WO2022199645A1 - 托盘堆高式无人叉车 - Google Patents
托盘堆高式无人叉车 Download PDFInfo
- Publication number
- WO2022199645A1 WO2022199645A1 PCT/CN2022/082638 CN2022082638W WO2022199645A1 WO 2022199645 A1 WO2022199645 A1 WO 2022199645A1 CN 2022082638 W CN2022082638 W CN 2022082638W WO 2022199645 A1 WO2022199645 A1 WO 2022199645A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- module
- pallet
- main control
- forklift
- control module
- Prior art date
Links
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 230000001960 triggered effect Effects 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F9/00—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
- B66F9/06—Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
- B66F9/075—Constructional features or details
Definitions
- the present application relates to the technical field of forklifts, and in particular, to a pallet stacking type unmanned forklift.
- Fiber optic forklift is the name of various wheeled handling vehicles for loading and unloading, stacking and short-distance transportation of palletized goods.
- An unmanned forklift refers to a kind of forklift that stacks the goods on the shelves of the warehouse under the guidance of the computer, or removes the goods from the shelves and transports them to a designated location.
- the counterbalanced heavy duty stacker has gradually shifted from internal combustion to electric, and has also begun to transform from lead-acid electric to more environmentally friendly lithium iron phosphate electric, and it has also gradually changed from manned to non-operated.
- the human-autonomous driving conversion has the characteristics of flexible operation, high efficiency, energy saving and environmental protection.
- the existing stacker unmanned forklift has a low degree of automation and is inconvenient for people to use.
- the application provides a pallet stacking type unmanned forklift, including a forklift body and a fork arranged on the forklift body, and further comprising:
- a main control module which is arranged on the forklift body
- an altimetry module which is arranged on the forklift body, and is connected to the main control module for measuring the lifting height of the fork;
- the pallet in-position detection module is arranged at the root of the fork, and the pallet in-position detection module is connected with the main control module for detecting the position of the pallet picked up by the fork.
- the above-mentioned pallet stacker unmanned forklift can accurately control the lifting height of the fork through the height measuring module, so as to accurately fork the goods.
- the pallet in-position detection module at the root of the fork, when the pallet is picked up, the pallet is triggered. When the pallet in-position detection module is reached, it is considered that the pallet is in place. At this time, the fork can lift the pallet to pick up the goods, which effectively improves the automation degree of the overall forklift and is convenient for people to use.
- it further includes a first obstacle avoidance module, the first obstacle avoidance module is connected to the main control module, and the first obstacle avoidance module is arranged at a part of the forklift body away from the fork. on the side.
- it further includes a second obstacle avoidance module, the second obstacle avoidance module is connected to the main control module, the second obstacle avoidance module is arranged on the forklift body, and the second obstacle avoidance module is The obstacle avoidance module is located on the same side as the altimetry module.
- a switching module and a handle are further included, the switching module is connected with the main control module, and the handle is provided on the forklift body.
- a positioning module is further included, the positioning module is connected with the main control module, and the positioning module is arranged on the top of the forklift body.
- a power cut-off module is further included, and the power cut-off module is connected with the main control module.
- a safety control module is further included, and the safety control module is connected with the main control module.
- a vehicle body information module is further included, the vehicle body information module is connected with the main control module, and is used for storing the current posture information and power information of the forklift.
- it also includes an external interface module for connecting with an external host computer system to obtain corresponding control and scheduling information.
- an interface display module is further included, the interface display module is connected with the main control module, and is used to display the current task, execution status and travel path information of the forklift in real time.
- FIG. 1 is a schematic structural diagram of a pallet stacking type unmanned forklift provided by an embodiment of the application;
- FIG. 2 is another schematic diagram of FIG. 1 .
- first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with “first”, “second” may expressly or implicitly include at least one of that feature.
- plurality means at least two, such as two, three, etc., unless expressly and specifically defined otherwise.
- the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
- installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit.
- a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
- the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
- the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
- Automated Guided Vehicle refers to a transport vehicle equipped with automatic guidance devices such as electromagnetic or optical, which can travel along a prescribed guidance path, with safety protection and various transfer functions. It is used in industrial applications.
- a truck that does not require a driver uses a rechargeable battery as its power source.
- its travel route and behavior can be controlled through a computer, or its travel route can be set up by using an electromagnetic path-following system.
- the electromagnetic path-following system is attached to the floor, and the unmanned truck follows the electromagnetic path-following system. Messages move and act.
- AGV High degree of automation; controlled by computer, electronic control equipment, magnetic induction SENSOR, laser reflector, etc.
- the staff When a certain part of the workshop needs auxiliary materials, the staff will input relevant information to the computer terminal, the computer terminal will then send the information to the central control room, and professional technicians will issue instructions to the computer. With the cooperation of electronic control equipment, this The instruction is finally accepted and executed by the AGV - the auxiliary material is sent to the corresponding location.
- Charging automation when the power of the AGV car is about to run out, it will send a request command to the system to request charging (general technicians will set a value in advance), and automatically "queue" at the charging place after the system allows it Charge.
- the battery life of the AGV car is very long (more than 2 years), and it can work for about 4 hours per 15 minutes of charging.
- a pallet stacking type unmanned forklift which includes a forklift body 1 and a fork 6 arranged on the forklift body 1 , and also includes: a main control Module 2, height measuring module 8 and pallet in-position detection module 7, wherein the main control module 2 is arranged on the forklift body 1, the height measuring module 8 is arranged on the forklift body 1, and the height measuring module 8 is connected with the main control module 2,
- the pallet in-position detection module 7 is arranged at the root of the fork 6, and the pallet in-position detection module 7 is connected with the main control module 2 to detect the position of the pallet picked up by the fork 6.
- the height measuring module can precisely control the lifting height of the fork, so that the goods can be fork accurately.
- the pallet in-position detection module at the root of the fork, when the pallet is picked up, the pallet is triggered to detect the in-position of the pallet.
- the fork can lift the pallet to pick up the goods, which effectively improves the automation of the overall forklift and is convenient for people to use.
- the pallet stacker unmanned forklift in the present application further includes a first obstacle avoidance module 5 , the first obstacle avoidance module 5 is connected to the main control module 2 , and the first obstacle avoidance module 5 is connected to the main control module 2 .
- the module 5 is arranged on the side of the truck body 1 facing away from the fork 6 .
- the first obstacle avoidance module in this application selects an obstacle avoidance laser sensor, which is connected to the main control module and is used to scan the obstacle distance in front of the vehicle body in real time and output different driving patterns according to obstacles at different distances.
- Speed to the travel system on the forklift body The main control module outputs speed control signals and steering control signals to the walking system on the vehicle body according to the detected obstacle distance, which is used to coordinate and control the operation of the forklift.
- the pallet stacking type unmanned forklift in the present application further includes a second obstacle avoidance module 9 , the second obstacle avoidance module 9 is connected to the main control module 2 , and the second obstacle avoidance module 9 is connected to the main control module 2 .
- 9 is arranged on the forklift body 1, and the second obstacle avoidance module 9 and the altimetry module 8 are located on the same side.
- the second obstacle avoidance module 9 and the first obstacle avoidance module 5 are located at different positions of the forklift truck body 1 respectively, so as to facilitate 360° detection of obstacles around the forklift truck body 1 .
- the second obstacle avoidance module also uses an obstacle avoidance laser sensor, which is used to scan the obstacle distance in front of the vehicle body in real time and output different driving speeds to the walking system on the forklift body according to the obstacles at different distances.
- the main control module outputs speed control signals and steering control signals to the walking system on the vehicle body according to the detected obstacle distance, which is used to coordinate and control the operation of the forklift.
- the pallet stacker unmanned forklift truck in this application further includes a switch module 3 and a handle 4 , the switch module 3 is connected to the main control module 2 , and the handle 4 is provided on the forklift body 1 .
- the forklift When in use, when the forklift is switched from the automatic mode to the manual mode through the switching module, the forklift as a whole becomes the manual forklift mode, and the operator can operate the forklift through the operating handle. When switching to the automatic mode, the forklift can only be operated in Movement under the control of the AGV control system.
- the pallet stacker unmanned forklift in the present application further includes a positioning module 12 , the positioning module 12 is connected with the main control module 2 , and the positioning module 12 is arranged on the top of the forklift body 1 . .
- the above positioning module can choose a lidar locator. After the lidar locator scans the reflectors around the environment according to the lidar, it outputs its own pose in real time according to the triangulation method. The main control module obtains the corresponding forklift according to the lidar locator. The position is sent to the walking system on the forklift body, and the walking system controls the forklift to run along the planned path according to the pre-planned path and the real-time position.
- the pallet stacker unmanned forklift in the present application further includes a power cut-off module 11 , and the power cut-off module 11 is connected with the main control module 2 .
- the above-mentioned power cut-off module may be a switch, and the switch is connected to the battery on the forklift. When the forklift is suddenly abnormal in operation, the switch can be disconnected, so that the entire forklift is powered off.
- the pallet stacker unmanned forklift in the present application further includes a safety control module 10 , and the safety control module 10 is connected with the main control module 2 .
- This safety control module is mainly used for vehicle fail-safe control. The idea is to ensure product fail-safe through system redundancy and safety loops. During use, when a certain safety function is triggered, the industrial computer will actively control the vehicle to decelerate. At this time, the safety control module monitors the running status of the vehicle in real time. If the industrial computer side fails to stop in time, the security control module will seize control and ensure that the vehicle can stop running immediately.
- the pallet stacker unmanned forklift in the present application further includes a vehicle body information module, which is connected to the main control module 2 for storing the current posture information and power information of the forklift.
- the pallet stacker unmanned forklift truck in the present application further includes an external interface module, which is used for connecting with an external host computer system to obtain corresponding control and scheduling information.
- the pallet stacker unmanned forklift truck in this application further includes an interface display module, which is connected to the main control module 2 and used to display the current task, execution status and travel path information of the forklift truck in real time. .
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Forklifts And Lifting Vehicles (AREA)
Abstract
一种托盘堆高式无人叉车,包括叉车本体(1)和设置在叉车本体上的货叉(6),还包括:主控制模块(2),主控制模块设置在叉车本体上;测高模块(8),测高模块设置在叉车本体上,且测高模块与主控制模块连接,用于测量货叉的升降高度;托盘到位检测模块(7),托盘到位检测模块设置在货叉的根部,且托盘到位检测模块与主控制模块连接,用于检测货叉上叉取的托盘的位置。通过测高模块可精确控制货叉的升降高度,从而精确叉取货物,通过将托盘到位检测模块安装在货叉的根部,当叉取托盘时,在托盘触发到托盘到位检测模块时则认为托盘到位,货叉就可以上升提起托盘取货,提高了整体叉车的自动化程度,方便使用。
Description
本申请涉及叉车技术领域,特别是涉及一种托盘堆高式无人叉车。
光纤叉车是对成件托盘货物进行装卸、堆垛和短距离运输作业的各种轮式搬运车辆的称呼。无人叉车是指在计算机的指引下将货物搬运堆高到仓库的货架上,或者将货物从货架上取下搬运到指定位置的一种叉车。
伴随市场的不断扩大,以及技术的不断提升,平衡重堆高车逐步的从内燃转向电动,也开始由铅酸电动向更加环保的磷酸铁锂电电动转变,同时也慢慢的由有人操作到无人自动驾驶转换,具有作业灵活、效率高,节能环保等特点。然而现有的堆高式无人叉车自动化程度低,不方便人们的使用。
发明内容
基于此,有必要针对现有的高式无人叉车自动化程度低的问题,提供一种托盘堆高式无人叉车。
本申请提供了一种托盘堆高式无人叉车,包括叉车本体和设置在叉车本体上的货叉,还包括:
主控制模块,所述主控制模块设置在所述叉车本体上;
测高模块,所述测高模块设置在所述叉车本体上,且所述测高模块与所述主控制模块连接,用于测量所述货叉的升降高度;
托盘到位检测模块,所述托盘到位检测模块设置在所述货叉的根部,且所述托盘到位检测模块与所述主控制模块连接,用于检测货叉上叉取的托盘的位置。
上述托盘堆高式无人叉车,通过测高模块可精确控制货叉的升降高度,从而精确叉取货物,通过将托盘到位检测模块安装在货叉的根部,当叉取托盘时,在托盘触发到托盘到位检测模块时则认为托盘到位,此时,货叉就可以上升提起托盘取货,从而有效提高了整体叉车的自动化程度,方便了人们的使用。
在其中一个实施例中,还包括第一避障模块,所述第一避障模块与所述主控制模块连接,所述第一避障模块设置在所述叉车本体背离所述货叉的一侧上。
在其中一个实施例中,还包括第二避障模块,所述第二避障模块与所述主控制模块连接,所述第二避障模块设置在所述叉车本体上,且所述第二避障模块与所述测高模块位于同一侧。
在其中一个实施例中,还包括切换模块和手柄,所述切换模块与所述主控制模块连接,所述手柄设置在所述叉车本体上。
在其中一个实施例中,还包括定位模块,所述定位模块与所述主控制模块连接,所述定位模块设置在所述叉车本体的顶部。
在其中一个实施例中,还包括动力切断模块,所述动力切断模块与所述主控制模块连接。
在其中一个实施例中,还包括安全控制模块,所述安全控制模块与所述主控制模块连接。
在其中一个实施例中,还包括车体信息模块,所述车体信息模块与所述主控制模块连接,用于存储叉车当前的位姿信息和电量信息。
在其中一个实施例中,还包括外部接口模块,用于与外部上位机系统连接,获取相应的 控制、调度信息。
在其中一个实施例中,还包括界面显示模块,所述界面显示模块与所述主控制模块连接,用于实时显示叉车当前的任务、执行状态以及行驶的路径信息。
图1为本申请一实施例提供的托盘堆高式无人叉车的结构示意图;
图2为图1的又一示意图。
图中标记如下:
1、叉车本体;2、主控制模块;3、切换模块;4、手柄;5、第一避障模块;6、货叉;7、托盘到位检测模块;8、测高模块;9、第二避障模块;10、安全控制模块;11、动力切断模块;12、定位模块。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方 式。
无人搬运车(Automated Guided Vehicle,简称AGV),指装备有电磁或光学等自动导引装置,能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,工业应用中不需驾驶员的搬运车,以可充电之蓄电池为其动力来源。一般可透过电脑来控制其行进路线以及行为,或利用电磁轨道(electromagnetic path-following system)来设立其行进路线,电磁轨道黏贴於地板上,无人搬运车则依循电磁轨道所带来的讯息进行移动与动作。
AGV的优点(1)自动化程度高;由计算机,电控设备,磁气感应SENSOR,激光反射板等控制。当车间某一环节需要辅料时,由工作人员向计算机终端输入相关信息,计算机终端再将信息发送到中央控制室,由专业的技术人员向计算机发出指令,在电控设备的合作下,这一指令最终被AGV接受并执行——将辅料送至相应地点。(2)充电自动化;当AGV小车的电量即将耗尽时,它会向系统发出请求指令,请求充电(一般技术人员会事先设置好一个值),在系统允许后自动到充电的地方“排队”充电。另外,AGV小车的电池寿命很长(2年以上),并且每充电15分钟可工作4h左右。(3)美观,提高观赏度,从而提高企业的形象。(4)方便,减少占地面积;生产车间的AGV小车可以在各个车间穿梭往复。
如图1并结合图2所示,本申请一实施例中,提供了一种托盘堆高式无人叉车,包括叉车本体1和设置在叉车本体1上的货叉6,还包括:主控制模块2、测高模块8以及托盘到位检测模块7,其中,主控制模块2设置在叉车本体1上,测高模块8设置在叉车本体1上,且测高模块8与主控制模块2连接,用于测量货叉6的升降高度,托盘到位检测模块7设置在货叉6的根部,且托盘到位检测模块7与主控制模块2连接,用于检测货叉6上叉取的托盘的位置。
采用上述技术方案,通过测高模块可精确控制货叉的升降高度,从而精确叉取货物,通过将托盘到位检测模块安装在货叉的根部,当叉取托盘时,在托盘触发到托盘到位检测模块时则认为托盘到位,此时,货叉就可以上升提起托盘取货,从而有效提高了整体叉车的自动化程度,方便了人们的使用。
在一些实施例中,如图1所示,本申请中的托盘堆高式无人叉车还包括第一避障模块5,该第一避障模块5与主控制模块2连接,第一避障模块5设置在叉车本体1背离货叉6的一侧上。
本申请中的第一避障模块选用避障激光传感器,该避障激光传感器与主控制模块连接,用于根据实时扫描车体前方的障碍物距离并根据不同距离下的障碍物输出不同的行驶速度至叉车本体上的行走系统。主控制模块根据检测到的障碍物距离输出速度控制信号以及转向控制信号至车本体上的行走系统,用于协调控制叉车的运行。
在一些实施例中,如图2所示,本申请中的托盘堆高式无人叉车还包括第二避障模块9,第二避障模块9与主控制模块2连接,第二避障模块9设置在叉车本体1上,且第二避障模块9与测高模块8位于同一侧。
上述第二避障模块9与第一避障模块5分别位于叉车本体1的不同位置,从而方便360°检测叉车本体1周围的障碍物。该第二避障模块也选用避障激光传感器,用于根据实时扫描车体前方的障碍物距离并根据不同距离下的障碍物输出不同的行驶速度至叉车本体上的行走系统。主控制模块根据检测到的障碍物距离输出速度控制信号以及转向控制信号至车本体上的行走系统,用于协调控制叉车的运行。
在一些实施例中,如图1所示,本申请中的托盘堆高式无人叉车还包括切换模块3和手柄4,切换模块3与主控制模块2连接,手柄4设置在叉车本体1上。
在使用时,当通过切换模块将叉车从自动模式切换到手动模式时,叉车整体就变为人工叉车模式,操作者可以通过操作手柄对叉车进行操作,当切换为自动模式时,叉车只能在AGV控制系统的控制下运动。
在一些实施例中,如图1所示,本申请中的托盘堆高式无人叉车还包括定位模块12,该定位模块12与主控制模块2连接,定位模块12设置在叉车本体1的顶部。
上述定位模块可以选用激光雷达定位器,激光雷达定位器根据激光雷达扫描环境周围的反光板后,根据三角定位法实时输出自身的位姿,主控制模块根据激光雷达定位器来获取对应的叉车的位置并发送给叉车本体上的行走系统,行走系统根据预先规划的路径以及实时位置来控制叉车沿着规划路径运行。
在一些实施例中,如图2所示,本申请中的托盘堆高式无人叉车还包括动力切断模块11,该动力切断模块11与主控制模块2连接。
上述动力切断模块可以为开关,该开关与叉车上的蓄电池连接,当叉车在工作突发异常时,可以断开开关,以使得叉车整体断电。
在一些实施例中,如图2所示,本申请中的托盘堆高式无人叉车还包括安全控制模块10,安全控制模块10与主控制模块2连接。
该安全控制模块主要用于车辆的失效安全控制,其理念是通过系统冗余和安全回路确保产品的失效安全,在使用时,当某一项安全功能触发后,工控机将主动控制车辆进行减速停车,此时安全控制模块实时监控车辆运行状态。如果工控机端未能及时停车,安全控制模块将夺取控制权,并确保车辆能够立刻停止运行。
在一些实施例中,本申请中的托盘堆高式无人叉车还包括车体信息模块,该车体信息模块与主控制模块2连接,用于存储叉车当前的位姿信息和电量信息。
在一些实施例中,本申请中的托盘堆高式无人叉车还包括外部接口模块,用于与外部上位机系统连接,获取相应的控制、调度信息。
在一些实施例中,本申请中的托盘堆高式无人叉车还包括界面显示模块,该界面显示模块与主控制模块2连接,用于实时显示叉车当前的任务、执行状态以及行驶的路径信息。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (10)
- 一种托盘堆高式无人叉车,包括叉车本体(1)和设置在叉车本体(1)上的货叉(6),其特征在于,还包括:主控制模块(2),所述主控制模块(2)设置在所述叉车本体(1)上;测高模块(8),所述测高模块(8)设置在所述叉车本体(1)上,且所述测高模块(8)与所述主控制模块(2)连接,用于测量所述货叉(6)的升降高度;托盘到位检测模块(7),所述托盘到位检测模块(7)设置在所述货叉(6)的根部,且所述托盘到位检测模块(7)与所述主控制模块(2)连接,用于检测货叉(6)上叉取的托盘的位置。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括第一避障模块(5),所述第一避障模块(5)与所述主控制模块(2)连接,所述第一避障模块(5)设置在所述叉车本体(1)背离所述货叉(6)的一侧上。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括第二避障模块(9),所述第二避障模块(9)与所述主控制模块(2)连接,所述第二避障模块(9)设置在所述叉车本体(1)上,且所述第二避障模块(9)与所述测高模块(8)位于同一侧。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括切换模块(3)和手柄(4),所述切换模块(3)与所述主控制模块(2)连接,所述手柄(4)设置在所述叉车本体(1)上。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括定位模块(12),所述定位模块(12)与所述主控制模块(2)连接,所述定位模块(12)设置在所述叉车本体(1)的顶部。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括动力切断模块(11),所述动力切断模块(11)与所述主控制模块(2)连接。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括安全控制模块(10),所述安全控制模块(10)与所述主控制模块(2)连接。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括车体信息模块,所述车体信息模块与所述主控制模块(2)连接,用于存储叉车当前的位姿信息和电量信息。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括外部接口模块,用于与外部上位机系统连接,获取相应的控制、调度信息。
- 根据权利要求1所述的托盘堆高式无人叉车,其特征在于,还包括界面显示模块,所述界面显示模块与所述主控制模块(2)连接,用于实时显示叉车当前的任务、执行状态以及行驶的路径信息。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202120617817.9U CN215249380U (zh) | 2021-03-26 | 2021-03-26 | 托盘堆高式无人叉车 |
CN202120617817.9 | 2021-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022199645A1 true WO2022199645A1 (zh) | 2022-09-29 |
Family
ID=79504787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/082638 WO2022199645A1 (zh) | 2021-03-26 | 2022-03-24 | 托盘堆高式无人叉车 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN215249380U (zh) |
WO (1) | WO2022199645A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN215249380U (zh) * | 2021-03-26 | 2021-12-21 | 未来机器人(深圳)有限公司 | 托盘堆高式无人叉车 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02249899A (ja) * | 1989-03-20 | 1990-10-05 | Toyota Autom Loom Works Ltd | 無人フォークリフトの揚高制御装置 |
CN203065111U (zh) * | 2013-01-08 | 2013-07-17 | 浙江诺力机械股份有限公司 | 一种堆高叉车的货叉高度测控装置 |
CN207158711U (zh) * | 2017-09-14 | 2018-03-30 | 斯坦德机器人(深圳)有限公司 | 一种激光导航自动叉车 |
CN207689916U (zh) * | 2017-12-31 | 2018-08-03 | 天津阿备默机器人科技有限公司 | 一种无人自动控制的agv叉车 |
CN209081354U (zh) * | 2018-11-09 | 2019-07-09 | 林德(中国)叉车有限公司 | 一种叉车的自动照明装置 |
CN209974245U (zh) * | 2019-05-14 | 2020-01-21 | 杭州昱透实业有限公司 | 一种托盘到位检测装置 |
CN111153353A (zh) * | 2019-11-29 | 2020-05-15 | 广西现代职业技术学院 | 一种激光导航无人驾驶叉车及其控制系统 |
CN215249380U (zh) * | 2021-03-26 | 2021-12-21 | 未来机器人(深圳)有限公司 | 托盘堆高式无人叉车 |
-
2021
- 2021-03-26 CN CN202120617817.9U patent/CN215249380U/zh active Active
-
2022
- 2022-03-24 WO PCT/CN2022/082638 patent/WO2022199645A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02249899A (ja) * | 1989-03-20 | 1990-10-05 | Toyota Autom Loom Works Ltd | 無人フォークリフトの揚高制御装置 |
CN203065111U (zh) * | 2013-01-08 | 2013-07-17 | 浙江诺力机械股份有限公司 | 一种堆高叉车的货叉高度测控装置 |
CN207158711U (zh) * | 2017-09-14 | 2018-03-30 | 斯坦德机器人(深圳)有限公司 | 一种激光导航自动叉车 |
CN207689916U (zh) * | 2017-12-31 | 2018-08-03 | 天津阿备默机器人科技有限公司 | 一种无人自动控制的agv叉车 |
CN209081354U (zh) * | 2018-11-09 | 2019-07-09 | 林德(中国)叉车有限公司 | 一种叉车的自动照明装置 |
CN209974245U (zh) * | 2019-05-14 | 2020-01-21 | 杭州昱透实业有限公司 | 一种托盘到位检测装置 |
CN111153353A (zh) * | 2019-11-29 | 2020-05-15 | 广西现代职业技术学院 | 一种激光导航无人驾驶叉车及其控制系统 |
CN215249380U (zh) * | 2021-03-26 | 2021-12-21 | 未来机器人(深圳)有限公司 | 托盘堆高式无人叉车 |
Also Published As
Publication number | Publication date |
---|---|
CN215249380U (zh) | 2021-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10061325B2 (en) | Autonomous approach and object pickup | |
US10488523B2 (en) | Using laser sensors to augment stereo sensor readings for robotic devices | |
CN109809334B (zh) | 一种用于调动叉车运行以及升降的方法 | |
US10459449B2 (en) | Virtual moving safety limits for vehicles transporting objects | |
US9870002B1 (en) | Velocity control of position-controlled motor controllers | |
EP3218776B1 (en) | Position-controlled robotic fleet with visual handshakes | |
RU2621401C2 (ru) | Система управления навигацией транспортного средства (варианты) и транспортное средство на ее основе (варианты) | |
US10507733B2 (en) | Energy supply vehicle for supplying an electrically drivable motor vehicle with electrical energy | |
TWI627114B (zh) | 馬達系統、馬達器件及車輛轉向及移動之控制方法 | |
US11850959B2 (en) | Vehicle auto-charging system and method | |
US20120123614A1 (en) | Method and apparatus for virtualizing industrial vehicles to automate task execution in a physical environment | |
WO2022199645A1 (zh) | 托盘堆高式无人叉车 | |
CN205272074U (zh) | 一种支撑机械臂的差速agv平台 | |
EP3705971A1 (en) | Virtual coupling | |
CN109911819A (zh) | 一种平衡重式agv堆高车 | |
US9963331B1 (en) | Systems and methods for operating a powered pallet jack with steerable forks | |
US20210354924A1 (en) | Navigator for Intralogistics | |
CN106444790A (zh) | 一种基于plc控制的工业agv系统 | |
CN113784902A (zh) | 物流设施管理系统 | |
WO2022199644A1 (zh) | 托盘堆叠倾斜识别装置 | |
JP2019180185A (ja) | 移動体および移動体システム | |
CN220334688U (zh) | Agv堆垛搬运机器人 | |
CN214202155U (zh) | 激光潜伏顶升agv | |
KR20240006137A (ko) | 자율 주행이 가능한 전동식 이동대차 | |
CN110092151A (zh) | 一种无人搬运车 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22774300 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.02.24) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22774300 Country of ref document: EP Kind code of ref document: A1 |