WO2022201466A1 - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
WO2022201466A1
WO2022201466A1 PCT/JP2021/012691 JP2021012691W WO2022201466A1 WO 2022201466 A1 WO2022201466 A1 WO 2022201466A1 JP 2021012691 W JP2021012691 W JP 2021012691W WO 2022201466 A1 WO2022201466 A1 WO 2022201466A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
batteries
wiring
battery
Prior art date
Application number
PCT/JP2021/012691
Other languages
French (fr)
Japanese (ja)
Inventor
由幸 小林
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2023508348A priority Critical patent/JPWO2022201466A1/ja
Priority to PCT/JP2021/012691 priority patent/WO2022201466A1/en
Priority to TW111101588A priority patent/TWI818409B/en
Publication of WO2022201466A1 publication Critical patent/WO2022201466A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to power supply devices.
  • Patent Literature 1 discloses a device that uses the power of any one battery pack when the voltage difference between the two battery packs is large.
  • An object of the present invention is to provide a power supply device that efficiently uses a plurality of batteries.
  • high-potential-side and low-potential-side wiring to which a plurality of batteries are connected in parallel; a plurality of switching means for individually switching the connection and disconnection of the plurality of batteries with respect to the wiring; a control means for controlling the plurality of switching means;
  • a power supply device comprising: The control means is executing connection switching control for sequentially switching one of the plurality of batteries connected to the wiring within a unit time;
  • FIG. 1 is a block diagram of a power supply device according to an embodiment of the present invention
  • FIG. 4 is a timing chart showing the relationship between the ON/OFF timing of each switching element and the output voltage
  • 4 is a timing chart showing the relationship between the ON/OFF timing of each switching element and the output voltage
  • FIG. 10 is a diagram showing the ratio of connection time and changes in power ratio, output voltage, individual output power, and total output power
  • 4 is a flowchart showing an example of processing executed by a control circuit
  • 4 is a flowchart showing an example of processing executed by a control circuit
  • FIG. 2 is a block diagram showing a modification of the power supply device of FIG. 1
  • FIG. 4 is a block diagram showing another example of a power supply device with a different number of batteries
  • FIG. 9 is a timing chart showing ON/OFF timing of each switching element in the example of FIG. 8;
  • FIG. 1 is a block diagram of a power supply device 1 according to one embodiment of the present invention.
  • the power supply device 1 is a device that uses a plurality of batteries 2A and 2B (collectively referred to or referred to as batteries 2 when not distinguished) as power sources, which are DC power sources, and supplies power to a load.
  • the load is the motor 3, and the power supply device 1 also functions as a driving device for driving the motor 3, and can be used as a driving device for driving the motor of a vehicle, for example.
  • the present invention can be applied to power supply devices that supply power to various loads, and can also be applied to stationary power supplies, portable power supplies, and the like.
  • each battery 2 is a detachable battery, particularly a mobile battery pack detachable from the power supply device 1 .
  • each battery 2 may be fixedly provided with the power supply device 1, and some of the batteries may be mobile battery packs, and the remaining batteries may be batteries fixedly provided in the power supply device 1. good too.
  • Each battery 2 includes a power storage unit 2a and a BMU (management system) 2b that manages the power storage unit 2a.
  • the power storage unit 2a stores electric power output from the battery 2, and is configured by, for example, connecting a plurality of battery cells in series.
  • the battery cells are, for example, lithium-ion battery cells.
  • the BMU 2b communicates with a processor that controls charging and discharging of the power storage unit 2a, a storage device such as a semiconductor memory that stores programs executed by the processor and information about the state of the power storage unit 2a, an input/output interface, and a control circuit 19, which will be described later. Includes a communication interface that performs
  • the BMU 2b also includes a detection circuit that detects the remaining amount, charging/discharging current, and charging/discharging voltage of the power storage unit 2a, and the processor controls the upper limit of the discharge power of the battery 2 and the charging amount based on the detection result of the detection circuit. do. For example, when the discharged power of the battery 2 reaches the upper limit, the processor controls discharging of the power storage unit 2a so as to maintain the discharged power of the battery 2 at the upper limit.
  • the motor 3 is an AC motor, such as a three-phase brushless motor.
  • a power supply device 1 converts a DC voltage output from a battery 2 into an AC voltage to drive a motor 3 .
  • the power supply device 1 includes terminals 10a, 10b, and 10c to which the battery 2A is electrically connected, and terminals 11a, 11b, and 11c to which the battery 2B is electrically connected.
  • a positive terminal of the battery 2 is connected to the terminals 10a and 11a, and a negative terminal of the battery 2 is connected to the terminals 10b and 11b.
  • Communication terminals of the BMU 2b of the battery 2 are connected to the terminals 10c and 11c.
  • the power supply device 1 includes a DC wiring 12 on the high potential side and a DC wiring 13 on the low potential side. A potential difference (voltage) between the DC wiring 12 and the DC wiring 13 is called an output voltage Vout.
  • the power supply device 1 also includes a plurality of switching elements SW1 and SW2.
  • the DC wiring 12 is connected to the terminal 10a through the switching element SW1, and is also connected to the terminal 11a through the switching element SW2.
  • DC wiring 13 is connected to terminals 10b and 11b. With such a configuration, a plurality of batteries 2A and 2B are connected in parallel to DC wirings 12 and 13.
  • the switching elements SW1 and SW2 are, for example, transistors, and individually switch the connecting/disconnecting of the plurality of batteries 2A and 2B to the DC wirings 12 and 13 according to the control signal from the control circuit 19 .
  • the switching element SW1 connects the positive terminal of the battery 2A and the DC wiring 12 when turned on, and disconnects the positive terminal of the battery 2A and the DC wiring 12 when turned off.
  • Switching element SW2 connects the positive terminal of battery 2B and DC wiring 12 when turned ON, and disconnects the positive terminal of battery 2B and DC wiring 12 when turned OFF.
  • a diode 15 is provided between the DC wiring 12 and the DC wiring 13 to regulate the flow of current from the DC wiring 13 to the DC wiring 12 .
  • the power supply device 1 also includes a smoothing circuit 14 that smoothes the output voltage Vout of the DC wirings 12 and 13 .
  • the smoothing circuit 14 is an LC filter circuit including an inductor 14 a connected in series with the DC wiring 12 and a capacitor 14 b connected between the DC wiring 12 and the DC wiring 13 .
  • the power supply device 1 includes an inverter 17.
  • An output voltage Vout is input to the inverter 17 , and the inverter 17 converts the output voltage Vout, which is a DC voltage, into an AC voltage and outputs the AC voltage from a three-phase terminal 18 to the motor 3 .
  • the inverter 17 includes, for example, an H-bridge circuit having four FETs (Field Effect Transistors) and a control circuit that sequentially switches the FETs on and off, and converts the output voltage Vout into a single-phase AC voltage.
  • a voltage detection circuit 16 detects an output voltage Vout input to the inverter 17 .
  • the power supply device 1 includes a control circuit 19 .
  • the control circuit 19 includes, for example, a processor, a storage device such as a semiconductor memory, an input/output interface, a communication interface, and the like.
  • the storage device stores programs executed by the processor, data used for processing by the processor, and the like.
  • the control circuit 19 is communicably connected to the BMU 2b of each battery 2 via terminals 10c and 11c, and can acquire output capability information from the BMU 2b.
  • the output capability information is state information related to the power that the battery 2 can currently output, such as remaining amount information (SOC: remaining capacity/fully charged capacity ⁇ 100), voltage information (each output voltage V1, V2), etc. information.
  • the control circuit 19 is also communicably connected to the control circuit of the inverter 17 .
  • the control circuit 19 is also connected to the voltage detection circuit 16 and can acquire the detection result from the voltage detection circuit 16 .
  • the control circuit 19 switches the connection mode of the batteries 2A and 2B to the DC wirings 12 and 13 by controlling the ON/OFF of the switching elements SW1 and SW2. In the mode in which both the batteries 2A and 2B are connected to the DC wirings 12 and 13, the power that can be supplied to the inverter 17 is maximized. However, if the difference between the output voltages of batteries 2A and 2B is large, current can flow from one battery to the other. In this embodiment, since the batteries 2A and 2B are replaceable mobile battery packs, the difference between the output voltages of the batteries 2A and 2B is likely to be large. In such a case, it is conceivable to continuously connect only one of the batteries to the DC wiring 12 and 13, but the power consumption of that battery increases, causing its deterioration, or the frequency of charging and replacement increases. may become.
  • the control circuit 19 executes connection switching control to alternately connect the batteries 2A and 2B to the DC wirings 12 and 13, thereby efficiently using the plurality of batteries 2A and 2B.
  • FIG. 2 is an explanatory diagram thereof.
  • t indicates the passage of time
  • T indicates unit time.
  • the unit time T is set as one cycle, and within the unit time T, one of the batteries 2A and 2B connected to the DC wirings 12 and 13 is sequentially switched repeatedly.
  • the unit time T is, for example, a time within the range of 50 ⁇ s to 1 ms.
  • V1 indicates the output voltage of battery 2A
  • V2 indicates the output voltage of battery 2B. In the illustrated example, there is a relationship of V1>V2.
  • the output voltage Vout is the output voltage V1 when the switching element SW1 is on and the switching element SW2 is off, and the output voltage Vout is the output voltage V2 when the switching element SW2 is on and the switching element SW1 is off.
  • the output voltage Vout becomes the voltage V when averaged over the unit time T.
  • the ON time of the switching element SW1 (connection time of the battery 2A) and the ON time of the switching element SW2 (connection time of the battery 2B) are both T/2.
  • the ratio of ON/OFF time in the unit time T is expressed as a duty ratio
  • the duty ratio of the switching element SW1 is 50%
  • the duty ratio of the switching element SW2 is 50%.
  • the temporal waveform of the output voltage Vout is a signal that alternately repeats V1 and V2. Even if the difference between V1 and V2 is large, the output voltage Vout is smoothed by the smoothing circuit 14 and input to the inverter 17 because the smoothing circuit 14 is provided in this embodiment.
  • the average power drawn from battery 2A is 3 kw and the average power drawn from battery 2B is 2 kw.
  • the control circuit 19 can change the connection time of each battery 2A and 2B to the DC wirings 12 and 13, that is, the duty ratio.
  • FIG. 3 shows an example in which the duty ratio is changed.
  • the duty ratio of the switching element SW1 is 20%
  • the duty ratio of the switching element SW2 is 80%.
  • FIG. 4 shows the relationship between the duty ratio of the switching element SW1 and the power ratio between the battery 2A and the battery 2B (graph G1), the relationship with the output voltage (graph G2), and the output of the battery 2A when V1>V2.
  • the relationship with the possible power W1-max (graph G3), the relationship with the possible output power W2-max of the battery 2B (graph G4), and the relationship with the possible output power to the inverter 17 (graph G5) are shown.
  • the duty ratio in FIG. 4 represents the duty ratio of the switching element SW1
  • the duty ratio of the switching element SW2 is 100%.
  • the duty ratio of the switching element SW2 is 0%.
  • the horizontal axes of the graphs G1 to G5 all represent the duty ratio of the switching element SW1.
  • the output voltage (Vout) is the output voltage V2 of the battery 2B
  • the output voltage (Vout) is the output voltage V1 of the battery 2A ( G2).
  • the output voltage changes depending on the duty ratio.
  • a graph G3 shows the output power W1-max of only the battery 2A in a unit time T.
  • Possible output power W1-max increases as the duty ratio increases from 0%.
  • the discharge power of the battery 2A reaches the upper limit (for example, the discharge current upper limit), and the output is regulated by the BMU 2b of the battery 2A.
  • the available power W1-max does not increase.
  • a graph G4 shows the possible output power W2-max of only the battery 2B in a unit time T.
  • the duty ratio of the switching element SW2 increases from 0%, so the output power W2-max increases.
  • the discharge power of the battery 2B reaches the upper limit (for example, the discharge current upper limit), the output is regulated by the BMU 2b of the battery 2B, and then the duty ratio decreases (switching element SW2 (the duty ratio of ) does not increase the outputtable power W2-max.
  • a graph G5 shows the power W-max that can be output to the inverter 17 in a unit time T, which is the sum of the powers W1-max and W2-max that can be output from the batteries 2A and 2B.
  • the outputtable power W-max is maximized at the duty ratio at which the power ratio is 50%, and the outputtable power W-max decreases regardless of whether the duty ratio is increased or decreased.
  • By controlling the duty ratio it is possible to control the output voltage Vout and the output power W-max while protecting the battery 2 by regulating the discharge power of the battery 2 by the BMU 2b.
  • FIG. 5 is a flow chart showing an example of processing for selecting control modes of the switching elements SW1 and SW2.
  • the processor of the control circuit 19 periodically executes the processing shown in FIG.
  • S1 the voltage information of the batteries 2A and 2B (the output voltages V1 and V2) of the batteries 2A and 2B is obtained by communication from the BMUs 2b of the batteries 2A and 2B.
  • S2 the voltage difference between the output voltages (V1, V2) obtained in S1 is calculated.
  • the threshold is, for example, a value within the range of 1.5V, or a value between 1% and 3% of the average value of each output voltage (V1, V2).
  • both the switching elements SW1 and SW2 are controlled to be ON. Larger power can be supplied to the motor 3, which is the load, than in connection switching control.
  • connection switching control of S4 it is possible to efficiently use these batteries 2 while preventing current from flowing between the batteries 2A and 2B.
  • FIG. 6 is a flowchart showing an example of drive control of the switching elements SW1 and SW2 that is executed when the connection switching control of S4 is selected, and is periodically executed at a shorter cycle than the process of FIG.
  • the detection result of the output voltage Vout is acquired from the voltage detection circuit 16 .
  • the difference between the output voltage Vout obtained in S11 and the target output voltage is calculated.
  • the voltage information of the batteries 2A and 2B (the output voltages V1 and V2) of the batteries 2A and 2B is obtained by communication from the BMUs 2b of the batteries 2A and 2B.
  • the duty ratios of the switching elements SW1 and SW2 are set so that the difference calculated in S12 becomes small.
  • the duty ratio is set within the range of 0% ⁇ duty ratio ⁇ 100%.
  • switching of the switching elements SW1 and SW2 is executed at the duty ratio set at S14. Through the above processing, the output voltage Vout can be maintained at the target output voltage.
  • the switching elements SW1 and SW2 are provided in the DC wiring 12 on the high potential side, but they may be provided in the DC wiring 13 on the low potential side.
  • FIG. 7 shows an example thereof. In the illustrated example, both the switching elements SW1 and SW2 are provided in the DC wiring 13 . A configuration in which some of the switching elements are provided in the DC wiring 12 and the remaining switching elements are provided in the DC wiring 13 can also be adopted.
  • the control mode of the switching elements SW1 and SW2 is selected based on the voltage information acquired from the BMU 2b (S1 to S3), but the control mode is selected based on the output capability information other than the voltage information.
  • connection switching control may be executed when the difference in SOC between the batteries 2A and 2B exceeds a predetermined value, and simultaneous connection control may be executed when the difference is equal to or less than the predetermined value.
  • FIG. 8 is a block diagram showing a power supply device 1A to which four batteries 2A-2D can be connected.
  • the configuration of the power supply device 1A is the same as the configuration of FIG. can be switched to
  • FIG. 9 is an explanatory diagram of connection switching control in the configuration example of FIG. In the illustrated example, each duty ratio of the switching elements SW1 to SW4 is 25%.
  • the power supply device 1 in FIG. 1 includes the inverter 17 and is configured to output AC power.
  • the configuration may be such that the output voltage Vout is directly supplied to an external load without including the inverter 17 .
  • connection switching control when the voltage difference is equal to or less than the threshold in S3 has been described (S5).
  • S5 an example of selecting simultaneous connection control when the voltage difference is equal to or less than the threshold in S3 has been described (S5).
  • Another condition is, for example, the case where the required power of the load exceeds a predetermined threshold. If other conditions are not satisfied, connection switching control may be selected even if the voltage difference is equal to or less than the threshold.
  • the power supply device (1, 1A) of the above embodiment includes: High potential side and low potential side wiring (12, 13) to which a plurality of batteries (2) are connected in parallel; a plurality of switching means (SW) for individually switching the connection and disconnection of the plurality of batteries with respect to the wiring; a control means (19) for controlling the plurality of switching means;
  • a power supply device comprising: The control means is Connection switching control is executed to sequentially switch one of the plurality of batteries connected to the wiring within a unit time (S4). According to this embodiment, it is possible to provide a power supply device that efficiently uses a plurality of batteries with easy control.
  • connection switching control the connection time of each battery to the wiring within the unit time can be changed (S14). According to this embodiment, the DC output voltage can be controlled.
  • the power supply device of the above embodiment includes: A detection means (16) for detecting the output voltage of the wiring,
  • the control means is In the connection switching control, the connection time of each battery to the wiring within the unit time is changed based on the detection result of the detection means (S11, S14). According to this embodiment, the DC output voltage can be controlled according to the target voltage.
  • the control means determines whether or not to execute the connection switching control based on the output capability information of each of the plurality of batteries (S3). According to this embodiment, when there is a difference in output capability between the batteries, the connection switching control is executed to utilize the batteries.
  • the control means executes the connection switching control when the output voltage difference between the plurality of batteries exceeds a predetermined value (S3, S4). According to this embodiment, when there is a possibility that a current may flow between the batteries, the connection switching control is executed to prevent such a situation and utilize the batteries.
  • the control means executes control to simultaneously connect the plurality of batteries to the wiring on condition that the output voltage difference between the plurality of batteries is equal to or less than a predetermined value (S3, S5). This embodiment allows more power to be supplied to the load.
  • the power supply device of the above embodiment includes: A smoothing circuit (S14) is provided for smoothing the output voltage of the wiring. According to this embodiment, even if one battery connected to the wiring is sequentially switched, an averaged and stable voltage can be output.
  • each of the plurality of batteries is a mobile battery pack equipped with a management system (2b);
  • the control means is communicable with the management system. According to this embodiment, information about the state of the mobile battery pack can be obtained from the management system.
  • the management system controls the upper limit of the discharge power of the battery. According to this embodiment, a plurality of batteries can be efficiently used while protecting the batteries.
  • the power supply device of the above embodiment includes: An inverter (17) is provided for converting the output voltage (Vout) of the wiring into an AC voltage. According to this embodiment, power can be supplied to a load that consumes AC power.
  • At least one of the plurality of batteries is a removable battery. According to this embodiment, detachable batteries with different usage states and deterioration states can be effectively used.

Abstract

The present invention is a power supply device that includes high-potential side and low-potential side wiring to which a plurality of batteries are connected in parallel, a plurality of switching means for individually switching disconnection/connection of the plurality of batteries to the wiring, and a control means for controlling the plurality of switching means. The control means executes connection switching control in which one battery among the plurality of batteries that is connected to the wiring is sequentially switched.

Description

電源装置power supply
 本発明は電源装置に関する。 The present invention relates to power supply devices.
 複数のバッテリパックを並列に接続可能な電源装置が提案されている。一方、電圧差が大きい複数のバッテリパックを並列に接続すると、バッテリパック間で電流が流れる等、意図しない現象が生じ得る。特許文献1には2つのバッテリパック間の電圧差が大きい場合、いずれか一つのバッテリパックの電力を用いる装置が開示されている。 A power supply device that allows multiple battery packs to be connected in parallel has been proposed. On the other hand, if a plurality of battery packs with large voltage differences are connected in parallel, unintended phenomena such as current flow between the battery packs may occur. Patent Literature 1 discloses a device that uses the power of any one battery pack when the voltage difference between the two battery packs is large.
中国公開特許第110682828A号明細書Chinese Patent No. 110682828A
 特許文献1の装置では、特定のバッテリパックの電力消費が大きくなり、その劣化を生じたり、或いは、充電や交換の頻度が高くなる場合がある。 In the device of Patent Literature 1, the power consumption of a specific battery pack increases, causing its deterioration, or the frequency of charging and replacement may increase.
 本発明の目的は、複数のバッテリを効率よく用いる電源装置を提供することにある。 An object of the present invention is to provide a power supply device that efficiently uses a plurality of batteries.
 本発明によれば、
 複数のバッテリが並列に接続される、高電位側及び低電位側の配線と、
 前記配線に対する前記複数のバッテリの断続を個別に切り替える複数のスイッチング手段と、
 前記複数のスイッチング手段を制御する制御手段と、
を備えた電源装置であって、
 前記制御手段は、
 単位時間内で、前記複数のバッテリのうち前記配線に接続する一のバッテリを、順次切り替える接続切替制御を実行する、
ことを特徴とする電源装置が提供される。
According to the invention,
high-potential-side and low-potential-side wiring to which a plurality of batteries are connected in parallel;
a plurality of switching means for individually switching the connection and disconnection of the plurality of batteries with respect to the wiring;
a control means for controlling the plurality of switching means;
A power supply device comprising:
The control means is
executing connection switching control for sequentially switching one of the plurality of batteries connected to the wiring within a unit time;
There is provided a power supply device characterized by:
 本発明によれば、容易な制御で複数のバッテリを効率よく用いる電源装置を提供することができる。 According to the present invention, it is possible to provide a power supply device that efficiently uses a plurality of batteries with easy control.
本発明の実施形態に係る電源装置のブロック図。1 is a block diagram of a power supply device according to an embodiment of the present invention; FIG. 各スイッチング素子のオン・オフタイミングと出力電圧との関係を示すタイミングチャート。4 is a timing chart showing the relationship between the ON/OFF timing of each switching element and the output voltage; 各スイッチング素子のオン・オフタイミングと出力電圧との関係を示すタイミングチャート。4 is a timing chart showing the relationship between the ON/OFF timing of each switching element and the output voltage; 接続時間の割り合いと、電力比、出力電圧、個別出力可能電力、合計出力可能電力の変化を示す図。FIG. 10 is a diagram showing the ratio of connection time and changes in power ratio, output voltage, individual output power, and total output power; 制御回路が実行する処理例を示すフローチャート。4 is a flowchart showing an example of processing executed by a control circuit; 制御回路が実行する処理例を示すフローチャート。4 is a flowchart showing an example of processing executed by a control circuit; 図1の電源装置の変形例を示すブロック図。FIG. 2 is a block diagram showing a modification of the power supply device of FIG. 1; バッテリ数が異なる他の電源装置の例を示すブロック図。FIG. 4 is a block diagram showing another example of a power supply device with a different number of batteries; 図8の例における各スイッチング素子のオン・オフタイミングを示すタイミングチャート。FIG. 9 is a timing chart showing ON/OFF timing of each switching element in the example of FIG. 8;
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. It should be noted that the following embodiments do not limit the invention according to the claims, and not all combinations of features described in the embodiments are essential to the invention. Two or more of the features described in the embodiments may be combined arbitrarily. Also, the same or similar configurations are denoted by the same reference numerals, and redundant explanations are omitted.
 図1は本発明の一実施形態に係る電源装置1のブロック図である。電源装置1は、直流電源である複数のバッテリ2A及び2B(総称する場合、又は、区別しない場合はバッテリ2と称す。)を電力源とした装置であって、負荷に電力を供給する。本実施形態の場合、負荷はモータ3であり、電源装置1はモータ3を駆動する駆動装置としても機能し、例えば、車両のモータを駆動する駆動装置として利用可能である。しかし、本発明は、各種の負荷に電力を供給する電源装置に適用可能であり、また、定置電源、可搬型電源等にも適用可能である。 FIG. 1 is a block diagram of a power supply device 1 according to one embodiment of the present invention. The power supply device 1 is a device that uses a plurality of batteries 2A and 2B (collectively referred to or referred to as batteries 2 when not distinguished) as power sources, which are DC power sources, and supplies power to a load. In the case of this embodiment, the load is the motor 3, and the power supply device 1 also functions as a driving device for driving the motor 3, and can be used as a driving device for driving the motor of a vehicle, for example. However, the present invention can be applied to power supply devices that supply power to various loads, and can also be applied to stationary power supplies, portable power supplies, and the like.
 本実施形態の場合、各バッテリ2は着脱型のバッテリであって、特に、電源装置1に着脱可能なモバイルバッテリパックである。しかし、各バッテリ2が電源装置1を固定的に備えていてもよく、また、一部のバッテリがモバイルバッテリパックであり、残りのバッテリが電源装置1に固定的に備えられたバッテリであってもよい。 In the case of this embodiment, each battery 2 is a detachable battery, particularly a mobile battery pack detachable from the power supply device 1 . However, each battery 2 may be fixedly provided with the power supply device 1, and some of the batteries may be mobile battery packs, and the remaining batteries may be batteries fixedly provided in the power supply device 1. good too.
 各バッテリ2は、蓄電部2aと、蓄電部2aを管理するBMU(マネジメントシステム)2bとを含む。蓄電部2aは、バッテリ2から出力する電力を蓄電し、例えば、複数のバッテリセルを直列に接続して構成される。バッテリセルは例えばリチウムイオンバッテリセルである。 Each battery 2 includes a power storage unit 2a and a BMU (management system) 2b that manages the power storage unit 2a. The power storage unit 2a stores electric power output from the battery 2, and is configured by, for example, connecting a plurality of battery cells in series. The battery cells are, for example, lithium-ion battery cells.
 BMU2bは、蓄電部2aの充放電を制御するプロセッサ、プロセッサが実行するプログラムや蓄電部2aの状態に関する情報を記憶する半導体メモリ等の記憶デバイス、入出力インタフェース、および、後述する制御回路19と通信を行う通信インタフェースを含む。また、BMU2bは、蓄電部2aの残量、充放電電流、充放電電圧を検知する検知回路を含み、プロセッサは、検知回路の検知結果に基づいてバッテリ2の放電電力の上限、充電量を制御する。例えば、バッテリ2の放電電力が上限に達するとプロセッサはバッテリ2の放電電力を上限値に維持するように蓄電部2aの放電を制御する。 The BMU 2b communicates with a processor that controls charging and discharging of the power storage unit 2a, a storage device such as a semiconductor memory that stores programs executed by the processor and information about the state of the power storage unit 2a, an input/output interface, and a control circuit 19, which will be described later. Includes a communication interface that performs The BMU 2b also includes a detection circuit that detects the remaining amount, charging/discharging current, and charging/discharging voltage of the power storage unit 2a, and the processor controls the upper limit of the discharge power of the battery 2 and the charging amount based on the detection result of the detection circuit. do. For example, when the discharged power of the battery 2 reaches the upper limit, the processor controls discharging of the power storage unit 2a so as to maintain the discharged power of the battery 2 at the upper limit.
 モータ3は本実施形態の場合、交流モータであり、例えば、三相ブラシレスモータである。電源装置1はバッテリ2から出力される直流電圧を交流電圧に変換してモータ3を駆動する。 In this embodiment, the motor 3 is an AC motor, such as a three-phase brushless motor. A power supply device 1 converts a DC voltage output from a battery 2 into an AC voltage to drive a motor 3 .
 電源装置1は、バッテリ2Aが電気的に接続される端子10a、10b、10cと、バッテリ2Bが電気的に接続される端子11a、11b、11cと、を含む。端子10a、11aにはバッテリ2の正極端子が接続され、端子10b、11bにはバッテリ2の負極端子が接続される。端子10c、11cにはバッテリ2のBMU2bの通信用端子が接続される。 The power supply device 1 includes terminals 10a, 10b, and 10c to which the battery 2A is electrically connected, and terminals 11a, 11b, and 11c to which the battery 2B is electrically connected. A positive terminal of the battery 2 is connected to the terminals 10a and 11a, and a negative terminal of the battery 2 is connected to the terminals 10b and 11b. Communication terminals of the BMU 2b of the battery 2 are connected to the terminals 10c and 11c.
 電源装置1は、高電位側の直流配線12と、低電位側の直流配線13とを含む。直流配線12と直流配線13との電位差(電圧)を出力電圧Voutと称する。電源装置1は、また、複数のスイッチング素子SW1及びSW2を含む。直流配線12はスイッチング素子SW1を介して端子10aに接続され、また、スイッチング素子SW2を介して端子11aに接続されている。直流配線13は端子10b及び11bに接続されている。このような構成により、複数のバッテリ2A及び2Bが直流配線12及び13に並列に接続されている。 The power supply device 1 includes a DC wiring 12 on the high potential side and a DC wiring 13 on the low potential side. A potential difference (voltage) between the DC wiring 12 and the DC wiring 13 is called an output voltage Vout. The power supply device 1 also includes a plurality of switching elements SW1 and SW2. The DC wiring 12 is connected to the terminal 10a through the switching element SW1, and is also connected to the terminal 11a through the switching element SW2. DC wiring 13 is connected to terminals 10b and 11b. With such a configuration, a plurality of batteries 2A and 2B are connected in parallel to DC wirings 12 and 13. FIG.
 スイッチング素子SW1及びSW2は、例えば、トランジスタであり、制御回路19からの制御信号によって、直流配線12、13に対する複数のバッテリ2A及び2Bの断続を個別に切り替える。本実施形態の場合、スイッチング素子SW1は、そのオンによりバッテリ2Aの正極端子と直流配線12とを接続し、そのオフにより、バッテリ2Aの正極端子と直流配線12とを非接続とする。スイッチング素子SW2は、そのオンによりバッテリ2Bの正極端子と直流配線12とを接続し、そのオフにより、バッテリ2Bの正極端子と直流配線12とを非接続とする。 The switching elements SW1 and SW2 are, for example, transistors, and individually switch the connecting/disconnecting of the plurality of batteries 2A and 2B to the DC wirings 12 and 13 according to the control signal from the control circuit 19 . In this embodiment, the switching element SW1 connects the positive terminal of the battery 2A and the DC wiring 12 when turned on, and disconnects the positive terminal of the battery 2A and the DC wiring 12 when turned off. Switching element SW2 connects the positive terminal of battery 2B and DC wiring 12 when turned ON, and disconnects the positive terminal of battery 2B and DC wiring 12 when turned OFF.
 直流配線12と直流配線13との間には、直流配線13から直流配線12へ電流が流れることを規制するダイオード15が設けられている。また、電源装置1は、直流配線12及び13の出力電圧Voutを平滑化する平滑化回路14を含む。本実施形態では、平滑回路14は直流配線12に直列に接続されたインダクタ14aと、直流配線12と直流配線13との間に接続されたコンデンサ14bとを備えたLCフィルタ回路である。 A diode 15 is provided between the DC wiring 12 and the DC wiring 13 to regulate the flow of current from the DC wiring 13 to the DC wiring 12 . The power supply device 1 also includes a smoothing circuit 14 that smoothes the output voltage Vout of the DC wirings 12 and 13 . In this embodiment, the smoothing circuit 14 is an LC filter circuit including an inductor 14 a connected in series with the DC wiring 12 and a capacitor 14 b connected between the DC wiring 12 and the DC wiring 13 .
 電源装置1はインバータ17を含む。インバータ17には、出力電圧Voutが入力され、インバータ17は、直流電圧である出力電圧Voutを交流電圧に変換して三相の端子18からモータ3へ出力する。インバータ17は、例えば、4つのFET(電界効果トランジスタ)を有するHブリッジ回路と、各FETのオン・オフを順次切り替える制御回路とを含み、出力電圧Voutを単相交流電圧に変換する。電圧検知回路16は、インバータ17に入力される出力電圧Voutを検知する。 The power supply device 1 includes an inverter 17. An output voltage Vout is input to the inverter 17 , and the inverter 17 converts the output voltage Vout, which is a DC voltage, into an AC voltage and outputs the AC voltage from a three-phase terminal 18 to the motor 3 . The inverter 17 includes, for example, an H-bridge circuit having four FETs (Field Effect Transistors) and a control circuit that sequentially switches the FETs on and off, and converts the output voltage Vout into a single-phase AC voltage. A voltage detection circuit 16 detects an output voltage Vout input to the inverter 17 .
 電源装置1は、制御回路19を含む。制御回路19は、例えば、プロセッサ、半導体メモリ等の記憶デバイス、入出力インタフェース及び通信インタフェース等を含む。記憶デバイスにはプロセッサが実行するプログラムやプロセッサが処理に使用するデータ等が格納される。 The power supply device 1 includes a control circuit 19 . The control circuit 19 includes, for example, a processor, a storage device such as a semiconductor memory, an input/output interface, a communication interface, and the like. The storage device stores programs executed by the processor, data used for processing by the processor, and the like.
 制御回路19は、端子10c、11cを介して各バッテリ2のBMU2bと通信可能に接続されており、BMU2bから出力能力情報を取得可能である。出力能力情報とは、バッテリ2が現在出力可能な電力に関わる状態情報であり、例えば、残量情報(SOC:残容量/満充電容量×100)、電圧情報(各出力電圧V1、V2)等の情報である。 The control circuit 19 is communicably connected to the BMU 2b of each battery 2 via terminals 10c and 11c, and can acquire output capability information from the BMU 2b. The output capability information is state information related to the power that the battery 2 can currently output, such as remaining amount information (SOC: remaining capacity/fully charged capacity×100), voltage information (each output voltage V1, V2), etc. information.
 また、制御回路19はインバータ17の制御回路とも通信可能に接続されている。また、制御回路19は電圧検知回路16と接続されており、電圧検知回路16からその検知結果を取得可能である。 The control circuit 19 is also communicably connected to the control circuit of the inverter 17 . The control circuit 19 is also connected to the voltage detection circuit 16 and can acquire the detection result from the voltage detection circuit 16 .
 <バッテリの接続制御>
 制御回路19はスイッチング素子SW1及びSW2のオン・オフを制御することにより、直流配線12及び13に対するバッテリ2A及び2Bの接続態様を切り替える。バッテリ2A及び2Bの双方が直流配線12及び13に接続された態様においては、インバータ17に供給可能な電力が最大となる。しかし、バッテリ2A及び2Bの各出力電圧の差が大きい場合、一方のバッテリから他方のバッテリに電流が流れ得る。本実施形態では、バッテリ2A及び2Bが交換可能なモバイルバッテリパックであるため、両者の出力電圧の差が大きい場合が生じやすい。こうした場合に、一方のバッテリのみを継続的に直流配線12及び13に接続することも考えられるが、そのバッテリの電力消費が大きくなり、その劣化を生じたり、或いは、充電や交換の頻度が高くなる場合がある。
<Battery connection control>
The control circuit 19 switches the connection mode of the batteries 2A and 2B to the DC wirings 12 and 13 by controlling the ON/OFF of the switching elements SW1 and SW2. In the mode in which both the batteries 2A and 2B are connected to the DC wirings 12 and 13, the power that can be supplied to the inverter 17 is maximized. However, if the difference between the output voltages of batteries 2A and 2B is large, current can flow from one battery to the other. In this embodiment, since the batteries 2A and 2B are replaceable mobile battery packs, the difference between the output voltages of the batteries 2A and 2B is likely to be large. In such a case, it is conceivable to continuously connect only one of the batteries to the DC wiring 12 and 13, but the power consumption of that battery increases, causing its deterioration, or the frequency of charging and replacement increases. may become.
 本実施形態では、制御回路19がバッテリ2A及び2Bを交互に直流配線12及び13に接続する接続切替制御を実行することで、複数のバッテリ2A及び2Bを効率よく用いる。図2はその説明図である。図2においてtは時間の経過を示しており、Tは単位時間を示している。接続切替制御では、単位時間Tを一周期として、単位時間T内で、バッテリ2A及び2Bのうち直流配線12及び13に接続する一のバッテリを、順次切り替えることを繰り返す。単位時間Tは例えば、50μs~1msの範囲内の時間である。V1はバッテリ2Aの出力電圧を示し、V2はバッテリ2Bの出力電圧を示している。図示の例ではV1>V2の関係にある。 In this embodiment, the control circuit 19 executes connection switching control to alternately connect the batteries 2A and 2B to the DC wirings 12 and 13, thereby efficiently using the plurality of batteries 2A and 2B. FIG. 2 is an explanatory diagram thereof. In FIG. 2, t indicates the passage of time, and T indicates unit time. In the connection switching control, the unit time T is set as one cycle, and within the unit time T, one of the batteries 2A and 2B connected to the DC wirings 12 and 13 is sequentially switched repeatedly. The unit time T is, for example, a time within the range of 50 μs to 1 ms. V1 indicates the output voltage of battery 2A, and V2 indicates the output voltage of battery 2B. In the illustrated example, there is a relationship of V1>V2.
 出力電圧Voutは、スイッチング素子SW1がオンでスイッチング素子SW2がオフの場合、出力電圧V1となり、スイッチング素子SW2がオンでスイッチング素子SW1がオフの場合、出力電圧V2となる。そして、出力電圧Voutは、単位時間Tで平均化すると電圧Vとなる。 The output voltage Vout is the output voltage V1 when the switching element SW1 is on and the switching element SW2 is off, and the output voltage Vout is the output voltage V2 when the switching element SW2 is on and the switching element SW1 is off. The output voltage Vout becomes the voltage V when averaged over the unit time T. FIG.
 図2の例では、単位時間Tのうち、スイッチング素子SW1のオンの時間(バッテリ2Aの接続時間)とスイッチング素子SW2のオンの時間(バッテリ2Bの接続時間)とが、それぞれT/2である。単位時間Tのうち、オン・オフの時間の割り合いをデューティ比と表現すると、スイッチング素子SW1のデューティ比は50%であり、また、スイッチング素子SW2のデューティ比は50%である。出力電圧Voutの平均電圧V=1/2×(V1+V2)である。出力電圧Voutの経時的な波形は、V1とV2とを交互に繰り返す信号となる。V1とV2との差が大きい場合であっても、本実施形態では平滑化回路14を設けているため、出力電圧Voutは平滑化回路14により平滑化されてインバータ17に入力される。 In the example of FIG. 2, within the unit time T, the ON time of the switching element SW1 (connection time of the battery 2A) and the ON time of the switching element SW2 (connection time of the battery 2B) are both T/2. . When the ratio of ON/OFF time in the unit time T is expressed as a duty ratio, the duty ratio of the switching element SW1 is 50%, and the duty ratio of the switching element SW2 is 50%. The average voltage V of the output voltage Vout is V=1/2×(V1+V2). The temporal waveform of the output voltage Vout is a signal that alternately repeats V1 and V2. Even if the difference between V1 and V2 is large, the output voltage Vout is smoothed by the smoothing circuit 14 and input to the inverter 17 because the smoothing circuit 14 is provided in this embodiment.
 仮にV1=60V、V2=40V、消費電流を100Aとすると、インバータ17に対する出力電圧V=50V、出力電力W=5kwとなる。この場合、バッテリ2Aから持ち出される平均電力は3kwであり、バッテリ2Bから持ち出される平均電力は2kwである。 Assuming that V1=60V, V2=40V, and the current consumption is 100A, the output voltage to the inverter 17 is V=50V, and the output power W=5kw. In this case, the average power drawn from battery 2A is 3 kw and the average power drawn from battery 2B is 2 kw.
 制御回路19は、直流配線12及び13に対する各バッテリ2A及び2Bの接続時間、つまり、デューティ比を変更可能である。図3はデューティ比を変更した例を示している。図示の例では、スイッチング素子SW1のデューティ比は20%であり、また、スイッチング素子SW2のデューティ比は80%である。出力電圧Voutの平均電圧V=1/5×V1+4/5×V2である。 The control circuit 19 can change the connection time of each battery 2A and 2B to the DC wirings 12 and 13, that is, the duty ratio. FIG. 3 shows an example in which the duty ratio is changed. In the illustrated example, the duty ratio of the switching element SW1 is 20%, and the duty ratio of the switching element SW2 is 80%. The average voltage V of the output voltage Vout is V=1/5*V1+4/5*V2.
 図4は、V1>V2の場合における、スイッチング素子SW1のデューティ比と、バッテリ2Aとバッテリ2Bとの電力比との関係(グラフG1)、出力電圧との関係(グラフG2)、バッテリ2Aの出力可能電力W1-maxとの関係(グラフG3)、バッテリ2Bの出力可能電力W2-maxとの関係(グラフG4)との関係、インバータ17への出力可能電力との関係(グラフG5)を示す。 FIG. 4 shows the relationship between the duty ratio of the switching element SW1 and the power ratio between the battery 2A and the battery 2B (graph G1), the relationship with the output voltage (graph G2), and the output of the battery 2A when V1>V2. The relationship with the possible power W1-max (graph G3), the relationship with the possible output power W2-max of the battery 2B (graph G4), and the relationship with the possible output power to the inverter 17 (graph G5) are shown.
 図4のデューティ比はスイッチング素子SW1のデューティ比を表しているので、デューティ比が0%の場合、スイッチング素子SW2のデューティ比は100%である。逆に、デューティ比が100%の場合、スイッチング素子SW2のデューティ比は0%である。グラフG1~G5の横軸はいずれもスイッチング素子SW1のデューティ比である。 Since the duty ratio in FIG. 4 represents the duty ratio of the switching element SW1, when the duty ratio is 0%, the duty ratio of the switching element SW2 is 100%. Conversely, when the duty ratio is 100%, the duty ratio of the switching element SW2 is 0%. The horizontal axes of the graphs G1 to G5 all represent the duty ratio of the switching element SW1.
 グラフG1において、バッテリ2A、2Bのいずれが直流配線12及び13に接続されていても消費電流は同じと仮定すると、バッテリ2Aとバッテリ2Bから持ち出される電力の比が50%となるのは、グラフG1で示されるように50%よりも低いデューティ比の時である。 In the graph G1, assuming that the current consumption is the same regardless of which of the batteries 2A and 2B is connected to the DC wiring 12 and 13, the ratio of the power drawn from the battery 2A and the battery 2B is 50% because the graph When the duty ratio is less than 50% as indicated by G1.
 グラフG2において、デューティ比が0%の場合、出力電圧(Vout)はバッテリ2Bの出力電圧V2であり、デューティ比が100%の場合、出力電圧(Vout)はバッテリ2Aの出力電圧V1である(G2)。デューティ比によって出力電圧は変化する。 In the graph G2, when the duty ratio is 0%, the output voltage (Vout) is the output voltage V2 of the battery 2B, and when the duty ratio is 100%, the output voltage (Vout) is the output voltage V1 of the battery 2A ( G2). The output voltage changes depending on the duty ratio.
 グラフG3は、単位時間Tにおいてバッテリ2Aのみの出力可能電力W1-maxを示している。デューティ比が0%から上昇するにしたがって、出力可能電力W1-maxが増加する。電力比が50%となるデューティ比において、バッテリ2Aの放電電力の上限(例えば放電電流の上限)に達し、バッテリ2AのBMU2bによって出力が規制されており、その後、デューティ比が増加しても出力可能電力W1-maxは増加しない。 A graph G3 shows the output power W1-max of only the battery 2A in a unit time T. Possible output power W1-max increases as the duty ratio increases from 0%. At a duty ratio where the power ratio is 50%, the discharge power of the battery 2A reaches the upper limit (for example, the discharge current upper limit), and the output is regulated by the BMU 2b of the battery 2A. The available power W1-max does not increase.
 グラフG4は、単位時間Tにおいてバッテリ2Bのみの出力可能電力W2-maxを示している。デューティ比が100%から低下する方向に見ると、スイッチング素子SW2のデューティ比は0%から上昇するから、出力可能電力W2-maxが増加する。電力比が50%となるデューティ比において、バッテリ2Bの放電電力の上限(例えば放電電流の上限)に達し、バッテリ2BのBMU2bによって出力が規制されており、その後、デューティ比が減少(スイッチング素子SW2のデューティ比は増加)しても出力可能電力W2-maxは増加しない。 A graph G4 shows the possible output power W2-max of only the battery 2B in a unit time T. As the duty ratio decreases from 100%, the duty ratio of the switching element SW2 increases from 0%, so the output power W2-max increases. At the duty ratio at which the power ratio is 50%, the discharge power of the battery 2B reaches the upper limit (for example, the discharge current upper limit), the output is regulated by the BMU 2b of the battery 2B, and then the duty ratio decreases (switching element SW2 (the duty ratio of ) does not increase the outputtable power W2-max.
 グラフG5は、単位時間Tにおいインバータ17へ出力可能電力W-maxを示しており、バッテリ2A、2Bの各出力可能電力W1-max、W2-maxの合計値である。電力比が50%となるデューティ比で出力可能電力W-maxが最大となり、デューティ比の増加、減少のいずれにおいても出力可能電力W-maxが減少していく。デューティ比を制御することで、BMU2bによるバッテリ2の放電電力の規制によってバッテリ2の保護を図りつつ、出力電圧Voutと出力可能電力W-maxを制御することができる。 A graph G5 shows the power W-max that can be output to the inverter 17 in a unit time T, which is the sum of the powers W1-max and W2-max that can be output from the batteries 2A and 2B. The outputtable power W-max is maximized at the duty ratio at which the power ratio is 50%, and the outputtable power W-max decreases regardless of whether the duty ratio is increased or decreased. By controlling the duty ratio, it is possible to control the output voltage Vout and the output power W-max while protecting the battery 2 by regulating the discharge power of the battery 2 by the BMU 2b.
 <処理例>
 制御回路19のプロセッサが実行する処理例について説明する。図5は、スイッチング素子SW1及びSW2の制御態様を選択する処理例を示すフローチャートである。制御回路19のプロセッサは同図の処理を周期的に実行する。S1では、バッテリ2A及び2Bの各BMU2bから、バッテリ2A及び2Bの電圧情報(各出力電圧V1、V2)を通信により取得する。S2ではS1で取得した各出力電圧(V1、V2)の電圧差を演算する。S3ではS2で演算した電圧差(=|V1-V2|)が閾値を超えるか否かを判定する。閾値は、例えば、1.5Vの範囲内の値、或いは、各出力電圧(V1、V2)の平均値の1%~3%の値である。
<Processing example>
An example of processing executed by the processor of the control circuit 19 will be described. FIG. 5 is a flow chart showing an example of processing for selecting control modes of the switching elements SW1 and SW2. The processor of the control circuit 19 periodically executes the processing shown in FIG. In S1, the voltage information of the batteries 2A and 2B (the output voltages V1 and V2) of the batteries 2A and 2B is obtained by communication from the BMUs 2b of the batteries 2A and 2B. In S2, the voltage difference between the output voltages (V1, V2) obtained in S1 is calculated. In S3, it is determined whether or not the voltage difference (=|V1-V2|) calculated in S2 exceeds a threshold. The threshold is, for example, a value within the range of 1.5V, or a value between 1% and 3% of the average value of each output voltage (V1, V2).
 S2で演算した電圧差が閾値を超える場合はS4へ進み、超えない場合はS5へ進む。S4では上述した接続切替制御を実行し、バッテリ2A及び2Bを交互に直流配線12及び13に接続する。S5では同時接続制御を実行し、バッテリ2A及び2Bを共に直流配線12及び13に接続する。 If the voltage difference calculated in S2 exceeds the threshold, proceed to S4, otherwise proceed to S5. In S4, the connection switching control described above is executed, and the batteries 2A and 2B are alternately connected to the DC wirings 12 and 13. FIG. Simultaneous connection control is executed in S5 to connect the batteries 2A and 2B to the DC wirings 12 and 13 together.
 S5の同時接続制御ではスイッチング素子SW1及びSW2を共にオンに制御する。負荷であるモータ3に対して、接続切替制御よりも大電力を供給できる。S4の接続切替制御では、バッテリ2Aとバッテリ2Bとの間で電流が流れることを防止しつつ、これらのバッテリ2を効率よく用いることができる。 In the simultaneous connection control of S5, both the switching elements SW1 and SW2 are controlled to be ON. Larger power can be supplied to the motor 3, which is the load, than in connection switching control. In the connection switching control of S4, it is possible to efficiently use these batteries 2 while preventing current from flowing between the batteries 2A and 2B.
 図6はS4の接続切替制御が選択された場合に実行されるスイッチング素子SW1及びSW2の駆動制御例を示すフローチャートであり、図5の処理よりも短い周期で周期的に実行される。S11では電圧検知回路16から出力電圧Voutの検知結果を取得する。S12ではS11で取得した出力電圧Voutと目標出力電圧との差分を演算する。S13ではバッテリ2A及び2Bの各BMU2bから、バッテリ2A及び2Bの電圧情報(各出力電圧V1、V2)を通信により取得する。S14では、S12で演算した差分とS13で取得した電圧情報とに基づいて、S12で演算した差分が小さくなるように各スイッチング素子SW1及びSW2のデューティ比を設定する。デューティ比は、0%<デューティ比<100%の範囲で設定される。S15ではS14で設定したデューティ比でスイッチング素子SW1及びSW2のスイッチングを実行する。以上の処理により、出力電圧Voutを目標出力電圧に維持することができる。 FIG. 6 is a flowchart showing an example of drive control of the switching elements SW1 and SW2 that is executed when the connection switching control of S4 is selected, and is periodically executed at a shorter cycle than the process of FIG. In S<b>11 , the detection result of the output voltage Vout is acquired from the voltage detection circuit 16 . In S12, the difference between the output voltage Vout obtained in S11 and the target output voltage is calculated. In S13, the voltage information of the batteries 2A and 2B (the output voltages V1 and V2) of the batteries 2A and 2B is obtained by communication from the BMUs 2b of the batteries 2A and 2B. In S14, based on the difference calculated in S12 and the voltage information obtained in S13, the duty ratios of the switching elements SW1 and SW2 are set so that the difference calculated in S12 becomes small. The duty ratio is set within the range of 0%<duty ratio<100%. At S15, switching of the switching elements SW1 and SW2 is executed at the duty ratio set at S14. Through the above processing, the output voltage Vout can be maintained at the target output voltage.
 <他の実施形態>
 上記実施形態では、スイッチング素子SW1及びSW2を高電位側の直流配線12に設けたが、低電位側の直流配線13に設けてもよい。図7はその一例を示す。図示の例ではスイッチング素子SW1及びSW2がいずれも直流配線13に設けられている。なお、一部のスイッチング素子を直流配線12に、残りのスイッチング素子を直流配線13に、それぞれ設ける構成も採用可能である。
<Other embodiments>
In the above embodiment, the switching elements SW1 and SW2 are provided in the DC wiring 12 on the high potential side, but they may be provided in the DC wiring 13 on the low potential side. FIG. 7 shows an example thereof. In the illustrated example, both the switching elements SW1 and SW2 are provided in the DC wiring 13 . A configuration in which some of the switching elements are provided in the DC wiring 12 and the remaining switching elements are provided in the DC wiring 13 can also be adopted.
 次に、上記実施形態では、BMU2bから取得した電圧情報に基づいて、スイッチング素子SW1及びSW2の制御態様を選択したが(S1~S3)、電圧情報以外の出力能力情報に基づいて制御態様を選択してもよい。例えば、バッテリ2Aとバッテリ2Bの間のSOCの差が所定値を超える場合は接続切替制御を実行し、所定値以下の場合は同時接続制御を実行してもよい。 Next, in the above embodiment, the control mode of the switching elements SW1 and SW2 is selected based on the voltage information acquired from the BMU 2b (S1 to S3), but the control mode is selected based on the output capability information other than the voltage information. You may For example, connection switching control may be executed when the difference in SOC between the batteries 2A and 2B exceeds a predetermined value, and simultaneous connection control may be executed when the difference is equal to or less than the predetermined value.
 次に、上記実施形態では2つのバッテリ2を用いたが、3以上のバッテリ2を用いてもよい。図8は4つのバッテリ2A~2Dを接続可能な電源装置1Aを示すブロック図である。電源装置1Aの構成は図1の構成と同様であるが、バッテリ2A~2Dに対応してスイッチング素子SW1~SW4が設けられており、バッテリ2A~2Dと直流配線12及び13との断続を個別に切り替えることができる。図9は図8の構成例における接続切替制御の説明図である。図示の例では、スイッチング素子SW1~SW4の各デューティ比は25%である。 Next, although two batteries 2 are used in the above embodiment, three or more batteries 2 may be used. FIG. 8 is a block diagram showing a power supply device 1A to which four batteries 2A-2D can be connected. The configuration of the power supply device 1A is the same as the configuration of FIG. can be switched to FIG. 9 is an explanatory diagram of connection switching control in the configuration example of FIG. In the illustrated example, each duty ratio of the switching elements SW1 to SW4 is 25%.
 次に、図1の電源装置1はインバータ17を含み、交流電力を出力する構成であるが、インバータ17を含まず、出力電圧Voutを外部の負荷に直接供給する構成であってもよい。 Next, the power supply device 1 in FIG. 1 includes the inverter 17 and is configured to output AC power. However, the configuration may be such that the output voltage Vout is directly supplied to an external load without including the inverter 17 .
 次に、図5の処理ではS3で電圧差が閾値以下の場合に同時接続制御を選択する例を説明したが(S5)、同時接続制御が選択される条件は、電圧差が閾値以下であることに加えて他の条件を含んでもよい。他の条件としては、例えば、負荷の要求電力が所定の閾値を超える場合である。他の条件を満たさない場合、電圧差が閾値以下であっても接続切替制御を選択してもよい。 Next, in the process of FIG. 5, an example of selecting simultaneous connection control when the voltage difference is equal to or less than the threshold in S3 has been described (S5). In addition to this, other conditions may also be included. Another condition is, for example, the case where the required power of the load exceeds a predetermined threshold. If other conditions are not satisfied, connection switching control may be selected even if the voltage difference is equal to or less than the threshold.
 <実施形態のまとめ>
 上記実施形態は、少なくとも以下の電源装置を開示している。
<Summary of embodiment>
The above embodiments disclose at least the following power supply devices.
 1.上記実施形態の電源装置(1,1A)は、
 複数のバッテリ(2)が並列に接続される、高電位側及び低電位側の配線(12,13)と、
 前記配線に対する前記複数のバッテリの断続を個別に切り替える複数のスイッチング手段(SW)と、
 前記複数のスイッチング手段を制御する制御手段(19)と、
を備えた電源装置であって、
 前記制御手段は、
 単位時間内で、前記複数のバッテリのうち前記配線に接続する一のバッテリを、順次切り替える接続切替制御を実行する(S4)。
  この実施形態によれば、容易な制御で複数のバッテリを効率よく用いる電源装置を提供することができる。
1. The power supply device (1, 1A) of the above embodiment includes:
High potential side and low potential side wiring (12, 13) to which a plurality of batteries (2) are connected in parallel;
a plurality of switching means (SW) for individually switching the connection and disconnection of the plurality of batteries with respect to the wiring;
a control means (19) for controlling the plurality of switching means;
A power supply device comprising:
The control means is
Connection switching control is executed to sequentially switch one of the plurality of batteries connected to the wiring within a unit time (S4).
According to this embodiment, it is possible to provide a power supply device that efficiently uses a plurality of batteries with easy control.
 2.上記実施形態では、
 前記接続切替制御では、前記配線に対する各バッテリの、前記単位時間内での接続時間を変更可能である(S14)。
  この実施形態によれば、直流出力電圧を制御することができる。
2. In the above embodiment,
In the connection switching control, the connection time of each battery to the wiring within the unit time can be changed (S14).
According to this embodiment, the DC output voltage can be controlled.
 3.上記実施形態の電源装置は、
 前記配線の出力電圧を検知する検知手段(16)を備え、
 前記制御手段は、
 前記接続切替制御において、前記検知手段の検知結果に基づいて、前記配線に対する各バッテリの、前記単位時間内での接続時間を変更する(S11,S14)。
  この実施形態によれば、目標とする電圧に応じて直流出力電圧を制御することができる。
3. The power supply device of the above embodiment includes:
A detection means (16) for detecting the output voltage of the wiring,
The control means is
In the connection switching control, the connection time of each battery to the wiring within the unit time is changed based on the detection result of the detection means (S11, S14).
According to this embodiment, the DC output voltage can be controlled according to the target voltage.
 4.上記実施形態では、
 前記制御手段は、前記複数のバッテリの各出力能力情報に基づいて、前記接続切替制御を実行するか否かを判定する(S3)。
  この実施形態によれば、前記バッテリ間で出力能力に差がある場合に前記接続切替制御を実行して、前記バッテリの活用を図れる。
4. In the above embodiment,
The control means determines whether or not to execute the connection switching control based on the output capability information of each of the plurality of batteries (S3).
According to this embodiment, when there is a difference in output capability between the batteries, the connection switching control is executed to utilize the batteries.
 5.上記実施形態では、
 前記制御手段は、前記複数のバッテリ間の出力電圧差が所定値を超える場合に、前記接続切替制御を実行する(S3,S4)。
  この実施形態によれば、前記バッテリ間で電流が流れるおそれがある場合に前記接続切替制御を実行して、その防止を図りつつ、前記バッテリの活用を図れる。
5. In the above embodiment,
The control means executes the connection switching control when the output voltage difference between the plurality of batteries exceeds a predetermined value (S3, S4).
According to this embodiment, when there is a possibility that a current may flow between the batteries, the connection switching control is executed to prevent such a situation and utilize the batteries.
 6.上記実施形態では、
 前記制御手段は、前記複数のバッテリ間の出力電圧差が所定値以下であることを条件として、前記複数のバッテリを同時に前記配線に接続する制御を実行する(S3,S5)。
  この実施形態によれば、より大きな電力を負荷に供給できる。
6. In the above embodiment,
The control means executes control to simultaneously connect the plurality of batteries to the wiring on condition that the output voltage difference between the plurality of batteries is equal to or less than a predetermined value (S3, S5).
This embodiment allows more power to be supplied to the load.
 7.上記実施形態の電源装置は、
 前記配線の出力電圧を平滑化する平滑化回路(S14)を備える。
  この実施形態によれば、前記配線に接続する一のバッテリを順次切り替えても、平均化された安定した電圧を出力することができる。
7. The power supply device of the above embodiment includes:
A smoothing circuit (S14) is provided for smoothing the output voltage of the wiring.
According to this embodiment, even if one battery connected to the wiring is sequentially switched, an averaged and stable voltage can be output.
 8.上記実施形態では、
 前記複数のバッテリは、それぞれ、マネジメントシステム(2b)を備えたモバイルバッテリパックであり、
 前記制御手段は、前記マネジメントシステムと通信可能である。
  この実施形態によれば、前記マネジメントシステムから、前記モバイルバッテリパックの状態に係る情報を得ることができる。
8. In the above embodiment,
each of the plurality of batteries is a mobile battery pack equipped with a management system (2b);
The control means is communicable with the management system.
According to this embodiment, information about the state of the mobile battery pack can be obtained from the management system.
 9.上記実施形態では、
 前記マネジメントシステムは、前記バッテリの放電電力の上限を制御する。
  この実施形態によれば、前記バッテリの保護を図りつつ、複数のバッテリを効率よく用いることができる。
9. In the above embodiment,
The management system controls the upper limit of the discharge power of the battery.
According to this embodiment, a plurality of batteries can be efficiently used while protecting the batteries.
 10.上記実施形態の電源装置は、
 前記配線の出力電圧(Vout)を、交流電圧に変換するインバータ(17)を備える。
  この実施形態によれば、交流電力を消費する負荷に電力を供給できる。
10. The power supply device of the above embodiment includes:
An inverter (17) is provided for converting the output voltage (Vout) of the wiring into an AC voltage.
According to this embodiment, power can be supplied to a load that consumes AC power.
 11.上記実施形態では、
 前記複数のバッテリの少なくとも一つは、着脱型のバッテリである。
  この実施形態によれば、利用状態や劣化状態が異なる着脱型のバッテリを効果的に利用することができる。
11. In the above embodiment,
At least one of the plurality of batteries is a removable battery.
According to this embodiment, detachable batteries with different usage states and deterioration states can be effectively used.
 以上、発明の実施形態について説明したが、発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 Although the embodiments of the invention have been described above, the invention is not limited to the above embodiments, and various modifications and changes are possible within the scope of the gist of the invention.

Claims (11)

  1.  複数のバッテリが並列に接続される、高電位側及び低電位側の配線と、
     前記配線に対する前記複数のバッテリの断続を個別に切り替える複数のスイッチング手段と、
     前記複数のスイッチング手段を制御する制御手段と、
    を備えた電源装置であって、
     前記制御手段は、
     単位時間内で、前記複数のバッテリのうち前記配線に接続する一のバッテリを、順次切り替える接続切替制御を実行する、
    ことを特徴とする電源装置。
    high-potential-side and low-potential-side wiring to which a plurality of batteries are connected in parallel;
    a plurality of switching means for individually switching the connection and disconnection of the plurality of batteries with respect to the wiring;
    a control means for controlling the plurality of switching means;
    A power supply device comprising:
    The control means is
    executing connection switching control for sequentially switching one of the plurality of batteries connected to the wiring within a unit time;
    A power supply device characterized by:
  2.  請求項1に記載の電源装置であって、
     前記接続切替制御では、前記配線に対する各バッテリの、前記単位時間内での接続時間を変更可能である、
    ことを特徴とする電源装置。
    The power supply device according to claim 1,
    In the connection switching control, the connection time of each battery to the wiring within the unit time can be changed.
    A power supply device characterized by:
  3.  請求項1に記載の電源装置であって、
     前記配線の出力電圧を検知する検知手段を備え、
     前記制御手段は、
     前記接続切替制御において、前記検知手段の検知結果に基づいて、前記配線に対する各バッテリの、前記単位時間内での接続時間を変更する、
    ことを特徴とする電源装置。
    The power supply device according to claim 1,
    A detection means for detecting the output voltage of the wiring,
    The control means is
    In the connection switching control, changing the connection time of each battery to the wiring within the unit time based on the detection result of the detection means;
    A power supply device characterized by:
  4.  請求項1乃至請求項3のいずれか一項に記載の電源装置であって、
     前記制御手段は、前記複数のバッテリの各出力能力情報に基づいて、前記接続切替制御を実行するか否かを判定する、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The control means determines whether or not to execute the connection switching control based on the output capacity information of each of the plurality of batteries.
    A power supply device characterized by:
  5.  請求項1乃至請求項3のいずれか一項に記載の電源装置であって、
     前記制御手段は、前記複数のバッテリ間の出力電圧差が所定値を超える場合に、前記接続切替制御を実行する、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The control means executes the connection switching control when an output voltage difference between the plurality of batteries exceeds a predetermined value.
    A power supply device characterized by:
  6.  請求項1乃至請求項3のいずれか一項に記載の電源装置であって、
     前記制御手段は、前記複数のバッテリ間の出力電圧差が所定値以下であることを条件として、前記複数のバッテリを同時に前記配線に接続する制御を実行する、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 3,
    The control means performs control to simultaneously connect the plurality of batteries to the wiring on condition that an output voltage difference between the plurality of batteries is equal to or less than a predetermined value.
    A power supply device characterized by:
  7.  請求項1乃至請求項6のいずれか一項に記載の電源装置であって、
     前記配線の出力電圧を平滑化する平滑化回路を備える、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 6,
    A smoothing circuit for smoothing the output voltage of the wiring,
    A power supply device characterized by:
  8.  請求項1乃至請求項7のいずれか一項に記載の電源装置であって、
     前記複数のバッテリは、それぞれ、マネジメントシステムを備えたモバイルバッテリパックであり、
     前記制御手段は、前記マネジメントシステムと通信可能である、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 7,
    each of the plurality of batteries is a mobile battery pack equipped with a management system;
    the control means is communicable with the management system;
    A power supply device characterized by:
  9.  請求項8に記載の電源装置であって、
     前記マネジメントシステムは、前記バッテリの放電電力の上限を制御する、
    ことを特徴とする電源装置。
    The power supply device according to claim 8,
    The management system controls an upper limit of discharge power of the battery.
    A power supply device characterized by:
  10.  請求項1乃至請求項9のいずれか一項に記載の電源装置であって、
     前記配線の出力電圧を、交流電圧に変換するインバータを備える、
    ことを特徴とする電源装置。
    The power supply device according to any one of claims 1 to 9,
    An inverter that converts the output voltage of the wiring into an alternating voltage,
    A power supply device characterized by:
  11.  請求項1に記載の電源装置であって、
     前記複数のバッテリの少なくとも一つは、着脱型のバッテリである、
    ことを特徴とする電源装置。
    The power supply device according to claim 1,
    At least one of the plurality of batteries is a removable battery,
    A power supply device characterized by:
PCT/JP2021/012691 2021-03-25 2021-03-25 Power supply device WO2022201466A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023508348A JPWO2022201466A1 (en) 2021-03-25 2021-03-25
PCT/JP2021/012691 WO2022201466A1 (en) 2021-03-25 2021-03-25 Power supply device
TW111101588A TWI818409B (en) 2021-03-25 2022-01-14 power supply unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012691 WO2022201466A1 (en) 2021-03-25 2021-03-25 Power supply device

Publications (1)

Publication Number Publication Date
WO2022201466A1 true WO2022201466A1 (en) 2022-09-29

Family

ID=83395485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012691 WO2022201466A1 (en) 2021-03-25 2021-03-25 Power supply device

Country Status (3)

Country Link
JP (1) JPWO2022201466A1 (en)
TW (1) TWI818409B (en)
WO (1) WO2022201466A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946914A (en) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd Power supply and its charger
JPH11252812A (en) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd Battery discharge controlling method and device
JP2015050813A (en) * 2013-08-30 2015-03-16 ミツミ電機株式会社 Battery protection circuit, battery protection device, battery pack, and battery protection method
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system
JP2016019303A (en) * 2014-07-04 2016-02-01 株式会社マキタ Battery pack

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9662988B2 (en) * 2014-12-09 2017-05-30 Honda Motor Co., Ltd. System and method for power management of off-board loads being powered and/or charged by an electric vehicle
KR20190100601A (en) * 2018-02-21 2019-08-29 삼성전자주식회사 An electronic apparatus and a method for controlling voltage output to an external electronic device according to voltage sensed at a signal terminal connected to the external electronic device
CN110682828B (en) * 2019-10-15 2021-07-02 北京牛电信息技术有限责任公司 Control method and control system for parallel double battery packs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946914A (en) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd Power supply and its charger
JPH11252812A (en) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd Battery discharge controlling method and device
JP2015050813A (en) * 2013-08-30 2015-03-16 ミツミ電機株式会社 Battery protection circuit, battery protection device, battery pack, and battery protection method
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system
JP2016019303A (en) * 2014-07-04 2016-02-01 株式会社マキタ Battery pack

Also Published As

Publication number Publication date
TWI818409B (en) 2023-10-11
JPWO2022201466A1 (en) 2022-09-29
TW202239102A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
EP2036186B1 (en) Charge equalization apparatus with parallel connection of secondary windings of multiple transformers
US8736231B2 (en) Power management circuit for rechargeable battery stack
JP5738361B2 (en) Power control method
JP5484860B2 (en) Power supply
WO2018139337A1 (en) Electrical device
EP2879266A1 (en) Power management method for a stacked cell rechargeable energy storage and stacked cell rechargeable energy storage device
KR20180044750A (en) Battery system and charge and discharge controlling method for battery packs
US9413037B2 (en) Cell capacity adjusting device
JP6639686B2 (en) Cell balancing system and control method
WO2013048539A1 (en) Voltage management device for a stacked battery
JP2009247145A (en) Power system
KR20160098863A (en) Portable battery pack
KR20190048972A (en) Starting battery system for cell balancing of Lithium battery pack and capacitor
US10243383B2 (en) Power source and electronic device
WO2022201466A1 (en) Power supply device
JP2009148110A (en) Charger/discharger and power supply device using the same
JP2017112734A (en) Battery control system
JP4144009B2 (en) Variable voltage power storage device and hybrid power supply device
JP2016154423A (en) Voltage balance device
JP3303740B2 (en) Battery pack discharge control device
KR101500709B1 (en) An energy storage system for long-life operation of battery
JP6591683B2 (en) Charging voltage supply device and supply method
US9184612B2 (en) Battery charging circuit
KR20210047750A (en) Battery management system and balancing method
KR20210007554A (en) Power system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508348

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933071

Country of ref document: EP

Kind code of ref document: A1