WO2023002666A1 - Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method - Google Patents

Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method Download PDF

Info

Publication number
WO2023002666A1
WO2023002666A1 PCT/JP2022/009309 JP2022009309W WO2023002666A1 WO 2023002666 A1 WO2023002666 A1 WO 2023002666A1 JP 2022009309 W JP2022009309 W JP 2022009309W WO 2023002666 A1 WO2023002666 A1 WO 2023002666A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
wear
degree
sensor
magnetism
Prior art date
Application number
PCT/JP2022/009309
Other languages
French (fr)
Japanese (ja)
Inventor
学 田村
裕樹 大野
利恵 黒澤
佑貴 今井
徳男 中村
雅史 金子
一成 瀬下
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Publication of WO2023002666A1 publication Critical patent/WO2023002666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques

Definitions

  • the present invention relates to a tire wear sensor that detects the degree of wear of a tire, a wear degree measurement system using the tire wear sensor, a wear degree evaluation device, and a wear degree evaluation method.
  • Patent Document 1 a magnetic sensor capable of detecting magnetism emitted by a tire wear detection magnet embedded in the tread portion of a tire is provided at a position facing the tire wear detection magnet on the inner surface of the tire. A tire wear sensor is described. This device detects the degree of wear of the tire by measuring changes in the magnetic field caused by the wear of the embedded magnet along with the wear of the tread portion of the tire.
  • the tire wear sensor described in Patent Document 1 measures the degree of wear of the tread portion of the tire based on changes in magnetism due to wear of magnets embedded in the tread portion. For this reason, the magnet is embedded in the tire so that one of the magnets is exposed on the surface of the tread portion and worn together with the tread portion. Therefore, additional work is required to incorporate the magnet into the tread portion of a typical tire. In addition, the tire may be damaged by iron nails or the like attracted by the magnetism of the magnet exposed on the tread surface, resulting in puncture.
  • An object of the present invention is to provide a tire wear sensor capable of measuring the degree of wear of the tread portion of a tire without embedding a magnet in the tread portion of the tire, which causes iron nails or the like to be attracted to the tread surface, and to use the tire wear sensor. It is an object of the present invention to provide a wear measurement system, a wear evaluation device, and a wear evaluation method.
  • the present invention has the following configurations as means for solving the above-described problems.
  • a tire wear sensor placed inside the tire that detects the degree of wear of the tire based on changes in magnetism, wherein a magnet placed inside the tire is placed closer to the center of rotation of the tire than the magnet. and a magnetic sensor capable of detecting the magnetism emitted by the magnet, wherein the magnet is detected by the magnetic sensor when a detection target portion of the tread portion of the tire contacts a magnetic body located outside the tire.
  • a tire wear sensor that measures the degree of wear of the tire by detecting magnetism emitted by a.
  • the state of magnetism changes when the part to be detected of the tire comes into contact with the magnetic material located on the outside of the tire. Therefore, the wear of the tread portion can be measured by detecting changes in the state of magnetism using the magnetic sensor.
  • a tire wear sensor has two magnetic sensors, and the two magnetic sensors are arranged at positions symmetrical with respect to the magnet when viewed along the radial direction of the tire from the rotation center side.
  • a tire wear sensor has two magnetic sensors and two magnets, and each of the two magnetic sensors and the two magnets has a reference point when viewed along the radial direction of the tire from the rotation center side. and the magnetic sensor and the magnet may be arranged on the same straight line passing through the reference point. In this case, the magnetic sensor may be arranged at a position farther from the reference point than the magnet.
  • the effects of noise can be suppressed. Also, since the two outputs are of the same magnitude but in opposite directions, a large output can be obtained as the difference between the two outputs. Since the outputs obtained from the two magnetic sensors have the same absolute value, even if one of them fails, the output of the other can be used to evaluate the degree of tire wear. Therefore, the redundancy of tire wear sensors is improved.
  • the magnet may have a soft magnetic layer made of a soft magnetic material on one end side in the magnetization direction, and may be arranged so that the one end side in the magnetization direction is closer to the center of the tire than the other end side.
  • a tire wear sensor placed inside the tire that detects the degree of wear of the tire based on changes in magnetism comprising a magnetic sensor placed inside the tire, wherein the magnetic sensor is located on the tread of the tire.
  • the magnetic sensor detects the magnetism emitted by the magnetism generator to measure the degree of wear of the tire.
  • a tire wear sensor characterized by: The tire wear sensor can measure the degree of wear of the tire by detecting a change in the magnetism from the magnetism generator outside the tire that accompanies wear of the tire with a magnetic sensor arranged inside the tire.
  • the magnetic field generator is configured such that a plurality of pairs of different magnetic poles are alternately arranged, and the magnetic sensor moves the magnetic field generator along the direction in which the magnetic poles are arranged while the magnetic field generator is in contact with the tread portion.
  • the magnetism emitted by the magnetism generator may be detected when the body is moved.
  • the magnetism generator is an electromagnet that generates magnetism at a contact point with a contacting object, and the magnetic sensor detects that the electromagnet is generated when the tire is rolling in the circumferential direction of the tire while being in contact with the electromagnet.
  • the emitted magnetism may be detected.
  • the electromagnet may magnetize a wire embedded in the tire by contacting the surface of the tire, and the magnetic sensor may detect the magnetism generated by the magnetized wire.
  • the tire wear sensor includes a device ID storage unit that stores a device ID unique to the tire wear sensor, and a wear degree output unit that outputs the measured wear degree of the tire and the device ID in association with each other. good too.
  • the measurement value of the degree of wear of the tire and the device ID can be output in association with each other, so that the tire whose degree of wear exceeds the threshold and needs to be replaced can be specified based on the device ID.
  • a tire wear measurement system comprising a tire wear sensor arranged inside the tire and a magnetic body arranged outside the tire for detecting the degree of wear of the tire based on a change in magnetism
  • the tire wear sensor has a magnet arranged inside the tire and a magnetic sensor arranged closer to the center of rotation of the tire than the magnet and capable of detecting magnetism emitted by the magnet.
  • a system for measuring the degree of wear of a tire wherein the degree of wear of the tire is measured by detecting the magnetism generated by the magnet with the magnetic sensor when the detection target portion of the tread portion contacts the magnetic body. . With this configuration, the degree of wear of the tread can be measured by detecting changes in the magnetism from the magnet reaching the magnetic sensor as the wear of the tread progresses.
  • the length of the magnetic body in the longitudinal direction is preferably greater than the length of the outer periphery of the tire.
  • an ID information storage unit that associates and stores a device ID of a tire wear sensor and a tire to which the tire wear sensor is attached; a measurement value acquisition unit that acquires the degree of wear of the tire associated with the device ID; a threshold storage unit that stores a threshold value of the degree of wear of the tire; and a device ID and ID information storage unit that are associated with the degree of wear of the tire when the degree of wear of the tire exceeds the threshold value. and a tire identification unit that identifies the tire that needs to be replaced based on the information of the tire wear degree evaluation device.
  • the wear degree evaluation device can identify the tire that needs to be replaced based on the device ID of the tire wear sensor.
  • the ID information storage unit stores the device ID, the tire, and the type of vehicle on which the tire wear sensor is mounted, and the threshold storage unit stores the threshold according to the type of vehicle.
  • the tire specifying unit stores information on the tire that needs to be replaced based on the information in the ID information storage unit when the degree of wear of the tire exceeds the threshold value corresponding to the type of the vehicle. Tires may be specified. Whether or not a tire needs to be replaced can be determined more appropriately according to the type of vehicle and the mode of use of the vehicle by using the threshold value according to the type of vehicle and the type of vehicle.
  • a device ID unique to the tire wear sensor and tire information that can identify the tire to which the tire wear sensor is attached are associated and output, the tire wear sensor measures the degree of wear of the tire, and the measured wear
  • a method for evaluating the degree of wear of a tire characterized in that the degree of tire wear is associated with the device ID of the tire wear sensor that measured the degree of wear and is output.
  • the tire wear sensor may measure the degree of wear of the tire when a vehicle having the tire passes over a magnetic body or a magnetic field generator. For example, by arranging a magnetic body or a magnetic field generator at the gate of a business office to which vehicles such as trucks and buses belong, tire wear can be automatically measured at departure and arrival. In addition, in the case of trucks where the load on the tires varies depending on the cargo, there is no cargo at the time of departure and arrival, so it is possible to accurately measure the degree of wear of the tires while excluding the influence of the cargo.
  • a device ID unique to a tire wear sensor and tire information capable of specifying the tire to which the tire wear sensor is attached are acquired, both are associated and stored, the degree of wear of the tire is acquired, and the wear is obtained. and a threshold to obtain the device ID associated with the wear degree, and based on the device ID and the tire information associated with the device ID, the tire to which the tire wear sensor is attached.
  • a method for evaluating the degree of wear of a tire, characterized by specifying With this configuration, the tire that needs to be replaced can be specified based on the device ID of the tire wear sensor.
  • tire wear can be measured without embedding a magnet in the tire, so punctures caused by magnets embedded in the tire attracting metal such as nails can be suppressed.
  • FIG. 1A is an enlarged cross-sectional view of region S in FIG. 1A
  • Cross-sectional view of magnetism near detection target Cross-sectional view of magnetism when in contact with a magnetic body
  • Sectional view of a modified tire wear sensor Top view of magnetic body and magnetic sensor Cross-sectional view showing the relationship between the magnetism in the vicinity of the detection target and the two magnetic sensors
  • FIG. 1A is an enlarged cross-sectional view of region S in FIG. 1A
  • Cross-sectional view of magnetism near detection target Cross-sectional view of magnetism when in contact with a magnetic body
  • Top view of magnetic body and magnetic sensor Cross-sectional view showing the relationship between the magnetism in the vicinity of the detection target and the two magnetic sensors
  • Cross-sectional view of another modified tire wear sensor Top view of magnetic body and magnetic sensor Sectional drawing which shows the magnet of a modification
  • FIG. 1A is a cross-sectional view schematically showing a tire wear sensor 1 provided on a tire 2
  • FIG. 1B is a cross-sectional view enlarging a region S in FIG. 1A.
  • the tire wear sensor 1 has a magnet 11 arranged inside 21 of the tire 2 and a magnetic sensor 12 arranged closer to the rotation center O of the tire 2 than the magnet 11 and capable of detecting the magnetism emitted by the magnet 11 . are doing.
  • the tire wear sensor 1 is arranged on the inner side 21 of the tire 2, measures the magnetism from the magnet 11 when the detection target portion 24 of the tread portion 23 comes into contact with the magnetic body 3, and detects changes in the measured magnetism. to detect the degree of wear of the tire 2 .
  • the degree of wear includes the depth of the groove of the tire 2, the tire wear sensor 1 may detect information about other tires 2 together with the degree of wear.
  • the magnet 11 can be an alloy magnet, a ferrite magnet, a magneto-earth magnet, or a rubber magnet or plastic magnet formed by dispersing these particles (magnetic powder) in a polymer material.
  • the magnet 11 is arranged in the tire wear sensor 1 in such a posture that its magnetization direction matches the radial direction (Z-axis direction) of the tire 2 .
  • the polymer material used for the rubber magnet a rubber material having the same composition as the tread rubber composition used for the tread portion 23 of the tire 2 may be used.
  • the magnet 11 preferably has a magnetic flux density of 1 mT or more on the surface of the pole tip on the magnetic sensor 12 side. From the viewpoint of preventing the magnetism of the magnet 11 from adversely affecting other on-vehicle electronic devices, the surface magnetic flux density at the pole tip of the magnet 11 is preferably 600 mT or less. The surface magnetic flux density is a value measured by directly contacting the magnetized surface of the magnet 11 with a Tesla meter.
  • the magnetic sensor 12 detects the state of magnetism and converts it into an electric signal, and faces the magnet 11 in the tire wear sensor 1 arranged inside 21 of the tire 2, and can detect the magnetism emitted by the magnet 11. are placed in a good position.
  • Examples of the magnetic sensor 12 include a GMR sensor, a TMR sensor, and a Hall sensor using the Hall effect.
  • FIG. 2A is a cross-sectional view schematically showing the magnetism M emitted by the magnet 11 in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2
  • FIG. 3 is a cross-sectional view schematically showing the magnetism M when in contact with the body 3;
  • a magnet 11 and a magnetic sensor 12 are arranged in a case separated in the Z-axis direction (radial direction of the tire 2), and a detection target portion 24 is a magnetic body positioned outside 22 of the tire 2.
  • the magnetic sensor 12 detects the magnetism M emitted by the magnet 11 to measure the degree of wear of the tire 2.
  • - ⁇ A distance D between the magnet 11 provided on the inner side 21 of the tire 2 and the magnetic body 3 on the outer side 22 of the tire 2 changes according to the degree of wear of the detection target portion 24 .
  • the distance D changes, the influence of the magnetic body 3 on the magnet 11 also changes, and the magnetism M detected by the magnetic sensor 12 also changes. In other words, when the tire 2 wears, the magnetism M detected by the magnetic sensor 12 changes.
  • the degree of wear of the tire 2 can be evaluated based on the magnetic field measurement value by the magnetic sensor 12 . Therefore, the degree of wear of the tread portion 23 (the degree of wear of the tire 2 ) can be evaluated by measuring the magnetism M of the magnet 11 with the magnetic sensor 12 without embedding the magnet 11 in the tread portion 23 of the tire 2 .
  • the magnetic material 3 is composed of a magnetic material that affects the magnetism M.
  • a plate of a ferromagnetic material such as iron, nickel, cobalt, and alloys thereof can be used.
  • the present invention can be implemented as a wear measuring system including the tire wear sensor 1 and the magnetic body 3 .
  • FIG. 3A is a partial cross-sectional view schematically showing a tire wear sensor 4 according to a modification.
  • the tire wear sensor 4 differs from the tire wear sensor 1 in that it has two magnetic sensors 42A and 42B.
  • the magnetic sensors 42A and 42B are appropriately referred to as the magnetic sensor 42 when the magnetic sensors 42A and 42B are not distinguished.
  • Magnets 51A and 51B and magnetic sensors 52A and 52B which will be described later, are similarly referred to as magnets 51 and magnetic sensors 52 as appropriate.
  • the tire wear sensor 4 detects the magnetism of the magnet 11 based on differential signals from the two magnetic sensors 42A and 42B.
  • the magnetic sensor 42 detects magnetism in the Y-axis direction intersecting the magnetization direction (Z-axis direction) of the magnet 11 .
  • the tire wear sensor 4 may include a magnetic induction member (not shown). By arranging the magnetic sensor 42 between the magnet 11 and the magnetic induction member, the sensitivity of the magnetic sensor 42 is improved.
  • FIG. 3B is a plan view schematically showing the positional relationship between the magnet 11 and the magnetic sensors 42A and 42B in the tire wear sensor 4.
  • FIG. This figure schematically shows the positional relationship viewed from the Z-axis direction, which is the magnetization direction of the magnet 11 .
  • the magnetic sensors 42A and 42B are arranged so as to have portions located outside the outer shell of the magnet 11 when viewed from the magnetization direction. With this configuration, the tire wear sensor 4 can accurately measure changes in magnetism in the Y-axis direction as the degree of wear of the tire 2 progresses.
  • the two magnetic sensors 42A and 42B are arranged at point-symmetrical positions with respect to the magnet 11 when viewed along the radial direction of the tire 2 from the rotation center O side of the tire 2 (see FIG. 1A). That is, as shown in FIG. 1A, when the tire wear sensor 4 is positioned at the ground contact portion, that is, the lower end of the tire 2, when viewed from above along the Z-axis, the magnetic sensors 42A are positioned point-symmetrically about the magnet 11. , 42B are arranged.
  • FIG. 4A is a cross-sectional view schematically showing the relationship between the magnetism M emitted by the magnet 11 and the two magnetic sensors 42A and 42B in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2.
  • FIG. 4B is a cross-sectional view schematically showing magnetism when the detection target portion 24 contacts the magnetic body 3 positioned on the outer side 22 of the tire 2.
  • noise caused by influences such as geomagnetism has the same magnitude and direction.
  • the two magnetic sensors 42 each detect the magnetism M of the same magnitude, if a problem occurs in one of them, the degree of wear can be measured using only the output from the other magnetic sensor 42 . Therefore, the redundancy of the tire wear sensor 4 is improved.
  • FIG. 5A is a partial cross-sectional view schematically showing a tire wear sensor 5 according to another modification, and FIG. 5B schematically shows the positional relationship between magnets 51A and 51B and magnetic sensors 52A and 52B in the tire wear sensor 5.
  • 2 is a schematic plan view; FIG. As shown in these figures, tire wear sensor 5 differs from tire wear sensor 1 in that it has two magnets 51 and two magnetic sensors 52 .
  • the tire wear sensor 5 is provided with one magnetic sensor 52 corresponding to each magnet 51 .
  • the magnets 51A, 51B and the magnetic sensors 52A, 52B are arranged at symmetrical positions with respect to the reference point B when viewed along the Z-axis from the rotation center O (see FIG. 1A) side of the tire 2. ing. Further, the magnetic sensors 52 are arranged at positions farther from the reference point B than the magnets 51 are.
  • a reference point B is a (virtual) point on the bottom surface 53 of the tire wear sensor 5 obtained by projecting the midpoint of a line connecting the two magnetic sensors 52 in the radial direction of the tire 2 from the rotation center O side. It is also a (virtual) point on the bottom surface 53 of the tire wear sensor 5 projected in the radial direction of the tire 2 from the rotation center side of the midpoint of the line segment connecting 51 . That is, the midpoint of the line segment connecting the two magnetic sensors 52 and the midpoint of the line segment connecting the two magnets 51 overlap when projected onto the bottom surface.
  • the two magnets 51 and the two magnetic sensors 52 are arranged on the same straight line P passing through the reference point B (on the same straight line). That is, when the two magnets 51 and the two magnetic sensors 52 are projected onto the bottom surface 53 of the tire wear sensor 5 along the Z-axis direction, which is the radial direction of the tire 2, from the rotation center O (see FIG. 1A) side. , so as to be positioned on the same straight line P passing through the reference point B.
  • the number of magnets 51 and magnetic sensors 52 is not limited to two sets of tire wear sensors 5, and may be three sets or more. Also, the number of magnets 51 and magnetic sensors 52 forming a set may not be the same. For example, a configuration in which the magnetism M from one magnet 51 is detected by a plurality of magnetic sensors 52 or a configuration in which the magnetism M from a plurality of magnets 51 is detected by one magnet 51 may be employed.
  • FIG. 6 is a cross-sectional view schematically showing a magnet 13 according to a modification.
  • the magnet 13 has a soft magnetic layer 13b made of a soft magnetic material on one end 131 side in the magnetization direction (Z-axis direction) of the hard magnetic layer 13a made of a hard magnetic material, that is, on the magnetic sensor 12 side.
  • the hard magnetic layer 13a is arranged so that one end 131 side in the magnetization direction is closer to the rotation center O (see FIG. 1A) of the tire 2 than the other end 132 side.
  • the magnetism M is guided in the direction parallel to the Y-axis by the hard magnetic layer 13a provided on the one end 131 side, and the state of the magnetism M from the magnet 11 is differentiated between the inner side 21 and the outer side 22 of the tire 2. be able to. That is, by providing the soft magnetic layer 13b on the one end 131 side of the hard magnetic layer 13a, the magnetism M of the magnet 11 shown in FIGS.
  • the magnetism M that spreads toward the tire 2 can be reduced, and the magnetism M that spreads toward the opposite side of the rotation center O on the outer side 22 of the tire 2 can be increased.
  • the magnetic sensor 12 If the magnetism M on the side of the magnetic sensor 12 is large in the initial state where the tire 2 is not worn, the magnetic sensor 12 is likely to be saturated. . By reducing the magnetism M on the side of the magnetic sensor 12 in the initial state, magnetic saturation of the magnetic sensor 12 can be suppressed.
  • the magnetic sensor 12 measures variations in the magnetism M caused by changes in the distance D (see FIG. 2B) between the magnet 11 and the magnetic body 3 due to wear of the tire 2 . For this reason, the distribution of the magnetism M tends to change more easily when the stronger magnetism M is emitted from the outer side 22 of the tire 2, and the fluctuation of the magnetism M detected by the magnetic sensor 12 increases.
  • the magnet 13 provided with the soft magnetic layer 13b made of a soft magnetic material on the magnetic sensor 12 side the magnetism M on the inside 21 of the tire 2 is reduced and the magnetism M on the outside is increased.
  • the detection accuracy of the magnetism M by the sensor 12 is improved.
  • the hard magnetic layer 13a is not particularly limited as long as it is made of a hard magnetic material.
  • examples include ferrite (hard ferrite) containing iron oxide as a main component, alnico (Al--Ni--Co alloy), and samarium-cobalt.
  • the material forming the soft magnetic layer 13b is not particularly limited as long as it is a soft magnetic material. Examples include permalloy (Fe--Ni alloy), sendust (Fe--Si--Al alloy) which is another iron-based material, iron-based or non-ferrous amorphous magnetic alloy, and ferrite (soft ferrite).
  • Sendust is preferable from the viewpoint of suppressing magnetism in the Z-axis direction from the one end 131 on the side of the magnetic sensor 12 .
  • the soft magnetic layer 13b is preferably thinner than the hard magnetic layer 13a.
  • the thickness Tb of the soft magnetic layer 13b smaller than the thickness Ta of the hard magnetic layer 13a, a magnetic path is easily formed in the soft magnetic layer 13b.
  • the magnetism from the body layer 13a is easily guided to the other end 132 opposite to the magnetic sensor 12 side.
  • the ratio Tb/Ta between the thickness Tb and the thickness Ta is preferably 1/100 or more and less than 1/1, and 1/10. 1/7 or more and less than 1/3 is more preferable.
  • the thickness Tb of the soft magnetic layer 13b is preferably 0.05 mm or more and 1 mm or less, more preferably 0.1 mm or more and 0.5 mm or less, and even more preferably 0.15 mm or more and 0.3 mm or less.
  • the thickness Ta of the hard magnetic layer 13a is preferably 0.1 mm or more and 5 mm or less, more preferably 0.3 mm or more and 3 mm or less, and even more preferably 0.5 mm or more and 2 mm or less.
  • FIG. 6 shows a mode in which the soft magnetic layer 13b is provided on a part of the magnet 13, the soft magnetic layer 13b may be separate from the magnet 13.
  • a soft magnetic body may be provided between magnet 11 and magnetic sensor 12 .
  • FIG. 7 is a cross-sectional view schematically showing the magnetism M generated by the magnetism generator 71 arranged on the outer side 22 of the tire 2 in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2 .
  • the predetermined value of the magnetic flux density of the magnetism M on the surface of the magnetism generator 71 can be, for example, 1 to 200 mT. It is preferable to
  • the magnetic sensor 12 detects the magnetism M generated by the magnetism generator 71 when the detection target portion 24 of the tread portion 23 of the tire 2 contacts the magnetism generator 71 positioned on the outer side 22 of the tire 2 . to measure the degree of wear of the tire 2.
  • the tire wear sensor 6 is attached to the inner side 21 of the tire 2 and includes a magnetic sensor 12 capable of detecting magnetism M. to measure Since the magnetism M emitted by the magnetism generator 71 is always a predetermined value, the magnetism M measured by the magnetic sensor 12 changes depending on the distance D between the magnetic sensor 12 and the magnetism generator 71 . Therefore, the distance D can be detected based on the magnetism M measured by the magnetic sensor 12 . Since the distance D changes as the tread portion 23 of the tire 2 wears, the tire wear sensor 6 can detect the degree of wear of the tire 2 based on the measured value of the magnetism M.
  • FIG. 8A and 8B are a sectional view and a perspective view schematically showing a wear measurement system 70 comprising the tire wear sensor 6 and the magnetism generator 71.
  • FIG. 8C is a plan view of the magnetism generator 71.
  • the wear degree measurement system 70 arranges the magnetism generator 71 so as to be in contact with the surface (tire surface) of the outer side 22 of the tire 2 in the detection target portion 24, moves the vicinity of the detection target portion 24, and moves the inner side of the detection target portion 24.
  • the degree of wear of the tread portion 23 of the tire 2 is detected by detecting the magnetism from the magnetism generator 71 by the tire wear sensor 6 arranged at 21 .
  • the distance D (see FIG. 7) between the magnetic sensor 12 of the tire wear sensor 6 and the magnetism generator 71 decreases.
  • the output from the tire wear sensor 6 increases in proportion to the square of the amount of decrease in the distance D due to wear of the tread portion 23 . Therefore, the degree of wear of the tire 2 can be detected based on the output of the tire wear sensor 6 .
  • the contact surface of the magnetism generator 71 that contacts the surface of the outer side 22 of the tire 2 may be configured by alternately arranging a plurality of pairs of different magnetic poles.
  • the magnetism M (see FIG. 7) emitted by the magnetism generator 71 is detected.
  • the degree of wear of the tread portion 23 can be measured by detecting the peak value of the magnetism M with the magnetic sensor 12 .
  • the thickness of the tread portion 23 is measured based on the maximum value of the output from the tire wear sensor 6 obtained when the magnetism generator 71 is moved.
  • a design indicating the arrangement position may be provided on the side surface of the tire 2 so that the position where the tire wear sensor 6 is arranged can be determined when viewed from the outside 22 of the tire 2 .
  • FIG. 9A is a perspective view showing a wear measurement system 72 according to a modification.
  • 9B is a plan view schematically showing the structure of the magnetism generator 73.
  • the wear degree measurement system 72 uses an electromagnet that generates magnetism at a contact point with the tire 2 , which is a contact object, as the magnetism generator 73 .
  • an electromagnet as the magnetism generator 73, magnetic force can be generated only during measurement. Therefore, it is possible to prevent the magnetism generator 73 from attracting an iron nail or the like.
  • the length L of the magnetism generator 73 in the longitudinal direction is greater than or equal to the length R of the outer circumference of the tire 2 . Therefore, when the tire 2 is rolled in the circumferential direction in contact with the magnetism generator 73, by driving the electromagnet of the portion of the magnetism generator 73 that is in contact with the tire 2, manual intervention is not required.
  • the degree of wear of the tire 2 can be measured without For example, the magnetism generator 73 is installed at the gate of the office, and when the truck 80 passes through the gate of the office, the tire 2 is passed over the magnetism generator 73 to measure the degree of wear of the tire 2. can.
  • the magnetic sensor 12 of the tire wear sensor 6 may include an acceleration sensor. By driving the electromagnet of the magnetism generator 71 when the acceleration sensor detects that the tire wear sensor 6 is positioned near the ground, the magnetism generator 73 can be operated efficiently.
  • FIG. 10 is a cross-sectional view schematically showing a wear measurement system 74 according to another modification.
  • the wear measurement system 74 magnetizes the steel wire 25 embedded in the tire 2 with an electromagnet (magnetism generator) 75 and detects the magnetism emitted by the magnetized steel wire 25 .
  • an electromagnet 75 is brought into contact with the surface of the outer side 22 of the tire 2 to magnetize the steel wire 25 embedded in the tire 2, and the magnetism emitted by the magnetized steel wire 25 is detected by the tire wear sensor 6.
  • the magnetized steel wire 25 functions similarly to the magnetic generator 71 (see FIGS. 7, 8A and 8B).
  • the magnetization amount of the steel wire 25 changes according to the degree of wear of the tire 2 . Therefore, the degree of wear of the tire 2 can be detected by measuring the magnetization amount of the steel wire 25 with the tire wear sensor 6 . As shown in FIG. 10, since the steel wire 25 is provided along the entire circumference of the tire 2, the position where the steel wire 25 can be magnetized by the electromagnet 75 is the portion where the tire wear sensor 6 is provided. Not limited. That is, even if the portion where the tire wear sensor 6 is provided is in contact with the road surface when the vehicle stops, the measurement can be performed.
  • the degree of wear of the tire 2 can be measured using a small electromagnet 75 . Therefore, the device can be made smaller, and the degree of wear of the tire 2 can be measured using a handy type electromagnet 75 suitable for portability.
  • FIG. 11 is a diagram schematically showing an overall wear measuring system 90 that includes the tire wear sensor 1 and the magnetic body 3 and detects the wear of the tire 2 based on changes in magnetism.
  • the tire wear sensor 1 is shown in FIG. Note that when the tire wear sensor 6 is used, magnetism generators 71 and 73 are used instead of the magnetic body 3 .
  • the wear measurement system 90 detects the magnetism generated by the magnet 11 using the magnetic sensor 12 of the tire wear sensor 1 when the detection target portion 24 (see FIG. 2A) of the tread portion 23 of the tire 2 contacts the magnetic body 3. It detects and measures the degree of wear of the tire 2 .
  • the management device (wear evaluation device) 100 can manage the wear of the tire 2 using the wear of the tire 2 measured and output by the tire wear sensor 1 at the time of contact.
  • a replacement tire 2 can be ordered from the management device 100 to the tire company 110 via a wide area communication network 120 such as the Internet.
  • the tire wear sensor 1 includes a measurement unit 14, a device ID storage unit 15, an acceleration sensor 16, a wear level output unit 17, and a communication unit 18.
  • the measurement unit 14 measures the degree of tire wear, and includes the magnet 11 and the magnetic sensor 12 described above.
  • the device ID storage unit 15 is means for storing a device ID unique to the tire wear sensor 1, and is configured by a general-purpose memory or the like.
  • the acceleration sensor 16 measures the acceleration applied to the tire wear sensor 1 as the tire 2 rotates, and detects grounding of the portion where the tire wear sensor 1 is provided based on changes in acceleration.
  • the wear degree output unit 17 associates the measured wear degree of the tire 2 with the device ID, and outputs the result to an external device such as the management device 100 via the communication unit 18 . Therefore, the management device 100 and the like can acquire and manage the wear information in a state in which the individual tire 2 is associated with the wear information based on the device ID.
  • FIG. 12B is a functional block diagram showing the configuration of the management device 100.
  • the management device 100 includes an ID information storage unit 101, a measured value acquisition unit 102, a threshold storage unit 103, a tire identification unit 104, and a communication unit 105.
  • a CPU and a storage device RAM , ROM.
  • the ID information storage unit 101 associates and stores the device ID unique to the tire wear sensor and the tire to which the tire wear sensor is attached.
  • the ID information storage unit 101 may store the device ID, the tire (degree of wear, attached wheel, etc.), and the type of truck or the like (vehicle type) to which the tire wear sensor is attached.
  • the threshold storage unit 103 stores a threshold for the degree of tire wear, and the threshold may be set according to the type of vehicle such as a truck. Further, the threshold storage unit 103 may store a plurality of types of thresholds according to different degrees of tire wear.
  • the measured value acquisition unit 102 acquires the degree of tire wear associated with the device ID from the tire wear sensor 1 . Then, when the degree of wear of the tire exceeds the threshold, the tire identification unit 104 identifies the tire that needs to be replaced based on the device ID associated with the degree of wear of the tire and the information in the ID information storage unit 101. output.
  • the tire identification unit 104 may notify a predetermined notification destination of the output via the communication unit 105 . Examples of predetermined notification destinations include a computer mounted on a vehicle such as a truck on which a tire that needs to be replaced is installed, a mobile terminal of the driver or manager of the vehicle, and a tire that orders a tire that needs to be replaced.
  • etc., is mentioned.
  • the ID information storage unit 101 may store the type of vehicle, and the threshold storage unit 103 may store the threshold set according to the type of truck or the like.
  • the tire identification unit 104 may identify the tire that needs to be replaced based on the information in the ID information storage unit 101 when the degree of wear of the tire exceeds a threshold corresponding to the type of vehicle. For example, according to vehicle safety standards, in the case of vehicles running on expressways, the depth of treads that require tire replacement differs depending on whether the vehicle is a passenger car, a small truck, or a large truck/bus. Therefore, by specifying the tire that needs to be replaced based on the type of vehicle and the threshold value set according to the type, the tire can be replaced at an appropriate timing based on the usage mode.
  • FIG. 11 shows an example in which the management device 100 acquires the degree of tire wear via the wide area communication network 120 that may include the Internet.
  • the aspect of acquiring the degree of tire wear is not limited to this.
  • the management device 100 may acquire the degree of tire wear directly from the tire wear sensor 1 or through an intra-network within the office.
  • FIG. 13 is a flow chart of the wear evaluation method of this embodiment. Each step will be described below.
  • the tire wear sensor associates a device ID unique to the tire wear sensor with tire information for specifying the tire to which the tire wear sensor is attached, and outputs the information.
  • S1 may be performed at the same time as or before S2, which will be described later.
  • the "tire information" includes the vehicle on which the tire is mounted, the position of the tire, the type of the tire, and the like.
  • the vehicle information includes information that can identify the vehicle, the vehicle type, and the like.
  • the management device acquires the device ID and the tire information output in association with each other from the tire wear sensor, associates them, and stores them in the ID information storage unit.
  • the tire wear sensor measures the degree of tire wear.
  • a tire wear sensor may measure tire wear when a vehicle having tires passes over a magnetic material or a magnetic field generator. For example, if a magnetic body or a magnetic field generator is provided at the entrance (gate) of an office where vehicles enter and exit, the degree of tire wear can be measured when leaving (returning from) an office. As a result, even if the vehicle is a truck or the like on which cargo is loaded, the measurement can be performed without loading the cargo, so that the influence of the cargo can be eliminated and the detection accuracy of the degree of tire wear can be improved.
  • the tire wear sensor outputs the degree of wear of the tire measured in S3 in association with the device ID of the tire wear sensor that measured the degree of wear.
  • the output may be made at the same time as the measurement of the degree of wear or at predetermined intervals after the measurement.
  • the tire wear sensor may output multiple degrees of wear as they are, or output them as an average value of multiple degrees of wear. By outputting as an average value, the influence of measurement error can be suppressed.
  • the management device acquires the degree of wear output in S4 and the tire threshold value stored in the threshold storage unit, compares the degree of wear with the threshold value, and determines whether the tire needs to be replaced. Tires that reach a threshold level of wear typically require replacement.
  • the management device acquires the device ID associated with the wear degree measurement value that has reached the threshold value, and based on the tire information stored in association with the device ID, the tire to which the measuring device is attached, i.e. A tire whose degree of wear has reached a threshold value is specified and output to a predetermined output destination.
  • the predetermined output destination includes a display device of a management device, a display device of a vehicle equipped with a tire requiring replacement, and the like.
  • the wear degree measurement value and the tire can be associated on a one-to-one basis via the device ID of the tire wear sensor. Therefore, it is possible to measure the degree of wear of the tire and determine whether the tire needs to be replaced at different times and places. Therefore, instead of manipulating the tire wear sensor when the vehicle is stopped, the tire requiring replacement can be specified by the management device based on the measured value of the degree of wear output from the tire wear sensor.
  • the present invention can measure the degree of tire wear without embedding a magnet in the tire, so it is useful as a tire wear sensor with little risk of puncture caused by attracting iron nails or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Tires In General (AREA)

Abstract

This tire wear sensor 1 can measure the degree of wear of a tread section of a tire without having a magnetic body embedded in the tread section of the tire, the magnetic body causing iron nails and the like to be drawn into a surface of the tread section. The tire wear sensor comprises: a magnet 11 that senses the degree of wear of a tire 2 on the basis of changes in magnetism and that is disposed on an inner side 21 of the tire 2; and a magnetism sensor 12 that is disposed further on a rotational center O side of the tire 2 with respect to the magnet 11 and that can sense magnetism produced by the magnet 11. When a sensing target section 24 of a tread section 23 in the tire 2 has come into contact with a magnetic body 3 located on an outer side 22 of the tire 2, the degree of wear of the tire 2 is measured as a result of the magnetism sensor 12 sensing the magnetism produced by the magnet 11.

Description

タイヤ摩耗センサ、タイヤの摩耗度測定システム、タイヤの摩耗度評価装置およびタイヤの摩耗度評価方法Tire wear sensor, tire wear measurement system, tire wear evaluation device, and tire wear evaluation method
 本発明は、タイヤの摩耗度を検知するタイヤ摩耗センサ、当該タイヤ摩耗センサを用いた摩耗度測定システム、摩耗度評価装置および摩耗度評価方法に関する。 The present invention relates to a tire wear sensor that detects the degree of wear of a tire, a wear degree measurement system using the tire wear sensor, a wear degree evaluation device, and a wear degree evaluation method.
 タイヤの摩耗が進行すると、路面を走行するときのグリップ性能や、濡れた路面を走行するときのタイヤと路面との間の水を排出する排水性能が低下する。そこで、運転者や車両管理者は、タイヤのトレッド部の摩耗状態を点検し、安全性を確保するために使用限度を超える前にタイヤを交換する必要がある。目視による点検は、タイヤの溝に設けられたスリップサインの確認などにより行われるが、摩耗状態を誤って評価するおそれがある。また、点検作業は煩雑であるため、ユーザーによっては点検しないことも考えられる。トレッド部の摩耗状態が誤って評価されたり、評価されなかったりすると、使用限度を超えたタイヤが継続して使用されるおそれがあり、安全性の観点から好ましくない。
 そこで、目視以外の方法によってタイヤの摩耗の程度を測定し、タイヤの性能が低下したことを検知するタイヤの摩耗度測定システムが提案されている。たとえば、特許文献1には、タイヤのトレッド部に埋設されたタイヤ摩耗検知用の磁石が放出する磁気を検知可能な磁気センサを、タイヤの内側面におけるタイヤ摩耗検知用の磁石に対向する位置に備えたタイヤ摩耗センサが記載されている。この装置は、タイヤのトレッド部の摩耗とともに埋設された磁石が摩耗することによって生じる磁界の変化を測定して、タイヤの摩耗の程度を検知する。
As tire wear progresses, grip performance when driving on a road surface and drainage performance for discharging water between the tire and the road surface when driving on a wet road surface deteriorate. Therefore, it is necessary for drivers and vehicle managers to check the worn state of the tread portion of the tire and replace the tire before the usage limit is exceeded in order to ensure safety. Visual inspection is performed by confirming the slip sign provided in the groove of the tire, but there is a risk of erroneously evaluating the state of wear. Moreover, since the inspection work is complicated, it is conceivable that some users do not perform the inspection. If the wear state of the tread portion is incorrectly evaluated or not evaluated, the tire exceeding the service limit may continue to be used, which is undesirable from the viewpoint of safety.
Therefore, there has been proposed a tire wear measurement system that measures the degree of wear of a tire by a method other than visual observation and detects that the performance of the tire has deteriorated. For example, in Patent Document 1, a magnetic sensor capable of detecting magnetism emitted by a tire wear detection magnet embedded in the tread portion of a tire is provided at a position facing the tire wear detection magnet on the inner surface of the tire. A tire wear sensor is described. This device detects the degree of wear of the tire by measuring changes in the magnetic field caused by the wear of the embedded magnet along with the wear of the tread portion of the tire.
特開2019-203831号公報JP 2019-203831 A
 特許文献1に記載のタイヤ摩耗センサは、トレッド部に埋め込まれた磁石の摩耗による磁気の変化に基づいてタイヤのトレッド部の摩耗度を測定する。このため、磁石はその一方をトレッド部の表面に露出させて、トレッド部とともに摩耗するようにタイヤに埋め込まれる。したがって、一般的なタイヤのトレッド部に磁石を内包させるための追加工が必要である。また、トレッド部表面に露出した磁石の磁気によって引き寄せられた鉄の釘などによりタイヤが傷つけられてパンクの原因となるおそれがあった。
 本発明の目的は、トレッド部表面に鉄の釘などを引き寄せる原因となる磁石をタイヤのトレッド部に埋め込むことなく、タイヤのトレッド部の摩耗度を測定できるタイヤ摩耗センサ、当該タイヤ摩耗センサを用いた摩耗度測定システム、摩耗度評価装置および摩耗度評価方法を提供することにある。
The tire wear sensor described in Patent Document 1 measures the degree of wear of the tread portion of the tire based on changes in magnetism due to wear of magnets embedded in the tread portion. For this reason, the magnet is embedded in the tire so that one of the magnets is exposed on the surface of the tread portion and worn together with the tread portion. Therefore, additional work is required to incorporate the magnet into the tread portion of a typical tire. In addition, the tire may be damaged by iron nails or the like attracted by the magnetism of the magnet exposed on the tread surface, resulting in puncture.
An object of the present invention is to provide a tire wear sensor capable of measuring the degree of wear of the tread portion of a tire without embedding a magnet in the tread portion of the tire, which causes iron nails or the like to be attracted to the tread surface, and to use the tire wear sensor. It is an object of the present invention to provide a wear measurement system, a wear evaluation device, and a wear evaluation method.
 本発明は上述した課題を解決するための手段として、以下の構成を備えている。
 磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサにおいて、前記タイヤの内側に配置された磁石と、前記磁石よりも前記タイヤの回転中心側に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を有し、前記タイヤにおけるトレッド部の検知対象部が前記タイヤの外側に位置する磁性体に接触したときに、前記磁気センサにより前記磁石が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤ摩耗センサ。
The present invention has the following configurations as means for solving the above-described problems.
A tire wear sensor placed inside the tire that detects the degree of wear of the tire based on changes in magnetism, wherein a magnet placed inside the tire is placed closer to the center of rotation of the tire than the magnet. and a magnetic sensor capable of detecting the magnetism emitted by the magnet, wherein the magnet is detected by the magnetic sensor when a detection target portion of the tread portion of the tire contacts a magnetic body located outside the tire. A tire wear sensor that measures the degree of wear of the tire by detecting magnetism emitted by a.
 トレッド部の摩耗に伴って磁石と磁性体との距離が変化することにより、タイヤの検知対象部がタイヤの外側に位置する磁性体に接触したときの磁気の状態が変化する。このため、磁気センサを用いて磁気の状態の変化を検知し、トレッド部の摩耗を測定することができる。 As the distance between the magnet and the magnetic material changes as the tread wears, the state of magnetism changes when the part to be detected of the tire comes into contact with the magnetic material located on the outside of the tire. Therefore, the wear of the tread portion can be measured by detecting changes in the state of magnetism using the magnetic sensor.
 タイヤ摩耗センサが前記磁気センサを二つ有し、二つの前記磁気センサは、前記回転中心側から前記タイヤの径方向に沿って見たときに、前記磁石に対して点対称な位置に配置されていてもよい。
 タイヤ摩耗センサが前記磁気センサおよび前記磁石をそれぞれ二つ有し、二つの前記磁気センサおよび二つの前記磁石はそれぞれ、前記回転中心側から前記タイヤの径方向に沿って見たときに、基準点に対して点対称な位置に配置されるとともに前記磁気センサおよび前記磁石が前記基準点を通る同一直線上に配置されていてもよい。この場合、前記磁気センサは、前記磁石よりも前記基準点から離れた位置に配置されていてもよい。
A tire wear sensor has two magnetic sensors, and the two magnetic sensors are arranged at positions symmetrical with respect to the magnet when viewed along the radial direction of the tire from the rotation center side. may be
A tire wear sensor has two magnetic sensors and two magnets, and each of the two magnetic sensors and the two magnets has a reference point when viewed along the radial direction of the tire from the rotation center side. and the magnetic sensor and the magnet may be arranged on the same straight line passing through the reference point. In this case, the magnetic sensor may be arranged at a position farther from the reference point than the magnet.
 上記のように磁気センサおよび磁石をそれぞれ二つ設け、二つの磁気センサの出力を用いることにより、ノイズの影響を抑えることができる。また、二つの出力が同じ大きさで反対向きになるから、二つの出力の差として大きな出力を得ることができる。二つの磁気センサにより得られる出力は絶対値が同じであるため、一方が故障した場合でも他方の出力を用いてタイヤの摩耗度を評価することできる。したがって、タイヤ摩耗センサの冗長性が向上する。 By providing two magnetic sensors and two magnets as described above and using the outputs of the two magnetic sensors, the effects of noise can be suppressed. Also, since the two outputs are of the same magnitude but in opposite directions, a large output can be obtained as the difference between the two outputs. Since the outputs obtained from the two magnetic sensors have the same absolute value, even if one of them fails, the output of the other can be used to evaluate the degree of tire wear. Therefore, the redundancy of tire wear sensors is improved.
 前記磁石は磁化方向における一端側に軟磁性材料からなる軟磁性体層を有し、前記磁化方向における前記一端側が他端側よりも前記タイヤの中心に近くなるように配置されていてもよい。
 この構成により、タイヤの中心側に設けられた磁気センサにより検知される磁界を軟磁性体層によって小さくすることができる。このため、磁気センサの磁気飽和が起こり難くなり、タイヤ摩耗センサの計測精度が安定する。
The magnet may have a soft magnetic layer made of a soft magnetic material on one end side in the magnetization direction, and may be arranged so that the one end side in the magnetization direction is closer to the center of the tire than the other end side.
With this configuration, the magnetic field detected by the magnetic sensor provided on the center side of the tire can be reduced by the soft magnetic layer. Therefore, magnetic saturation of the magnetic sensor is less likely to occur, and the measurement accuracy of the tire wear sensor is stabilized.
 磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサにおいて、前記タイヤの内側に配置された磁気センサを有し、前記磁気センサは、前記タイヤにおけるトレッド部の検知対象部が前記タイヤの外側に位置する所定の磁気を発する磁気発生体に接触したときに、前記磁気センサにより前記磁気発生体が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤ摩耗センサ。
 タイヤ摩耗センサは、タイヤの外側の磁気発生体からの磁気について、タイヤの摩耗に伴う変化をタイヤの内側に配置された磁気センサで検知することにより、タイヤの摩耗度を測定できる。
A tire wear sensor placed inside the tire that detects the degree of wear of the tire based on changes in magnetism, comprising a magnetic sensor placed inside the tire, wherein the magnetic sensor is located on the tread of the tire. When the detection target portion of the tire comes into contact with a magnetism generator that emits a predetermined magnetism located outside the tire, the magnetic sensor detects the magnetism emitted by the magnetism generator to measure the degree of wear of the tire. A tire wear sensor characterized by:
The tire wear sensor can measure the degree of wear of the tire by detecting a change in the magnetism from the magnetism generator outside the tire that accompanies wear of the tire with a magnetic sensor arranged inside the tire.
 前記磁気発生体は、異なる磁極が交互に複数対並んで構成されており、前記磁気センサは、前記トレッド部に前記磁気発生体を接触させた状態で、磁極が並ぶ方向に沿って前記磁気発生体を動かしたときに、前記磁気発生体が発する磁気を検知してもよい。 The magnetic field generator is configured such that a plurality of pairs of different magnetic poles are alternately arranged, and the magnetic sensor moves the magnetic field generator along the direction in which the magnetic poles are arranged while the magnetic field generator is in contact with the tread portion. The magnetism emitted by the magnetism generator may be detected when the body is moved.
 前記磁気発生体は、接触物との接触箇所において磁気を発生する電磁石であり、前記磁気センサは、前記電磁石と接触した状態で前記タイヤを前記タイヤの周方向に転がしているときに前記電磁石が発する磁気を検知してもよい。
 前記電磁石は、前記タイヤの表面に接触させることにより前記タイヤに埋設されているワイヤを帯磁し、前記磁気センサは、帯磁した前記ワイヤが発する磁気を検知してもよい。
The magnetism generator is an electromagnet that generates magnetism at a contact point with a contacting object, and the magnetic sensor detects that the electromagnet is generated when the tire is rolling in the circumferential direction of the tire while being in contact with the electromagnet. The emitted magnetism may be detected.
The electromagnet may magnetize a wire embedded in the tire by contacting the surface of the tire, and the magnetic sensor may detect the magnetism generated by the magnetized wire.
 タイヤ摩耗センサは、タイヤ摩耗センサに固有の機器IDを記憶する機器ID記憶部と、計測した前記タイヤの前記摩耗度と前記機器IDとを関連付けて出力する摩耗度出力部と、を備えていてもよい。
 この構成によりタイヤの摩耗度の測定値と機器IDとを関連付けて出力できるため、摩耗度が閾値を超えた交換が必要なタイヤを機器IDに基づいて特定することができる。
The tire wear sensor includes a device ID storage unit that stores a device ID unique to the tire wear sensor, and a wear degree output unit that outputs the measured wear degree of the tire and the device ID in association with each other. good too.
With this configuration, the measurement value of the degree of wear of the tire and the device ID can be output in association with each other, so that the tire whose degree of wear exceeds the threshold and needs to be replaced can be specified based on the device ID.
 磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサと、前記タイヤの外側に配置される磁性体とを備えた摩耗度測定システムであって、前記タイヤ摩耗センサは、前記タイヤの内側に配置された磁石と、前記磁石よりも前記タイヤの回転中心側に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を有し、前記タイヤにおけるトレッド部の検知対象部が前記磁性体に接触したときに、前記磁気センサにより前記磁石が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤの摩耗度測定システム。
 この構成によって磁気センサに到達する磁石からの磁気がトレッド部の摩耗の進行に伴って変化することを検知して、トレッド部の摩耗度を測定できる。
A tire wear measurement system comprising a tire wear sensor arranged inside the tire and a magnetic body arranged outside the tire for detecting the degree of wear of the tire based on a change in magnetism, The tire wear sensor has a magnet arranged inside the tire and a magnetic sensor arranged closer to the center of rotation of the tire than the magnet and capable of detecting magnetism emitted by the magnet. A system for measuring the degree of wear of a tire, wherein the degree of wear of the tire is measured by detecting the magnetism generated by the magnet with the magnetic sensor when the detection target portion of the tread portion contacts the magnetic body. .
With this configuration, the degree of wear of the tread can be measured by detecting changes in the magnetism from the magnet reaching the magnetic sensor as the wear of the tread progresses.
 前記磁性体の長手方向の長さは、前記タイヤの外周の長さよりも大きいことが好ましい。この構成によってトレッド部の検知対象部を確実に磁性体に接触させることができるため、タイヤの摩耗量を精度よく測定できる。 The length of the magnetic body in the longitudinal direction is preferably greater than the length of the outer periphery of the tire. With this configuration, the detection target portion of the tread portion can be reliably brought into contact with the magnetic material, so the wear amount of the tire can be measured with high accuracy.
 タイヤ摩耗センサの機器IDと、当該タイヤ摩耗センサが取り付けられたタイヤとを関連付けて記憶するID情報記憶部と、前記機器IDと関連付けられた前記タイヤの摩耗度を取得する計測値取得部と、前記タイヤの前記摩耗度の閾値を記憶する閾値記憶部と、前記タイヤの前記摩耗度が前記閾値を超えたときに、前記タイヤの前記摩耗度と関連付けられた前記機器IDおよび前記ID情報記憶部の情報に基づいて、交換が必要な前記タイヤを特定するタイヤ特定部と、を備えていることを特徴とする、タイヤの摩耗度評価装置。
 この構成により、摩耗度評価装置は、タイヤ摩耗センサの機器IDに基づいて、交換が必要なタイヤを特定できる。
an ID information storage unit that associates and stores a device ID of a tire wear sensor and a tire to which the tire wear sensor is attached; a measurement value acquisition unit that acquires the degree of wear of the tire associated with the device ID; a threshold storage unit that stores a threshold value of the degree of wear of the tire; and a device ID and ID information storage unit that are associated with the degree of wear of the tire when the degree of wear of the tire exceeds the threshold value. and a tire identification unit that identifies the tire that needs to be replaced based on the information of the tire wear degree evaluation device.
With this configuration, the wear degree evaluation device can identify the tire that needs to be replaced based on the device ID of the tire wear sensor.
 前記ID情報記憶部は、前記機器IDと、前記タイヤと、前記タイヤ摩耗センサが取り付けられた車両の種類とを記憶しており、前記閾値記憶部は、前記車両の種類に応じた前記閾値を記憶しており、前記タイヤ特定部は、前記タイヤの前記摩耗度が、前記車両の種類に応じた前記閾値を超えたときに、前記ID情報記憶部の情報に基づいて、交換が必要な前記タイヤを特定してもよい。
 車両の種類および車両の種類に応じた閾値により、タイヤ交換の要否を、車両の種類、使用態様に応じてより適切に判断することができる。
The ID information storage unit stores the device ID, the tire, and the type of vehicle on which the tire wear sensor is mounted, and the threshold storage unit stores the threshold according to the type of vehicle. The tire specifying unit stores information on the tire that needs to be replaced based on the information in the ID information storage unit when the degree of wear of the tire exceeds the threshold value corresponding to the type of the vehicle. Tires may be specified.
Whether or not a tire needs to be replaced can be determined more appropriately according to the type of vehicle and the mode of use of the vehicle by using the threshold value according to the type of vehicle and the type of vehicle.
 タイヤ摩耗センサに固有の機器IDと、前記タイヤ摩耗センサが取り付けられたタイヤを特定可能なタイヤ情報とを関連付けて出力し、前記タイヤ摩耗センサが前記タイヤの摩耗度を計測し、計測した前記摩耗度と、前記摩耗度を計測した前記タイヤ摩耗センサの前記機器IDと関連付けて出力することを特徴とする、タイヤの摩耗度評価方法。
 この構成により、タイヤ摩耗センサの機器IDに基づいて、交換が必要なタイヤを特定することができる。
A device ID unique to the tire wear sensor and tire information that can identify the tire to which the tire wear sensor is attached are associated and output, the tire wear sensor measures the degree of wear of the tire, and the measured wear A method for evaluating the degree of wear of a tire, characterized in that the degree of tire wear is associated with the device ID of the tire wear sensor that measured the degree of wear and is output.
With this configuration, a tire requiring replacement can be specified based on the device ID of the tire wear sensor.
 前記タイヤ摩耗センサは、前記タイヤを備えた車両が磁性体上または磁界発生体上を通過するときに、前記タイヤの前記摩耗度を計測してもよい。
 例えば、トラックやバスなどの車両が属する事業所の門などに磁性体または磁界発生体を配置しておくことで、出発時や帰着時に、タイヤ摩耗量を自動的に測定できる。また、積み荷によってタイヤへの荷重が変化するトラックの場合、出発時および帰着時は積み荷が無いため、積み荷の影響を排除した状態でタイヤの摩耗度を精度よく計測することができる。
The tire wear sensor may measure the degree of wear of the tire when a vehicle having the tire passes over a magnetic body or a magnetic field generator.
For example, by arranging a magnetic body or a magnetic field generator at the gate of a business office to which vehicles such as trucks and buses belong, tire wear can be automatically measured at departure and arrival. In addition, in the case of trucks where the load on the tires varies depending on the cargo, there is no cargo at the time of departure and arrival, so it is possible to accurately measure the degree of wear of the tires while excluding the influence of the cargo.
 タイヤ摩耗センサに固有の機器IDと、前記タイヤ摩耗センサが取り付けられたタイヤを特定可能なタイヤ情報とを取得して、両者を関連付けて記憶し、前記タイヤの摩耗度を取得して、前記摩耗度と閾値とを比較し、前記摩耗度に関連付けられた前記機器IDを取得し、前記機器IDおよび前記機器IDと関連付けられた前記タイヤ情報とに基づいて、前記タイヤ摩耗センサが取り付けられたタイヤを特定することを特徴とする、タイヤの摩耗度評価方法。
 この構成により、タイヤ摩耗センサの機器IDに基づいて、交換が必要な前記タイヤを特定することができる。
A device ID unique to a tire wear sensor and tire information capable of specifying the tire to which the tire wear sensor is attached are acquired, both are associated and stored, the degree of wear of the tire is acquired, and the wear is obtained. and a threshold to obtain the device ID associated with the wear degree, and based on the device ID and the tire information associated with the device ID, the tire to which the tire wear sensor is attached. A method for evaluating the degree of wear of a tire, characterized by specifying
With this configuration, the tire that needs to be replaced can be specified based on the device ID of the tire wear sensor.
 本発明によれば、タイヤに磁石を埋設することなく、タイヤの摩耗度を計測できるため、タイヤに埋設された磁石が釘などの金属を引き寄せることによって生じるパンクを抑制できる。 According to the present invention, tire wear can be measured without embedding a magnet in the tire, so punctures caused by magnets embedded in the tire attracting metal such as nails can be suppressed.
タイヤ摩耗センサが設けられた状態の断面図Cross-sectional view of a state in which a tire wear sensor is provided 図1Aの領域Sの拡大断面図FIG. 1A is an enlarged cross-sectional view of region S in FIG. 1A 検知対象部近傍の磁気の断面図Cross-sectional view of magnetism near detection target 磁性体に接触したときの磁気の断面図Cross-sectional view of magnetism when in contact with a magnetic body 変形例のタイヤ摩耗センサの断面図Sectional view of a modified tire wear sensor 磁性体と磁気センサの平面図Top view of magnetic body and magnetic sensor 検知対象部近傍の磁気と二つの磁気センサとの関係を示す断面図Cross-sectional view showing the relationship between the magnetism in the vicinity of the detection target and the two magnetic sensors 磁性体に接触したときの磁気を示す断面図Cross-sectional view showing magnetism when in contact with a magnetic body 他の変形例のタイヤ摩耗センサの断面図Cross-sectional view of another modified tire wear sensor 磁性体と磁気センサの平面図Top view of magnetic body and magnetic sensor 変形例の磁石を模式的に示す断面図Sectional drawing which shows the magnet of a modification typically 検知対象部近傍の磁気を示す断面図Cross-sectional view showing magnetism in the vicinity of the detection target 摩耗度測定システムの断面図Cross section of wear measurement system 摩耗度測定システムの斜視図Perspective view of wear measurement system 摩耗度測定システムの磁気発生体の平面図Top view of magnetic generator of wear measurement system 摩耗度測定システムの変形例の斜視図Perspective view of a modification of the wear measurement system 摩耗度測定システムの変形例の磁気発生体の平面図Plan view of magnetism generator of modification of wear measurement system 摩耗度測定システムの他の変形例の断面図Sectional view of another modification of the wear measurement system タイヤ摩耗センサと磁性体とを備えた摩耗度測定システムの全体の概略図Schematic diagram of the whole wear measurement system with a tire wear sensor and a magnetic body タイヤ摩耗センサの機能ブロック図Functional block diagram of the tire wear sensor 管理装置の機能ブロック図Functional block diagram of management device タイヤの摩耗度評価方法のフローチャートFlow chart of tire wear evaluation method
 以下、本発明の実施形態について、添付図面を参照して説明する。各図面において同じ部材には同じ番号を付して、適宜、説明を省略する。
 図1Aは、タイヤ摩耗センサ1がタイヤ2に設けられた状態を模式的に示す断面図であり、図1Bは図1Aの領域Sを拡大した断面図である。タイヤ摩耗センサ1は、タイヤ2の内側21に配置された磁石11と、磁石11よりもタイヤ2の回転中心O側に配置され、磁石11が発する磁気を検知可能な磁気センサ12と、を有している。タイヤ摩耗センサ1は、タイヤ2の内側21に配置されており、トレッド部23の検知対象部24が磁性体3と接触したときに磁石11からの磁気を測定し、測定した磁気の変化に基づいてタイヤ2の摩耗度を検知する。なお、摩耗度には、タイヤ2の溝の深さが含まれるが、タイヤ摩耗センサ1は摩耗度とともに他のタイヤ2に関する情報を併せて検知してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The same numbers are assigned to the same members in each drawing, and the description thereof is omitted as appropriate.
FIG. 1A is a cross-sectional view schematically showing a tire wear sensor 1 provided on a tire 2, and FIG. 1B is a cross-sectional view enlarging a region S in FIG. 1A. The tire wear sensor 1 has a magnet 11 arranged inside 21 of the tire 2 and a magnetic sensor 12 arranged closer to the rotation center O of the tire 2 than the magnet 11 and capable of detecting the magnetism emitted by the magnet 11 . are doing. The tire wear sensor 1 is arranged on the inner side 21 of the tire 2, measures the magnetism from the magnet 11 when the detection target portion 24 of the tread portion 23 comes into contact with the magnetic body 3, and detects changes in the measured magnetism. to detect the degree of wear of the tire 2 . Although the degree of wear includes the depth of the groove of the tire 2, the tire wear sensor 1 may detect information about other tires 2 together with the degree of wear.
 磁石11は、合金磁石、フェライト磁石、磁土類磁石や、これらの粉粒体(磁性粉)が高分子材料中に分散されて形成されたゴム磁石、プラスチック磁石などを用いることができる。磁石11は、その磁化方向がタイヤ2の半径方向(Z軸方向)と一致するような姿勢でタイヤ摩耗センサ1内に配置される。ゴム磁石に用いられる高分子材料として、タイヤ2のトレッド部23に用いられるトレッドゴム組成物と同じ配合のゴム材料などを用いてもよい。 The magnet 11 can be an alloy magnet, a ferrite magnet, a magneto-earth magnet, or a rubber magnet or plastic magnet formed by dispersing these particles (magnetic powder) in a polymer material. The magnet 11 is arranged in the tire wear sensor 1 in such a posture that its magnetization direction matches the radial direction (Z-axis direction) of the tire 2 . As the polymer material used for the rubber magnet, a rubber material having the same composition as the tread rubber composition used for the tread portion 23 of the tire 2 may be used.
 磁石11は、磁気センサ12側の磁極端の表面において1mT以上の磁束密度を有することが好ましい。また、磁石11の磁気によって、車載される他の電子機器などに悪影響を与えないようにする観点から、磁石11の磁極端における表面磁束密度は600mT以下であることが好ましい。なお、表面磁束密度は、着磁された磁石11の表面にテスラメーターを直接接触させることにより測定される値である。 The magnet 11 preferably has a magnetic flux density of 1 mT or more on the surface of the pole tip on the magnetic sensor 12 side. From the viewpoint of preventing the magnetism of the magnet 11 from adversely affecting other on-vehicle electronic devices, the surface magnetic flux density at the pole tip of the magnet 11 is preferably 600 mT or less. The surface magnetic flux density is a value measured by directly contacting the magnetized surface of the magnet 11 with a Tesla meter.
 磁気センサ12は、磁気の状態を検知して電気信号に変えるものであり、タイヤ2の内側21に配置されたタイヤ摩耗センサ1において、磁石11と対向し、かつ磁石11が発する磁気を検知可能な位置に配置されている。磁気センサ12として、例えば、磁気抵抗効果を用いたGMRセンサ、TMRセンサ、ホール効果を用いたホールセンサなどが挙げられる。 The magnetic sensor 12 detects the state of magnetism and converts it into an electric signal, and faces the magnet 11 in the tire wear sensor 1 arranged inside 21 of the tire 2, and can detect the magnetism emitted by the magnet 11. are placed in a good position. Examples of the magnetic sensor 12 include a GMR sensor, a TMR sensor, and a Hall sensor using the Hall effect.
 図2Aはタイヤ2におけるトレッド部23の検知対象部24近傍における、磁石11が発する磁気Mを模式的に示す断面図であり、図2Bは検知対象部24がタイヤ2の外側22に位置する磁性体3に接触したときの磁気Mを模式的に示す断面図である。 2A is a cross-sectional view schematically showing the magnetism M emitted by the magnet 11 in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2, and FIG. 3 is a cross-sectional view schematically showing the magnetism M when in contact with the body 3; FIG.
 タイヤ摩耗センサ1はケース内に磁石11と磁気センサ12とが、Z軸方向(タイヤ2の径方向)に離れて配置されており、検知対象部24がタイヤ2の外側22に位置する磁性体3に接触したときに、磁石11が発する磁気Mを磁気センサ12で検知してタイヤ2の摩耗度を計測する。タイヤ2の内側21に設けられた磁石11とタイヤ2の外側22の磁性体3との距離Dは、検知対象部24の摩耗度に応じて変化する。距離Dが変化すると磁性体3の磁石11に対する影響も変化し、磁気センサ12で検知される磁気Mも変化する。言い換えると、タイヤ2が摩耗すると、磁気センサ12で検知される磁気Mが変化する。 In the tire wear sensor 1, a magnet 11 and a magnetic sensor 12 are arranged in a case separated in the Z-axis direction (radial direction of the tire 2), and a detection target portion 24 is a magnetic body positioned outside 22 of the tire 2. 3, the magnetic sensor 12 detects the magnetism M emitted by the magnet 11 to measure the degree of wear of the tire 2. - 特許庁A distance D between the magnet 11 provided on the inner side 21 of the tire 2 and the magnetic body 3 on the outer side 22 of the tire 2 changes according to the degree of wear of the detection target portion 24 . When the distance D changes, the influence of the magnetic body 3 on the magnet 11 also changes, and the magnetism M detected by the magnetic sensor 12 also changes. In other words, when the tire 2 wears, the magnetism M detected by the magnetic sensor 12 changes.
 すなわち、内側21にタイヤ摩耗センサ1が配置された検知対象部24が磁性体3の上を通過するときに磁石11からの磁気Mを磁気センサ12で測定して、磁石11から磁性体3までの距離Dを推定することができる。距離Dはタイヤ2のトレッド部23の摩耗の進行に伴って小さくなるから、磁気センサ12による磁界測定値に基づいてタイヤ2の摩耗度を評価可能である。したがって、タイヤ2のトレッド部23に磁石11を埋め込まずに、磁気センサ12で磁石11の磁気Mを測定してトレッド部23の摩耗度(タイヤ2の摩耗度)を評価することができる。 That is, when the detection target portion 24 having the tire wear sensor 1 arranged inside 21 passes over the magnetic body 3 , the magnetism M from the magnet 11 is measured by the magnetic sensor 12 , and the magnetic field from the magnet 11 to the magnetic body 3 is measured. can be estimated. Since the distance D becomes smaller as the wear of the tread portion 23 of the tire 2 progresses, the degree of wear of the tire 2 can be evaluated based on the magnetic field measurement value by the magnetic sensor 12 . Therefore, the degree of wear of the tread portion 23 (the degree of wear of the tire 2 ) can be evaluated by measuring the magnetism M of the magnet 11 with the magnetic sensor 12 without embedding the magnet 11 in the tread portion 23 of the tire 2 .
 磁性体3は、磁気Mに影響を及ぼす磁性体により構成されている。磁性体3は、例えば、鉄・ニッケル・コバルトおよびその合金などの強磁性体の板などを用いることができる。また、タイヤ摩耗センサ1と、磁性体3とを備えた摩耗度測定システムとして、本発明を実施することもできる。 The magnetic material 3 is composed of a magnetic material that affects the magnetism M. For the magnetic body 3, for example, a plate of a ferromagnetic material such as iron, nickel, cobalt, and alloys thereof can be used. Further, the present invention can be implemented as a wear measuring system including the tire wear sensor 1 and the magnetic body 3 .
 図3Aは、変形例に係るタイヤ摩耗センサ4を模式的に示す部分断面図である。タイヤ摩耗センサ4は、二つの磁気センサ42A、42Bを有している点において、タイヤ摩耗センサ1と異なっている。なお、以下では、磁気センサ42A、42Bを区別しない場合、適宜、磁気センサ42と記す。後述する磁石51A、51Bおよび磁気センサ52A、52Bについても、同様に、適宜、磁石51、磁気センサ52と記載する。 FIG. 3A is a partial cross-sectional view schematically showing a tire wear sensor 4 according to a modification. The tire wear sensor 4 differs from the tire wear sensor 1 in that it has two magnetic sensors 42A and 42B. In the following description, the magnetic sensors 42A and 42B are appropriately referred to as the magnetic sensor 42 when the magnetic sensors 42A and 42B are not distinguished. Magnets 51A and 51B and magnetic sensors 52A and 52B, which will be described later, are similarly referred to as magnets 51 and magnetic sensors 52 as appropriate.
 タイヤ摩耗センサ4は、二つの磁気センサ42A、42Bからの差動信号に基づいて磁石11の磁気を検知する。磁気センサ42は、磁石11の着磁方向(Z軸方向)と交差するY軸方向の磁気を検知する。磁気センサ42の検知した磁気の差分出力を用いることにより、タイヤ2の摩耗度の検知精度がよくなる。なお、タイヤ摩耗センサ4は、図示しない磁気誘導部材を備えていてもよい。磁石11と磁気誘導部材との間に磁気センサ42を配置することにより、磁気センサ42の感度が向上する。 The tire wear sensor 4 detects the magnetism of the magnet 11 based on differential signals from the two magnetic sensors 42A and 42B. The magnetic sensor 42 detects magnetism in the Y-axis direction intersecting the magnetization direction (Z-axis direction) of the magnet 11 . By using the magnetic difference output detected by the magnetic sensor 42, the detection accuracy of the degree of wear of the tire 2 is improved. Note that the tire wear sensor 4 may include a magnetic induction member (not shown). By arranging the magnetic sensor 42 between the magnet 11 and the magnetic induction member, the sensitivity of the magnetic sensor 42 is improved.
 図3Bは、タイヤ摩耗センサ4における磁石11と磁気センサ42A、42Bとの位置関係を模式的に示す平面図である。同図は、磁石11の磁化方向であるZ軸方向から平面視した位置関係を模式的に示している。磁気センサ42A、42Bは、磁化方向からみたときに、磁石11の外郭よりも外側に位置する部分を備えるように配置されている。この構成により、タイヤ摩耗センサ4は、タイヤ2の摩耗度の進行に伴うY軸方向の磁気の変化を精度良く測定することができる。 3B is a plan view schematically showing the positional relationship between the magnet 11 and the magnetic sensors 42A and 42B in the tire wear sensor 4. FIG. This figure schematically shows the positional relationship viewed from the Z-axis direction, which is the magnetization direction of the magnet 11 . The magnetic sensors 42A and 42B are arranged so as to have portions located outside the outer shell of the magnet 11 when viewed from the magnetization direction. With this configuration, the tire wear sensor 4 can accurately measure changes in magnetism in the Y-axis direction as the degree of wear of the tire 2 progresses.
 二つの磁気センサ42A、42Bは、タイヤ2の回転中心O側(図1A参照)からタイヤ2の径方向に沿って見たときに、磁石11に対して点対称な位置に配置されている。すなわち、図1Aに示すように、タイヤ摩耗センサ4がタイヤ2の接地部すなわち下端に位置する場合、Z軸に沿って上から見たとき、磁石11を中心として点対称な位置に磁気センサ42A、42Bが配置されている。 The two magnetic sensors 42A and 42B are arranged at point-symmetrical positions with respect to the magnet 11 when viewed along the radial direction of the tire 2 from the rotation center O side of the tire 2 (see FIG. 1A). That is, as shown in FIG. 1A, when the tire wear sensor 4 is positioned at the ground contact portion, that is, the lower end of the tire 2, when viewed from above along the Z-axis, the magnetic sensors 42A are positioned point-symmetrically about the magnet 11. , 42B are arranged.
 図4Aは、タイヤ2におけるトレッド部23の検知対象部24近傍における、磁石11が発する磁気Mと二つの磁気センサ42A、42Bとの関係を模式的に示す断面図である。図4Bは検知対象部24がタイヤ2の外側22に位置する磁性体3に接触したときの磁気を模式的に示す断面図である。磁気センサ42A、42Bは、磁石11を中心として点対称に配置されているため、磁気センサ42A、42Bが測定する磁気Mは向きが反対方向で同じ大きさになる。対して、地磁気などの影響によって生じるノイズは、大きさおよび方向が同じである。このため、磁気センサ42A、42Bの出力の差をとることで、ノイズを取り除くとともに大きな出力が得られる。また、二つの磁気センサ42はそれぞれ、同じ大きさの磁気Mを検知するから、一方に問題が生じた場合、他方の磁気センサ42からの出力のみを用いて摩耗度を測定することができる。したがって、タイヤ摩耗センサ4の冗長性が良好になる。 4A is a cross-sectional view schematically showing the relationship between the magnetism M emitted by the magnet 11 and the two magnetic sensors 42A and 42B in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2. FIG. 4B is a cross-sectional view schematically showing magnetism when the detection target portion 24 contacts the magnetic body 3 positioned on the outer side 22 of the tire 2. FIG. Since the magnetic sensors 42A and 42B are arranged point-symmetrically about the magnet 11, the magnetism M measured by the magnetic sensors 42A and 42B is the same in opposite directions. On the other hand, noise caused by influences such as geomagnetism has the same magnitude and direction. Therefore, by taking the difference between the outputs of the magnetic sensors 42A and 42B, noise can be removed and a large output can be obtained. In addition, since the two magnetic sensors 42 each detect the magnetism M of the same magnitude, if a problem occurs in one of them, the degree of wear can be measured using only the output from the other magnetic sensor 42 . Therefore, the redundancy of the tire wear sensor 4 is improved.
 図5Aは、他の変形例に係るタイヤ摩耗センサ5を模式的に示す部分断面図であり、図5Bは、タイヤ摩耗センサ5における磁石51A、51Bと磁気センサ52A、52Bとの位置関係を模式的に示す平面図である。これらの図に示すように、タイヤ摩耗センサ5は、磁石51および磁気センサ52をそれぞれ二つずつ有している点において、タイヤ摩耗センサ1と異なっている。 FIG. 5A is a partial cross-sectional view schematically showing a tire wear sensor 5 according to another modification, and FIG. 5B schematically shows the positional relationship between magnets 51A and 51B and magnetic sensors 52A and 52B in the tire wear sensor 5. 2 is a schematic plan view; FIG. As shown in these figures, tire wear sensor 5 differs from tire wear sensor 1 in that it has two magnets 51 and two magnetic sensors 52 .
 タイヤ摩耗センサ5では、各磁石51に対応して、磁気センサ52がそれぞれ1つずつ設けられている。磁石51A、51B、および磁気センサ52A、52Bはそれぞれ、タイヤ2の回転中心O(図1A参照)側からZ軸に沿って見たとき、基準点Bを基準にして点対称な位置に配置されている。また、磁気センサ52はそれぞれ、磁石51よりも基準点Bから離れた位置に配置されている。 The tire wear sensor 5 is provided with one magnetic sensor 52 corresponding to each magnet 51 . The magnets 51A, 51B and the magnetic sensors 52A, 52B are arranged at symmetrical positions with respect to the reference point B when viewed along the Z-axis from the rotation center O (see FIG. 1A) side of the tire 2. ing. Further, the magnetic sensors 52 are arranged at positions farther from the reference point B than the magnets 51 are.
 基準点Bは、二つの磁気センサ52を結ぶ線分の中点を回転中心O側からタイヤ2の径方向に投影したタイヤ摩耗センサ5の底面53上の(仮想)点であり、二つの磁石51を結ぶ線分の中点を回転中心側からタイヤ2の径方向に投影したタイヤ摩耗センサ5の底面53上の(仮想)点でもある。すなわち、二つの磁気センサ52を結ぶ線分の中点と、二つの磁石51を結ぶ線分の中点とは、底面に投影したときに重なる。 A reference point B is a (virtual) point on the bottom surface 53 of the tire wear sensor 5 obtained by projecting the midpoint of a line connecting the two magnetic sensors 52 in the radial direction of the tire 2 from the rotation center O side. It is also a (virtual) point on the bottom surface 53 of the tire wear sensor 5 projected in the radial direction of the tire 2 from the rotation center side of the midpoint of the line segment connecting 51 . That is, the midpoint of the line segment connecting the two magnetic sensors 52 and the midpoint of the line segment connecting the two magnets 51 overlap when projected onto the bottom surface.
 二つの磁石51および二つの磁気センサ52は、基準点Bを通る同一の直線P上(同一直線上)に配置されている。すなわち、二つの磁石51および二つの磁気センサ52は、回転中心O(図1A参照)側からタイヤ2の径方向であるZ軸方向に沿って、タイヤ摩耗センサ5の底面53上に投影したときに、基準点Bを通る同一の直線P上に位置するように、配置されている。 The two magnets 51 and the two magnetic sensors 52 are arranged on the same straight line P passing through the reference point B (on the same straight line). That is, when the two magnets 51 and the two magnetic sensors 52 are projected onto the bottom surface 53 of the tire wear sensor 5 along the Z-axis direction, which is the radial direction of the tire 2, from the rotation center O (see FIG. 1A) side. , so as to be positioned on the same straight line P passing through the reference point B.
 なお、磁石51および磁気センサ52の数は、タイヤ摩耗センサ5の二組に限らず、三組以上としてもよい。また、組となる磁石51と磁気センサ52とは、同数でなくてもよい。例えば、1つの磁石51からの磁気Mを複数の磁気センサ52で検知する構成や、複数の磁石51からの磁気Mを一つの磁石51で検知する構成としてもよい。 The number of magnets 51 and magnetic sensors 52 is not limited to two sets of tire wear sensors 5, and may be three sets or more. Also, the number of magnets 51 and magnetic sensors 52 forming a set may not be the same. For example, a configuration in which the magnetism M from one magnet 51 is detected by a plurality of magnetic sensors 52 or a configuration in which the magnetism M from a plurality of magnets 51 is detected by one magnet 51 may be employed.
 図6は変形例に係る磁石13を模式的に示す断面図である。磁石13は、硬磁性材料からなる硬磁性体層13aの磁化方向(Z軸方向)における一端131側すなわち磁気センサ12側に、軟磁性材料からなる軟磁性体層13bを有している。 FIG. 6 is a cross-sectional view schematically showing a magnet 13 according to a modification. The magnet 13 has a soft magnetic layer 13b made of a soft magnetic material on one end 131 side in the magnetization direction (Z-axis direction) of the hard magnetic layer 13a made of a hard magnetic material, that is, on the magnetic sensor 12 side.
 硬磁性体層13aは、磁化方向における一端131側が他端132側よりもタイヤ2の回転中心O(図1A参照)に近くなるように配置されている。一端131側に設けられている硬磁性体層13aにより磁気MをY軸に平行な方向に誘導し、タイヤ2の内側21と外側22とにおいて、磁石11からの磁気Mの状態に差をつけることができる。すなわち、硬磁性体層13aの一端131側に軟磁性体層13bを設けることにより、図2Aおよび図2Bに示す磁石11の磁気Mと比較して、タイヤ2の内側21において回転中心O側に向かって広がる磁気Mを小さく、タイヤ2の外側22において回転中心Oの反対側に向かって広がる磁気Mを大きくすることができる。 The hard magnetic layer 13a is arranged so that one end 131 side in the magnetization direction is closer to the rotation center O (see FIG. 1A) of the tire 2 than the other end 132 side. The magnetism M is guided in the direction parallel to the Y-axis by the hard magnetic layer 13a provided on the one end 131 side, and the state of the magnetism M from the magnet 11 is differentiated between the inner side 21 and the outer side 22 of the tire 2. be able to. That is, by providing the soft magnetic layer 13b on the one end 131 side of the hard magnetic layer 13a, the magnetism M of the magnet 11 shown in FIGS. The magnetism M that spreads toward the tire 2 can be reduced, and the magnetism M that spreads toward the opposite side of the rotation center O on the outer side 22 of the tire 2 can be increased.
 タイヤ2が摩耗していない初期状態において磁気センサ12側の磁気Mが大きいと、磁気センサ12が飽和状態になりやすいため、タイヤ2の摩耗に伴って生じる磁気Mの変動を大きくする必要がある。そして、初期状態における磁気センサ12側の磁気Mを小さくすることにより、磁気センサ12の磁気飽和を抑制できる。 If the magnetism M on the side of the magnetic sensor 12 is large in the initial state where the tire 2 is not worn, the magnetic sensor 12 is likely to be saturated. . By reducing the magnetism M on the side of the magnetic sensor 12 in the initial state, magnetic saturation of the magnetic sensor 12 can be suppressed.
 また、磁気センサ12は、タイヤ2の摩耗によって磁石11と磁性体3との距離D(図2B参照)が変わることで生じる磁気Mの変動を測定する。このため、タイヤ2の外側22により強い磁気Mが出ていた方が磁気Mの分布が変わりやすくなり、磁気センサ12によって検知される磁気Mの変動が大きくなる。 In addition, the magnetic sensor 12 measures variations in the magnetism M caused by changes in the distance D (see FIG. 2B) between the magnet 11 and the magnetic body 3 due to wear of the tire 2 . For this reason, the distribution of the magnetism M tends to change more easily when the stronger magnetism M is emitted from the outer side 22 of the tire 2, and the fluctuation of the magnetism M detected by the magnetic sensor 12 increases.
 したがって、磁気センサ12側に、軟磁性材料からなる軟磁性体層13bを備えた磁石13を用いて、タイヤ2の内側21の磁気Mを小さくし、外側の磁気Mを大きくすることで、磁気センサ12による磁気Mの検知精度が向上する。 Therefore, by using the magnet 13 provided with the soft magnetic layer 13b made of a soft magnetic material on the magnetic sensor 12 side, the magnetism M on the inside 21 of the tire 2 is reduced and the magnetism M on the outside is increased. The detection accuracy of the magnetism M by the sensor 12 is improved.
 硬磁性体層13aは、硬磁性材料であれば特に限定されない。酸化鉄を主成分とするフェライト(ハード・フェライト)、アルニコ(Al-Ni-Co合金)、サマリウムコバルトが挙げられる。軟磁性体層13bを構成する材料は、軟磁性材料であれば特に限定されない。パーマロイ(Fe-Ni合金)、他の鉄系材料であるセンダスト(Fe-Si-Al合金)、鉄系または非鉄系のアモルファス磁性合金、フェライト(ソフト・フェライト)などが例示される。これら例示した材料のうち、磁気センサ12側の一端131からのZ軸方向の磁気を抑制する観点から、センダストが好ましい。 The hard magnetic layer 13a is not particularly limited as long as it is made of a hard magnetic material. Examples include ferrite (hard ferrite) containing iron oxide as a main component, alnico (Al--Ni--Co alloy), and samarium-cobalt. The material forming the soft magnetic layer 13b is not particularly limited as long as it is a soft magnetic material. Examples include permalloy (Fe--Ni alloy), sendust (Fe--Si--Al alloy) which is another iron-based material, iron-based or non-ferrous amorphous magnetic alloy, and ferrite (soft ferrite). Among these exemplified materials, Sendust is preferable from the viewpoint of suppressing magnetism in the Z-axis direction from the one end 131 on the side of the magnetic sensor 12 .
 図6に示すように、軟磁性体層13bは硬磁性体層13aよりも薄いことが好ましい。軟磁性体層13bの厚さTbを硬磁性体層13aの厚さTaよりも小さくすることにより、軟磁性体層13bに磁路が形成され易くなるため、軟磁性体層13bは、硬磁性体層13aからの磁気を磁気センサ12とは反対側の他端132側に誘導しやすくなる。 As shown in FIG. 6, the soft magnetic layer 13b is preferably thinner than the hard magnetic layer 13a. By making the thickness Tb of the soft magnetic layer 13b smaller than the thickness Ta of the hard magnetic layer 13a, a magnetic path is easily formed in the soft magnetic layer 13b. The magnetism from the body layer 13a is easily guided to the other end 132 opposite to the magnetic sensor 12 side.
 硬磁性体層13aの一端131側からの磁気の磁束密度を小さくする観点から、厚さTbと厚さTaとの比Tb/Taは、1/100以上1/1未満が好ましく、1/10以上1/2未満がより好ましく、1/7以上1/3未満がさらに好ましい。 From the viewpoint of reducing the magnetic flux density from the one end 131 side of the hard magnetic layer 13a, the ratio Tb/Ta between the thickness Tb and the thickness Ta is preferably 1/100 or more and less than 1/1, and 1/10. 1/7 or more and less than 1/3 is more preferable.
 同様の観点から、軟磁性体層13bの厚さTbは、0.05mm以上1mm以下が好ましく、0.1mm以上0.5mm以下がより好ましく、0.15mm以上0.3mm以下がさらに好ましい。また、硬磁性体層13aの厚さTaは、0.1mm以上5mm以下が好ましく、0.3mm以上3mm以下がより好ましく、0.5mm以上2mm以下がさらに好ましい。 From the same point of view, the thickness Tb of the soft magnetic layer 13b is preferably 0.05 mm or more and 1 mm or less, more preferably 0.1 mm or more and 0.5 mm or less, and even more preferably 0.15 mm or more and 0.3 mm or less. The thickness Ta of the hard magnetic layer 13a is preferably 0.1 mm or more and 5 mm or less, more preferably 0.3 mm or more and 3 mm or less, and even more preferably 0.5 mm or more and 2 mm or less.
 なお、図6では、磁石13の一部に軟磁性体層13bが設けられた態様を示したが、軟磁性体層13bは、磁石13と別体であってもよい。例えば、軟磁性体は磁石11と磁気センサ12との間に設けられていてもよい。 Although FIG. 6 shows a mode in which the soft magnetic layer 13b is provided on a part of the magnet 13, the soft magnetic layer 13b may be separate from the magnet 13. For example, a soft magnetic body may be provided between magnet 11 and magnetic sensor 12 .
 図7はタイヤ2におけるトレッド部23の検知対象部24近傍における、タイヤ2の外側22に配置された磁気発生体71が発する磁気Mを模式的に示す断面図である。同図に示すタイヤ摩耗センサ6は、磁石11を備えておらず、タイヤ2の外側22に接する磁気発生体71の磁気Mを磁気センサ12により検知する。なお、磁気発生体71が発する磁気Mは常に所定の値である。磁気発生体71表面の磁気Mの磁束密度の所定の値は、例えば、1~200mTとすることができ、タイヤ2の摩耗進行に伴う磁気Mの変化を精度よく検知する観点から、3~10mTとすることが好ましい。 FIG. 7 is a cross-sectional view schematically showing the magnetism M generated by the magnetism generator 71 arranged on the outer side 22 of the tire 2 in the vicinity of the detection target portion 24 of the tread portion 23 of the tire 2 . The tire wear sensor 6 shown in FIG. Note that the magnetism M generated by the magnetism generator 71 is always a predetermined value. The predetermined value of the magnetic flux density of the magnetism M on the surface of the magnetism generator 71 can be, for example, 1 to 200 mT. It is preferable to
 磁気センサ12は、タイヤ2におけるトレッド部23の検知対象部24がタイヤ2の外側22に位置する磁気発生体71に接触したときに、磁気センサ12により磁気発生体71が発する磁気Mを検知してタイヤ2の摩耗度を計測する。 The magnetic sensor 12 detects the magnetism M generated by the magnetism generator 71 when the detection target portion 24 of the tread portion 23 of the tire 2 contacts the magnetism generator 71 positioned on the outer side 22 of the tire 2 . to measure the degree of wear of the tire 2.
 タイヤ摩耗センサ6は、タイヤ2の内側21に取り付けられ、磁気Mを検出可能な磁気センサ12を備えており、板状の磁気発生体71がタイヤ2のトレッド部23に接触したときの磁気Mを計測する。磁気発生体71が発する磁気Mは常に所定の値であるため、磁気センサ12により計測される磁気Mは、磁気センサ12と磁気発生体71との距離Dによって変化する。そのため、磁気センサ12により計測された磁気Mに基づいて距離Dを検知できる。距離Dはタイヤ2のトレッド部23の摩耗に伴って変化するため、タイヤ摩耗センサ6は磁気Mの計測値に基づいてタイヤ2の摩耗度を検知することができる。 The tire wear sensor 6 is attached to the inner side 21 of the tire 2 and includes a magnetic sensor 12 capable of detecting magnetism M. to measure Since the magnetism M emitted by the magnetism generator 71 is always a predetermined value, the magnetism M measured by the magnetic sensor 12 changes depending on the distance D between the magnetic sensor 12 and the magnetism generator 71 . Therefore, the distance D can be detected based on the magnetism M measured by the magnetic sensor 12 . Since the distance D changes as the tread portion 23 of the tire 2 wears, the tire wear sensor 6 can detect the degree of wear of the tire 2 based on the measured value of the magnetism M.
 図8Aおよび図8Bは、タイヤ摩耗センサ6と磁気発生体71からなる摩耗度測定システム70を模式的に示す断面図および斜視図である。図8Cは磁気発生体71の平面図である。
 摩耗度測定システム70は、検知対象部24におけるタイヤ2の外側22の表面(タイヤ表面)に接するように磁気発生体71を配置して検知対象部24近くを移動させ、検知対象部24の内側21に配置されたタイヤ摩耗センサ6により磁気発生体71からの磁気を検知して、タイヤ2のトレッド部23の摩耗度を検出する。
8A and 8B are a sectional view and a perspective view schematically showing a wear measurement system 70 comprising the tire wear sensor 6 and the magnetism generator 71. FIG. 8C is a plan view of the magnetism generator 71. FIG.
The wear degree measurement system 70 arranges the magnetism generator 71 so as to be in contact with the surface (tire surface) of the outer side 22 of the tire 2 in the detection target portion 24, moves the vicinity of the detection target portion 24, and moves the inner side of the detection target portion 24. The degree of wear of the tread portion 23 of the tire 2 is detected by detecting the magnetism from the magnetism generator 71 by the tire wear sensor 6 arranged at 21 .
 トレッド部23の摩耗によってゴムの量が減ることで、タイヤ摩耗センサ6の磁気センサ12と磁気発生体71との距離D(図7参照)が小さくなる。タイヤ摩耗センサ6からの出力は、トレッド部23の摩耗に伴う距離Dの減少量の二乗に比例して大きくなる。このため、タイヤ摩耗センサ6の出力に基づいてタイヤ2の摩耗度を検出することができる。 As the amount of rubber decreases due to wear of the tread portion 23, the distance D (see FIG. 7) between the magnetic sensor 12 of the tire wear sensor 6 and the magnetism generator 71 decreases. The output from the tire wear sensor 6 increases in proportion to the square of the amount of decrease in the distance D due to wear of the tread portion 23 . Therefore, the degree of wear of the tire 2 can be detected based on the output of the tire wear sensor 6 .
 図8Cに示すように、磁気発生体71におけるタイヤ2の外側22の表面と接触する接触面は、異なる磁極が交互に複数対並んで構成されていてもよい。タイヤ摩耗センサ6の磁気センサ12は、トレッド部23に磁気発生体71を接触させた状態で、図8Bに両側矢印で示した磁極が並ぶ方向に沿って磁気発生体71を動かしたときに、磁気発生体71が発する磁気M(図7参照)を検知する。磁気発生体71を磁極が並ぶ方向に沿って動かすことにより、磁気センサ12からの出力が変化する。磁気センサ12で磁気Mのピーク値を検出することにより、トレッド部23の摩耗度を測定できる。例えば、磁気発生体71を移動させた際に得られたタイヤ摩耗センサ6からの出力の最大値に基づいてトレッド部23の厚さを測定する。なお、タイヤ2の外側22から見たときに、タイヤ摩耗センサ6が配置されている位置を判別できるように、例えば、タイヤ2の側面に配置位置を示す意匠を設けておいてもよい。 As shown in FIG. 8C, the contact surface of the magnetism generator 71 that contacts the surface of the outer side 22 of the tire 2 may be configured by alternately arranging a plurality of pairs of different magnetic poles. When the magnetic sensor 12 of the tire wear sensor 6 is in contact with the tread portion 23 and the magnetism generator 71 is moved along the direction in which the magnetic poles are arranged as indicated by the double-headed arrow in FIG. The magnetism M (see FIG. 7) emitted by the magnetism generator 71 is detected. By moving the magnetism generator 71 along the direction in which the magnetic poles are arranged, the output from the magnetic sensor 12 changes. The degree of wear of the tread portion 23 can be measured by detecting the peak value of the magnetism M with the magnetic sensor 12 . For example, the thickness of the tread portion 23 is measured based on the maximum value of the output from the tire wear sensor 6 obtained when the magnetism generator 71 is moved. Note that, for example, a design indicating the arrangement position may be provided on the side surface of the tire 2 so that the position where the tire wear sensor 6 is arranged can be determined when viewed from the outside 22 of the tire 2 .
 図9Aは、変形例に係る摩耗度測定システム72を示す斜視図である。図9Bは、磁気発生体73の構造を模式的に示す平面図である。摩耗度測定システム72は、磁気発生体73として、接触物であるタイヤ2との接触箇所において磁気を発生する電磁石を用いている。磁気発生体73として電磁石を用いることで、磁力の発生を測定時のみとすることができる。したがって、磁気発生体73が鉄釘等を引き寄せることを抑制できる。 FIG. 9A is a perspective view showing a wear measurement system 72 according to a modification. 9B is a plan view schematically showing the structure of the magnetism generator 73. FIG. The wear degree measurement system 72 uses an electromagnet that generates magnetism at a contact point with the tire 2 , which is a contact object, as the magnetism generator 73 . By using an electromagnet as the magnetism generator 73, magnetic force can be generated only during measurement. Therefore, it is possible to prevent the magnetism generator 73 from attracting an iron nail or the like.
 磁気発生体73の長手方向の長さLは、タイヤ2の外周の長さR以上である。このため、磁気発生体73と接触した状態でタイヤ2をその周方向に転がしているときに、磁気発生体73におけるタイヤ2と接触している部分の電磁石を駆動することにより、人手を介することなくタイヤ2の摩耗度を測定できる。例えば、事業所のゲートに磁気発生体73を設置し、トラック80が事業所のゲートを通過する際、磁気発生体73上をタイヤ2で通過させて、タイヤ2の摩耗度を計測することができる。 The length L of the magnetism generator 73 in the longitudinal direction is greater than or equal to the length R of the outer circumference of the tire 2 . Therefore, when the tire 2 is rolled in the circumferential direction in contact with the magnetism generator 73, by driving the electromagnet of the portion of the magnetism generator 73 that is in contact with the tire 2, manual intervention is not required. The degree of wear of the tire 2 can be measured without For example, the magnetism generator 73 is installed at the gate of the office, and when the truck 80 passes through the gate of the office, the tire 2 is passed over the magnetism generator 73 to measure the degree of wear of the tire 2. can.
 タイヤ摩耗センサ6の磁気センサ12は、加速度センサを備えていてもよい。加速度センサにより、タイヤ摩耗センサ6が地面付近に位置することを検知したときに、磁気発生体71の電磁石を駆動すれば、磁気発生体73を効率よく稼働することができる。 The magnetic sensor 12 of the tire wear sensor 6 may include an acceleration sensor. By driving the electromagnet of the magnetism generator 71 when the acceleration sensor detects that the tire wear sensor 6 is positioned near the ground, the magnetism generator 73 can be operated efficiently.
 図10は、他の変形例に係る摩耗度測定システム74を模式的に示す断面図である。摩耗度測定システム74は、電磁石(磁気発生体)75によってタイヤ2に埋設されているスチールワイヤ25を帯磁させ、帯磁したスチールワイヤ25が発する磁気を検知する。同図に示すように、電磁石75をタイヤ2の外側22表面に接触させてタイヤ2に埋設されているスチールワイヤ25を帯磁させ、タイヤ摩耗センサ6によって帯磁したスチールワイヤ25が発する磁気を検知することでタイヤ2の摩耗度を検知できる。この場合、帯磁したスチールワイヤ25が、磁気発生体71(図7、図8Aおよび図8B参照)と同様に機能する。 FIG. 10 is a cross-sectional view schematically showing a wear measurement system 74 according to another modification. The wear measurement system 74 magnetizes the steel wire 25 embedded in the tire 2 with an electromagnet (magnetism generator) 75 and detects the magnetism emitted by the magnetized steel wire 25 . As shown in the figure, an electromagnet 75 is brought into contact with the surface of the outer side 22 of the tire 2 to magnetize the steel wire 25 embedded in the tire 2, and the magnetism emitted by the magnetized steel wire 25 is detected by the tire wear sensor 6. Thus, the degree of wear of the tire 2 can be detected. In this case, the magnetized steel wire 25 functions similarly to the magnetic generator 71 (see FIGS. 7, 8A and 8B).
 電磁石75の磁界強度を一定とすれば、スチールワイヤ25の帯磁量がタイヤ2の摩耗度に応じて変化する。このため、タイヤ摩耗センサ6によってスチールワイヤ25の帯磁量を測定することにより、タイヤ2の摩耗度を検知することができる。なお、図10に示すように、スチールワイヤ25はタイヤ2の全周にわたって設けられているため、電磁石75によりスチールワイヤ25を帯磁させることができる位置は、タイヤ摩耗センサ6が設けられた部分に限られない。すなわち、車両が停車したときにタイヤ摩耗センサ6が設けられた部分が路面に接していたとしても測定が可能となる。 If the magnetic field intensity of the electromagnet 75 is constant, the magnetization amount of the steel wire 25 changes according to the degree of wear of the tire 2 . Therefore, the degree of wear of the tire 2 can be detected by measuring the magnetization amount of the steel wire 25 with the tire wear sensor 6 . As shown in FIG. 10, since the steel wire 25 is provided along the entire circumference of the tire 2, the position where the steel wire 25 can be magnetized by the electromagnet 75 is the portion where the tire wear sensor 6 is provided. Not limited. That is, even if the portion where the tire wear sensor 6 is provided is in contact with the road surface when the vehicle stops, the measurement can be performed.
 スチールワイヤ25を帯磁させて用いることで、小さな電磁石75を用いてタイヤ2の摩耗度を測定できる。このため、装置を小型化することでき、携帯に適したなハンディタイプの電磁石75を用いてタイヤ2の摩耗度を測定することが可能になる。 By magnetizing the steel wire 25 and using it, the degree of wear of the tire 2 can be measured using a small electromagnet 75 . Therefore, the device can be made smaller, and the degree of wear of the tire 2 can be measured using a handy type electromagnet 75 suitable for portability.
 図11は、タイヤ摩耗センサ1と磁性体3とを備えた、磁気の変化に基づいてタイヤ2の摩耗度を検知する、摩耗度測定システム90の全体を概略的に示す図である。同図にはタイヤ摩耗センサ1を示しているが、タイヤ摩耗センサ4、5、6を用いて摩耗度測定システム90を構成してもよい。なお、タイヤ摩耗センサ6を用いる場合、磁性体3の代わりに磁気発生体71、73を用いる。 FIG. 11 is a diagram schematically showing an overall wear measuring system 90 that includes the tire wear sensor 1 and the magnetic body 3 and detects the wear of the tire 2 based on changes in magnetism. Although the tire wear sensor 1 is shown in FIG. Note that when the tire wear sensor 6 is used, magnetism generators 71 and 73 are used instead of the magnetic body 3 .
 摩耗度測定システム90は、タイヤ2におけるトレッド部23の検知対象部24(図2A参照)が、磁性体3に接触したときに、タイヤ摩耗センサ1の磁気センサ12により、磁石11が発する磁気を検知してタイヤ2の摩耗度を計測する。 The wear measurement system 90 detects the magnetism generated by the magnet 11 using the magnetic sensor 12 of the tire wear sensor 1 when the detection target portion 24 (see FIG. 2A) of the tread portion 23 of the tire 2 contacts the magnetic body 3. It detects and measures the degree of wear of the tire 2 .
 磁性体3の長手方向の長さLを、タイヤ2の外周の長さR以上とすることにより、トラック80のタイヤ2が通用門等に設置された磁性体3上を通過する際に、確実にタイヤ2におけるトレッド部23の検知対象部24を磁性体3と接触させることができる。このため、管理装置(摩耗度評価装置)100は、接触の際にタイヤ摩耗センサ1により計測、出力されたタイヤ2の摩耗度を用いてタイヤ2の摩耗度を管理できる。 By setting the length L of the magnetic body 3 in the longitudinal direction to be equal to or greater than the length R of the outer circumference of the tire 2, when the tire 2 of the truck 80 passes over the magnetic body 3 installed at a side gate or the like, it can be reliably carried out. First, the detection target portion 24 of the tread portion 23 of the tire 2 can be brought into contact with the magnetic body 3 . Therefore, the management device (wear evaluation device) 100 can manage the wear of the tire 2 using the wear of the tire 2 measured and output by the tire wear sensor 1 at the time of contact.
 したがって、タイヤ2の摩耗の管理が重要なトラック80等を用いる業種においては、営業所や事業所の通用門などに磁性体3を配置しておくことで、日々の摩耗度の変化を自動的に確実に確認することができ、管理装置100や運転手のスマートホンなどにタイヤ交換が必要であることを通知することもできる。また、例えば、インターネットなどの広域通信ネットワーク120を介して、管理装置100からタイヤ会社110に交換用のタイヤ2を注文することもできる。 Therefore, in an industry that uses the track 80 or the like, in which it is important to manage the wear of the tire 2, by arranging the magnetic body 3 at the side gate of a sales office or business office, changes in the degree of wear on a daily basis can be automatically monitored. It is also possible to reliably confirm that the tire needs to be changed, and to notify the management device 100 or the smart phone of the driver that the tire needs to be replaced. Further, for example, a replacement tire 2 can be ordered from the management device 100 to the tire company 110 via a wide area communication network 120 such as the Internet.
 図12Aはタイヤ摩耗センサ1の構成を示す機能ブロック図である。同図に示すように、タイヤ摩耗センサ1は、計測部14、機器ID記憶部15、加速度センサ16、摩耗度出力部17および通信部18を備えている。 12A is a functional block diagram showing the configuration of the tire wear sensor 1. FIG. As shown in the figure, the tire wear sensor 1 includes a measurement unit 14, a device ID storage unit 15, an acceleration sensor 16, a wear level output unit 17, and a communication unit 18.
 計測部14は、タイヤの摩耗度を計測するものであり、上述した磁石11および磁気センサ12を備えている。機器ID記憶部15は、タイヤ摩耗センサ1に固有の機器IDを記憶する手段であり、汎用のメモリなどにより構成される。加速度センサ16は、タイヤ2の回転に伴ってタイヤ摩耗センサ1に加えられる加速度を測定するものであり、加速度の変化に基づいてタイヤ摩耗センサ1が設けられた部分の接地を検知する。摩耗度出力部17は、計測したタイヤ2の摩耗度と機器IDとを関連付けて、通信部18を介して管理装置100等の外部の装置に出力する。このため、管理装置100等は、機器IDに基づいて、タイヤ2の個体に摩耗情報を紐付した状態で取得し、管理することができる。 The measurement unit 14 measures the degree of tire wear, and includes the magnet 11 and the magnetic sensor 12 described above. The device ID storage unit 15 is means for storing a device ID unique to the tire wear sensor 1, and is configured by a general-purpose memory or the like. The acceleration sensor 16 measures the acceleration applied to the tire wear sensor 1 as the tire 2 rotates, and detects grounding of the portion where the tire wear sensor 1 is provided based on changes in acceleration. The wear degree output unit 17 associates the measured wear degree of the tire 2 with the device ID, and outputs the result to an external device such as the management device 100 via the communication unit 18 . Therefore, the management device 100 and the like can acquire and manage the wear information in a state in which the individual tire 2 is associated with the wear information based on the device ID.
 図12Bは、管理装置100の構成を示す機能ブロック図である。同図に示すように、管理装置100は、ID情報記憶部101、計測値取得部102、閾値記憶部103、タイヤ特定部104および通信部105を備えており、例えば、CPUおよび記憶装置(RAM、ROM)を備えたコンピュータなどで構成される。 FIG. 12B is a functional block diagram showing the configuration of the management device 100. As shown in FIG. As shown in the figure, the management device 100 includes an ID information storage unit 101, a measured value acquisition unit 102, a threshold storage unit 103, a tire identification unit 104, and a communication unit 105. For example, a CPU and a storage device (RAM , ROM).
 ID情報記憶部101は、タイヤ摩耗センサに固有の機器IDと、タイヤ摩耗センサが取り付けられたタイヤとを関連付けて記憶している。ID情報記憶部101は、機器IDと、タイヤ(摩耗度、取り付けられた車輪など)と、タイヤ摩耗センサが取り付けられたトラック等の種類(車両の種類)とを記憶していてもよい。閾値記憶部103は、タイヤの摩耗度の閾値を記憶しており、閾値はトラック等の車両の種類に応じて設定されてもよい。また、閾値記憶部103は、タイヤの摩耗度の違いに合わせて複数種の閾値を記憶していてもよい。 The ID information storage unit 101 associates and stores the device ID unique to the tire wear sensor and the tire to which the tire wear sensor is attached. The ID information storage unit 101 may store the device ID, the tire (degree of wear, attached wheel, etc.), and the type of truck or the like (vehicle type) to which the tire wear sensor is attached. The threshold storage unit 103 stores a threshold for the degree of tire wear, and the threshold may be set according to the type of vehicle such as a truck. Further, the threshold storage unit 103 may store a plurality of types of thresholds according to different degrees of tire wear.
 計測値取得部102は、タイヤ摩耗センサ1から機器IDと関連付けられたタイヤの摩耗度を取得する。そして、タイヤ特定部104は、タイヤの摩耗度が閾値を超えたときに、タイヤの摩耗度と関連付けられた機器IDおよびID情報記憶部101の情報に基づいて、交換が必要なタイヤを特定して出力する。タイヤ特定部104は、通信部105を介して当該出力を所定の通知先に通知してもよい。所定の通知先としては、例えば、交換が必要なタイヤが取り付けられたトラック等の車両に搭載されているコンピュータ、当該車両の運転者や管理者の携帯端末、交換が必要なタイヤを発注するタイヤ会社110等が挙げられる。 The measured value acquisition unit 102 acquires the degree of tire wear associated with the device ID from the tire wear sensor 1 . Then, when the degree of wear of the tire exceeds the threshold, the tire identification unit 104 identifies the tire that needs to be replaced based on the device ID associated with the degree of wear of the tire and the information in the ID information storage unit 101. output. The tire identification unit 104 may notify a predetermined notification destination of the output via the communication unit 105 . Examples of predetermined notification destinations include a computer mounted on a vehicle such as a truck on which a tire that needs to be replaced is installed, a mobile terminal of the driver or manager of the vehicle, and a tire that orders a tire that needs to be replaced. The company 110 grade|etc., is mentioned.
 ID情報記憶部101が車両の種類を記憶し、閾値記憶部103がトラック等の種類に応じて設定された閾値を記憶していてもよい。この場合、タイヤ特定部104は、タイヤの摩耗度が車両の種類に応じた閾値を超えたときに、ID情報記憶部101の情報に基づいて、交換が必要なタイヤを特定してもよい。例えば、車両の保安基準では、高速道路を走る車両の場合、乗用車、小型トラックまたは大型トラック・バスのいずれであるかにより、タイヤ交換が必要となる溝の深さが異なる。そこで、車両の種類および種類に応じて設定された閾値に基づいて、交換が必要なタイヤを特定することで、使用態様を踏まえた適切なタイミングでタイヤを交換することができる。 The ID information storage unit 101 may store the type of vehicle, and the threshold storage unit 103 may store the threshold set according to the type of truck or the like. In this case, the tire identification unit 104 may identify the tire that needs to be replaced based on the information in the ID information storage unit 101 when the degree of wear of the tire exceeds a threshold corresponding to the type of vehicle. For example, according to vehicle safety standards, in the case of vehicles running on expressways, the depth of treads that require tire replacement differs depending on whether the vehicle is a passenger car, a small truck, or a large truck/bus. Therefore, by specifying the tire that needs to be replaced based on the type of vehicle and the threshold value set according to the type, the tire can be replaced at an appropriate timing based on the usage mode.
 なお、図11では、インターネットを含んでもよい広域通信ネットワーク120を介して、管理装置100がタイヤの摩耗度を取得する例を示した。しかし、タイヤの摩耗度を取得する態様は、これに限られない。たとえば、管理装置100は、タイヤ摩耗センサ1から直接タイヤの摩耗度を取得したり、事業所内のイントラネットワークを介して取得したりしてもよい。 Note that FIG. 11 shows an example in which the management device 100 acquires the degree of tire wear via the wide area communication network 120 that may include the Internet. However, the aspect of acquiring the degree of tire wear is not limited to this. For example, the management device 100 may acquire the degree of tire wear directly from the tire wear sensor 1 or through an intra-network within the office.
 図13は、本実施形態の摩耗度評価方法のフローチャートである。以下、各ステップについて説明する。
 S1において、タイヤ摩耗センサは、タイヤ摩耗センサに固有の機器IDと、当該タイヤ摩耗センサを取り付けたタイヤを特定するためのタイヤ情報とを関連付けて出力する。S1は、後述するS2と同時かその前に実施すればよい。ここで、「タイヤ情報」としては、タイヤが取り付けられた車両および当該タイヤの位置、タイヤの種類などが挙げられる。車両の情報としては、車両を特定できる情報および車両の種類などが挙げられる。
FIG. 13 is a flow chart of the wear evaluation method of this embodiment. Each step will be described below.
In S1, the tire wear sensor associates a device ID unique to the tire wear sensor with tire information for specifying the tire to which the tire wear sensor is attached, and outputs the information. S1 may be performed at the same time as or before S2, which will be described later. Here, the "tire information" includes the vehicle on which the tire is mounted, the position of the tire, the type of the tire, and the like. The vehicle information includes information that can identify the vehicle, the vehicle type, and the like.
 S2において、管理装置は、タイヤ摩耗センサから関連付けて出力された機器IDとタイヤ情報とを取得して、両者を関連付けてID情報記憶部に記憶する。 In S2, the management device acquires the device ID and the tire information output in association with each other from the tire wear sensor, associates them, and stores them in the ID information storage unit.
 S3において、タイヤ摩耗センサは、タイヤの摩耗度を計測する。タイヤ摩耗センサは、タイヤを備えた車両が磁性体上または磁界発生体上を通過するときに、タイヤの摩耗度を計測してもよい。例えば、車両が出入りする事業所等の出入口(ゲート)に磁性体または磁界発生体を設けておけば、事業所等から出発(帰着)する際にタイヤの摩耗度を計測することができる。これにより、車両が荷物を積載するトラック等である場合でも、荷物を積載しない状態で計測できるため、荷物の影響を排除してタイヤの摩耗度の検知精度を向上させることができる。 In S3, the tire wear sensor measures the degree of tire wear. A tire wear sensor may measure tire wear when a vehicle having tires passes over a magnetic material or a magnetic field generator. For example, if a magnetic body or a magnetic field generator is provided at the entrance (gate) of an office where vehicles enter and exit, the degree of tire wear can be measured when leaving (returning from) an office. As a result, even if the vehicle is a truck or the like on which cargo is loaded, the measurement can be performed without loading the cargo, so that the influence of the cargo can be eliminated and the detection accuracy of the degree of tire wear can be improved.
 S4において、タイヤ摩耗センサは、S3で計測したタイヤの摩耗度と、摩耗度を計測したタイヤ摩耗センサの機器IDとを関連付けて出力する。出力は、摩耗度の測定と同時、測定後、所定期間ごとのいずれでもよい。測定後に出力する場合、タイヤ摩耗センサは、複数の摩耗度をそのまま出力しても、複数の摩耗度の平均値として出力してもよい。平均値として出力することにより、測定誤差の影響を抑えることができる。 In S4, the tire wear sensor outputs the degree of wear of the tire measured in S3 in association with the device ID of the tire wear sensor that measured the degree of wear. The output may be made at the same time as the measurement of the degree of wear or at predetermined intervals after the measurement. When outputting after measurement, the tire wear sensor may output multiple degrees of wear as they are, or output them as an average value of multiple degrees of wear. By outputting as an average value, the influence of measurement error can be suppressed.
 S5において、管理装置は、S4で出力された摩耗度と、閾値記憶部に記憶されたタイヤの閾値とを取得し、摩耗度と閾値とを比較し、タイヤ交換の要否を判断する。通常、摩耗度が閾値に到達したタイヤについて、交換が必要とする。 In S5, the management device acquires the degree of wear output in S4 and the tire threshold value stored in the threshold storage unit, compares the degree of wear with the threshold value, and determines whether the tire needs to be replaced. Tires that reach a threshold level of wear typically require replacement.
 S6において、管理装置は、閾値に到達した摩耗度の計測値に関連付けられた機器IDを取得し、当該機器IDと関連付けて記憶しているタイヤ情報に基づいて、測定機器が取り付けられたタイヤすなわち摩耗度が閾値に達したタイヤを特定し、所定の出力先に出力する。ここで、所定の出力先としては、管理装置の表示装置、交換を要するタイヤを備えた車両の表示装置などが挙げられる。 In S6, the management device acquires the device ID associated with the wear degree measurement value that has reached the threshold value, and based on the tire information stored in association with the device ID, the tire to which the measuring device is attached, i.e. A tire whose degree of wear has reached a threshold value is specified and output to a predetermined output destination. Here, the predetermined output destination includes a display device of a management device, a display device of a vehicle equipped with a tire requiring replacement, and the like.
 上述したタイヤ摩耗度評価方法によれば、摩耗度の測定値とタイヤとを、タイヤ摩耗センサの機器IDを介して1対1で対応させることができる。したがって、タイヤの摩耗度の測定と、タイヤ交換の要否の判断とを、異なる時と場所において行うことが可能になる。このため、車両の停車時にタイヤ摩耗センサを人が操作するのではなく、タイヤ摩耗センサから出力された摩耗度の測定値に基づいて、管理装置によって交換を要するタイヤを特定することができる。 According to the tire wear degree evaluation method described above, the wear degree measurement value and the tire can be associated on a one-to-one basis via the device ID of the tire wear sensor. Therefore, it is possible to measure the degree of wear of the tire and determine whether the tire needs to be replaced at different times and places. Therefore, instead of manipulating the tire wear sensor when the vehicle is stopped, the tire requiring replacement can be specified by the management device based on the measured value of the degree of wear output from the tire wear sensor.
 以上説明したように、本発明は、タイヤに磁石を埋設することなくタイヤの摩耗度を計測できるから、鉄の釘などを引き寄せることによるパンクの危険が小さい、タイヤ摩耗センサとして有用である。 As described above, the present invention can measure the degree of tire wear without embedding a magnet in the tire, so it is useful as a tire wear sensor with little risk of puncture caused by attracting iron nails or the like.
1、4、5、6:タイヤ摩耗センサ
2     :タイヤ
3     :磁性体
11    :磁石
12    :磁気センサ
13    :磁石
13a   :硬磁性体層
13b   :軟磁性体層
131   :一端
132   :他端
14    :計測部
15    :機器ID記憶部
16    :加速度センサ
17    :摩耗度出力部
18    :通信部
21    :内側
22    :外側
23    :トレッド部
24    :検知対象部
25    :スチールワイヤ
42、42A、42B:磁気センサ
51、51A、51B:磁石
52、52A、52B:磁気センサ
53    :底面
70、72、74、90:摩耗度測定システム
71、73、75:磁気発生体
80    :トラック(車両)
100   :管理装置(摩耗度評価装置)
101   :ID情報記憶部
102   :計測値取得部
103   :閾値記憶部
104   :タイヤ特定部
105   :通信部
110   :タイヤ会社
120   :広域通信ネットワーク
B     :基準点
D     :距離
M     :磁気
O     :回転中心
S     :領域
Ta、Tb :厚さ
P     :直線
L、R   :長さ
1, 4, 5, 6: tire wear sensor 2: tire 3: magnetic material 11: magnet 12: magnetic sensor 13: magnet 13a: hard magnetic layer 13b: soft magnetic layer 131: one end 132: other end 14: measurement Unit 15 : Equipment ID storage unit 16 : Acceleration sensor 17 : Wear level output unit 18 : Communication unit 21 : Inside 22 : Outside 23 : Tread portion 24 : Detection target portion 25 : Steel wires 42, 42A, 42B: Magnetic sensor 51, 51A, 51B: Magnets 52, 52A, 52B: Magnetic sensor 53: Bottom surfaces 70, 72, 74, 90: Abrasion measurement systems 71, 73, 75: Magnetic generator 80: Truck (vehicle)
100: Management device (wear degree evaluation device)
101: ID information storage unit 102: Measured value acquisition unit 103: Threshold storage unit 104: Tire identification unit 105: Communication unit 110: Tire company 120: Wide area communication network B: Reference point D: Distance M: Magnetism O: Rotation center S : Regions Ta, Tb : Thickness P : Straight lines L, R : Length

Claims (17)

  1.  磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサにおいて、
     前記タイヤの内側に配置された磁石と、
     前記磁石よりも前記タイヤの回転中心側に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を有し、
     前記タイヤにおけるトレッド部の検知対象部が前記タイヤの外側に位置する磁性体に接触したときに、前記磁気センサにより前記磁石が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤ摩耗センサ。
    A tire wear sensor located inside the tire that detects the degree of wear of the tire based on changes in magnetism,
    a magnet positioned inside the tire;
    a magnetic sensor arranged closer to the center of rotation of the tire than the magnet and capable of detecting magnetism emitted by the magnet;
    The wear degree of the tire is measured by detecting the magnetism generated by the magnet by the magnetic sensor when the detection target portion of the tread portion of the tire comes into contact with a magnetic material positioned outside the tire. and a tire wear sensor.
  2.  前記磁気センサを二つ有し、
     二つの前記磁気センサは、前記回転中心側から前記タイヤの径方向に沿って見たときに、前記磁石に対して点対称な位置に配置されている、
    請求項1に記載のタイヤ摩耗センサ。
    Having two magnetic sensors,
    The two magnetic sensors are arranged at point-symmetrical positions with respect to the magnet when viewed along the radial direction of the tire from the rotation center side,
    A tire wear sensor according to claim 1.
  3.  前記磁気センサおよび前記磁石をそれぞれ二つ有し、
     二つの前記磁気センサおよび二つの前記磁石はそれぞれ、前記回転中心側から前記タイヤの径方向に沿って見たときに、基準点に対して点対称な位置に配置されるとともに、
     前記磁気センサおよび前記磁石が前記基準点を通る同一直線上に配置されている、
    請求項1に記載のタイヤ摩耗センサ。
    Having two each of the magnetic sensors and the magnets,
    The two magnetic sensors and the two magnets are arranged at positions symmetrical with respect to a reference point when viewed along the radial direction of the tire from the rotation center side,
    wherein the magnetic sensor and the magnet are arranged on the same straight line passing through the reference point;
    A tire wear sensor according to claim 1.
  4.  前記磁気センサは、前記磁石よりも前記基準点から離れた位置に配置されている、
    請求項3に記載のタイヤ摩耗センサ。
    The magnetic sensor is arranged at a position farther from the reference point than the magnet,
    A tire wear sensor according to claim 3.
  5.  前記磁石は磁化方向における一端側に軟磁性材料からなる軟磁性体層を有し、
     前記磁化方向における前記一端側が他端側よりも前記タイヤの中心に近くなるように配置されている、
    請求項1に記載のタイヤ摩耗センサ。
    The magnet has a soft magnetic layer made of a soft magnetic material on one end side in the magnetization direction,
    The one end side in the magnetization direction is arranged to be closer to the center of the tire than the other end side,
    A tire wear sensor according to claim 1.
  6.  磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサにおいて、
     前記タイヤの内側に配置された磁気センサを有し、
     前記磁気センサは、前記タイヤにおけるトレッド部の検知対象部が前記タイヤの外側に位置する所定の磁気を発する磁気発生体に接触したときに、前記磁気センサにより前記磁気発生体が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤ摩耗センサ。
    A tire wear sensor located inside the tire that detects the degree of wear of the tire based on changes in magnetism,
    Having a magnetic sensor located inside the tire,
    The magnetic sensor detects the magnetism emitted by the magnetism generator when the detection target portion of the tread portion of the tire comes into contact with the magnetism generator that emits a predetermined magnetism located outside the tire. a tire wear sensor that measures the degree of wear of the tire.
  7.  前記磁気発生体は、異なる磁極が交互に複数対並んで構成されており、
     前記磁気センサは、前記トレッド部に前記磁気発生体を接触させた状態で、磁極が並ぶ方向に沿って前記磁気発生体を動かしたときに、前記磁気発生体が発する磁気を検知する、
    請求項6に記載のタイヤ摩耗センサ。
    The magnetism generator is configured by alternately arranging a plurality of pairs of different magnetic poles,
    The magnetic sensor detects the magnetism emitted by the magnetism generator when the magnetism generator is moved along the direction in which the magnetic poles are arranged while the magnetism generator is in contact with the tread portion.
    A tire wear sensor according to claim 6.
  8.  前記磁気発生体は、接触物との接触箇所において磁気を発生する電磁石であり、
     前記磁気センサは、前記電磁石と接触した状態で前記タイヤを前記タイヤの周方向に転がしているときに前記電磁石が発する磁気を検知する、
    請求項6に記載のタイヤ摩耗センサ。
    The magnetism generator is an electromagnet that generates magnetism at the contact point with the contact object,
    The magnetic sensor detects magnetism emitted by the electromagnet when the tire is rolling in the circumferential direction of the tire while being in contact with the electromagnet.
    A tire wear sensor according to claim 6.
  9.  前記電磁石は、前記タイヤの表面に接触させることにより前記タイヤに埋設されているワイヤを帯磁し、
     前記磁気センサは、帯磁した前記ワイヤが発する磁気を検知する、
    請求項8に記載のタイヤ摩耗センサ。
    The electromagnet magnetizes a wire embedded in the tire by contacting the surface of the tire,
    The magnetic sensor detects magnetism emitted by the magnetized wire,
    A tire wear sensor according to claim 8.
  10.  タイヤ摩耗センサに固有の機器IDを記憶する機器ID記憶部と、
     計測した前記タイヤの前記摩耗度と前記機器IDとを関連付けて出力する摩耗度出力部と、を備えている、
    請求項1~9のいずれか1項に記載のタイヤ摩耗センサ。
    a device ID storage unit that stores a device ID unique to the tire wear sensor;
    a wear degree output unit that outputs the measured wear degree of the tire and the device ID in association with each other;
    The tire wear sensor according to any one of claims 1-9.
  11.  磁気の変化に基づいてタイヤの摩耗度を検知する、前記タイヤの内側に配置されるタイヤ摩耗センサと、前記タイヤの外側に配置される磁性体とを備えた摩耗度測定システムであって、
     前記タイヤ摩耗センサは、
      前記タイヤの内側に配置された磁石と、
      前記磁石よりも前記タイヤの回転中心側に配置され、前記磁石が発する磁気を検知可能な磁気センサと、を有し、
      前記タイヤにおけるトレッド部の検知対象部が前記磁性体に接触したときに、前記磁気センサにより前記磁石が発する磁気を検知して前記タイヤの前記摩耗度を計測することを特徴とする、タイヤの摩耗度測定システム。
    A wear measurement system comprising a tire wear sensor arranged inside the tire and a magnetic body arranged outside the tire for detecting the degree of wear of the tire based on changes in magnetism,
    The tire wear sensor is
    a magnet positioned inside the tire;
    a magnetic sensor arranged closer to the center of rotation of the tire than the magnet and capable of detecting magnetism emitted by the magnet;
    The wear of the tire, characterized in that when the detection target portion of the tread portion of the tire contacts the magnetic body, the magnetic sensor detects the magnetism emitted by the magnet to measure the degree of wear of the tire. Degree measurement system.
  12.  前記磁性体の長手方向の長さは、前記タイヤの外周の長さよりも大きい、
    請求項11に記載のタイヤの摩耗度測定システム。
    The length in the longitudinal direction of the magnetic body is greater than the length of the outer circumference of the tire,
    The tire wear measurement system according to claim 11 .
  13.  タイヤ摩耗センサの機器IDと、当該タイヤ摩耗センサが取り付けられたタイヤとを関連付けて記憶するID情報記憶部と、
     前記機器IDと関連付けられた前記タイヤの摩耗度を取得する計測値取得部と、
     前記タイヤの前記摩耗度の閾値を記憶する閾値記憶部と、
     前記タイヤの前記摩耗度が前記閾値を超えたときに、前記タイヤの前記摩耗度と関連付けられた前記機器IDおよび前記ID情報記憶部の情報に基づいて、交換が必要な前記タイヤを特定するタイヤ特定部と、を備えていることを特徴とする、
    タイヤの摩耗度評価装置。
    an ID information storage unit that associates and stores the device ID of the tire wear sensor and the tire to which the tire wear sensor is attached;
    a measurement value acquisition unit that acquires the degree of wear of the tire associated with the device ID;
    a threshold storage unit that stores a threshold value of the degree of wear of the tire;
    A tire that identifies the tire that needs to be replaced when the degree of wear of the tire exceeds the threshold based on the device ID associated with the degree of wear of the tire and information in the ID information storage unit. characterized by comprising a specific part,
    Tire wear evaluation device.
  14.  前記ID情報記憶部は、前記機器IDと、前記タイヤと、前記タイヤ摩耗センサが取り付けられた車両の種類とを記憶しており、
     前記閾値記憶部は、前記車両の種類に応じた前記閾値を記憶しており、
     前記タイヤ特定部は、前記タイヤの前記摩耗度が、前記車両の種類に応じた前記閾値を超えたときに、前記ID情報記憶部の情報に基づいて、交換が必要な前記タイヤを特定する、
    請求項13に記載のタイヤの摩耗度評価装置。
    The ID information storage unit stores the device ID, the tire, and the type of vehicle on which the tire wear sensor is mounted,
    The threshold storage unit stores the threshold according to the type of the vehicle,
    The tire identification unit identifies the tire that needs to be replaced based on the information in the ID information storage unit when the degree of wear of the tire exceeds the threshold value according to the type of the vehicle.
    The tire wear evaluation device according to claim 13.
  15.  タイヤ摩耗センサに固有の機器IDと、前記タイヤ摩耗センサが取り付けられたタイヤを特定可能なタイヤ情報とを関連付けて出力し、
     前記タイヤ摩耗センサが前記タイヤの摩耗度を計測し、
     計測した前記摩耗度と、前記摩耗度を計測した前記タイヤ摩耗センサの前記機器IDと関連付けて出力することを特徴とする、タイヤの摩耗度評価方法。
    outputting in association with a device ID unique to the tire wear sensor and tire information capable of identifying the tire to which the tire wear sensor is attached;
    The tire wear sensor measures the degree of wear of the tire,
    A method for evaluating the degree of wear of a tire, wherein the measured degree of wear and the device ID of the tire wear sensor that measured the degree of wear are output in association with each other.
  16.  前記タイヤ摩耗センサは、前記タイヤを備えた車両が磁性体上または磁界発生体上を通過するときに、前記タイヤの前記摩耗度を計測する、
    請求項15に記載のタイヤの摩耗度評価方法。
    The tire wear sensor measures the degree of wear of the tire when the vehicle equipped with the tire passes over a magnetic body or a magnetic field generator.
    The tire wear degree evaluation method according to claim 15.
  17.  タイヤ摩耗センサに固有の機器IDと、前記タイヤ摩耗センサが取り付けられたタイヤを特定可能なタイヤ情報とを取得して、両者を関連付けて記憶し、
     前記タイヤの摩耗度を取得して、前記摩耗度と閾値とを比較し、
     前記摩耗度に関連付けられた前記機器IDを取得し、前記機器IDおよび前記機器IDと関連付けられた前記タイヤ情報とに基づいて、前記タイヤ摩耗センサが取り付けられた前記タイヤを特定することを特徴とする、タイヤの摩耗度評価方法。
    Acquiring a device ID unique to a tire wear sensor and tire information capable of identifying a tire to which the tire wear sensor is attached, and storing the two in association with each other;
    Obtaining the degree of wear of the tire, comparing the degree of wear with a threshold,
    Acquiring the device ID associated with the degree of wear, and identifying the tire to which the tire wear sensor is attached based on the device ID and the tire information associated with the device ID. A tire wear evaluation method.
PCT/JP2022/009309 2021-07-21 2022-03-04 Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method WO2023002666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021120925 2021-07-21
JP2021-120925 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023002666A1 true WO2023002666A1 (en) 2023-01-26

Family

ID=84979101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009309 WO2023002666A1 (en) 2021-07-21 2022-03-04 Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method

Country Status (1)

Country Link
WO (1) WO2023002666A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142203A (en) * 1982-02-19 1983-08-24 Res Dev Corp Of Japan Magnetic body detecting device
JP2020027471A (en) * 2018-08-13 2020-02-20 Toyo Tire株式会社 Tire maintenance management device and tire maintenance system
WO2020154145A1 (en) * 2019-01-22 2020-07-30 Tyrata, Inc. Tire structures including magnets and/or magnetically conductive material and related tire assemblies and tread monitoring systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142203A (en) * 1982-02-19 1983-08-24 Res Dev Corp Of Japan Magnetic body detecting device
JP2020027471A (en) * 2018-08-13 2020-02-20 Toyo Tire株式会社 Tire maintenance management device and tire maintenance system
WO2020154145A1 (en) * 2019-01-22 2020-07-30 Tyrata, Inc. Tire structures including magnets and/or magnetically conductive material and related tire assemblies and tread monitoring systems

Similar Documents

Publication Publication Date Title
US10113855B2 (en) System for determining the thickness of a layer of rubber for a tire
EP3862988B1 (en) Magnetic marker system
CN110525132A (en) Pneumatic tire, tire wear measurement method and system and sensor module
JP7150251B2 (en) Method for manufacturing pneumatic tires
WO2021059786A1 (en) Pneumatic tire
WO2015083072A1 (en) Sensor device adapted for vehicle tyres, vehicle tyres and method of monitoring depths of grooves of tyre treads
EP3508822A1 (en) Learning system and learning method for vehicle
CN109416545B (en) Magnetic mark detection system and magnetic mark detection method
EP3904991A1 (en) Vehicle and vehicle diagnostic system
WO2020145012A1 (en) Device for measuring tire wear
CN110023747B (en) Method and apparatus for evaluating damage to magnetic linear body
WO2023002666A1 (en) Tire wear sensor, tire degree-of-wear measurement system, tire degree-of-wear assessment device, and tire degree-of-wear assessment method
JP7353581B2 (en) pneumatic tires
US20230016943A1 (en) Wear measurement device and wear measurement method for tire
JP2021017157A (en) Pneumatic tire
EP3994045B1 (en) Device for detecting a wheel on a rail track
WO2022085583A1 (en) Tire wear measurement device, pneumatic tire, and tire wear measurement method
EP3904996B1 (en) Magnetic marker system
EP1512557A1 (en) Magnetized tire
CN114248586A (en) Tire and wear degree detection system
WO2022201937A1 (en) Magnet for detecting tire wear, tire wear sensor using magnet, and tire
CN114340971B (en) Device for detecting wheels on a track
EP4151495B1 (en) Method and device for determining a direction of motion of a wheel of a passing train on a rail track
US20230158837A1 (en) Tire wear measuring device and power generating device
WO2021201095A1 (en) Wear measurement device for tire and embedded pin for wear measurement device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE