TWI818409B - power supply unit - Google Patents

power supply unit Download PDF

Info

Publication number
TWI818409B
TWI818409B TW111101588A TW111101588A TWI818409B TW I818409 B TWI818409 B TW I818409B TW 111101588 A TW111101588 A TW 111101588A TW 111101588 A TW111101588 A TW 111101588A TW I818409 B TWI818409 B TW I818409B
Authority
TW
Taiwan
Prior art keywords
batteries
power supply
wiring
battery
supply device
Prior art date
Application number
TW111101588A
Other languages
Chinese (zh)
Other versions
TW202239102A (en
Inventor
小林由幸
Original Assignee
日商本田技研工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商本田技研工業股份有限公司 filed Critical 日商本田技研工業股份有限公司
Publication of TW202239102A publication Critical patent/TW202239102A/en
Application granted granted Critical
Publication of TWI818409B publication Critical patent/TWI818409B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Abstract

本發明為一種電源裝置,具備:高電位側及低電位側的配線,其係並聯連接複數個電池;複數個切換手段,其係個別切換對前述配線之前述複數個電池的斷續;以及控制手段,其係控制前述複數個切換手段;其中,前述控制手段,係在單位時間內,執行對前述複數個電池中與前述配線連接之一的電池予以依序切換之連接切換控制。The present invention is a power supply device including: high-potential side and low-potential side wiring, which connects a plurality of batteries in parallel; a plurality of switching means, which individually switches the interruption of the wiring to the plurality of batteries; and control. The means is to control the aforementioned plurality of switching means; wherein the aforementioned control means is to perform connection switching control for sequentially switching one of the plurality of batteries connected to the aforementioned wiring within a unit time.

Description

電源裝置power supply unit

本發明有關電源裝置。The present invention relates to a power supply device.

提案有可以把複數個電池組並聯連接之電源裝置。另一方面,並聯連接電壓差大的複數個電池組的話,產生在電池組間電流流動等之意料之外的現象。於專利文獻1揭示出在2個電池組間的電壓差為大的情況下,使用任意一個電池組的電力之裝置。 [先前技術文獻] [專利文獻] It is proposed to have a power supply device that can connect multiple battery packs in parallel. On the other hand, when a plurality of battery packs with large voltage differences are connected in parallel, unexpected phenomena such as current flowing between the battery packs may occur. Patent Document 1 discloses a device that uses the power of either battery pack when the voltage difference between two battery packs is large. [Prior technical literature] [Patent Document]

[專利文獻1]中國公開專利第110682828A號說明書[Patent Document 1] Specification of Chinese Public Patent No. 110682828A

[發明欲解決之課題][Problem to be solved by the invention]

在專利文獻1的裝置中,特定的電池組的電力消耗變大,是有產生其劣化,或者是充電或交換的頻度變高的情況。In the device of Patent Document 1, the power consumption of a specific battery pack may increase, resulting in deterioration, or the frequency of charging or replacement may increase.

本發明的目的是提供一種有效率使用複數個電池之電源裝置。 [解決課題之手段] An object of the present invention is to provide a power supply device that efficiently uses multiple batteries. [Means to solve the problem]

根據本發明,提供一種電源裝置,具備: 高電位側及低電位側的配線,其係並聯連接複數個電池; 複數個切換手段,其係個別切換對前述配線之前述複數個電池的斷續;以及 控制手段,其係控制前述複數個切換手段;其中, 前述控制手段,係 在單位時間內,執行對前述複數個電池中與前述配線連接之一的電池予以依序切換之連接切換控制。 [發明效果] According to the present invention, a power supply device is provided, which is provided with: The wiring on the high potential side and the low potential side connects multiple batteries in parallel; A plurality of switching means that individually switch the interruption of the plurality of batteries in the aforementioned wiring; and The control means is to control the plurality of switching means mentioned above; among which, The aforementioned control means are Within unit time, connection switching control is executed to sequentially switch one of the batteries connected to the wiring among the plurality of batteries. [Effects of the invention]

根據本發明,可以提供一種以容易的控制來有效率使用複數個電池之電源裝置。According to the present invention, it is possible to provide a power supply device that efficiently uses a plurality of batteries with easy control.

以下,參閱附圖詳細說明實施方式。尚且,以下的實施方式並非限定與申請專利範圍有關的發明,而且不限定在實施方式所說明的特徵的組合之全部為發明所必需者。也可以任意組合在實施方式中所說明的複數個特徵中二個以上的特徵。而且,對相同或者是同樣的構成賦予相同的參考編號,省略重複的說明。Hereinafter, embodiments will be described in detail with reference to the drawings. Furthermore, the following embodiments do not limit the invention related to the scope of the claimed invention, nor are they limited to the case where all combinations of features described in the embodiments are essential for the invention. Two or more of the plural features described in the embodiments may be combined arbitrarily. In addition, the same reference numerals are assigned to the same or identical components, and repeated descriptions are omitted.

圖1為有關本發明的一實施方式之電源裝置1的方塊圖。電源裝置1乃是把直流電源也就是複數個電池2A及2B(總稱的情況或是沒有區別的情況下稱為電池2。)作為電力源的裝置,對負載供給電力。在本實施方式的情況下,負載為馬達3,電源裝置1也作為驅動馬達3的驅動裝置發揮功能,例如,可以使用作為驅動車輛的馬達之驅動裝置。但是,本發明可以適用在對各種的負載供給電力之電源裝置,而且,也可以是用在固定式電源、移動式電源等。FIG. 1 is a block diagram of a power supply device 1 according to an embodiment of the present invention. The power supply device 1 is a device that uses a DC power supply, that is, a plurality of batteries 2A and 2B (referred to as batteries 2 when collectively referred to or when there is no distinction) as a power source, and supplies power to a load. In the case of this embodiment, the load is the motor 3 and the power supply device 1 also functions as a drive device for driving the motor 3. For example, it can be used as a drive device for a motor that drives a vehicle. However, the present invention can be applied to a power supply device that supplies power to various loads, and can also be used in a fixed power supply, a mobile power supply, and the like.

在本實施方式的情況下,各電池2乃是裝卸式的電池,特別是,可對電源裝置1裝卸的行動電池組。但是,各電池2也可以固定具備在電源裝置1,而且,也可以是一部分的電池為行動電池組、剩下的電池固定具備在電源裝置1之電池。In this embodiment, each battery 2 is a detachable battery, in particular, a mobile battery pack that can be detachable from the power supply device 1 . However, each battery 2 may be fixed to the power supply device 1 , and some of the batteries may be mobile battery packs, and the remaining batteries may be fixed to the power supply device 1 .

各電池2包含:蓄電部2a、以及管理蓄電部2a之BMU(管理系統)2b。蓄電部2a儲存從電池2所輸出的電力,例如,串聯連接複數個電池單元而構成。電池單元例如是鋰離子電池單元。Each battery 2 includes a power storage unit 2a and a BMU (management system) 2b that manages the power storage unit 2a. The power storage unit 2a stores electric power output from the battery 2, and is configured by, for example, connecting a plurality of battery cells in series. The battery cells are, for example, lithium-ion battery cells.

BMU2b包含:控制蓄電部2a的充放電之處理器,記憶處理器所執行的程式或與蓄電部2a的狀態有關的資訊之半導體記憶體等的記憶裝置、輸出入介面、以及與後述的控制電路19進行通訊之通訊介面。而且,BMU2b包含:蓄電部2a的殘量、充放電電流、檢測充放電電壓之檢測電路;處理器係根據檢測電路的檢測結果,控制電池2的放電電力的上限、充電量。例如,電池2的放電電力達到上限的話,處理器係為了把電池2的放電電力維持在上限值而控制蓄電部2a的放電。The BMU 2b includes a processor that controls charging and discharging of the power storage unit 2a, a memory device such as a semiconductor memory that stores a program executed by the processor or information on the state of the power storage unit 2a, an input/output interface, and a control circuit described below. 19 Communication interface for communication. Furthermore, the BMU 2b includes a detection circuit for detecting the remaining capacity of the power storage unit 2a, charge and discharge current, and charge and discharge voltage. The processor controls the upper limit of the discharge power and the charge amount of the battery 2 based on the detection results of the detection circuit. For example, when the discharge power of the battery 2 reaches the upper limit, the processor controls the discharge of the power storage unit 2a in order to maintain the discharge power of the battery 2 at the upper limit.

馬達3在本實施方式的情況下為交流馬達,例如為三相無刷馬達。電源裝置1係把從電池2所輸出的直流電壓變換成交流電壓來驅動馬達3。In this embodiment, the motor 3 is an AC motor, for example, a three-phase brushless motor. The power supply device 1 converts the DC voltage output from the battery 2 into an AC voltage to drive the motor 3 .

電源裝置1包含:電性連接電池2A之端子10a、10b、10c、以及電性連接電池2B之端子11a、11b、11c。在端子10a、11a連接電池2的正極端子,在端子10b、11b連接電池2的負極端子。在端子10c、11c連接電池2的BMU2b的通訊用端子。The power supply device 1 includes terminals 10a, 10b, and 10c electrically connected to the battery 2A, and terminals 11a, 11b, and 11c electrically connected to the battery 2B. The positive terminal of the battery 2 is connected to the terminals 10a and 11a, and the negative terminal of the battery 2 is connected to the terminals 10b and 11b. The communication terminals of the BMU 2 b of the battery 2 are connected to the terminals 10 c and 11 c.

電源裝置1包含:高電位側的直流配線12、以及低電位側的直流配線13。把直流配線12與直流配線13之電位差(電壓)稱為輸出電壓Vout。電源裝置1還包含:複數個切換元件SW1及SW2。直流配線12係透過切換元件SW1連接到端子10a,而且,透過切換元件SW2連接到端子11a。直流配線13連接到端子10b及11b。經由這樣的構成,複數個電池2A及2B並聯連接到直流配線12及13。The power supply device 1 includes a high potential side DC wiring 12 and a low potential side DC wiring 13 . The potential difference (voltage) between the DC wiring 12 and the DC wiring 13 is called the output voltage Vout. The power supply device 1 further includes a plurality of switching elements SW1 and SW2. The DC wiring 12 is connected to the terminal 10a through the switching element SW1, and is connected to the terminal 11a through the switching element SW2. The DC wiring 13 is connected to the terminals 10b and 11b. With this configuration, the plurality of batteries 2A and 2B are connected in parallel to the DC wiring lines 12 and 13 .

切換元件SW1及SW2係例如為電晶體,藉由來自控制電路19的控制訊號,個別地切換對直流配線12、13之複數個電池2A及2B的斷續。在本實施方式的情況下,切換元件SW1係經由其導通來連接電池2A的正極端子與直流配線12,經由其斷開,來斷開電池2A的正極端子與直流配線12。切換元件SW2係經由其導通來連接電池2B的正極端子與直流配線12,經由其斷開,來斷開電池2B的正極端子與直流配線12。The switching elements SW1 and SW2 are, for example, transistors, and individually switch on and off the plurality of batteries 2A and 2B of the DC wirings 12 and 13 according to the control signal from the control circuit 19 . In the case of this embodiment, the switching element SW1 connects the positive terminal of the battery 2A and the DC wiring 12 by being turned on, and disconnects the positive terminal of the battery 2A and the DC wiring 12 by turning it off. The switching element SW2 connects the positive terminal of the battery 2B and the DC wiring 12 by being turned on, and disconnects the positive terminal of the battery 2B and the DC wiring 12 by being turned off.

在直流配線12與直流配線13之間,設置有限制電流從直流配線13流動到直流配線12之二極體15。而且,電源裝置1包含:把直流配線12及13的輸出電壓Vout予以平滑化之平滑化電路14。在本實施方式中,平滑電路14為LC濾波電路,其係具備:與直流配線12串聯連接之電感14a、以及連接在直流配線12與直流配線13之間之電容器14b。A diode 15 is provided between the DC wiring 12 and the DC wiring 13 to limit the flow of current from the DC wiring 13 to the DC wiring 12 . Furthermore, the power supply device 1 includes a smoothing circuit 14 that smoothes the output voltage Vout of the DC wirings 12 and 13 . In this embodiment, the smoothing circuit 14 is an LC filter circuit and includes an inductor 14 a connected in series with the DC wiring 12 and a capacitor 14 b connected between the DC wiring 12 and the DC wiring 13 .

電源裝置1包含逆變器17。在逆變器17,被輸入有輸出電壓Vout;逆變器17係把直流電壓也就是輸出電壓Vout變換成交流電壓後,從三相的端子18輸出到馬達3。逆變器17係例如包含:具有4個FET(場效電晶體)之H橋式電路、以及依序切換各FET的導通、斷開之控制電路,把輸出電壓Vout變換成單相交流電壓。電壓檢測電路16係檢測被輸入到逆變器17之輸出電壓Vout。The power supply device 1 includes an inverter 17 . The inverter 17 receives the output voltage Vout. The inverter 17 converts the DC voltage, that is, the output voltage Vout, into an AC voltage, and then outputs the voltage to the motor 3 from the three-phase terminal 18 . The inverter 17 includes, for example, an H-bridge circuit having four FETs (field effect transistors) and a control circuit that sequentially switches on and off each FET to convert the output voltage Vout into a single-phase AC voltage. The voltage detection circuit 16 detects the output voltage Vout input to the inverter 17 .

電源裝置1包含控制電路19。控制電路19係例如包含:處理器、半導體記憶體等的記憶裝置、輸出入介面及通訊介面等。在記憶裝置儲存有處理器所執行的程式或處理器使用在處理的資料等。The power supply device 1 includes a control circuit 19 . The control circuit 19 includes, for example, a processor, a memory device such as a semiconductor memory, an input/output interface, a communication interface, etc. The memory device stores programs executed by the processor or data processed by the processor.

控制電路19係透過端子10c、11c而連接成可以與各電池2的BMU2b通訊,可以從BMU2b取得輸出能力資訊。所謂的輸出能力資訊,乃是電池2關係到現在可輸出電力之狀態資訊,例如,殘量資訊(SOC:剩餘電量/充滿電容量×100)、電壓資訊(各輸出電壓V1、V2)等的資訊。The control circuit 19 is connected through the terminals 10c and 11c to be able to communicate with the BMU 2b of each battery 2, and to obtain output capability information from the BMU 2b. The so-called output capability information is the status information related to the current output power of the battery 2, such as remaining capacity information (SOC: remaining power/full charge capacity × 100), voltage information (each output voltage V1, V2), etc. information.

而且,控制電路19也可以連接成可以與逆變器17的控制電路通訊。而且,控制電路19係與電壓檢測電路16連接,可以從電壓檢測電路16取得其檢測結果。Furthermore, the control circuit 19 may also be connected to communicate with the control circuit of the inverter 17 . Furthermore, the control circuit 19 is connected to the voltage detection circuit 16 and can obtain the detection result from the voltage detection circuit 16 .

<電池的連接控制> 控制電路19係經由控制切換元件SW1及SW2的導通、斷開,來切換對直流配線12及13之電池2A及2B的連接形態。在電池2A及2B之雙方被連接到直流配線12及13的形態下,可以供給到逆變器17的電力為最大。但是,在電池2A及2B之各輸出電壓的差為大的情況下,電流從其中一方的電池流動到另一方的電池。在本實施方式中,電池2A及2B為可以交換的行動電池組的緣故,所以容易發生兩者的輸出電壓的差為大的情況。在這樣的情況下,也可慮到僅其中一方的電池持續連接到直流配線12及13的情況,但是,其電池的電力消耗變大,是有產生其劣化,或者是充電或交換的頻度變高的情況。 <Battery connection control> The control circuit 19 switches the connection form of the batteries 2A and 2B to the DC wirings 12 and 13 by controlling the on and off of the switching elements SW1 and SW2. In a state where both batteries 2A and 2B are connected to DC wiring 12 and 13, the electric power that can be supplied to the inverter 17 is maximum. However, when the difference between the output voltages of batteries 2A and 2B is large, current flows from one battery to the other battery. In the present embodiment, since the batteries 2A and 2B are interchangeable mobile battery packs, the difference in output voltage between the batteries 2A and 2B is likely to be large. In such a case, it is also possible to consider the case where only one of the batteries is continuously connected to the DC wiring 12 and 13. However, the power consumption of the battery will increase, resulting in deterioration, or the frequency of charging or replacement will change. high situation.

在本實施方式中,以控制電路19執行把電池2A及2B交互連接到直流配線12及13之連接切換控制的方式,來有效率使用複數個電池2A及2B。圖2為其說明圖。圖2中,t表示時間的經過,T表示單位時間。在連接切換控制中,把單位時間T作為一週期,在單位時間T內,反覆依序切換連接到電池2A及2B中的直流配線12及13之一的電池。單位時間T例如為50μs~1ms的範圍內的時間。V1表示電池2A的輸出電壓,V2表示電池2B的輸出電壓。在圖示的例子中,處於V1>V2的關係。In this embodiment, a plurality of batteries 2A and 2B are efficiently used by controlling circuit 19 to perform connection switching control for alternately connecting batteries 2A and 2B to DC wirings 12 and 13 . Figure 2 is an explanatory diagram. In Figure 2, t represents the passage of time, and T represents unit time. In the connection switching control, the unit time T is regarded as one cycle, and within the unit time T, the battery connected to one of the DC wirings 12 and 13 among the batteries 2A and 2B is repeatedly and sequentially switched. The unit time T is, for example, a time in the range of 50 μs to 1 ms. V1 represents the output voltage of battery 2A, and V2 represents the output voltage of battery 2B. In the example shown in the figure, the relationship is V1>V2.

輸出電壓Vout係在切換元件SW1為導通、切換元件SW2為斷開的情況下,成為輸出電壓V1,在切換元件SW2為導通、切換元件SW1為斷開的情況下,成為輸出電壓V2。接著,輸出電壓Vout成為以單位時間T而平均化的電壓V。The output voltage Vout becomes the output voltage V1 when the switching element SW1 is on and the switching element SW2 is off, and becomes the output voltage V2 when the switching element SW2 is on and the switching element SW1 is off. Then, the output voltage Vout becomes the voltage V averaged over the unit time T.

在圖2的例子中,在單位時間T中,切換元件SW1的導通的時間(電池2A的連接時間)與切換元件SW2的導通的時間(電池2B的連接時間),分別為T/2。把單位時間T中的導通、斷開的時間的比例表現為工作比的話,切換元件SW1的工作比為50%,而且,切換元件SW2的工作比為50%。輸出電壓Vout的平均電壓V=1/2×(V1+V2)。輸出電壓Vout之時間性的波形成為交互反覆V1與V2之訊號。即便在V1與V2的差為大的情況下,在本實施方式中設置了平滑化電路14的緣故,輸出電壓Vout係經由平滑化電路14被平滑化而被輸入到逆變器17。In the example of FIG. 2 , in unit time T, the ON time of switching element SW1 (connection time of battery 2A) and the ON time of switching element SW2 (connection time of battery 2B) are respectively T/2. If the ratio of the on and off times in the unit time T is expressed as an duty ratio, the duty ratio of the switching element SW1 is 50%, and the duty ratio of the switching element SW2 is 50%. The average voltage V of the output voltage Vout=1/2×(V1+V2). The temporal waveform of the output voltage Vout becomes a signal that alternately repeats V1 and V2. Even when the difference between V1 and V2 is large, since the smoothing circuit 14 is provided in this embodiment, the output voltage Vout is smoothed through the smoothing circuit 14 and is input to the inverter 17 .

假設V1=60V、V2=40V、消耗電流為100A的話,對逆變器17之輸出電壓V=50V、輸出電力W=5kw。該情況下,從電池2A輸出的平均電力為3kw,從電池2B輸出的平均電力為2kw。Assuming that V1=60V, V2=40V, and the current consumption is 100A, the output voltage of the inverter 17 is V=50V and the output power W=5kw. In this case, the average electric power output from battery 2A is 3 kW, and the average electric power output from battery 2B is 2 kW.

控制電路19可以改變對直流配線12及13之各電池2A及2B的連接時間,亦即,可以改變工作比。圖3係表示變更了工作比之例子。在圖示的例子中,切換元件SW1的工作比為20%,而且,切換元件SW2的工作比為80%。輸出電壓Vout的平均電壓V=1/5×V1+4/5×V2。The control circuit 19 can change the connection time of each battery 2A and 2B to the DC wiring 12 and 13, that is, it can change the duty ratio. Figure 3 shows an example in which the duty ratio is changed. In the example shown in the figure, the duty ratio of the switching element SW1 is 20%, and the duty ratio of the switching element SW2 is 80%. The average voltage V of the output voltage Vout=1/5×V1+4/5×V2.

圖4係表示,在V1>V2的情況下,切換元件SW1的工作比,比上電池2A與電池2B的電力比之關係(圖表G1),比上輸出電壓之關係(圖表G2),比上電池2A的可輸出電力W1-max之關係(圖表G3),比上電池2B的可輸出電力W2-max之關係(圖表G4),比上對逆變器17的可輸出電力之關係(圖表G5)。Figure 4 shows that when V1>V2, the working ratio of the switching element SW1 is compared with the relationship between the power ratio of the battery 2A and the battery 2B (chart G1), the relationship between the output voltage (chart G2), and the relationship between the power ratio of the battery 2A and the battery 2B. The relationship between the output power W1-max of the battery 2A (chart G3) is compared with the relationship between the output power W2-max of the battery 2B (chart G4), and the relationship between the output power of the inverter 17 (chart G5 ).

圖4的工作比係表示切換元件SW1的工作比的緣故,所以在工作比為0%的情況下,切換元件SW2的工作比為100%。相反地,工作比為100%的情況下,切換元件SW2的工作比為0%。圖表G1~G5的橫軸全都是切換元件SW1的工作比。The duty ratio in FIG. 4 represents the duty ratio of the switching element SW1. Therefore, when the duty ratio is 0%, the duty ratio of the switching element SW2 is 100%. On the contrary, when the duty ratio is 100%, the duty ratio of the switching element SW2 is 0%. The horizontal axes of graphs G1 to G5 all represent the duty ratio of switching element SW1.

圖表G1中,電池2A、2B的任一個連接到直流配線12及13都暫定消耗電流為相同的話,從電池2A與電池2B輸出的電力的比成為50%,如圖表G1所示般,為比50%還低的工作比之時。In the graph G1, if both the batteries 2A and 2B are connected to the DC wirings 12 and 13 and the current consumption is tentatively the same, the ratio of the electric power output from the battery 2A and the battery 2B becomes 50%. As shown in the graph G1, the ratio is 50% is still lower than the job ratio at the time.

圖表G2中,工作比為0%的情況下,輸出電壓(Vout)為電池2B的輸出電壓V2,工作比為100%的情況下,輸出電壓(Vout)為電池2A的輸出電壓V1(G2)。因為工作比而輸出電壓有變化。In graph G2, when the duty ratio is 0%, the output voltage (Vout) is the output voltage V2 of battery 2B, and when the duty ratio is 100%, the output voltage (Vout) is the output voltage V1 (G2) of battery 2A. . The output voltage changes due to the duty ratio.

圖表G3係表示單位時間T中,僅電池2A的可輸出電力W1-max。根據工作比從0%開始上升,可輸出電力W1-max增加。電力比為50%的工作比的情況下,達到電池2A的放電電力的上限(例如放電電流的上限),藉由電池2A的BMU2b而輸出被限制住,之後,即便工作比增加,可輸出電力W1-max也不增加。Graph G3 shows the output power W1-max of only the battery 2A in unit time T. As the duty ratio increases from 0%, the output power W1-max increases. When the power ratio is an duty ratio of 50%, the upper limit of the discharge power of the battery 2A (for example, the upper limit of the discharge current) is reached, and the output is limited by the BMU 2b of the battery 2A. After that, even if the duty ratio increases, the power can be output W1-max does not increase either.

圖表G4係表示單位時間T中,僅電池2B的可輸出電力W2-max。觀察工作比從100%開始下降的方向,切換元件SW2的工作比係從0%開始上升,所以可輸出電力W2-max增加。電力比為50%的工作比的情況下,達到電池2B的放電電力的上限(例如放電電流的上限),藉由電池2B的BMU2b而輸出被限制住,之後,即便工作比減少(切換元件SW2的工作比增加),可輸出電力W2-max也不增加。Graph G4 shows the output power W2-max of only battery 2B in unit time T. Looking at the direction in which the duty ratio decreases from 100%, the duty ratio of the switching element SW2 increases from 0%, so the output power W2-max increases. When the power ratio is an duty ratio of 50%, the upper limit of the discharge power of battery 2B (for example, the upper limit of discharge current) is reached, and the output is limited by BMU 2b of battery 2B. After that, even if the duty ratio decreases (switching element SW2 (the working ratio increases), the output power W2-max does not increase.

圖表G5係表示於單位時間T,對逆變器17之可輸出電力W-max,乃是電池2A、2B之各可輸出電力W1-max、W2-max的總計值。在電力比為50%的工作比之下可輸出電力W-max為最大,於工作比的增加、減少之任一個中,可輸出電力W-max趨於減少。以控制工作比的方式,藉由BMU2b所致之電池2的放電電力的限制,可以圖求電池2的保護,且控制輸出電壓Vout與可輸出電力W-max。Graph G5 shows the output power W-max of the inverter 17 in unit time T, which is the total value of the output power W1-max and W2-max of the batteries 2A and 2B. The output power W-max is the maximum at the duty ratio of 50%, and the output power W-max tends to decrease when the duty ratio increases or decreases. By controlling the duty ratio and limiting the discharge power of the battery 2 caused by the BMU 2b, the battery 2 can be protected and the output voltage Vout and the output power W-max can be controlled.

<處理例> 說明有關控制電路19的處理器所執行的處理例。圖5為表示選擇切換元件SW1及SW2的控制形態的處理例之流程圖。控制電路19的處理器係週期性執行同一圖的處理。在S1中,從電池2A及2B之各BMU2b,經由通訊取得電池2A及2B的電壓資訊(各輸出電壓V1、V2)。在S2中,演算在S1取得的各輸出電壓(V1、V2)的電壓差。在S3中,判斷在S2演算出的電壓差(=|V1-V2|)是否超過閾值。閾值例如是1.5V的範圍內的值,或者是,各輸出電壓(V1、V2)的平均值的1%~3%的值。 <Processing example> An example of processing executed by the processor of the control circuit 19 will be described. FIG. 5 is a flowchart showing a processing example of a control mode for selecting switching elements SW1 and SW2. The processor of the control circuit 19 periodically executes the processing of the same figure. In S1, the voltage information of batteries 2A and 2B (respective output voltages V1 and V2) is obtained from each BMU2b of batteries 2A and 2B through communication. In S2, the voltage difference between the output voltages (V1, V2) obtained in S1 is calculated. In S3, it is determined whether the voltage difference (=|V1-V2|) calculated in S2 exceeds the threshold. The threshold value is, for example, a value in the range of 1.5 V, or a value of 1% to 3% of the average value of each output voltage (V1, V2).

在S2演算出的電壓差超過閾值的情況下前進到S4,在不超過的情況下前進到S5。在S4,執行上述的連接切換控制,把電池2A及2B交互連接到直流配線12及13。在S5,執行同時連接控制,把電池2A及2B一起連接到直流配線12及13。If the voltage difference calculated in S2 exceeds the threshold, the process proceeds to S4, and if it does not, the process proceeds to S5. In S4, the above-mentioned connection switching control is executed, and batteries 2A and 2B are alternately connected to DC wirings 12 and 13. In S5, simultaneous connection control is performed to connect the batteries 2A and 2B to the DC wiring lines 12 and 13 together.

在S5的同時連接控制下,把切換元件SW1及SW2控制成一起導通。可以對負載之馬達3,供給比連接切換控制更大電力。在S4的連接切換控制下,可以防止在電池2A與電池2B之間有電流流動,並且可以有效率使用這些電池2。Under the simultaneous connection control of S5, the switching elements SW1 and SW2 are controlled to be turned on together. It can supply more power to the motor 3 of the load than the connection switching control. Under the connection switching control of S4, it is possible to prevent current from flowing between the battery 2A and the battery 2B, and these batteries 2 can be used efficiently.

圖6為表示選擇了S4的連接切換控制的情況下所執行的切換元件SW1及SW2的驅動控制例之流程圖,以比圖5的處理還短的週期來週期性執行。在S11,從電壓檢測電路16取得輸出電壓Vout的檢測結果。在S12,演算在S11取得的輸出電壓Vout與目標輸出電壓之差值。在S13,從電池2A及2B的各BMU2b,經由通訊取得電池2A及2B的電壓資訊(各輸出電壓V1、V2)。在S14,根據在S12演算出的差值與在S13取得的電壓資訊,為了讓在S12演算出的差值縮小而設定各切換元件SW1及SW2的工作比。工作比被設定在0%<工作比<100%的範圍。在S15,以在S14設定好的工作比來執行切換元件SW1及SW2的切換。經由以上的處理,可以把輸出電壓Vout維持在目標輸出電壓。FIG. 6 is a flowchart showing an example of drive control of the switching elements SW1 and SW2 that is executed when the connection switching control of S4 is selected, and is periodically executed in a shorter period than the process of FIG. 5 . In S11, the detection result of the output voltage Vout is obtained from the voltage detection circuit 16. In S12, the difference between the output voltage Vout obtained in S11 and the target output voltage is calculated. In S13, the voltage information of batteries 2A and 2B (respective output voltages V1 and V2) is obtained from each BMU2b of batteries 2A and 2B through communication. In S14, based on the difference calculated in S12 and the voltage information obtained in S13, the duty ratio of each switching element SW1 and SW2 is set in order to reduce the difference calculated in S12. The duty ratio is set in the range of 0%<duty ratio<100%. In S15, switching of the switching elements SW1 and SW2 is performed with the duty ratio set in S14. Through the above processing, the output voltage Vout can be maintained at the target output voltage.

<其他實施方式> 在上述實施方式下,把切換元件SW1及SW2設置在高電位側的直流配線12,但是,也可以設置在低電位側的直流配線13。圖7係表示其中其中一例。在圖示的例子中,切換元件SW1及SW2全都設置在直流配線13。尚且,也可以採用,把一部分的切換元件設置在直流配線12,把剩下的切換元件設置在直流配線13之構成。 <Other embodiments> In the above embodiment, the switching elements SW1 and SW2 are provided on the DC wiring 12 on the high potential side. However, they may be provided on the DC wiring 13 on the low potential side. Figure 7 shows one example. In the example shown in the figure, both switching elements SW1 and SW2 are provided on the DC wiring 13 . Furthermore, it is also possible to adopt a configuration in which a part of the switching elements are provided on the DC wiring 12 and the remaining switching elements are provided on the DC wiring 13 .

接著,在上述實施方式中,根據從BMU2b取得的電壓資訊,來選擇切換元件SW1及SW2的控制形態(S1~S3),但是,也可以根據電壓資訊以外的輸出能力資訊來選擇控制形態。例如也可以是,電池2A與電池2B的間的SOC的差超過了確定值的情況下執行連接切換控制,確定值以下的情況下執行同時連接控制。Next, in the above embodiment, the control mode (S1~S3) of the switching elements SW1 and SW2 is selected based on the voltage information obtained from the BMU2b. However, the control mode may also be selected based on output capability information other than the voltage information. For example, when the SOC difference between battery 2A and battery 2B exceeds a certain value, connection switching control may be performed, and when the difference in SOC between battery 2A and battery 2B exceeds a certain value, simultaneous connection control may be performed.

接著,在上述實施方式中使用了2個電池2,但是,以可以使用3個以上的電池2。圖8為表示可以連接4個電池2A~2D之電源裝置1A之方塊圖。電源裝置1A的構成係與圖1的構成同樣,對應電池2A~2D設置了切換元件SW1~SW4,可以個別切換電池2A~2D與直流配線12及13之斷續。圖9為圖8的構成例中的連接切換控制的說明圖。在圖示的例子中,切換元件SW1~SW4的各工作比為25%。Next, in the above embodiment, two batteries 2 are used. However, three or more batteries 2 may be used. FIG. 8 is a block diagram showing a power supply device 1A capable of connecting four batteries 2A to 2D. The structure of the power supply device 1A is the same as that of FIG. 1 . Switching elements SW1 to SW4 are provided corresponding to the batteries 2A to 2D, so that the batteries 2A to 2D and the DC wirings 12 and 13 can be switched on and off individually. FIG. 9 is an explanatory diagram of connection switching control in the configuration example of FIG. 8 . In the example shown in the figure, each duty ratio of the switching elements SW1 to SW4 is 25%.

接著,圖1的電源裝置1包含逆變器17,且輸出交流電力之構成,但也可以是,不包含逆變器17,直接把輸出電壓Vout供給到外部的負載之構成。Next, the power supply device 1 in FIG. 1 includes the inverter 17 and outputs AC power. However, the power supply device 1 may not include the inverter 17 and may directly supply the output voltage Vout to an external load.

接著,說明了在圖5的處理中,在S3,電壓差為閾值以下的情況下選擇同時連接控制之例(S5),選擇同時連接控制之條件係除了電壓差為閾值以下之條件,也可以包含其他的條件。作為其他的條件,例如,有負載的要求電力超過規定的閾值的情況。在不滿足其他的條件的情況下,也在電壓差為閾值以下也可以選擇連接切換控制。 Next, in the process of FIG. 5 , an example (S5) in which simultaneous connection control is selected when the voltage difference is equal to or less than the threshold value in S3 is explained. The condition for selecting simultaneous connection control is other than the condition that the voltage difference is equal to or less than the threshold value. Contains other conditions. As another condition, for example, the power required by the load exceeds a predetermined threshold. When other conditions are not met, connection switching control can be selected even if the voltage difference is below the threshold.

<實施方式的總結> <Summary of Embodiments>

上述實施方式係揭示至少以下的電源裝置。 The above embodiment discloses at least the following power supply device.

1.上述實施方式的電源裝置(1、1A)具備:高電位側及低電位側的配線(12、13),其係並聯連接複數個電池(2);複數個切換手段(SW),其係個別切換對前述配線之前述複數個電池的斷續;以及控制手段(19),其係控制前述複數個切換手段;其中,前述控制手段,係在單位時間內,執行對前述複數個電池中與前述配線連接之一的電池予以依序切換之連接切換控制(S4)。 1. The power supply device (1, 1A) of the above embodiment is provided with: high-potential side and low-potential side wiring (12, 13), which connect a plurality of batteries (2) in parallel; and a plurality of switching means (SW), which It is to individually switch the interruption of the aforementioned plurality of batteries in the aforementioned wiring; and the control means (19), which is to control the aforementioned plurality of switching means; wherein the aforementioned control means is to execute the aforementioned plurality of batteries within a unit time. Connection switching control (S4) for sequentially switching the batteries connected to one of the aforementioned wirings.

根據該實施方式,可以提供一種以容易的控制來有效率使用複數個電池之電源裝置。 According to this embodiment, it is possible to provide a power supply device that efficiently uses a plurality of batteries with easy control.

2.在上述實施方式中,在前述連接切換控制中,可以改變對前述配線之各電池之在前述單位時間內的連接時間(亦即電池的工作比)(S14)。 2. In the above embodiment, in the connection switching control, the connection time of each battery in the wiring in the unit time (that is, the operation ratio of the battery) can be changed (S14).

根據該實施方式,可以控制直流輸出電壓。 According to this embodiment, the DC output voltage can be controlled.

3.上述實施方式的電源裝置具備:檢測手段(16),其係檢測前述配線的輸出電壓;前述控制手段,係於前述連接切換控制中,根據前述檢測手段的檢測結果,變更對前述配線的各電池之在前述單位時間內的連接時間(S11、S14)。 3. The power supply device of the above embodiment is provided with: detection means (16) that detects the output voltage of the wiring; and the control means changes the voltage of the wiring according to the detection result of the detection means during the connection switching control. The connection time of each battery within the aforementioned unit time (S11, S14).

根據該實施方式,可以配合作為目標的電壓來控制直流輸出電壓。 According to this embodiment, the DC output voltage can be controlled in accordance with the target voltage.

4.在上述實施方式中,前述控制手段係根據前述複數個電池之各輸出能力資訊,來判定是否執行前述連接切換控制(S3)。 4. In the above embodiment, the control means determines whether to execute the connection switching control (S3) based on the output capability information of each battery.

根據該實施方式,在前述電池間於輸出能力有差的情況下執行前述連接切換控制,圖求前述電池的活用。 According to this embodiment, when there is a difference in output capability between the batteries, the connection switching control is executed to utilize the batteries.

5.在上述實施方式中,前述控制手段係在前述複數個電池間的輸出電壓差超過確定值的情況下,執行前述連接切換控制(S3、S4)。 5. In the above embodiment, the control means executes the connection switching control (S3, S4) when the output voltage difference between the plurality of batteries exceeds a certain value.

根據該實施方式,在前述電池間有電流流動之虞的情況下執行前述連接切換控制,可以圖求防止該問題並活用前述電池。 According to this embodiment, the connection switching control is executed when there is a risk of current flowing between the batteries, thereby preventing the problem and utilizing the batteries.

6.在上述實施方式中,前述控制手段係把前述複數個電池間的輸出電壓差為確定值以下作為條件,執行同時把前述複數個電池連接到前述配線之控制(S3、S5)。 6. In the above embodiment, the control means performs control of simultaneously connecting the plurality of batteries to the wiring (S3, S5) under the condition that the output voltage difference between the plurality of batteries is a certain value or less.

根據該實施方式,可以供給更大的電力給負載。 According to this embodiment, larger power can be supplied to the load.

7.上述實施方式的電源裝置具備:平滑化電路(圖1的元件符號14),其係平滑化前述配線的輸出電壓。 7. The power supply device according to the above embodiment includes a smoothing circuit (component symbol 14 in FIG. 1 ) that smoothes the output voltage of the wiring.

根據該實施方式,即便依序切換連接到前述配線之一的電池,也可以輸出平均化且安定的電壓。 According to this embodiment, even if the batteries connected to one of the wirings are sequentially switched, an averaged and stable voltage can be output.

8.在上述實施方式中,前述複數個電池分別是具備了管理系統(2b)之行動電池組;前述控制手段可以與前述管理系統通訊。 8. In the above embodiment, the plurality of batteries are mobile battery packs equipped with a management system (2b); the control means can communicate with the management system.

根據該實施方式,可以從前述管理系統,得到與前述行動電池組的狀態有關的資訊。 According to this embodiment, information related to the status of the mobile battery pack can be obtained from the management system.

9.在上述實施方式中,前述管理系統係控制前述電池的放電電力的上限。 9. In the above embodiment, the management system controls the upper limit of the discharge power of the battery.

根據該實施方式,可以圖求前述電池的保護,並且可以有效率使用複數個電池。 According to this embodiment, the aforementioned batteries can be protected, and a plurality of batteries can be used efficiently.

10.上述實施方式的電源裝置具備:逆變器(17),其係把前述配線的輸出電壓(Vout),變換成交流電壓。 10. The power supply device of the above embodiment includes an inverter (17) that converts the output voltage (Vout) of the wiring into an AC voltage.

根據該實施方式,可以提供電力到消耗交流電力的負載。 According to this embodiment, power can be provided to a load consuming AC power.

11.在上述實施方式中,前述複數個電池的至少一個是裝卸式的電池。 11. In the above embodiment, at least one of the plurality of batteries is a removable battery.

根據該實施方式,可以有效使用使用狀態或劣化狀態不同的裝卸式的電池。 According to this embodiment, detachable batteries with different states of use or degradation can be effectively used.

以上,說明了有關發明的實施方式,但是,發明並不被限制在上述的實施方式,在發明的要旨的範圍內,可以做種種的變形,變更。 The embodiments related to the invention have been described above. However, the invention is not limited to the above-described embodiments, and various modifications and changes are possible within the scope of the gist of the invention.

1:電源裝置 1: Power supply unit

2:電池 2:Battery

3:馬達 3: Motor

12:直流配線 12: DC wiring

13:直流配線 13:DC wiring

14:平滑化電路 14: Smoothing circuit

15:二極體 15: Diode

16:電壓檢測電路 16: Voltage detection circuit

17:逆變器 17:Inverter

18:端子 18:Terminal

19:控制電路 19:Control circuit

10a:端子 10a:Terminal

10b:端子 10b:Terminal

10c:端子 10c: terminal

11a:端子 11a:Terminal

11b:端子 11b:Terminal

11c:端子 11c:Terminal

14a:電感 14a:Inductor

14b:電容器 1A:電源裝置 2A:電池 2a:蓄電部 2b:BMU(管理系統) 2B:電池 2C:電池 2D:電池 SW1:切換元件 SW2:切換元件 SW3:切換元件 SW4:切換元件 Vout:輸出電壓 14b:Capacitor 1A:Power supply unit 2A:Battery 2a: Power storage department 2b:BMU (management system) 2B:Battery 2C:Battery 2D:Battery SW1: switching element SW2: switching element SW3: switching element SW4: switching element Vout: output voltage

[圖1]為有關本發明的實施方式之電源裝置的方塊圖。 [圖2]為表示各切換元件的導通、斷開時序與輸出電壓之關係之時序流程圖。 [圖3]為表示各切換元件的導通、斷開時序與輸出電壓之關係之時序流程圖。 [圖4]為表示連接時間的比例、電力比、輸出電壓、個別可輸出電力,總計可輸出電力的變化之圖。 [圖5]為表示控制電路所執行的處理例之流程圖。 [圖6]為表示控制電路所執行的處理例之流程圖。 [圖7]為表示圖1的電源裝置的變形例之方塊圖。 [圖8]為表示電池數目相異之另一電源裝置的例子之方塊圖。 [圖9]為表示圖8的例子中的各切換元件的導通、斷開時序之時序流程圖。 [Fig. 1] is a block diagram of a power supply device according to an embodiment of the present invention. [Fig. 2] is a timing flow chart showing the relationship between the turn-on and turn-off timing of each switching element and the output voltage. [Fig. 3] is a timing flow chart showing the relationship between the turn-on and turn-off timing of each switching element and the output voltage. [Figure 4] is a graph showing changes in the ratio of connection time, power ratio, output voltage, individual output power, and total output power. [Fig. 5] is a flowchart showing an example of processing executed by the control circuit. [Fig. 6] is a flowchart showing an example of processing executed by the control circuit. [Fig. 7] A block diagram showing a modification of the power supply device of Fig. 1. [Fig. [Fig. 8] is a block diagram showing another example of a power supply device with a different number of batteries. [FIG. 9] is a timing flow chart showing the turn-on and turn-off timing of each switching element in the example of FIG. 8.

1:電源裝置 1: Power supply unit

2A:電池 2A:Battery

2a:蓄電部 2a: Power storage department

2b:BMU(管理系統) 2b:BMU (management system)

2B:電池 2B:Battery

3:馬達 3: Motor

12:直流配線 12: DC wiring

13:直流配線 13:DC wiring

14:平滑化電路 14: Smoothing circuit

15:二極體 15: Diode

16:電壓檢測電路 16: Voltage detection circuit

17:逆變器 17:Inverter

18:端子 18:Terminal

19:控制電路 19:Control circuit

10a:端子 10a:Terminal

10b:端子 10b:Terminal

10c:端子 10c: terminal

11a:端子 11a:Terminal

11b:端子 11b:Terminal

11c:端子 11c:Terminal

14a:電感 14a:Inductor

14b:電容器 14b:Capacitor

SW1:切換元件 SW1: switching element

SW2:切換元件 SW2: switching element

Vout:輸出電壓 Vout: output voltage

Claims (10)

一種電源裝置,具備:高電位側及低電位側的配線,其係並聯連接複數個電池;複數個切換手段,其係個別切換對前述配線之前述複數個電池的斷續;以及控制手段,其係控制前述複數個切換手段;其中,前述控制手段,係在單位時間內,執行對前述複數個電池中與前述配線連接之一的電池予以依序切換之連接切換控制;前述控制手段係根據前述複數個電池之各輸出能力資訊,來判定是否執行前述連接切換控制。 A power supply device provided with: high-potential side and low-potential side wiring for connecting a plurality of batteries in parallel; a plurality of switching means for individually switching the interruption of the wiring to the plurality of batteries; and a control means, It is to control the aforementioned plurality of switching means; wherein, the aforementioned control means is to perform connection switching control to sequentially switch one of the aforementioned plurality of batteries connected to the aforementioned wiring within a unit time; the aforementioned control means is based on the aforementioned The output capability information of each battery is used to determine whether to execute the aforementioned connection switching control. 如請求項1的電源裝置,其中,在前述連接切換控制中,可以改變對前述配線之各電池之在前述單位時間內的連接時間。 The power supply device according to claim 1, wherein in the connection switching control, the connection time of each battery in the wiring within the unit time can be changed. 如請求項1的電源裝置,其中,具備:檢測手段,其係檢測前述配線的輸出電壓;前述控制手段,係於前述連接切換控制中,根據前述檢測手段的檢測結果,變更對前述配線的各電池之在前述單位時間內的連接時間。 The power supply device of claim 1, further comprising: a detection means that detects the output voltage of the wiring; and the control means, in the connection switching control, changes each condition of the wiring based on the detection result of the detection means. The connection time of the battery within the aforementioned unit time. 如請求項1乃至請求項3中任一項的電源裝置,其中,前述控制手段係在前述複數個電池間的輸出電壓差超 過確定值的情況下,執行前述連接切換控制。 The power supply device according to any one of claim 1 to claim 3, wherein the control means is configured to ensure that the output voltage difference between the plurality of batteries exceeds If the value exceeds the determined value, the aforementioned connection switching control is performed. 如請求項1乃至請求項3中任一項的電源裝置,其中,前述控制手段係把前述複數個電池間的輸出電壓差為確定值以下作為條件,執行同時把前述複數個電池連接到前述配線之控制。 The power supply device according to any one of claim 1 to claim 3, wherein the control means is executed to simultaneously connect the plurality of batteries to the wiring under the condition that the output voltage difference between the plurality of batteries is below a certain value. control. 如請求項1的電源裝置,其中,還具備:平滑化電路,其係平滑化前述配線的輸出電壓。 The power supply device of claim 1 further includes a smoothing circuit for smoothing the output voltage of the wiring. 如請求項1的電源裝置,其中,前述複數個電池分別是具備了管理系統之行動電池組;前述控制手段可以與前述管理系統通訊。 Such as the power supply device of claim 1, wherein the plurality of batteries are mobile battery packs equipped with a management system; the control means can communicate with the management system. 如請求項7的電源裝置,其中,前述管理系統係控制前述複數個電池之每一個的放電電力的上限。 The power supply device of claim 7, wherein the management system controls the upper limit of the discharge power of each of the plurality of batteries. 如請求項1的電源裝置,其中,還具備:逆變器,其係把前述配線的輸出電壓,變換成交流電壓。 The power supply device of Claim 1 further includes an inverter that converts the output voltage of the wiring into an AC voltage. 如請求項1的電源裝置,其中,前述複數個電池的至少一個是裝卸式的電池。 The power supply device of claim 1, wherein at least one of the plurality of batteries is a removable battery.
TW111101588A 2021-03-25 2022-01-14 power supply unit TWI818409B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/012691 WO2022201466A1 (en) 2021-03-25 2021-03-25 Power supply device
WOPCT/JP2021/012691 2021-03-25

Publications (2)

Publication Number Publication Date
TW202239102A TW202239102A (en) 2022-10-01
TWI818409B true TWI818409B (en) 2023-10-11

Family

ID=83395485

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101588A TWI818409B (en) 2021-03-25 2022-01-14 power supply unit

Country Status (3)

Country Link
JP (1) JPWO2022201466A1 (en)
TW (1) TWI818409B (en)
WO (1) WO2022201466A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946914A (en) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd Power supply and its charger
JPH11252812A (en) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd Battery discharge controlling method and device
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system
US20160159229A1 (en) * 2014-12-09 2016-06-09 Honda Motor Co., Ltd. System and method for power management of off-board loads being powered and/or charged by an electric vehicle
CN110682828A (en) * 2019-10-15 2020-01-14 北京牛电信息技术有限责任公司 Control method and control system for parallel double battery packs
CN111742459A (en) * 2018-02-21 2020-10-02 三星电子株式会社 Method for controlling voltage output to external electronic device according to voltage magnitude detected at signal terminal connected to external electronic device, and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6263908B2 (en) * 2013-08-30 2018-01-24 ミツミ電機株式会社 Battery protection circuit, battery protection device, battery pack, and battery protection method
JP6373662B2 (en) * 2014-07-04 2018-08-15 株式会社マキタ Battery pack

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0946914A (en) * 1995-07-31 1997-02-14 Oki Electric Ind Co Ltd Power supply and its charger
JPH11252812A (en) * 1998-02-27 1999-09-17 Nec Yonezawa Ltd Battery discharge controlling method and device
JP2016012984A (en) * 2014-06-30 2016-01-21 日立化成株式会社 Cell system
US20160159229A1 (en) * 2014-12-09 2016-06-09 Honda Motor Co., Ltd. System and method for power management of off-board loads being powered and/or charged by an electric vehicle
CN111742459A (en) * 2018-02-21 2020-10-02 三星电子株式会社 Method for controlling voltage output to external electronic device according to voltage magnitude detected at signal terminal connected to external electronic device, and electronic device
CN110682828A (en) * 2019-10-15 2020-01-14 北京牛电信息技术有限责任公司 Control method and control system for parallel double battery packs

Also Published As

Publication number Publication date
WO2022201466A1 (en) 2022-09-29
TW202239102A (en) 2022-10-01
JPWO2022201466A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
US8736231B2 (en) Power management circuit for rechargeable battery stack
JP5738361B2 (en) Power control method
US6969972B2 (en) Architecture for switching between an external and internal power source
JP5484860B2 (en) Power supply
WO2018139337A1 (en) Electrical device
JP7266703B2 (en) 3-level boost circuit, multi-output parallel system
US6437462B1 (en) Bi-directional DC/DC converter and control method therefor
JP5882481B2 (en) Power converter and precharge circuit thereof
KR20180044750A (en) Battery system and charge and discharge controlling method for battery packs
CN111130164A (en) Power supply apparatus
KR20210065119A (en) Methods for improving energy storage systems and battery performance
US20050212493A1 (en) Capacitor system
TWI818409B (en) power supply unit
EP4024709A1 (en) Bridge cascade system
JP2002142375A (en) Power storage system and control method therefor
JP3303740B2 (en) Battery pack discharge control device
JP4144009B2 (en) Variable voltage power storage device and hybrid power supply device
KR101524879B1 (en) Power transformer for industrial vehicle
JP5347594B2 (en) Power supply
KR20210007554A (en) Power system
JPH10108360A (en) Capacitor power source
JP2000184622A (en) Uninterruptible power supply
KR20190032059A (en) Energy recycling voltage scaler based on reconfigurable switched capacitor array and voltage control mathod thereof
JPH10174314A (en) Power supply device
JP2023155930A (en) Serial charge control device and battery device with the same