WO2022201709A1 - 水浄化装置及びその運用方法 - Google Patents

水浄化装置及びその運用方法 Download PDF

Info

Publication number
WO2022201709A1
WO2022201709A1 PCT/JP2021/048297 JP2021048297W WO2022201709A1 WO 2022201709 A1 WO2022201709 A1 WO 2022201709A1 JP 2021048297 W JP2021048297 W JP 2021048297W WO 2022201709 A1 WO2022201709 A1 WO 2022201709A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw water
filtration
channel
filtering
water
Prior art date
Application number
PCT/JP2021/048297
Other languages
English (en)
French (fr)
Inventor
洋輔 小中
楓太 山口
俊輔 郡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022201709A1 publication Critical patent/WO2022201709A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/46Regenerating the filtering material in the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/66Regenerating the filter material in the filter by flushing, e.g. counter-current air-bumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2326Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles adding the flowing main component by suction means, e.g. using an ejector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds

Definitions

  • the present invention relates to a water purifier and its operating method.
  • water purifiers have been developed that have a filtration unit that filters fine particles such as suspended solids.
  • Some water purifiers use a method called a micro-flock filtration method (hereinafter simply referred to as "flock filtration method”) (see Patent Document 1).
  • flock filtration method a micro-flock filtration method
  • a coagulant is supplied to the raw water to be purified upstream of the filter medium. Then, immediately after fine particles such as suspended solids are flocculated by the coagulant, the flocs are removed from the raw water by the filter medium.
  • Japanese Patent No. 5698881 Japanese Utility Model Laid-Open No. 4-74526 Japanese Patent Publication No. 2016-525939
  • the present invention has been made in view of such problems of the prior art. It is an object of the present invention to provide a water purifier which is equipped with a filtration unit and capable of backwashing the filter media in the filtration unit, and which is space-saving and capable of efficiently backwashing the filter media, and a method of operating the same. That's what it is.
  • a water purifier includes a raw water introduction part into which raw water is introduced, a filtration part that filters solids contained in the raw water, and when filtering the raw water,
  • the filtration flow path is set so that the raw water introduced from the raw water introduction part passes through at least the filtration part and is discharged to the outside, and the raw water introduced from the raw water introduction part when backwashing the filter medium in the filtration part.
  • a backwashing channel set so that it passes through the filtering part in a direction opposite to the flow of raw water in the filtering channel and is discharged to the outside, a filtering channel, and a backwashing channel
  • a method for operating a water purifier according to a second aspect of the present invention is a method for operating a water purifier according to the first aspect, wherein a filtration step of setting a filtration channel and filtering raw water is reversed. a backwashing step of setting a washing channel to backwash the filter material in the filtering unit, and after the backwashing step is completed, draining water remaining in the filtering unit to the outside; At least one of the steps of setting and passing raw water through the filtering unit for a predetermined time is executed.
  • FIG. 1 is a conceptual diagram showing an example of a water purifier according to this embodiment.
  • FIG. 2 is a conceptual diagram showing (a) the state during the filtration step and (b) the state during the backwashing step in the filtration unit of the water purifier according to the present embodiment.
  • FIG. 3 is a cross-sectional view showing a bubble generating mechanism in the bubble introducing section.
  • FIG. 4 is a conceptual diagram showing a state when the filtration step is performed in the water purifier according to this embodiment.
  • FIG. 5 is a conceptual diagram showing the state when the backwashing step is performed in the water purifier according to this embodiment.
  • FIG. 6 is a conceptual diagram showing a modification of the water purifier according to this embodiment.
  • FIG. 7 is a conceptual diagram showing (a) the state during the filtration step and (b) the state during the backwashing step of the modification of the water purifier according to the present embodiment.
  • the water purifier of this embodiment includes a raw water introduction section into which raw water is introduced. It also has a filtering section for filtering solids contained in the raw water. Further, the filtration flow path is set so that the raw water introduced from the raw water introduction portion passes through at least the filtration portion and is discharged to the outside when the raw water is filtered. Furthermore, when backwashing the filter media in the filtration unit, the raw water introduced from the raw water introduction unit is set so that it passes through the filtration unit in a direction opposite to the flow of raw water in the filtration channel and is discharged to the outside. It has a backwashing flow path. Furthermore, a plurality of switching valves are provided for switching settings between the filtration flow path and the backwash flow path. Furthermore, a bubble introduction section for introducing bubbles into the raw water is provided between the raw water introduction section and the filtration section within the backwash channel.
  • the water purifier 10 shown in FIGS. 1 to 5 includes a filtration section 12, a coagulant supply section 14, a sterilant supply section 16, and an air bubble introduction section 18 as main parts.
  • the water purifier 10 also includes a filtration channel for filtering raw water by the filtration unit 12 and a backwashing channel for backwashing the filter material in the filtration unit 12 by backwashing.
  • the filtration channel is a channel indicated by a solid line in FIG. Raw water flows.
  • the backwashing flow path is a flow path indicated by solid lines in FIG. Raw water flows in this order.
  • the raw water flowing through the backwash channel is also called "backwash water".
  • a three-way valve 40 is provided between the flow path 20 and the flow path 22 .
  • a three-way valve 42 is provided between the flow path 22 and the flow path 24 .
  • a three-way valve 44 is provided between the flow paths 26 and 28 .
  • the filtering section 12 has a granular filtering medium 52 inside a filtering section main body 50 , and solid-liquid separation is performed by capturing aggregated solid content with the granular filtering medium 52 .
  • the direction in which water is passed through the filtration unit 12 differs between when filtering and when backwashing.
  • the raw water passed through the flow path 24 passes through the granular filter media 52 and is discharged from the flow path 26 via the pipe 54.
  • solids or other coarse particles aggregated by the flocculant in the raw water are captured by the granular filter media.
  • raw water (backwash water) passed through the flow path 26 flows from the upper portion of the pipe 54 and reaches the granular filter media 52, whereupon the flow path Water is discharged from 24. At this time, impurities such as the coagulant adhering to the granular filter medium 52 are removed and washed.
  • the granular filter medium 52 is intended to capture and remove aggregates.
  • ions in the raw water, and the like particles with a particle diameter of about 1 to 10 ⁇ m and chromaticity can also be removed.
  • a filter medium suitable for the object to be removed can be used, such as filter sand, pellet-shaped fiber filter medium, or the like.
  • the material of the granular filter medium 52 may be sand, anthracite, garnet, ceramics, granular activated carbon, iron oxyhydroxide, manganese sand, or any other material that settles in water and has a hardness that makes it difficult to deform under pressure. It is preferable to use particles having a particle diameter of, for example, 0.3 to 5.0 mm and a uniformity coefficient of 1.2 to 2.0.
  • the multi-layer filtration method in which a plurality of types of filter media are mixed and used, is a method in which particles of different sizes are layered from the bottom in order from the smallest particle as a layer for filtration, utilizing such a difference in specific gravity.
  • particles having a large specific gravity and a small size and particles having a small specific gravity and a large size are mixed to form a multi-layer structure.
  • the multi-layer filtration method is preferable because it has advantages such as high filtration efficiency per unit volume and low head loss compared to the use of a single type of filter medium.
  • As the granular filter medium for example, 0.3 mm garnet, 0.6 mm sand, and 1.0 mm anthracite are mixed at a ratio of 2:1:1 and used. It is preferable to adjust the mixing ratio and particle size by
  • an air bubble introducing portion 18 is provided in the middle of the channel 30 .
  • the air bubble introduction part 18 plays a role of introducing air bubbles into the raw water. Therefore, bubbles are introduced into the raw water during backwashing, and the raw water into which the bubbles have been introduced is used as backwashing water, so that the efficiency of washing the granular filter media 52 in the filtering unit 12 is improved. In particular, when a coagulant adheres to the granular filter medium 52, the coagulant is easily removed by the raw water into which air bubbles have been introduced.
  • the air bubble introduction part 18 can be configured to include an air bubble generation part having a venturi structure. That is, since an air pump or the like is not used, the size can be reduced.
  • FIG. 3 shows an example of a bubble generator having a venturi structure.
  • the air bubble generating section 60 has a venturi-structured flow path with a reduced flow path diameter, and has a raw water introduction section 62 on the upstream side of a narrow portion 64 with a reduced flow path diameter, and a raw water discharge section 66 on the downstream side.
  • the raw water introduction part 62 is formed of a flow path whose flow path diameter is reduced toward the downstream side
  • the raw water outlet section 66 is formed of a flow path whose flow path diameter is enlarged toward the downstream side.
  • the raw water lead-out portion 66 is provided with an air introduction portion 68 for introducing air.
  • air introduction portion 68 for introducing air.
  • the flow ratio of the air bubbles introduced by the air bubble introduction section 18 to the raw water flowing in the backwash channel is preferably 5 to 30%. When the flow ratio is 5 to 30%, the granular filter medium can be sufficiently washed.
  • the flow rate ratio is more preferably 10 to 25%, even more preferably 15 to 20%.
  • the flow rate ratio is measured by separately measuring the flow rate (L/min) of the introduced air and the flow rate (L/min) flowing through the flow path 30 using a flow meter. It can be obtained by dividing by the flow rate.
  • the air bubble introduction part does not exist in the filtration channel, but exists only in the backwashing channel. Therefore, the air bubbles are introduced into the raw water by the air bubble introducing portion only when the backwash flow path is set, and the air bubbles are not always introduced. Therefore, no air bubbles are introduced at the time of purification, and it is possible to prevent contamination of the raw water with molds and bacteria caused by the introduction of air bubbles.
  • a flocculant supply section that adds a flocculant to the raw water upstream of the filtration section in the filtration channel. That is, in FIGS. 1 to 5, a coagulant supply unit 14 for supplying a coagulant to the raw water is provided in the middle of the flow path 22 in the filtration flow path. A coagulant is supplied to the raw water that is passed through the coagulant supply unit 14 .
  • the solid content such as suspended solids in the raw water passed through the flocculant supply unit 14 is flocculated by the flocculant and becomes a size that can be filtered by the filtration unit 12 located downstream.
  • the position where the coagulant supply section is provided is not limited to the position shown in FIG. In the case where the filtration unit 12 can filter sufficiently small solids, or when the size of the substance to be filtered is relatively large and can be sufficiently filtered in the filtration unit 12, the flocculant supply unit 14 is not necessarily required. do not have.
  • the coagulant supply unit 14 can be a tank in which raw water is temporarily stored or a similar form.
  • the mechanism for supplying the flocculant into the tank is not particularly limited.
  • the coagulant is an aqueous solution
  • it can be quantitatively supplied to raw water by a known liquid supply mechanism.
  • the flocculant is powder, it can be supplied to the raw water as it is in powder form using a feeder or the like.
  • the flocculant is tablet-like, it may be stored in advance in the tank.
  • cationic polymers are preferred as the flocculant.
  • the cationic polymer is preferably at least one selected from the group consisting of chitosan, polyamine, polydiallyldimethylammonium chloride, and polydicyandiamide. These flocculants may be used alone or in combination of two or more.
  • an area upstream of the filtration section in the filtration flow path (2) an area upstream of the filtration section in the backwash flow path, and (3) ) At least one region of the upstream side of the filtration channel and the upstream side of the backwashing channel may be provided with a sterilant supply unit for adding a sterilant to the raw water.
  • a sterilant supply unit for adding a sterilant to the raw water.
  • the sterilant supply section 16 is provided in a region on the upstream side of the filtration section 12 in the filtration flow path (see FIG. 4).
  • the sterilizing agent is supplied to the raw water that is passed through the sterilizing agent supply unit 16, and fungi and bacteria in the raw water are sterilized.
  • fungi and bacteria in the filtering section are sterilized with a disinfectant.
  • air bubbles are introduced into the raw water by the air bubble introduction portion during backwashing, but if the introduced air bubbles contain mold or bacteria in the air, they will be mixed in the filter material of the filtration portion. . Therefore, by providing the sterilizing agent supply unit 16, it is possible to sterilize not only the raw water but also the filter medium in the filtering unit.
  • the form shown in (2) above is shown in FIG.
  • the water purifier 10A shown in FIG. 6 is provided with a sterilant supply section 16 in a region on the upstream side of the filtration section 12 in the backwash flow path.
  • the sterilizing agent is supplied to the raw water during backwashing to sterilize mold and bacteria caused by the introduction of air bubbles.
  • the sterilant supply section 16 is provided downstream of the air bubble introduction section 18 , but may be provided upstream of the air bubble introduction section 18 .
  • FIG. 7 shows the form shown in (3) above.
  • the water purifier 10B shown in FIG. 7 is provided with a sterilant supply section 16 in a region upstream of the filtration channel and upstream of the backwash channel.
  • FIG. 7(a) shows a case where a filtering channel is set.
  • the sterilant supply section 16 includes a filtering flow path composed of a flow path 20 , a flow path 22 , a flow path 24 , (the filtering section 12 ), a flow path 26 , and a flow path 28 . It is located upstream of the three-way valve 40, which is the region upstream of the channel (indicated by solid lines in FIG. 7). Further, as shown in FIG.
  • the sterilant supply section 16 is composed of a flow path 20, a flow path 30, a flow path 26, (the filtration section 12), a flow path 24, and a flow path 32. It is arranged on the upstream side of the three-way valve 40, which is the region on the upstream side of the flow path (indicated by the solid line in FIG. 5). That is, the sterilant supply unit 16 is provided on the upstream side of the three-way valve 40, and during both filtration when the filtration channel is set and backwashing when the backwashing channel is set, the raw water A disinfectant is supplied. Therefore, the raw water and the filtering material of the filtering unit 12 can always be in a sterilized state.
  • the water purifier 10B shown in FIG. 7 substantially the same constituent elements as those in the water purifier 10 shown in FIGS.
  • the disinfectant is not particularly limited, but examples include chlorine-based oxidants, bromine-based oxidants, and ozone.
  • chlorine-based oxidizing agents include trichloroisocyanuric acid, dichloroisocyanuric acid, chlorine dioxide, hypochlorous acid, sodium hypochlorite, etc. Among them, trichloroisocyanuric acid, dichloroisocyanuric acid, sodium hypochlorite is preferred.
  • the sterilant supply unit 16 can be a tank in which raw water is temporarily stored or a similar form.
  • the mechanism for supplying the disinfectant into the tank is not particularly limited.
  • the disinfectant is liquid or aqueous solution
  • it can be quantitatively supplied to raw water by a known liquid supply mechanism.
  • the bactericidal agent is powder
  • it can be supplied to the raw water as it is in powder form using a feeder or the like.
  • the sterilizing agent is in tablet form, it may be stored in advance in the tank.
  • the coagulant supply unit and the sterilant supply unit are provided separately, but only when provided upstream of the filtration unit in the filtration channel, the coagulant supply unit and the sterilant supply unit
  • the sterilant supply may be integrated into one unit. That is, the water purifier of the present embodiment further comprises a sterilant/flocculant supply unit that simultaneously adds a sterilant and a coagulant to the raw water upstream of the filtration unit in the filtration channel.
  • the sterilant/coagulant supply unit can be a tank in which raw water is temporarily stored or a similar form.
  • the mechanism for supplying the sterilizing agent and the flocculating agent into the tank is not particularly limited.
  • the bactericidal agent and/or flocculating agent are liquid or aqueous solution, they can be quantitatively supplied to raw water by a known liquid supply mechanism.
  • the bactericidal agent and/or the flocculating agent are in powder form, they can be supplied to the raw water as they are in powder form using a feeder or the like.
  • the sterilizing agent and/or the flocculating agent are in the form of tablets, they may be mixed together and stored in advance in the tank.
  • the operation method of the water purifier of this embodiment is the operation method of the above water purifier. More specifically, it includes a filtering step of setting a filtration channel to filter raw water, and a backwashing step of setting a backwashing channel to backwash the filter material in the filtering section. After the backwashing step, a step of draining the water remaining in the filtration unit to the outside (hereinafter referred to as "step A"), and setting a filtration channel to allow raw water to pass through the filtration unit for a predetermined time. At least one of the step of watering (hereinafter referred to as "step B") is performed.
  • the water purifier according to the operation method of the water purifier of the present embodiment is the water purifier of the present embodiment described above, and thus the description thereof will be omitted.
  • the filtering step is a step of setting a filtering channel and filtering the raw water. That is, as described above, the filtration flow path is set by appropriately setting the three-way valve 40, the three-way valve 42, and the three-way valve 44, respectively. Then, the solid content in the raw water is filtered by allowing the raw water to flow while the filtration channel is set.
  • a backwashing channel is set to backwash the filter media in the filtration unit. That is, as described above, the backwash flow path is set by appropriately setting the three-way valve 40, the three-way valve 42, and the three-way valve 44, respectively.
  • the filtering material in the filtering unit 12 is washed by the backwashing. At this time, since air bubbles are introduced into the raw water by the air bubble introducing portion 18, the cleaning efficiency is further improved.
  • step A and step B is executed after the backwashing step to discharge sewage. That is, by executing step A, the water remaining in the filtering section is drained to the outside. Execution of step A is performed, for example, by providing a drainage port in the filtration unit 12 and opening the drainage port to drain residual water in the filtration unit 12 to the outside. Also, by executing step B for a predetermined time, the sewage remaining in the filtering section is drained to the outside.
  • step B follows the filtering step. That is, a filtration channel is set, water is discharged in the same manner as when purified water is obtained, and the discharged water is drained, whereby dirty water is drained from the filtration channel and the filtration unit.
  • the time for executing step B may be several seconds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

原水が導入される原水導入部と、原水に含まれる固形分を濾過する濾過部と、原水の濾過に際し、原水導入部から導入される原水が、少なくとも濾過部を通過して外部に排水されるように設定される濾過用流路と、濾過部内の濾材の逆洗に際し、原水導入部から導入される原水が、濾過用流路における原水の流れとは逆向きの流れで濾過部を通過して外部に排水されるように設定される逆洗用流路と、濾過用流路と、逆洗用流路との設定を切り替える複数の切替弁と、を備え、逆洗用流路内であって、原水導入部と濾過部との間に、原水に対して気泡を導入する気泡導入部を有する水浄化装置である。

Description

水浄化装置及びその運用方法
 本発明は、水浄化装置及びその運用方法に関する。
 従来から、懸濁物質等の微粒子を濾過する濾過部を有する水浄化装置の開発が行われている。水浄化装置の中には、マイクロフロック濾過法(以下、単に「フロック濾過法」という。)と呼ばれる方法が用いられている場合がある(特許文献1参照)。このフロック濾過法においては、濾材の上流側において、浄化すべき原水に凝集剤が供給される。その後、懸濁物質等の微粒子が凝集剤によってフロック化された直後に、フロックが濾材によって原水から除去される。
 凝集剤により微粒子を凝集させ、凝集物を濾過部に導く態様の場合、濾過部内の濾材に凝集剤が吸着する傾向にある。濾材に吸着した凝集剤は、通常の洗浄により十分に除去するのは困難である。濾材の洗浄効率の向上を目的として、曝気、すなわち洗浄水中に気泡を導入することが提案されている(特許文献2参照)。しかしながら、気泡の導入にはエアポンプを用いるため、スケールが小さい家庭用などでの利用においてはサイズ面、コスト面での課題がある。そこで、エアポンプを用いることなく、原水の流路にベンチュリー管等の気泡発生器を配置することにより気泡を導入する方法が提案されている(特許文献3参照)。
特許第5698881号公報 実開平4-74526号公報 特表2016-525939号公報
 ベンチュリー管等の気泡発生器を用いた場合、水浄化装置を小型化するといった目的は達成される。しかし、原水に対して常に気泡が導入されるという課題がある。つまり、原水への気泡の導入は、濾材の洗浄時のみでよいのに、常に導入されるため、通常使用時の水が気泡入りになってしまう問題がある。また、原水に気泡を導入することは空気中のカビや細菌が濾過部に混入することが危惧される。
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、濾過部を備え、濾過部内の濾材の逆洗が可能な水浄化装置において、省スペースで効率よく濾材の逆洗が可能な水浄化装置及びその運用方法を提供することにある。
 上記課題を解決するために、本発明の第1の態様に係る水浄化装置は、原水が導入される原水導入部と、原水に含まれる固形分を濾過する濾過部と、原水の濾過に際し、原水導入部から導入される原水が、少なくとも濾過部を通過して外部に排水されるように設定される濾過用流路と、濾過部内の濾材の逆洗に際し、原水導入部から導入される原水が、濾過用流路における原水の流れとは逆向きの流れで濾過部を通過して外部に排水されるように設定される逆洗用流路と、濾過用流路と、逆洗用流路との設定を切り替える複数の切替弁と、逆洗用流路内であって、原水導入部と濾過部との間に、原水に対して気泡を導入する気泡導入部とを備える。
 本発明の第2の態様に係る水浄化装置の運用方法は、第1の態様に係る水浄化装置の運用方法であって、濾過用流路を設定して原水を濾過する濾過ステップと、逆洗用流路を設定して濾過部内の濾材を逆洗する逆洗ステップと、を含み、逆洗ステップ終了後において、濾過部に残留する水を外部に排水するステップ、及び濾過用流路を設定して原水を濾過部に所定時間通水するステップのうちの少なくとも一方を実行する。
図1は、本実施形態に係る水浄化装置の一例を示す概念図である。 図2は、本実施形態に係る水浄化装置の濾過部内における、(a)濾過ステップ時の状態、及び(b)逆洗ステップ時の状態を示す概念図である。 図3は、気泡導入部における気泡発生機構を示す断面図である。 図4は、本実施形態に係る水浄化装置において、濾過ステップを実行する際の状態を示す概念図である。 図5は、本実施形態に係る水浄化装置において、逆洗ステップを実行する際の状態を示す概念図である。 図6は、本実施形態に係る水浄化装置の変形例を示す概念図である。 図7は、本実施形態に係る水浄化装置の変形例の(a)濾過ステップ時の状態、及び(b)逆洗ステップ時の状態を示す概念図である。
 以下、図面を用いて本実施形態に係る水浄化装置について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。
<水浄化装置>
 本実施形態の水浄化装置は、原水が導入される原水導入部を備える。また、原水に含まれる固形分を濾過する濾過部を備える。さらに、原水の濾過に際し、原水導入部から導入される原水が、少なくとも濾過部を通過して外部に排水されるように設定される濾過用流路を備える。さらに、濾過部内の濾材の逆洗に際し、原水導入部から導入される原水が、濾過用流路における原水の流れとは逆向きの流れで濾過部を通過して外部に排水されるように設定される逆洗用流路を備える。さらに、濾過用流路と、逆洗用流路との設定を切り替える複数の切替弁を備える。さらに、逆洗用流路内であって、原水導入部と濾過部との間に、原水に対して気泡を導入する気泡導入部を備える。
 以下、図面を参照して、本実施形態の水浄化装置について詳述する。図1~5に示す水浄化装置10は、濾過部12と、凝集剤供給部14と、殺菌剤供給部16と、気泡導入部18とを要部として備える。また、水浄化装置10は、濾過部12により原水を濾過する濾過用流路と、逆洗により濾過部12内の濾材を逆洗する逆洗用流路とを備える。濾過用流路は、図4において実線で示す流路であり、流路20、流路22、流路24、(濾過部12)、流路26、及び流路28から構成され、この順序で原水が流れる。また、逆洗用流路は、図5において実線で示す流路であり、流路20、流路30、流路26、(濾過部12)、流路24、及び流路32から構成され、この順序で原水が流れる。本明細書において、逆洗用流路を流れる原水を「逆洗水」とも呼ぶ。
 流路20と流路22との間には三方弁40が設けられている。また、流路22と流路24との間には三方弁42が設けられている。さらに、流路26と流路28との間には三方弁44が設けられている。そして、三方弁40、三方弁42、及び三方弁44の流路の開閉をそれぞれ適切に設定することにより、濾過用流路と逆洗用流路とが切り替えられる。すなわち、三方弁40、三方弁42、及び三方弁44が、濾過用流路と、逆洗用流路との設定を切り替える複数の切替弁をなす。また、図4に示す三方弁40、三方弁42、及び三方弁44において、白抜き三角形は開状態を示し、黒塗りの三角形は閉状態を示す。そのような三方弁における三角形が白抜き又は黒塗りが示す意味は図5以降においても同様である。
[濾過部]
 濾過部12は、図2に示すように、濾過部本体50の内部に粒状濾材52を有し、凝集した固形分を粒状濾材52により捕捉することで固液分離する。また、濾過部12は、濾過時と逆洗時とで通水される方向が異なる。濾過時は、図2(a)に示すように、流路24から通水された原水は、粒状濾材52を通過して、配管54を介して流路26から出水される。この場合において、粒状濾材52を通過するとき、原水中の凝集剤により凝集した固形分又はその他の粗大粒子が粒状濾材に捕捉される。一方、逆洗時は、図2(b)に示すように、流路26から通水された原水(逆洗水)は、配管54の上部から流入して粒状濾材52に到達し、流路24から出水される。このとき、粒状濾材52に付着した凝集剤などの不純物が除去され洗浄される。
 粒状濾材52を用いた濾過部12において、粒状濾材52は、凝集物を捕捉して除去することを目的としている。ただし、粒状濾材52に吸着するような表面電位を持つ粒子や、原水中のイオン等の存在状態によっては粒子径約1~10μmの粒子や色度も除去可能となる。粒状濾材52には、濾過砂をはじめ、ペレット状の繊維濾材等、除去対象物に適した濾材を用いることができる。粒状濾材52の材質は、例えば、砂、アンスラサイト、ガーネット、セラミックス、粒状活性炭、オキシ水酸化鉄、マンガン砂など、水中で沈降し、圧力で変形しにくい硬度をもつものであればよい。粒子径は、例えば0.3~5.0mm、均等係数1.2~2.0などのものを用いるとよい。
 また、粒状濾材52は材質によって比重が異なり、例えば砂であればおよそ2.5~2.7g/cm、アンスラサイトであれば、1.4~1.8g/cm、ガーネットであれば3.8~4.1g/cmである。複数の種類の濾材を混合して使用する複層濾過法は、このような比重の違いを利用し、濾過を行う層としてサイズの異なる粒子を小さい粒子から順に下から積層する方法である。複層濾過法では、比重が大きくサイズが小さい粒子と、比重が小さくサイズが大きい粒子を混合して多層構造にするのが一般的である。複層濾過法は、単一の種類の濾材を用いるのに比べて、単位体積あたりの濾過効率が高く、一方で損失水頭が低く抑えられるなどのメリットがあるため好ましい。粒状濾材としては、例えば、ガーネットの0.3mmと、砂の0.6mm、アンスラサイトの1.0mmのものを、2:1:1で混合して使用するが、濁質の粒子特性に応じて混合比率や粒子径を調整することが好ましい。
[気泡導入部]
 逆洗用流路において、流路30の途中には、気泡導入部18が設けられている。気泡導入部18は、原水に対して気泡を導入する役割を果たす。そのため、逆洗時において原水に気泡が導入され、気泡が導入された原水が逆洗水として用いられることから、濾過部12内の粒状濾材52に対する洗浄効率が向上する。特に、粒状濾材52に凝集剤が付着している場合、当該凝集剤は、気泡が導入された原水により除去されやすくする。
 気泡導入部18は、ベンチュリー構造を有する気泡発生部を備える構成とすることができる。つまり、エアポンプ等を用いないため小型化が可能である。図3に、ベンチュリー構造を有する気泡発生部の一例について示す。気泡発生部60は、流路径が縮小してベンチュリー構造の流路が形成されており、流路径が縮小する狭小部64の上流側に原水導入部62、下流側に原水導出部66を有する。具体的には、原水導入部62は下流側に向かって流路径を縮小した流路からなり、原水導出部66は下流側に向かって流路径を拡大した流路となっている。原水導出部66には、エアーを導入するエアー導入部68が設けられている。この構成において、原水が狭小部64を通過する際、流速が増大するため圧力が低下する(ベルヌーイの定理)。圧力が低下した原水には、エアー導入部68からのエアーが導入されやすくなり、気泡が発生する。
 逆洗用流路内を流れる原水に対する、気泡導入部18により導入される気泡の流量比は5~30%であることが好ましい。当該流量比が5~30%であると、粒状濾材の洗浄を十分にすることができる。当該流量比は、10~25%がより好ましく、15~20%がさらに好ましい。なお、流量比の測定は、導入するエアーの流量(L/min)と流路30を流れる流量(L/min)とを、流量計を用いてそれぞれ別々に測定し、エアーの流量を原水の流量で除して求めることができる。
 本実施形態においては、気泡導入部は、濾過用流路内には存在せず、逆洗用流路のみに存在する。従って、気泡導入部によって原水に対して気泡が導入されるのは、逆洗用流路が設定された場合のみであり、常に気泡が導入されるのではない。従って、浄化時においては気泡が導入されることはなく、気泡の導入に起因するカビや細菌の原水への混入を防ぐことができる。
 本実施形態の水浄化装置においては、さらに、濾過用流路内における濾過部の上流側に、原水に対して凝集剤を添加する凝集剤供給部を備えることが好ましい。すなわち、図1~5においては、濾過用流路において、流路22の途中に、原水に凝集剤を供給する凝集剤供給部14が設けられている。凝集剤供給部14に通水される原水には凝集剤が供給される。
 凝集剤供給部14に通水された原水中の懸濁物質等の固形分は凝集剤により凝集し、下流に位置する濾過部12で濾過され得るサイズとなる。なお、凝集剤供給部が設けられる位置は、図4に示す位置に限定されることなく、濾過部の上流側であればよい。なお、濾過部12において、十分に小さな固形分を濾過できる場合、又は濾過対象の物質のサイズが比較的大きく、濾過部12で十分に濾過し得る場合は、凝集剤供給部14は必ずしも必要ではない。
 凝集剤供給部14は、原水が一時的に貯留されるタンク又はそれに類する形態とすることができる。また、当該タンク内へ凝集剤を供給する機構は特に限定されるものではない。例えば、凝集剤を水溶液とした場合には、公知の液体供給機構により原水に対して定量的に供給することができる。また、凝集剤が粉体の場合には、フィーダー等を用いて、原水に粉体のまま供給することができる。さらに、凝集剤がタブレット状の場合には、タンク内に予め収容しておいてもよい。
 本実施形態の水浄化装置においては、浄化した水を家庭生活用水とする場合、凝集剤としては、カチオン性高分子が好ましい。カチオン性高分子としては、キトサン、ポリアミン、ポリジアリルジメチルアンモニウムクロリド、及びポリジシアンジアミドからなる群より選択される少なくとも1種であることが好ましい。これらの凝集剤は1種を単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態の水浄化装置においては、さらに、(1)濾過用流路内における濾過部の上流側の領域、(2)逆洗用流路内における濾過部の上流側の領域、及び(3)濾過用流路の上流側であり、かつ、逆洗用流路の上流側である領域のうちの少なくとも1つの領域に、原水に対して殺菌剤を添加する殺菌剤供給部を備えることが好ましい。図1~5においては、上記(1)に示すように、殺菌剤供給部16は、濾過用流路内における濾過部12の上流側の領域に設けられている(図4参照)。このように構成すると、殺菌剤供給部16に通水された原水には殺菌剤が供給され、原水中のカビや細菌が殺菌される。次いで、原水が濾過部12に通水されると、濾過部内におけるカビや細菌が殺菌剤により殺菌される。本実施形態においては、逆洗時において、気泡導入部により原水に気泡が導入されるが、導入される気泡に空気中のカビや細菌が含まれる場合、濾過部の濾材に混入することとなる。そこで、殺菌剤供給部16を設けることで、原水中のみならず、濾過部内の濾材をも殺菌することができる。
 上記(2)に示す形態を図6に示す。図6に示す水浄化装置10Aには、逆洗用流路内における濾過部12の上流側の領域に殺菌剤供給部16が設けられている。この場合においては、逆洗時において、原水に殺菌剤が供給され、気泡の導入に起因するカビや細菌を殺菌することができる。図6においては、殺菌剤供給部16は、気泡導入部18の下流側に設けているが、気泡導入部18の上流側に設けてもよい。なお、図6に示す水浄化装置10Aにおいて、図1~4に示す水浄化装置10における構成要素と実質的に同一の構成要素には同じ符号を付して説明を省略する。
 また、上記(3)に示す形態を図7に示す。図7に示す水浄化装置10Bには、濾過用流路の上流側であり、かつ、逆洗用流路の上流側である領域に、殺菌剤供給部16が設けられている。図7(a)は、濾過用流路を設定した場合について示している。図7(a)に示すように、殺菌剤供給部16は、流路20、流路22、流路24、(濾過部12)、流路26、及び流路28から構成される濾過用流路(図7において実線で示す。)の上流側の領域である、三方弁40の上流側に配置されている。また、図7(b)に示すように、殺菌剤供給部16は、流路20、流路30、流路26、(濾過部12)、流路24、及び流路32から構成され逆洗用流路(図5において実線で示す。)の上流側の領域である、三方弁40の上流側に配置されている。
 すなわち、三方弁40の上流側に殺菌剤供給部16が設けられており、濾過用流路が設定される濾過時、及び逆洗用流路が設定される逆洗時のいずれにおいても原水に殺菌剤が供給される。そのため、原水及び濾過部12の濾材は常に殺菌された状態とすることができる。なお、図7に示す水浄化装置10Bにおいて、図1~5に示す水浄化装置10における構成要素と実質的に同一の構成要素には同じ符号を付して説明を省略する。
 殺菌剤としては、特に限定はないが、例えば、塩素系酸化剤、臭素系酸化剤、オゾン等を挙げることができる。塩素系酸化剤としては、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸、二酸化塩素、次亜塩素酸、次亜塩素酸ナトリウムなどを挙げることができ、中でも、トリクロロイソシアヌル酸、ジクロロイソシアヌル酸、次亜塩素酸ナトリウムが好ましい。
 殺菌剤供給部16は、凝集剤供給部14と同様、原水が一時的に貯留されるタンク又はそれに類する形態とすることができる。また、当該タンク内へ殺菌剤を供給する機構は特に限定されるものではない。例えば、殺菌剤を液体又は水溶液とした場合には、公知の液体供給機構により原水に対して定量的に供給することができる。また、殺菌剤が粉体の場合には、フィーダー等を用いて、原水に粉体のまま供給することができる。さらに、殺菌剤がタブレット状の場合には、タンク内に予め収容しておいてもよい。
 以上の構成においては、凝集剤供給部と殺菌剤供給部とをそれぞれ個別に設ける構成であるが、濾過用流路内における濾過部の上流側に設ける場合に限っては、凝集剤供給部及び殺菌剤供給部を統合して一体としてもよい。すなわち、本実施形態の水浄化装置は、さらに、濾過用流路内における濾過部の上流側に、原水に対して殺菌剤及び凝集剤を同時に添加する殺菌剤・凝集剤供給部を備えるという構成とすることができる。
 殺菌剤・凝集剤供給部は、凝集剤供給部14と同様、原水が一時的に貯留されるタンク又はそれに類する形態とすることができる。また、当該タンク内へ殺菌剤及び凝集剤を供給する機構は特に限定されるものではない。例えば、殺菌剤及び/又は凝集剤を液体又は水溶液とした場合には、公知の液体供給機構により原水に対して定量的に供給することができる。また、殺菌剤及び/又は凝集剤が粉体の場合には、フィーダー等を用いて、原水に粉体のまま供給することができる。さらに、殺菌剤及び/又は凝集剤がタブレット状の場合には、それら両方とも混合した状態でタンク内に予め収容しておいてもよい。
<水浄化装置の運用方法>
 本実施形態の水浄化装置の運用方法は、以上の水浄化装置の運用方法である。より具体的には、濾過用流路を設定して原水を濾過する濾過ステップと、逆洗用流路を設定して濾過部内の濾材を逆洗する逆洗ステップとを含む。そして、逆洗ステップ終了後において、濾過部に残留する水を外部に排水するステップ(以下、「ステップA」と呼ぶ。)、及び濾過用流路を設定して原水を濾過部に所定時間通水するステップ(以下、「ステップB」と呼ぶ。)のうちの少なくとも一方を実行する。なお、上記の通り、本実施形態の水浄化装置の運用方法に係る水浄化装置は、上述の本実施形態の水浄化装置であるため、その説明は省略する。
[濾過ステップ]
 濾過ステップは、濾過用流路を設定して原水を濾過するステップである。すなわち、上述の通り、三方弁40、三方弁42、及び三方弁44をそれぞれ適切に設定することにより、濾過用流路を設定する。そして、濾過用流路が設定された状態で原水を流すことで原水中の固形分が濾過される。
[逆洗ステップ]
 逆洗ステップは、逆洗用流路を設定して濾過部内の濾材を逆洗する。すなわち、上述の通り、三方弁40、三方弁42、及び三方弁44をそれぞれ適切に設定することにより、逆洗用流路を設定する。そして、逆洗用流路が設定された状態で原水を流すことで、濾過部12内の濾材が逆洗のより洗浄される。その際、原水は気泡導入部18により気泡が導入されるため、洗浄効率がより向上する。
 逆洗ステップ後においては、濾過部12内及び濾過部12の下流の流路内には、粒状濾材の洗浄に用いた逆洗水が汚水となって残留している。そこで、本実施形態においては、逆洗ステップ終了後において、ステップA及びステップBのうちの少なくとも一方を実行することにより汚水を排出する。すなわち、ステップAを実行することで、濾過部に残留する水を外部に排水される。ステップAの実行は、例えば、濾過部12に排水口を設け、当該排水口を開けることで、濾過部12内の残留水が外部に排水される。
 また、ステップBを所定時間実行することによっても、濾過部に残留する汚水を外部に排水される。すなわち、濾過用流路を設定して原水を濾過部に所定時間通水することで、濾過部に残留する汚水を外部に排水することができる。ステップBの実行は、濾過ステップに準ずる。すなわち、濾過用流路を設定し、浄水を得るときと同様に出水し、出水された水を排水することで濾過用流路及び濾過部から汚水が排水される。なお、ステップBを実行する時間は数秒程度でよい。
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。
 特願2021-048800(出願日:2021年3月23日)の全内容は、ここに援用される。
 本開示によれば、濾過部を備え、濾過部内の濾材の逆洗が可能な水浄化装置において、省スペースで効率よく濾材の逆洗が可能な水浄化装置及びその運用方法を提供することができる。
10 10A 水浄化装置
12 濾過部
14 凝集剤供給部
16 殺菌剤供給部
18 気泡導入部
20 22 24 26 28 32 流路
40 42 44 三方弁(切替弁)

Claims (7)

  1.  原水が導入される原水導入部と、
     前記原水に含まれる固形分を濾過する濾過部と、
     前記原水の濾過に際し、前記原水導入部から導入される原水が、少なくとも前記濾過部を通過して外部に排水されるように設定される濾過用流路と、
     前記濾過部内の濾材の逆洗に際し、前記原水導入部から導入される原水が、前記濾過用流路における原水の流れとは逆向きの流れで前記濾過部を通過して外部に排水されるように設定される逆洗用流路と、
     前記濾過用流路と、前記逆洗用流路との設定を切り替える複数の切替弁と、
     前記逆洗用流路内であって、前記原水導入部と前記濾過部との間に、原水に対して気泡を導入する気泡導入部と、
     を備える、水浄化装置。
  2.  前記逆洗用流路内を流れる原水に対する、前記気泡導入部により導入される気泡の流量比が5~30%である、請求項1に記載の水浄化装置。
  3.  前記気泡導入部が、ベンチュリー構造を有する気泡発生部を備える、請求項1又は2に記載の水浄化装置。
  4.  さらに、(1)前記濾過用流路内における前記濾過部の上流側の領域、(2)前記逆洗用流路内における前記濾過部の上流側の領域、及び(3)前記濾過用流路の上流側であり、かつ、前記逆洗用流路の上流側である領域のうちの少なくとも1つの領域に、原水に対して殺菌剤を添加する殺菌剤供給部を備える、請求項1~3のいずれか1項に記載の水浄化装置。
  5.  さらに、前記濾過用流路内における濾過部の上流側に、原水に対して凝集剤を添加する凝集剤供給部を備える、請求項1~4のいずれか1項に記載の水浄化装置。
  6.  さらに、前記濾過用流路内における前記濾過部の上流側に、原水に対して殺菌剤及び凝集剤を同時に添加する殺菌剤・凝集剤供給部を備える、請求項1~3のいずれか1項に記載の水浄化装置。
  7.  請求項1~6のいずれか1項に記載の水浄化装置の運用方法であって、
     前記濾過用流路を設定して原水を濾過する濾過ステップと、
     前記逆洗用流路を設定して前記濾過部内の濾材を逆洗する逆洗ステップと、を含み、
     前記逆洗ステップ終了後において、前記濾過部に残留する水を外部に排水するステップ、及び前記濾過用流路を設定して原水を前記濾過部に所定時間通水するステップのうちの少なくとも一方を実行する、水浄化装置の運用方法。
PCT/JP2021/048297 2021-03-23 2021-12-24 水浄化装置及びその運用方法 WO2022201709A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048800 2021-03-23
JP2021048800A JP2022147525A (ja) 2021-03-23 2021-03-23 水浄化装置及びその運用方法

Publications (1)

Publication Number Publication Date
WO2022201709A1 true WO2022201709A1 (ja) 2022-09-29

Family

ID=83396802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048297 WO2022201709A1 (ja) 2021-03-23 2021-12-24 水浄化装置及びその運用方法

Country Status (2)

Country Link
JP (1) JP2022147525A (ja)
WO (1) WO2022201709A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064574A (ja) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 水処理装置
WO2019156012A1 (ja) * 2018-02-09 2019-08-15 パナソニックIpマネジメント株式会社 水処理装置
JP2019205976A (ja) * 2018-05-30 2019-12-05 株式会社ヤマト ろ過器の逆洗方法及び逆洗装置
JP2020006332A (ja) * 2018-07-10 2020-01-16 王子ホールディングス株式会社 水処理装置および水処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017064574A (ja) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 水処理装置
WO2019156012A1 (ja) * 2018-02-09 2019-08-15 パナソニックIpマネジメント株式会社 水処理装置
JP2019205976A (ja) * 2018-05-30 2019-12-05 株式会社ヤマト ろ過器の逆洗方法及び逆洗装置
JP2020006332A (ja) * 2018-07-10 2020-01-16 王子ホールディングス株式会社 水処理装置および水処理方法

Also Published As

Publication number Publication date
JP2022147525A (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
US6001244A (en) Performance water purification system
JP5843071B2 (ja) 水処理装置
KR101810814B1 (ko) 한외여과 장치 및 이를 구비한 정수시스템
KR101802600B1 (ko) 정수처리 시스템 및 그것의 역세척 모듈 제어방법
KR100957423B1 (ko) 역세척이 가능한 정수장치
CN103052597B (zh) 包括重力给料过滤器的水净化装置
WO2022201709A1 (ja) 水浄化装置及びその運用方法
WO2011045998A1 (ja) 浄水器
KR100666831B1 (ko) 침지식 막여과를 이용한 고도정수처리 방법
KR101117748B1 (ko) 역 세척 정수장치
JP6459127B2 (ja) 水処理装置
KR101445209B1 (ko) 이동형 음용수 공급장치
WO2019096231A1 (zh) 净化滤芯及净水杯
JP6652958B2 (ja) バラスト水の製造方法及びバラスト水処理システム
KR200383096Y1 (ko) 여과막을 이용한 고도정수처리장치
KR101637049B1 (ko) 수처리 장치
KR200381845Y1 (ko) 정수장치의 전처리필터
KR101091092B1 (ko) 2단 응집 직여과 정수장치
KR101564265B1 (ko) 자동세정수단을 갖는 정수기 및 그를 이용한 정수기의 자동세정방법
JP2002346347A (ja) ろ過装置及び方法
KR100816714B1 (ko) 고도정수처리장치
KR20090013556A (ko) 고탁도 필터
KR20020093663A (ko) 정수기
KR101415060B1 (ko) 재급수 유로를 구비한 수처리장치
JP2005334777A (ja) 浄水設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933299

Country of ref document: EP

Kind code of ref document: A1