WO2022199513A1 - 卸压阀门系统和卸压方法 - Google Patents

卸压阀门系统和卸压方法 Download PDF

Info

Publication number
WO2022199513A1
WO2022199513A1 PCT/CN2022/081950 CN2022081950W WO2022199513A1 WO 2022199513 A1 WO2022199513 A1 WO 2022199513A1 CN 2022081950 W CN2022081950 W CN 2022081950W WO 2022199513 A1 WO2022199513 A1 WO 2022199513A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
trigger
water inlet
water outlet
hydraulic chamber
Prior art date
Application number
PCT/CN2022/081950
Other languages
English (en)
French (fr)
Inventor
刘展
曹克美
杨波
郭宁
付廷造
张琨
Original Assignee
上海核工程研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海核工程研究设计院有限公司 filed Critical 上海核工程研究设计院有限公司
Priority to JP2023558261A priority Critical patent/JP2024511094A/ja
Publication of WO2022199513A1 publication Critical patent/WO2022199513A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/10Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with auxiliary valve for fluid operation of the main valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/048Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded combined with other safety valves, or with pressure control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present application relates to the technical field of reactors, and in particular, to a pressure relief valve system and a pressure relief method.
  • small reactors In order to meet the needs of different application scenarios, the research and development of small reactors (hereinafter referred to as “small reactors”) has received key attention at home and abroad, and the design of small reactors requires reliable accident mitigation measures.
  • an emergency core cooling system is usually installed. Due to the large pressure difference between the inside and outside of the vessel, it is necessary to automatically depressurize the reactor pressure vessel first, so as to provide the possibility of long-term core cooling and avoid the occurrence of the core. Naked burnt.
  • the pressure relief design adopts a nuclear-grade valve driven by a safety-grade power supply. On the one hand, this system needs the support of a safety-grade power supply; Reliability will be reduced. Therefore, the design of safety-grade valves without power supply is particularly important.
  • the present invention utilizes the advanced passive design concept, and proposes a safety valve design scheme that does not need to be driven by a power source, so as to satisfy the reactor pressure relief function under specific conditions.
  • a first aspect of the present application provides a pressure relief valve system, including: a main hydraulic valve, which includes a first valve body, a first water inlet, and a first water outlet, the first water inlet is connected to a high-pressure container, and the first water outlet is connected to The low-pressure container is connected, the first valve body is provided with a main flow stopper, the main flow stopper closes the first water inlet and the first water outlet, and forms a closed first hydraulic chamber with the first valve body; the trigger unit includes a signal a driver and a triggering actuator, the triggering actuator is connected with the first hydraulic chamber; the triggering actuator can depressurize the first hydraulic chamber when the signal driver receives the triggering signal, so that the main flow stopper is released from the first water inlet and the first hydraulic chamber When the water outlet is closed, a through liquid flow path is formed between the first water inlet and the first water outlet, so that the liquid in the high-pressure container flows into the low-pressure container.
  • the trigger actuator includes a trigger valve connected to the signal driver, the trigger valve includes a second water inlet and a second water outlet, the second water inlet communicates with the first hydraulic chamber, and the second water outlet communicates with the low-pressure container, and the trigger valve
  • the signal driver receives the trigger signal, it can be opened, and a through liquid flow path is formed between the second water inlet and the second water outlet, so that the liquid in the first hydraulic chamber flows through the trigger valve and then flows into the low-pressure container.
  • the trigger actuator includes a trigger valve and a threshold valve connected to the signal driver, the trigger valve includes a second water inlet and a second water outlet, the second water outlet communicates with the low-pressure container, and the threshold valve includes a second valve body, The third water inlet and the third water outlet, the third water inlet is connected to the first hydraulic chamber, the third water outlet is connected to the second water inlet, the second valve body is provided with a threshold flow stopper, and the threshold flow stopper is closed The third water inlet and the third water outlet form a closed second hydraulic chamber with the second valve body, and the second hydraulic chamber is connected with the high-pressure container.
  • the threshold valve further includes a third elastic member, the third elastic member applies a third positive force to the threshold flow stop, and the third positive force is the same as the third negative force applied by the second hydraulic chamber to the threshold flow stop
  • the third elastic member can push the threshold stopper to move when the pressure of the high-pressure container is reduced to the set threshold, so that the threshold stopper can release the closure of the third water inlet and the third water outlet.
  • a through liquid flow path is formed between it and the third water outlet, so that the liquid in the first hydraulic chamber flows through the threshold valve and the trigger valve and then flows into the low-pressure container.
  • the main hydraulic valve further includes a first elastic member, the first elastic member applies a first positive force to the main flow stopper, and the first positive force is related to the first negative direction applied by the first hydraulic chamber to the main flow stopper The force is in the opposite direction.
  • the trigger valve is provided with a trigger stopper
  • the trigger stopper closes the second water inlet and the second water outlet
  • the signal driver includes an electromagnetic device and a second elastic member
  • the second elastic member applies the first Two negative forces
  • the electromagnetic device applies a second positive force opposite to the direction of the second negative force to the trigger stopper
  • the electromagnetic device can release the second positive force when the signal receiving end receives the trigger signal
  • the second elastic When the electromagnetic device releases the second positive force, the triggering stopper can be pushed to move, so that the triggering stopper can release the sealing of the second water inlet and the second water outlet.
  • the first hydraulic chamber is connected with the high-pressure container through a fifth communication line, and a buffer device is provided on the fifth communication line.
  • the buffer device is a venturi tube or an orifice plate.
  • a second aspect of the present application provides a pressure relief method, comprising the following steps:
  • Step S1 a main hydraulic valve with a first valve body is arranged between the high pressure container and the low pressure container, the high pressure container is connected with the first water inlet of the main hydraulic valve, and the low pressure container is connected with the first water outlet of the main hydraulic valve;
  • Step S2 a main flow stopper is arranged in the first valve body, so that the main flow stopper closes the first water inlet and the first water outlet, and forms a closed first hydraulic chamber with the first valve body;
  • Step S3 receiving a pressure relief trigger signal to relieve the pressure of the first hydraulic chamber, so that the main flow stopper releases the sealing of the first water inlet and the first water outlet, and forms a through-hole between the first water inlet and the first water outlet
  • the liquid flow path of the high-pressure container flows into the low-pressure container.
  • step S3 includes:
  • Step S31 setting a trigger valve, connecting the low pressure container with the second water outlet of the trigger valve, and connecting the first hydraulic chamber with the second water inlet of the trigger valve;
  • Step S32 Receive a pressure relief trigger signal, open the trigger valve, and form a through liquid flow path between the second water inlet and the second water outlet, so that the liquid in the first hydraulic chamber flows through the trigger valve and then flows into the low pressure container.
  • step S3 includes:
  • Step S33 a trigger valve is set, and the low-pressure container is communicated with the second water outlet of the trigger valve,
  • Step S34 a threshold valve with a second valve body is set between the trigger valve and the first hydraulic chamber, the first hydraulic chamber is connected to the third water inlet of the threshold valve, and the second water inlet of the trigger valve is connected to the threshold valve.
  • step S35 a threshold flow stopper is set in the second valve body, so that the threshold flow stopper closes the third water inlet and the third water outlet, and forms a closed second hydraulic chamber with the second valve body, and the second hydraulic chamber is connected to the high pressure. container connection;
  • Step S36 receiving a pressure relief trigger signal to open the trigger valve to form a through liquid flow path between the second water inlet and the second water outlet;
  • Step S37 when the pressure of the high-pressure container is reduced to the set threshold, the threshold flow stopper is released from the closure of the third water inlet and the third water outlet, and a through liquid is formed between the third water inlet and the third water outlet The flow path allows the liquid in the first hydraulic chamber to flow into the low-pressure container after passing through the threshold valve and the trigger valve.
  • the pressure relief valve system and pressure relief method of the present invention do not need power supply, rely on hydraulic pressure to be in an initial closed state, passively open after a signal is triggered, simplify the design, greatly improve the safety and economy of the reactor, and can quickly discharge the high-pressure vessel. pressure to meet the long-term emergency reactor core cooling function.
  • FIG. 1 is a schematic block diagram of a pressure relief valve system according to a specific embodiment of the application.
  • FIG. 2 is a schematic block diagram of a pressure relief valve system according to another specific embodiment of the application.
  • FIG. 3 is a flowchart of a pressure relief method according to a specific embodiment of the present application.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • specific meanings of the above terms in the present invention can be understood in specific situations.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the invention utilizes the advanced passive design concept, and proposes a safety-level valve design scheme that does not need to be driven by a power source, so as to satisfy the reactor pressure relief function under specific conditions.
  • FIG. 1 is a schematic block diagram of a pressure relief valve system according to a specific embodiment of the present application.
  • the pressure relief valve system 100 includes a main hydraulic valve 1 and a trigger unit 4 .
  • the main hydraulic valve 1 includes a first valve body 11, and a first water inlet 12 and a first water outlet 13 arranged on the first valve body 11.
  • the first water inlet 12 is connected to the high-pressure container 2, and the first water outlet 13 is connected to The low pressure vessel 3 is connected.
  • the first valve body 11 is provided with a main flow stopper 14, which can move in the first valve body 11, so that the main flow stopper 14 closes the first water inlet 12 and the first water outlet 13, and is connected with the first water inlet 12 and the first water outlet 13.
  • the first valve body 11 forms a closed first hydraulic chamber 15 .
  • the trigger unit 4 includes a signal driver 41 and a trigger actuator 42, the trigger actuator 42 is connected with the first hydraulic chamber 15, and the trigger actuator 42 can depressurize the first hydraulic chamber 15 when the signal driver 41 receives the trigger signal, so that the main hydraulic chamber 15 can be depressurized.
  • the stopper 14 releases the closure of the first water inlet 12 and the first water outlet 13, and forms a through liquid flow path between the first water inlet 12 and the first water outlet 13, so that the liquid in the high-pressure container 2 flows into the low-pressure container 3.
  • the first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the trigger actuator 42, and the signal driver 41 receives the trigger signal for opening the main hydraulic valve 1.
  • the signal driver 41 drives the trigger actuator 41. 42 is opened, so that the liquid in the first hydraulic chamber 15 flows into the trigger actuator 42 , the hydraulic pressure in the first hydraulic chamber 15 is reduced, and the main flow stop 14 is moved to the direction of the first hydraulic chamber 15 .
  • the direction of the arrow on each pipeline indicates the direction of fluid flow
  • the solid line in the first valve body 11 indicates the state in which the first water inlet 12 and the first water outlet 13 are closed by the main flow stopper 14 .
  • the hydraulic pressure in a hydraulic chamber 15 decreases, and after the main flow stopper 14 moves a sufficient distance in the direction of the first hydraulic chamber 15, the main flow stopper 14 releases the sealing of the first water inlet 12 and the first water outlet 13, as shown in FIG. 1 .
  • the dotted line part in the first valve body 11 in the middle indicates that after the main flow stop valve 14 moves, the closed state of the first water inlet 12 and the first water outlet 13 is released, thereby realizing the opening of the main hydraulic valve 1.
  • At the first water inlet A through liquid flow path is formed between 12 and the first water outlet 13 , so that the liquid in the high pressure container 2 flows into the low pressure container 3 to realize the pressure relief from the high pressure container 2 to the low pressure container 3 .
  • the pressure relief valve system 100 of this embodiment does not need power supply, and relies on hydraulic pressure to be in an initial closed state, and passively open after the signal is triggered.
  • the simplified design greatly improves the safety and economy of the reactor, and can quickly relieve the pressure of the high-pressure vessel 2. To meet the long-term emergency reactor core cooling function.
  • the trigger actuator 42 includes a trigger valve 421 connected to the signal driver 41 , the trigger valve 421 includes a second water inlet 422 and a second water outlet 423 , and the second water inlet 422 is connected to The first hydraulic chamber 15 is in communication, the second water outlet 423 is in communication with the low-pressure container 3, the trigger valve 421 can be opened when the signal driver 41 receives the trigger signal, and a through connection is formed between the second water inlet 422 and the second water outlet 423.
  • the liquid flow path allows the liquid in the first hydraulic chamber 15 to flow through the trigger valve 421 and then into the low-pressure container 3 .
  • the first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the second water inlet 422 of the trigger valve 421 through the first communication line 51 .
  • the signal driver 41 receives the trigger signal to open the main hydraulic valve 1.
  • the signal driver 41 drives the trigger valve 421 to open, so that the liquid in the first hydraulic chamber 15 flows into the second inlet through the first communication line 51.
  • the water port 422 flows into the trigger valve 421 , and then flows into the low-pressure container 3 from the second water outlet 423 to reduce the hydraulic pressure in the first hydraulic chamber 15 , thereby causing the main stopper 14 to move toward the first hydraulic chamber 15 .
  • the main hydraulic valve 1 further includes a first elastic member 16 , the first elastic member 16 applies a first positive force F1 to the main flow stop member 14 , and the hydraulic pressure in the first hydraulic chamber 15 applies a first positive force F1 to the main flow stop member 14 .
  • 14 exerts a first negative force, and the first positive force F1 is opposite to the first negative force F2 exerted by the first hydraulic chamber 15 on the main flow stop 14 .
  • the first positive force F1 is applied vertically on the end surface of the main flow stopper 14 , and the main flow stopper 14 may be in the direction of the first hydraulic chamber 15 in the first valve body 11 of the main hydraulic valve 1 . sports.
  • the first negative force F2 is greater than or equal to the first positive force F1, so that the main flow stopper 14 keeps the first water inlet 12 and the first water outlet 13 in a closed state, that is, the main flow stopper 14 is in a closed state.
  • the circuit breaker position interrupts the liquid flow between the first water inlet 12 and the first water outlet 13 of the main hydraulic valve 1 .
  • the signal driver 41 drives the trigger valve 421 to open, so that the liquid in the first hydraulic chamber 15 flows into the trigger valve 421 from the second water inlet 422 through the first communication line 51, and then flows into the low pressure from the second water outlet 423
  • the container 3 reduces the hydraulic pressure in the first hydraulic chamber 15, thereby reducing the first negative force F2.
  • the main flow stop 14 is in the first elastic member. Under the action of the first positive force F1 of the main hydraulic valve 1, it moves in the direction of the first hydraulic chamber 15, that is, the main flow stopper 14 leaves the circuit breaker position, so that the first water inlet 12 and the first water outlet 13 of the main hydraulic valve 1 are separated.
  • the liquid flow between the two passes through, so that the main hydraulic valve 1 is passively opened automatically, so that the liquid in the high-pressure container 2 flows into the low-pressure container 3.
  • the trigger valve 421 is provided with a trigger stopper 424, and the trigger stopper 424 closes the second water inlet 422 and the second water outlet 423
  • the signal driver 41 includes a signal receiving end (not shown), an electromagnetic The device 411 and the second elastic member 412, the second elastic member 412 applies a second negative force F3 to the triggering stopper 424, and the electromagnetic device 411 applies a second negative force F3 opposite to the direction of the second negative force F3 to the triggering stopper 424
  • the positive force F4 the electromagnetic device 411 can release the second positive force F4 when the signal receiving end receives the trigger signal
  • the second elastic member 43 can push the trigger stopper 424 when the electromagnetic device 411 releases the second positive force F4 Moving, the triggering stopper 424 releases the sealing of the second water inlet 422 and the second water outlet 423 .
  • the second positive force F4 is greater than or equal to the second negative force F3
  • the initial position of the trigger stopper 424 is located between the second water inlet 422 and the second water outlet 423 of the trigger valve 421, keeping the In the closed state of the second water inlet 422 and the second water outlet 423 , that is, when the triggering stopper 424 is in the disconnecting position, the liquid flow between the second water inlet 422 and the second water outlet 423 of the trigger valve 421 is interrupted.
  • the signal receiving end receives the trigger signal, and when the turn-on signal is satisfied, the signal receiving end sends a power-off signal to the electromagnetic device 411, so that the coil of the electromagnetic device 411 is powered off, the second positive force F4 disappears, and the flow stopper 424 is triggered in the second
  • the negative force F3 leaves the initial position, so that the liquid flow between the second water inlet 422 and the second water outlet 423 of the trigger valve 421 is passed through.
  • FIG. 2 is a schematic block diagram of a pressure relief valve system according to another specific embodiment of the present application.
  • the triggering actuator 42 includes a threshold valve 43 and a triggering valve 421 connected to the signal driver 41 , and the triggering valve 421 includes a second water inlet 422 and a second water outlet 423 .
  • the water outlet 423 communicates with the low pressure container 3 .
  • the threshold valve 43 includes a second valve body 431, a third water inlet 432 and a third water outlet 433.
  • the third water inlet 432 is connected to the first hydraulic chamber 15, and the third water outlet 433 is connected to the second water inlet 422.
  • the second valve body 431 is provided with a threshold flow stopper 434, and the threshold flow stopper 434 can move in the second valve body 431, so that the threshold flow stopper 434 closes the third water inlet 432 and the third water outlet 433, and is connected with the third water inlet 432 and the third water outlet 433.
  • the second valve body 431 forms a closed second hydraulic chamber 435 , and the second hydraulic chamber 435 is connected to the high-pressure container 2 .
  • the first hydraulic chamber 15 of the main hydraulic valve 1 is connected to the third water inlet 432 of the threshold valve 43 through the second communication line 52 , and the third water outlet 433 of the threshold valve 43 is connected to the second water outlet 432 of the trigger valve 421 .
  • the water inlets 422 are connected through the third communication line 53 .
  • the signal driver 41 receives the trigger signal for opening the main hydraulic valve 1.
  • the signal receiving end sends a power-off signal to the electromagnetic device 411 to de-energize the coil of the electromagnetic device 411, and the second positive force F4 disappears, triggering the
  • the flow stopper 424 leaves the initial position under the action of the second negative force F3, so that the liquid flow between the second water inlet 422 and the second water outlet 423 of the trigger valve 421 is communicated.
  • the second hydraulic chamber 435 is connected to the high-pressure container 2 through the fourth communication line 54, so that the pressure in the second hydraulic chamber 435 and the high-pressure container 2 is the same.
  • the threshold stopper 434 moves in the direction of the second hydraulic chamber 435, so that the threshold flow stopper 434 releases the closure of the third water inlet 432 and the third water outlet 433, thereby realizing the opening of the threshold valve 43.
  • a through liquid flow path is formed between the three water outlets 433 , so that the liquid in the first hydraulic chamber 15 flows into the third water inlet 432 through the second communication line 52 into the threshold valve 43 , and passes through the third water outlet 433 through the third communication
  • the line 53 flows into the trigger valve 421 which has been opened, and flows into the low pressure container 3 through the trigger valve 421 .
  • the threshold valve 43 is connected to the high pressure container 2. After the signal driver 41 receives the trigger signal, the trigger valve 421 is opened. After the trigger valve 421 is opened, when the pressure in the high pressure container 2 is reduced to the set threshold value , the threshold valve 43 is opened, thereby completing the depressurization of the first hydraulic chamber 14 of the main hydraulic valve 1, making the high-pressure container 2 communicate with the low-pressure container 3, and realizing the pressure relief of the high-pressure container.
  • the trigger valve 421 when the trigger valve 421 is accidentally opened, it can prevent malfunction, and the main hydraulic valve 1 will not be opened immediately.
  • the hydraulic valve 1 is used to protect the integrity of the pressure boundary of the high-pressure vessel 2 and reduce the number of unplanned shutdowns of the reactor and the probability of primary events.
  • the threshold valve 43 further includes a third elastic member 436 , the third elastic member 436 applies a third positive force F5 to the threshold stop member 434 , and the third positive force F5 and the second hydraulic chamber 435 are opposite to the threshold
  • the third negative force F6 exerted by the flow stopper 434 is in the opposite direction, and the third elastic member 436 can push the threshold flow stopper 434 to move when the pressure of the high-pressure container 2 is reduced to the set threshold value, so that the threshold flow stopper 434 is released from the pressure on the first flow stopper 434 .
  • the closure of the three water inlets 432 and the third water outlet 433 forms a through liquid flow path between the third water inlet 432 and the third water outlet 433, so that the liquid in the first hydraulic chamber 15 flows through the threshold valve 43 and the trigger valve After 421, it flows into the low-pressure container 3.
  • the third negative force F6 is greater than or equal to the third positive force F5, so that the threshold flow stopper 434 remains closed to the third water inlet 432 and the third water outlet 433, that is, the threshold flow stopper 434 is in a closed state.
  • the circuit breaker position interrupts the liquid flow between the third water inlet 432 and the third water outlet 433 of the threshold valve 43 .
  • the third negative force F6 is smaller than the third positive force F5
  • the threshold stopper 434 moves toward the second hydraulic chamber 435 under the action of the third positive force F5 , that is, the threshold flow stop member 434 leaves the breaking position, so that the liquid flow between the third water inlet 432 and the third water outlet 433 of the threshold valve 43 is passed through, so that the liquid in the first hydraulic chamber 15 flows into the threshold valve 43 .
  • the first hydraulic chamber 15 is connected with the high-pressure container 2 through the fifth communication line 55, and the high-pressure container 2 provides pressure for the first hydraulic chamber 15, so that the first negative force F2 maintains the main flow stop 14 at the initial position In the closed state, a buffer device 56 is provided on the fifth communication line 55 .
  • the buffering device 56 can buffer the release of mass and energy of the liquid flow between the high-pressure container 2 and the first hydraulic chamber 15 to maintain the integrity of the low-pressure container 3 .
  • the buffer device 56 is a venturi or orifice plate.
  • the venturi tube or the orifice plate can reduce the pipeline size of the fifth communication pipeline 55 , thereby reducing the function of releasing the mass energy of the spray and maintaining the integrity of the low-pressure container 3 .
  • FIG. 3 is a flowchart of a pressure relief method according to a specific embodiment of the present application.
  • the pressure relief method of the present application includes the following steps:
  • step S1 a main hydraulic valve 1 with a first valve body 11 is arranged between the high-pressure container 3 and the low-pressure container 2, the high-pressure container 2 is connected to the first water inlet 12 of the main hydraulic valve 1, and the low-pressure container 3 is connected to the main hydraulic pressure.
  • the first water outlet 13 of the valve 1 is connected;
  • Step S2 the main flow stopper 14 is arranged in the first valve body 11, so that the main flow stopper 14 closes the first water inlet 12 and the first water outlet 13, and forms a closed first hydraulic chamber with the first valve body 11 15.
  • Step S3 receiving a pressure relief trigger signal to relieve the pressure of the first hydraulic chamber 15 , so that the main flow stopper 14 releases the sealing of the first water inlet 12 and the first water outlet 13 , and the first water inlet 12 and the first water outlet 13 are closed.
  • a through liquid flow path is formed between the nozzles 13 , so that the liquid in the high-pressure container 2 flows into the low-pressure container 3 .
  • step S3 includes:
  • Step S31 setting the trigger valve 421, connecting the low pressure container 3 with the second water outlet 423 of the trigger valve 421, and connecting the first hydraulic chamber 15 with the second water inlet 422 of the trigger valve 421;
  • Step S32 receiving the pressure relief trigger signal, opening the trigger valve 421, forming a through liquid flow path between the second water inlet 422 and the second water outlet 423, so that the liquid in the first hydraulic chamber 15 flows through the trigger valve 421 Then flow into the low pressure container 3.
  • step S3 includes:
  • Step S33 setting the trigger valve 421 to connect the low pressure container 3 with the second water outlet 423 of the trigger valve 421,
  • Step S34 a threshold valve 43 with a second valve body 435 is set between the trigger valve 421 and the first hydraulic chamber 15, the first hydraulic chamber 15 is connected to the third water inlet 432 of the threshold valve 43, and the trigger valve 421 is connected.
  • the second water inlet 422 is connected to the third water outlet 433 of the threshold valve 43;
  • a threshold flow stopper 434 is set in the second valve body 431, so that the threshold flow stopper 434 closes the third water inlet 432 and the third water outlet 433, and forms a closed second hydraulic chamber with the second valve body 431 435, the second hydraulic chamber 435 is connected with the high pressure container 2;
  • Step S36 receiving the pressure relief trigger signal, so that the trigger valve 421 is opened, and a through liquid flow path is formed between the second water inlet 422 and the second water outlet 423;
  • Step S37 when the pressure of the high-pressure container 2 is reduced to the set threshold, the threshold stopper 434 is released from the closure of the third water inlet 432 and the third water outlet 433, and the third water inlet 432 and the third water outlet 433 are closed. A through liquid flow path is formed therebetween, so that the liquid in the first hydraulic chamber 15 flows through the threshold valve 43 and the trigger valve 421 and then flows into the low-pressure container 3 .
  • the pressure relief valve system and pressure relief method of the present application do not need to be driven by a safety-level power supply, and can be automatically opened when the signal setting value is reached, the internal and external pressures of the high-pressure and low-pressure vessels can be balanced, and the automatic pressure relief requirements are met. Provide success conditions; at the same time, in order to prevent misoperation, a design scheme of signal superposition threshold judgment is proposed.
  • the present invention relies on hydraulic pressure to be in an initial closed state. It has a high safety level; in order to prevent misoperation, the pressure relief valve can be designed with threshold characteristics to protect the integrity of the boundary of the high pressure container.

Abstract

一种卸压阀门系统和卸压方法,该系统包括主液压阀(1)和触发单元(4),通过触发单元(4)控制主液压阀(1)的开闭,使高压容器(2)的液体流入低压容器(3)。该卸压阀门系统和卸压方法,无需电源驱动,依靠液压处于初始关闭状态,信号触发后非能动开启,简化设计,极大地提高反应堆的安全性和经济性,可使高压容器快速卸压,以满足长期的应急反应堆堆芯冷却功能。

Description

卸压阀门系统和卸压方法
相关申请的交叉引用
本申请要求享有于2021年03月22日提交的名称为“一种安全泄压阀门系统”的中国专利申请202110302346.7的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及反应堆技术领域,尤其涉及一种卸压阀门系统和卸压方法。
背景技术
为满足不同应用场景的需求,小型反应堆(以下简称“小型堆”)研发已受到国内外的重点关注,而小型反应堆的设计需要具有可靠的事故缓解措施。
对于小型堆,为缓解设计基准事故,通常设有应急堆芯冷却系统,由于容器内外压差大,需首先对反应堆压力容器自动卸压,从而提供长期堆芯冷却的可能性,避免堆芯发生裸露烧毁。通常情况下,卸压设计采用安全级电源驱动的核级阀门,一方面此系统需要安全级的电源支持;另一方面需匹配安全级厂房或增加安全级厂房的容量,经济性较差,且可靠性会降低。因此,无需电源驱动的安全级阀门设计显得尤为重要。
发明内容
为了解决上述问题,本发明利用先进的非能动设计理念,提出一种 无需电源驱动的安全级阀门设计方案,满足特定条件下的反应堆卸压功能。
本申请第一方面提供一种卸压阀门系统,包括:主液压阀,其包括第一阀体、第一入水口和第一出水口,第一入水口与高压容器连接,第一出水口与低压容器连接,第一阀体内设有主止流件,主止流件封闭第一入水口和第一出水口,并与第一阀体形成密闭的第一液压室;触发单元,其包括信号驱动器和触发执行器,触发执行器与第一液压室连接;触发执行器能够在信号驱动器接收到触发信号时使第一液压室卸压,使主止流件解除对第一入水口和第一出水口的封闭,在第一入水口和第一出水口之间形成贯通的液体流路,使高压容器的液体流入低压容器。
优选地,触发执行器包括与信号驱动器连接的触发阀,触发阀包括第二入水口和第二出水口,第二入水口与第一液压室连通,第二出水口与低压容器连通,触发阀能够在信号驱动器接收到触发信号时开启,在第二入水口和第二出水口之间形成贯通的液体流路,使第一液压室内的液体流过触发阀后流入低压容器。
优选地,触发执行器包括与所述信号驱动器连接的触发阀和阈值阀,触发阀包括第二入水口和第二出水口,第二出水口与低压容器连通,阈值阀包括第二阀体、第三入水口和第三出水口,第三入水口与第一液压室连接,第三出水口与所述第二入水口连接,第二阀体内设有阈值止流件,阈值止流件封闭第三入水口和第三出水口,并与第二阀体形成密闭的第二液压室,第二液压室与高压容器连接。
优选地,阈值阀还包括第三弹性件,第三弹性件向阈值止流件施加第三正向力,第三正向力与第二液压室对阈值止流件施加的第三负向力方向相反,第三弹性件能够在高压容器的压力降低至设定阈值时推动阈值止流件移动,使阈值止流件解除对第三入水口和第三出水口的封闭,在第三 入水口和第三出水口之间形成贯通的液体流路,使第一液压室的液体流过阈值阀和触发阀后流入低压容器。
优选地,主液压阀还包括第一弹性件,第一弹性件向主止流件施加第一正向力,第一正向力与第一液压室对主止流件施加的第一负向力方向相反。
优选地,触发阀内设有触发止流件,触发止流件封闭第二入水口和第二出水口,信号驱动器包括电磁装置和第二弹性件,第二弹性件向触发止流件施加第二负向力,电磁装置向触发止流件施加与第二负向力方向相反的第二正向力,电磁装置能够在信号接收端接收到触发信号时解除第二正向力,第二弹性件能够在电磁装置解除第二正向力时推动触发止流件移动,使触发止流件解除对第二入水口和第二出水口的封闭。
优选地,第一液压室与高压容器通过第五连通管线相连,第五连通管线上设有缓冲装置。
优选地,缓冲装置为文丘里管或孔板。
本申请第二方面提供一种卸压方法,包括以下步骤:
步骤S1,在高压容器和低压容器之间设置具有第一阀体的主液压阀,将高压容器与主液压阀的第一入水口连接,将低压容器与主液压阀的第一出水口连接;
步骤S2,在第一阀体内设置主止流件,使主止流件封闭第一入水口和第一出水口,并与第一阀体形成密闭的第一液压室;
步骤S3,接收卸压触发信号,使第一液压室卸压,使主止流件解除对第一入水口和第一出水口的封闭,在第一入水口和第一出水口之间形成贯通的液体流路,使高压容器的液体流入低压容器。
优选地,步骤S3包括:
步骤S31,设置触发阀,将低压容器与触发阀的第二出水口连通,将第一液压室与触发阀的第二入水口连通;
步骤S32,接收卸压触发信号,使触发阀开启,在第二入水口和第二出水口之间形成贯通的液体流路,使第一液压室内的液体流过触发阀后流入低压容器。
优选地,步骤S3包括:
步骤S33,设置触发阀,将低压容器与触发阀的第二出水口连通,
步骤S34,在触发阀和第一液压室之间设置具有第二阀体的阈值阀,将第一液压室与阈值阀的第三入水口连接,将触发阀的第二入水口与阈值阀的第三出水口连接;
步骤S35,在第二阀体内设置阈值止流件,使阈值止流件封闭第三入水口和第三出水口,并与第二阀体形成密闭的第二液压室,第二液压室与高压容器连接;
步骤S36,接收卸压触发信号,使触发阀开启,在第二入水口和第二出水口之间形成贯通的液体流路;
步骤S37,在高压容器的压力降低至设定阈值时,使阈值止流件解除对第三入水口和第三出水口的封闭,在第三入水口和第三出水口之间形成贯通的液体流路,使第一液压室的液体流过阈值阀和触发阀后流入低压容器。
本发明的卸压阀门系统和卸压方法,无需电源驱动,依靠液压处于初始关闭状态,信号触发后非能动开启,简化设计,极大地提高反应堆的安全性和经济性,可使高压容器快速卸压,以满足长期的应急反应堆堆芯冷却功能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的, 并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需使用的附图作简单地介绍,显而易见,以下描述的附图仅仅是本申请的具体实施例,本领域技术人员在不付出创造性劳动的前提下,可以根据以下附图获得其他实施例。
图1为本申请一种具体实施例的卸压阀门系统的示意框图;
图2为本申请另一种具体实施例的卸压阀门系统的示意框图;
图3为本申请一种具体实施例的卸压方法的流程图。
附图标记:
100-卸压阀门系统、
1-主液压阀、
11-第一阀体、12-第一入水口、13-第一出水口、14-主止流件、
15-第一液压室、16-第一弹性件、
2-高压容器、
3-低压容器、
4-触发单元、
41-信号驱动器、
411-电磁装置、412-第二弹性件、
42-触发执行器、
421-触发阀、422-第二入水口、423-第二出水口、
424-触发止流件、
43-阈值阀、
431-第二阀体、432-第三入水口、433-第三出水口、
434-阈值止流件、435-第二液压室、436-第三弹性件、
51-第一连通管线、52-第二连通管线、53-第三连通管线、
54-第四连通管线、55-第五连通管线、56-缓冲装置。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本实施例的描述中,术语“上”、“下”、“左”、“右”等方 位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
本发明利用先进的非能动设计理念,提出一种无需电源驱动的安全级阀门设计方案,满足特定条件下的反应堆卸压功能。
图1为本申请一种具体实施例的卸压阀门系统的示意框图。
如图1所示,卸压阀门系统100包括主液压阀1和触发单元4。
主液压阀1包括第一阀体11、以及设置于第一阀体11上的第一入水口12和第一出水口13,第一入水口12与高压容器2连接,第一出水口13与低压容器3连接。第一阀体11内设有主止流件14,主止流件14能够在第一阀体11内移动,使主止流件14封闭第一入水口12和第一出水口13,并与第一阀体11形成密闭的第一液压室15。
触发单元4包括信号驱动器41和触发执行器42,触发执行器42与第一液压室15连接,触发执行器42能够在信号驱动器41接收到触发信号时使第一液压室15卸压,使主止流件14解除对第一入水口12和第一出水口13的封闭,在第一入水口12和第一出水口13之间形成贯通的液体流路,使高压容器2的液体流入低压容器3。
本实施例中,将主液压阀1的第一液压室15与触发执行器42连接,信号驱动器41接收使主液压阀1打开的触发信号,当开启信号满足时,信号驱动器41驱动触发执行器42开启,从而使第一液压室15内的液体流入触发执行器42,使第一液压室15内的液压降低,进而使主止流件14向第一液压室15方向移动。
图1中,各管线上的箭头方向表示流体流动的方向,第一阀体11内的实线部分表示主止流件14封闭第一入水口12和第一出水口13的状态, 当使第一液压室15内的液压降低,主止流件14向第一液压室15方向移动足够的距离后,主止流件14解除对第一入水口12和第一出水口13的封闭,图1中第一阀体11内的虚线部分表示主止流阀14移动后,解除第一入水口12和第一出水口13封闭的状态,从而实现了主液压阀1的开启,在第一入水口12和第一出水口13之间形成贯通的液体流路,使高压容器2的液体流入低压容器3实现了高压容器2向低压容器3卸压。
本实施例的卸压阀门系统100,无需电源驱动,依靠液压处于初始关闭状态,信号触发后非能动开启,简化设计极大地提高反应堆的安全性和经济性,可使高压容器2快速卸压,以满足长期的应急反应堆堆芯冷却功能。
请继续参照图1,在一个具体实施例中,触发执行器42包括与信号驱动器41连接的触发阀421,触发阀421包括第二入水口422和第二出水口423,第二入水口422与第一液压室15连通,第二出水口423与低压容器3连通,触发阀421能够在信号驱动器41接收到触发信号时开启,在第二入水口422和第二出水口423之间形成贯通的液体流路,使第一液压室15内的液体流过触发阀421后流入低压容器3。
本实施例中,将主液压阀1的第一液压室15与触发阀421的第二入水口422通过第一连通管线51相连。信号驱动器41接收使主液压阀1打开的触发信号,当开启信号满足时,信号驱动器41驱动触发阀421开启,从而使第一液压室15内的液体通过第一连通管线51流入从第二入水口422流入触发阀421,再从第二出水口423流入低压容器3,使第一液压室15内的液压降低,进而使主止流件14向第一液压室15方向移动。
在一些实施例中,主液压阀1还包括第一弹性件16,第一弹性件16向主止流件14施加第一正向力F1,第一液压室15内的液压向主止流件14施加第一负向力,第一正向力F1与第一液压室15对主止流件14施加的 第一负向力F2方向相反。在一些具体实施例中,第一正向力F1垂直施加于主止流件14的端面上,主止流件14可以在主液压阀1的第一阀体11内向第一液压室15的方向运动。
在初始状态,第一负向力F2大于或等于第一正向力F1,使主止流件14保持对第一入水口12和第一出水口13的封闭状态,即主止流件14处于断路工位,使主液压阀1的第一入水口12和第一出水口13之间的液流中断。
当开启信号满足时,信号驱动器41驱动触发阀421开启,使第一液压室15内的液体通过第一连通管线51从第二入水口422流入触发阀421,再从第二出水口423流入低压容器3,使第一液压室15内的液压降低,从而第一负向力F2减小,当第一负向力F2小于第一正向力F1时,主止流件14在第一弹性件16的第一正向力F1的作用下,向第一液压室15方向移动,即主止流件14离开断路工位,使主液压阀1的第一入水口12和第一出水口13之间的液流贯通,使主液压阀1非能动自动开启,从而使高压容器2的液体流入低压容器3。
在一些实施例中,触发阀421内设有触发止流件424,触发止流件424封闭第二入水口422和第二出水口423,信号驱动器41包括信号接收端(未图示)、电磁装置411和第二弹性件412,第二弹性件412向触发止流件424施加第二负向力F3,电磁装置411向触发止流件424施加与第二负向力F3方向相反的第二正向力F4,电磁装置411能够在信号接收端接收到触发信号时解除第二正向力F4,第二弹性件43能够在电磁装置411解除第二正向力F4时推动触发止流件424移动,使触发止流件424解除对第二入水口422和第二出水口423的封闭。
在初始状态,第二正向力F4大于或等于第二负向力F3,触发止流件424的初始位置位于触发阀421的第二入水口422和第二出水口423之 间,保持对第二入水口422和第二出水口423的封闭状态,即触发止流件424处于断路工位时,触发阀421的第二入水口422和第二出水口423之间的液流中断。
信号接收端接收触发信号,当开启信号满足时,信号接收端向电磁装置411发送断电信号,使电磁装置411的线圈断电,第二正向力F4消失,触发止流件424在第二负向力F3的作用下离开初始位置,使得触发阀421的第二入水口422和第二出水口423之间的液流贯通。
图2为本申请另一种具体实施例的卸压阀门系统的示意框图。
如图2所示,在另一些实施例中,触发执行器42包括阈值阀43和与信号驱动器41连接的触发阀421,触发阀421包括第二入水口422和第二出水口423,第二出水口423与低压容器3连通。阈值阀43包括第二阀体431、第三入水口432和第三出水口433,第三入水口432与第一液压室15连接,第三出水口433与所述第二入水口422连接,第二阀体431内设有阈值止流件434,阈值止流件434能够在第二阀体431内移动,使阈值止流件434封闭第三入水口432和第三出水口433,并与第二阀体431形成密闭的第二液压室435,第二液压室435与高压容器2连接。
请继续参照图2,主液压阀1的第一液压室15与阈值阀43的第三入水口432通过第二连通管线52相连,阈值阀43的第三出水口433与触发阀421的第二入水口422通过第三连通管线53相连。信号驱动器41接收使主液压阀1打开的触发信号,当开启信号满足时,信号接收端向电磁装置411发送断电信号,使电磁装置411的线圈断电,第二正向力F4消失,触发止流件424在第二负向力F3的作用下离开初始位置,使得触发阀421的第二入水口422和第二出水口423之间的液流贯通。第二液压室435与高压容器2通过第四连通管线54相连,使第二液压室435与高压容器2内压力相同,当高压容器2内的压力值降低到设定阈值后,阈值止流件434 向第二液压室435的方向移动,使阈值止流件434解除对第三入水口432和第三出水口433的封闭,从而实现了阈值阀43的开启,在第三入水口432和第三出水口433之间形成贯通的液体流路,使第一液压室15内的液体通过第二连通管线52流入第三入水口432进入阈值阀43,并经第三出水口433通过第三连通管线53流入已经开启的触发阀421内,并通过触发阀421流入低压容器3内。
在本实施例中,阈值阀43与高压容器2相连,在信号驱动器41收到触发信号后,触发阀421开启,在触发阀421开启后,当高压容器2内的压力降低到设定阈值后,阈值阀43开启,从而完成对主液压阀1的第一液压室14的降压,使高压容器2与低压容器3的连通,实现了高压容器的卸压。
本实施例的卸压阀门系统100,当触发阀421意外开启时,能够防止误动作,不会立即开启主液压阀1,只有高压容器2内的压力值也满足开启条件时,才会开启主液压阀1,从而保护高压容器2的压力边界完整性,降低反应堆的非计划停堆次数和初因事件发生的概率。
在一个具体示例中,阈值阀43还包括第三弹性件436,第三弹性件436向阈值止流件434施加第三正向力F5,第三正向力F5与第二液压室435对阈值止流件434施加的第三负向力F6方向相反,第三弹性件436能够在高压容器2的压力降低至设定阈值时推动阈值止流件434移动,使阈值止流件434解除对第三入水口432和第三出水口433的封闭,在第三入水口432和第三出水口433之间形成贯通的液体流路,使第一液压室15的液体流过阈值阀43和触发阀421后流入低压容器3。
在初始状态,第三负向力F6大于或等于第三正向力F5,使阈值止流件434保持对第三入水口432和第三出水口433的封闭状态,即阈值止流件434处于断路工位,使阈值阀43的第三入水口432和第三出水口433 之间的液流中断。
当高压容器2的压力降低至设定阈值时,第三负向力F6小于第三正向力F5,阈值止流件434在第三正向力F5的作用下向第二液压室435方向移动,即阈值止流件434离开断路工位,使阈值阀43的第三入水口432和第三出水口433之间的液流贯通,从而使第一液压室15内的液体流入阈值阀43内。
在一些实施例中,第一液压室15与高压容器2通过第五连通管线55相连,高压容器2为第一液压室15提供压力,使第一负向力F2维持主止流件14处于初始关闭状态,第五连通管线55上设有缓冲装置56。缓冲装置56能够缓冲在高压容器2和第一液压室15之间液流喷放的质能释放,维持低压容器3的完整性。
在一些具体实施例中,缓冲装置56为文丘里管或孔板。文丘里管或孔板能够降低第五连通管线55的管线尺寸,进而减小喷放质能释放的功能,维持低压容器3的完整性。
图3为本申请一种具体实施例的卸压方法的流程图。
如图3所示,本申请的卸压方法,包括以下步骤:
步骤S1,在高压容器3和低压容器2之间设置具有第一阀体11的主液压阀1,将高压容器2与主液压阀1的第一入水口12连接,将低压容器3与主液压阀1的第一出水口13连接;
步骤S2,在第一阀体11内设置主止流件14,使主止流件14封闭第一入水口12和第一出水口13,并与第一阀体11形成密闭的第一液压室15。
步骤S3,接收卸压触发信号,使第一液压室15卸压,使主止流件14解除对第一入水口12和第一出水口13的封闭,在第一入水口12和第一出水口13之间形成贯通的液体流路,使高压容器2的液体流入低压容器3。
在一些具体实施例中,步骤S3包括:
步骤S31,设置触发阀421,将低压容器3与触发阀421的第二出水口423连通,将第一液压室15与触发阀421的第二入水口422连通;
步骤S32,接收卸压触发信号,使触发阀421开启,在第二入水口422和第二出水口423之间形成贯通的液体流路,使第一液压室15内的液体流过触发阀421后流入低压容器3。
在另一些实施例中,步骤S3包括:
步骤S33,设置触发阀421,将低压容器3与触发阀421的第二出水口423连通,
步骤S34,在触发阀421和第一液压室15之间设置具有第二阀体435的阈值阀43,将第一液压室15与阈值阀43的第三入水口432连接,将触发阀421的第二入水口422与阈值阀43的第三出水口433连接;
步骤S35,在第二阀体431内设置阈值止流件434,使阈值止流件434封闭第三入水口432和第三出水口433,并与第二阀体431形成密闭的第二液压室435,第二液压室435与高压容器2连接;
步骤S36,接收卸压触发信号,使触发阀421开启,在第二入水口422和第二出水口423之间形成贯通的液体流路;
步骤S37,在高压容器2的压力降低至设定阈值时,使阈值止流件434解除对第三入水口432和第三出水口433的封闭,在第三入水口432和第三出水口433之间形成贯通的液体流路,使第一液压室15的液体流过阈值阀43和触发阀421后流入低压容器3。
本申请的卸压阀门系统和卸压方法,无需依赖安全级电源驱动,达到信号整定值即可自动开启,实现高压和低压容器的内外压力平衡,满足自动卸压要求,为反应堆专设系统注入提供成功条件;同时,为防止误动作,提出信号叠加阈值判断的设计方案,本发明相比于现有技术,依靠液 压处于初始关闭状态,当满足信号后,依靠弹簧非能动开启,无需电源,具有很高的安全级;为防止误动作,卸压阀门可设计具有阈值特征,保护高压容器边界的完整性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种卸压阀门系统,其特征在于,包括:
    主液压阀,其包括第一阀体、第一入水口和第一出水口,所述第一入水口与高压容器连接,所述第一出水口与低压容器连接,所述第一阀体内设有主止流件,所述主止流件封闭所述第一入水口和所述第一出水口,并与所述第一阀体形成密闭的第一液压室;
    触发单元,其包括信号驱动器和触发执行器,所述触发执行器与所述第一液压室连接;
    所述触发执行器能够在所述信号驱动器接收到触发信号时使所述第一液压室卸压,使所述主止流件解除对所述第一入水口和所述第一出水口的封闭,在所述第一入水口和所述第一出水口之间形成贯通的液体流路,使所述高压容器的液体流入所述低压容器。
  2. 根据权利要求1所述的卸压阀门系统,其特征在于,所述触发执行器包括与所述信号驱动器连接的触发阀,所述触发阀包括第二入水口和第二出水口,所述第二入水口与所述第一液压室连通,所述第二出水口与所述低压容器连通,所述触发阀能够在所述信号驱动器接收到触发信号时开启,在所述第二入水口和所述第二出水口之间形成贯通的液体流路,使所述第一液压室内的液体流过所述触发阀后流入所述低压容器。
  3. 根据权利要求1所述的卸压阀门系统,其特征在于,所述触发执行器包括阈值阀和与所述信号驱动器连接的触发阀,
    所述触发阀包括第二入水口和第二出水口,所述第二出水口与所述低 压容器连通,
    所述阈值阀包括第二阀体、第三入水口和第三出水口,所述第三入水口与所述第一液压室连接,所述第三出水口与所述第二入水口连接,所述第二阀体内设有阈值止流件,所述阈值止流件封闭所述第三入水口和所述第三出水口,并与所述第二阀体形成密闭的第二液压室,所述第二液压室与所述高压容器连接。
  4. 根据权利要求3所述的卸压阀门系统,其特征在于,所述阈值阀还包括第三弹性件,所述第三弹性件向所述阈值止流件施加第三正向力,所述第三正向力与所述第二液压室对所述阈值止流件施加的第三负向力方向相反,所述第三弹性件能够在所述高压容器的压力降低至设定阈值时推动所述阈值止流件移动,使所述阈值止流件解除对所述第三入水口和所述第三出水口的封闭,在所述第三入水口和所述第三出水口之间形成贯通的液体流路,使所述第一液压室的液体流过所述阈值阀和所述触发阀后流入所述低压容器。
  5. 根据权利要求1-4任一项所述的卸压阀门系统,其特征在于,所述主液压阀还包括第一弹性件,所述第一弹性件向所述主止流件施加第一正向力,所述第一正向力与所述第一液压室对所述主止流件施加的第一负向力方向相反。
  6. 根据权利要求2-4任一项所述的卸压阀门系统,其特征在于,所述触发阀内设有触发止流件,所述触发止流件封闭所述第二入水口和所述第二出水口,所述信号驱动器包括信号接收端、电磁装置和第二弹性件,所 述第二弹性件向所述触发止流件施加第二负向力,所述电磁装置向所述触发止流件施加与所述第二负向力方向相反的第二正向力,所述电磁装置能够在所述信号接收端接收到触发信号时解除所述第二正向力,所述第二弹性件能够在所述电磁装置解除所述第二正向力时推动所述触发止流件移动,使所述触发止流件解除对所述第二入水口和所述第二出水口的封闭。
  7. 根据权利要求1-4任一项所述的卸压阀门系统,其特征在于,所述第一液压室与所述高压容器通过第五连通管线相连,所述第五连通管线上设有缓冲装置。
  8. 根据权利要求7所述的卸压阀门系统,其特征在于,所述缓冲装置为文丘里管或孔板。
  9. 一种卸压方法,其特征在于,包括以下步骤:
    步骤S1,在高压容器和低压容器之间设置具有第一阀体的主液压阀,将所述高压容器与所述主液压阀的第一入水口连接,将所述低压容器与所述主液压阀的第一出水口连接;
    步骤S2,在所述第一阀体内设置主止流件,使所述主止流件封闭所述第一入水口和所述第一出水口,并与所述第一阀体形成密闭的第一液压室;
    步骤S3,接收卸压触发信号,使所述第一液压室卸压,使所述主止流件解除对所述第一入水口和所述第一出水口的封闭,在所述第一入水口和所述第一出水口之间形成贯通的液体流路,使所述高压容器的液体流入所述低压容器。
  10. 根据权利要求9所述的卸压方法,其特征在于,步骤S3包括:
    步骤S31,设置触发阀,将所述低压容器与所述触发阀的第二出水口连通,将所述第一液压室与所述触发阀的第二入水口连通;
    步骤S32,接收卸压触发信号,使所述触发阀开启,在所述第二入水口和所述第二出水口之间形成贯通的液体流路,使所述第一液压室内的液体流过所述触发阀后流入所述低压容器。
  11. 根据权利要求9所述的卸压方法,其特征在于,步骤S3包括:
    步骤S33,设置触发阀,将所述低压容器与所述触发阀的第二出水口连通,
    步骤S34,在所述触发阀和所述第一液压室之间设置具有第二阀体的阈值阀,将所述第一液压室与所述阈值阀的第三入水口连接,将所述触发阀的第二入水口与所述阈值阀的第三出水口连接;
    步骤S35,在所述第二阀体内设置阈值止流件,使所述阈值止流件封闭所述第三入水口和所述第三出水口,并与所述第二阀体形成密闭的第二液压室,所述第二液压室与所述高压容器连接;
    步骤S36,接收卸压触发信号,使所述触发阀开启,在所述第二入水口和所述第二出水口之间形成贯通的液体流路;
    步骤S37,在所述高压容器的压力降低至设定阈值时,使所述阈值止流件解除对所述第三入水口和所述第三出水口的封闭,在所述第三入水口和所述第三出水口之间形成贯通的液体流路,使所述第一液压室的液体流过所述阈值阀和所述触发阀后流入所述低压容器。
PCT/CN2022/081950 2021-03-22 2022-03-21 卸压阀门系统和卸压方法 WO2022199513A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023558261A JP2024511094A (ja) 2021-03-22 2022-03-21 減圧バルブシステムおよび減圧方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110302346.7 2021-03-22
CN202110302346.7A CN112923109B (zh) 2021-03-22 2021-03-22 一种安全泄压阀门系统

Publications (1)

Publication Number Publication Date
WO2022199513A1 true WO2022199513A1 (zh) 2022-09-29

Family

ID=76175355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081950 WO2022199513A1 (zh) 2021-03-22 2022-03-21 卸压阀门系统和卸压方法

Country Status (3)

Country Link
JP (1) JP2024511094A (zh)
CN (1) CN112923109B (zh)
WO (1) WO2022199513A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112923109B (zh) * 2021-03-22 2024-04-09 上海核工程研究设计院股份有限公司 一种安全泄压阀门系统
CN113571211B (zh) * 2021-07-06 2023-12-19 中国核电工程有限公司 反应堆超压保护系统及方法、核电系统及其一回路系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2454598Y (zh) * 2000-09-04 2001-10-17 湖南泵阀制造有限公司 旁通液压控制水锤泄压阀
US6729348B1 (en) * 1999-03-08 2004-05-04 Guiliani Alexandre Coupling assembly for petroleum liquefied gas with quick fastening automatic disconnection and retention and relief valve
CN102620037A (zh) * 2012-03-30 2012-08-01 烟台卡伦特机械制造有限公司 一种调压开关集成阀
CN204922130U (zh) * 2015-08-17 2015-12-30 成都国光电子仪表有限责任公司 一种利于减压比调节的天然气减压阀
CN206958266U (zh) * 2017-05-02 2018-02-02 华北电力大学 一种非能动阀门
WO2020197516A1 (en) * 2019-03-25 2020-10-01 Pural Ismail Islam Double secured safety valve
CN112923109A (zh) * 2021-03-22 2021-06-08 上海核工程研究设计院有限公司 一种安全泄压阀门系统
CN214889122U (zh) * 2021-03-22 2021-11-26 上海核工程研究设计院有限公司 一种安全泄压阀门系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203070785U (zh) * 2013-01-14 2013-07-17 上海核工程研究设计院 一种顶部带有双层结构的一体化反应堆
US9982785B2 (en) * 2013-02-05 2018-05-29 Shimadzu Corporation Pressure control valve and control valve
DE102013210458A1 (de) * 2013-02-20 2014-08-21 Robert Bosch Gmbh Ventileinrichtung mit einem Hauptventil und einem Vorsteuerventil
CN105719706A (zh) * 2014-12-01 2016-06-29 上海核工程研究设计院 小型反应堆的非能动堆芯冷却系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6729348B1 (en) * 1999-03-08 2004-05-04 Guiliani Alexandre Coupling assembly for petroleum liquefied gas with quick fastening automatic disconnection and retention and relief valve
CN2454598Y (zh) * 2000-09-04 2001-10-17 湖南泵阀制造有限公司 旁通液压控制水锤泄压阀
CN102620037A (zh) * 2012-03-30 2012-08-01 烟台卡伦特机械制造有限公司 一种调压开关集成阀
CN204922130U (zh) * 2015-08-17 2015-12-30 成都国光电子仪表有限责任公司 一种利于减压比调节的天然气减压阀
CN206958266U (zh) * 2017-05-02 2018-02-02 华北电力大学 一种非能动阀门
WO2020197516A1 (en) * 2019-03-25 2020-10-01 Pural Ismail Islam Double secured safety valve
CN112923109A (zh) * 2021-03-22 2021-06-08 上海核工程研究设计院有限公司 一种安全泄压阀门系统
CN214889122U (zh) * 2021-03-22 2021-11-26 上海核工程研究设计院有限公司 一种安全泄压阀门系统

Also Published As

Publication number Publication date
CN112923109B (zh) 2024-04-09
JP2024511094A (ja) 2024-03-12
CN112923109A (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2022199513A1 (zh) 卸压阀门系统和卸压方法
EP3799152A1 (en) Spraying system for battery pack, and battery pack
US20140116539A1 (en) Relief valve for overload protection
CA2667351A1 (en) Fuel cell system
WO2019015163A1 (zh) 液压操动机构及开关
CN101943284B (zh) 一种水击保护泄压阀
CA2585582A1 (en) Safety valve device
US8684034B2 (en) Pressure relief valve
CN214889122U (zh) 一种安全泄压阀门系统
CN211125918U (zh) 一种电池热管理装置和电动车辆
CN108518519B (zh) 一种电磁阀
CN201818856U (zh) 一种水击保护泄压阀
US11376455B2 (en) Control system for a fire-extinguishing installation, and safety device
CN107883026B (zh) 双向防漏水阀
CN108488454B (zh) 一种管道压力泄放系统
CN104819325A (zh) 一种高压关闭低压开启的水力控制阀
CN109282064A (zh) 液体节流稳压装置
CN219534789U (zh) 一种防爆式锂电池安全阀
CN217130419U (zh) 低水损的倒流防止器
JPH02129473A (ja) 安全弁装置
CN2934813Y (zh) 燃气安全阀
TR2023011278T2 (tr) Basınç Tahliye Valf Sistemi ve Basınç Tahliye Yöntemi
CN214534762U (zh) 一种先导式安全阀
CN216951920U (zh) 一种具备esd功能的控制装置
CN217502709U (zh) 压力调节阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023/011278

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 2023558261

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774173

Country of ref document: EP

Kind code of ref document: A1