WO2022199564A1 - 自移动设备的驻车控制方法及装置 - Google Patents

自移动设备的驻车控制方法及装置 Download PDF

Info

Publication number
WO2022199564A1
WO2022199564A1 PCT/CN2022/082164 CN2022082164W WO2022199564A1 WO 2022199564 A1 WO2022199564 A1 WO 2022199564A1 CN 2022082164 W CN2022082164 W CN 2022082164W WO 2022199564 A1 WO2022199564 A1 WO 2022199564A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
inclination
braking
moving device
data
Prior art date
Application number
PCT/CN2022/082164
Other languages
English (en)
French (fr)
Inventor
耿长兴
朱国锋
陈俞松
沈任远
王永
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to JP2023559072A priority Critical patent/JP2024511490A/ja
Publication of WO2022199564A1 publication Critical patent/WO2022199564A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D69/00Driving mechanisms or parts thereof for harvesters or mowers
    • A01D69/10Brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/122Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger for locking of reverse movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/16Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger operated by remote control, i.e. initiating means not mounted on vehicle

Definitions

  • the application relates to a parking control method and device for self-moving equipment, and belongs to the technical field of automatic control.
  • Self-moving devices refer to devices that can move by themselves without user participation, such as lawn mowers, sweepers, etc.
  • the self-moving equipment usually parks according to a fixed braking strategy. For example: parking according to a fixed brake delay time.
  • the fixed braking strategy may not be able to adapt to different road conditions, and problems such as sudden braking or rolling may occur during the parking process.
  • the present application provides a parking control method and device for a self-moving device, which can solve the problem of sudden braking or rolling of the self-moving device during the parking process caused by a fixed braking strategy.
  • This application provides the following technical solutions:
  • a parking control method for a self-moving device where an inclination sensor is installed on the self-moving device, and the method includes:
  • the self-moving device is controlled to park according to the braking strategy.
  • the braking strategy includes a flat ground braking strategy and a ramp braking strategy
  • the determining the braking strategy of the self-moving device based on the inclination data includes:
  • the inclination angle data in the second inclination angle range is greater than the inclination angle data in the first inclination angle range.
  • controlling the self-moving device to park according to the braking strategy includes:
  • the first braking delay time is positively correlated with the driving speed parameter
  • the self-moving device is controlled to park according to the first braking delay time.
  • the traveling speed parameter includes a driving parameter of a mobile driving component in the self-moving device; wherein, the mobile driving component is used to drive the mobile component in the mobile device to run, and the mobile component is used to drive the moving component. described moving from a mobile device.
  • the controlling the self-moving device to park according to the braking strategy includes:
  • the self-moving device is controlled to park according to the second braking delay time.
  • the second inclination angle range includes a first sub-range and a second sub-range; the inclination angle data in the second sub-range is greater than the inclination angle data in the first sub-range;
  • the controlling the self-moving equipment to park according to the braking strategy includes:
  • the method further includes:
  • n is an integer greater than 1;
  • the step of determining the braking strategy of the self-moving device based on the inclination data is triggered.
  • determining whether the inclination data is normal based on the inclination data collected for the n times includes:
  • a parking control device for a self-moving device wherein an inclination sensor is installed on the self-moving device, and the device includes:
  • a data acquisition module for acquiring the inclination data collected by the inclination sensor
  • a strategy determination module configured to determine a braking strategy of the self-moving device based on the inclination data
  • a parking control module is configured to control the self-moving equipment to park according to the braking strategy.
  • the beneficial effects of the present application are: by installing an inclination sensor on a self-moving device, and acquiring inclination data collected by the inclination sensor; determining a braking strategy of the self-moving device based on the inclination data; controlling the self-moving device to park according to the braking strategy;
  • the braking strategy is fixed, which leads to the problem of sudden braking or rolling during the parking process of the self-moving device; since the inclination data can reflect the slope of the current road surface, and the size of the slope will affect whether the self-moving device will produce sudden braking or rolling. Therefore, by adaptively determining the braking strategy according to the gradient, the self-moving device can use the braking strategy adapted to the current gradient to park, preventing the phenomenon of sudden braking or rolling, and improving the parking effect of the self-moving device.
  • FIG. 1 is a schematic structural diagram of a parking control system for a self-mobile device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a self-mobile device provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a parking control method for a self-mobile device provided by an embodiment of the present application
  • FIG. 4 is a block diagram of a parking control apparatus for a self-mobile device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a control system for a self-mobile device provided by an embodiment of the present application. As shown in FIG. 1 , the system at least includes: a self-mobile device 1 and a control device 2 .
  • a self-moving device 1 refers to a device that can move on its own without human intervention.
  • the self-moving device 1 may be a lawn mower, a sweeper, or other devices, and the device type of the self-moving device 1 is not limited in this embodiment.
  • the self-moving device 1 includes but is not limited to the following components:
  • a mowing drive assembly that drives the mowing mechanism;
  • the mowing drive assembly includes an engine, a transmission shaft and/or a transmission gear connected to the engine;
  • Mobile components used to drive the lawnmower to move such as: wheel body, drive shaft connected to the wheel body, etc.;
  • a mobile drive assembly for driving the operation of the mobile assembly for example, the mobile drive assembly includes an engine different from the mowing drive assembly, a transmission shaft and/or a transmission gear connected to the engine, and the like.
  • the lawn mowing mechanism includes a cutter head, and the cutter head includes a sheet metal handle, a throwing knife and a protective cover.
  • the lawn mowing mechanism may also be a mechanism with other forms of mowing ability, and this embodiment does not The implementation of the mowing mechanism is limited.
  • the mowing mechanism further includes a lifting assembly, the lifting assembly is used to complete the lifting and lowering of the cutter head, and the mowing drive assembly transmits the power of the engine to the cutter head, and the transmission power is stable and does not jump during the lifting process of the cutter head. Change, rotate smoothly without friction.
  • the moving assembly includes four wheel bodies mounted on the chassis, the four wheel bodies are independently driven, and the wheel bodies are connected to the chassis by adopting no shock absorption.
  • the power of the generator in the lawnmower is a constant load. Due to the terrain, cutting objects, and cutting effects, the cutter is a variable load, and the engine power distribution mainly relies on self-adaptive distribution.
  • the drive train connected to the generator includes a belt.
  • the power generation and energy storage part of the lawn mower is composed of a generator, a voltage regulator unit and a battery. It is connected to a unified charging port for dustproof water, which is convenient for charging in winter.
  • the lawnmower may also include more components, such as: sensing components, power supply components, communication components, control components (such as programmable logic controllers (Programmable Logic Controllers). Logic Controller, PLC) or other chips with control functions), engine working time recording instrument, mileage instrument, battery voltage instrument, battery power instrument, indicator light, steering gear, driver, etc., this embodiment does not include the lawn mower components are limited.
  • the control device 2 is used to control the work from the mobile device 1 .
  • controlling the moving speed and moving direction of the self-mobile device 1, controlling the start and stop of the self-mobile device 1, etc., the control content of the control device 2 is not limited in this embodiment.
  • control device 2 may be a device independent from the self-mobile device 1 , such as a remote control, a mobile phone, a wearable device, etc. This embodiment does not limit the implementation of the control device 2 .
  • an inclination sensor 11 is installed on the self-mobile device 1.
  • the control component 12 in the self-mobile device 1 is used to: acquire the inclination data collected by the inclination sensor; determine the self-mobile device based on the inclination data the braking strategy; control the self-moving equipment to park according to the braking strategy.
  • control assembly 12 is connected in communication with the inclination sensor 11, for example, connected through a communication bus.
  • the inclination sensor 11 supports the measurement of inclination angles in at least two directions.
  • the inclination sensor 11 is a dual-axis inclination sensor, or it is a plurality of single-axis inclination sensors installed in different directions. This embodiment does not use the inclination sensor. 11 The type and quantity are limited.
  • this embodiment is described by taking the execution of the parking control process from the control component 12 in the mobile device 1 as an example. In actual implementation, it can also be executed by other devices, such as: executed by the control device 2, etc.
  • This embodiment does not limit the subject that executes the parking control flow.
  • the inclination sensor is installed on the self-moving device, and the inclination data collected by the inclination sensor is acquired; the braking strategy of the self-moving device is determined based on the inclination data; the parking of the self-moving device is controlled according to the braking strategy; It can solve the problem of sudden braking or rolling of the self-moving device during parking due to the fixed braking strategy; since the inclination data can reflect the slope of the current road surface, and the size of the slope will affect whether the self-moving device will produce sudden braking. Therefore, by adaptively determining the braking strategy according to the gradient, the self-moving device can use the braking strategy adapted to the current gradient to park, preventing the phenomenon of sudden braking or rolling, and improving the parking of the self-moving device. Effect.
  • FIG. 3 is a flowchart of a parking control method for a self-mobile device provided by an embodiment of the present application. This embodiment is described by taking the method used in the self-mobile device 1 in the control system of the self-mobile device shown in FIG. 1 as an example. The method includes at least the following steps:
  • Step 301 Acquire inclination data collected by an inclination sensor.
  • the self-mobile device determines whether the parking control function is activated; when it is determined that the parking control function is activated, step 301 is performed. When it is determined that the parking control function is not activated, the process ends.
  • the method of determining whether the parking control function is activated includes but is not limited to the following:
  • the valid start signal is sent by the control device when it receives a start trigger operation acting on the parking control start button, and the valid start signal is in It is invalid after receiving the closing signal of the parking control function.
  • the closing signal is sent by the control device when it receives the closing trigger operation acting on the parking control start button; the control device is used to control the self-moving device; When the signal is received, it is determined that the parking control function is activated; when there is no valid activation signal, it is determined that the parking control function is not activated.
  • the self-moving device further includes a parking control activation button.
  • the self-mobile device determines whether a start trigger operation acting on the parking control start button is received; when it is determined that the start trigger operation is received, it is determined that the parking control function is started; when it is determined that the start trigger operation is not received , make sure that the parking control function is not activated.
  • the self-moving device may also directly control the parking process of the self-moving device without determining whether the parking control function is activated.
  • Step 302 determining the braking strategy of the self-mobile device based on the inclination angle data.
  • the braking strategy is adapted to the slope of the current driving road corresponding to the inclination data, which can prevent the self-mobile device from suddenly braking or slipping.
  • the inclination angle data collected in the latest n consecutive times will also be acquired;
  • the collected inclination data determines whether the inclination data is normal; if the inclination data is normal, step 302 is performed.
  • n is an integer greater than 1
  • determining whether the inclination data is normal based on the inclination data collected for n times includes: when the variation of the n inclination data is less than or equal to a preset threshold, determining that the inclination data is normal; when the variation of the n inclination data is greater than the preset threshold When within the threshold, it is determined that the inclination data is abnormal.
  • the value of the preset threshold is small, for example, the preset threshold is 0 or close to 0, and this embodiment does not limit the value of the preset threshold.
  • n may be a fixed value, or determined based on the set duration and the collection interval duration of the inclination sensor, and the setting manner of n is not limited in this embodiment.
  • the preset duration is 10ms (milliseconds)
  • the n pieces of inclination data collected within 10ms are consistent and unchanged, it means that the inclination data is normal, and the fixed inclination data is used as the inclination data for determining the braking strategy.
  • the average value of the n pieces of inclination data can be used as the inclination data for determining the braking strategy; or , the inclination data with the largest number of occurrences among the n inclination data may also be used as the inclination data for determining the braking strategy, and the method for selecting the inclination data is not limited in this embodiment.
  • Step 303 control the self-mobile device to park according to the braking strategy.
  • the braking strategy includes a flat braking strategy and a hill braking strategy.
  • the flat ground braking strategy is used to prevent the self-moving equipment from sudden braking during the parking process;
  • the ramp braking strategy is used to prevent the self-moving equipment from slipping during the parking process.
  • determining the braking strategy of the self-mobile device based on the inclination data includes: when the inclination data belongs to the first inclination range, determining that the braking strategy is a flat braking strategy; when the inclination data belongs to the second inclination range, determining that the braking strategy is a ramp A braking strategy; wherein, the inclination angle data in the second inclination angle range is greater than the inclination angle data in the first inclination angle range.
  • the braking strategy is determined to be a ramp braking strategy.
  • the braking strategy is determined to be the flat road braking strategy.
  • the self-moving device In the first inclination angle range, the self-moving device is regarded as moving on a flat ground; in the second inclination angle range, the self-moving device is regarded as moving on a slope.
  • the first inclination angle range may be [0°, 5°)
  • the second inclination angle range may be [5°, 35°]
  • the limit value and the lower limit value may also be set to other values, and this embodiment does not limit the value manners of the first inclination angle range and the second inclination angle range.
  • controlling the parking of the self-mobile device according to the braking strategy includes: obtaining a driving speed parameter of the self-moving device; determining a first braking delay time corresponding to the driving speed parameter; A braking delay time is positively correlated with a driving speed parameter; the self-mobile device is controlled to park according to the first braking delay time.
  • the travel speed parameter is used to indicate the speed of movement from the mobile device.
  • the driving speed parameter and the first braking delay time may have a linear positive correlation; or, a non-linear positive correlation. In other words, as the driving speed parameter decreases, the first braking delay time decreases accordingly.
  • the travel speed parameter includes a driving parameter of a mobile driving component in the mobile device; wherein the mobile driving component is used for driving the mobile component in the mobile device to run, and the mobile component is used for driving the self-moving device to move.
  • the mobile drive component is a motor
  • the drive parameter is the motor speed
  • the maximum value of the motor speed is 3000r/min
  • the minimum value is 0r/min
  • the maximum value of the braking delay is 1 second, and the minimum value is 0, then the automatic movement
  • the device determines to park if the motor speed is 3000r/min, it will use the maximum brake to delay parking
  • the self-moving device determines to park, if the motor speed is 0r/min, it will park without brake delay.
  • the maximum value of the braking delay is 1 second for illustration.
  • the maximum value of the braking delay can also be other values, and the maximum value of the braking delay can be determined by the user.
  • the setting, or the default setting, is in the self-moving device, and this embodiment does not limit the value and setting method of the maximum value of the braking delay.
  • controlling the self-moving device to park according to the braking delay time refers to: after the self-moving device determines to park, after the braking delay time, The brake relay is de-energized, and the self-moving equipment brakes.
  • the flat ground braking strategy may also be other strategies, such as: when the driving speed parameter is greater than the speed threshold, based on the linear positive correlation between the driving speed parameter and the first braking delay time, determine the current driving speed parameter corresponding to the The first braking delay time; when the driving speed parameter is less than or equal to the speed threshold, a fixed braking delay time is used for parking; this embodiment does not limit the implementation of the flat ground braking strategy.
  • controlling the self-mobile device to park according to the braking strategy includes: determining a second braking delay time corresponding to the inclination data, where the second braking delay time is negatively correlated with the inclination data ;Control the self-mobile device to park according to the second brake delay time.
  • controlling the self-mobile device to park according to the braking strategy includes: when the inclination data belongs to the second sub-range, controlling the self-mobile device to park without braking delay; when the inclination data belongs to the first sub-range, triggering the execution of determining the inclination data The corresponding second braking delay time; the step of controlling the self-mobile device to park according to the second braking delay time.
  • the first sub-range in the second inclination range is [5°, 30°]
  • the second sub-range is (30°, 35°].
  • the second braking delay time gradually decreases, that is, when the inclination data is 5°, the second braking delay time is the maximum value, and when the inclination data is 30°, the second braking delay time is the minimum value, for example: 0, At this time, parking without braking delay is performed.
  • the braking delay time remains unchanged and is always 0 as the inclination data increases, that is, parking is performed without braking delay.
  • the ramp braking strategy may also be implemented in other manners.
  • the second inclination angle range may not be further divided, that is, in the entire second inclination angle range, the inclination angle data and the second braking delay time are always the same. There is a negative correlation, and this embodiment does not limit the implementation of the ramp braking strategy.
  • the parking control method for a self-moving device includes installing an inclination sensor on the self-moving device and acquiring the inclination data collected by the inclination sensor; determining the braking strategy of the self-moving device based on the inclination data;
  • the braking strategy controls the parking of the self-moving equipment; it can solve the problem of sudden braking or rolling of the self-moving equipment during the parking process due to the fixed braking strategy; since the inclination data can reflect the current slope of the road, and the size of the slope It will affect whether the self-moving device will produce sudden braking or rolling. Therefore, by adaptively determining the braking strategy according to the gradient, the self-moving device can use the braking strategy adapted to the current gradient to park to prevent sudden braking or rolling. phenomenon, improve the parking effect of self-moving equipment.
  • FIG. 4 is a block diagram of a parking control apparatus for a self-moving device provided by an embodiment of the present application.
  • This embodiment takes the application of the device to the self-moving device 1 in the control system of the self-moving device shown in FIG. 1 as an example. illustrate.
  • the device at least includes the following modules: a data acquisition module 410 , a strategy determination module 420 and a parking control module 430 .
  • a data acquisition module 410 configured to acquire the inclination data collected by the inclination sensor
  • a strategy determination module 420 configured to determine a braking strategy of the self-moving device based on the inclination data
  • the parking control module 430 is configured to control the self-moving device to park according to the braking strategy.
  • the parking control device of the self-mobile equipment provided in the above embodiment performs the parking control of the self-mobile equipment
  • only the division of the above-mentioned functional modules is used as an example for illustration.
  • the above-mentioned function distribution is completed by different function modules, that is, the internal structure of the parking control device of the self-mobile device is divided into different function modules, so as to complete all or part of the functions described above.
  • the parking control device for self-mobile equipment provided in the above embodiments and the embodiment of the parking control method for self-mobile equipment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.
  • the present application further provides a computer-readable storage medium, where a program is stored in the computer-readable storage medium, and the program is loaded and executed by a processor to implement the parking of the mobile device according to the above method embodiment. Control Method.
  • the present application further provides a computer product, the computer product includes a computer-readable storage medium, and a program is stored in the computer-readable storage medium, and the program is loaded and executed by a processor to implement the above method embodiments
  • the parking control method of self-moving equipment includes a computer-readable storage medium, and a program is stored in the computer-readable storage medium, and the program is loaded and executed by a processor to implement the above method embodiments The parking control method of self-moving equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

一种自移动设备的驻车控制方法,属于自动控制技术领域,包括:获取倾角传感器采集的倾角数据(301);基于倾角数据确定自移动设备的刹车策略(302);按照刹车策略控制自移动设备驻车(303);可以解决由于刹车策略固定,导致的自移动设备(1)在停车过程中产生的急刹或者溜车的问题,提高自移动设备(1)的驻车效果。还提供了一种自移动设备的驻车控制装置。

Description

自移动设备的驻车控制方法及装置
本申请要求了申请日为2021年03月22日,申请号为202110300057.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种自移动设备的驻车控制方法及装置,属于自动控制技术领域。
背景技术
自移动设备是指无需用户参与、即可自行移动的设备,比如:割草机、扫地机等。
自移动设备在自行移动过程中,通常按照固定的刹车策略驻车。比如:按照固定的刹车延迟时间驻车。
但是,固定的刹车策略可能无法适应不同的路况,可能会在停车过程中发生急刹、或者溜车等问题。
发明内容
本申请提供了一种自移动设备的驻车控制方法及装置,可以解决由于刹车策略固定,导致的自移动设备在停车过程中产生的急刹或者溜车的问题。本申请提供如下技术方案:
第一方面,提供了一种自移动设备的驻车控制方法,所述自移动设备上安装有倾角传感器,所述方法包括:
获取所述倾角传感器采集的倾角数据;
基于所述倾角数据确定所述自移动设备的刹车策略;
按照所述刹车策略控制所述自移动设备驻车。
可选地,所述刹车策略包括平地刹车策略和坡道刹车策略,所述基于所述倾角数据确定所述自移动设备的刹车策略,包括:
在所述倾角数据属于第一倾角范围时,确定所述刹车策略为所述平地刹车策略;
在所述倾角数据属于第二倾角范围时,确定所述刹车策略为所述坡道刹车策略;
其中,所述第二倾角范围中的倾角数据大于所述第一倾角范围中的倾角数据。
可选地,在所述刹车策略为所述平地刹车策略时,所述按照所述刹车策略控制所述自移动设备驻车,包括:
获取所述自移动设备的行驶速度参数;
确定所述行驶速度参数对应的第一刹车延延迟时间;所述第一刹车延迟时间与所述行驶速度参数呈正相关关系;
按照所述第一刹车延迟时间控制所述自移动设备驻车。
可选地,所述行驶速度参数包括所述自移动设备中移动驱动组件的驱动参数;其中,所述移动驱动组件用于驱动所述移动设备中的移动组件运行,所述移动组件用于带动所述自移动设备移动。
可选地,在所述刹车策略为所述坡道刹车策略时,所述按照所述刹车策略控制所述自移动设备驻车,包括:
确定所述倾角数据对应的第二刹车延迟时间,所述第二刹车延迟时间与所述倾角数据呈负相关关系;
按照所述第二刹车延迟时间控制所述自移动设备驻车。
可选地,所述第二倾角范围包括第一子范围和第二子范围;所述第二子范围中的倾角数据大于所述第一子范围中的倾角数据;
所述按照所述刹车策略控制所述自移动设备驻车,包括:
在所述倾角数据属于所述第二子范围时,无刹车延迟地控制所述自移动设备驻车;
在所述倾角数据属于所述第一子范围时,触发执行所述确定所述倾角数据对应的第二刹车延迟时间;按照所述第二刹车延迟时间控制所述自移动设备驻车的步骤。
可选地,所述方法还包括:
获取最近连续n次采集到的倾角数据,所述n为大于1的整数;
基于所述n次采集到的倾角数据确定所述倾角数据是否正常;
在所述倾角数据正常时,触发执行所述基于所述倾角数据确定所述自移动设备的刹车策略的步骤。
可选地,所述基于所述n次采集到的倾角数据确定所述倾角数据是否正常,包括:
在n个倾角数据的变化量小于或等于预设阈值时,确定所述倾角数据正常;
在所述n个倾角数据的变化量大于预设阈值内时,确定所述倾角数据异常。
第二方面,提供一种自移动设备的驻车控制装置,所述自移动设备上安装有倾角传感器,所述装置包括:
数据获取模块,用于获取所述倾角传感器采集的倾角数据;
策略确定模块,用于基于所述倾角数据确定所述自移动设备的刹车策略;
驻车控制模块,用于按照所述刹车策略控制所述自移动设备驻车。
本申请的有益效果在于:通过在自移动设备上安装倾角传感器,并获取倾角传感器采集的倾角数据;基于倾角数据确定自移动设备的刹车策略;按照刹车策略控制自移动设备驻车;可以解决由于刹车策略固定,导致的自移动设备在停车过程中产生的急刹或者溜车的问题;由于倾角数据可以反映出当前路面的坡度,而坡度的大小会影响自移动设备是否会产生急刹或者溜车现象,因此,通过根据坡度自适应地确定刹车策略,使得自移动设备可以使用适应当前坡度的刹车策略进行驻车,防止产生急刹或者溜车现象,提高自移动设备的驻车效果。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,并可依照说明书的内容予以实施,以下以本申请的较佳实施例并配合附图详细说明如后。
附图说明
图1是本申请一个实施例提供的自移动设备的驻车控制系统的结构示意图;
图2是本申请一个实施例提供的自移动设备的示意图;
图3是本申请一个实施例提供的自移动设备的驻车控制方法的流程图;
图4是本申请一个实施例提供的自移动设备的驻车控制装置的框图。
具体实施方式
下面结合附图和实施例,对本申请的具体实施方式作进一步详细描述。以下实施例用于说明本申请,但不用来限制本申请的范围。
图1是本申请一个实施例提供的自移动设备的控制系统的结构示意图,如图1所示,该系统至少包括:自移动设备1和控制设备2。
自移动设备1是指无需人工参与即可自行移动的设备。比如:自移动设备1可以为割草机、扫地机等设备,本实施例不对自移动设备1的设备类型作限定。
以自移动设备1为割草机为例,该自移动设备1包括但不限于以下组件:
底盘;
位于底盘中的割草机构;
驱动该割草机构运行的割草驱动组件;比如:割草驱动组件包括发动机、与该发动机相连的传动轴和/或传动齿轮;
用于带动割草机移动的移动组件;比如:轮体、与轮体相连的传动轴等;
用于驱动移动组件运行的移动驱动组件;比如:移动驱动组件包括与割草驱动组件不同的发动机、与该发动机相连的传动轴和/或传动齿轮等。
可选地,割草机构包括割刀盘,该割刀盘包括钣金刀柄、甩刀和保护罩,当然,割草机构还可以为其它形式的具有割草能力的机构,本实施例不对割草机构的实现方式作限定。
可选地,割草机构还包括升降组件,该升降组件用于完成割刀盘的升降,割草驱动组件将发动机动力传递到割刀盘,在割刀盘升降过程中传递动力稳定、不跃变、转动平滑无摩擦。
可选地,移动组件包括安装在底盘上的四个轮体,该四个轮体采用独立驱动,轮体采用无减震与底盘连接。
可选地,割草机中的发电机功率是恒负载,由于地形、切割对象、切割效果,割刀为变负载,发动机功率分配主要靠自身自适应分配。与发电机相连的 传动系统包括皮带。割草机中的发电与储能部由发电机、稳压单元和电池组成,外接防尘水统一充电口,方便冬季充电。
当然,上述组件仅是示意性的,在实际实现时,割草机还可以包括更多的组件,比如:传感组件、供电组件、通信组件、控制组件(比如:可编程逻辑控制器(Programmable Logic Controller,PLC)或者其它具有控制功能的芯片)、发动机工作时间记录仪表、行驶里程仪表、电池电压仪表、电池电量仪表、指示灯、舵机、驱动器等,本实施例不对割草机包括的组件作限定。
控制设备2用于控制自移动设备1工作。比如:控制自移动设备1的移动速度、移动方向、控制自移动设备1的启停等,本实施例不对控制设备2的控制内容作限定。
可选地,控制设备2可以为与自移动设备1相独立的设备,比如:遥控器、手机、可穿戴式设备等,本实施例不对控制设备2的实现方式作限定。
本实施例中,参考图2,自移动设备1上安装有倾角传感器11,此时,自移动设备1中的控制组件12用于:获取倾角传感器采集的倾角数据;基于倾角数据确定自移动设备的刹车策略;按照刹车策略控制自移动设备驻车。
其中,控制组件12与倾角传感器11通信相连,比如:通过通信总线相连。
可选地,倾角传感器11支持测量至少两个方向上的倾斜角度,比如:倾角传感器11为双轴倾角传感器,或者,为安装在不同方向的多个单轴倾角传感器,本实施例不对倾角传感器11的类型和数量作限定。
可选地,本实施例以自移动设备1中的控制组件12执行驻车控制流程为例进行说明,在实际实现时,也可以由其它设备执行,比如:由控制设备2执行等,本实施例不对执行驻车控制流程的主体作限定。
综上所述,本实施例中,通过在自移动设备上安装倾角传感器,并获取倾角传感器采集的倾角数据;基于倾角数据确定自移动设备的刹车策略;按照刹车策略控制自移动设备驻车;可以解决由于刹车策略固定,导致的自移动设备在停车过程中产生的急刹或者溜车的问题;由于倾角数据可以反映出当前路面的坡度,而坡度的大小会影响自移动设备是否会产生急刹或者溜车现象,因此, 通过根据坡度自适应地确定刹车策略,使得自移动设备可以使用适应当前坡度的刹车策略进行驻车,防止产生急刹或者溜车现象,提高自移动设备的驻车效果。
图3是本申请一个实施例提供的自移动设备的驻车控制方法的流程图。本实施例以该方法用于图1所示的自移动设备的控制系统中的自移动设备1中为例进行说明。该方法至少包括以下几个步骤:
步骤301,获取倾角传感器采集到的倾角数据。
可选地,自移动设备在获取倾角传感器采集到的倾角数据之前,确定驻车控制功能是否启动;在确定出驻车控制功能启动时,执行步骤301。在确定出驻车控制功能未启动时,流程结束。
其中,确定驻车控制功能是否启动的方式,包括但不限于以下几种:
在第一种方式中:确定是否具有驻车控制功能的有效启动信号;该有效启动信号是控制设备在接收到作用于驻车控制启动按钮上的启动触发操作时发送的、且有效启动信号在后续接收到驻车控制功能的关闭信号后失效,关闭信号是控制设备在接收到作用于驻车控制启动按钮上的关闭触发操作时发送的;控制设备用于控制自移动设备;在具有有效启动信号时,确定驻车控制功能启动;在不具有有效启动信号时,确定驻车控制功能未启动。
在第二种方式中:自移动设备还包括驻车控制启动按钮。此时,自移动设备确定是否接收到作用于驻车控制启动按钮的启动触发操作;在确定出接收到该启动触发操作时,确定驻车控制功能启动;在确定出未接收到启动触发操作时,确定驻车控制功能未启动。
在其它实施例中,自移动设备也可以无需确定驻车控制功能是否启动,直接控制自移动设备的驻车过程。
步骤302,基于倾角数据确定自移动设备的刹车策略。
刹车策略适应于倾角数据对应的当前行驶路面的坡度,可以防止自移动设备发生急刹车或者溜坡现象。
可选地,由于倾角数据的准确性直接影响确定当前行驶路面的坡度的准确性,因此,本实施例中,在步骤302之前,还会获取最近连续n次采集到的倾角数据;基于n次采集到的倾角数据确定倾角数据是否正常;在倾角数据正常时,执行步骤302。n为大于1的整数
其中,基于n次采集到的倾角数据确定倾角数据是否正常,包括:在n个倾角数据的变化量小于或等于预设阈值时,确定倾角数据正常;在n个倾角数据的变化量大于预设阈值内时,确定倾角数据异常。
预设阈值的取值较小,比如:预设阈值为0或者接近于0,本实施例不对预设阈值的取值作限定。
n可以为固定数值,或者是基于设定时长和倾角传感器的采集间隔时长确定的,本实施例不对n的设置方式作限定。
比如:预设时长为10ms(毫秒),则在10ms内采集到的n个倾角数据一致未改变时,说明倾角数据正常,将该固定不变的倾角数据作为确定刹车策略的倾角数据。
可选地,若n个倾角数据的变化量均小于或等于预设阈值,但存在至少两个倾角数据不同,此时,可以使用n个倾角数据的平均值作为确定刹车策略的倾角数据;或者,也可以将n个倾角数据中出现次数最多的倾角数据作为确定刹车策略的倾角数据,本实施例不对倾角数据的选择方式作限定。
步骤303,按照刹车策略控制自移动设备驻车。
在一个示例中,刹车策略包括平地刹车策略和坡道刹车策略。平地刹车策略用于防止自移动设备在停车过程中发生急刹现象;坡道刹车策略用于防止自移动设备在停车过程中发生溜坡现象。此时,基于倾角数据确定自移动设备的刹车策略,包括:在倾角数据属于第一倾角范围时,确定刹车策略为平地刹车策略;在倾角数据属于第二倾角范围时,确定刹车策略为坡道刹车策略;其中,第二倾角范围中的倾角数据大于第一倾角范围中的倾角数据。
可选地,为了保证自移动设备的安全性,在倾角数据包括至少两个方向上的倾角数据时,若存在任一方向上的倾角数据属于第二倾角范围,则确定刹车 策略为坡道刹车策略;在所有方向上的倾角数据均属于第一倾角范围时,则确定刹车策略为平道刹车策略。
在第一倾角范围内,自移动设备被视为在平地上移动;在第二倾角范围内,自移动设备被视为在坡道上移动。示意性地,第一倾角范围可以为[0°,5°),第二倾角范围可以为[5°,35°];当然,在实际实现时,第一倾角范围和第二倾角范围的上限值和下限值也可以设置为其它数值,本实施例不对第一倾角范围和第二倾角范围的取值方式作限定。
在一个示例中,在刹车策略为平地刹车策略时,按照刹车策略控制自移动设备驻车,包括:获取自移动设备的行驶速度参数;确定行驶速度参数对应的第一刹车延延迟时间;该第一刹车延迟时间与行驶速度参数呈正相关关系;按照第一刹车延迟时间控制自移动设备驻车。
行驶速度参数用于指示自移动设备的移动速度。
行驶速度参数与第一刹车延迟时间可以为线性正相关关系;或者,为非线性正相关关系。换句话说,随着行驶速度参数的减小,第一刹车延迟时间随之减小。
可选地,行驶速度参数包括自移动设备中移动驱动组件的驱动参数;其中,移动驱动组件用于驱动移动设备中的移动组件运行,该移动组件用于带动自移动设备移动。比如:移动驱动组件为电机,则驱动参数为电机转速,电机转速的最大值为3000r/min,最小值为0r/min;刹车延迟的最大值为1秒,最小值为0,则在自移动设备确定驻车时,若电机转速为3000r/min,则使用最大的刹车延迟驻车;在自移动设备确定驻车时,若电机转速为0r/min,则无刹车延迟地驻车。需要补充说明的是,本示例中,仅以刹车延迟的最大值为1秒为例进行说明,在实际实现时,刹车延迟的最大值也可以为其它数值,且刹车延迟的最大值可以由用户设置,或者,默认设置在自移动设备中,本实施例不对刹车延迟的最大值的取值和设置方式作限定。
可选地,按照刹车延迟时间(比如:本文中的第一刹车延迟时间和第二刹车延迟时间)控制自移动设备驻车是指:在自移动设备确定驻车后,在刹车延迟时间后,刹车继电器断电、自移动设备刹车。
在其它示例中,平地刹车策略也可以为其它策略,比如:在行驶速度参数大于速度阈值时,基于行驶速度参数与第一刹车延迟时间之间的线性正相关关系,确定当前行驶速度参数对应的第一刹车延迟时间;在行驶速度参数小于或等于速度阈值时,使用固定的刹车延迟时间进行驻车;本实施例不对平地刹车策略的实现方式作限定。
在一个示例中,刹车策略为坡道刹车策略时,按照刹车策略控制自移动设备驻车,包括:确定倾角数据对应的第二刹车延迟时间,该第二刹车延迟时间与倾角数据呈负相关关系;按照第二刹车延迟时间控制自移动设备驻车。
可选地,第二倾角范围包括第一子范围和第二子范围;第二子范围中的倾角数据大于第一子范围中的倾角数据。其中,按照刹车策略控制自移动设备驻车,包括:在倾角数据属于第二子范围时,无刹车延迟地控制自移动设备驻车;在倾角数据属于第一子范围时,触发执行确定倾角数据对应的第二刹车延迟时间;按照第二刹车延迟时间控制自移动设备驻车的步骤。
比如:第二倾角范围中的第一子范围为[5°,30°],第二子范围为(30°,35°],在倾角数据属于第一子范围时,随着倾角数据的增加,第二刹车延迟时间逐渐减小,即,在倾角数据为5°时,第二刹车延迟时间为最大值,在倾角数据为30°时,第二刹车延迟时间为最小值,比如:0,此时,进行无刹车延迟地驻车。在倾角数据属于第二子范围时,随着倾角数据的增加,刹车延迟时间保持不变,一直为0,即,进行无刹车延迟地驻车。
当然,在其它实施方式中,坡道刹车策略也可以为其它实现方式,比如:可以不对第二倾角范围进行进一步划分,即,在整个第二倾角范围内,倾角数据与第二刹车延迟时间一直呈负相关关系,本实施例不对坡道刹车策略的实现方式作限定。
综上所述,本实施例提供的自移动设备的驻车控制方法,通过在自移动设备上安装倾角传感器,并获取倾角传感器采集的倾角数据;基于倾角数据确定自移动设备的刹车策略;按照刹车策略控制自移动设备驻车;可以解决由于刹车策略固定,导致的自移动设备在停车过程中产生的急刹或者溜车的问题;由于倾角数据可以反映出当前路面的坡度,而坡度的大小会影响自移动设备是否会产生急刹或者溜车现象,因此,通过根据坡度自适应地确定刹车策略,使得自移动设备可以使用适应当前坡度的刹车策略进行驻车,防止产生急刹或者溜车现象,提高自移动设备的驻车效果。
图4是本申请一个实施例提供的自移动设备的驻车控制装置的框图,本实施例以该装置应用于图1所示的自移动设备的控制系统中的自移动设备1中为例进行说明。该装置至少包括以下几个模块:数据获取模块410、策略确定模块420和驻车控制模块430。
数据获取模块410,用于获取所述倾角传感器采集的倾角数据;
策略确定模块420,用于基于所述倾角数据确定所述自移动设备的刹车策略;
驻车控制模块430,用于按照所述刹车策略控制所述自移动设备驻车。
相关细节参考上述实施例。
需要说明的是:上述实施例中提供的自移动设备的驻车控制装置在进行自移动设备的驻车控制时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将自移动设备的驻车控制装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的自移动设备的驻车控制装置与自移动设备的驻车控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
可选地,本申请还提供有一种计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的自移动设备的驻车控制方法。
可选地,本申请还提供有一种计算机产品,该计算机产品包括计算机可读存储介质,所述计算机可读存储介质中存储有程序,所述程序由处理器加载并执行以实现上述方法实施例的自移动设备的驻车控制方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种自移动设备的驻车控制方法,其特征在于,所述自移动设备安装有倾角传感器,所述方法包括:
    获取所述倾角传感器采集的倾角数据;
    基于所述倾角数据确定所述自移动设备的刹车策略;
    按照所述刹车策略控制所述自移动设备驻车。
  2. 根据权利要求1所述的方法,其特征在于,所述刹车策略包括平地刹车策略和坡道刹车策略,所述基于所述倾角数据确定所述自移动设备的刹车策略,包括:
    在所述倾角数据属于第一倾角范围时,确定所述刹车策略为所述平地刹车策略;
    在所述倾角数据属于第二倾角范围时,确定所述刹车策略为所述坡道刹车策略;
    其中,所述第二倾角范围中的倾角数据大于所述第一倾角范围中的倾角数据。
  3. 根据权利要求2所述的方法,其特征在于,在所述刹车策略为所述平地刹车策略时,所述按照所述刹车策略控制所述自移动设备驻车,包括:
    获取所述自移动设备的行驶速度参数;
    确定所述行驶速度参数对应的第一刹车延延迟时间;所述第一刹车延迟时间与所述行驶速度参数呈正相关关系;
    按照所述第一刹车延迟时间控制所述自移动设备驻车。
  4. 根据权利要求3所述的方法,其特征在于,所述行驶速度参数包括所述自移动设备中移动驱动组件的驱动参数;其中,所述移动驱动组件用于驱动所述移动设备中的移动组件运行,所述移动组件用于带动所述自移动设备移动。
  5. 根据权利要求2所述的方法,其特征在于,在所述刹车策略为所述坡道刹车策略时,所述按照所述刹车策略控制所述自移动设备驻车,包括:
    确定所述倾角数据对应的第二刹车延迟时间,所述第二刹车延迟时间与所述倾角数据呈负相关关系;
    按照所述第二刹车延迟时间控制所述自移动设备驻车。
  6. 根据权利要求5所述的方法,其特征在于,所述第二倾角范围包括第一子范围和第二子范围;所述第二子范围中的倾角数据大于所述第一子范围中的倾角数据;
    所述按照所述刹车策略控制所述自移动设备驻车,包括:
    在所述倾角数据属于所述第二子范围时,无刹车延迟地控制所述自移动设备驻车;
    在所述倾角数据属于所述第一子范围时,触发执行所述确定所述倾角数据对应的第二刹车延迟时间;按照所述第二刹车延迟时间控制所述自移动设备驻车的步骤。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取最近连续n次采集到的倾角数据,所述n为大于1的整数;
    基于所述n次采集到的倾角数据确定所述倾角数据是否正常;
    在所述倾角数据正常时,触发执行所述基于所述倾角数据确定所述自移动设备的刹车策略的步骤。
  8. 根据权利要求7所述的方法,其特征在于,所述基于所述n次采集到的倾角数据确定所述倾角数据是否正常,包括:
    在n个倾角数据的变化量小于或等于预设阈值时,确定所述倾角数据正常;
    在所述n个倾角数据的变化量大于预设阈值内时,确定所述倾角数据异常。
  9. 一种自移动设备的驻车控制装置,其特征在于,所述自移动设备安装有倾角传感器,所述装置包括:
    数据获取模块,用于获取所述倾角传感器采集的倾角数据;
    策略确定模块,用于基于所述倾角数据确定所述自移动设备的刹车策略;
    驻车控制模块,用于按照所述刹车策略控制所述自移动设备驻车。
PCT/CN2022/082164 2021-03-22 2022-03-22 自移动设备的驻车控制方法及装置 WO2022199564A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023559072A JP2024511490A (ja) 2021-03-22 2022-03-22 自律移動機器の駐車制御方法及び装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110300057.3 2021-03-22
CN202110300057.3A CN112918444B (zh) 2021-03-22 2021-03-22 自移动设备的驻车控制方法及装置

Publications (1)

Publication Number Publication Date
WO2022199564A1 true WO2022199564A1 (zh) 2022-09-29

Family

ID=76175291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082164 WO2022199564A1 (zh) 2021-03-22 2022-03-22 自移动设备的驻车控制方法及装置

Country Status (3)

Country Link
JP (1) JP2024511490A (zh)
CN (1) CN112918444B (zh)
WO (1) WO2022199564A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918444B (zh) * 2021-03-22 2022-07-19 苏州大学 自移动设备的驻车控制方法及装置
CN113682314B (zh) * 2021-09-22 2023-06-02 汤恩智能科技(常熟)有限公司 一种坡度检测方法及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086252A1 (en) * 2006-10-06 2008-04-10 Fuji Jukogyo Kabushiki Kaisha Electric parking brake control system
CN104417511A (zh) * 2013-09-11 2015-03-18 上海荣乐汽车电子有限公司 一种电子驻车制动系统
US20170066425A1 (en) * 2015-09-08 2017-03-09 Hyundai Motor Company Device for controlling parking and method for controlling parking
CN107765697A (zh) * 2016-08-23 2018-03-06 苏州宝时得电动工具有限公司 自移动设备以及自移动设备控制方法
CN110143196A (zh) * 2019-04-28 2019-08-20 东莞市易联交互信息科技有限责任公司 一种车及车辆防溜车的控制方法和系统
CN110861622A (zh) * 2019-11-29 2020-03-06 安徽江淮汽车集团股份有限公司 自动驻车方法、装置、设备及存储介质
CN112918444A (zh) * 2021-03-22 2021-06-08 苏州大学 自移动设备的驻车控制方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046015A1 (de) * 2004-09-28 2006-04-13 Continental Teves Ag & Co. Ohg Verfahren zum Durchführen eines Bremsvorgangs und Bremsvorrichtung
CN102198805B (zh) * 2011-03-09 2016-09-28 王子辉 一种永磁电机驱动的纯电动汽车坡道驻坡方法
CN205642848U (zh) * 2016-04-14 2016-10-12 宁波格陆博科技有限公司 汽车电子驻车制动系统仿真装置
CN110254414A (zh) * 2019-05-06 2019-09-20 万向钱潮股份有限公司 一种四轮制动的电子驻车系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080086252A1 (en) * 2006-10-06 2008-04-10 Fuji Jukogyo Kabushiki Kaisha Electric parking brake control system
CN104417511A (zh) * 2013-09-11 2015-03-18 上海荣乐汽车电子有限公司 一种电子驻车制动系统
US20170066425A1 (en) * 2015-09-08 2017-03-09 Hyundai Motor Company Device for controlling parking and method for controlling parking
CN107765697A (zh) * 2016-08-23 2018-03-06 苏州宝时得电动工具有限公司 自移动设备以及自移动设备控制方法
CN110143196A (zh) * 2019-04-28 2019-08-20 东莞市易联交互信息科技有限责任公司 一种车及车辆防溜车的控制方法和系统
CN110861622A (zh) * 2019-11-29 2020-03-06 安徽江淮汽车集团股份有限公司 自动驻车方法、装置、设备及存储介质
CN112918444A (zh) * 2021-03-22 2021-06-08 苏州大学 自移动设备的驻车控制方法及装置

Also Published As

Publication number Publication date
CN112918444B (zh) 2022-07-19
JP2024511490A (ja) 2024-03-13
CN112918444A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022199564A1 (zh) 自移动设备的驻车控制方法及装置
US8706378B2 (en) Systems and methods for determining road mu and drive force
CN105501223B (zh) 检测和越过车辆的可攀爬的障碍物
US11700787B2 (en) Electric walk behind greens mower
EP3232758B1 (en) Method for automatically controlling the engine of a turf-care vehicle
JP2018030587A (ja) 車両のクルーズコントロールの改善
US20070102212A1 (en) System for managing the supply of electrical energy in a motor vehicle
MX2012014069A (es) Control regulador electronico.
US9951738B2 (en) Method of signaling an engine stop or start request
CN109080503B (zh) 车速控制方法、系统、可读存储介质及电动汽车
US9719429B2 (en) Driver-assisted fuel reduction strategy and associated apparatus, system, and method
US9187093B1 (en) Systems and methods of cruise droop control
EP2901006B1 (en) Powertrain control system
WO2013095907A1 (en) System and method for controlling slip
CN106891882A (zh) 动力换挡变速器的自动效率模式
CN202644631U (zh) 挖掘机自动暖机和过热保护的装置
EP2664770A2 (en) System for controlling number of revolution for engine of farm work vehicle having electronic engine attached thereon and method for controlling thereof
CN117261617A (zh) 无人驾驶纯电车需求扭矩计算方法、系统、设备及介质
CN113068503B (zh) 割草设备
CN109084014B (zh) 用于在下坡操作期间控制作业车辆的速度的系统和方法
RU2431577C2 (ru) Способ увеличения продолжительности действия автоматической функции свободного хода транспортного средства
CN113050647A (zh) 自移动设备的运行控制方法及装置
US20240253472A1 (en) Electric vehicle and a method for controlling a drivetrain of electric vehicle
CN209776420U (zh) 一种摩托车牵引力控制系统
CN105346536A (zh) 怠速熄火控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774221

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023559072

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 21-02-2024)