磁石の高さ(厚み)と該タイヤ摩耗検知用の磁石を用いたタイヤ摩耗センサの出力との関係を示すグラフであり、図5(b)は、タイヤ摩耗検知用の磁石の高さ(厚み)と吸着力との関係を示すグラフである。図5(a)および図5(b)における測定値は、いずれも、比較例1における初期のセンサ出力および吸着力(100%)に対する比率(%)として示している。 FIG. 5(a) is a graph showing the relationship between the height (thickness) of a tire wear detection magnet and the output of a tire wear sensor using the tire wear detection magnet, and FIG. 3 is a graph showing the relationship between the height (thickness) of a magnet for tire wear detection and the attraction force. The measured values in FIGS. 5(a) and 5(b) are both shown as a ratio (%) to the initial sensor output and adsorption force (100%) in Comparative Example 1.
 センサ出力は、図5(a)に示すように、実施例1、2の磁石を用いた場合も、比較例1の磁石を用いた場合と同様に、摩耗の進行に伴って直線的に変化した。すなわち、軟磁性体層と硬磁性体層とを交互に積層した磁石を用いた場合も、硬磁性体層のみからなる磁石を用いた場合と同様、摩耗の進行度とセンサ出力との線形性が良好であった。 As shown in FIG. 5(a), when the magnets of Examples 1 and 2 are used, the sensor output changes linearly with the progress of wear, similarly to when the magnet of Comparative Example 1 is used. did. That is, even when using a magnet in which soft magnetic layers and hard magnetic layers are alternately laminated, the linearity between the progress of wear and the sensor output is similar to the case where a magnet consisting of only hard magnetic layers is used. was good.
 対して、図5(b)に示すように、実施例1および実施例2の磁石におけるタイヤのトレッド部の表面に露出する下底面の吸着力は、比較例1よりも小さくなった。すなわち、軟磁性体層と硬磁性体層とを交互に積層した磁石の吸着力は、硬磁性体層のみからなる磁石の初期値の50%以下に抑えられた。この結果から、軟磁性体層を設けることにより、磁石の露出面の垂直方向の磁気を小さくして、鉄などを引き寄せる吸着力が小さくなることが分かった。 On the other hand, as shown in FIG. 5(b), in the magnets of Examples 1 and 2, the attraction force of the lower bottom surface exposed on the surface of the tread portion of the tire was smaller than that of Comparative Example 1. That is, the attracting force of the magnet in which the soft magnetic layer and the hard magnetic layer are alternately laminated was suppressed to 50% or less of the initial value of the magnet composed only of the hard magnetic layer. From these results, it was found that the provision of the soft magnetic layer reduces the magnetism in the perpendicular direction of the exposed surface of the magnet, thereby reducing the attractive force for attracting iron and the like.
<実施例3>
 以下の形状を備えた円錐台形状の磁石(図2(b)参照)を用いて、下底面側からの摩耗の進行による磁束密度の変化に伴う、X軸方向(図3(a)、図3(b)参照)の磁気に対する磁気センサの出力および下底面側の吸着力の変化を測定した。
 初期形状:上底面の直径16mm、下底面の直径28mm、高さ18mm、厚さ1mmの軟磁性体層と、厚さ0.2mmの硬磁性体層とが交互に各15層積層(積層数30)
 軟磁性体層:センダスト
 硬磁性体層:フェライト(ハード・フェライト)
<Example 3>
Using a truncated cone-shaped magnet (see FIG. 2(b)) having the following shape, the X-axis direction (FIG. 3(a), 3(b)), the output of the magnetic sensor and the change in the adsorption force on the bottom surface side were measured.
Initial shape: 15 layers of soft magnetic layers with an upper bottom diameter of 16 mm, a lower bottom diameter of 28 mm, a height of 18 mm, and a thickness of 1 mm and a hard magnetic layer with a thickness of 0.2 mm are alternately laminated (number of layers) 30)
Soft magnetic layer: Sendust Hard magnetic layer: Ferrite (hard ferrite)
<比較例2>
 実施例3と同じ円錐台形状の磁石を硬磁性体層のみを用いて形成し、下底面側からの摩耗の進行に伴う、磁気センサの出力および下底面側の吸着力の変化を測定した。
<Comparative Example 2>
A truncated conical magnet similar to that of Example 3 was formed using only the hard magnetic layer, and changes in the output of the magnetic sensor and the attractive force on the bottom surface side were measured as the wear progressed from the bottom surface side.
 図6(a)は、磁石の高さ(厚み)の変化に伴うセンサ側の磁束密度の変化のシミュレーション結果を示すグラフであり、図6(b)は磁石の高さの変化に伴う該磁石の他方端(タイヤのトレッド部表面側)の磁束密度の変化のシミュレーション結果を示すグラフである。これらのグラフにおけるシミュレーションにより得られた測定値は、図5(a)、図5(b)同様、比較例2の初期値(100%)に対する比率(%)として示した。 FIG. 6(a) is a graph showing simulation results of changes in magnetic flux density on the sensor side with changes in the height (thickness) of the magnet, and FIG. 2 is a graph showing simulation results of changes in magnetic flux density at the other end (on the tread surface side of the tire). The measured values obtained by simulation in these graphs are shown as a ratio (%) to the initial value (100%) of Comparative Example 2, as in FIGS. 5(a) and 5(b).
 図6(a)、図6(b)に示すシミュレーション結果からも、図5(a)、図5(b)に示す測定結果同様、軟磁性体層を設けることにより、センサ感度の低下を抑制しつつ、トレッド部表面に現れる下底面の磁束密度を抑えて、鉄などを引き付ける吸着力を小さくできることが示された。 From the simulation results shown in FIGS. 6A and 6B, similarly to the measurement results shown in FIGS. At the same time, it was shown that the magnetic flux density of the lower bottom surface appearing on the tread surface can be suppressed, and the adsorption force that attracts iron or the like can be reduced.
 図7(a)および図7(b)は、磁石内に発生する磁気のシミュレーション結果であり、各図に示される矢印が磁気の向きを示している。図7(a)は、硬磁性体層のみからなる比較例2の磁石における磁気のシミュレーション結果であり、図7(b)は、軟磁性体層と硬磁性体層とが交互に積層された実施例3の磁石における磁気のシミュレーション結果である。硬磁性体層のみからなる比較例2の磁石では、図7(a)に示すように、その磁化方向であるY軸方向に平行な磁気のみが生じる。対して、軟磁性体層と硬磁性体層とを交互に積層した実施例3の磁石は、図7(b)に示すように、軟磁性体層によって磁化方向(積層方向)であるY軸方向に交差する方向に磁気が誘導されることが示された。  Figures 7(a) and 7(b) are simulation results of the magnetism generated in the magnet, and the arrows shown in each figure indicate the direction of the magnetism. FIG. 7(a) shows the magnetism simulation results for the magnet of Comparative Example 2 consisting of only hard magnetic layers, and FIG. FIG. 10 is a simulation result of magnetism in the magnet of Example 3. FIG. In the magnet of Comparative Example 2, which consists of only hard magnetic layers, only magnetism parallel to the Y-axis direction, which is the direction of magnetization, is generated as shown in FIG. 7(a). On the other hand, in the magnet of Example 3 in which the soft magnetic layers and the hard magnetic layers are alternately laminated, as shown in FIG. It has been shown that the magnetism is induced in the cross-direction.
<実施例4>
 以下の形状を備えた円柱形状の磁石(図2(a)参照)における磁気をシミュレーションした。
 初期形状:底面の直径18mm、高さ18mm、厚さ1mmの軟磁性体層と、厚さ0.2mmの硬磁性体層とが交互に各13層積層(積層数26)
 軟磁性体層:センダスト
 硬磁性体層:フェライト(ハード・フェライト)
<Example 4>
Magnetism in a cylindrical magnet (see FIG. 2(a)) with the following shape was simulated.
Initial shape: 13 soft magnetic layers with a bottom diameter of 18 mm, a height of 18 mm, and a thickness of 1 mm and hard magnetic layers with a thickness of 0.2 mm are alternately laminated (26 layers).
Soft magnetic layer: Sendust Hard magnetic layer: Ferrite (hard ferrite)
<比較例3>
 硬磁性体層のみからなる点を除き、実施例4と同じ磁石における磁気をシミュレーションした。
<Comparative Example 3>
Magnetism was simulated in the same magnet as in Example 4, except that it consisted of only a hard magnetic layer.
 図8(a)は、硬磁性体層のみからなる比較例3の磁石における磁気のシミュレーション結果であり、図8(b)は、軟磁性体層と硬磁性体層とが交互に積層された実施例4の磁石における磁気のシミュレーション結果である。図8(a)および図8(b)には、シミュレーションにより得られた磁石の磁気と、磁気センサ6との位置関係を模式的に示している。 FIG. 8(a) shows the magnetism simulation results for the magnet of Comparative Example 3 consisting of only hard magnetic layers, and FIG. FIG. 10 is a simulation result of magnetism in the magnet of Example 4. FIG. 8(a) and 8(b) schematically show the positional relationship between the magnetism of the magnet and the magnetic sensor 6 obtained by simulation.
 磁気センサ6は磁気検知部62を2つ備えており、磁気検知部62それぞれ、磁石の中心よりも外側に設けられている。そして、磁石からの磁気を誘導する誘導部材61を備えている。このため、磁気の方向がY軸に対して斜め方向になることが、磁気検知部62の検知結果に及ぼす影響は小さい。これに対して、磁石1のトレッド部21に露出する磁極端14が鉄などを引き寄せる吸着力は、Y軸方向の磁気の大きさに比例する。軟磁性体層11(図1参照)によって磁気の方向がY軸に対して交差する方向に誘導されたことでY軸方向の磁気が減少し、磁極端14の吸着力が小さくなったと考えられる。 The magnetic sensor 6 has two magnetic detection portions 62, each of which is provided outside the center of the magnet. It also has a guide member 61 that guides the magnetism from the magnet. Therefore, the magnetic direction oblique to the Y-axis has little effect on the detection result of the magnetic detection unit 62 . On the other hand, the attraction force with which the pole tip 14 exposed on the tread portion 21 of the magnet 1 attracts iron or the like is proportional to the magnitude of magnetism in the Y-axis direction. It is thought that the magnetism in the Y-axis direction decreased because the direction of magnetism was induced in the direction crossing the Y-axis by the soft magnetic layer 11 (see FIG. 1), and the attractive force of the pole tip 14 decreased. .
 以上説明したように、本発明は、タイヤの摩耗状態を目視によらず測定可能な、タイヤ摩耗検知用の磁石、タイヤ摩耗センサおよびタイヤに適用することができる。 As described above, the present invention can be applied to a magnet for detecting tire wear, a tire wear sensor, and a tire that can measure the wear state of a tire without visual inspection.
1、3、4:磁石
2   :タイヤ
5   :タイヤ摩耗センサ
6   :磁気センサ
11  :軟磁性体層
12  :硬磁性体層
13、14:磁極端
21  :トレッド部
22  :内側面
61  :誘導部材
62  :磁気検知部
11、L12:厚さ
Ma、Mb:放出磁気
O   :中心点
W   :幅
L   :X軸に平行な直線
1, 3, 4: magnet 2: tire 5: tire wear sensor 6: magnetic sensor 11: soft magnetic layer 12: hard magnetic layer 13, 14: pole tip 21: tread portion 22: inner surface 61: guide member 62 : Magnetic detection portions L 11 , L 12 : Thicknesses Ma, Mb: Emitted magnetism O : Center point W : Width L : Straight line parallel to X-axis

Claims (17)

  1.  タイヤのトレッド部に埋設されるタイヤ摩耗検知用の磁石において、
     軟磁性体からなる軟磁性体層と、硬磁性体からなる硬磁性体層と、を備えており、
     前記軟磁性体層と前記硬磁性体層との積層方向に着磁されていることを特徴とするタイヤ摩耗検知用の磁石。
    In the tire wear detection magnet embedded in the tread of the tire,
    A soft magnetic layer made of a soft magnetic material and a hard magnetic layer made of a hard magnetic material,
    A magnet for detecting wear of a tire, wherein the magnet is magnetized in a lamination direction of the soft magnetic layer and the hard magnetic layer.
  2.  前記軟磁性体層と前記硬磁性体層とが、前記積層方向に沿って交互に積層されており、
     前記軟磁性体層と前記硬磁性体層とが対になっている、
    請求項1に記載のタイヤ摩耗検知用の磁石。
    The soft magnetic layers and the hard magnetic layers are alternately laminated along the lamination direction,
    The soft magnetic layer and the hard magnetic layer are paired,
    The magnet for tire wear detection according to claim 1.
  3.  前記軟磁性体層の厚さが、前記硬磁性体層の厚さよりも小さい、
    請求項1または2に記載のタイヤ摩耗検知用の磁石。
    the thickness of the soft magnetic layer is smaller than the thickness of the hard magnetic layer;
    The magnet for tire wear detection according to claim 1 or 2.
  4.  前記積層方向における一端が前記硬磁性体層である、
    請求項1または2に記載のタイヤ摩耗検知用の磁石。
    One end in the stacking direction is the hard magnetic layer,
    The magnet for tire wear detection according to claim 1 or 2.
  5.  前記積層方向における一端が前記硬磁性体層であり、他端が前記軟磁性体層である、
    請求項1または2に記載のタイヤ摩耗検知用の磁石。
    One end in the stacking direction is the hard magnetic layer, and the other end is the soft magnetic layer.
    The magnet for tire wear detection according to claim 1 or 2.
  6.  前記積層方向に直交する切断面の断面積が、前記一端から前記他端に向かうにしたがって大きくなる、
    請求項5に記載のタイヤ摩耗検知用の磁石。
    The cross-sectional area of the cut surface perpendicular to the stacking direction increases from the one end toward the other end.
    The magnet for tire wear detection according to claim 5.
  7.  前記切断面の形状が円形である、
    請求項6に記載のタイヤ摩耗検知用の磁石。
    The shape of the cut surface is circular,
    The magnet for tire wear detection according to claim 6.
  8.  前記硬磁性体層はフェライトであり、前記軟磁性体層はセンダストである、
    請求項1または2に記載のタイヤ摩耗検知用の磁石。
    The hard magnetic layer is ferrite, and the soft magnetic layer is sendust.
    The magnet for tire wear detection according to claim 1 or 2.
  9.  前記タイヤの前記トレッド部に埋設された、請求項1に記載の磁石と、
     前記タイヤの内側面における前記磁石と対向する位置に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を備え、
     前記磁気センサが、前記磁石の前記積層方向と交差する方向の前記磁気を測定して、前記タイヤの摩耗量を計測することを特徴とする、タイヤ摩耗センサ。
    a magnet according to claim 1 embedded in the tread portion of the tire;
    a magnetic sensor arranged at a position facing the magnet on the inner surface of the tire and capable of detecting the magnetism emitted by the magnet,
    A tire wear sensor, wherein the magnetic sensor measures the magnetism in a direction intersecting with the stacking direction of the magnets to measure the amount of wear of the tire.
  10.  前記軟磁性体層と前記硬磁性体層とが、前記積層方向に沿って交互に積層されており、
     前記軟磁性体層と前記硬磁性体層とが対になっており、
     前記軟磁性体層の厚さが、前記硬磁性体層の厚さよりも小さい、
    請求項9に記載のタイヤ摩耗センサ。
    The soft magnetic layers and the hard magnetic layers are alternately laminated along the lamination direction,
    The soft magnetic layer and the hard magnetic layer are paired,
    the thickness of the soft magnetic layer is smaller than the thickness of the hard magnetic layer;
    A tire wear sensor according to claim 9 .
  11.  前記磁石は、前記積層方向における一端が前記硬磁性体層であり、他端が前記軟磁性体層であり、
     前記一端が、前記磁気センサに対向して配置されている、
    請求項9に記載のタイヤ摩耗センサ。
    one end of the magnet in the stacking direction is the hard magnetic layer and the other end is the soft magnetic layer;
    The one end is arranged to face the magnetic sensor,
    A tire wear sensor according to claim 9 .
  12.  磁性体からなる誘導部材を有し、
     前記磁気センサの磁気検知部は、前記誘導部材と前記磁石との間に配置されている、
    請求項9に記載のタイヤ摩耗センサ。
    Having an induction member made of a magnetic material,
    The magnetic detection unit of the magnetic sensor is arranged between the induction member and the magnet,
    A tire wear sensor according to claim 9 .
  13.  前記磁気センサは、磁気検知部を二つ備え、
     二つの前記磁気検知部からの差動信号に基づいて、前記磁気を検知する、
    請求項9に記載のタイヤ摩耗センサ。
    The magnetic sensor includes two magnetic detection units,
    detecting the magnetism based on differential signals from the two magnetic detection units;
    A tire wear sensor according to claim 9 .
  14.  二つの前記磁気検知部は、前記積層方向からみたときに、前記磁石の前記磁気の中心点に対して点対称となる位置に配置されている、
    請求項13に記載のタイヤ摩耗センサ。
    The two magnetic detection units are arranged at points symmetrical with respect to the center point of the magnetism of the magnet when viewed from the stacking direction,
    14. The tire wear sensor of claim 13.
  15.  前記磁石の前記積層方向に直交する切断面の断面積が、一端から他端に向かうにしたがって大きくなる、
    請求項9に記載のタイヤ摩耗センサ。
    The cross-sectional area of the cross-section perpendicular to the stacking direction of the magnet increases from one end to the other end,
    A tire wear sensor according to claim 9 .
  16.  前記磁石の前記積層方向に直交する切断面の形状が円形である、
    請求項9に記載のタイヤ摩耗センサ。
    The shape of the cross section of the magnet perpendicular to the stacking direction is circular.
    A tire wear sensor according to claim 9 .
  17.  請求項1に記載の磁石が、前記トレッド部に埋設されていることを特徴とするタイヤ。 A tire, wherein the magnet according to claim 1 is embedded in the tread portion.
PCT/JP2022/005208 2021-03-25 2022-02-09 Magnet for detecting tire wear, tire wear sensor using magnet, and tire WO2022201937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508757A JP7356619B2 (en) 2021-03-25 2022-02-09 Magnets for tire wear detection, tire wear sensors using magnets, and tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052115 2021-03-25
JP2021-052115 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022201937A1 true WO2022201937A1 (en) 2022-09-29

Family

ID=83395550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005208 WO2022201937A1 (en) 2021-03-25 2022-02-09 Magnet for detecting tire wear, tire wear sensor using magnet, and tire

Country Status (2)

Country Link
JP (1) JP7356619B2 (en)
WO (1) WO2022201937A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875403A (en) * 1994-08-31 1996-03-22 Teikoku Tsushin Kogyo Co Ltd Infinitesimal position change quantity detector
JP2003214808A (en) * 2002-01-21 2003-07-30 Bridgestone Corp Measuring method for wear of tire
JP2004025961A (en) * 2002-06-24 2004-01-29 Bridgestone Corp Detection method and sensor for tire pressure, and tire
JP2004132864A (en) * 2002-10-11 2004-04-30 Bridgestone Corp Tire temperature detection device
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle
CN102000816A (en) * 2010-10-27 2011-04-06 华南理工大学 Exchange coupling dual-phase nano composite permanent magnet particles and preparation method thereof
WO2015083072A1 (en) * 2013-12-03 2015-06-11 Liener Rolf Sensor device adapted for vehicle tyres, vehicle tyres and method of monitoring depths of grooves of tyre treads
CN106515990A (en) * 2016-12-21 2017-03-22 深圳凯达通光电科技有限公司 Electric bicycle of electromechanical field
JP2019064432A (en) * 2017-09-29 2019-04-25 Toyo Tire株式会社 Pneumatic tire, method for manufacturing pneumatic tire and method for determining wear state of pneumatic tire
JP2020059154A (en) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 Method of manufacturing pneumatic tire
JP2021017156A (en) * 2019-07-22 2021-02-15 住友ゴム工業株式会社 Pneumatic tire
WO2021059786A1 (en) * 2019-09-25 2021-04-01 住友ゴム工業株式会社 Pneumatic tire

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0875403A (en) * 1994-08-31 1996-03-22 Teikoku Tsushin Kogyo Co Ltd Infinitesimal position change quantity detector
JP2003214808A (en) * 2002-01-21 2003-07-30 Bridgestone Corp Measuring method for wear of tire
JP2004025961A (en) * 2002-06-24 2004-01-29 Bridgestone Corp Detection method and sensor for tire pressure, and tire
JP2004132864A (en) * 2002-10-11 2004-04-30 Bridgestone Corp Tire temperature detection device
US20090078347A1 (en) * 2007-09-25 2009-03-26 Alfred Niklas Tire tread detection and measurement of physical variables of a tire on a moving vehicle
CN102000816A (en) * 2010-10-27 2011-04-06 华南理工大学 Exchange coupling dual-phase nano composite permanent magnet particles and preparation method thereof
WO2015083072A1 (en) * 2013-12-03 2015-06-11 Liener Rolf Sensor device adapted for vehicle tyres, vehicle tyres and method of monitoring depths of grooves of tyre treads
CN106515990A (en) * 2016-12-21 2017-03-22 深圳凯达通光电科技有限公司 Electric bicycle of electromechanical field
JP2019064432A (en) * 2017-09-29 2019-04-25 Toyo Tire株式会社 Pneumatic tire, method for manufacturing pneumatic tire and method for determining wear state of pneumatic tire
JP2020059154A (en) * 2018-10-05 2020-04-16 住友ゴム工業株式会社 Method of manufacturing pneumatic tire
JP2021017156A (en) * 2019-07-22 2021-02-15 住友ゴム工業株式会社 Pneumatic tire
WO2021059786A1 (en) * 2019-09-25 2021-04-01 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JPWO2022201937A1 (en) 2022-09-29
JP7356619B2 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US9329244B2 (en) Measurement head for a magnetoelastic sensor
KR101551514B1 (en) Magnetic sensor device
US10281344B2 (en) Arrangement for measuring force and/or torque in a hollow flange using at least four magnetic sensors
WO2013080557A1 (en) Current sensor
JP2011163831A5 (en)
JP7068504B2 (en) Tire wear measuring device
US20170261349A1 (en) Rotational angle detection apparatus and rotating machine apparatus
WO2021059786A1 (en) Pneumatic tire
WO2011158098A8 (en) Eddy current sensor and eddy current measurement method
US20190285586A1 (en) Method and apparatus for evaluating damage to magnetic linear body
WO2022201937A1 (en) Magnet for detecting tire wear, tire wear sensor using magnet, and tire
JP3105659B2 (en) Magnetic circuit
JP6328139B2 (en) Measuring device for measuring the magnetic properties of its surroundings
CN104412114B (en) Current transducer
CN107218954B (en) Magnetic sensor system
US20230016943A1 (en) Wear measurement device and wear measurement method for tire
US20190219458A1 (en) Force Measurement Device
US20150198430A1 (en) Magnetism detection element and rotation detector
JP5129014B2 (en) Wire rope flaw detector
WO2016157812A1 (en) Magnetic ring and rotation sensor comprising same
WO2022085583A1 (en) Tire wear measurement device, pneumatic tire, and tire wear measurement method
JP2013142569A (en) Current sensor
WO2023002666A1 (en) Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method
WO2021201095A1 (en) Wear measurement device for tire and embedded pin for wear measurement device
WO2016157811A1 (en) Magnetic ring and rotation sensor comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508757

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774738

Country of ref document: EP

Kind code of ref document: A1