WO2022201658A1 - 光学検査装置及び光学検査方法 - Google Patents

光学検査装置及び光学検査方法 Download PDF

Info

Publication number
WO2022201658A1
WO2022201658A1 PCT/JP2021/045161 JP2021045161W WO2022201658A1 WO 2022201658 A1 WO2022201658 A1 WO 2022201658A1 JP 2021045161 W JP2021045161 W JP 2021045161W WO 2022201658 A1 WO2022201658 A1 WO 2022201658A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical inspection
stage
group
objects
unit
Prior art date
Application number
PCT/JP2021/045161
Other languages
English (en)
French (fr)
Inventor
隆 大野
正博 井原
浩昌 丸野
諭史 松岡
恵利 松谷
裕介 古賀
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to EP21933251.7A priority Critical patent/EP4317968A1/en
Priority to JP2023508464A priority patent/JP7485202B2/ja
Priority to CN202180091638.9A priority patent/CN116802478A/zh
Priority to US18/276,082 priority patent/US20230417662A1/en
Publication of WO2022201658A1 publication Critical patent/WO2022201658A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/34Purifying; Cleaning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • G01N2001/2833Collecting samples on a sticky, tacky, adhesive surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0294Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle
    • G01N2015/1472Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle with colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1493Particle size
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1497Particle shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general

Definitions

  • the present invention relates to an optical inspection apparatus and method for optically inspecting samples, and more particularly to an optical inspection apparatus and method suitable for inspecting a large amount of microscopic samples such as microplastics.
  • microplastics plastics with a size of 5 mm or less, known as microplastics, have a negative impact on river and ocean ecosystems, and may affect human health through the food chain. . For this reason, large-scale distribution surveys of microplastics and research aimed at identifying their sources are being actively carried out in various parts of the world.
  • FTIR Fourier Transform Infrared Spectroscopy
  • infrared microscopes using FTIR are widely used for component analysis of microplastics.
  • the present invention was made to solve these problems, and its main purpose is to provide an optical inspection device and an optical inspection method that can easily perform high-precision inspection of microplastics and the like.
  • optical inspection apparatus for optically inspecting an object, an urging unit that applies a force to a group of objects on a stage to move the group of objects with respect to the stage; a capture unit having an attachment unit to which each object in the object group that has moved from the stage is attached; an analysis unit that optically analyzes the object captured by the capture unit; Prepare.
  • an optical inspection apparatus for optically inspecting an object, an urging unit that applies a force to a group of objects on a stage to move the group of objects with respect to the stage; a capture unit that independently captures each object in the object group that has moved from the stage; an analysis unit that optically analyzes the object captured by the capture unit; Prepare.
  • one aspect of the optical inspection method according to the present invention is an optical inspection method for optically inspecting an object, A force is applied to a group of objects on a stage to move the group of objects with respect to the stage, and each object in the group of objects moved from the stage is attached to an attachment section provided in a capture section. a sample preparation step of capturing by attaching; an analysis step of optically analyzing the object captured by the capture unit; have
  • the group of objects placed on the stage is moved from the stage by the force applied by the urging section.
  • Objects may overlap on the stage, but are dispersed apart from each other by the complete or some degree of freedom of movement of each object.
  • the objects in the moved object group the objects that come into contact with the attachment portion of the capturing portion are attached to the attachment portion. Since a new object does not adhere to a portion of the adhering portion to which another object has already adhered, overlapping of a plurality of objects is unlikely to occur in the catching portion. That is, in the capture section, the plurality of objects are separated from each other so that they can be individually optically analyzed.
  • a sample in which microscopic objects such as microplastics are appropriately dispersed in a sample such as water and whose positions are fixed can be processed manually, requiring labor and time.
  • a sample such as water and whose positions are fixed
  • optical analysis of individual microplastics, for example, can be carried out efficiently and well. It is also advantageous for automating a series of steps from sample preparation to analysis.
  • FIG. 1 is a schematic block configuration diagram of an optical inspection apparatus that is an embodiment of the present invention
  • FIG. 2A and 2B are a top view (A) and a front view (B) of a trapping mesh member used in the sample preparation device in the optical inspection device of the present embodiment
  • FIG. 1A and 1B are schematic configuration diagrams of a sample preparation device in an optical inspection apparatus according to the present embodiment, in which (A) shows a state before a capturing operation, and (B) shows a state after a capturing operation;
  • the schematic block diagram which shows the example of a changed completely type of sample preparation apparatus.
  • FIG. 4 is a schematic configuration diagram of a sample preparation device according to another embodiment
  • FIG. 4 is a schematic configuration diagram of a sample preparation device according to another embodiment
  • the "object" in the optical inspection apparatus and method according to the present invention can be, for example, a minute solid matter that can be dispersed and floated in a liquid such as water.
  • this object is a microplastic.
  • optical analysis in the optical inspection apparatus and method according to the present invention includes, for example, spectrometry such as FTIR, component analysis using fluorescent X-ray analysis, normal microscope, phase contrast microscope, infrared microscope, etc. analysis of the shape, size, color, etc. of the object based on optical observation using various microscopes.
  • spectrometry such as FTIR, component analysis using fluorescent X-ray analysis, normal microscope, phase contrast microscope, infrared microscope, etc. analysis of the shape, size, color, etc. of the object based on optical observation using various microscopes.
  • the "stage" in the optical inspection apparatus and method according to the present invention is, for example, a plate-shaped member having many openings such as a mesh filter, and a material with high water permeability and water absorption such as filter paper.
  • a plate-like member can be included.
  • FIG. 1 is a schematic block diagram of the optical inspection apparatus of this embodiment.
  • This optical inspection apparatus inspects microplastics mixed in liquids such as ocean water and river water, and includes a pretreatment device 1 , a sample preparation device 2 and an optical analysis device 3 .
  • a cleaning process using an acid is performed in order to remove dirt on the surface of the microplastics dispersed in the sample 4 such as ocean water containing the microplastics.
  • the microplastics are floated in the liquid by specific gravity separation using sodium iodide (NaI), and the liquid containing the collected microplastics is filtered through a metal mesh filter to collect the microplastics.
  • NaI sodium iodide
  • the number of microplastics is large, microplastics (slices) of various sizes and shapes collected on the metal mesh filter are in an overlapping state.
  • the sample preparation device 2 receives the metal mesh filter 5 on which a large number of plastic sections (hereafter, a large number of sections are collectively referred to as a "section group") are placed.
  • the size and shape of each slice in this group of slices varies.
  • the sample preparation device 2 prepares a sample in which the slices are separated from each other, appropriately dispersed and fixed. The configuration and operation of the device for that purpose will be described later in detail.
  • the optical analyzer 3 receives the sample 6 in which the sections are appropriately dispersed and fixed, and analyzes the components contained in each section to identify the type of plastic in the section. In parallel, information such as the size, shape, and color of each section is collected.
  • the optical analysis device 3 is a device combining FTIR and a microscopic observation device.
  • FIG. 2 is a top view (A) and a front view (B) of a trapping mesh member.
  • the sample preparation device 2 includes an air blower 20 that generates an upward airflow.
  • the configuration of the air blowing unit 20 is not particularly limited, and for example, one that generates an airflow using a rotating wing body such as a fan or a blower, or one that generates an airflow using a compressed air source is used. be able to.
  • the blower unit 20 it is desirable that the blower unit 20 be capable of adjusting the flow rate of the air flow and the duration of the blow. As a result, it is possible to appropriately adjust the air volume and the like according to the size and weight of the slice, which is the target object, and to adjust the speed and spread of the slice as it rises.
  • the air blower 20 may blow air intermittently.
  • a cylindrical casing 21 whose upper surface is open and whose sides are surrounded is arranged above the blowing unit 20 so that the air sent from the blowing unit 20 travels upward without leaking to the sides. It is Inside the casing 21, a metal mesh filter 22 (5) having a group of pieces 23A placed on its upper surface is mounted substantially horizontally at a predetermined distance above the air blower 20. . Furthermore, above it, a trapping mesh member 24 is installed substantially horizontally at a predetermined distance from the metal mesh filter 22 .
  • the trapping mesh member 24 has a body portion 240 having a predetermined opening (opening degree) similar to that of the metal mesh filter 22, and a plurality of adhesive portions 241 are attached to one surface of the body portion 240 according to a predetermined pattern. It was established.
  • This adhesive part 241 is for fixing each section.
  • the type and material of the member of the adhesive part 241 are not particularly limited, but it is desirable that they do not interfere with the component analysis by FTIR. It is better to use However, even if an organic adhesive is used, if the spectrum of the component contained in the adhesive is known, correction processing such as subtraction can be performed to obtain the A spectrum can be obtained with high accuracy. Therefore, if the adhesive portion 241 is not at least an adhesive made of the same material as plastic, there is substantially no problem.
  • the shape of one adhesive portion 241 is substantially circular in top view, and the plurality of adhesive portions 241 are provided according to a pattern in which adjacent ones are arranged at substantially regular intervals.
  • the shape of each adhesive portion 241 and the arrangement pattern of the plurality of adhesive portions 241 are not limited to this, but are preferably matched to the size and shape of the section to be captured.
  • the degree of opening of the body portion 240 of the trapping mesh member 24 may be selected according to the size of the section to be trapped.
  • a reference marker 242 is provided on the outer peripheral edge of the trapping mesh member 24 .
  • the reference marker 242 indicates a reference position of the plurality of adhesive portions 241. Using this position as a reference, the plurality of adhesive portions 241 in one trapping mesh member 24 is given an identifier such as a serial number. be able to.
  • each row of the adhesive portions 241 is arranged in order from the top to A, B, C, and so on. , and numbered 1, 2, 3, . . . from the left in each row. Accordingly, numbers A1, A2, A3, A4, A5, B1, B2, .
  • the air blower 20 is operated in the state shown in FIG. 3(A) to form an upward air flow.
  • the airflow escapes upward through the openings of the metal mesh filter 22 and the openings of the trapping mesh member 24 .
  • the section group placed on the metal mesh filter 22 is stirred up by the air flow from below (that is, floats up).
  • the slices included in the swirling slice group come into contact with the adhesive portion 241 on the lower surface of the trapping mesh member 24, the slices stick to the adhesive portion 241 (see FIG. 3(B)).
  • a section does not stick to a location where the adhesive portion 241 does not exist, and another section does not stick to a location where a certain section sticks. Therefore, according to the arrangement pattern of the adhesive portion 241 , the segments are separated from each other and captured on one surface of the capturing mesh member 24 in an appropriately dispersed state.
  • the air blowing unit 20 for example, by blowing air from the air blowing unit 20 for a predetermined period of time, when almost all of the sections on the metal mesh filter 22 are caught by the trapping mesh member 24, the air blowing is stopped.
  • the trapping mesh member 24 is taken out.
  • the trapping mesh member 24 can be appropriately replaced with an unused one to remove the metal mesh filter. Almost all segments 23A on 22 need to be captured. In this way, the trapping mesh member 24 with the pieces 23B attached to the adhesive portion 241 (the pieces attached to the trapping mesh member 24 are denoted by reference numeral 23B) is transferred to the optical analyzer 3 .
  • FIG. 7 is a photograph showing an example of a state in which a plurality of sections are captured by the capturing mesh member.
  • the sections are a section ⁇ p1 having a size of about 2 to 5 mm, a section ⁇ p2 having a size of about 1 to 2 mm, and a section ⁇ p3 having a size of about 0.5 mm.
  • the body of the capture mesh member is 100 mesh (number of meshes between 25.4 mm).
  • the diameter of the adhesive portion 241 is about 5 mm.
  • each section is separated to the extent that it can be analyzed individually by FTIR.
  • the accuracy of the analysis is improved if the sections are completely separated, at least qualitative analysis is possible even if the sections are not completely separated from each other, that is, partially overlapped. That is, here, each section included in the section group is captured by the capturing mesh member independently of each other.
  • the trapping mesh member 24 (sample 6) to which a large number of sections are fixed is set as it is on the sample stage, and a microscopic observation image is acquired, and FTIR analysis is performed for each section. Run. If the trapping mesh member 24 is set so that the reference marker 242 comes to a predetermined position (direction) when setting the trapping mesh member 24, the position where the adhesive portion 241 is provided in the two-dimensional plane is known. Therefore, positioning for microscopic observation and FTIR analysis can be easily performed. That is, it is possible to perform rough positioning with the range in which the adhesive portion 241 exists as a target, recognize the position where the section actually exists within that range, and perform the FTIR analysis.
  • each adhesive portion 241 is assigned an identification number, so information such as the area of the section obtained by microscopic observation, information such as the spectrum obtained by FTIR analysis, and plastic can be stored in association with the identification number.
  • the section captured by the capturing mesh member 24 can be fixed semi-permanently, so that the sample can be easily transported and stored for a long period of time. Therefore, if the test results are questionable, the same sample can be retested or analyzed and measured using a different method, and more accurate and useful information can be obtained. .
  • An operator may transport the sample among the pretreatment device 1, the sample preparation device 2, and the optical analysis device 3, and attach the sample to each device. may be automatically implemented using
  • FIG. 4 is a schematic configuration diagram of a sample preparation device 2 in an optical inspection device that is another embodiment of the present invention. The same components as those of the sample preparation apparatus shown in FIG.
  • a plurality of trapping mesh members with different openings are arranged at predetermined intervals in the height direction.
  • the adhesive portions 24A1 and 24B1 shown in FIG. 4A are omitted.
  • the opening of the lower trapping mesh member 24A is larger than the opening of the upper trapping mesh member 24B.
  • the adhesive portion 24A1 of the lower trapping mesh member 24A is larger than the adhesive portion 24B1 of the upper trapping mesh member 24B. That is, the mesh member 24A for trapping on the lower side has a coarser mesh. Therefore, among the pieces that are blown up by the air flow, large pieces cannot pass through the openings of the lower trapping mesh member 24A, and most of them cannot pass through the openings of the trapping mesh member 24A. It sticks to the portion 24A1. On the other hand, small pieces that pass through the openings of the lower trapping mesh member 24A stick to the adhesive portion 24B1 provided on the upper trapping mesh member 24B.
  • the air flow generated by the air blowing unit 20 gives the section group a force to make it soar. can do.
  • FIG. 5 is a schematic configuration diagram of a sample generation device in another embodiment.
  • the air inside the casing 21 is sucked up by the suction part 25 arranged further above the trapping mesh member 24, thereby generating an air flow from the bottom to the top.
  • this also enables the same operation as the sample generating apparatus in the above embodiment.
  • FIG. 6 is a schematic configuration diagram of a sample generation device in still another embodiment.
  • force is applied to the groups of sections by an air flow to move them, but in this embodiment, force is applied to the groups of sections by electrostatic force, taking advantage of the fact that plastic is easily electrified. and move it.
  • the charging unit 26 applies a biased voltage to the piece 23A on the metal mesh filter 22 to charge the piece 23A to a predetermined polarity.
  • the induced electric field generator 27 attracts the segment group with a voltage having a polarity opposite to the polarity of the charge of the segment 23A.
  • each segment 23A moves upward and sticks to the adhesive portion 241 of the trapping mesh member 24.
  • the ease of electrification depends on the type of plastic, and the polarity of the charge also differs depending on the type of plastic. Therefore, in order to capture all types of plastic pieces, it is preferable to perform the capturing operation while changing the polarity and voltage value of the voltage generated by the charging section 26 and the induced electric field forming section 27 . In other words, the method may allow for the selective capture of certain types of plastic pieces. Therefore, sorting according to the type of plastic is possible.
  • a mechanism is provided to apply an impact from below to the metal mesh filter 22 on which the slice group is placed or to vibrate the metal mesh filter 22, and the impact or vibration causes the slices on the metal mesh filter 22 to be flipped up. You may make it move upwards by making it soar.
  • optical inspection apparatus of the above-described embodiment is intended to inspect microplastics
  • the objects to be inspected are not limited to microplastics. can be used to inspect the optical inspection apparatus of the above-described embodiment
  • optical analysis method is not limited to FTIR, but various optical analysis and observation methods including ordinary infrared spectroscopy, ultraviolet-visible spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and fluorescent X-ray analysis. is clearly available.
  • One aspect of the optical inspection apparatus is an optical inspection apparatus for optically inspecting an object, an urging unit that applies a force to a group of objects on a stage to move the inspection object with respect to the stage; a capture unit having an attachment unit to which each object in the object group that has moved from the stage is attached; an analysis unit that optically analyzes the object captured by the capture unit; Prepare.
  • one aspect of the optical inspection method according to the present invention is an optical inspection method for optically inspecting an object, A force is applied to a group of objects on a stage to move the group of objects with respect to the stage, and each object in the group of objects moved from the stage is attached to an attachment section provided in a capture section. a sample preparation step of capturing by attaching; an analysis step of optically analyzing the object captured by the capture unit; have
  • the capture section may be arranged above the stage in the vertical direction.
  • the capture section may be arranged vertically above the stage.
  • the stage is mesh-shaped, and the biasing section generates an air flow directed upward from below the stage in the vertical direction.
  • An air flow generator may be included.
  • the stages are all mesh-shaped, and in the sample preparation step, an air flow directed upward from below the stage in the vertical direction can be caused to move the object group from the stage upward.
  • the airflow may be sent out from a blowing section arranged below the stage, or the air may be sucked by a suction section arranged above the trapping section. flow may be formed.
  • the object is relatively lightweight, such as microplastics, it can be inspected regardless of the physical characteristics of the object. Objects can also be scattered and risen. Thereby, the object can be more reliably captured by the capturing unit. Also, the device can be constructed at a relatively low cost.
  • a plurality of the adhering portions may be provided in the capturing portion according to a predetermined pattern.
  • a plurality of the attachment portions may be provided on the capture portion according to a predetermined pattern.
  • the attachment section is provided at a predetermined position of the capture section. As a result, it becomes easier to grasp the position where the object exists on the capturing section, so traceability is improved, for example, when another analysis is performed after the optical analysis in the analyzing section.
  • the capture section is provided with a reference marker that indicates a reference position of the plurality of attachment sections.
  • the capturing portion is provided with a reference marker indicating a reference position of the plurality of attachment portions. can be assumed to exist.
  • identifiers such as serial numbers can be assigned to the plurality of attached portions on the capturing portion with reference to the position of the reference marker. It is possible to manage the analysis results of each section in association with the identifier.
  • the position of the reference marker can be used to position the capturing part during analysis in the analysis part.
  • the capturing unit includes first and A second mesh-like member may be provided, the first and second mesh-like members having different opening sizes.
  • the capture unit is arranged above the stage in the vertical direction and separated in the height direction. and a second mesh-like member, the first and second mesh-like members having different opening sizes.
  • the mesh-like member with a large aperture size is arranged relatively downward, that is, at a position closer to the stage.
  • the object is classified into a plurality of types according to its size and shape, and in the classified state, the It is trapped in the first or second mesh-like member.
  • a sample containing the object group is subjected to cleaning treatment of the object group, and contamination with the object group.
  • a pretreatment unit that performs at least one of a separation treatment and a separation treatment, and the stage may be a mesh filter that filters a treatment liquid containing the treated sample.
  • the sample containing the object group is cleaned prior to the sample preparation step.
  • a pretreatment step of performing at least one of the treatment and the separation treatment of the object group and the contaminants is performed, and the stage is a mesh filter for filtering the treated liquid containing the sample after the treatment. be able to.
  • an object group whose purity has been enhanced can be subjected to analysis. Accurate information about each object can thereby be obtained. In addition, since it is possible to avoid analyzing unnecessary contaminants, for example, it is possible to improve the efficiency of inspection of the object.
  • the optical inspection method according to the present invention can inspect various inspection objects, and is particularly useful for inspection of microplastics.
  • the inspection object may be microplastic.
  • the analysis unit may be a Fourier transform infrared spectrophotometer.
  • the analysis step may perform Fourier transform infrared spectroscopic analysis.
  • microplastics contained in ocean water, river water, etc. are efficiently inspected, and their distribution status and their sources are investigated. can provide useful information to identify
  • An optical inspection apparatus is an optical inspection apparatus for optically inspecting an object, an urging unit that applies a force to a group of objects on a stage to move the group of objects with respect to the stage; a capture unit that independently captures each object in the object group that has moved from the stage; an analysis unit that optically analyzes the object captured by the capture unit; Prepare.
  • the state in which "each object is captured independently of each other” here means a state in which at least each object can be individually optically analyzed. Therefore, for example, when irradiating an object with light and measuring transmitted light and reflected light, the optical path of the irradiated light and the transmitted light (reflected light) is determined so that one object is not affected by other objects. As long as is ensured, it does not matter if a part of the plurality of objects overlaps. Of course, the objects included in the object group may be captured without overlapping or contacting each other. According to the optical inspection device described in item 18, it is clear that the same effects as those of the optical inspection device described in item 1 can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本発明に係る光学検査装置の一態様は、対象物を光学的に検査する光学検査装置であって、ステージ(22)上にある対象物群(23A)に対し、該検査対象物をステージに対して移動させる力を与える付勢部(20)と、ステージから移動した前記対象物群中の各対象物が付着する付着部(241)を有する捕捉部(24)と、捕捉部に捕捉された対象物を光学的に分析する分析部(3)と、を備える。これにより、マイクロプラスチックを1個ずつピックアップする手作業を無くし、個々のマイクロプラスチックの光学的な分析を効率的に且つ良好に行うことができる。

Description

光学検査装置及び光学検査方法
 本発明は、試料を光学的に検査する光学検査装置及び方法に関し、特に、マイクロプラスチックなどの微小・微細である試料を大量に検査するのに好適な光学検査装置及び方法に関する。
 近年、プラスチックごみによる環境汚染は世界的に大きな問題となっている。特に、マイクロプラスチックと呼ばれている大きさが5mm以下のプラスチックは、河川や海洋の生態系に悪影響を与え、食物連鎖によって人間の健康にも影響を及ぼす可能性があるとして懸念が強まっている。こうしたことから、マイクロプラスチックの大規模な分布調査や発生源の特定を目的とした研究が世界の各所で積極的に行われている。
 現在、マイクロプラスチックの成分分析には、フーリエ変換赤外分光光度計(Fourier Transform Infrared Spectroscopy:以下「FTIR」と略す)や、FTIRを利用した赤外顕微鏡などの光学分析法が広く利用されている(非特許文献1参照)。
プリムプケ(Sebastian Primpke)、ほか3名、「リファレンス・データベース・デザイン・フォー・ジ・オートメイテッド・アナリシス・オブ・マイクロプラスチック・サンプルズ・ベースド・オン・フーリエ・トランスフォーム・インフラレッド・(エフティーアイアール)・スペクトロスコピー(Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy)」、アナリティカル・アンド・バイオアナリティカル・ケミストリー(Analytical and Bioanalytical Chemistry)、Vol.410、2018年、pp.5131-5141
 マイクロプラスチックのように軽量な物質をサンプリングすると、プラスチック片同士が重なり合った状態で散在し易い。光の吸収又は透過を測定する光学分析では、対象物が互いに重なり合っていると正確な検査を行うことが難しい。
 こうした場合、作業者が顕微鏡でマイクロプラスチックを観察しながら手作業でピックアップしてマイクロプラスチック同士を分離することが考えられるが、作業に大きな手間と時間とを要するため、検査のスループットを上げることが困難である。
 本発明はこうした課題を解決するためになされたものであり、その主たる目的は、マイクロプラスチック等に対する精度の高い検査を簡易に行うことができる光学検査装置及び光学検査方法を提供することである。
 上記課題を解決するためになされた本発明に係る光学検査装置の一態様は、対象物を光学的に検査する光学検査装置であって、
 ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与える付勢部と、
 前記ステージから移動した前記対象物群中の各対象物が付着する付着部を有する捕捉部と、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
 を備える。
 また、本発明に係る別の態様の光学検査装置は、対象物を光学的に検査する光学検査装置であって、
 ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与える付勢部と、
 前記ステージから移動した前記対象物群中の各対象物を互いに独立して捕捉する捕捉部と、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
 を備える。
 また、本発明に係る光学検査方法の一態様は、対象物を光学的に検査する光学検査方法であって、
 ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与えるとともに、前記ステージから移動した前記対象物群中の各対象物を捕捉部に設けた付着部に付着させることで捕捉する試料作成ステップと、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析ステップと、
 を有する。
 本発明の上記態様において、ステージの上に載せられた状態で用意されている対象物群は、付勢部により与えられる力によって該ステージから移動する。ステージ上では複数の対象物が重なり合っている場合もあるが、各対象物が完全に又は或る程度自由に移動することによって、それら対象物は互いに離れて分散する。移動した対象物群中の対象物のうち捕捉部の付着部に接触した対象物は、該付着部に付着する。付着部において既に他の対象物が付着している部分には新たな対象物は付着しないため、捕捉部では複数の対象物の重なりは生じ難い。即ち、捕捉部において、複数の対象物はそれぞれ個別に光学分析が可能である状態に互いに分離される。
 こうして本発明の上記態様によれば、例えば水などのサンプル中のマイクロプラスチックといった微小な対象物が適度に分散してその位置が固定された状態の試料を、手作業などの労力や時間を要することなく調製することができる。それによって、例えばマイクロプラスチック1個1個の光学的な分析を効率的に且つ良好に行うことができる。また、そうした試料の調製から分析までの一連の工程を自動化するのにも有利である。
本発明の一実施形態である光学検査装置の概略ブロック構成図。 本実施形態の光学検査装置における試料作成装置で用いられる捕捉用メッシュ部材の上面図(A)及び正面図(B)。 本実施形態の光学検査装置における試料作成装置の概略構成図であり、(A)は捕捉動作前の状態、(B)は捕捉動作後の状態。 試料作成装置の一変形例を示す概略構成図。 他の実施形態における試料作成装置の概略構成図。 他の実施形態における試料作成装置の概略構成図。 捕捉用メッシュ部材にマイクロプラスチックが捕捉された状態の実例を示す写真。
 本発明に係る光学検査装置及び方法における「対象物」は、例えば、水などの液体中に分散して浮遊可能な程度の微小・微細な固形物であり得る。典型的には、この対象物はマイクロプラスチックである。
 また、本発明に係る光学検査装置及び方法における「光学的な分析」とは、例えばFTIRなどの分光測定や蛍光X線分析を利用した成分分析、通常の顕微鏡、位相差顕微鏡、赤外顕微鏡などの各種の顕微鏡を用いた光学的な観察に基く、対象物の形状、サイズ、色などの分析、を含むものとすることができる。
 また、本発明に係る光学検査装置及び方法における「ステージ」とは、例えば、メッシュフィルターなどの多数の開口が形成されている板状の部材、濾紙などの通水性・吸水性の高い材料から成る板状の部材、を含むものとすることができる。
 以下、本発明に係る光学検査装置の一実施形態について、添付図面を参照して説明する。
 図1は、本実施形態の光学検査装置の概略ブロック構成図である。この光学検査装置は、海洋水、河川水などの液体中に混入しているマイクロプラスチックの検査を行うものであり、前処理装置1、試料作成装置2、及び光学分析装置3、を備える。
 海洋や河川などから採取されたサンプル(水など)に含まれるマイクロプラスチックについて、FTIR等の分析装置による分析を行うには、そのサンプルからマイクロプラスチックをできるだけ漏れなく取り出して分析が可能である状態に調製する必要がある。そのため、一般的には、サンプル中に存在するマイクロプラスチックの表面に付着している不要な有機物を除去するための洗浄処理、マイクロプラスチックと他のゴミ等とを分離するための比重分離などの前処理を実施したあとに、該サンプル中のマイクロプラスチックを金属メッシュフィルターなどに捕集する。
 そこで、前処理装置1では、マイクロプラスチックが含まれる海洋水等のサンプル4に分散しているマイクロプラスチックの表面の汚れを除去するために酸を用いた洗浄処理を実施する。そのあと、ヨウ化ナトリウム(NaI)を利用した比重分離によって液体中でマイクロプラスチックを浮かせ、集まったマイクロプラスチックを含む液体を金属メッシュフィルターで濾すことでマイクロプラスチックを捕集する。但し、マイクロプラスチックの数が多い場合、金属メッシュフィルター上に捕集された様々な大きさ、形状のマイクロプラスチック(切片)は重なり合った状態である。
 試料作成装置2は、その上に多数のプラスチック切片(以下、多数の切片をまとめて「切片群」という)が載った状態である金属メッシュフィルター5を受け取る。この切片群中の各切片のサイズや形状は様々である。個々の切片に対する光学的な分析が可能であるように、試料作成装置2では、切片同士が分離され、適度に分散して固定された状態の試料を調製する。そのための装置の構成及び動作については、あとで詳しく説明する。
 光学分析装置3は、切片が適度に分散して固定された状態である試料6を受け取り、個々の切片に含まれる成分を分析することでその切片のプラスチックの種類を識別する。また、並行して、個々の切片のサイズや形状、色などの情報を収集する。本例では、光学分析装置3は、FTIRと顕微観察装置とを組み合わせた装置である。
 次に、試料作成装置2の構成と動作について詳しく説明する。図3は、試料作成装置2の概略構成図であり、(A)は捕捉動作前の状態、(B)は捕捉動作後の状態である。図2は、捕捉用メッシュ部材の上面図(A)及び正面図(B)である。
 図3(A)に示すように、試料作成装置2は、上方に向かう空気流を生成する送風部20を備える。送風部20の構成は特に限定されず、例えば、ファンやブロアなどの回転する翼体を用いて空気流を生成するもの、或いは、圧縮空気源を用いて空気流を生成するものなどを利用することができる。いずれにしても、送風部20は、その空気流の流量とその送風の継続時間とを調節できるものであることが望ましい。それによって、対象物である切片の大きさや重さに応じて適宜に風量等を調整し、切片が舞い上がる際の速度や拡がりを調整することができる。また、送風部20は間欠的に送風を行うものであってもよい。
 送風部20の上には、該送風部20から送り出した空気が側方に漏れずに上方に進行するように、上面が開放される一方、側方が囲まれた筒状のケーシング21が配置されている。ケーシング21の内側には、送風部20からその上方に所定距離離間して、多数の切片23Aから成る切片群が上面に載った状態の金属メッシュフィルター22(5)が略水平に装着されている。さらに、その上方には、金属メッシュフィルター22から所定距離離間して、捕捉用メッシュ部材24が略水平に設置されている。
 図2に示すように、捕捉用メッシュ部材24は、金属メッシュフィルター22と同様の所定の開き目(開口度)を有する本体部240の一方の面に、複数の粘着部241が所定のパターンに従って設けられたものである。この粘着部241は各切片を固定するためのものである。粘着部241の部材の種類や材料は特に限定されないが、FTIRによる成分分析に支障をきたさないものであることが望ましく、そのためには、有機系成分との識別が容易である無機系の接着材を用いるほうがよい。但し、仮に有機系の接着剤を用いたとしても、その接着剤の含有成分のスペクトルが既知であれば、それを差し引く等の補正処理を行うことで、対象物である切片に含まれるプラスチックのスペクトルを精度良く求めることができる。従って、粘着部241が少なくともプラスチックと同じ材料の接着剤でなければ、実質的に問題はない。
 図2に示した例では、一つの粘着部241の形状は上面視で略円形状であり、複数の粘着部241は、隣接するものが略一定間隔で並ぶようなパターンに従って設けられている。各粘着部241の形状や複数の粘着部241の並びのパターンはこれに限らないが、捕捉対象である切片の大きさや形状に合わせることが好ましい。また、捕捉用メッシュ部材24の本体部240の開口度も、捕捉しようとする切片の寸法に合わせて選定するとよい。
 また図2(A)に示すように、捕捉用メッシュ部材24の外周縁には基準マーカー242が設けられている。基準マーカー242は、複数の粘着部241の基準となる位置を示すものであり、この位置を基準として、一枚の捕捉用メッシュ部材24における複数の粘着部241に例えば連続番号等の識別子を与えることができる。例えば図2(A)に示すように、基準マーカー242が上に来るように捕捉用メッシュ部材24を置いた状態で、一番上から順に粘着部241の並びの各行をA、B、C、…とし、各行において左から順に1、2、3、…と番号を付す。これにより、捕捉用メッシュ部材24における全ての粘着部241に、A1、A2、A3、A4、A5、B1、B2、…との番号を付与することができる。
 この試料作成装置2では、図3(A)に示した状態で送風部20を動作させ、上方に向かう空気流を形成する。空気流は金属メッシュフィルター22の開口及び捕捉用メッシュ部材24の開口を経て上方へと抜ける。金属メッシュフィルター22上に載っている切片群は下方からの空気流に煽られて舞い上がる(つまりは浮上する)。舞い上がった切片群に含まれる切片が捕捉用メッシュ部材24の下面の粘着部241に接触すると、該切片は粘着部241に貼り付く(図3(B)参照)。当然のことながら、粘着部241が存在しない箇所には切片は貼り付かず、また或る切片が貼り付いた箇所に他の切片は貼り付かない。そのため、粘着部241の配置のパターンに従って、切片同士は分離され、適度に分散した状態で捕捉用メッシュ部材24の一面上に捕捉される。
 そうして、例えば所定時間だけ送風部20からの送風を行うことで、金属メッシュフィルター22上の切片群のほぼ全ての切片が捕捉用メッシュ部材24に捕捉されたならば、送風を停止して捕捉用メッシュ部材24を取り出す。金属メッシュフィルター22上の切片23Aの数が多く、1枚の捕捉用メッシュ部材24で捕捉しきれない場合には、捕捉用メッシュ部材24を適宜未使用のものに交換することで、金属メッシュフィルター22上のほぼ全ての切片23Aを捕捉すればよい。こうして、粘着部241に切片23B(捕捉用メッシュ部材24に付着した切片は符号23Bで示している)が貼り付いた状態の捕捉用メッシュ部材24を、光学分析装置3に受け渡す。
 図7は、捕捉用メッシュ部材に複数の切片が捕捉された状態の実例を示す写真である。この例では、切片(マイクロプラスチック)は、その大きさが2~5mm程度である切片Мp1、大きさが1~2mm程度である切片Мp2、及び、大きさが0.5mm程度である切片Мp3、の3種類である。捕捉用メッシュ部材の本体部は100メッシュ(25.4mmの間の目の数)である。また、粘着部241の直径は約5mmである。
 図示するように、粘着部241の直径が大きいため、一つの粘着部241に小さな切片Мp3は複数貼り付いているものの、各切片はそれぞれ個別にFTIRで分析可能な程度に分離されている。各切片が完全に分離している方が分析精度は向上するものの、各切片が互いに完全に分離していなくても、つまり一部が重なり合っていたとしても、少なくとも定性分析は可能である。即ち、ここでは、切片群に含まれる各切片が互いに独立して捕捉用メッシュ部材に捕捉されている。
 光学分析装置3では例えば、上述したように多数の切片が固定された捕捉用メッシュ部材24(試料6)をそのまま試料ステージにセットし、顕微観察画像を取得するとともに、各切片についてのFTIR分析を実行する。捕捉用メッシュ部材24をセットする際に基準マーカー242が所定の位置(方向)に来るように捕捉用メッシュ部材24をセットすれば、2次元面内において粘着部241が設けられている位置は既知であるから、顕微観察やFTIR分析のための位置決めを容易に行うことができる。即ち、粘着部241が存在する範囲を目標として大まかな位置決めを行い、その範囲内で切片が実際に存在する位置を認識してFTIR分析を実施することができる。
 また、上述したように各粘着部241には識別番号が割り当てられているので、顕微観察により得られた切片の面積などの情報やFTIR分析により得られたスペクトルなどの情報、さらにはそれに基くプラスチックの識別結果などを、識別番号に対応付けて保存することができる。また、粘着部241として接着剤を用いることで、捕捉用メッシュ部材24に捕捉した切片を半永久的に固定化することができるので、試料の搬送(輸送)や長期間の保管も容易である。そのため、検査結果に疑義がある場合に同じ試料に対して再検査を行ったり、別の手法による分析・測定に供したりすることも可能であり、より正確で有益な情報を取得することができる。
 なお、前処理装置1、試料作成装置2、及び光学分析装置3の間での試料の搬送や各装置への試料の装着は作業者が実行してもよいが、周知のハンドリング機構や搬送機構を用いて自動的に実施されるようにしてもよい。
 図4は、本発明の他の実施形態である光学検査装置における試料作成装置2の概略構成図である。図2に示した試料作成装置と同じ構成要素には同じ符号を付して詳しい説明を省く。
 この試料作成装置では、開き目が相違する複数の捕捉用メッシュ部材を高さ方向に所定間隔離して配置している。この例では、捕捉用メッシュ部材24A、24Bは2枚であるが、3枚以上であってもよい。その場合、隣接する捕捉用メッシュ部材の間隔は一定でなくてもよい。なお、図4(B)、(C)では、図4(A)に示されている粘着部24A1、24B1の記載を省略している。
 図4に示すように、下側の捕捉用メッシュ部材24Aの開き目は上側の捕捉用メッシュ部材24Bの開き目よりも大きい。また、下側の捕捉用メッシュ部材24Aの粘着部24A1は、上側の捕捉用メッシュ部材24Bの粘着部24B1よりも大きい。即ち、下側の捕捉用メッシュ部材24Aのほうが目が粗い。そのため、空気流によって舞い上げられた切片群のうち、サイズが大きな切片は下側の捕捉用メッシュ部材24Aの開口を通り抜けることができず、その多くが、捕捉用メッシュ部材24Aに設けられた粘着部24A1に貼り付く。一方、下側の捕捉用メッシュ部材24Aの開口を通り抜け得たサイズの小さな切片は、上側の捕捉用メッシュ部材24Bに設けられた粘着部24B1に貼り付く。
 こうして、完全ではないものの(小さな切片の一部は下側の捕捉用メッシュ部材24Aに設けられた粘着部24A1に貼り付くため)、切片群のうちの大部分の切片をその大きさや形状によって分別したうえで、互いに分離した状態で固定化することができる。
 上記実施形態の光学検査装置における試料作成装置2では、送風部20により生起した空気流によって、切片群に対しそれを舞い上がらせる力を付与していたが、異なる方法によって切片群を移動させるようにすることができる。
 図5は、他の実施形態における試料生成装置の概略構成図である。この例では、捕捉用メッシュ部材24のさらに上方に配置した吸引部25により、ケーシング21内部の空気を吸い上げることにより、下方から上方に向かう空気流を生起している。これによっても、上記実施形態における試料生成装置と同様の動作が可能であることは当然である。
 図6は、さらに他の実施形態における試料生成装置の概略構成図である。上記実施形態ではいずれも、空気流によって切片群に力を付与して移動させるようにしていたが、この実施形態では、プラスチックが帯電し易いことを利用し、静電気力によって切片群に力を付与して移動させるようにしている。
 図6において、帯電部26は、金属メッシュフィルター22上の切片23Aに片寄った電圧を印加することで、切片23Aを所定の極性に帯電させる。そのあと、誘引電場形成部27は切片23Aが有する電荷の極性と逆の極性の電圧によって切片群を引き付ける。これにより、各切片23Aは上方に移動し、捕捉用メッシュ部材24の粘着部241に貼り付く。
 但し、帯電のし易さはプラスチックの種類に依存し、その帯電の極性もプラスチックの種類によって異なる。そのため、全ての種類のプラスチック切片を捕捉するためには、帯電部26及び誘引電場形成部27で発生する電圧の極性や電圧値を変えながら捕捉動作を実施することが好ましい。換言すれば、この方法では、特定の種類のプラスチック切片を選択的に捕捉させることが可能であり得る。従って、プラスチックの種類による分別が可能である。
 また、切片群が上に載った金属メッシュフィルター22に下方から衝撃を加えたり該金属メッシュフィルター22を振動させたりする機構を設け、その衝撃や振動によって金属メッシュフィルター22上の切片を跳ね上げたり舞い上がらせたりすることで上方に移動させるようにしてもよい。
 また、上記実施形態や変形例はあくまでも本発明の一例にすぎず、本発明の趣旨の範囲で適宜変形、修正、追加等を行っても本願特許請求の範囲に包含されることは当然である。
 例えば、上記実施形態の光学検査装置はマイクロプラスチックを検査の対象物としていたが、対象物はマイクロプラスチックに限らず、例えば微小・微細である金属片や石、建築廃材など、様々な材質のものを検査する際に利用することができる。
 また、光学分析の手法についても、FTIRに限らず、通常の赤外分光測定、紫外可視分光測定、蛍光分光測定、ラマン分光測定、蛍光X線分析を含む、種々の光学的な分析や観察手法を利用することができることは明らかである。
  [種々の態様]
 上述した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
 (第1項)本発明に係る光学検査装置の一態様は、対象物を光学的に検査する光学検査装置であって、
 ステージ上にある対象物群に対し、該検査対象物を前記ステージに対して移動させる力を与える付勢部と、
 前記ステージから移動した前記対象物群中の各対象物が付着する付着部を有する捕捉部と、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
 を備える。
 (第9項)また、本発明に係る光学検査方法の一態様は、対象物を光学的に検査する光学検査方法であって、
 ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与えるとともに、前記ステージから移動した前記対象物群中の各対象物を捕捉部に設けた付着部に付着させることで捕捉する試料作成ステップと、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析ステップと、
 を有する。
 第1項に記載の光学検査装置及び第9項に記載の光学検査方法によれば、例えば水などのサンプル中のマイクロプラスチックといった微小な対象物が適度に分散してその位置が固定された状態の試料を、手作業などの労力や時間を要することなく調製することができる。それによって、例えばマイクロプラスチック1個1個の光学的な分析を効率的に且つ良好に行うことができる。また、そうした試料の調製から分析までの一連の工程を自動化するのにも有利である。
 (第2項)第1項に記載の光学検査装置において、前記捕捉部は、前記ステージに対して鉛直方向において上方に配置されているものとすることができる。
 (第10項)同様に第9項に記載の光学検査方法において、前記捕捉部は、前記ステージに対して鉛直方向において上方に配置されているものとすることができる。
 第2項に記載の光学検査装置及び第10項に記載の光学検査方法によれば、既に付着部に付着した状態の対象物に当接した別の対象物は、重力によってステージ上に落下する。そのため、付着部に付着しなかった対象物を容易に回収することができ、回収された対象物に再度力を加えることで、別の位置の付着部に付着させることができる。
 (第3項)第1項又は第2項に記載の光学検査装置において、前記ステージはメッシュ状であり、前記付勢部は、鉛直方向において前記ステージの下方から上方に向かう空気流を生起させる空気流生起部を含むものとすることができる。
 (第11項)また第9項又は第10項に記載の光学検査方法において、前記ステージはいずれもメッシュ状であり、前記試料作成ステップでは、鉛直方向において前記ステージの下方から上方に向かう空気流を生起させることで、前記対象物群を前記ステージからその上方に移動させるものとすることができる。
 ステージの下方から上方に向かう空気流を生起させるために、ステージの下方に配置した送風部から空気流を送り出してもよいし、捕捉部の上方に配置した吸引部により空気を吸引することで空気流を形成してもよい。
 第3項に記載の光学検査装置及び第11項に記載の光学検査方法によれば、マイクロプラスチックのように対象物が比較的軽量であれば、対象物の物理的特性等に無関係にいずれの対象物も分散させつつ舞い上がらせることができる。それによって、対象物をより確実に捕捉部に捕捉させることができる。また、比較的低廉なコストで装置を構成することができる。
 (第4項)第1項~第3項のいずれか1項に記載の光学検査装置において、前記付着部は、所定のパターンに従って前記捕捉部に複数設けられているものとすることができる。
 (第12項)また第9項~第11項のいずれか1項に記載の光学検査方法において、前記付着部は、所定のパターンに従って前記捕捉部に複数設けられているものとすることができる。
 第4項に記載の光学検査装置及び第12項に記載の光学検査方法では、捕捉部の予め決められた位置に付着部が設けられている。それにより、捕捉部上で対象物が存在する位置の把握が容易になるため、例えば分析部での光学的分析の後に別の分析を行う場合に、トレーサビリティーが向上する。
 (第5項)第1項~第4項のいずれか1項に記載の光学検査装置において、前記捕捉部には、前記複数の付着部の基準となる位置を示す基準マーカーが設けられているものとすることができる。
 (第13項)また第9項~第12項のいずれか1項に記載の光学検査方法において、前記捕捉部には、前記複数の付着部の基準となる位置を示す基準マーカーが設けられているものとすることができる。
 第5項に記載の光学検査装置及び第13項に記載の光学検査方法によれば、基準マーカーの位置を基準として、捕捉部上の複数の付着部に連続番号等の識別子を付与することができ、その識別子に対応付けて各切片の分析結果などを管理することができる。また、基準マーカーの位置を利用して、分析部での分析の際における捕捉部の位置決めを行うことができる。
 (第6項)第1項~第5項のいずれか1項に記載の光学検査装置において、前記捕捉部は、鉛直方向において前記ステージの上方に高さ方向に離して配置された第1及び第2のメッシュ状部材を有し、前記第1及び第2のメッシュ状部材は、互いに異なる開口サイズを有するものとすることができる。
 (第14項)また第9項~第13項のいずれか1項に記載の光学検査方法において、前記捕捉部は、鉛直方向において前記ステージの上方に高さ方向に離して配置された第1及び第2のメッシュ状部材を有し、前記第1及び第2のメッシュ状部材は、互いに異なる開口サイズを有するものとすることができる。
 第6項に記載の光学検査装置及び第14項に記載の光学検査方法では、開口サイズの大きなメッシュ状部材を相対的に下方に、つまりステージにより近い位置に配置する。これにより、ステージから上方に移動した対象物群の中で、下側のメッシュ状部材の開口を通過し得ないサイズの大きな対象物は、該下側のメッシュ状部材に捕捉され、下側のメッシュ状部材の開口を通過し得るサイズの小さな対象物は、主として上側のメッシュ状部材に捕捉される。即ち、第6項に記載の光学検査装置及び第14項に記載の光学検査方法によれば、その大きさや形状に応じて対象物はかなりの程度複数に分類され、その分類された状態で第1又は第2のメッシュ状部材に捕捉される。
 (第7項)第1項~第6項のいずれか1項に記載の光学検査装置において、前記対象物群を含むサンプルに対し、該対象物群の洗浄処理と、前記対象物群と夾雑物との分離処理との少なくとも一方の処理を実施する前処理部、をさらに備え、前記ステージは、前記処理後のサンプルを含む処理液を濾過するメッシュ状のフィルターであるものとすることができる。
 (第15項)また第9項~第14項のいずれか1項に記載の光学検査方法において、前記試料作成ステップに先立って、前記対象物群を含むサンプルに対し、前記対象物群の洗浄処理と、前記対象物群と夾雑物との分離処理との少なくとも一方の処理を行う前処理ステップを実施し、前記処理後のサンプルを含む処理液を濾過するメッシュ状のフィルターを前記ステージとすることができる。
 第7項に記載の光学検査装置及び第15項に記載の光学検査方法によれば、対象物の表面に付着している汚れを除去したり、或いは、夾雑物などを排除したりすることで、その純粋性が高められた対象物群を分析に供することができる。それによって、各対象物についての正確な情報を取得することができる。また、例えば不要である夾雑物などを分析してしまうことを避けることができるので、対象物の検査の効率を高めることができる。
 本発明に係る光学検査方法では様々な検査対象物について検査を行うことができるが、特に、マイクロプラスチックの検査に有用である。
 (第16項)即ち、第9項~第15項のいずれか1項に記載の光学検査方法において、前記検査対象物はマイクロプラスチックであるものとすることができる。
 (第8項)第1項~第7項のいずれか1項に記載の光学検査装置において、前記分析部はフーリエ変換赤外分光光度計とすることができる。
 (第17項)また第9項~第16のいずれか1項に記載の光学検査方法において、前記分析ステップではフーリエ変換赤外分光分析を行うものとすることができる。
 第8項に記載の光学分析装置及び第17項に記載の光学検査方法によれば、例えば海洋水や河川水等に含まれるマイクロプラスチックを効率良く検査し、その分布状況の調査やその発生源を特定するために有用な情報を提供することができる。
 (第18項)また本発明に係る他の態様の光学検査装置は、対象物を光学的に検査する光学検査装置であって、
 ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与える付勢部と、
 前記ステージから移動した前記対象物群中の各対象物を互いに独立して捕捉する捕捉部と、
 前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
 を備える。
 ここでいう「各対象物を互いに独立して捕捉」した状態とは、少なくとも各対象物をそれぞれ個別に光学的に分析可能である状態をいう。従って、例えば対象物に光を照射し、それに対する透過光や反射光を測定する場合、一つの対象物について他の対象物による影響を受けないように照射光及び透過光(反射光)の光路が確保できさえすれば、複数の対象物の一部が重なっていても構わない。もちろん、対象物群に含まれる各対象物が互いに重なり合うことなくまた接触することもなく捕捉されている状態でもよい。第18項に記載の光学検査装置によれば、第1項に記載の光学検査装置と同様の効果を奏することは明らかである。
1…前処理装置
2…試料作成装置
 20…送風部
 21…ケーシング
 22…金属メッシュフィルター
 23A、23B…マイクロプラスチック
 24(5)…捕捉用メッシュ部材
  240…本体部
  241、24A1、24B1…粘着部
  242…基準マーカー
 25…吸引部
 26…帯電部
 27…誘引電場形成部
3…光学分析装置

Claims (18)

  1.  対象物を光学的に検査する光学検査装置であって、
     ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与える付勢部と、
     前記ステージから移動した前記対象物群中の各対象物が付着する付着部を有する捕捉部と、
     前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
     を備える光学検査装置。
  2.  前記捕捉部は、前記ステージに対して鉛直方向において上方に配置されている、請求項1に記載の光学検査装置。
  3.  前記ステージはメッシュ状であり、前記付勢部は、鉛直方向において前記ステージの下方から上方に向かう空気流を生起させる気流生起部を含む、請求項1に記載の光学検査装置。
  4.  前記付着部は、所定のパターンに従って前記捕捉部に複数設けられている、請求項1に記載の光学検査装置。
  5.  前記捕捉部に複数の前記付着部の基準となる位置を示す基準マーカーが設けられている、請求項1に記載の光学検査装置。
  6.  前記捕捉部は、鉛直方向において前記ステージの上方に高さ方向に離して配置された第1及び第2のメッシュ状部材を有し、
     前記第1及び第2のメッシュ状部材は互いに異なる開口サイズを有する、請求項1に記載の光学検査装置。
  7.  前記対象物群を含むサンプルに対し、前記対象物群の洗浄処理と、前記対象物群と夾雑物との分離処理との少なくとも一方の処理を実施する前処理部、をさらに備え、
     前記ステージは、前記処理後のサンプルを含む処理液を濾過するメッシュ状のフィルターである、請求項1に記載の光学検査装置。
  8.  前記分析部はフーリエ変換赤外分光光度計である、請求項1に記載の光学検査装置。
  9.  対象物を光学的に検査する光学検査方法であって、
     ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与えるとともに、前記ステージから移動した前記対象物群中の各対象物を捕捉部に設けた付着部に付着させることで捕捉する試料作成ステップと、
     前記捕捉部に捕捉された前記対象物を光学的に分析する分析ステップと、
     を有する光学検査方法。
  10.  前記捕捉部は、前記ステージに対して鉛直方向において上方に配置されている、請求項9に記載の光学検査方法。
  11.  前記ステージはメッシュ状であり、前記試料作成ステップでは、鉛直方向において前記ステージの下方から上方に向かう空気流を生起させることで、前記対象物群を前記ステージからその上方に移動させる、請求項9に記載の光学検査方法。
  12.  前記付着部は、所定のパターンに従って前記捕捉部に複数設けられている、請求項9に記載の光学検査方法。
  13.  前記捕捉部に複数の前記付着部の基準となる位置を示す基準マーカーが設けられている、請求項9に記載の光学検査方法。
  14.  前記捕捉部は、鉛直方向において前記ステージの上方に高さ方向に離して配置された第1及び第2のメッシュ部材を有し、前記第1及び第2のメッシュ部材は互いに異なる開口サイズを有する、請求項9に記載の光学検査方法。
  15.  前記試料作成ステップに先立って、前記対象物群を含むサンプルに対し、前記対象物群の洗浄処理と、前記対象物群と夾雑物との分離処理との少なくとも一方の処理を行う前処理ステップを実施し、前記処理後のサンプルを含む処理液を濾過するメッシュ状のフィルターを前記ステージとする、請求項9に記載の光学検査方法。
  16.  前記対象物はマイクロプラスチックである、請求項9に記載の光学検査方法。
  17.  前記分析ステップではフーリエ変換赤外分光分析を行う、請求項9に記載の光学検査方法。
  18.  対象物を光学的に検査する光学検査装置であって、
     ステージ上にある対象物群に対し、該対象物群を前記ステージに対して移動させる力を与える付勢部と、
     前記ステージから移動した前記対象物群中の各対象物を互いに独立して捕捉する捕捉部と、
     前記捕捉部に捕捉された前記対象物を光学的に分析する分析部と、
     を備える光学検査装置。
PCT/JP2021/045161 2021-03-26 2021-12-08 光学検査装置及び光学検査方法 WO2022201658A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21933251.7A EP4317968A1 (en) 2021-03-26 2021-12-08 Optical inspection device and optical inspection method
JP2023508464A JP7485202B2 (ja) 2021-03-26 2021-12-08 光学検査装置及び光学検査方法
CN202180091638.9A CN116802478A (zh) 2021-03-26 2021-12-08 光学检查装置及光学检查方法
US18/276,082 US20230417662A1 (en) 2021-03-26 2021-12-08 Optical inspection device and optical inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053836 2021-03-26
JP2021-053836 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201658A1 true WO2022201658A1 (ja) 2022-09-29

Family

ID=83396647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045161 WO2022201658A1 (ja) 2021-03-26 2021-12-08 光学検査装置及び光学検査方法

Country Status (5)

Country Link
US (1) US20230417662A1 (ja)
EP (1) EP4317968A1 (ja)
JP (1) JP7485202B2 (ja)
CN (1) CN116802478A (ja)
WO (1) WO2022201658A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251414A1 (en) * 2003-06-10 2004-12-16 Stephan Rodewald Sample matrix for infrared spectroscopy
WO2013114430A1 (ja) * 2012-01-31 2013-08-08 ヤマハ発動機株式会社 吸引装置
WO2014034355A1 (ja) * 2012-08-30 2014-03-06 シャープ株式会社 粒子検出装置
JP2015203015A (ja) * 2014-04-14 2015-11-16 東ソー株式会社 蛍光プローブ
CN110646334A (zh) * 2019-09-29 2020-01-03 华东理工大学 一种水样中小尺寸微塑料的快速分析方法
WO2020037288A1 (en) * 2018-08-16 2020-02-20 Simpore Inc. Devices, methods, and kits for sample analysis using microslit filters
JP2020514769A (ja) * 2016-12-19 2020-05-21 マサチューセッツ インスティテュート オブ テクノロジー 大気粒子状物質を監視するためのシステムおよび方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296240A (ja) 2000-04-12 2001-10-26 Kansai Research Institute 赤外/近赤外分光分析用試料のサンプリング用材、分析法及び分析装置
JP4803740B2 (ja) 2003-10-30 2011-10-26 ザ ルブリゾル コーポレイション スルホネートおよびフェネートを含有する潤滑組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251414A1 (en) * 2003-06-10 2004-12-16 Stephan Rodewald Sample matrix for infrared spectroscopy
WO2013114430A1 (ja) * 2012-01-31 2013-08-08 ヤマハ発動機株式会社 吸引装置
WO2014034355A1 (ja) * 2012-08-30 2014-03-06 シャープ株式会社 粒子検出装置
JP2015203015A (ja) * 2014-04-14 2015-11-16 東ソー株式会社 蛍光プローブ
JP2020514769A (ja) * 2016-12-19 2020-05-21 マサチューセッツ インスティテュート オブ テクノロジー 大気粒子状物質を監視するためのシステムおよび方法
WO2020037288A1 (en) * 2018-08-16 2020-02-20 Simpore Inc. Devices, methods, and kits for sample analysis using microslit filters
CN110646334A (zh) * 2019-09-29 2020-01-03 华东理工大学 一种水样中小尺寸微塑料的快速分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEBASTIAN PRIMPKE: "Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy (Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy", ANALYTICAL AND BIOANALYTICAL CHEMISTRY (ANALYTICAL AND BIOANALYTICAL CHEMISTRY, vol. 410, 2018, pages 5131 - 5141, XP036549983, DOI: 10.1007/s00216-018-1156-x

Also Published As

Publication number Publication date
JP7485202B2 (ja) 2024-05-16
CN116802478A (zh) 2023-09-22
JPWO2022201658A1 (ja) 2022-09-29
US20230417662A1 (en) 2023-12-28
EP4317968A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
US8167986B2 (en) Airborne particulate sampler
US20040232052A1 (en) Methods and devices for continuous sampling of airborne particles using a regenerative surface
CN1229637C (zh) 用于测定大气中悬浮颗粒物的方法和设备
US20100242632A1 (en) Air sampler based on virtual impaction and actual impaction
US20030136205A1 (en) Collecting apparatus of floating dusts in atmosphere and method for measuring floating dusts
WO2013102076A1 (en) Method and apparatus for automated platelet identification within a whole blood sample from microscopy images
JP6825905B2 (ja) レーザ顕微切離システム及び核酸含有試料の検査方法
US6881246B2 (en) Collecting device for suspended particles
JP5752109B2 (ja) 液体中における目的の分析物を検出及び定量する方法、並びに実施装置
CN112639433A (zh) 研究气相中浓缩气溶胶颗粒的测量系统
US7153475B2 (en) Aerosol particle analyzer for measuring the amount of analyte in airborne particles
WO2022201658A1 (ja) 光学検査装置及び光学検査方法
CN106029864A (zh) 空气微生物检测设备和检测方法
US20170241894A1 (en) Suspended particle characterization system
KR101145915B1 (ko) 다단 임팩터 모듈을 구비한 입자 측정 장치
JP7456409B2 (ja) 検査装置、検査システム、及び検査方法
Yang et al. An integrated system for automated measurement of airborne pollen based on electrostatic enrichment and image analysis with machine vision
JP6362115B2 (ja) レーザ誘起プラズマ分光法による表面層の組成の解析システムおよび方法、ならびに相補的分析を実施するためにサンプルを採取するシステムおよび方法
JP6715527B2 (ja) 生物粒子を含む試料の前処理方法、生物粒子の画像取得方法、生物粒子を含む試料の前処理装置、及び生物粒子画像取得装置
Zhang et al. Analysis and detection methods of microplastics in the environment
CN207472770U (zh) 一种基于激光诱导荧光技术的材料检测系统
KR20120129383A (ko) 석면섬유 자동계수 장치, 방법 및 그에 사용되는 슬라이드
US20180128726A1 (en) Analysis apparatus
CN220154018U (zh) 一种环境病原体气溶胶监测一体化工作站
US20210239580A1 (en) Method for fixing a thin-film material to a slide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508464

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091638.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276082

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2021933251

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021933251

Country of ref document: EP

Effective date: 20231026