WO2022201474A1 - 多心無反射終端部および光線路試験方法 - Google Patents

多心無反射終端部および光線路試験方法 Download PDF

Info

Publication number
WO2022201474A1
WO2022201474A1 PCT/JP2021/012731 JP2021012731W WO2022201474A1 WO 2022201474 A1 WO2022201474 A1 WO 2022201474A1 JP 2021012731 W JP2021012731 W JP 2021012731W WO 2022201474 A1 WO2022201474 A1 WO 2022201474A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
connector
core
optical
input
Prior art date
Application number
PCT/JP2021/012731
Other languages
English (en)
French (fr)
Inventor
圭高 榎本
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/277,753 priority Critical patent/US20240126030A1/en
Priority to PCT/JP2021/012731 priority patent/WO2022201474A1/ja
Priority to JP2023508354A priority patent/JPWO2022201474A1/ja
Publication of WO2022201474A1 publication Critical patent/WO2022201474A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/3822Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with beveled fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3154Details of the opto-mechanical connection, e.g. connector or repeater
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4471Terminating devices ; Cable clamps
    • G02B6/44715Fan-out devices

Definitions

  • the present disclosure relates to a multi-core non-reflection termination section connected to a connector section of an optical coupler attached to a tape fiber of an optical transmission system, and an optical line test method using the same.
  • FIGS 1 and 2 explain the configuration of the system that measures the optical fiber connecting the communication facility building and the user.
  • the communication facility building 10 is configured with an OLT (Optical Line Terminal) 11 , an optical coupler 12 , an optical fiber switch 13 , an OTM (Optical Testing Module) 14 and an operation terminal 15 .
  • OLT Optical Line Terminal
  • OTM Optical Testing Module
  • the OLT 11 and an ONU (Optical Network Unit) 21 on the user side are connected by an optical coupler 12 and a tape fiber 50 .
  • the optical coupler 12 and the optical fiber switch 13 are connected by two sets of 8-core tape fibers 31 .
  • the 8-core tape fiber 31 and the optical coupler 12 are collectively connected to 16-core by 16MT connectors (32a, 32b).
  • the OTM 14 is composed of an OTDR (Optical Time Domain Reflectometer), a light measuring device such as a light source for contrast contrast, and a controller that controls them.
  • OTDR Optical Time Domain Reflectometer
  • a light measuring device such as a light source for contrast contrast
  • a controller that controls them.
  • the optical fiber switch 13 has a fiber array 13b in which a plurality of optical fibers are arranged in the width direction on the V-groove base 13a, and a single head fiber 13c that moves in the X-axis direction and the Y-axis direction. Connecting.
  • the optical fiber switch 13 can move the head fiber 13c and select any one fiber from the optical fibers of the fiber array 13b (see Patent Documents 1 to 3, for example).
  • the optical fiber switch 13 is filled with a refractive index matching material. Therefore, the optical fiber end of the fiber array 13b that is not connected to the head fiber 13c is also suppressed in reflection by the refractive index matching material, ensuring a return loss of 40 dB or more.
  • the head fiber 13c of the optical fiber switch 13 moves in the X and Y directions on the V-groove base 13a to move the fiber array 13b. to the desired optical fiber.
  • the optical transmission system is tested by injecting the optical fiber reference light or the OTDR test light from the OTM 14 through the optical coupler 12 into the tape fiber 50 (see, for example, Non-Patent Document 1).
  • the optical fiber switch 13 and OTM 14 may not be installed in the communication facility building 10 .
  • the 16MT connector 32a of the optical coupler 12 is in an open state, and the communication light from the OLT 11 or ONU 21 is reflected by the connector end face of the 16MT connector 32a of the optical coupler 12.
  • the end face of the 16MT connector is polished at right angles, and the return loss of the 16MT connector may be about 15 dB.
  • the reflected light generated by the 16MT connector may affect the communication quality between the OLT 11 and the ONU 21 .
  • there is a risk that the communication light from the OLT 11 or the ONU 21 that is output from the end face of the 16MT connector 32a may accidentally enter the operator's eyes.
  • FIG. 3 there is also known a multi-core non-reflection termination 60 that can be attached to the 16MT connector 32a and collectively suppress reflections occurring at the end faces of the 16MT connector 32a (see, for example, Patent Document 4). ).
  • the non-reflection termination 60 protects the end face of the 16MT connector 32a and also prevents the communication light from the OLT 11 and ONU 21, which is output from the end face of the 16MT connector 32a, from entering the operator's eyes.
  • the non-reflecting termination portion 60 when the non-reflecting termination portion 60 is attached in such a manner as to cover the entire 16MT connector 32a, the OTDR measurement for the tape fiber 50 cannot be performed. Therefore, as shown in FIG. 4, instead of attaching the non-reflective termination 60 to the 16MT connector 32a, a converter 61 is connected to convert the 16MT connector 32a into two sets of 8MT connectors 61b, and furthermore, the 8MT connector 61b FO (fan out) cord 62 is connected.
  • the end portion of the 16MT connector 32a can be divided into single-core units, and reflection can be suppressed by attaching a single non-reflection terminal portion 63 to each end portion other than the end portion to be measured.
  • any one of the tape fibers 50 can be measured by an OTDR or the like. Communication quality is not affected. In addition, it is possible to prevent the communication light from the OLT 11 and the ONU 21 output from the end face of the 16MT connector 32a from entering the operator's eyes.
  • the converter 61, the FO cord 62, and the single-core non-reflection termination 63 are required for the configuration of FIG. In other words, in order to have the configuration of FIG. There is also a problem that a space for storage (hereinafter sometimes referred to as “storage space”) is also required.
  • storage space a space for storage
  • the present invention provides a multi-fiber non-reflection termination section that has little effect on an optical transmission system due to reflected light and that is composed of a small number of parts, and an optical line testing method using the same. intended to provide
  • the multi-fiber non-reflection termination according to the present invention is such that the end face of the optical fiber on the side connected to the connector of the optical coupler is normally polished, but the end face on the opposite side is obliquely polished.
  • the multi-core non-reflective termination according to the present invention is 2n (n is a natural number) optical fibers each having an end face that is vertically polished on one end side and an end face that is obliquely polished on the other end side; a 2n-fiber MT connector that collects 2n optical fibers and is attached to one end of the optical fibers; an n-fiber MT connector that divides the 2n optical fibers into two groups and is attached to the other end side of the optical fiber for each group; Prepare.
  • This multi-fiber non-reflective termination is composed of only three parts (optical fiber, connector on the optical coupler side, connector on the anti-optical coupler side), and has a small number of components. Furthermore, since the end of the optical fiber on the anti-optical coupler side is obliquely polished, the light reflected at the end does not return to the OLT or ONU.
  • the term "connector on the opposite side of the optical coupler" refers to the connector on the side of the optical fiber not connected to the optical coupler, which is the connector (73a, 73b) in FIGS. Therefore, the present invention can provide a multi-fiber non-reflection termination unit which has less influence on an optical transmission system due to reflected light and which is composed of a small number of parts.
  • This multi-fiber non-reflective termination is preferably connected to the optical coupler as follows.
  • the 2n-fiber MT connector is collectively connected to input/output terminals of 2n-fiber optical couplers provided on n-fiber tapes that connect n OLTs and n ONUs.
  • One end of the n-fiber MT connector is connected by the 2n-fiber MT connector to the input/output terminal of the 2n-fiber input/output terminals of the optical coupler through which light can be input/output to/from the ONU.
  • the other end of the n-fiber MT connector is connected by the 2n-fiber MT connector to the input/output terminal of the 2n-fiber input/output terminals of the optical coupler which can input/output light to/from the OLT. connected to the other end of the optical fiber connected to the optical fiber;
  • the multi-fiber non-reflective termination according to the present invention further comprises an n-fiber FO (fan-out) code
  • the FO code is an FO side n-core MT connector attached to the side where the n-cores are grouped and connected to the n-core MT connector; a single-core connector attached to each core on the branched side of the n-cores; has The end of each core is obliquely polished on both the FO side n-core MT connector side and the single-core connector side.
  • the FO code can be used to perform an optical test for any route. It is desirable to use the FO code only when performing an optical test.
  • the n-core MT connector of the multi-core non-reflective termination according to the present invention is characterized in that the entire connector ferrule including the other end of the optical fiber is obliquely polished.
  • the multi-core non-reflection termination portion is a 2n optical coupler provided in an n-fiber tape fiber that connects n OLTs (n is a natural number) and n ONUs, respectively. and the 2n-fiber MT connector connects the one end to the input/output terminal of the 2n-fiber input/output terminals of the optical coupler that can input/output light to/from the ONU.
  • One of the n-fiber MT connectors or the 2n-fiber MT connector connected to the other end of the optical fiber can input/output light to/from the OLT among the 2n-fiber input/output terminals of the optical coupler.
  • An optical measuring instrument is connected to one of the other optical fibers of the n-core MT connector connected to the other end of the optical fiber whose one end is connected to the input/output end.
  • optical line testing method when connecting the optical measuring instrument, connecting an FO-side n-core MT connector attached to a side of an n-core FO (fan-out) cord where the n-cores are grouped to the n-core MT connector; connecting the optical measuring instrument to one of the single-core connectors attached to each core on the side where the core is branched; characterized by
  • the present invention can provide a multi-fiber non-reflection termination part that has little effect on an optical transmission system due to reflected light and is composed of a small number of parts, and an optical line test method using the same.
  • FIG. 1 is a diagram illustrating the configuration of a system for measuring optical fibers connecting a communication facility building and users;
  • FIG. 1 is a diagram illustrating the configuration of a system for measuring optical fibers connecting a communication facility building and users;
  • FIG. 4 is a diagram for explaining a multi-fiber non-reflection terminal portion according to the present invention;
  • FIG. 4 is a diagram for explaining a multi-fiber non-reflection terminal portion according to the present invention;
  • FIG. 4 is a diagram for explaining a multi-fiber non-reflection terminal portion according to the present invention;
  • FIG. 4 is a diagram for explaining a multi-fiber non-reflection terminal portion according to the present invention;
  • the multi-core non-reflective termination 70 is 2n (n is a natural number) optical fibers 71 each having one end face that is vertically polished and the other end face that is obliquely polished; 2n optical fibers 71 are put together and a 2n-fiber MT connector 72 attached to one end of the optical fibers 71; 2n optical fibers 71 are divided into two groups, and n-core MT connectors (73a, 73b) attached to the other end side of the optical fibers 71 for each group; Prepare.
  • the communication facility building 10 includes an OLT (Optical Line Terminal) 11 and an optical coupler 12 . Also, the OLT 11 and an ONU (Optical Network Unit) 21 on the user side are connected by an optical coupler 12 and a tape fiber 50 .
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • the optical coupler 12 and the multi-fiber non-reflection termination portion 70 are collectively connected with 16-fiber 16-fiber connectors (32a, 72). That is, the 2n-fiber MT connector 72 is connected to the 2n-fiber input/output end (MT connector) 32a of the optical coupler 12 provided in the n-fiber tape 50 that connects the plurality of n OLTs 11 and the plurality of n ONUs 21 respectively. Batch connection. One end of the n-core MT connector 73a is connected by the 2n-core MT connector 72 to an input/output end of the 2n-core input/output end (MT connector) 32a of the optical coupler 12 that can input/output light to/from the ONU 21.
  • One end of the n-core MT connector 73b is connected by the 2n-core MT connector 72 to an input/output end of the 2n-core input/output end (MT connector) 32a of the optical coupler 12 that can input/output light to/from the OLT 11. It is connected to the other end of the optical fiber 71 .
  • the communication light from the OLT 11 and the ONU 21 passes from the 16MT connector 32a of the optical coupler 12 through the 16MT-8MT conversion section (the portion from the MT connector 72 to the MT connectors (73a, 73b)), and is obliquely polished. reaches the end face of the optical fiber 71 on the 8MT connector 73 side. Since the end face is obliquely polished, even if the communication light is reflected, it does not return to the incident side, and the reflected light does not affect the communication quality between the OLT 11 and the ONU 21 .
  • the angle at which the end surface of the optical fiber 71 is obliquely polished is preferably about 8 degrees.
  • the FO cord 82 is attached to the 8MT connector 73a explained in FIG. That is, the multi-fiber non-reflection termination unit 70 further includes an n-fiber FO cord 82, FO code 82 is an FO side n-core MT connector 81 attached to the side where the n-cores are grouped and connected to the n-core MT connector (73a or 73b); a single-core connector 83 attached to each core on the branched side of the n-cores; has The end of each core is obliquely polished on both the FO side n-core MT connector 81 side and the single-core connector 83 side.
  • the FO cord 82 converts the 8MT connector 73a in which the end of the optical fiber 71 is obliquely polished into eight single-core connectors 83 in which the end is obliquely polished.
  • the form shown in FIG. 5 is used. Only when measuring, the FO cord 82 can be attached as shown in FIG.
  • the 8MT connector 73a having the obliquely polished end of the optical fiber 71 is simply connected to the 8MT connector 81 having the obliquely polished end.
  • the polishing direction and angle of both are made to match so that a gap does not occur between the end of the optical fiber 71 and the end of the 8MT connector 81 when they are connected.
  • non-reflective end portion 70 is short (for example, 5 cm or less), the storage space becomes unnecessary.
  • the connector 32a of the coupler 12 is an example of a 16MT connector.
  • a configuration of 16 single-fiber connectors is also possible.
  • FIGS. 7 and 8 are diagrams for explaining the multi-core no-reflection termination section 70 of this embodiment.
  • a cap 75 is attached to the end face of the open 8MT connector (73a, 73b).
  • the cap 75 may damage the end face rather than protect it.
  • the contact of the cap 75 with the end face of the optical fiber 71 changes the state of the obliquely polished end face, the communication light is reflected by the end face and returns to the incident side, and the reflected light travels between the OLT 11 and the ONU 21 . It may also affect communication quality.
  • the entire connector ferrule 74 of the 8MT connector (73a, 73b) is obliquely polished. That is, the n-core MT connector (73a, 73b) is characterized in that the entire connector ferrule 74 including the other end of the optical fiber 71 is obliquely polished.
  • the present embodiment can easily realize protection of the end face of the optical fiber 71 and safety measures for the operator.
  • FIG. 9 is a diagram for explaining the optical line testing method of this embodiment.
  • This optical line testing method uses the multi-fiber non-reflection termination portion 70 described in Embodiment 1 as the 2n optical coupler 12 provided in the n-fiber tape fiber 50 that connects the n OLTs 11 and the n ONUs 21 respectively.
  • step S01 The 2n-core input/output terminal ( one of the optical fibers 71 of the n-core MT connector 73b connected to the other end of the optical fiber 71 whose one end is connected to the input/output end capable of inputting/outputting light to/from the OLT 11 among the MT connectors 32a connecting the optical measuring instrument to (step S02) I do.
  • step S02 connecting the FO-side n-core MT connector 81 attached to the side where the n-cores of the n-core FO (fan-out) cord 82 are grouped together to the n-core MT connector (73a or 73b) (step S02a; ), and connecting the optical measuring instrument to one of the single-core connectors 83 attached to the respective cores of the FO cord 82 on the side where the n-cores are branched (step S02b); is preferred.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Communication System (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は、反射した光による光伝送システムへの影響が少なく、且つ少ない部品点数で構成される多心無反射終端部及びそれを用いた光線路試験方法を提供することを目的とする。 本発明に係る多心無反射終端部(70)は、一端側が垂直研磨された端面、且つ他端側が斜め研磨された端面を持つ2n本(nは自然数)の光ファイバ(71)と、2n本の光ファイバ(71)をまとめ、光ファイバ(71)の一端側に取り付けられた2n心MTコネクタ(72)と、2n本の光ファイバ(71)を2つにグループ分けし、前記グループ毎に光ファイバ(71)の他端側に取り付けられたn心MTコネクタ(73a,73b)と、を備える。

Description

多心無反射終端部および光線路試験方法
 本開示は、光伝送システムのテープファイバに取り付けられる光カプラのコネクタ部に接続する多心無反射終端部及びそれを用いた光線路試験方法に関するものである。
 通信設備ビルとユーザ間を結ぶ光ファイバを測定するシステムの構成を図1と図2で説明する。通信設備ビル10内は、OLT(Optical Line Terminal)11、光カプラ12、光ファイバスイッチ13、OTM (Optical Testing Module)14、及び操作端末15で構成されている。
 OLT11とユーザ側のONU(Optical Network Unit)21間は光カプラ12とテープファイバ50で結ばれている。また、光カプラ12と光ファイバスイッチ13とは、2組の8心テープファイバ31で接続される。ここで、8心テープファイバ31と光カプラ12とは、16MTコネクタ(32a、32b)で16心一括接続される。
 OTM14は、OTDR(Optical Time Domain Reflectometer)、心線対照用光源等の光測定器、並びにこれらを制御するコントローラで構成されている。
 光ファイバスイッチ13は、V溝基盤13a上に複数の光ファイバを幅方向に並べたファイバアレイ13bと、X軸方向及びY軸方向に移動する1本のヘッドファイバ13cをV溝基盤13a上で接続する。光ファイバスイッチ13は、ヘッドファイバ13cを移動させ、ファイバアレイ13bの光ファイバから任意の1心を選択できる(例えば、特許文献1~3を参照。)。なお、ファイバアレイ13bとヘッドファイバ13cとの間には微小な間隙がある。ここでの反射を抑制するため、屈折率整合材が光ファイバスイッチ13の内部に充填されている。このため、ヘッドファイバ13cに接続されていないファイバアレイ13bの光ファイバ端も屈折率整合材で反射を抑制され、40dB以上の反射減衰量が確保されている。
 図1のシステムでは、作業者が操作端末15で測定を行いたい心線を選ぶと、光ファイバスイッチ13のヘッドファイバ13cがV溝基盤13a上をX方向及びY方向に移動してファイバアレイ13bのうちの所望光ファイバに接続する。その後、OTM14から心線対照光やOTDRの試験光を光カプラ12を経由してテープファイバ50に入射し、光伝送システムの試験を行う(例えば、非特許文献1を参照。)。
特開平09-080329号公報 特開平10-123439号公報 特開2009-10789号公報 特開平07-225325号公報
有居正仁、東裕司、榎本圭高、鈴木勝晶、荒木則幸、宇留野重則、渡邉常一、"拡大する光アクセス網を支える光媒体網運用技術"、NTT技術ジャーナル、pp. 58-61、 2006.12
 光ファイバを測定するシステムは、ルーラルエリアなど通信設備ビル10の規模が小さい場合、通信設備ビル10内に光ファイバスイッチ13とOTM14が導入されていない場合もある。その場合、図2に示すとおり、光カプラ12の16MTコネクタ32aは開放された状態であり、OLT11やONU21からの通信光が光カプラ12の16MTコネクタ32aのコネクタ端面で反射する。
 16MTコネクタは4MTや8MTコネクタ同様、コネクタ端面は直角に研磨されており、16MTコネクタの反射減衰量は15dB程度の場合もある。また、光伝送方式によっては、16MTコネクタで発生した反射光がOLT11とONU21間の通信品質に影響を及ぼすこともある。加えて、16MTコネクタ32aの端面から出力するOLT11やONU21からの通信光が誤って作業者の目に入る危険性がある。
 そこで、図3に示す通り、16MTコネクタ32aに取り付け、16MTコネクタ32aの端面で発生する反射を一括で抑制できる多心の無反射終端部60も知られている(例えば、特許文献4を参照。)。この無反射終端部60は、16MTコネクタ32aの端面を保護するとともに、16MTコネクタ32aの端面から出力するOLT11やONU21からの通信光が作業者の目に入ることを防ぐこともできる。
 しかし、図3に示す通り16MTコネクタ32aを全てふさぐ形態で無反射終端部60を取り付けた場合、テープファイバ50に対するOTDR等の測定が行えない。そこで、図4に示すように、16MTコネクタ32aに無反射終端部60を取り付けるのではなく、16MTコネクタ32aを2組の8MTコネクタ61bに変換する変換器61を接続し、さらに、8MTコネクタ61bにFO(ファンナウト)コード62を接続する。この形態で16MTコネクタ32aの端部を1心単位に分割でき、測定対象の端部以外の各々に単心の無反射終端部63をとりつけることで、反射を抑制することができる。
 図4の構成は、テープファイバ50のうち、任意の1心をOTDR等で測定を行うことができるとともに、他の心線は無反射終端部63があるため、反射してOLT11とONU21間の通信品質に影響することがない。加えて、16MTコネクタ32aの端面から出力するOLT11やONU21からの通信光が作業者の目に入ることを防ぐこともできる。
 ただし、図4の構成とするためには、変換器61、FOコード62、及び単心の無反射終端部63が必要となる。つまり、図4の構成とするためには、部品点数が多く、無反射終端も1心単位で手間も費用がかかるうえ、変換器61、FOコード62、及び単心の無反射終端部63を収納するスペース(以下、「収納スペース」と記載することがある。)も必要という課題がある。
 そこで、本発明は、上記課題を解決するために、反射した光による光伝送システムへの影響が少なく、且つ少ない部品点数で構成される多心無反射終端部及びそれを用いた光線路試験方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る多心無反射終端部は、光カプラのコネクタに接続する側の光ファイバ端については通常であるが、その反対側の端面については斜め研磨することとした。
 具体的には、本発明に係る多心無反射終端部は、
 一端側が垂直研磨された端面、且つ他端側が斜め研磨された端面を持つ2n本(nは自然数)の光ファイバと、
 2n本の前記光ファイバをまとめ、前記光ファイバの一端側に取り付けられた2n心MTコネクタと、
 2n本の前記光ファイバを2つにグループ分けし、前記グループ毎に前記光ファイバの他端側に取り付けられたn心MTコネクタと、
を備える。
 本多心無反射終端部は、3つのパーツ(光ファイバ、光カプラ側のコネクタ、反光カプラ側のコネクタ)だけで構成されており、構成部品点数が少ない。さらに、反光カプラ側の光ファイバ端部が斜め研磨されているので、当該端部で反射した光がOLTやONUへ戻ることが無い。なお、「反光カプラ側のコネクタ」とは、前記光ファイバの光カプラに接続していない側にあるコネクタのことであり、図5から図7のコネクタ(73a、73b)である。従って、本発明は、反射した光による光伝送システムへの影響が少なく、且つ少ない部品点数で構成される多心無反射終端部を提供することができる。
 本多心無反射終端部は、次のように光カプラに接続することが好ましい。
(1)前記2n心MTコネクタは、n台のOLTとn台のONUとをそれぞれ接続するn心テープファイバに設けられた光カプラの2n心の入出力端に一括接続されること。
(2)前記n心MTコネクタの一方は、前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記ONUに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続されること。
(3)前記n心MTコネクタの他方は、前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記OLTに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続されること。
 本発明に係る多心無反射終端部は、n心のFO(ファンアウト)コードをさらに備え、
 前記FOコードは、
 前記n心がまとめられている側に取り付けられ、前記n心MTコネクタに接続されるFO側n心MTコネクタと、
 前記n心が分岐されている側の各心に取り付けられた単心コネクタと、
を有し、
 各心の端部は前記FO側n心MTコネクタ側及び前記単心コネクタ側ともに斜め研磨されていることを特徴とする。
 FOコードにより任意の経路の光試験を行うことができる。なお、当該FOコードは光試験を行うときだけ使用することが望ましい。
 本発明に係る多心無反射終端部の前記n心MTコネクタは、前記光ファイバの他端を含め、コネクタフェルール全体が斜め研磨されていることを特徴とする。キャップをかぶせたときに光ファイバの端面とキャップとの接触を回避でき、光ファイバの端面に傷がつくことを回避することができる。
 本発明に係る光線路試験方法は、前記多心無反射終端部を、n台(nは自然数)のOLTとn台のONUとをそれぞれ接続するn心テープファイバに設けられた光カプラの2n心の入出力端に接続すること、及び
 前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記ONUに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続された前記n心MTコネクタの一方、もしくは前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記OLTに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続された前記n心MTコネクタの他方の、いずれかの前記光ファイバに光計測器を接続すること
を行う。
 本発明に係る光線路試験方法は、前記光計測器を接続するときに、
 n心のFO(ファンアウト)コードの、前記n心がまとめられている側に取り付けられているFO側n心MTコネクタを前記n心MTコネクタに接続すること、及び
 前記FOコードの、前記n心が分岐されている側の各心に取り付けられている単心コネクタのいずれかに前記光計測器を接続すること、
を特徴とする。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明は、反射した光による光伝送システムへの影響が少なく、且つ少ない部品点数で構成される多心無反射終端部及びそれを用いた光線路試験方法を提供することができる。
通信設備ビルとユーザ間を結ぶ光ファイバを測定するシステムの構成を説明する図である。 通信設備ビルとユーザ間を結ぶ光ファイバを測定するシステムの構成を説明する図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 本発明に係る多心無反射終端部を説明する図である。 本発明に係る多心無反射終端部を説明する図である。 本発明に係る多心無反射終端部を説明する図である。 本発明に係る多心無反射終端部を説明する図である。 本発明に係る光線路試験方法を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態1)
 図5及び図6は、本実施形態の多心無反射終端部70を備え、光伝送システムの通信設備ビル10とユーザ間を結ぶ光ファイバ50を測定する光線路試験システムを説明する図である。多心無反射終端部70は、
 一端側が垂直研磨された端面、且つ他端側が斜め研磨された端面を持つ2n本(nは自然数)の光ファイバ71と、
 2n本の光ファイバ71をまとめ、光ファイバ71の一端側に取り付けられた2n心MTコネクタ72と、
 2n本の光ファイバ71を2つにグループ分けし、前記グループ毎に光ファイバ71の他端側に取り付けられたn心MTコネクタ(73a,73b)と、
を備える。
 本実施形態では、n=8の例を説明する。nが8以外であっても同様である。
 通信設備ビル10は、OLT(Optical Line Terminal)11及び光カプラ12を備える。また、OLT11とユーザ側のONU(Optical Network Unit)21との間は光カプラ12とテープファイバ50で結ばれる。
 また、光カプラ12と多心の無反射終端部70とは16MTコネクタ(32a、72)で16心一括接続する。
 つまり、2n心MTコネクタ72は、複数n台のOLT11と複数n台のONU21とをそれぞれ接続するn心テープファイバ50に設けられた光カプラ12の2n心の入出力端(MTコネクタ)32aに一括接続される。
 n心MTコネクタ73aは、2n心MTコネクタ72により、光カプラ12の2n心の入出力端(MTコネクタ)32aのうちONU21に対して光を入出力できる入出力端に前記一端が接続された光ファイバ71の前記他端に接続される。
 n心MTコネクタ73bは、2n心MTコネクタ72により、光カプラ12の2n心の入出力端(MTコネクタ)32aのうちOLT11に対して光を入出力できる入出力端に前記一端が接続された光ファイバ71の前記他端に接続される。
 図5の通り、OLT11およびONU21からの通信光は、光カプラ12の16MTコネクタ32aから16MT-8MT変換部(MTコネクタ72からMTコネクタ(73a、73b)までの部分)を経由して、斜め研磨された、8MTコネクタ73側の光ファイバ71の端面に到達する。当該端面は斜め研磨のため、通信光が反射しても入射側の方向に戻ることはなく、反射光がOLT11とONU21との間の通信品質に及ぼすことはない。なお、光ファイバ71の端面を斜め研磨する角度は、8度程度が良い。
 図6は、テープファイバ50を測定するため、図5で説明した8MTコネクタ73aにFOコード82をとりつけ、FOコード82の任意の単心コネクタ83にOTDRを接続している。
 つまり、多心無反射終端部70は、n心のFOコード82をさらに備え、
 FOコード82は、
 前記n心がまとめられている側に取り付けられ、n心MTコネクタ(73a又は73b)に接続されるFO側n心MTコネクタ81と、
 前記n心が分岐されている側の各心に取り付けられた単心コネクタ83と、
を有し、
 各心の端部はFO側n心MTコネクタ81側及び単心コネクタ83側ともに斜め研磨されていることを特徴とする。
 換言すれば、FOコード82は、光ファイバ71の端部が斜め研磨されている8MTコネクタ73aを端部が斜め研磨された8個の単心コネクタ83に変換している。
 図6に示す通り、単心コネクタ83も端面を斜め研磨としているため、単心コネクタ83の端面で通信光が反射しても入射側の方向に戻ることはなく、反射光がOLT11とONU21との間の通信品質に及ぼすことはない。
 OTDRの測定を行わない場合は図5の形態であり、測定を行うときのみ図6のようにFOコード82をとりつければよいのでFOコードの収納スペースは不要である。
 測定を行う場合も、光ファイバ71の端部が斜め研磨されている8MTコネクタ73aに端部が斜め研磨された8MTコネクタ81を接続するだけである。ただし、接続した時に光ファイバ71の端部と8MTコネクタ81の端部との間に隙間が生じないように、両者の研磨方向及び角度を一致させておく。
 FOコード82を取り付けた時も、各コネクタ端面が斜め研磨されているため、各端面で通信光が反射しても入射側の方向に戻ることはなく、反射光がOLT11とONU21との間の通信品質に及ぼすことはない。
 なお、無反射終端部70が短尺(たとえば5cm以下)だと、より収納スペースが不要となる。
 本実施形態は、カプラ12のコネクタ32aが16MTコネクタの例であるが、無反射終端部70が16MT-8MT変換でなく、16MT-斜め研磨16MTコネクタであって、FOコードが斜め研磨16MTコネクタと16個の単心コネクタの構成でもよい。
(実施形態2)
 図7と図8は、本実施形態の多心無反射終端部70を説明する図である。光ファイバ71の端面保護と作業者の目に通信光が入ることないよう安全性を確保するため、開放されている8MTコネクタ(73a、73b)の端面にキャップ75を取り付けることが必要である。
 ところが、光ファイバ71の端面がキャップ75と接触していると、キャップ75の影響で端面が保護されるどころか、傷つけることもある。加えて、光ファイバ71の端面にキャップ75が接触することで、斜め研磨された端面状況が変化し、端面で通信光が反射して入射側に戻り、反射光がOLT11とONU21との間の通信品質に影響を与える可能性もある。
 そこで、本実施形態では、図8に示すとおり、8MTコネクタ(73a、73b)はコネクタフェルール74全体が斜め研磨される。つまり、n心MTコネクタ(73a、73b)は、光ファイバ71の他端を含め、コネクタフェルール74全体が斜め研磨されていることを特徴とする。
 コネクタフェルール74の端部全体が斜め研磨されているので、フェルール74の一部がキャップ75の内側にあたり、光ファイバ71の端面とキャップ75との間に空間90ができる。この空間90で、光ファイバ71の端面に接触することなくキャップすることができる。従って、本実施形態は、実施形態1で説明した効果に加え、光ファイバ71の端面保護と作業者の安全対策が容易に実現できる。
(実施形態3)
 図9は、本実施形態の光線路試験方法を説明する図である。本光線路試験方法は、実施形態1に記載の多心無反射終端部70を、n台のOLT11とn台のONU21とをそれぞれ接続するn心テープファイバ50に設けられた光カプラ12の2n心の入出力端(MTコネクタ)32aに接続すること(ステップS01)、及び
 2n心MTコネクタ72により、光カプラ12の2n心の入出力端(MTコネクタ)32aのうちONU21に対して光を入出力できる前記入出力端に前記一端が接続された光ファイバ71の前記他端に接続されたn心MTコネクタ73a、もしくは2n心MTコネクタ72により、光カプラ12の2n心の入出力端(MTコネクタ)32aのうちOLT11に対して光を入出力できる前記入出力端に前記一端が接続された光ファイバ71の前記他端に接続されたn心MTコネクタ73bの、いずれかの光ファイバ71に光計測器を接続すること(ステップS02)
を行う。
 ここで、ステップS02において、
 n心のFO(ファンアウト)コード82の、前記n心がまとめられている側に取り付けられているFO側n心MTコネクタ81をn心MTコネクタ(73a又は73b)に接続すること(ステップS02a)、及び
 FOコード82の、前記n心が分岐されている側の各心に取り付けられている単心コネクタ83のいずれかに前記光計測器を接続すること(ステップS02b)、
が好ましい。
10:通信設備ビル
11:OLT(Optical Line Terminal)
12:光カプラ
13:光ファイバスイッチ
13a:V溝基盤
13b:ファイバアレイ
13c:ヘッドファイバ
14:OTM (Optical Testing Module)
15:操作端末
21:ONU(Optical Network Unit)
31:n心テープファイバ(図面ではn=8)
32a、32b:2n心MTコネクタ(図面ではn=8)
50:テープファイバ(図面では8心)
60:無反射終端部
61:変換器
61a:2n心MTコネクタ(図面ではn=8)
61b:n心MTコネクタ(図面ではn=8)
62:FO(ファンナウト)コード
63:単心の無反射終端部
70:多心無反射終端部
71:光ファイバ
72:2n心MTコネクタ(図面ではn=8)
73a、73b:n心MTコネクタ(図面ではn=8)
74:コネクタフェルール
75:キャップ
81:FO側n心MTコネクタ(図面ではn=8)
82:FO(ファンナウト)コード
83:単心コネクタ
90:空間

Claims (6)

  1.  一端側が垂直研磨された端面、且つ他端側が斜め研磨された端面を持つ2n本(nは自然数)の光ファイバと、
     2n本の前記光ファイバをまとめ、前記光ファイバの一端側に取り付けられた2n心MTコネクタと、
     2n本の前記光ファイバを2つにグループ分けし、前記グループ毎に前記光ファイバの他端側に取り付けられたn心MTコネクタと、
    を備える多心無反射終端部。
  2.  前記2n心MTコネクタは、n台のOLTとn台のONUとをそれぞれ接続するn心テープファイバに設けられた光カプラの2n心の入出力端に一括接続され、
     前記n心MTコネクタの一方は、前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記ONUに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続され、
     前記n心MTコネクタの他方は、前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記OLTに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続されること
    を特徴とする請求項1に記載の多心無反射終端部。
  3.  n心のFO(ファンアウト)コードをさらに備え、
     前記FOコードは、
     前記n心がまとめられている側に取り付けられ、前記n心MTコネクタに接続されるFO側n心MTコネクタと、
     前記n心が分岐されている側の各心に取り付けられた単心コネクタと、
    を有し、
     各心の端部は前記FO側n心MTコネクタ側及び前記単心コネクタ側ともに斜め研磨されていることを特徴とする請求項1又は2に記載の多心無反射終端部。
  4.  前記n心MTコネクタは、前記光ファイバの他端を含め、コネクタフェルール全体が斜め研磨されていることを特徴とする請求項1から3のいずれかに記載の多心無反射終端部。
  5.  請求項1に記載の多心無反射終端部を、n台(nは自然数)のOLTとn台のONUとをそれぞれ接続するn心テープファイバに設けられた光カプラの2n心の入出力端に接続すること、及び
     前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記ONUに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続された前記n心MTコネクタの一方、もしくは前記2n心MTコネクタにより、前記光カプラの2n心の入出力端のうち前記OLTに対して光を入出力できる前記入出力端に前記一端が接続された前記光ファイバの前記他端に接続された前記n心MTコネクタの他方の、いずれかの前記光ファイバに光計測器を接続すること
    を行う光線路試験方法。
  6.  前記光計測器を接続するときに、
     n心のFO(ファンアウト)コードの、前記n心がまとめられている側に取り付けられているFO側n心MTコネクタを前記n心MTコネクタに接続すること、及び
     前記FOコードの、前記n心が分岐されている側の各心に取り付けられている単心コネクタのいずれかに前記光計測器を接続すること、
    を特徴とする請求項5に記載の光線路試験方法。
PCT/JP2021/012731 2021-03-25 2021-03-25 多心無反射終端部および光線路試験方法 WO2022201474A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/277,753 US20240126030A1 (en) 2021-03-25 2021-03-25 Multi-center non-reflective termination and optical line test method
PCT/JP2021/012731 WO2022201474A1 (ja) 2021-03-25 2021-03-25 多心無反射終端部および光線路試験方法
JP2023508354A JPWO2022201474A1 (ja) 2021-03-25 2021-03-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012731 WO2022201474A1 (ja) 2021-03-25 2021-03-25 多心無反射終端部および光線路試験方法

Publications (1)

Publication Number Publication Date
WO2022201474A1 true WO2022201474A1 (ja) 2022-09-29

Family

ID=83396644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012731 WO2022201474A1 (ja) 2021-03-25 2021-03-25 多心無反射終端部および光線路試験方法

Country Status (3)

Country Link
US (1) US20240126030A1 (ja)
JP (1) JPWO2022201474A1 (ja)
WO (1) WO2022201474A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540210A (ja) * 1991-08-06 1993-02-19 Furukawa Electric Co Ltd:The 光分岐線路の終端装置
JPH0618744A (ja) * 1992-04-27 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 光分岐ユニット及びこのユニットに用いる導波路型光カプラモジュール
JP2002139631A (ja) * 2000-11-02 2002-05-17 Sumitomo Electric Ind Ltd 多心/単心コネクタ変換装置
US20110103803A1 (en) * 2009-10-29 2011-05-05 Paul Kolesar Optical Fiber Array Connectivity System for Multiple Transceivers and/or Multiple Trunk Cables
JP2012530936A (ja) * 2009-06-17 2012-12-06 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 高速データレート伝送システム用光相互接続

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0540210A (ja) * 1991-08-06 1993-02-19 Furukawa Electric Co Ltd:The 光分岐線路の終端装置
JPH0618744A (ja) * 1992-04-27 1994-01-28 Nippon Telegr & Teleph Corp <Ntt> 光分岐ユニット及びこのユニットに用いる導波路型光カプラモジュール
JP2002139631A (ja) * 2000-11-02 2002-05-17 Sumitomo Electric Ind Ltd 多心/単心コネクタ変換装置
JP2012530936A (ja) * 2009-06-17 2012-12-06 コーニング ケーブル システムズ リミテッド ライアビリティ カンパニー 高速データレート伝送システム用光相互接続
US20110103803A1 (en) * 2009-10-29 2011-05-05 Paul Kolesar Optical Fiber Array Connectivity System for Multiple Transceivers and/or Multiple Trunk Cables

Also Published As

Publication number Publication date
US20240126030A1 (en) 2024-04-18
JPWO2022201474A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2003021325A1 (en) Optical interconnect assemblies and methods therefor
EP2264420A1 (en) Optical reflective marker adaptor for a patch cord in OTDR applications
EP3887792B1 (en) Large core apparatus for measuring optical power in multifiber cables
JP6636273B2 (ja) マルチコア光ファイバの接続方法
WO2022201474A1 (ja) 多心無反射終端部および光線路試験方法
Gonda et al. Recent progress and outlook on multicore fiber for practical use
Kikuchi et al. Low insertion loss and high return loss fiber bundle fan-in/fan-out for four-core multi-core fiber
Nagase Optical connectivities for multicore fiber
Nagase et al. Hollow-core fiber connector
Xiong et al. Low loss ultra-small core pitch all-fiber Fan-In/Fan-Out device for coupled-core multicore fibers
JPH06118282A (ja) 光ファイバ分岐部品とその製造方法
Nagase How to connect multicore and multimode fibers
Takahashi et al. Fan-in/Fan-out for multicore fibers
Chu et al. Low Coupling-Loss Three-Dimensional Waveguide Fan-In/Fan-Out Devices for Multi-Core Fiber
Takahashi et al. Multicore fiber fusion splicer suitable for practical applications
Childers et al. High density, low cost, no-polish optical ferrule
Grüner-Nielsen et al. Photonic-lantern-based MDM devices
US20220038177A1 (en) Optical-fiber device for one-cord reference optical power loss measurement
Kihara Optical performance analysis of single-mode fiber connections
Guo et al. An all-fiber fan-out device for varying twin-core fiber types
WO2022013931A1 (ja) 光ファイバスイッチ
Fukai et al. Multi-Fiber Cylindrical Ferrule for Remote Rotary Optical Fiber Switching
Kamimura et al. Return Loss Measurement Procedure for Multicore Fiber Connectors
JP7476986B2 (ja) 光クロスコネクト装置
Wood et al. 3-Port Fibre Optic Beam Splitters for Space Division Multiplexed Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18277753

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933079

Country of ref document: EP

Kind code of ref document: A1