WO2022199701A1 - 一种模拟井筒与地层物质交流的实验装置 - Google Patents

一种模拟井筒与地层物质交流的实验装置 Download PDF

Info

Publication number
WO2022199701A1
WO2022199701A1 PCT/CN2022/083177 CN2022083177W WO2022199701A1 WO 2022199701 A1 WO2022199701 A1 WO 2022199701A1 CN 2022083177 W CN2022083177 W CN 2022083177W WO 2022199701 A1 WO2022199701 A1 WO 2022199701A1
Authority
WO
WIPO (PCT)
Prior art keywords
wellbore
formation
valve
experimental device
sealing body
Prior art date
Application number
PCT/CN2022/083177
Other languages
English (en)
French (fr)
Inventor
邓钧耀
徐凤银
周劲辉
张雷
陈东
王渊
纪元
孙潇逸
迟丽薇
张毅
莫司琪
杨赟
Original Assignee
中联煤层气国家工程研究中心有限责任公司
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中联煤层气国家工程研究中心有限责任公司, 中国石油大学(北京) filed Critical 中联煤层气国家工程研究中心有限责任公司
Priority to US18/023,196 priority Critical patent/US20230335015A1/en
Priority to JP2023514125A priority patent/JP2023539669A/ja
Publication of WO2022199701A1 publication Critical patent/WO2022199701A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B25/00Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes
    • G09B25/02Models for purposes not provided for in G09B23/00, e.g. full-sized devices for demonstration purposes of industrial processes; of machinery
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/08Controlling or monitoring pressure or flow of drilling fluid, e.g. automatic filling of boreholes, automatic control of bottom pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/20Computer models or simulations, e.g. for reservoirs under production, drill bits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the present application relates to, but is not limited to, the technical field of oil and gas exploitation, in particular, but not limited to, an experimental device for simulating the communication between a wellbore and formation materials.
  • the difference ⁇ P between the liquid column pressure P h generated by the working fluid in the wellbore and the fluid pressure P p in the formation pores is defined as the pressure difference.
  • Controlling the pressure difference is the key to drilling safety and reservoir protection.
  • the working fluid in the wellbore and the fluid in the formation pores will flow relative to each other.
  • the working fluid in the wellbore cannot enter the formation, and the fluid in the formation cannot enter the wellbore.
  • ⁇ P>0 it is an overbalanced drilling method.
  • the working fluid in the wellbore enters the formation, and the reservoir near the wellbore will be polluted by the working fluid, resulting in unsatisfactory productivity. economic losses.
  • ⁇ P ⁇ 0 it is an underbalanced drilling method, and formation fluid enters the wellbore to form well invasion. If it is not controlled, it will cause vicious accidents such as well kick or even blowout.
  • the underbalanced drilling method is deliberately adopted to allow formation fluids to enter the wellbore, so as to achieve the purpose of early discovery of oil and gas layers and protection of the reservoir.
  • the formations with different physical parameters have different forms of fluid exchange under the action of pressure difference.
  • the exchange volume and exchange rate need to be studied and determined, and the drilling hydraulic pressure difference needs to be reasonably determined by taking into account drilling safety and reservoir protection.
  • An experimental device for simulating the communication between a wellbore and formation materials comprises: a wellbore simulation system, a wellbore fluid injection system, a formation simulation system, a formation fluid injection system and a data acquisition system;
  • the wellbore simulation system includes a vertical casing for simulating a wellbore
  • the formation simulation system includes a horizontally arranged sealing body for simulating formation and a mortar filler filled in the sealing body;
  • the wellbore fluid injection system is connected to the upper end of the cylindrical body, and is configured to inject wellbore fluid into the cylindrical body;
  • the formation fluid injection system is connected to one end of the sealing body, and is configured to inject formation into the sealing body fluid; the other end of the sealing body is communicated with the bottom end of the cylinder body;
  • the data acquisition system is electrically connected to the wellbore simulation system and the formation simulation system to collect simulation data.
  • FIG. 1 is a schematic diagram of the connection structure of an experimental device for simulating the exchange of wellbore and formation material in an embodiment of the present application.
  • an embodiment of the present application discloses an experimental device for simulating the communication between a wellbore and formation materials.
  • the experimental device includes: a wellbore simulation system, a wellbore fluid injection system, a formation simulation system, a formation fluid injection system, and a data acquisition system System 1.
  • the wellbore simulation system includes a vertically arranged casing 2 for simulating a wellbore.
  • the stratum simulation system includes a horizontally arranged sealing body 3 for simulating the stratum and a mortar filler filled in the sealing body 3;
  • the mortar filler is formed by mixing cement and sand with different ratios and mixing with an appropriate amount of water to solidify, and can be formed according to the Simulate the needs of formations with different permeability and porosity, change the ratio of cement and sand, and adjust the physical parameters to achieve the actual formation. For example, when high permeability formations need to be simulated, increase the proportion of sand.
  • the wellbore fluid injection system is connected to the upper end of the cylinder body 2, and is set to inject wellbore fluid into the cylinder body 2;
  • the formation fluid injection system is connected to one end of the sealing body 3, and is set to inject formation fluid into the sealing body 3, simulating the far end of the formation
  • the other end of the sealing body 3 is communicated with the bottom end of the cylinder body 2;
  • the data acquisition system 1 is electrically connected to the wellbore simulation system and the formation simulation system (that is, the wellbore simulation system and the formation simulation system are both electrically connected to the data acquisition system 1) to collect simulated data.
  • the simulation of the fluid flow law between the wellbore and the formation under different pressure differences can be performed; and by changing the seal
  • the mortar filling in the body can also simulate the fluid exchange form of formations with different physical properties under the action of pressure difference.
  • the casing 2 may be arranged vertically to simulate a vertical wellbore; alternatively, the casing 2 may be arranged horizontally or inclined to simulate a horizontal or inclined wellbore.
  • the wellbore fluid injection system includes: a liquid tank 4 , a first booster pump 5 and a first valve 6 .
  • the liquid tank 4, the first booster pump 5, and the first valve 6 are connected to the upper end of the cylinder body 2 in sequence, and the pressure in the cylinder body 2 can be adjusted by the first booster pump 5, thereby simulating the pressure in the real wellbore.
  • the wellbore fluid is installed in the liquid tank 4, and the first booster pump 5 can inject a preset amount of wellbore fluid into the cylinder body 2 according to the experimental requirements, so that the wellbore fluid in the cylinder body 2 can generate a predetermined liquid column pressure for simulating the wellbore working fluid inside.
  • the formation fluid injection system includes: a fluid source, a second booster pump 7 and a second valve 8 .
  • the fluid source, the second booster pump 7 and the second valve 8 are connected to one end of the sealing body 3 in sequence.
  • the pressure in the sealing body 3 can be adjusted by the second booster pump 7 to simulate the pressure of the real formation.
  • the fluid source includes an oil source 14 , a gas source 15 and a water source 16 , which are mixed to form formation fluid, and then connected to the second booster pump 7 through a mixing valve 17 .
  • the outlets of the oil source 14 , the gas source 15 and the water source 16 are A fourth valve 18 is separately provided for controlling the mixing ratio of oil, gas and water, thereby simulating fluids of different properties.
  • the mixing valve 17 has four valve ports, including three inlets and one outlet.
  • the oil source 14, the air source 15 and the water source 16 are connected to the second booster pump 7 through the mixing valve 17, that is, the outlets of the oil source 14, the air source 15 and the water source 16 are respectively connected to the three inlets of the mixing valve 17, and the mixing valve
  • the outlet of 17 is connected to the inlet of the second booster pump 7 .
  • the fourth valve 18 can be a flow valve to control the amount of oil, gas and water flowing out from the oil source 14 , the gas source 15 and the water source 16 , thereby controlling the mixing ratio of the oil, gas and water. It should be understood that the fourth valve 18 may be provided at the outlets of the oil source 14 , the gas source 15 and the water source 16 all, or may be provided only at the outlet of any two of the oil source 14 , the gas source 15 and the water source 16 Fourth valve 18 .
  • the first booster pump 5 and the second booster pump 7 are constant pressure pumps (the constant pressure pump here should be understood to be pressurized by constant pressure in the experimental state, but in actual drilling, the formation and The pressures at two locations in the wellbore are not idealized constant values, so the two booster pumps can be set to have a larger and adjustable pressure range) to ensure that the first booster pump 5 and the second booster pump 7 are The wellbore fluid and formation fluid are injected under constant pressure, so that the pressure difference between the bottom end of the cylinder body 2 and the formation fluid injection end of the sealing body 3 is always maintained at a constant value.
  • valve 6 and the second valve 8 are set as one-way valves.
  • a third valve 9 is provided between the cylinder body 2 and the sealing body 3 , and the third valve 9 is arranged on the connecting pipeline between the cylinder body 2 and the sealing body 3 . It is used to control the on-off between the cylinder body 2 and the sealing body 3.
  • the upper end of the cylinder body 2 is provided with a first pressure measuring unit 10
  • the bottom end of the cylinder body 2 is provided with a second pressure measuring unit 11 to monitor the pressure of the upper end and the bottom end of the cylinder body 2 respectively.
  • pressure; the sealing body 3 is evenly provided with a number of third pressure measuring units 12 for monitoring the pressure at different positions of the sealing body 3.
  • the formation fluid in 3 can flow to this interface and transmit the fluid pressure there to the third pressure measuring unit 12 .
  • the wellbore simulation system includes the above-mentioned first pressure measuring unit 10 and the second pressure measuring unit 11, the formation simulation system includes the above-mentioned third pressure measuring unit 12, the pressure measuring unit (including the first pressure measuring unit 10, the second pressure measuring unit 11) 11.
  • the third pressure measuring unit 12 is electrically connected to the data acquisition system 1, and the data acquisition system 1 can analyze the fluid flow state between the cylinder body 2 and the sealing body 3 according to the pressure monitored in real time, and then analyze the wellbore The state of fluid flow between the formation and the formation.
  • the pressure measuring unit is a pressure sensor or a pressure gauge. That is, the first pressure measuring unit 10, the second pressure measuring unit 11 and/or the third pressure measuring unit 12 may be pressure sensors or pressure gauges.
  • the bottom end of the cylinder body 2 is provided with a discharge pipe, and the discharge pipe is provided with a discharge valve 13 for controlling the height of the liquid column in the cylinder body 2, and then adjusts the pressure at the bottom end of the cylinder body 2.
  • the cylinder 2 is a transparent cylinder.
  • the cylinder body 2 may include several sections of transparent glass tubes, and the flow state of the gas-liquid two-phase fluid in the cylinder body 2 can be directly observed through the transparent glass tubes, and the visualization effect is good.
  • Two adjacent sections of transparent glass tubes are connected and fixed by multiple sets of bolts, and a sealing ring is provided to improve the sealing performance.
  • the transparent glass tube has a certain pressure resistance capability and can withstand the pressure generated by the wellbore fluid in the simulation test.
  • the cross section of the barrel 2 may be circular, oval, square, rectangular or rhombus.
  • the cross section of the cylindrical body 2 is not limited to the above shape, and the specific shape can be adjusted as required.
  • the cylinder body 2 is marked with a scale line.
  • a liquid level sensor may be provided on the cylinder body 2 to detect the liquid level height of the wellbore fluid, thereby obtaining the variation value of the wellbore fluid height.
  • Step 1 Make the mortar filler inside the seal body 3. According to the physical parameters of the simulated stratum, mix cement and sand in a certain proportion, add water and stir evenly to make a mixture, pour the mixture into the sealing body 3 and tamping it, and after the mixture solidifies, mix the sealing body 3 with other The components are connected to form the experimental setup.
  • Step 2 Close all valves, and then adjust the fourth valve 18 at the outlet of the oil source 14, the gas source 15 and the water source 16 (ie, adjust the opening of the fourth valve 18) according to the simulated properties of the fluid in the formation.
  • Step 3 Open the first valve 6, the second valve 8 and the mixing valve 17 (or, open the first valve 6 and the second valve 8, the mixing valve 17 is always in a connected state), and start the first booster pump 5 and the first
  • the second booster pump 7 injects the wellbore fluid into the cylinder body 2 and injects the formation fluid into the sealing body 3 .
  • the first preset pressure is the simulated liquid column pressure generated by the working fluid in the wellbore
  • the second preset pressure is the simulated fluid pressure in the formation pores
  • the difference between the first preset pressure and the second preset pressure is ⁇ P .
  • Step 4 Open the first valve 6, the second valve 8 and the third valve 9, and start the first booster pump 5 and the second booster pump 7, the fluid in the cylinder body 2 and the sealing body 3 is in the pressure difference ⁇ P
  • ⁇ P>0 the wellbore fluid in the cylinder 2 will enter the sealing body 3 and mix with the formation fluid; when ⁇ P ⁇ 0, the formation fluid in the sealing body 3 will enter the cylinder 2. , mixed with wellbore fluid.
  • Step 5 Observe the value of the pressure measuring unit (including the first pressure measuring unit 10, the second pressure measuring unit 11, and the third pressure measuring unit 12), and observe and record the volume change of the gas-liquid two-phase fluid in the cylinder 2.
  • the first booster pump 5 and the second booster pump 7 are turned off, and data collection is stopped.
  • Step 6 The data acquisition system 1 performs analysis according to the monitored pressure data.
  • the amount of formation fluid intruding into the cylinder 2 can be calculated, and the properties of the invading fluid in the cylinder 2 can also be analyzed.
  • the volume change of the gas phase fluid in the cylinder 2 and the pressure change monitored by the first pressure measuring unit 10 it can be determined whether there is gas in the invading fluid and the amount of the gas can be calculated.
  • the volume change of the liquid phase fluid in the cylinder 2 and the pressure change monitored by the second pressure measuring unit 11 it can be determined whether there is oil in the invading fluid and the amount of oil can be calculated.
  • connection may be a fixed connection, a detachable connection, or an integral Connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two elements.
  • connection may be a fixed connection, a detachable connection, or an integral Connection; it can be a direct connection, an indirect connection through an intermediate medium, or an internal connection between two elements.

Abstract

一种模拟井筒与地层物质交流的实验装置,该实验装置包括:井筒模拟系统、井筒液注入系统、地层模拟系统、地层流体注入系统和数据采集系统(1);井筒模拟系统包括竖直设置的用于模拟井筒的筒体(2);地层模拟系统包括水平设置的用于模拟地层的密封体(3)以及填充在密封体(3)内的砂浆填充物;井筒液注入系统与筒体(2)的上端连接,用于向筒体(2)内注入井筒液;地层流体注入系统与密封体(3)的一端连接,用于向密封体(3)内注入地层流体;密封体(3)的另一端与筒体(2)的底端连通;数据采集系统(1)电连接井筒模拟系统和地层模拟系统,用于采集模拟数据。

Description

一种模拟井筒与地层物质交流的实验装置 技术领域
本申请涉及但不限于油气开采技术领域,特别涉及但不限于一种模拟井筒与地层物质交流的实验装置。
背景技术
油气资源钻井过程中,将井筒内工作液产生的液柱压力P h与地层孔隙中流体压力P p之差ΔP定义为压差,控制压差是关系到钻井安全和储层保护的关键。在压差的作用下,井筒内的工作液和地层孔隙中的流体将发生相对流动。当ΔP=0时为平衡钻井方式,井筒中的工作液不能进入地层,地层中的流体也不能进入井筒。当ΔP>0时为过平衡钻井方式,井筒中的工作液进入地层,近井地带的储层将受到工作液的污染,导致产能不达预期,严重时会导致井筒工作液大量流失而造成巨大的经济损失。当ΔP<0时为欠平衡钻井方式,地层流体进入井筒形成井侵,如果不加以控制将造成井涌甚至井喷等恶性事故。在一些“三低”油气藏的钻井过程中,有意采用欠平衡钻井方式,允许地层流体进入井筒,以达到尽早发现油气层和保护储层的目的。并且不同物性参数的地层在压差的作用下流体交换的形式是不一样的,交换量和交换速度需要进行研究确定,需要兼顾钻井安全和储层保护来合理确定钻井液压差。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一种模拟井筒与地层物质交流的实验装置,所述实验装置包括:井筒模拟系统、井筒液注入系统、地层模拟系统、地层流体注入系统和数据采集系统;
所述井筒模拟系统包括竖直设置的用于模拟井筒的筒体;
所述地层模拟系统包括水平设置的用于模拟地层的密封体以及填充在所述密封体内的砂浆填充物;
所述井筒液注入系统与所述筒体的上端连接,设置成向所述筒体内注入井筒液;所述地层流体注入系统与所述密封体的一端连接,设置成向所述密封体内注入地层流体;所述密封体的另一端与所述筒体的底端连通;所述数据采集系统电连接所述井筒模拟系统和所述地层模拟系统,以采集模拟数据。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请的一个实施例中模拟井筒与地层物质交流的实验装置的连接结构示意图。
图中:1、数据采集系统;2、筒体;3、密封体;4、液槽;5、第一增压泵;6、第一阀门;7、第二增压泵;8、第二阀门;9、第三阀门;10、第一测压单元;11、第二测压单元;12、第三测压单元;13、排放阀;14、油源;15、气源;16、水源;17、混合阀;18、第四阀门。
详述
下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本申请一个实施例中公开一种模拟井筒与地层物质交流的实验装置,如图1所示,该实验装置包括:井筒模拟系统、井筒液注入系统、地层模拟系统、地层流体注入系统和数据采集系统1。
井筒模拟系统包括竖直设置的用于模拟井筒的筒体2。
地层模拟系统包括水平设置的用于模拟地层的密封体3以及填充在密封体3内的砂浆填充物;砂浆填充物为不同配比的水泥和沙子混合后与适量清水搅拌凝固后形成,可根据模拟不同渗透率和孔隙度地层的需要,改变水泥和沙子的配比,调整达到实际地层的物性参数。例如:需要模拟高渗透率地层时,则提高沙子的占比率。
井筒液注入系统与筒体2的上端连接,设置成向筒体2内注入井筒液;地层流体注入系统与密封体3的一端连接,设置成向密封体3内注入地层流体,模拟地层远端;密封体3的另一端与筒体2的底端连通;数据采集系统1电连接井筒模拟系统和地层模拟系统(即井筒模拟系统和地层模拟系统均与数据采集系统1电连接),以采集模拟数据。
本实施例的实验装置中,通过设置用于模拟井筒的竖直筒体和用于模拟地层的水平密封体,可进行不同压差下井筒与地层之间流体流动规律的模拟;并且通过改变密封体内的砂浆填充物,还可进行不同物性地层在压差作用下流体交换形式的模拟。
应当理解,筒体2可以竖直设置,以模拟竖直井筒;或者,筒体2可以水平设置或倾斜设置,以模拟水平井筒或倾斜井筒。
在一个实施例中,如图1所示,井筒液注入系统包括:液槽4、第一增压泵5和第一阀门6。
液槽4、第一增压泵5、第一阀门6与筒体2上端依次连接,筒体2内的压力可以通过第一增压泵5进行调节,进而模拟真实井筒内的压力。液槽4内装有井筒液,第一增压泵5可以根据实验需要把预设量的井筒液注入筒体2内,使筒体2内的井筒液产生预定的液柱压力,用于模拟井筒内的工作液。
在一个实施例中,如图1所示,地层流体注入系统包括:流体源、第二增压泵7和第二阀门8。
流体源、第二增压泵7、第二阀门8与密封体3的一端依次连接,密封体3内的压力可以通过第二增压泵7进行调节,进而模拟真实地层的压力。其中,流体源包括油源14、气源15和水源16,三者混合形成地层流体,然后通过混合阀17与第二增压泵7连接,油源14、气源15和水源16的出口处均单独设有第四阀门18,用于控制油、气、水三者的混合比例,进而模拟不同性质的流体。
其中,混合阀17具有四个阀口,包括三个进口和一个出口。油源14、气源15和水源16通过混合阀17与第二增压泵7连接,即:油源14、气源15和水源16的出口分别与混合阀17的三个进口连接,混合阀17的出口与第二增压泵7的进口连接。
第四阀门18可为流量阀,以控制油源14、气源15和水源16流出的油、气、水的量,进而控制油、气、水三者的混合比例。应当理解,可以在油源14、气源15和水源16三者的出口处均设置第四阀门18,或者,可以仅在油源14、气源15和水源16中任意二者的出口处设置第四阀门18。
在一个实施例中,第一增压泵5和第二增压泵7为恒压泵(此处的恒压泵应理解为在实验状态下可通过恒定压力加压,但实际钻井中地层和井筒两处的压力并非处于理想化的恒定值,因此两个增压泵可设成具有一较大且可调的压力范围区间),保证第一增压泵5和第二增压泵7在恒定压力下注入井筒液和地层流体,使筒体2的底端和密封体3的地层流体注入端的压力差始终保持为一个定值。
在一个实施例中,为了防止筒体2内的井筒液反向流到第一增压泵5处,以及防止密封体3内的地层流体反向流到第二增压泵7处,第一阀门6和第二阀门8设为单向阀。
在一个实施例中,如图1所示,在筒体2和密封体3之间设有第三阀门9,第三阀门9设置在筒体2和密封体3之间的连接管路上,用于控制筒体2和密封体3间的通断。
在一个实施例中,如图1所示,筒体2的上端设有第一测压单元10,筒体2的底端设有第二测压单元11,分别监测筒体2上端和底端的压力;密封体3上均匀设有若干第三测压单元12,用于监测密封体3不同位置处的压力,如,密封体3上可以根据需要开设若干个测压单元的安装接口,密封体3内的地层流体可以流到该接口处,并将该处的流体压力传递给第三测压单元12。井筒模拟系统包括上述的第一测压单元10和第二测压单元11,地层模拟系统包括上述的第三测压单元12,测压单元(包括第一测压单元10、第二测压单元11、第三测压单元12)均与数据采集系统1电连接,数据采集系统1可根据实时监测到的压力,分析出筒体2与密封体3之间的流体流动状态,进而分析出井筒与地层之间流体流动状态。
在一个实施例中,测压单元为压力传感器或压力表。即,第一测压单元10、第二测压单元11和/或第三测压单元12可为压力传感器或压力表。
在一个实施例中,筒体2底端设有排液管,排液管上设有排放阀13,用 于控制筒体2内的液柱高度,进而调整筒体2底端的压力。
在一个实施例中,筒体2为透明筒体。如:筒体2可包括若干节透明玻璃管,透过透明玻璃管可以直接观察筒体2内气液两相流体的流动状态,可视化效果好。相邻两节透明玻璃管通过多组螺栓组连接固定,并设有密封圈,来提高密封性。并且,该透明玻璃管具有一定的耐压能力,可以承受模拟试验中井筒液产生的压力。
筒体2的横截面可为圆形、椭圆形、正方形、矩形或菱形。当然,筒体2的横截面不局限于上述形状,具体形状可根据需要进行调整。
为了便于观测筒体2内井筒液的高度以及计算在模拟测试时井筒液高度变化值,筒体2上标有刻度线。或者,可以在筒体2上设置液位传感器,以检测井筒液的液位高度,进而获知井筒液高度变化值。
本申请实施例中模拟井筒与地层物质交流的实验装置的使用步骤如下:
步骤1:制作密封体3内的砂浆填充物。根据模拟地层的物性参数,将水泥和沙子按照一定比例混合,并加入清水搅拌均匀,制成混合物,将混合物灌入密封体3内并加以捣实,等混合物凝固后,把密封体3与其他部件连接,形成实验装置。
步骤2:关闭所有阀门,然后根据模拟的地层内流体的性质,调整油源14、气源15和水源16的出口处的第四阀门18(即调整第四阀门18的开度)。
步骤3:打开第一阀门6、第二阀门8和混合阀17(或者,打开第一阀门6和第二阀门8,混合阀17始终处于连通状态),并启动第一增压泵5和第二增压泵7,使井筒液注入筒体2内,使地层流体注入密封体3内。当第二测压单元11监测到的压力达到第一预设压力时关闭第一增压泵5和第一阀门6,当全部第三测压单元12监测到的压力均达到第二预设压力时关闭第二增压泵7和第二阀门8。其中,第一预设压力为模拟的井筒内工作液产生的液柱压力,第二预设压力为模拟的地层孔隙中流体压力,第一预设压力与第二预设压力的差值为ΔP。
步骤4:打开第一阀门6、第二阀门8和第三阀门9,并启动第一增压泵5和第二增压泵7,筒体2与密封体3内的流体在压差ΔP的作用下发生物质 交换,当ΔP>0时,筒体2内的井筒液将进入密封体3内,与地层流体混合;当ΔP<0时,密封体3内的地层流体将进入筒体2内,与井筒液混合。
步骤5:观察测压单元(包括第一测压单元10、第二测压单元11、第三测压单元12)的数值,以及观察记录筒体2内气液两相流体的体积变化,当第二测压单元11与全部第三测压单元12监测到的压力值一致后,关闭第一增压泵5和第二增压泵7,停止数据采集。
步骤6:数据采集系统1根据监测到的压力数据进行分析。
当ΔP>0时,可以计算出井筒液入侵密封体3的量。
当ΔP<0时,可以计算出地层流体入侵筒体2的量,并且还能分析出筒体2内入侵流体的性质。根据筒体2内气相流体的体积变化和第一测压单元10监测的压力变化,可以判断入侵流体中是否有气体以及计算出气体的量。根据筒体2内液相流体的体积变化和第二测压单元11监测的压力变化,可以判断入侵流体中是否有油以及计算出油的量。
在本申请的描述中,需要说明的是,术语“上端”、“底端”、“一端”、“另一端”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本文和简化描述,而不是指示或暗示所指的结构具有特定的方位、以特定的方位构造和操作,因此不能理解为对本文的限制。
在本申请的描述中,需要说明的是,术语“若干个”指一个、两个或更多个。
在本申请的描述中,除非另有明确的规定和限定,术语“连接”、“固定”等应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,或者可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本文中的具体含义。
虽然本文所揭露的实施方式如上,但所述的内容仅为便于理解本文而采用的实施方式,并非用以限定本文。任何本文所属领域内的技术人员,在不脱离本文所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本文的专利保护范围,仍须以所附的权利要求书所界定 为准。

Claims (12)

  1. 一种模拟井筒与地层物质交流的实验装置,所述实验装置包括:井筒模拟系统、井筒液注入系统、地层模拟系统、地层流体注入系统和数据采集系统;
    所述井筒模拟系统包括竖直设置的用于模拟井筒的筒体;
    所述地层模拟系统包括水平设置的用于模拟地层的密封体以及填充在所述密封体内的砂浆填充物;
    所述井筒液注入系统与所述筒体的上端连接,设置成向所述筒体内注入井筒液;所述地层流体注入系统与所述密封体的一端连接,设置成向所述密封体内注入地层流体;所述密封体的另一端与所述筒体的底端连通;所述数据采集系统电连接所述井筒模拟系统和所述地层模拟系统,以采集模拟数据。
  2. 根据权利要求1所述的实验装置,其中,所述井筒液注入系统包括:液槽、第一增压泵和第一阀门;
    所述液槽、所述第一增压泵、所述第一阀门与所述筒体上端依次连接。
  3. 根据权利要求2所述的实验装置,其中,所述地层流体注入系统包括:流体源、第二增压泵和第二阀门;
    所述流体源、所述第二增压泵、所述第二阀门与所述密封体的一端依次连接。
  4. 根据权利要求3所述的实验装置,其中,所述流体源包括油源、气源和水源,所述油源、所述气源和所述水源均与混合阀的进口连接,所述混合阀的出口与所述第二增压泵连接。
  5. 根据权利要求4所述的实验装置,其中,所述油源、所述气源和所述水源的出口处均设有第四阀门,以控制油、气、水三者的混合比例。
  6. 根据权利要求3所述的实验装置,其中,所述第一增压泵和第二增压泵为恒压泵。
  7. 根据权利要求3所述的实验装置,其中,所述第一阀门和所述第二阀门为单向阀。
  8. 根据权利要求1所述的实验装置,其中,所述筒体和所述密封体之间设有第三阀门。
  9. 根据权利要求1所述的实验装置,其中,所述井筒模拟系统还包括设置于所述筒体的上端的第一测压单元、以及设置于所述筒体的底端的第二测压单元,所述地层模拟系统还包括均匀设置于所述密封体上的若干第三测压单元,所述第一测压单元、所述第二测压单元和所述第三测压单元均与所述数据采集系统电连接。
  10. 根据权利要求9所述的实验装置,其中,所述第一测压单元、所述第二测压单元和/或所述第三测压单元为压力传感器或压力表。
  11. 根据权利要求1所述的实验装置,其中,所述筒体底端设有排液管,所述排液管上设有排放阀。
  12. 根据权利要求1至11任一项所述的实验装置,其中,所述筒体包括若干节透明玻璃管;
    所述筒体上标有刻度线。
PCT/CN2022/083177 2021-03-26 2022-03-25 一种模拟井筒与地层物质交流的实验装置 WO2022199701A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/023,196 US20230335015A1 (en) 2021-03-26 2022-03-25 Experimental apparatus for simulating substance exchange between wellbore and formation
JP2023514125A JP2023539669A (ja) 2021-03-26 2022-03-25 ウェルボアと地層との物質交換をシミュレートする実験装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110327751.4 2021-03-26
CN202110327751.4A CN112878994A (zh) 2021-03-26 2021-03-26 一种模拟井筒与地层物质交流的实验装置

Publications (1)

Publication Number Publication Date
WO2022199701A1 true WO2022199701A1 (zh) 2022-09-29

Family

ID=76042490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083177 WO2022199701A1 (zh) 2021-03-26 2022-03-25 一种模拟井筒与地层物质交流的实验装置

Country Status (4)

Country Link
US (1) US20230335015A1 (zh)
JP (1) JP2023539669A (zh)
CN (1) CN112878994A (zh)
WO (1) WO2022199701A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112878994A (zh) * 2021-03-26 2021-06-01 中石油煤层气有限责任公司 一种模拟井筒与地层物质交流的实验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303582A (en) * 1992-10-30 1994-04-19 New Mexico Tech Research Foundation Pressure-transient testing while drilling
CN205982211U (zh) * 2016-06-13 2017-02-22 中国石油化工股份有限公司 用于测试钻井液与岩石间压力传递的实验装置
CN208040372U (zh) * 2018-04-19 2018-11-02 陈光凌 一种模拟固井中油气水侵对固井质量影响的实验装置
CN108798638A (zh) * 2018-08-15 2018-11-13 中国石油大学(北京) 一种用于模拟浅层流体侵入井筒的实验装置
CN111706321A (zh) * 2020-07-06 2020-09-25 中联煤层气国家工程研究中心有限责任公司 一种煤层气多层合采实验装置
CN112878994A (zh) * 2021-03-26 2021-06-01 中石油煤层气有限责任公司 一种模拟井筒与地层物质交流的实验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303582A (en) * 1992-10-30 1994-04-19 New Mexico Tech Research Foundation Pressure-transient testing while drilling
CN205982211U (zh) * 2016-06-13 2017-02-22 中国石油化工股份有限公司 用于测试钻井液与岩石间压力传递的实验装置
CN208040372U (zh) * 2018-04-19 2018-11-02 陈光凌 一种模拟固井中油气水侵对固井质量影响的实验装置
CN108798638A (zh) * 2018-08-15 2018-11-13 中国石油大学(北京) 一种用于模拟浅层流体侵入井筒的实验装置
CN111706321A (zh) * 2020-07-06 2020-09-25 中联煤层气国家工程研究中心有限责任公司 一种煤层气多层合采实验装置
CN112878994A (zh) * 2021-03-26 2021-06-01 中石油煤层气有限责任公司 一种模拟井筒与地层物质交流的实验装置

Also Published As

Publication number Publication date
CN112878994A (zh) 2021-06-01
US20230335015A1 (en) 2023-10-19
JP2023539669A (ja) 2023-09-15

Similar Documents

Publication Publication Date Title
WO2018184397A1 (zh) 防砂井筒堵塞-解堵一体化评价实验模拟装置及方法
CN204903506U (zh) 泡沫驱油评价装置
CN108196034A (zh) 模拟深埋地层动水条件下高压注浆装置及试验方法
CN208206964U (zh) 模拟深埋地层动水条件下高压注浆装置
CN112627783B (zh) 低频变压提高注气采收率的实验装置
CN110160932B (zh) 一种油水相对渗透率曲线测试装置及测试方法
CN108798660A (zh) 水压致裂法应力测量装置
CN108266166B (zh) 一种裂缝性油藏波动采油微观射流增渗机制评价实验装置与方法
WO2022199701A1 (zh) 一种模拟井筒与地层物质交流的实验装置
CN206627405U (zh) 膨胀式双栓塞原位注压水渗透检测仪
CN105067222B (zh) 多孔介质动水注浆装置及其方法
CN104900131B (zh) 一种模拟钻井过程中地层流体溢流及井漏的实验方法
CN103256047A (zh) 一种研究水平井压裂完井方式下变质量多相流动规律的方法
CN104005742A (zh) 一种用于实验室内模拟非均质性储层差异注水的方法以及装置
CN111006952A (zh) 高压渗透注浆加固裂隙岩石试样的实验测试装置及注浆方法
CN111157363A (zh) 土压平衡盾构渣土工作性及改良优化评价试验系统和方法
CN109138904A (zh) 双封隔器分层注浆止水装置及其使用方法
CN209195349U (zh) 双封隔器分层注浆止水装置
CN114198084A (zh) 裂缝性地层堵漏模拟评价装置及评价方法
CN108196002B (zh) 一种压裂酸化用暂堵转向液性能评价装置及其测试方法
CN201795982U (zh) 一种评价筛管防砂性能的装置
CN110685677A (zh) 一种非均质油藏水平井控水模拟实验装置及其实验方法
CN206192822U (zh) 一种酸化实验室模拟地层酸液流动形态的可视化实验装置
CN214616504U (zh) 一种模拟井筒与地层物质交流的实验装置
CN113006762B (zh) 一种考虑真实裂缝闭合压力的可视化支撑剂铺置及压后生产模拟装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774354

Country of ref document: EP

Kind code of ref document: A1