WO2022199489A1 - 双drx模式下唤醒指示方法及相关装置 - Google Patents

双drx模式下唤醒指示方法及相关装置 Download PDF

Info

Publication number
WO2022199489A1
WO2022199489A1 PCT/CN2022/081735 CN2022081735W WO2022199489A1 WO 2022199489 A1 WO2022199489 A1 WO 2022199489A1 CN 2022081735 W CN2022081735 W CN 2022081735W WO 2022199489 A1 WO2022199489 A1 WO 2022199489A1
Authority
WO
WIPO (PCT)
Prior art keywords
sci
wake
format
drx
indicate
Prior art date
Application number
PCT/CN2022/081735
Other languages
English (en)
French (fr)
Inventor
黄伟
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2022199489A1 publication Critical patent/WO2022199489A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • LTE long term evolution
  • NR new radio
  • sidelink sidelink
  • UE user equipment
  • PDCCH physical downlink control channel
  • PSCCH physical sidelink control channel
  • data transfers are usually bursty. For example, there is data transmission for a period of time, and there is no data transmission for a long period of time after the data transmission. Therefore, most of the PDCCH/PSCCH detection performed by the UE fails to detect any indication.
  • DRX discontinuous reception
  • a wakeup signal is introduced into the NR system to further reduce the power consumption of the UE. That is, before the network device indicates the DRX cycle to the UE, it sends a WUS to the UE to indicate whether the UE needs to wake up in the next DRX cycle, and performs PDCCH detection and/or reception of the physical downlink shared channel (PDCCH) in the case of wake-up. shared channel, PDSCH), and/or perform measurement reporting.
  • PDCCH physical downlink shared channel
  • a dual DRX mechanism for communication services and positioning services that is, setting DRX parameters for communication services and positioning services respectively, such as DRX cycle, DRX duration timer (drx-on duration Timer), DRX inactivity timer (drx-inactivity Timer), etc.
  • DRX cycle DRX duration timer
  • DRX inactivity timer DRX inactivity Timer
  • the present application provides a wake-up indication method in dual DRX mode, which is applied to a sidelink system, the method comprising: a first device sending first sidelink control information (SCI) in the form of broadcast , and then send the second SCI within the preset time window in the form of multicast or unicast.
  • the format of the first SCI for indicating the second SCI is the first format
  • the second SCI of the first format includes a wake-up indication bit.
  • the wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the communication service and whether it wakes up within the duration timer of the DRX cycle for the positioning service.
  • the preset time window may be a power saving offset duration (Power saving offset duration) before one DRX cycle.
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the first SCI is 2 bits, and when the value of the second-stage SCI format field is binary 10 or 11, it is used to indicate the The format of the second SCI is the first format.
  • the first format is not any of the existing SCI format 2-A and SCI format 2-B.
  • the length of the above wake-up indication bit is 2 bits.
  • a second-order SCI (ie the second SCI) is newly designed to indicate whether the target UE (ie the second device) wakes up within the duration timer of the DRX cycle used for the communication service and whether it is used for the positioning service. Whether to wake up within the duration timer of the DRX cycle, on the one hand, there is no need to design a separate SCI for communication services and positioning services, which can reduce signaling overhead; on the other hand, power consumption and communication performance can be achieved through flexible wake-up or sleep indication and/or positioning performance tradeoffs.
  • the method before the first device sends the second SCI, the method further includes: the first device sends a sidelink (sidelink, SL) radio resource control (radio resource) to the second device control, RRC) signaling, the SL RRC signaling is used to indicate the start bit of the second SCI and/or the size of the second SCI.
  • SL sidelink
  • RRC radio resource control
  • this scheme sets a SL RRC signaling for the newly designed second-order SCI (ie the second SCI) to indicate the start bit and size of the wake-up indicator bit in the second-order SCI to support wake-up in dual DRX mode indicated implementation.
  • the above-mentioned second SCI further includes a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the length of the first field is 24 bits, and the length of the second field is also 24 bits.
  • the above-mentioned second SCI further includes one or more of the following fields: the third field is used to indicate that the second device includes one or more fields corresponding to each bit included in the third field. Whether to wake up on each carrier unit; the fourth field is used to indicate the start time and sleep duration of the second device entering dormancy in the DRX cycle for the communication service and the DRX cycle for the positioning service during the DRX duration, or The fourth field is used to indicate the start time and sleep duration of the second device entering dormancy within the DRX duration of the DRX cycle for the communication service, and the fifth field is used to indicate that the second device is in the DRX for the positioning service.
  • the present application provides a wake-up indication method in a dual DRX mode, which is applied to a sidelink system.
  • the method includes: a second device receives a first SCI, and then receives a second SCI.
  • the format of the first SCI for indicating the second SCI is the first format, and the second SCI of the first format includes a wake-up indication bit.
  • the wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the communication service and whether it wakes up within the duration timer of the DRX cycle for the positioning service.
  • the first SCI is a first-order SCI (1st stage SCI)
  • the second SCI is a second-order SCI (2nd stage SCI).
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the first SCI is 2 bits, and when the value of the second-stage SCI format field is binary 10 or 11, it is used to indicate the The format (fromat) of the second SCI is the first format.
  • the first format is not any of the existing SCI format 2-A and SCI format 2-B.
  • the length of the above wake-up indication bit is 2 bits.
  • the second device in combination with the second aspect, in a possible design, if the above-mentioned wake-up indication bit is used to indicate that the second device wakes up within the duration timer of the DRX cycle for the communication service, the second device is in the Wake up within the duration timer of the DRX cycle and perform PSCCH detection. And/or, if the above-mentioned wake-up indication bit is used to instruct the second device to wake up within the duration timer of the DRX cycle for positioning services, the second device wakes up within the duration timer of the DRX cycle for positioning services And perform PSCCH detection.
  • the "wake up” and “sleep” mentioned in this document are for PSCCH detection (or PSCCH blind detection), that is to say, the “wake up” mentioned in this document can be equivalently replaced with “perform PSCCH detection” , “sleep” can be equivalently replaced with “do not perform PSCCH detection”.
  • the method further includes: according to the indication of the wake-up indication bit in the second SCI, the second device, in the DRX used for the communication service Wake up or sleep within the duration timer of the cycle, and wake up or sleep within the duration timer of the DRX cycle for positioning services.
  • the method before the second device receives the second SCI, the method further includes: the second device receives SL RRC signaling, where the SL RRC signaling is used to indicate the start of the second SCI starting bits and/or the size of this second SCI.
  • the above-mentioned second SCI further includes a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the length of the first field is 24 bits, and the length of the second field is also 24 bits.
  • the above-mentioned second SCI further includes one or more of the following fields: the third field is used to indicate that the second device includes one or more fields corresponding to each bit included in the third field. Whether to wake up on each carrier unit; the fourth field is used to indicate the start time and sleep duration of the second device entering dormancy in the DRX cycle for the communication service and the DRX cycle for the positioning service during the DRX duration, or The fourth field is used to indicate the start time and sleep duration of the second device entering dormancy within the DRX duration of the DRX cycle for the communication service, and the fifth field is used to indicate that the second device is in the DRX for the positioning service.
  • the sixth field is used to indicate the period during which the second device performs physical sidelink control channel (PSCCH) or first SCI detection.
  • the third field includes one or more bits, and each bit corresponds to one or more carrier components (component carrier, CC).
  • the length of the third field may be equal to the sum of the number of carrier elements used for the communication service and the number of carrier elements used for the positioning service.
  • the present application provides a wake-up indication method in dual DRX mode, which is applied to a sidelink system.
  • the method includes: a first device sends a third SCI in the form of broadcast, and then sends the third SCI in the form of multicast or unicast in the pre-
  • the fourth SCI is sent within the set time window.
  • the format of the third SCI used to indicate that the fourth SCI is the second format
  • the fourth SCI of the second format includes the first wake-up indication bit.
  • the first wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle.
  • the preset time window may be a power saving offset duration before one DRX cycle.
  • the third SCI is a first-order SCI (1st stage SCI), and the fourth SCI is a second-order SCI (2nd stage SCI).
  • the length of the second-order SCI format field in the third SCI is k bits, and k is an integer greater than 2.
  • the value of the second-order SCI format field is any integer greater than or equal to decimal 2 and less than or equal to 2 k ⁇ 1, it is used to indicate that the format of the fourth SCI is the second format.
  • the second format is not any of the existing SCI format 2-A and SCI format 2-B. where k is equal to 3.
  • the above-mentioned first wake-up indication bit is specifically used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the first service.
  • the first service may be a communication service or a positioning service.
  • the length of the first wake-up indication bit is 1 bit.
  • a second-order SCI is designed separately for the DRX cycle of the communication service or the DRX cycle of the positioning service to indicate whether the second device wakes up during its cycle. Communication performance or positioning performance trade-off.
  • the method further includes: the first device sends the fifth SCI in the form of broadcast, and then sends the sixth SCI in the form of multicast or unicast within a preset time window.
  • the fifth SCI is used to indicate that the format of the sixth SCI is the third format.
  • the fifth SCI of the third format includes a second wakeup indication bit.
  • the second wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the second service.
  • the second service is a communication service
  • the first service is a positioning service
  • the first service is a communication service.
  • the fifth SCI is a first-order SCI (1st stage SCI), and the sixth SCI is a second-order SCI (2nd stage SCI).
  • the length of the second-order SCI format field in the fifth SCI is k bits, where k is an integer greater than 2.
  • the value of the second-order SCI format field in the fifth SCI is different from the value of the second-order SCI field in the third SCI, and the value of the second-order SCI format field in the fifth SCI is greater than or equal to decimal 2
  • the format used to indicate the sixth SCI is the third format.
  • the third format is neither any of the existing SCI format 2-A and SCI format 2-B, nor the above-mentioned second format. where k is equal to 3.
  • the length of the second wake-up indication bit is 1 bit.
  • a second-order SCI is designed for the DRX cycle of the communication service and the DRX cycle of the positioning service to indicate whether the second device wakes up in its cycle. It does not interfere, has high flexibility, and can be applied to various scenarios, which is beneficial to reduce power consumption and realize the trade-off between power consumption and communication performance and positioning performance.
  • the method before the first device sends the fourth SCI, the method further includes: the first device sends the first SL RRC signaling to the second device, and the first SL RRC signaling uses to indicate the start bit of the fourth SCI and/or the size of the fourth SCI.
  • the method before the first device sends the sixth SCI, the method further includes: the first device sends a second SL RRC signaling to the second device, and the second SL RRC signaling uses to indicate the start bit of the sixth SCI and/or the size of the sixth SCI.
  • this scheme sets the SL RRC signaling for the newly designed second-order SCI (ie the fourth SCI or the sixth SCI) format to indicate the start bit and size of the wake-up indication bit in the second-order SCI to support dual Implementation of wakeup indication in DRX mode.
  • the fourth SCI and the sixth SCI both include the first field and the second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the length of the first field is 24 bits, and the length of the second field is also 24 bits.
  • the above-mentioned fourth SCI and the above-mentioned sixth SCI each include one or more of the following fields: the third field is used to indicate the second device in each bit of the third field Whether to wake up on the corresponding carrier unit; the fourth field is used to indicate the start time and dormancy of the second device entering dormancy in the DRX cycle for the first service or the DRX duration in the DRX cycle for the second service duration, and the sixth field is used to indicate the period during which the second device performs PSCCH detection or third SCI or fifth SCI detection.
  • the third field includes one or more bits, each bit corresponding to one or more carrier units.
  • the length of the third field may be equal to the number of carrier elements used for communication services or the number of carrier elements used for positioning services.
  • the present application provides a wake-up indication method in a dual DRX mode, which is applied to a sidelink system.
  • the method includes: a second device receives a third SCI, and then receives a fourth SCI.
  • the format of the third SCI used to indicate that the fourth SCI is the second format
  • the fourth SCI of the second format includes the first wake-up indication bit.
  • the first wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle.
  • the third SCI is a first-order SCI (1st stage SCI), and the fourth SCI is a second-order SCI (2nd stage SCI).
  • the length of the second-order SCI format field in the third SCI is k bits, and k is an integer greater than 2.
  • the value of the second-order SCI format field is any integer greater than or equal to decimal 2 and less than or equal to 2 k ⁇ 1, it is used to indicate that the format of the fourth SCI is the second format.
  • the second format is not any of the existing SCI format 2-A and SCI format 2-B. where k is equal to 3.
  • the above-mentioned first wake-up indication bit is specifically used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the first service.
  • the first service may be a communication service or a positioning service.
  • the length of the first wake-up indication bit is 1 bit.
  • the method further includes: the second device receives the fifth SCI, and then receives the sixth SCI.
  • the fifth SCI is used to indicate that the format of the sixth SCI is the third format.
  • the fifth SCI of the third format includes a second wakeup indication bit.
  • the second wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the second service.
  • the second service is a communication service
  • the first service is a positioning service
  • the second service is a positioning service
  • the first service is a communication service.
  • the fifth SCI is a first-order SCI (1st stage SCI), and the sixth SCI is a second-order SCI (2nd stage SCI).
  • the length of the second-order SCI format field in the fifth SCI is k bits, where k is an integer greater than 2.
  • the value of the second-order SCI format field in the fifth SCI is different from the value of the second-order SCI field in the third SCI, and the value of the second-order SCI format field in the fifth SCI is greater than or equal to decimal 2
  • the format used to indicate the sixth SCI is the third format.
  • the third format is neither any of the existing SCI format 2-A and SCI format 2-B, nor the above-mentioned second format. where k is equal to 3.
  • the length of the second wake-up indication bit is 1 bit.
  • the method before the second device receives the fourth SCI, the method further includes: the second device receives first SL RRC signaling, where the first SL RRC signaling is used to indicate the first SL RRC signaling.
  • the method before the second device receives the sixth SCI, the method further includes: the second device receives second SL RRC signaling, where the second SL RRC signaling is used to indicate the sixth SCI The starting bits of the sixth SCI and/or the size of the sixth SCI.
  • the second device is within the duration timer of the DRX cycle. Wake up and perform PSCCH detection.
  • the above-mentioned second wake-up indication bit is used to indicate that the second device wakes up within the duration timer of the DRX cycle for the second service, the second device wakes up within the duration of the DRX cycle for the second service Wake up within the timer and perform PSCCH detection.
  • the method further includes: the second device according to the indication of the first wake-up indication bit in the fourth SCI, during the duration of the DRX cycle Wake up or sleep within the timer.
  • the method further includes: according to the indication of the second wake-up indication bit in the sixth SCI, the second device is used for the second service Wake or sleep within the duration timer of the DRX cycle.
  • both the above-mentioned fourth SCI and the above-mentioned sixth SCI include a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the length of the first field is 24 bits, and the length of the second field is also 24 bits.
  • the above-mentioned fourth SCI and the above-mentioned sixth SCI each include one or more of the following fields: the third field is used to indicate that the second device is in each bit of the third field Whether to wake up on the corresponding carrier unit; the fourth field is used to indicate the start time and dormancy of the second device entering dormancy in the DRX cycle for the first service or the DRX duration in the DRX cycle for the second service duration, and the sixth field is used to indicate the period during which the second device performs PSCCH detection or third SCI or fifth SCI detection.
  • the third field includes one or more bits, each bit corresponding to one or more carrier units.
  • the length of the third field may be equal to the number of carrier elements used for communication services or the number of carrier elements used for positioning services.
  • the present application provides a wake-up indication method in a dual DRX mode, which is applied in a cellular system.
  • the method includes: a network device sends downlink control information (DCI) within a preset time window, the preset The time window may be the power saving offset duration before one DRX cycle.
  • the DCI includes a wake-up indication bit, and the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service and whether it is within the duration timer of the DRX cycle used for the positioning service. wake.
  • the format of the DCI is the format of the DCI used to indicate whether the terminal equipment wakes up in the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the DCI is DCI format 2-6.
  • each block of the DCI includes a wake-up indication bit.
  • the wake-up indication bit has a length of 2 bits.
  • this solution expands the functions of the traditional DCI fromat 2-6, so that it can simultaneously indicate whether the terminal device wakes up within the drx-on duration of the DRX cycle for communication services and whether it wakes up during the drx-on duration of the DRX cycle for positioning services. Whether to wake up within the drx-on duration, on the one hand, there is no need to design DCI separately for communication services and positioning services, which can reduce signaling overhead; Or positioning performance tradeoffs.
  • the above-mentioned DCI further includes a first indicator bit, and the first indicator bit is used to indicate whether the terminal device is on the secondary cell corresponding to each bit included in the first indicator bit. wake.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. P is an integer greater than or equal to 0.
  • this solution can further save power consumption by not only indicating wake-up and dormancy on the primary cell through the wake-up indication bit, but also instructing the wake-up and dormancy on the secondary cell through the first indicator bit.
  • the present application provides a wake-up indication method in a dual DRX mode, which is applied in a cellular system.
  • the method includes: a terminal device receives the DCI.
  • the DCI includes a wake-up indication bit, and the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service and whether it is within the duration timer of the DRX cycle used for the positioning service. wake.
  • the format of the DCI is the format of the DCI used to indicate whether the terminal equipment wakes up in the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the DCI is DCI format 2-6.
  • each block of the DCI includes a wake-up indication bit.
  • the wake-up indication bit has a length of 2 bits.
  • the terminal device will wake up in the DRX cycle used for the communication service. Wake up within the duration timer and perform physical downlink control channel PDCCH detection. And/or, if the above-mentioned wake-up indication bit is used to indicate that the terminal device wakes up within the duration timer of the DRX cycle for the positioning service, the terminal device wakes up within the duration timer of the DRX cycle for the positioning service and performs PDCCH detection.
  • the method further includes: the terminal device parses the first DCI, and according to the indication of the first wake-up indication bit in the first DCI, at Wake up or sleep within the duration timer of the DRX cycle for communication traffic, and wake up or sleep within the duration timer of the DRX cycle for positioning traffic.
  • the above-mentioned DCI further includes a first indicator bit, and the first indicator bit is used to indicate whether the terminal device is on the secondary cell corresponding to each bit included in the first indicator bit. wake.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. P is an integer greater than or equal to 0.
  • the present application provides a wake-up indication method in a dual DRX mode, which is applied to a cellular system.
  • the method includes: a network device sends a first DCI within a preset time window, and the preset time window may be a DRX cycle The previous power saving offset duration (power saving offset duration).
  • the first DCI includes a first wake-up indication bit, where the first wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the positioning service.
  • the format of the first DCI is not the format of the DCI for indicating whether the terminal device wakes up in the duration timer of the DRX cycle for the communication service, that is, the format of the first DCI is not the existing DCI format 2-6.
  • the above-mentioned first DCI adopts a block design, and each block of the first DCI includes a first wake-up indication bit.
  • the length of the first wake-up indication bit is 1 bit.
  • this scheme designs a new DCI format for the DRX cycle of the positioning service in the cellular system to indicate the wake-up or sleep in the drx-on duration of the DRX cycle of the positioning service.
  • the meaning is clear and the flexibility is high. It can be applied to various scenarios; on the other hand, power consumption can be reduced to achieve a trade-off between power consumption and communication performance and/or positioning performance.
  • the method further includes: the network device sends a second DCI, where the format of the second DCI is used in the NR system to instruct the terminal device to time the duration of the DRX cycle of the communication service Whether the format of the DCI awakened in the device, that is, the format of the second DCI is the existing DCI format 2-6.
  • the second DCI includes a second wake-up indication bit for indicating whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service.
  • each block of the second DCI includes a second wake-up indication bit.
  • the length of the second wake-up indication bit is 1 bit.
  • the method before the network device sends the first DCI, the method further includes: the network device sends RRC signaling, where the RRC signaling is used to indicate the start bit of the first wake-up indication bit and/or size.
  • this scheme sets up RRC signaling for the newly designed DCI (ie the first DCI) format, which is used to indicate the start bit of the first wake-up indication bit corresponding to the terminal device and the block where the first wake-up indication bit is located ( block) to support the implementation of wake-up indication in dual DRX mode.
  • the above-mentioned first DCI further includes a first indication bit, where the first indication bit is used to indicate the secondary cell corresponding to each bit included in the first indication bit by the terminal device whether to wake up.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. P is an integer greater than or equal to 0.
  • the present application provides a wake-up indication method in dual DRX mode, which is applied in a cellular system.
  • the method includes: a terminal device receives the first DCI, the first DCI includes a first wake-up indication bit, and the first wake-up The indicator bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the positioning service.
  • the format of the first DCI is not the format of the DCI used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service, that is, the format of the first DCI is not the existing DCI format 2-6.
  • the above-mentioned first DCI adopts a block design, and each block of the first DCI includes a first wake-up indication bit.
  • the length of the first wake-up indication bit is 1 bit.
  • the method further includes: the terminal device receives a second DCI, where the format of the second DCI is used in the NR system to indicate that the terminal device is timing the duration of the DRX cycle of the communication service Whether the format of the DCI awakened in the device, that is, the format of the second DCI is the existing DCI format 2-6.
  • the second DCI includes a second wake-up indication bit, where the second wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service.
  • each block of the second DCI includes a second wake-up indication bit.
  • the length of the second wake-up indication bit is 1 bit.
  • the method before the terminal device receives the first DCI, the method further includes: the terminal device receives RRC signaling, where the RRC signaling is used to indicate the start bit of the first wake-up indication bit and/or size.
  • the terminal device wakes up within the duration timer (drx-on duration Timer) of the DRX cycle used for the communication service
  • the terminal The device wakes up within the duration timer of the DRX cycle for communication traffic and performs physical downlink control channel PDCCH detection.
  • the above-mentioned second wake-up indication bit is used to instruct the terminal device to wake up within the duration timer of the DRX cycle for the positioning service, the terminal device wakes up within the duration timer of the DRX cycle for the positioning service And perform PDCCH detection.
  • the method further includes: the terminal device parses the first DCI, according to the indication of the first wake-up indication bit in the first DCI , wake up or sleep within the duration timer of the DRX cycle for the positioning service.
  • the above-mentioned first DCI further includes a first indication bit, and the first indication bit is used to indicate the secondary cell corresponding to each bit included in the first indication bit by the terminal device whether to wake up.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. P is an integer greater than or equal to 0.
  • the present application provides a communication apparatus, where the communication apparatus may be a first device or a chip in the first device.
  • the communication apparatus includes the dual DRX provided for executing the above-mentioned first aspect, or the above-mentioned third aspect, or any possible implementation manner of the above-mentioned first aspect, or any one of the above-mentioned possible implementation manners of the third aspect
  • the unit and/or module of the wake-up instructing method in the mode can also achieve the beneficial effects (or advantages) of the wake-up instructing method in the dual DRX mode provided by the first aspect or the third aspect.
  • the present application provides a communication apparatus, where the communication apparatus may be a second device or a chip in the second device.
  • the communication apparatus includes the dual DRX provided for executing the above second aspect, or the above fourth aspect, or any possible implementation manner of the above second aspect, or any one possible implementation manner of the above fourth aspect
  • the unit and/or module of the wake-up instructing method in the mode can also achieve the beneficial effects (or advantages) of the wake-up instructing method in the dual DRX mode provided by the second aspect or the fourth aspect.
  • the present application provides a communication apparatus, which may include a processor, a memory, and a transceiver.
  • the memory is used to store a computer program
  • the transceiver is used to send and receive various information or signaling
  • the computer program includes program instructions
  • the processor runs the program instructions
  • the communication device is made to perform the above-mentioned first aspect to the above-mentioned
  • the wake-up indication method in the dual DRX mode described in any one of the eighth aspects, or any one possible implementation manner of any one of the aspects.
  • the transceiver may be a radio frequency module in a communication device, or a combination of a radio frequency module and an antenna, or an input and output interface of a chip or circuit.
  • the present application provides a readable storage medium, where program instructions are stored on the readable storage medium, and when the readable storage medium runs on a computer, the computer enables the computer to execute any one of the above-mentioned first aspect to the above-mentioned eighth aspect. , or the wake-up indication method in the dual DRX mode described in any possible implementation manner of any one of the aspects.
  • the present application provides a program product including instructions, which, when running, wakes up in the dual DRX mode described in any possible implementation manner of any one of the above-mentioned first aspect to the above-mentioned eighth aspect. Indicates that the method is executed.
  • the present application provides an apparatus, which may be implemented in the form of a chip or in the form of a device, and the apparatus includes a processor.
  • the processor is configured to read and execute the program stored in the memory, so as to execute one or more of any one of the first aspect to the eighth aspect above, or, in any possible implementation manner of any one of the aspects.
  • the apparatus further includes a memory connected to the processor through a circuit.
  • the apparatus further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used for receiving information and/or signaling to be processed, the processor obtains the information and/or signaling from the communication interface, processes the information and/or signaling, and outputs the information and/or signaling through the communication interface process result.
  • the communication interface may be an input-output interface.
  • processor and memory may be physically independent units, or the memory may also be integrated with the processor.
  • the present application provides a communication system, where the communication system includes the communication device described in the third aspect or the seventh aspect, and the communication device described in the fourth aspect or the eighth aspect.
  • power consumption can be reduced, and a trade-off between power consumption and communication performance and/or positioning performance can be achieved.
  • FIG. 1 is a schematic diagram of several positioning scenarios provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the alignment of duration timers in two DRX cycles provided by an embodiment of the present application at the start time;
  • FIG. 3 is a first schematic flowchart of a wake-up indication method in dual DRX mode provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of the format of the second SCI provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram 1 of the drx-on duration Timer alignment scenario of DRX-C and DRX-P provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram 1 of a scenario where a positioning service exists during a dormant period of a DRX-C provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram 1 of a scenario where a positioning service exists in the drx-on duration Timer of the DRX-C provided by the embodiment of the present application;
  • FIG. 8 is a second schematic flowchart of a wake-up indication method in dual DRX mode provided by an embodiment of the present application.
  • Fig. 9 is the format schematic diagram of SCI format 2-C and SCI format 2-D provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram 2 of a scenario where a positioning service exists during a dormant period of a DRX-C provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a scenario in which DRX-C and DRX-P do not overlap in time according to an embodiment of the present application;
  • FIG. 12 is a schematic diagram 2 of a scenario where a positioning service exists in the drx-on duration Timer of the DRX-P provided by the embodiment of the present application;
  • FIG. 13 is a schematic diagram 2 of the drx-on duration Timer alignment scenario of DRX-C and DRX-P provided by an embodiment of the present application;
  • FIG. 14 is a third schematic flowchart of a wake-up indication method in dual DRX mode provided by an embodiment of the present application.
  • 15 is a schematic diagram of a format of a DCI provided by an embodiment of the present application.
  • 17 is a schematic diagram of a format of a first DCI provided by an embodiment of the present application.
  • Fig. 18 is the format schematic diagram of DCI format 2-6 in NR system
  • FIG. 19 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a communication device 2 provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of a communication device 3 provided by an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of a communication device 4 provided by an embodiment of the present application.
  • FIG. 23 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • the first SCI and the second SCI are only for distinguishing different information, and do not limit their order.
  • the words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or”, which describes the association relationship of the associated objects, indicates that there can be three kinds of relationships, for example, A and/or B, which can indicate: the existence of A alone, the existence of A and B at the same time, and the existence of B alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • “At least one item(s) below” or similar expressions thereof refer to any combination of these items, including any combination of single item(s) or plural items(s).
  • At least one (a) of a, b, or c may represent: a, b, c; a and b; a and c; b and c; or a and b and c.
  • a, b, c can be single or multiple.
  • the "dual DRX mode” refers to a situation in which DRX mode configuration and parameter configuration are respectively performed for the communication service and the positioning service.
  • the wake-up indication method in the dual DRX mode can be used in positioning scenarios that support wireless communication, such as 5G NR, sidelink, wireless fidelity (WiFi), ultra wide band (UWB), and Bluetooth.
  • wireless communication may also be referred to as “communication” for short, and the term “communication” may also be described as "data transmission”, “information transmission” or “transmission”.
  • FIG. 1 is a schematic diagram of several positioning scenarios provided by an embodiment of the present application.
  • Figure 1 shows several common positioning scenarios: cellular positioning, sidelink communication and positioning, WiFi positioning, and UWB positioning/Bluetooth positioning.
  • each terminal device is located within the coverage of the base station.
  • each terminal device can be located within the coverage area of the base station or outside the coverage area of the base station.
  • each terminal device (such as a site) may be located within the coverage of a wireless access point (AP), or may be located outside the coverage of the AP.
  • AP wireless access point
  • the terminal device can be located either within the coverage of the anchor point or outside the coverage of the anchor point.
  • each device participating in the positioning may send a positioning reference signal (positioning reference signal, PRS), or channel state information reference information (channel state information reference signal, CSI-RS), or a synchronization tracking reference signal (tracking reference signal, TRS) and other positioning measurement reference signals, and have DRX capability.
  • PRS positioning reference signal
  • CSI-RS channel state information reference information reference information
  • TRS synchronization tracking reference signal
  • the wake-up indication method in the dual DRX mode provided by the embodiment of the present application can be applied to various positioning scenarios shown in FIG. 1 .
  • FIG. 1 is only exemplary, and the dual DRX provided by the embodiment of the present application
  • the wake-up indication method in the mode can also be applied to other positioning scenarios that support wireless communication.
  • the network device involved in the embodiments of the present application is an entity on the network side for transmitting or receiving signals, such as a base station (base station, BS), a WiFi AP, a UWB anchor point, an indoor coverage small station, and the like.
  • a network device is a device deployed in a wireless access network that can wirelessly communicate with a terminal.
  • a base station (BS) can be fixed or mobile.
  • the base station can broadly cover the following names, or be replaced with the following names, such as: Node B (NodeB), evolved NodeB (eNB), next generation NodeB (gNB), relay station, Transmitting and receiving point (TRP), transmitting point (TP), primary station MeNB, secondary station SeNB, multi-standard radio (MSR) node, home base station, network controller, access node, wireless node , transmission node, transceiver node, baseband unit (BBU), remote radio unit (RRU), active antenna unit (AAU), radio head (RRH), central unit (CU), distribution unit (DU), positioning node, etc.
  • Network devices can support networks of the same or different access technologies. The embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the terminal device involved in the embodiments of the present application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • End devices can be used to connect people, things and machines.
  • Terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal device may be a user equipment (user equipment, UE), a mobile station (mobile station, MS), a mobile terminal (mobile terminal, MT), and the like.
  • the UE includes a handheld device with a wireless communication function, a vehicle-mounted device, a wearable device (a wristband, a smart watch), a sensor, a data card or a computing device.
  • the UE may be a mobile phone, a notebook computer, a tablet computer, or a computer with a wireless transceiver function.
  • the terminal device may also be a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, intelligent Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • VR virtual reality
  • AR augmented reality
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the UE can also be used to act as a base station.
  • a UE may act as a scheduling entity between UEs in vehicle-to-everything (V2X), device-to-device (D2D), or peer-to-peer (P2P), etc. Provides sidelink signals.
  • V2X vehicle-to-everything
  • D2D device-to-device
  • P2P peer-to-peer
  • network devices and terminal devices involved in the embodiments of the present application both have the DRX capability and support communication and positioning functions.
  • the primary cell uses the FR1 frequency band
  • the secondary cell uses the FR2 frequency band. Therefore, different DRX parameters can be configured for the primary cell and the secondary cell, and the Secondary DRX Group mechanism can be introduced.
  • the Scell cell is configured with discontinuous reception group 2 (DRX group2)
  • the corresponding DRX parameters are the short DRX duration timer (short drx-on Duration Timer) and the short DRX inactivity timer (short drx-Inactivity Timer), so that the UE can enter the inactive state or sleep state faster in the Scell , resulting in a higher power saving gain.
  • a wake-up signal WUS is used to indicate the wake-up or sleep of the two DRX groups.
  • a single-bit WUS is used to indicate, and the wake-up and sleep of the long-cycle DRX group obeys the short-cycle DRX group that is similar to it. WUS instructions.
  • the Secondary DRX Group mechanism uses a WUS (that is, a single-bit WUS indication) to indicate the wake-up or dormancy of two serving cells, the Secondary DRX Group mechanism is only applicable to the duration timer (drx-on) of two DRX cycles. Duration Timer) are aligned (or identical) to the scene at the start time. Referring to FIG.
  • FIG. 2 is a schematic diagram illustrating the alignment of duration timers in two DRX cycles at the start time provided by an embodiment of the present application.
  • the UE wakes up within a period of time indicated by the drx-on Duration Timer for PDCCH detection.
  • the Secondary DRX Group mechanism does not support cross-carrier scheduling, so the power consumption is still relatively large during component carrier (CC) measurement.
  • the embodiment of the present application provides a wake-up indication method in a dual DRX mode, which can not only indicate that the start times of the duration timers in the two DRX cycles are not aligned (or are not the same), respectively, indicate that they are used for positioning services. It can also reduce power consumption and achieve a trade-off between power consumption and communication performance and/or positioning performance.
  • the first embodiment describes a solution for uniformly designing a wake-up indication for the DRX cycle of the communication service and the DRX cycle of the positioning service in the sidelink system.
  • Embodiment 2 describes a solution for independently designing wake-up indications for the DRX cycle of the communication service and the DRX cycle of the positioning service in the sidelink system.
  • Embodiment 3 describes a solution for uniformly designing a wake-up indication for the DRX cycle of the communication service and the DRX cycle of the positioning service in the cellular system.
  • Embodiment 4 describes a solution for independently designing a wake-up indication for the DRX cycle of a positioning service in a cellular system. It is understandable that the same or similar parts of the concepts or solutions involved in Embodiment 1 to Embodiment 4 of the present application may be referred to or combined with each other. Each embodiment will be described in detail below.
  • the technical solution provided in this application may be implemented by the first device and the second device.
  • the first device may be either a network device, such as a base station, or a terminal device, such as a UE.
  • the second device is a terminal device, such as a UE.
  • the first device and the second device are DRX capable and support communication and positioning functions. It should be understood that in the sidelink system, the first device and the second device are different terminal devices participating in positioning. In the cellular system, the first device is a network device participating in positioning, and the second device is a terminal device participating in positioning.
  • the DRX cycle used for the communication service is hereinafter referred to as DRX-C, that is, DRX-communication;
  • the DRX cycle used for the positioning service is DRX-P, that is, DRX-positioning.
  • the "dual DRX mode" mentioned in the embodiments of the present application refers to the case where DRX cycles are respectively set for the communication service and the positioning service.
  • the first embodiment of the present application mainly introduces the scheme of uniformly designing a wake-up indication for the DRX cycle of the communication service and the DRX cycle of the positioning service when the communication service and the positioning service coexist for a period of time in the sidelink system, that is, a wake-up signal is used. Indicates the wake-up or sleep in the DRX cycle of the two services respectively.
  • FIG. 3 is a first schematic flowchart of a wake-up indication method in a dual DRX mode provided by an embodiment of the present application.
  • the wake-up indication method in the dual DRX mode includes but is not limited to the following steps:
  • the first device sends first sidelink control information (sidelink control information, SCI).
  • first sidelink control information sidelink control information, SCI.
  • the first device sends a second SCI, where the first SCI is used to indicate that the format of the second SCI is the first format, the second SCI of the first format includes a wake-up indication bit, and the wake-up indication bit is used to indicate the second SCI Whether the device wakes up within the duration timer of the discontinuous reception DRX cycle for communication traffic and within the duration timer of the DRX cycle for positioning traffic.
  • both the communication service and the positioning service exist between the first device and the second device, and both the first device and the second device enter the dual DRX mode.
  • the first device sends first sidelink control information (SCI) in the form of broadcast.
  • the first device then sends the second SCI in the form of multicast or unicast within the preset time window.
  • the preset time window may be a power saving offset (Power saving offset) period before one DRX cycle.
  • the first SCI is a first-order SCI (1st stage SCI)
  • the second SCI is a second-order SCI (2nd stage SCI).
  • the first-order SCI (1st stage SCI) contains the resource indication of the second-order SCI (2nd stage SCI), and the second-order SCI is exclusive to the UE.
  • all UEs can parse the first-order SCI to obtain the resource indication of the second-order SCI, but a second-order SCI can only be parsed by a specific UE to obtain the information contained therein.
  • the first-order SCI (1st stage SCI) can be used to indicate the format type of the second-order SCI (2nd stage SCI), so the first SCI can be used to indicate the format of the second SCI.
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the first SCI is 2 bits, and when the value of the second-stage SCI format field is binary 10 or 11, it is used to indicate the second-stage SCI format field.
  • the format is the first format.
  • the first format is not any one of the existing SCI format 2-A and SCI format 2-B, for example, the format of the second SCI is SCI format 2-C. It should be understood that the embodiment of the present application does not limit the name of the format of the second SCI.
  • the format of the second SCI is hereinafter denoted as SCI format 2-C.
  • the 2nd stage SCI (2nd stage SCI) can be used to carry the indication bits of the wake-up signal, so the second SCI includes the wake-up indication bits.
  • the wake-up indication bit is used to indicate whether the second device wakes up within the duration timer (drx-on duration Timer) of the DRX cycle for the communication service and whether it wakes up within the duration timer of the DRX cycle for the positioning service .
  • the SCI carrying the wake-up indication in the sidelink system is UE-specific
  • the SCI carrying the wake-up indication is also specific to each UE, or UE-specific, so a two-stage SCI is required.
  • SCI to indicate.
  • the 1st stage SCI (such as the above-mentioned first SCI) is used to indicate the format type of the 2nd stage SCI
  • the 2nd stage SCI (such as the above-mentioned second SCI) is used to carry the indication bits of the wake-up signal.
  • the 2nd stage SCI in the 3GPP sidelink system has only two formats, SCI format 2-A and SCI format 2-B, and both SCI format 2-A and SCI format 2-B are scheduling control information for communication services. Therefore, the embodiment of the present application first expands the 2nd SCI format type, and introduces a new 2nd SCI format to carry the wake-up indication bit.
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the above-mentioned first SCI is 2 bits, and the embodiment of the present application performs function expansion on the second-stage SCI format field.
  • the second-stage SCI format field is When the value of is a reserved value, such as "10" or "11", it is used to indicate that the format of the above-mentioned second SCI is SCI format 2-C (that is, the first format).
  • the value of the second-order SCI format field in the first SCI in the embodiment of the present application is 10 or 11.
  • the format of the second SCI is SCI format 2-C
  • the second SCI includes a wake-up indication bit, a first field, and a second field.
  • the wake-up indication bit is used to indicate whether the second device wakes up within the drx-on duration Timer of the DRX cycle for the communication service and whether it wakes up within the drx-on duration Timer of the DRX cycle for the positioning service.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the first field may be referred to as a source identification field, and the second field may be referred to as a target identification field. It should be understood that the first field and the second field may also have other names, which are not limited in this embodiment of the present application.
  • the second SCI further includes one or more of the following fields: a third field, a fourth field, a fifth field, and a sixth field.
  • the third field includes one or more bits, and each bit corresponds to one or more carrier components (component carrier, CC).
  • the third field is used to indicate whether the second device wakes up on one or more carrier units corresponding to each bit included in the third field.
  • the length of the third field may be equal to the sum of the number of carrier elements used for the communication service and the number of carrier elements used for the positioning service.
  • the fourth field is used to indicate the start moment and the sleep duration of the second device entering dormancy within the drx-on duration Timer of DRX-C and DRX-P.
  • the fourth field is used to indicate the start time and sleep duration of the second device entering dormancy in the drx-on duration Timer of DRX-C
  • the fifth field is used to indicate that the second device is in the drx-on duration of DRX-P.
  • the sixth field is used to indicate the period during which the second device performs physical sidelink control channel (physical sidelink control channel, PSCCH) or first SCI detection.
  • PSCCH physical sidelink control channel
  • the third field may be referred to as a sleep indication field
  • the fourth field may be referred to as a PSCCH skip indication field or a PSCCH skip indication 1 field
  • the fifth field may be referred to as a PSCCH skip indication 2 field
  • the fourth field may be referred to as a PSCCH skip indication 2 field.
  • the six fields may be referred to as detection cycle indication fields; it should be understood that the third field, the fourth field, the fifth field, and the sixth field may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 4 is a schematic diagram of the format of the second SCI provided by the embodiment of the present application.
  • the second SCI ie, SCI format 2-C
  • the second SCI includes a source ID (source ID) field, a destination ID (destination ID) field, and a wake-up indication (Wake-up indication) bit, and optionally also includes One or more of a dormancy indication field, a PSCCH skipping indication (PSCCH skipping indication) field, and a monitoring periodic indication (monitoring periodic indication) field.
  • the length of the source ID field (that is, the above-mentioned first field) is 24 bits, and is used to represent the complete Layer 2 identifier (Layer2-ID) of the source UE (that is, the above-mentioned first device).
  • the complete layer 2 identity of the source UE ie the above-mentioned first device
  • the length of the source ID field may also be greater than 24 bits, which is not limited in this embodiment of the present application.
  • the length of the destination ID field (that is, the above-mentioned second field) is 24 bits, and is used to represent the complete Layer 2 identification (Layer2-ID) of the target UE (that is, the above-mentioned second device).
  • the complete layer 2 identity of the target UE ie the above-mentioned second device
  • the length of the destination ID field may also be greater than 24 bits, which is not limited in this embodiment of the present application.
  • the target UE that is, the above-mentioned second device
  • the media access control (media access control, MAC) layer header (that is, the MAC header) is sent in the middle, so the target UE cannot recover the complete layer 2 identity according to the MAC header. Therefore, in the embodiment of the present application, by directly carrying the complete layer 2 identity of the UE in the second SCI, it is possible to avoid the situation that the complete layer 2 identity cannot be recovered without the MAC header.
  • the length of the wake-up indication (Wake-up indication) bit is 2 bits, which are respectively used to indicate whether the target UE (that is, the above-mentioned second device) wakes up in the drx-on duration Timer of the DRX cycle used for the communication service, and whether the Whether to wake up within the drx-on duration Timer of the DRX cycle used for positioning services.
  • the target UE ie the above-mentioned second device
  • the target UE performs PSCCH detection. See Table 2 below, which shows a mapping relationship between the value and meaning of the wake-up indication bit; of course, the value and meaning of the wake-up indication bit may also have other mapping relationships, which are not listed here.
  • the wake-up indication bit when the wake-up indication bit is 11, it means that the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the communication service for PSCCH detection, and is used for positioning Wake up within the drx-on duration Timer of the DRX cycle of the service for PSCCH detection.
  • the wake-up indication bit is 00, it means that the target UE (that is, the second device) sleeps in the drx-on duration Timer of the DRX cycle for the communication service, and sleeps in the drx-on duration Timer of the DRX cycle for the positioning service sleep inside.
  • the wake-up indication bit is 01, it means that the target UE (that is, the second device) sleeps in the drx-on duration Timer of the DRX cycle for the communication service, and is in the drx-on duration Timer of the DRX cycle for the positioning service Internal wake-up for PSCCH detection.
  • the wake-up indication bit is 10
  • the target UE that is, the second device wakes up within the drx-on duration Timer of the DRX cycle for the communication service to perform PSCCH detection, and wakes up at the drx-on duration Timer of the DRX cycle for the positioning service -on duration Timer sleep. It should be understood that it is not limited whether “1” or “0” is specifically used in the embodiment of the present application to indicate wake-up.
  • the source UE (that is, the above-mentioned first device) also wakes up during this period. of.
  • the wake-up indication bit indicates that the target UE (that is, the above-mentioned second device) wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service
  • the source UE (that is, the above-mentioned first device) also wakes up during this period. of.
  • the target UE ie, the above-mentioned second device
  • the source UE ie the above-mentioned first device
  • the PSCCH detection or PSCCH blind detection
  • the dormancy indication field (ie, the above-mentioned third field) exists in the form of a bitmap (bitmap), and its length is m+n bits.
  • m represents the number of carrier elements used for communication services
  • n represents the number of carrier elements used for positioning services.
  • one bit of the sleep indication field corresponds to one carrier unit.
  • a bit in the dormancy indication field (that is, the above third field) is used to indicate (in the case of carrier aggregation) whether the target UE (that is, the above-mentioned second device) wakes up on the carrier unit corresponding to the bit.
  • this bit is 1, indicating that The target UE (ie the second device) wakes up on the carrier unit corresponding to this bit to perform PSCCH detection, and this bit is 0, indicating that the target UE (ie the second device) sleeps on the carrier unit corresponding to this bit.
  • the dormancy indication field ie, the above-mentioned third field
  • the dormancy indication field includes one or more bits, one bit corresponds to a group of carrier elements, and a group of carrier elements includes one or more carrier elements.
  • one bit of the sleep indication field indicates whether the target UE (ie, the above-mentioned second device) wakes up on a set of carrier elements corresponding to the bit.
  • the dormancy indication field (ie, the above-mentioned third field) includes a plurality of subfields, one subfield includes one or more bits, and each subfield corresponds to one or more carrier units.
  • the sleep indication field (that is, the above-mentioned third field) includes a communication sleep subfield and a positioning sleep subfield.
  • the length of the communication sleep subfield is equal to the number m of carrier units used for the communication service
  • the positioning sleep subfield is equal to the length of the communication sleep subfield used for the positioning service.
  • the number of carrier units is n.
  • the PSCCH skipping indication (PSCCH skipping indication) field (that is, the above fourth field) in FIG. 4 is used to indicate that the target UE (that is, the above-mentioned second device) goes to sleep in the drx-on duration Timer of DRX-C and DRX-P sleep period to further save power consumption.
  • the sleep time period may be determined by at least two pieces of information: a start time, a sleep duration, and an end time.
  • the sleep duration can be semi-statically configured or indicated by the PSCCH skip indication field; if the sleep duration is semi-statically configured, the start time and/or the end time can be indicated by the PSCCH skip indication field.
  • the PSCCH skip mode indicated by the PSCCH skip indication field may be used to implicitly indicate (or indirectly indicate) that the target UE (that is, the above-mentioned second device) is within the drx-on duration Timer of DRX-C and DRX-P.
  • the start time and sleep duration of entering the sleep mode wherein a PSCCH skip mode corresponds to a start time and a sleep duration (or in other words, a PSCCH skip mode corresponds to a sleep time period).
  • the PSCCH skipping indication (PSCCH skipping indication) field may include two subfields, and one subfield (that is, the above-mentioned fourth field) is used to indicate that the target UE (that is, the above-mentioned second device) is in the drx-on of DRX-C.
  • the sleep time period may be determined by at least two pieces of information: a start time, a sleep duration, and an end time.
  • the monitoring periodic indication field in FIG. 4 (that is, the sixth field above) is used to indicate the period at which the target UE (that is, the second device) performs PSCCH or first SCI (or first-order SCI) detection, so as to further reduce power consumption.
  • FIG. 4 also includes reserved fields for subsequent expansion of other functions.
  • FIG. 4 is only a schematic diagram of a format of the second SCI, and the length and arrangement order of each field included in the second SCI are not limited in this embodiment of the present application.
  • the above-mentioned second SCI may be independently designed based on each UE, that is, the above-mentioned second SCI only includes information related to the second device.
  • the above-mentioned second SCI (or SCI format 2-C) is a newly defined second-order SCI format
  • the first device needs to indicate the start bit of the above-mentioned second SCI and the first device through high-level parameters.
  • Two SCI size It should be understood that the second SCI here is designed for one UE, that is, the second SCI here only includes information of one UE. Therefore, before sending the second SCI, the first device sends sidelink (sidelink, SL) radio resource control (radio resource control, RRC) signaling.
  • sidelink sidelink
  • SL radio resource control
  • a new configuration parameter (such as size SCI-2-C) is added to the SL RRC signaling to indicate the start bit of the second SCI and/or the size (ie, length) of the second SCI.
  • the SL RRC signaling is used to indicate the start bit and the end bit of the second SCI.
  • the SL RRC signaling is used to indicate the end bit of the second SCI and/or the size (ie length) of the second SCI.
  • the above-mentioned second SCI can also be designed based on blocks, that is, the above-mentioned second SCI includes one or more blocks (block), one block is used to indicate the information of one UE, and the structure of each block can refer to the above figure. 4, that is, each block of the above-mentioned second SCI includes a source identification field, a target identification field, and a wake-up indication bit, and optionally also includes a dormancy indication field, a PSCCH skip indication field, and a detection period indication (in the field).
  • the first equipment sends SL RRC signaling.
  • This SL RRC signaling is used to indicate the block relevant to the second equipment in the second SCI (that is, where the above-mentioned wake-up indication bit is located The start bit and/or size of the block).
  • this SL RRC signaling is used to indicate the start bit and end of the block relevant to the second device in the second SCI (that is, the block where the above-mentioned wake-up indication bit is located).
  • the SL RRC signaling is used to indicate the end bit of the block relevant to the second device in the second SCI (that is, the block where the above-mentioned wake-up indication bit is located) and/or the size (that is, the length) of the second SCI .
  • wake-up or sleep may be indicated by whether the second SCI carries a wake-up indication bit.
  • the target UE that is, the second device
  • the target UE is instructed to wake up within the drx-on duration Timer of the DRX cycle used for the communication service to perform PSCCH detection, and be used for PSCCH detection. Wake up within the drx-on duration Timer of the DRX cycle of the positioning service for PSCCH detection.
  • the second SCI When the second SCI does not carry the wake-up indication bit, it indicates that the target UE (ie the second device) is within the drx-on duration Timer of the DRX cycle for the communication service and within the drx-on of the DRX cycle for the positioning service Sleep within duration Timer.
  • the second device receives the first SCI.
  • the second device receives the second SCI.
  • the second device receives the first SCI, and receives and parses the second SCI according to the time-frequency resource indication information of the second SCI included in the first SCI and the indication information of the second SCI format.
  • the second device then wakes up or sleeps within the drx-on duration Timer of the DRX cycle for the communication service according to the indication of the wake-up indication bit in the second SCI, and wakes up or sleeps within the drx-on duration Timer of the DRX cycle for the positioning service Wake up or sleep within the duration Timer.
  • the wake-up indication bit in the second SCI indicates that the second device wakes up within the drx-on duration Timer of the DRX cycle used for the communication service, then the second device is just at the drx-on of the DRX cycle used for the communication service. Wake up within duration Timer and perform PSCCH detection (or blind detection).
  • the wake-up indication bit in the two SCIs instructs the second device to wake up within the drx-on duration Timer of the DRX cycle used for the positioning service, then the second device will wake up at the drx-on of the DRX cycle used for the positioning service. Wake up within duration Timer and perform PSCCH detection (or blind detection).
  • the meaning of the wake-up indication bit included in the second SCI in the embodiment of the present application can also be understood as: the wake-up indication bit is used to instruct the second device to wake up within the drx-on duration Timer of the DRX cycle used for the communication service to wake up to Perform PSCCH detection or sleep, and wake up within the drx-on duration Timer of the DRX cycle for positioning services to perform PSCCH detection or sleep.
  • the second device before receiving the second SCI, receives SL RRC signaling.
  • the SL RRC signaling is used to indicate the start bit of the second SCI and/or the size (ie length) of the second SCI.
  • the SL RRC signaling is used to indicate the start bit and the end bit of the second SCI.
  • the SL RRC signaling is used to indicate the end bit and/or size (ie length) of the second SCI.
  • the SL RRC signaling is used to indicate the start bit and/or size of the block related to the second device in the second SCI (that is, the block where the wake-up indication bit is located). .
  • the SL RRC signaling is used to indicate the start bit and the end bit of the block related to the second device in the second SCI (that is, the block where the above-mentioned wakeup indication bit is located).
  • the SL RRC signaling is used to indicate the end bit of the block related to the second device in the second SCI (that is, the block in which the above wakeup indication bit is located) and/or the size (that is, the length) of the second SCI.
  • a second-order SCI (ie the second SCI) is newly designed to indicate whether the target UE (ie the second device) wakes up within the duration of the DRX cycle used for the communication service and whether the target UE is used for the positioning service Whether to wake up within the duration of the DRX cycle, on the one hand, there is no need to design SCI separately for communication services and positioning services, which can reduce signaling overhead; on the other hand, it can reduce power consumption and achieve a trade-off between power consumption and communication performance and/or positioning performance .
  • the foregoing content introduces the technical solutions of the embodiments of the present application, and some scenarios to which the embodiments of the present application are applicable are described below.
  • the embodiments of this application are mainly applied to scenarios where DRX-C (that is, the DRX cycle used for communication services) and DRX-P (that is, the DRX cycle used for positioning services) overlap in time, or in other words, within a period of time (such as A scenario in which there are both communication services and positioning services within a DRX-C. It should be understood that the descriptions of the following scenarios are only examples, and do not limit the technical solutions provided by the embodiments of the present application.
  • FIG. 5 is a schematic diagram 1 of the drx-on duration Timer alignment scenario of DRX-C and DRX-P provided by an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • a unified wake-up signal (or wake-up indication bit) is used to indicate that the second device is in the drx-on duration Timer of DRX-C Whether to wake up and whether to wake up within the drx-on duration Timer of DRX-P.
  • the SCI-WUS for DRX-C and DRX-P in Figure 5 represents the SCI-WUS of DRX-C and DRX-P (the SCI-WUS here may represent the SCI carrying the wake-up signal, such as the second SCI above).
  • the format of the SCI-WUS here is as shown in the aforementioned FIG. 4 , and details are not repeated here.
  • the wake-up signal exists in the second SCI in the form of a wake-up indication bit, so the wake-up signal and the wake-up indication bit in the embodiment of the present application can be used interchangeably.
  • a unified wake-up signal is used to respectively indicate whether the second device wakes up in the drx-on duration Timer of the DRX-C and whether it wakes up in the DRX-on Whether to wake up in the drx-on duration Timer of P can save signaling overhead and reduce terminal complexity and power consumption.
  • FIG. 6 is a schematic diagram 1 of a scenario where a positioning service exists during the dormancy period of the DRX-C according to an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • a unified wake-up signal (or wake-up indication bit) is used to indicate that the second device is in the drx-on duration Timer of DRX-C Whether to wake up and whether to wake up within the drx-on duration Timer of DRX-P.
  • SCI-WUS for DRX-C and DRX-P in FIG. 6 represents the SCI-WUS of DRX-C and DRX-P (the SCI-WUS here may represent the SCI carrying the wake-up signal, such as the above-mentioned second SCI). It should be understood that the format of the SCI-WUS here is as shown in the aforementioned FIG. 4 , and details are not repeated here.
  • FIG. 7 is a schematic diagram 1 of a scenario where a positioning service exists in a drx-on duration Timer of a DRX-C provided by an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • a unified wake-up signal (or wake-up indication bit) is used to indicate that the second device is in the drx-on duration Timer of DRX-C Whether to wake up and whether to wake up within the drx-on duration Timer of DRX-P.
  • SCI-WUS for DRX-C and DRX-P in FIG. 7 represents the SCI-WUS of DRX-C and DRX-P (the SCI-WUS here may represent the SCI carrying the wake-up signal, such as the above-mentioned second SCI).
  • the format of the SCI-WUS here can be as shown in the aforementioned Figure 4, and the length of its wake-up indication bit is 2 bits, which respectively indicate whether the second device wakes up in the drx-on duration Timer of the next DRX-C. and whether to wake up within the drx-on duration Timer of the next DRX-P.
  • the wake-up or dormancy of the following two DRX-Ps follows the wake-up or dormancy of the first DRX-P from left to right. For example, if the wake-up indication bit indicates that the second device wakes up within the drx-on duration Timer of the next (that is, the first from left to right in FIG.
  • the second device wakes up in the first The two DRX-Ps and the third DRX-P also wake up within the drx-on duration Timer. If the wake-up indication bit indicates that the second device sleeps within the drx-on duration Timer of the next (that is, the first from left to right in FIG. 7 ) DRX-P, the second device sleeps in the second The DRX-P and the third DRX-P also sleep within the drx-on duration Timer.
  • the format of the SCI-WUS here is still as shown in the aforementioned FIG. 4 , but the length of the wake-up indication bit in the SCI-WUS is extended to be greater than or equal to 2 bits, and one bit corresponds to one DRX cycle.
  • the length of the wake-up indication bit in SCI-WUS is 4 bits, and the first 2 bits can be used to indicate whether the second device wakes up in the next drx-on duration Timer of DRX-C and Whether to wake up in the drx-on duration Timer of the next first DRX-P, the third bit is used to indicate whether the second device wakes up in the next drx-on duration Timer of the second DRX-P, The fourth bit is used to indicate whether the second device wakes up within the drx-on duration Timer of the next third DRX-P. It can be seen that the embodiments of the present application extend the length of the wake-up indication bit to respectively indicate wake-up and sleep in each DRX cycle, which can further reduce power consumption and avoid missing PSCCH detection, thereby improving positioning performance.
  • the second embodiment of this application mainly introduces the scheme of independently designing a wake-up indication for the DRX cycle of the communication service and the DRX cycle of the positioning service in the sidelink system, that is, designing a wake-up indication for the DRX cycle of the communication service to indicate the Wake-up or sleep in the DRX cycle, a wake-up indication is also designed for the DRX cycle of the positioning service to indicate the wake-up or sleep in the DRX cycle of the positioning service.
  • FIG. 8 is a second schematic flowchart of a wake-up indication method in a dual DRX mode provided by an embodiment of the present application.
  • the wake-up indication method in the dual DRX mode includes but is not limited to the following steps:
  • the first device sends third sidelink control information SCI.
  • the first device sends a fourth SCI, where the third SCI is used to indicate that the format of the fourth SCI is the second format, and the fourth SCI of the second format includes a first wake-up indication bit, and the first wake-up indication bit uses to indicate whether the second device is awake within the duration timer of the DRX cycle.
  • the first device transmits the third SCI in the form of a broadcast.
  • the first device then sends the fourth SCI in the form of multicast or unicast within the preset time window.
  • the preset time window may be a power saving offset period before one DRX cycle.
  • the third SCI is a first-order SCI (1st stage SCI)
  • the fourth SCI is a second-order SCI (2nd stage SCI).
  • the first-order SCI (1st stage SCI) includes the resource indication of the second-order SCI (2nd stage SCI), and the second-order SCI is exclusive to the UE.
  • all UEs can parse the first-order SCI to obtain the resource indication of the second-order SCI, but a second-order SCI can only be parsed by one or a specific group of UEs to obtain the information contained therein.
  • the 1st stage SCI (1st stage SCI) can be used to indicate the format type of the 2nd stage SCI (2nd stage SCI), so the third SCI can be used to indicate the format (format) of the fourth SCI.
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the third SCI is k bits, where k is an integer greater than 2.
  • k is an integer greater than 2.
  • the value of the second-order SCI format field is any integer greater than or equal to decimal 2 and less than or equal to 2 k ⁇ 1, it is used to indicate that the format of the fourth SCI is the second format.
  • the second format is not any one of the existing SCI format 2-A and SCI format 2-B, for example, the format of the fourth SCI is SCI format 2-C or SCI format 2-D. It should be understood that the embodiment of the present application does not limit the name of the format of the fourth SCI.
  • the format of the fourth SCI is hereinafter denoted as SCI format 2-C or SCI format 2-D.
  • the 2nd stage SCI (2nd stage SCI) can be used to carry the indication bit of the wake-up signal, so the fourth SCI includes the first wake-up indication bit.
  • the first wake-up indication bit is used to indicate whether the second device wakes up within the DRX cycle duration timer (drx-on duration Timer). Specifically, the first wake-up indication bit is specifically used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the first service.
  • the first service may be a communication service or a positioning service.
  • the SCI carrying the wake-up indication is also specific to each UE, or UE-specific. Therefore, Two-stage SCI (two stage SCI) is required to indicate, wherein the 1st stage SCI (such as the third SCI above) is used to indicate the format type of the 2nd stage SCI, and the 2nd stage SCI (such as the fourth SCI above) is used to carry the indication of the wake-up signal bits. And because the 2nd stage SCI in the 3GPP sidelink system has only two formats, SCI format 2-A and SCI format 2-B, and both SCI format 2-A and SCI format 2-B are scheduling information for communication services. Therefore, the embodiment of the present application first expands the 2nd SCI format type, and introduces a new 2nd SCI format to carry the wake-up indication bit.
  • the length of the traditional second-stage SCI format field (2nd-stage SCI format field) is 2 bits
  • the embodiment of the present application performs function expansion on the second-stage SCI format field
  • the second-stage SCI format field is extended to k bits, k is an integer greater than 2, for example k is equal to 3.
  • the format of the fourth SCI ie the second format
  • the format of the fourth SCI is another new format.
  • the format of the fourth SCI is SCI format 2-C
  • the format of the fourth SCI is SCI format 2-D. Therefore, for different services, two second-order SCI formats need to be introduced to respectively carry the wake-up indication bits of different services.
  • the embodiments of the present application take SCI format 2-C as a second-order SCI designed for communication services as an example, and SCI format 2-D as a second-order SCI designed for positioning services as an example for description. It should be understood that when the value of the second-order SCI format field is 011, it indicates that the second-order SCI format is SCI format 2-C; when the value of the second-order SCI format field is 010, it indicates that the second-order SCI format is SCI format 2- D. This is not limited in the embodiments of the present application.
  • the format of the fourth SCI is SCI format 2-C or SCI format 2-D
  • the fourth SCI includes a first wake-up indication bit, a first field, and a second field. If the format of the fourth SCI is SCI format 2-C, the first wake-up indication bit is used to indicate whether the second device wakes up within the drx-on duration Timer of the DRX cycle used for the communication service. If the format of the fourth SCI is SCI format 2-D, the first wake-up indication bit is used to indicate whether the second device wakes up within the drx-on duration Timer of the DRX cycle for the positioning service.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the complete Layer 2 identity (complete Layer 2-ID) of the first device, which is represented by 24 bits.
  • the second field is used to indicate the identity of the second device, and the identity of the second device is the complete Layer 2 identity (complete Layer 2-ID) of the second device, which is also represented by 24 bits.
  • the first field may be referred to as a source identification field, and the second field may be referred to as a target identification field. It should be understood that the first field and the second field may also have other names, which are not limited in this embodiment of the present application.
  • the above-mentioned fourth SCI further includes one or more of the following fields: a third field, a fourth field, and a sixth field.
  • the third field includes one or more bits, and each bit corresponds to one or more carrier components (component carrier, CC).
  • the third field is used to indicate whether the second device wakes up on one or more carrier units corresponding to each bit included in the third field.
  • the length of the third field may be equal to the number of carrier elements used for the first service.
  • the fourth field is used to indicate the start time and sleep duration of the second device entering dormancy within the drx-on duration Timer of the DRX cycle for the first service.
  • the sixth field is used to indicate a period for the second device to perform PSCCH or third SCI detection.
  • the third field may be referred to as a sleep indication field
  • the fourth field may be referred to as a PSCCH skip indication field
  • the sixth field may be referred to as a detection period indication field; it should be understood that the third field and the fourth field , and the sixth field may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 9 is a schematic diagram of the format of SCI format 2-C and SCI format 2-D provided by the embodiment of the present application.
  • SCI format 2-C is similar to SCI format 2-D, including source ID (source ID) field, destination ID (destination ID) field, and wake-up indication (Wake-up indication) bit, optional It also includes one or more of a dormancy indication (dormancy indication) field, a PSCCH skipping indication (PSCCH skipping indication) field, and a monitoring periodic indication (monitoring periodic indication) field.
  • the source ID field that is, the above-mentioned first field
  • the destination ID field that is, the above-mentioned second field
  • the wake-up indication bit in FIG. 9 (that is, the above-mentioned first wake-up indication bit) has a length of 1 bit, which is used to indicate that the target UE (that is, the above-mentioned second device) is in the drx period of the DRX cycle for the first service. Whether to wake up within -on duration Timer.
  • the target UE ie the above-mentioned second device
  • the wake-up indication bit (that is, the above-mentioned first wake-up indication bit) is 0, it means that the target UE (that is, the above-mentioned second device) sleeps in the drx-on duration Timer of the DRX cycle for the first service.
  • the wake-up indication bit (that is, the above-mentioned first wake-up indication bit) is 1, it indicates that the target UE (that is, the above-mentioned second device) wakes up within the drx-on duration Timer of the DRX cycle for the first service to perform PSCCH detection.
  • the wake-up indication bit (that is, the above-mentioned first wake-up indication bit) is 0, it means wake-up; when the wake-up indication bit (that is, the above-mentioned first wake-up indication bit) is 1, it means dormancy.
  • the corresponding relationship between the value and the meaning of the wake-up indication bit (that is, the first wake-up indication bit above) is not limited.
  • the format of the above-mentioned fourth SCI is SCI format 2-C
  • the first wake-up indication bit in the fourth SCI is used to indicate that the target UE (that is, the above-mentioned second device) is in the DRX cycle used for the communication service.
  • the first wake-up indication bit in the fourth SCI is used to indicate that the target UE (that is, the above-mentioned second device) is in use Whether to wake up within the drx-on duration Timer of the DRX cycle of the positioning service.
  • the dormancy indication field (ie, the above-mentioned third field) exists in the form of a bitmap (bitmap), and its length is m or n bits.
  • m represents the number of carrier elements used for communication services
  • n represents the number of carrier elements used for positioning services.
  • one bit of the sleep indication field corresponds to one carrier unit.
  • a bit in the dormancy indication field (that is, the above third field) is used to indicate (in the case of carrier aggregation) whether the target UE (that is, the above-mentioned second device) wakes up on the carrier unit corresponding to the bit.
  • this bit is 1, indicating that The target UE (ie the second device) wakes up on the carrier unit corresponding to this bit to perform PSCCH detection, and this bit is 0, indicating that the target UE (ie the second device) sleeps on the carrier unit corresponding to this bit.
  • the dormancy indication field ie, the above-mentioned third field
  • the dormancy indication field includes one or more bits, one bit corresponds to a group of carrier elements, and a group of carrier elements includes one or more carrier elements.
  • one bit of the sleep indication field indicates whether the target UE (ie, the above-mentioned second device) wakes up on a set of carrier elements corresponding to the bit.
  • the PSCCH skip mode indicated by the PSCCH skip indication field may be used to implicitly indicate (or indirectly indicate) that the target UE (that is, the above-mentioned second device) is within the drx-on duration Timer of DRX-C and DRX-P.
  • the start time and sleep duration of entering the sleep mode wherein a PSCCH skip mode corresponds to a start time and a sleep duration (or in other words, a PSCCH skip mode corresponds to a sleep time period).
  • the monitoring period indication (monitoring periodic indication) field in FIG. 9 (that is, the sixth field above) is used to indicate the period for the target UE (that is, the second device) to perform PSCCH or third SCI (or first-order SCI) detection, so as to further reduce power consumption.
  • FIG. 9 also includes reserved fields for subsequent expansion of other functions.
  • FIG. 9 is only a schematic diagram of a format of SCI format 2-C and SCI format 2-D, the length and arrangement order of each field included in SCI format 2-C and SCI format 2-D, the embodiment of the present application Not limited.
  • the above-mentioned fourth SCI may be independently designed based on each UE, that is, the above-mentioned fourth SCI only includes information related to the second device. Because the above-mentioned fourth SCI (or SCI format 2-C, or SCI format 2-D) is a newly defined second-order SCI format, the first device needs to indicate the above-mentioned fourth SCI through high-level parameters before sending the third SCI start bits and the size of the fourth SCI. Specifically, before sending the fourth SCI, the first device sends the first SL RRC signaling. The first SL RRC is used to indicate the start bit of the fourth SCI and/or the size (ie length) of the fourth SCI.
  • the first SL RRC signaling is used to indicate the start bit and the end bit of the fourth SCI.
  • the first SL RRC signaling is used to indicate the end bit of the fourth SCI and/or the size (ie length) of the fourth SCI.
  • the first SL RRC signaling is used to indicate the start bit and/or size of the block related to the second device in the fourth SCI (that is, the block where the first wake-up indication bit is located). Or, the first SL RRC signaling is used to indicate the start bit and the end bit of the block related to the second device in the fourth SCI (that is, the block where the first wake-up indication bit is located). Alternatively, the first SL RRC signaling is used to indicate the end bit of the block related to the second device in the fourth SCI (that is, the block where the first wake-up indication bit is located) and/or the size of the fourth SCI (that is, the block where the first wake-up indication bit is located). length).
  • wake-up or sleep may be indicated by whether the fourth SCI carries the first wake-up indication bit.
  • the target UE that is, the second device
  • the target UE is instructed to wake up within the duration (or wake-up time) of the DRX cycle for the first service to perform PSCCH detection .
  • the target UE ie, the second device
  • the target UE is instructed to sleep within the duration (or wake-up time) of the DRX cycle for the first service.
  • the second device receives the fourth SCI.
  • the second device receives the third SCI, and receives and parses the fourth SCI according to the time-frequency resource indication information of the fourth SCI and the format indication information of the fourth SCI contained in the third SCI.
  • the second device then wakes up or sleeps within the drx-on duration Timer of the DRX cycle for the first service according to the indication of the first wake-up indication bit in the fourth SCI.
  • the first wake-up indication bit in the second SCI indicates that the second device wakes up within the drx-on duration Timer of the DRX cycle for the first service
  • the second device will wake up in the DRX cycle for the first service Wake up within the drx-on duration Timer and perform PSCCH detection (or blind detection).
  • the meaning of the first wake-up indication bit included in the fourth SCI in the embodiment of the present application can also be understood as: the first wake-up indication bit is used to indicate that the second device is in the drx- Wake up within on duration Timer for PSCCH detection or sleep.
  • the second device before receiving the fourth SCI, receives the first SL RRC signaling.
  • the first SL RRC is used to indicate the start bit of the fourth SCI and the size (ie length) of the fourth SCI.
  • the first SL RRC signaling is used to indicate the start bit and the end bit of the fourth SCI.
  • the first SL RRC signaling is used to indicate the end bit of the fourth SCI and/or the size (ie length) of the fourth SCI.
  • the first SL RRC signaling is used to indicate the start bit of the block related to the second device in the fourth SCI (that is, the block where the above-mentioned first wake-up indication bit is located). and/or size. Or, the first SL RRC signaling is used to indicate the start bit and the end bit of the block related to the second device in the fourth SCI (that is, the block where the first wake-up indication bit is located).
  • the first SL RRC signaling is used to indicate the end bit of the block related to the second device in the fourth SCI (that is, the block where the first wake-up indication bit is located) and/or the size of the fourth SCI (that is, the block where the first wake-up indication bit is located). length).
  • the embodiments of the present application design a new second-order SCI for the DRX cycle of the communication service and the DRX cycle of the positioning service respectively to indicate whether the target UE (that is, the second device) wakes up in the respective cycles.
  • the meaning is clear.
  • the wake-up indications in the DRX cycle do not interfere with each other and are highly flexible.
  • the wake-up indication method in the dual DRX mode further includes the following steps:
  • the first device sends the fifth SCI.
  • the first device sends a sixth SCI
  • the fifth SCI is used to indicate that the format of the sixth SCI is the third format
  • the fifth SCI of the third format includes a second wake-up indication bit
  • the second wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the second service.
  • the first device when both the communication service and the positioning service exist between the first device and the second device, the first device also sends the fifth SCI in the form of broadcast.
  • the first device then sends the sixth SCI in the form of multicast or unicast within the preset time window.
  • the preset time window may be a Power saving offset period before one DRX cycle.
  • the fifth SCI is a first-order SCI (1st stage SCI), and the sixth SCI is a second-order SCI (2nd stage SCI).
  • the fifth SCI may be used to indicate the format of the sixth SCI.
  • the length of the second-stage SCI format field (2nd-stage SCI format field) in the fifth SCI is k bits, and k is an integer greater than 2.
  • the format used to indicate the sixth SCI is the third format.
  • the third format is neither any of the existing SCI format 2-A and SCI format 2-B, nor the above-mentioned second format.
  • the sixth SCI includes a second wakeup indication bit. The second wake-up indication bit is used to indicate whether the second device wakes up within the duration timer (drx-on duration Timer) of the DRX cycle for the second service.
  • the second service and the above-mentioned first service are two different services.
  • the format of the fourth SCI ie the second format
  • the format of the sixth SCI ie the third format
  • the first service may be a communication service
  • the first service may be a communication service.
  • the second service may be a positioning service.
  • the format of the fourth SCI is SCI format 2-D
  • the format of the sixth SCI is SCI format 2-C
  • the first service may be a positioning service
  • the second service may be a communication service.
  • the fifth SCI for the implementation manner of the fifth SCI, reference may be made to the implementation manner of the foregoing third SCI, which will not be repeated here.
  • the difference between the fifth SCI and the third SCI is that the value of the second-order SCI format field in the fifth SCI is different from the value of the second-order SCI format field in the third SCI.
  • the second-order SCI format field in the third SCI is 010, indicating that the format of the fourth SCI is SCI format 2-C or that the fourth SCI includes the first wake-up indication bit;
  • the value of the second-order SCI format field in the fifth SCI is 011, indicating that the format of the sixth SCI is SCI fromat 2-D or that the sixth SCI includes the second wake-up indication bit.
  • the differences are: the format of the sixth SCI and the fourth SCI are different, and the meaning of the wake-up indication bits included in the sixth SCI and the fourth SCI Are not the same.
  • the format of the fourth SCI is SCI format 2-C
  • the first wake-up indication bit included in the fourth SCI is used to indicate the duration of the DRX cycle used for the communication service by the target UE (that is, the second device). Whether to wake up within (or wake-up time);
  • the format of the sixth SCI is SCI format 2-D, and the second wake-up indication bit included in the sixth SCI is used to indicate that the target UE (that is, the second device) is in the Whether to wake up within the drx-on duration Timer of the DRX cycle.
  • the format of the fourth SCI is SCI format 2-D, and the first wake-up indication bit included in the fourth SCI is used to indicate that the target UE (that is, the second device) is in the drx-on duration of the DRX cycle used for the positioning service Whether to wake up in the Timer;
  • the format of the sixth SCI is SCI format 2-C, and the second wake-up indication bit included in the sixth SCI is used to indicate the target UE (that is, the second device) in the drx cycle of the DRX used for the communication service. Whether to wake up within -on duration Timer.
  • the above-mentioned sixth SCI may be independently designed based on each UE, that is, the above-mentioned sixth SCI only includes information related to the second device.
  • the above-mentioned sixth SCI ie SCI format 2-C or SCI format 2-D
  • the first device needs to indicate the above-mentioned sixth SCI through high-level parameters. size and/or start bits.
  • the first device sends the second SL RRC signaling.
  • the second SL RRC is used to indicate the start bit of the sixth SCI and/or the size (ie length) of the sixth SCI.
  • the second SL RRC signaling is used to indicate the start bit and the end bit of the sixth SCI.
  • the second SL RRC signaling is used to indicate the end bit of the sixth SCI and/or the size (ie length) of the sixth SCI.
  • the above-mentioned sixth SCI can also be designed based on blocks, that is, the above-mentioned sixth SCI includes one or more blocks (block), one block is used to indicate the information of one UE, and the structure of each block can refer to the above figure. 9, that is, each block of the above-mentioned sixth SCI includes a source identification field, a target identification field, and a wake-up indication bit, and optionally also includes a dormancy indication field, a PSCCH skip indication field, and a detection period indication (in the field).
  • the first equipment sends the second SL RRC signaling.
  • the second SL RRC signaling is used to indicate the block relevant to the second equipment in the sixth SCI (that is, the above-mentioned The start bit and/or the size of the block where the second wake-up indication bit is located. Or, the second SL RRC signaling is used to indicate the block relevant to the second device in the sixth SCI (that is, the above-mentioned second wake-up indication bit). The start bit and the end bit of the block where it is located. Or, the second SL RRC signaling is used to indicate the end of the block relevant to the second device in the sixth SCI (that is, the block where the above-mentioned second wake-up indication bit is located). bits and/or the size (ie length) of this sixth SCI.
  • wake-up or sleep may be indicated by whether the sixth SCI carries the second wake-up indication bit.
  • the target UE that is, the second device
  • the target UE is instructed to wake up within the duration (or wake-up time) of the DRX cycle for the second service to perform PSCCH detection .
  • the above-mentioned sixth SCI does not carry the second wake-up indication bit, it indicates that the target UE (ie, the second device) sleeps within the duration (or wake-up time) of the DRX cycle for the second service.
  • steps S203-S204 and steps S205-S206 are not limited. For example, steps S203-S204 are performed before steps S205-S206, or steps S203-S204 are performed after steps S205-S206, or steps S203-S204 are performed simultaneously/parallelly with steps S205-S206.
  • the second device receives the fifth SCI.
  • the second device receives the sixth SCI.
  • the second device receives the fifth SCI, and receives and parses the sixth SCI according to the time-frequency resource indication of the sixth SCI and the format indication information of the sixth SCI contained in the fifth SCI.
  • the second device then wakes up or sleeps within the duration timer (on_duration Timer) of the DRX cycle for the second service according to the indication of the second wakeup indication bit in the sixth SCI.
  • the second wake-up indication bit in the sixth SCI indicates that the second device wakes up within the duration (or wake-up time) of the DRX cycle for the second service, the second device will wake up in the Wake up and perform PSCCH detection (or blind detection) within the duration (or wake-up time) of the DRX cycle.
  • the meaning of the second wake-up indication bit included in the sixth SCI in the embodiment of the present application can also be understood as: the second wake-up indication bit is used to indicate the duration of the DRX cycle used by the second device for the second service (or wake-up time) to wake up for PSCCH detection or sleep.
  • the second device before receiving the sixth SCI, receives the second SL RRC signaling.
  • the second SL RRC is used to indicate the start bit of the sixth SCI and/or the size (ie length) of the sixth SCI.
  • the second SL RRC signaling is used to indicate the start bit and the end bit of the sixth SCI.
  • the second SL RRC signaling is used to indicate the end bit of the sixth SCI and/or the size (ie length) of the sixth SCI.
  • the first SL RRC signaling is used to indicate the start bit of the block related to the second device in the sixth SCI (that is, the block where the above-mentioned second wake-up indication bit is located). and/or size. Or, the first SL RRC signaling is used to indicate the start bit and the end bit of the block related to the second device in the sixth SCI (that is, the block where the above-mentioned second wake-up indication bit is located).
  • the first SL RRC signaling is used to indicate the end bit of the block related to the second device in the sixth SCI (that is, the block where the second wake-up indication bit is located) and/or the size of the sixth SCI (that is, the size of the sixth SCI). length).
  • FIG. 10 is a schematic diagram 2 of a scenario where a positioning service exists during a dormant period of a DRX-C according to an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • two SCIs are sent to respectively indicate whether the second device wakes up within the drx-on duration Timer of DRX-C, and the second Whether the device wakes up within the drx-on duration Timer of DRX-P.
  • the SCI-WUS for DRX-C in Figure 10 represents the SCI-WUS of DRX-C, which is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the communication service;
  • SCI -WUS for DRX-P represents the SCI-WUS of DRX-P, and is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • FIG. 11 is a schematic diagram of a scenario in which there is no overlap in time between DRX-C and DRX-P provided by an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • an SCI is sent to indicate whether the second device wakes up within the drx-on duration Timer of DRX-C.
  • another SCI is sent to indicate whether the second device wakes up within the drx-on duration Timer of DRX-P.
  • the SCI-WUS for DRX-C in Figure 11 represents the SCI-WUS of DRX-C, which is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the communication service;
  • SCI -WUS for DRX-P represents the SCI-WUS of DRX-P, and is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • FIG. 12 is a second schematic diagram of a scenario where a positioning service exists in the drx-on duration Timer of the DRX-P provided by the embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • an SCI is sent to indicate whether the second device wakes up within the next drx-on duration Timer of the DRX-C.
  • another SCI is sent to indicate that the second device is within the drx-on duration Timer of the next DRX-P Whether to wake up.
  • the SCI-WUS for DRX-C in Figure 12 represents the SCI-WUS of DRX-C, which is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the communication service;
  • SCI -WUS for DRX-P represents the SCI-WUS of DRX-P, and is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • FIG. 13 is a second schematic diagram of the on_duration Timer alignment scenario of DRX-C and DRX-P provided by an embodiment of the present application.
  • DRX for SL-C represents the DRX cycle used for communication services in the sidelink system
  • DRX for SL-P represents the DRX cycle used for positioning services in the sidelink system.
  • two SCIs are sent to respectively indicate whether the second device wakes up within the drx-on duration Timer of DRX-C, and the second Whether the device wakes up within the drx-on duration Timer of DRX-P.
  • the SCI-WUS for DRX-C in Figure 13 represents the SCI-WUS of DRX-C, which is used to indicate whether the target UE (ie the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the communication service;
  • SCI -WUS for DRX-P represents the SCI-WUS of DRX-P, and is used to indicate whether the target UE (that is, the second device) wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • a new second-order SCI (ie, the fourth SCI and the sixth SCI) is respectively designed for the DRX cycle of the communication service and the DRX cycle of the positioning service in the sidelink system to indicate the drx of the respective DRX cycles respectively.
  • Timer Whether to wake up in -on duration Timer, on the one hand, has a clear meaning and high flexibility, and can be applied to various scenarios; on the other hand, it can reduce power consumption and achieve a trade-off between power consumption and communication performance and/or positioning performance.
  • the third embodiment of the present application mainly introduces the scheme of uniformly designing a wake-up indication for the DRX cycle of the communication service and the DRX cycle of the positioning service when the communication service and the positioning service coexist for a period of time in the cellular system, that is, using one wake-up signal Indicates the wake-up or sleep in the DRX cycle of the two services respectively.
  • FIG. 14 is a third schematic flowchart of a wake-up indication method in a dual DRX mode provided by an embodiment of the present application.
  • the wake-up indication method in the dual DRX mode includes but is not limited to the following steps:
  • the network device sends downlink control information (downlink control information, DCI), the DCI includes a wake-up indication bit, and the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service and whether Whether to wake up within the duration timer of the DRX cycle used for positioning services.
  • DCI downlink control information
  • the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service and whether Whether to wake up within the duration timer of the DRX cycle used for positioning services.
  • a communication service and a positioning service exist between the network device and the terminal device in the embodiment of the present application, and both the network device and the terminal device enter the dual DRX mode.
  • the network device sends the DCI within a preset time window, where the preset time window may be a Power saving offset period before a DRX cycle.
  • the format of the DCI is the format of the DCI used to indicate whether the terminal device wakes up in the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the DCI is the traditional DCI format 2-6.
  • the format of the DCI may also be a newly designed DCI format, such as DCI format 2-7 or DCI format 2-8, etc.
  • the network device tells each UE the DCI that should be read through RRC high-level signaling (such as Position DCI2-6).
  • RRC high-level signaling such as Position DCI2-6
  • the start bit of format 2-6 and tells each UE the size of its corresponding block through RRC high-level signaling (such as SizeDCI2-6). Therefore, the DCI in the embodiment of the present application also adopts the block design.
  • Each block of the DCI includes a wake-up indication bit, the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer (on_duration Timer) of the DRX cycle for the communication service and whether the DRX for the positioning service wakes up Whether to wake up within the duration timer of the period.
  • the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer (on_duration Timer) of the DRX cycle for the communication service and whether the DRX for the positioning service wakes up Whether to wake up within the duration timer of the period.
  • duration timer and “drx-on duration Timer” may also be referred to simply as “duration”, and the term “duration” may also be described as “wake-up time”.
  • the above-mentioned DCI further includes a first indicator bit, and the first indicator bit includes one or more bits.
  • the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. That is, one bit in the first indication bit corresponds to one secondary cell or one secondary cell group.
  • the first indication bit may be referred to as a sleep indication bit, and the first indication bit may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 15 is a schematic diagram of a format of DCI provided by an embodiment of the present application.
  • Figure 15 is obtained after the function expansion of the traditional DCI format 2-6, so that the DCI format 2-6 after the function expansion can not only indicate whether the terminal equipment wakes up in the drx-on duration Timer of the DRX cycle used for the communication service, but also It can indicate whether the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • the terminal device performs physical downlink control channel (PDCCH) detection.
  • FIG. 15 illustrates the indication in a certain block (block) in DCI format 2-6 as an example. As shown in FIG.
  • the 1+p bits in Figure 15 are the newly added indication bits in DCI format 2-6, of which 1 bit is the wake-up indication bit for positioning, which is used to indicate the drx-on duration of the terminal equipment in the DRX cycle used for the positioning service Whether to wake up in the Timer, for example, this bit is 1, indicating that the terminal equipment wakes up within the drx-on duration Timer of the DRX cycle used for positioning services to perform PDCCH detection or blind detection; this bit is 0, indicating that the terminal equipment is used for Sleep within the drx-on duration Timer of the DRX cycle of the positioning service; or vice versa.
  • Each bit in the p (p is a positive integer) bits is used to indicate whether the terminal device wakes up on the secondary cell corresponding to the bit.
  • the network device is also woken up during this period. Similarly, if the wake-up indication bit indicates that the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service, the network device also wakes up during this period. Because the terminal device needs to perform PDCCH detection in the wake-up situation, the network device needs to send the PDCCH to support the PDCCH detection of the terminal device in the wake-up situation.
  • the “wake-up” and “sleep” mentioned in the embodiments of this application are for PDCCH detection (or PDCCH blind detection), that is, the “wake-up” mentioned in the embodiments of this application can be equivalent Replace with “perform PDCCH detection”, and “sleep” can be equivalently replaced with “do not perform PDCCH detection”.
  • the terminal device receives the DCI.
  • the terminal device receives the DCI, parses the DCI, and wakes up or sleeps in the duration timer (on_duration Timer) of the DRX cycle for the communication service according to the indication of the wake-up indication bit in the DCI, and wake up or sleep within the duration timer of the DRX cycle for positioning services.
  • the wake-up indication bit in the DCI instructs the terminal device to wake up within the drx-on duration Timer of the DRX cycle for the communication service
  • the terminal device wakes up within the drx-on duration Timer of the DRX cycle for the communication service And perform PDCCH detection (or blind detection).
  • the terminal device if the wake-up indication bit in the DCI indicates that the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service, the terminal device is within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • the meaning of the wake-up indication bit included in the DCI in the embodiment of the present application can also be understood as: the wake-up indication bit is used to instruct the terminal device to wake up within the drx-on duration Timer of the DRX cycle used for the communication service to perform PDCCH Detect or sleep, and wake up within the drx-on duration Timer of the DRX cycle for positioning services for PDCCH detection or sleep.
  • the technical solutions provided in the embodiments of the present application are applicable to the scenario 1-1, the scenario 1-2, and the scenario 1-3 in the foregoing first embodiment, wherein the scenario 1-1, the scenario 1-2, and Sidelink systems in scenarios 1-3 should be replaced with cellular systems and SCI should be replaced with DCI.
  • the embodiment of the present application extends the function of the traditional DCI fromat 2-6, so that it can simultaneously indicate whether the terminal device wakes up in the drx-on duration Timer of the DRX cycle used for the communication service and whether it is used for the positioning service. Whether to wake up in the drx-on duration Timer of the DRX cycle, on the one hand, there is no need to design DCI separately for the communication service and the positioning service, which can reduce the signaling overhead; consumption versus communication performance and/or positioning performance.
  • the fourth embodiment of the present application mainly introduces a solution for independently designing a wake-up indication for the DRX cycle of a positioning service in a cellular system.
  • FIG. 16 is a fourth schematic flowchart of a wake-up indication method in a dual DRX mode provided by an embodiment of the present application.
  • the wake-up indication method in the dual DRX mode includes but is not limited to the following steps:
  • the network device sends first downlink control information DCI, where the first DCI includes a first wake-up indication bit, where the first wake-up indication bit is used to indicate whether the terminal device is within the duration timer of the DRX cycle used for the positioning service wake.
  • only a positioning service may exist between the network device and the terminal device in the embodiment of the present application, and both the network device and the terminal device enter the dual DRX mode.
  • the network device sends the first DCI within a preset time window, where the preset time window may be a Power saving offset period before one DRX cycle.
  • the format of the first DCI is not the format of the DCI used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service, that is, the format of the first DCI is not DCI format 2-6.
  • DCI format 2-7 For the convenience of distinguishing from DCI format 2-6, the following description is given by taking the format of the first DCI as DCI format 2-7 as an example.
  • the first DCI adopts a block design, and each block of the first DCI includes a first wake-up indication bit, and the first wake-up indication bit is used to indicate the duration timer of the DRX cycle used for the positioning service by the terminal device Whether to wake up within (on_duration Timer).
  • duration timer and “drx-on duration Timer” may also be referred to simply as “duration”, and the term “duration” may also be described as “wake-up time”.
  • the above-mentioned first DCI further includes a first indicator bit, and the first indicator bit includes one or more bits.
  • the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service. That is, one bit in the first indication bit corresponds to one secondary cell or one secondary cell group.
  • the first indication bit may be referred to as a sleep indication bit, and the first indication bit may also have other names, which are not limited in this embodiment of the present application.
  • FIG. 17 is a schematic diagram of a format of the first DCI provided by an embodiment of the present application.
  • the format of the first DCI is DCI format 2-7.
  • FIG. 17 illustrates the indication in a certain block (block) in the first DCI (that is, DCI format 2-7) as an example.
  • 1 bit is the first wake-up indicator bit, which is used to indicate that the terminal device is in the DRX cycle used for the positioning service Whether to wake up in the drx-on duration Timer, for example, this bit is 1, indicating that the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for positioning services to perform PDCCH detection or blind detection; this bit is 0, indicating The terminal device sleeps within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • the bit is 0, indicating that the terminal equipment wakes up in the drx-on duration Timer of the DRX cycle used for the positioning service to perform PDCCH detection or blind detection; this bit is 1, indicating that the terminal equipment is used for the positioning service. Sleep within the drx-on duration Timer of the DRX cycle.
  • One of the p (p is an integer greater than or equal to 0) bits ie, the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to the bit.
  • the network device if the wake-up indication bit indicates that the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for the positioning service, the network device also wakes up during this period. Because the terminal device needs to perform PDCCH detection in the wake-up situation, the network device needs to send the PDCCH to support the PDCCH detection of the terminal device in the wake-up situation.
  • the “wake-up” and “sleep” mentioned in the embodiments of this application are for PDCCH detection (or PDCCH blind detection), that is, the “wake-up” mentioned in the embodiments of this application can be equivalent Replace with “perform PDCCH detection”, and “sleep” can be equivalently replaced with “do not perform PDCCH detection”.
  • the network device before sending the first DCI, needs a high-level parameter to indicate the start bit of the first wake-up indication bit in the first DCI and/or the first DCI.
  • the size of the block where the wakeup indicator is located Specifically, before sending the first DCI, the network device sends RRC signaling.
  • the RRC signaling is used to indicate the start bit of the first wake-up indication bit in the first DCI and/or the size (ie length) of a block where the first wake-up indication bit is located.
  • the RRC signaling is used to indicate the start bit and the end bit of the first wake-up indication bit in the first DCI.
  • the RRC signaling is used to indicate the end bit of the first wake-up indication bit in the first DCI and/or the size (ie length) of a block where the first wake-up indication bit is located.
  • wake-up or sleep may be indicated by whether the first DCI carries the first wake-up indication bit.
  • the terminal device when the first DCI carries the first wake-up indication bit, the terminal device is instructed to wake up within the drx-on duration Timer of the DRX cycle used for the positioning service to perform PDCCH detection.
  • the terminal device When the first DCI does not carry the first wake-up indication bit, the terminal device is instructed to sleep within the drx-on duration Timer of the DRX cycle used for the positioning service.
  • the terminal device receives the first DCI.
  • the terminal device receives the first DCI and parses the first DCI, and according to the indication of the first wake-up indication bit in the first DCI, within the duration timer of the DRX cycle used for the positioning service wake up or sleep. If the first wake-up indication bit in the first DCI indicates that the terminal device wakes up within the drx-on duration Timer of the DRX cycle for the positioning service, the terminal device will wake up within the drx-on duration Timer of the DRX cycle for the positioning service Wake-up and perform PDCCH detection (or blind detection).
  • the meaning of the first wake-up indication bit included in the first DCI in the embodiment of the present application can also be understood as: the first wake-up indication bit is used to indicate that the terminal device is in the drx-on duration Timer of the DRX cycle used for the positioning service Internal wake-up for PDCCH detection or sleep.
  • the terminal device before receiving the first DCI, receives RRC signaling.
  • the RRC signaling is used to indicate the start bit of the first wake-up indication bit in the first DCI and/or the size (ie length) of a block where the first wake-up indication bit is located.
  • the RRC signaling is used to indicate the start bit and the end bit of the first wake-up indication bit in the first DCI.
  • the RRC signaling is used to indicate the end bit of the first wake-up indication bit in the first DCI and/or the size (ie length) of a block where the first wake-up indication bit is located.
  • the wake-up indication method in the dual DRX mode further includes the following steps:
  • the network device sends a second DCI, where the second DCI includes a second wake-up indication bit, where the second wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service.
  • the network device sends the second DCI within the preset time window.
  • the preset time window may be a Power saving offset period before one DRX cycle.
  • the format of the second DCI is the format of the DCI used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the second DCI is the traditional DCI format 2-6, the
  • the second DCI includes a second wake-up indication bit, which is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle for the communication service.
  • FIG. 18 is a schematic diagram of the format of DCI formats 2-6 in the NR system.
  • FIG. 18 is an example of the indication in a certain block (block) in DCI format 2-6.
  • the terminal device receives the second DCI.
  • the terminal device receives the second DCI, and parses the second DCI, and according to the indication of the second wake-up indication bit in the second DCI, the duration timer ( on_duration Timer) to wake up or sleep.
  • the second wake-up indication bit in the second DCI indicates that the terminal device wakes up within the drx-on duration Timer of the DRX cycle used for the communication service
  • the terminal device will wake up within the drx-on duration Timer of the DRX cycle used for the communication service. Wake up within duration Timer and perform PDCCH detection (or blind detection).
  • the meaning of the second wake-up indication bit included in the second DCI in the embodiment of the present application can also be understood as: the second wake-up indication bit is used to indicate that the terminal equipment is used for the drx-on duration Timer of the DRX cycle of the communication service Internal wake-up for PDCCH detection or sleep.
  • the technical solutions provided in the embodiments of this application can be applied to scenarios where DRX-C (that is, the DRX cycle used for communication services) and DRX-P (that is, the DRX cycle used for positioning services) overlap in time.
  • it can also be applied to scenarios where DRX-C and DRX-P do not overlap in time, such as scenario 2-1, scenario 2-2, scenario 2-3, and scenario 2-4 in the second embodiment.
  • scenario 2-1, scenario 2-2, scenario 2-3 and scenario 2-4 should be replaced by cellular system
  • SCI should be replaced by DCI.
  • the embodiment of the present application designs a new DCI format (such as DCI format 2-7) for the DRX cycle of the positioning service alone in the cellular system to indicate the wake-up or wake-up in the drx-on duration Timer in the DRX cycle of the positioning service.
  • Sleep on the one hand, has a clear meaning and high flexibility, and can be applied to various scenarios; on the other hand, it can reduce power consumption and achieve a trade-off between power consumption and communication performance and/or positioning performance.
  • the first device and the second device may be divided into functional modules according to the above method example, and the network device and the terminal device may also be divided into functional modules according to the above method example.
  • each function module may be divided corresponding to each function.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 19 to FIG. 23 .
  • FIG. 19 is a schematic structural diagram of a communication device 1 provided by an embodiment of the present application.
  • the communication apparatus 1 may be the first device or may be a chip or circuit provided in the first device.
  • the communication device 1 includes: a transceiver unit 11 , and optionally a processing unit 12 .
  • the transceiver unit 11 is used to send the first SCI; the transceiver unit 11 is also used to send the second SCI, and the first SCI is used to indicate that the format of the second SCI is the first format, and the first SCI
  • the second SCI in a format includes a wake-up indication bit for indicating whether the second device wakes up within the duration timer of the discontinuous reception DRX cycle for communication traffic and at the end of the DRX cycle for positioning traffic Whether to wake up within the duration timer.
  • the processing unit 12 is configured to generate the first SCI and the second SCI.
  • the above-mentioned transceiver unit 11 is further configured to send SL RRC signaling, where the SL RRC signaling is used to indicate the start bit of the second SCI and/or the size of the second SCI.
  • the above-mentioned second SCI further includes a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the layer 2 identity of the first device;
  • the second field is used to indicate the identity of the second device, the identity of the second device is the layer 2 identifier of the second device.
  • the identifier of the first device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the
  • the above-mentioned second SCI also includes one or more of the following fields: the third field is used to indicate whether the second device wakes up on the carrier unit corresponding to each bit of the third field; the fourth field is used to indicate The start time and sleep duration of the second device entering the dormancy in the DRX cycle for the communication service and the DRX cycle for the positioning service, or the fourth field is used to indicate that the second device is in the DRX cycle for the positioning service.
  • the start time and sleep duration of the DRX cycle of the communication service entering dormancy, and the fifth field is used to indicate the start time and the dormancy time of the second device entering dormancy within the DRX duration of the DRX cycle used for the positioning service. Sleep duration; the sixth field is used to indicate the period during which the second device performs the first SCI detection.
  • the length of the third field is equal to the sum of the number of carrier elements used for the communication service and the number of carrier elements used for the positioning service.
  • the length of the second-order SCI format field in the first SCI is 2 bits
  • the value of the second-order SCI format field in the first SCI for indicating the first format is binary 10 or 11.
  • the communication device 1 in this design can correspondingly execute the foregoing first embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the first device in the foregoing first embodiment.
  • the above-mentioned processing unit 12 is configured to generate the third SCI and the fourth SCI.
  • the above-mentioned transceiver unit 11 is also used to send the fifth SCI; the transceiver unit 11 is also used to send the sixth SCI, and the fifth SCI is used to indicate that the format of the sixth SCI is the third format, and the format of the sixth SCI is the third format.
  • the third-format fifth SCI includes a second wake-up indication bit for indicating whether the second device wakes up within the duration timer of the DRX cycle for the second service; wherein the second service is A communication service, the first service is a positioning service; or, the second service is a positioning service, and the first service is a communication service.
  • the above-mentioned transceiver unit 11 is further configured to send first SL RRC signaling, where the first SL RRC signaling is used to indicate the start bit of the fourth SCI and/or the size of the fourth SCI.
  • the above-mentioned transceiver unit 11 is further configured to send second SL RRC signaling, where the second SL RRC signaling is used to indicate the start bit of the sixth SCI and/or the size of the sixth SCI.
  • the above-mentioned first wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the first service.
  • both the fourth SCI and the sixth SCI include a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the layer 2 identity of the first device;
  • the second field is used to indicate the identity of the second device, the identity of the second device is the layer 2 identifier of the second device.
  • the identifier of the first device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the
  • both the fourth SCI and the sixth SCI include one or more of the following fields: the third field is used to indicate whether the second device wakes up on the carrier unit corresponding to each bit of the third field; the The fourth field is used to indicate the start time and sleep duration of the second device entering dormancy in the DRX cycle for the first service or the DRX duration in the DRX cycle for the second service, and the sixth field is used for Indicates the cycle for the second device to perform the third SCI or fifth SCI detection.
  • the length of the third field is equal to the number of carrier elements used for the first service or the number of carrier elements used for the second service.
  • the length of the second-order SCI format field in the third SCI is k bits, and the value of the second-order SCI format field used to indicate the second format in the third SCI is greater than or equal to decimal 2 and less than or equal to any integer in 2 k -1; and/or, the length of the second-order SCI format field in the fifth SCI is k bits, and the second-order SCI format field in the fifth SCI is used to indicate the third format
  • the value of is different from the value of the second-order SCI format field in the third SCI, and is an integer greater than or equal to decimal 2 and less than or equal to 2 k ⁇ 1. k is an integer greater than 2.
  • the communication device 1 in this design can correspondingly execute the foregoing second embodiment, and the above operations or functions of each unit in the communication device 1 are respectively in order to realize the corresponding operations of the first device in the foregoing second embodiment.
  • the technical effect in the foregoing second embodiment which is not repeated here for brevity.
  • FIG. 20 is a schematic structural diagram of a communication apparatus 2 provided by an embodiment of the present application.
  • the communication apparatus 2 may be the second device or may be a chip or circuit provided in the second device.
  • the communication device 2 includes: a transceiver unit 21 .
  • the transceiver unit 21 is used to receive a first SCI; the transceiver unit 21 is also used to receive a second SCI, and the first SCI is used to indicate that the format of the second SCI is the first format, and the first SCI
  • the second SCI in a format includes a wake-up indication bit for indicating whether the second device wakes up within the duration timer of the DRX cycle for communication traffic and the duration of the DRX cycle for positioning traffic Whether to wake up in the timer.
  • the communication device 2 further includes a PSCCH detection unit 22 .
  • the PSCCH detection unit 22 is configured to wake up within the duration timer of the DRX cycle for the communication service when the wake-up indication bit is used to instruct the second device to wake up within the duration timer of the DRX cycle for the communication service and perform PSCCH detection; and/or, when the wake-up indication bit is used to instruct the second device to wake up within the duration timer of the DRX cycle for the positioning service, in the duration timer of the DRX cycle for the positioning service Wake-up and perform PSCCH detection.
  • the above-mentioned transceiver unit 21 is further configured to receive SL RRC signaling, where the SL RRC signaling is used to indicate the start bit of the second SCI and/or the size of the second SCI.
  • the communication device 2 further includes a wake-up or sleep unit 23 .
  • the wake-up or sleep unit 23 is configured to wake up or sleep within the duration timer of the DRX cycle for the communication service according to the indication of the wake-up indication bit in the second SCI, and to wake up or sleep in the DRX cycle for the positioning service wake or sleep within the duration timer.
  • the above-mentioned second SCI further includes a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the layer 2 identity of the first device;
  • the second field is used to indicate the identity of the second device, the identity of the second device is the layer 2 identifier of the second device.
  • the identifier of the first device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the
  • the above-mentioned second SCI also includes one or more of the following fields: the third field is used to indicate whether the second device wakes up on the carrier unit corresponding to each bit of the third field; the fourth field is used to indicate The start time and sleep duration of the second device entering the dormancy in the DRX cycle for the communication service and the DRX cycle for the positioning service, or the fourth field is used to indicate that the second device is in the DRX cycle for the positioning service.
  • the start time and sleep duration of the DRX cycle of the communication service entering dormancy, and the fifth field is used to indicate the start time and the dormancy time of the second device entering dormancy within the DRX duration of the DRX cycle used for the positioning service. Sleep duration; the sixth field is used to indicate the period during which the second device performs the first SCI detection.
  • the length of the third field is equal to the sum of the number of carrier elements used for the communication service and the number of carrier elements used for the positioning service.
  • the length of the second-order SCI format field in the first SCI is 2 bits
  • the value of the second-order SCI format field in the first SCI for indicating the first format is binary 10 or 11.
  • the above-mentioned PSCCH detection unit 22 and the above-mentioned wake-up or sleep unit 23 may be integrated into one unit, such as a processing unit.
  • the transceiver unit 21 is used to receive a third SCI; the transceiver unit 21 is also used to receive a fourth SCI, and the third SCI is used to indicate that the format of the fourth SCI is the second format, and the The fourth SCI in the second format includes a first wake-up indication bit for indicating whether the second device wakes up within the duration timer of the DRX cycle.
  • the above-mentioned transceiver unit 21 is also used to receive the fifth SCI; the transceiver unit 21 is also used to receive the sixth SCI, and the fifth SCI is used to indicate that the format of the sixth SCI is the third format, and the format of the sixth SCI is the third format.
  • the third-format fifth SCI includes a second wake-up indication bit for indicating whether the second device wakes up within the duration timer of the DRX cycle for the second service; wherein the second service is A communication service, the first service is a positioning service; or, the second service is a positioning service, and the first service is a communication service.
  • the above-mentioned transceiver unit 21 is further configured to receive the first SL RRC signaling, where the first SL RRC signaling is used to indicate the start bit of the fourth SCI and/or the size of the fourth SCI.
  • the above-mentioned transceiver unit 21 is further configured to receive second SL RRC signaling, where the second SL RRC signaling is used to indicate the start bit of the sixth SCI and/or the size of the sixth SCI.
  • the communication device 2 further includes a PSCCH detection unit 22 .
  • the PSCCH detection unit 22 is configured to wake up within the duration timer of the DRX cycle and perform PSCCH detection when the first wakeup indication bit is used to instruct the second device to wake up within the duration timer of the DRX cycle; and/or , when the second wake-up indication bit is used to instruct the second device to wake up within the duration timer of the DRX cycle for the second service, wake up within the duration timer of the DRX cycle for the second service and perform PSCCH detection.
  • the communication device 2 further includes a wake-up or sleep unit 23 .
  • the wake-up or sleep unit 23 is configured to wake up or sleep within the duration timer of the DRX cycle for the first service according to the indication of the wake-up indication bit in the fourth SCI; or according to the wake-up indication in the sixth SCI Bit indication to wake up or sleep within the duration timer of this DRX cycle for the second service.
  • the above-mentioned first wake-up indication bit is used to indicate whether the second device wakes up within the duration timer of the DRX cycle for the first service.
  • both the fourth SCI and the sixth SCI include a first field and a second field.
  • the first field is used to indicate the identity of the first device, and the identity of the first device is the layer 2 identity of the first device;
  • the second field is used to indicate the identity of the second device, the identity of the second device is the layer 2 identifier of the second device.
  • the identifier of the first device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the first device.
  • the complete layer 2 identification of the second device is 24 bits, and the identifier of the second device is 24 bits; or, the identifier of the first device is the complete layer 2 identifier of the first device, and the identifier of the second device is the
  • both the fourth SCI and the sixth SCI include one or more of the following fields: the third field is used to indicate whether the second device wakes up on the carrier unit corresponding to each bit of the third field; the The fourth field is used to indicate the start time and sleep duration of the second device entering dormancy in the DRX cycle for the first service or the DRX duration in the DRX cycle for the second service, and the sixth field is used for Indicates the cycle for the second device to perform the third SCI or fifth SCI detection.
  • the length of the third field is equal to the number of carrier elements used for the first service or the number of carrier elements used for the second service.
  • the length of the second-order SCI format field in the third SCI is k bits, and the value of the second-order SCI format field used to indicate the second format in the third SCI is greater than or equal to decimal 2 and less than or equal to any integer in 2 k -1; and/or, the length of the second-order SCI format field in the fifth SCI is k bits, and the second-order SCI format field in the fifth SCI is used to indicate the third format
  • the value of is different from the value of the second-order SCI format field in the third SCI, and is an integer greater than or equal to decimal 2 and less than or equal to 2 k ⁇ 1. k is an integer greater than 2.
  • the above-mentioned PSCCH detection unit 22 and the above-mentioned wake-up or sleep unit 23 may be integrated into one unit, such as a processing unit.
  • the communication device 2 in this design can correspondingly execute the foregoing second embodiment, and the above-mentioned operations or functions of each unit in the communication device 2 are respectively in order to realize the corresponding operations of the second device in the foregoing second embodiment.
  • the effect refer to the technical effect in the foregoing second embodiment, which is not repeated here for brevity.
  • FIG. 21 is a schematic structural diagram of a communication apparatus 3 provided by an embodiment of the present application.
  • the communication device 3 may be a network device or a chip or circuit that may be provided in the network device.
  • the communication device 3 includes: a transceiver unit 31 , and optionally a processing unit 32 .
  • the transceiver unit 31 is used to send DCI, and the DCI includes a wake-up indication bit, and the wake-up indication bit is used to indicate whether the terminal device wakes up and is in use within the duration timer of the DRX cycle used for the communication service. Whether to wake up within the duration timer of the DRX cycle of the positioning service.
  • the above-mentioned processing unit 32 is configured to generate DCI.
  • the format of the above-mentioned DCI is the format of the DCI for indicating whether the terminal equipment wakes up in the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the DCI is DCI format 2-6.
  • the above-mentioned DCI further includes a first indication bit, where the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service.
  • the communication device 3 can correspondingly execute the foregoing third embodiment, and the above-mentioned operations or functions of each unit in the communication device 3 are respectively in order to realize the corresponding operations of the network equipment in the foregoing third embodiment, and its technical effect is Referring to the technical effects in the foregoing third embodiment, for brevity, details are not repeated here.
  • the transceiver unit 31 is configured to send the first DCI, where the first DCI includes a first wake-up indication bit, and the first wake-up indication bit is used to indicate the duration of the DRX cycle used for the positioning service by the terminal device Whether to wake up within the time timer.
  • the above-mentioned transceiver unit 31 is further configured to send a second DCI, and the format of the second DCI is the format of the DCI used in the NR system to indicate whether the terminal device wakes up within the duration timer of the DRX cycle of the communication service.
  • the format of the second DCI is the traditional DCI format 2-6
  • the second DCI includes a second wake-up indication bit, and the second wake-up indication bit is used to indicate that the terminal device is used for the duration timing of the DRX cycle for the communication service. Whether the device wakes up.
  • the above-mentioned processing unit 32 is configured to generate the first DCI and the second DCI.
  • the above-mentioned transceiver unit 31 is further configured to send RRC signaling, where the RRC signaling is used to indicate the start bit of the first wake-up indication bit and/or the size of the block where the first wake-up indication bit is located.
  • the format of the first DCI is not the format of the DCI used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service.
  • the first DCI further includes a first indication bit, where the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service.
  • the communication device 3 can correspondingly execute the foregoing fourth embodiment, and the above-mentioned operations or functions of each unit in the communication device 3 are respectively in order to realize the corresponding operations of the network equipment in the foregoing fourth embodiment, and its technical effect is Refer to the technical effect in the foregoing Embodiment 4, which is not repeated here for brevity.
  • FIG. 22 is a schematic structural diagram of a communication apparatus 4 provided by an embodiment of the present application.
  • the communication device 4 can be a terminal device or a chip or circuit that can be provided in the terminal device.
  • the communication device 4 includes: a transceiver unit 41 .
  • the transceiver unit 41 is used to receive DCI, and the DCI includes a wake-up indication bit, and the wake-up indication bit is used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service and is Whether to wake up within the duration timer of the DRX cycle used for positioning services.
  • the communication device 4 further includes a PDCCH detection unit 42 .
  • the PDCCH detection unit 42 is configured to, when the wake-up indication bit is used to indicate that the terminal device wakes up within the duration timer of the DRX cycle for the communication service, within the duration timer of the DRX cycle for the communication service Wake up and perform physical downlink control channel PDCCH detection; and/or, when the wake-up indication bit is used to indicate that the terminal device wakes up within the duration timer of the DRX cycle for the positioning service, in the DRX cycle for the positioning service Wake up within the duration timer and perform PDCCH detection.
  • the format of the above-mentioned DCI is the format of the DCI for indicating whether the terminal equipment wakes up in the duration timer of the DRX cycle of the communication service in the NR system, that is, the format of the DCI is DCI format 2-6.
  • the above-mentioned DCI further includes a first indication bit, where the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service.
  • the above-mentioned PDCCH detection unit 42 may also be referred to as a processing unit.
  • the communication device 4 can correspondingly execute the foregoing third embodiment, and the above-mentioned operations or functions of each unit in the communication device 4 are respectively in order to realize the corresponding operations of the terminal equipment in the foregoing third embodiment, and its technical effect is Referring to the technical effects in the foregoing third embodiment, for brevity, details are not repeated here.
  • the transceiver unit 41 is configured to receive the first DCI, where the first DCI includes a first wake-up indication bit, and the first wake-up indication bit is used to indicate the duration of the DRX cycle used for the positioning service by the terminal device Whether to wake up within the time timer.
  • the above-mentioned transceiver unit 41 is further configured to receive the second DCI, and the format of the second DCI is the format of the DCI used to indicate whether the terminal device wakes up in the duration timer of the DRX cycle of the communication service in the NR system. , that is, the format of the second DCI is the traditional DCI format 2-6, and the second DCI includes a second wake-up indication bit, and the second wake-up indication bit is used to indicate that the terminal device is used for the duration timing of the DRX cycle for the communication service. Whether the device wakes up.
  • the above-mentioned transceiver unit 41 is further configured to receive RRC signaling, where the RRC signaling is used to indicate the start bit of the first wake-up indication bit and/or the size of the block where the first wake-up indication bit is located.
  • the communication device 4 further includes a PDCCH detection unit 42 .
  • the PDCCH detection unit 42 is configured to time the duration of the DRX cycle for the communication service when the first wake-up indication bit is used to instruct the terminal device to wake up within the duration timer of the DRX cycle for the communication service Wake up in the device and perform physical downlink control channel PDCCH detection; and/or, when the second wake-up indication bit is used to indicate that the terminal device wakes up within the duration timer of the DRX cycle for positioning Wake up within the duration timer of the DRX cycle of the service and perform PDCCH detection.
  • the format of the first DCI is not the format of the DCI used to indicate whether the terminal device wakes up within the duration timer of the DRX cycle used for the communication service.
  • the first DCI further includes a first indication bit, where the first indication bit is used to indicate whether the terminal device wakes up on the secondary cell corresponding to each bit included in the first indication bit.
  • the length of the first indication bit is p bits, and p is equal to the number of secondary cells or the number of secondary cell groups used for the positioning service.
  • the above-mentioned PDCCH detection unit 42 may also be referred to as a processing unit.
  • the communication device 4 can correspondingly execute the foregoing fourth embodiment, and the above-mentioned operations or functions of each unit in the communication device 4 are respectively in order to realize the corresponding operations of the terminal equipment in the foregoing fourth embodiment, and its technical effect is Refer to the technical effect in the foregoing Embodiment 4, which is not repeated here for brevity.
  • FIG. 23 is a schematic structural diagram of a communication apparatus 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 provided in this embodiment of the present application can be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication apparatus 1000 may be any one of the aforementioned first device and the aforementioned second device.
  • the Communication device 1000 includes one or more processors 1001 .
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor, or a central processing unit.
  • the baseband processor may be used to process communication protocols and communication data
  • the central processing unit may be used to control devices (eg, UE, base station or chip, etc.), execute software programs, and process data of software programs.
  • the apparatus may include a transceiving unit for implementing signal input (reception) and output (transmission).
  • the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used for terminal equipment (such as UE) or access network equipment (such as base station).
  • the apparatus may be a terminal device (such as a UE) or an access network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication apparatus 1000 includes one or more processors 1001, and the one or more processors 1001 can implement the method of the first apparatus or the second apparatus in any of the foregoing embodiments.
  • processor 1001 may also implement other functions in addition to implementing the method in any of the foregoing embodiments.
  • the processor 1001 may also include instructions 1003, and the instructions may be executed on the processor, so that the communication apparatus 1000 executes the method described in any of the foregoing method embodiments.
  • the communication apparatus 1000 may also include a circuit, and the circuit may implement the function of the first device or the second device in any of the foregoing method embodiments.
  • the communication device 1000 may include one or more memories 1002 having stored thereon instructions 1004 that may be executed on the processor to cause the communication device 1000 to perform any of the above The method described in the method example.
  • data may also be stored in the memory.
  • Instructions and/or data may also be stored in the optional processor.
  • the one or more memories 1002 may store the DCI or SCI described in the above embodiments, or other information involved in the above embodiments.
  • the processor and the memory can be provided separately or integrated together.
  • the communication apparatus 1000 may further include a transceiver unit 1005 and an antenna 1006, or a communication interface.
  • the transceiver unit 1005 may be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., and is used to implement the transceiver function of the device through the antenna 1006 .
  • the communication interface (not shown in the figure) can be used for the communication between the core network device and the access network device, or between the access network device and the access network device.
  • the communication interface may be a wired communication interface, such as an optical fiber communication interface.
  • the processor 1001 which may be referred to as a processing unit, controls an apparatus such as a communication device.
  • processors in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), dedicated integrated Circuit (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (EPROM), electrically programmable Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Fetch memory
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above embodiments may be implemented in whole or in part by software, hardware (eg, circuits), firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server or data center Transmission to another website site, computer, server or data center by means of wire, such as optical fiber, or wireless, such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • the embodiments of the present application also provide a computer program product, the computer program product includes computer program code, when the computer program code is run on a computer, the computer program code causes the computer to execute the method steps of the first device described in the foregoing embodiments; or When the computer program code is run on a computer, the computer is caused to perform the method steps of the second device described in the foregoing embodiments.
  • Embodiments of the present application further provide a computer-readable storage medium, where program instructions are stored on the computer-readable storage medium, and when the computer-readable storage medium runs on a computer, the computer can execute the method steps of the first device described in the foregoing embodiments. ; or when the computer program code is run on a computer, causing the computer to execute the method steps of the second device described in the foregoing embodiments.
  • An embodiment of the present application further provides a device, and the device may be a chip.
  • the chip includes a processor.
  • the processor is configured to read and execute a computer program stored in the memory to perform the method of any possible implementation of any of the foregoing embodiments.
  • the chip further includes a memory, and the memory is connected to the processor through a circuit or a wire.
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used for receiving data and/or signals to be processed, the processor obtains the data and/or signals from the communication interface, processes the data and/or signals, and outputs processing results through the communication interface.
  • the communication interface may be an input-output interface.
  • processor and memory may be physically independent units, or the memory may also be integrated with the processor.
  • a communication system in another embodiment, is also provided, where the communication system includes a first device and a second device.
  • the first device and the second device may perform the method in any of the foregoing embodiments.
  • the process can be completed by instructing the relevant hardware by a computer program, and the program can be stored in a computer-readable storage medium.
  • the program When the program is executed , which may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random storage memory RAM, magnetic disk or optical disk and other mediums that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种双DRX模式下唤醒指示方法及相关装置,该方法包括:第一设备发送一阶SCI,再在预设时间窗内发送二阶SCI;该一阶SCI用于指示二阶SCI的格式是新SCI格式,比如SCI format 2-C/2-D,该新SCI格式的二阶SCI包括唤醒指示位;该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。采用本申请实施例,可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。

Description

双DRX模式下唤醒指示方法及相关装置
本申请要求于2021年03月22日提交中国专利局、申请号为202110303033.3、申请名称为“一种指示方法、终端及网络设备”的中国专利申请的优先权,和2021年04月21日提交中国专利局、申请号为202110432825.0、申请名称为“双DRX模式下唤醒指示方法及相关装置”的中国专利申请的优先权;其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种双(Dual)非连续接收(discontinuous reception,DRX)模式下唤醒指示方法及相关装置。
背景技术
长期演进(long term evolution,LTE)系统、新空口(new radio,NR)系统、或侧行链路(sidelink)系统中,用户设备(user equipment,UE)在进行物理下行控制信道(physical downlink control channel,PDCCH)或物理侧行链路控制信道(physical sidelink control channel,PSCCH)检测时功耗是非常大的。但实际上,数据传输通常是突发性的。比如,在一段时间内有数据传输,在数据传输后的较长一段时间内没有数据传输。所以,UE所做的大部分PDCCH/PSCCH检测都是检测不到任何指示的。基于此,LTE系统和NR系统都引入了非连续接收(discontinuous reception,DRX)技术。网络设备向UE指示DRX周期,在一个DRX周期中UE在激活时间(或唤醒时间)内进行PDCCH检测,在除激活时间的其他时间内进行休眠,从而降低UE的功耗。然而,UE在激活时间内进行PDCCH检测时,由于数据传输往往具有突发性和稀疏性,所以没有数据传输需求的概率较大,导致相当大比例检测到的PDCCH是没有任何指示的,故仍然会导致功耗较高。此外,因为NR系统中的UE工作在更大的射频和基带带宽上,所以UE的功耗会更高。基于此,在NR系统中引入唤醒信号(wakeup signal,WUS)来进一步降低UE的功耗。即,在网络设备向UE指示DRX周期之前,向UE发送WUS来指示UE在接下来的一个DRX周期内是否需要唤醒,在唤醒的情况下进行PDCCH检测和/或接收物理下行共享信道(physical downlink shared channel,PDSCH),和/或进行测量上报。
对于既支持通信功能又支持定位功能的UE来说,在保证通信性能和定位性能的基础上,功耗越小越好。在某些场景下,同一时间可能只有通信需求或定位需求,因此无需为通信和定位配置同一套DRX参数。即使在某些场景下同时存在通信需求和定位需求,但由于UE针对通信业务和定位业务的处理时间、时延需求不一样,也可以灵活地进行唤醒或休眠,在唤醒情况下检测(或解调)通信调度或定位调度。所以针对既支持通信功能又支持定位功能的UE,考虑针对通信业务和定位业务引入双DRX机制,即针对通信业务和定位业务分别设置DRX参数,比如DRX周期、DRX持续时间计时器(drx-on duration Timer),DRX不活跃计时器(drx-inactivity Timer)等。然而如何在双DRX机制上设计唤醒指示,以进一步降低功耗,从而实现功耗与通信性能和/或定位性能的权衡,成为了亟待解决的问题。
发明内容
本申请实施例提供一种双DRX模式下唤醒指示方法及相关装置,可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
下面从不同的方面介绍本申请,应理解的是,下面的不同方面的实施方式和有益效果可以互相参考。
第一方面,本申请提供一种双DRX模式下唤醒指示方法,应用于sidelink系统中,该方法包括:第一设备以广播的形式发送第一侧行链路控制信息(sidelink control information,SCI),再以组播或单播的形式在预设时间窗内发送第二SCI。该第一SCI用于指示第二SCI的格式是第一格式,该第一格式的第二SCI包括唤醒指示位。该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。该预设时间窗可以是一个DRX周期前的功率节省偏移持续时间内(Power saving offset duration)。
可选的,该第一SCI是一阶SCI(1st stage SCI),该第二SCI是二阶SCI(2nd stage SCI)。
可选的,该第一SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为2个比特,当该二阶SCI格式字段的取值为二进制10或11时,用于指示该第二SCI的格式(format)为第一格式。该第一格式不是现有SCI format 2-A和SCI format 2-B中任一种。
可选的,上述唤醒指示位的长度为2比特。
可见,本方案通过新设计一个二阶SCI(即第二SCI)来分别指示目标UE(即第二设备)在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒,一方面无需为通信业务和定位业务单独设计SCI,可以减少信令开销;另一方面可以通过灵活的进行唤醒或休眠指示来实现功耗与通信性能和/或定位性能的权衡。
结合第一方面,在一种可能的设计中,第一设备发送第二SCI之前,该方法还包括:第一设备向第二设备发送侧行链路(sidelink,SL)无线资源控制(radio resource control,RRC)信令,该SL RRC信令用于指示该第二SCI的起始比特和/或该第二SCI的大小。
可见,本方案为新设计的二阶SCI(即第二SCI)配套设置一个SL RRC信令,用来指示该二阶SCI中唤醒指示位的起始比特和大小,以支持双DRX模式下唤醒指示的实现。
结合第一方面,在一种可能的设计中,上述第二SCI还包括第一字段和第二字段。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。该第一字段的长度为24比特,第二字段的长度也为24比特。
可见,本方案通过在第二SCI中直接携带第二设备的完整层2标识,可以避免在没有媒体接入控制(media access control,MAC)层头(即MAC header)情况下无法恢复出完整的层2标识的情况。
结合第一方面,在一种可能的设计中,上述第二SCI还包括以下一个或多个字段:第三字段用于指示第二设备在该第三字段包括的每个比特对应的一个或多个载波单元上是否唤醒;第四字段用于指示该第二设备在用于通信业务的DRX周期和用于定位业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,或者第四字段用于指示该第二设备在用于通信业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长,第五字段用于指示该第二设备在用于定位业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长;第六字段用于指示第二设备进行物理侧行链路控制信道(physical sidelink control channel,PSCCH)或第一SCI检测的周期。其中,该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元(component carrier,CC)。该第三字段的长度可以等于用于通信 业务的载波单元个数与用于定位业务的载波单元个数之和。
可见,本方案通过在第二SCI中携带一个或多个其他可选字段(即第三字段、第四字段、第五字段、第六字段),有利于支持其他功能。
第二方面,本申请提供一种双DRX模式下唤醒指示方法,应用于sidelink系统中,该方法包括:第二设备接收第一SCI,再接收第二SCI。该第一SCI用于指示第二SCI的格式是第一格式,该第一格式的第二SCI包括唤醒指示位。该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,该第一SCI是一阶SCI(1st stage SCI),该第二SCI是二阶SCI(2nd stage SCI)。
可选的,该第一SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为2个比特,当该二阶SCI格式字段的取值为二进制10或11时,用于指示该第二SCI的格式(fromat)为第一格式。该第一格式不是现有SCI format 2-A和SCI format 2-B中任一种。
可选的,上述唤醒指示位的长度为2比特。
结合第二方面,在一种可能的设计中,如果上述唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内唤醒,则第二设备在用于通信业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。和/或,如果上述唤醒指示位用于指示第二设备在用于定位业务的DRX周期的持续时间计时器内唤醒,则第二设备在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
可选的,本文提及的“唤醒”和“休眠”是针对PSCCH检测(或PSCCH盲检)而言,也就是说,本文中提及的“唤醒”可以等效替换为“进行PSCCH检测”,“休眠”可以等效替换为“不进行PSCCH检测”。
结合第二方面,在一种可能的设计中,第二设备接收第二SCI之后,该方法还包括:第二设备根据该第二SCI中唤醒指示位的指示,在该用于通信业务的DRX周期的持续时间计时器内唤醒或休眠,和在该用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。
结合第二方面,在一种可能的设计中,第二设备接收第二SCI之前,该方法还包括:第二设备接收SL RRC信令,该SL RRC信令用于指示该第二SCI的起始比特和/或该第二SCI的大小。
结合第二方面,在一种可能的设计中,上述第二SCI还包括第一字段和第二字段。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。该第一字段的长度为24比特,第二字段的长度也为24比特。
结合第二方面,在一种可能的设计中,上述第二SCI还包括以下一个或多个字段:第三字段用于指示第二设备在该第三字段包括的每个比特对应的一个或多个载波单元上是否唤醒;第四字段用于指示该第二设备在用于通信业务的DRX周期和用于定位业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,或者第四字段用于指示该第二设备在用于通信业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长,第五字段用于指示该第二设备在用于定位业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长;第六字段用于指示第二设备进行物理侧行链路控制信道(physical sidelink control channel,PSCCH)或第一SCI检测的周期。其中,该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元(component carrier,CC)。该第三字段的长度可以等于用于通信 业务的载波单元个数与用于定位业务的载波单元个数之和。
第三方面,本申请提供一种双DRX模式下唤醒指示方法,应用于sidelink系统中,该方法包括:第一设备以广播的形式发送第三SCI,再以组播或单播的形式在预设时间窗内发送第四SCI。其中,该第三SCI用于指示该第四SCI的格式是第二格式,该第二格式的第四SCI包括第一唤醒指示位。该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。该预设时间窗可以是一个DRX周期前的功率节省偏移持续时间内。
可选的,该第三SCI是一阶SCI(1st stage SCI),该第四SCI是二阶SCI(2nd stage SCI)。
可选的,该第三SCI中二阶SCI格式字段的长度为k个比特,k是大于2的整数。当该二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数时,用于指示该第四SCI的格式为第二格式。该第二格式不是现有SCI format 2-A和SCI format 2-B中任一种。其中,k等于3。
可选的,上述第一唤醒指示位具体用于指示第二设备在用于第一业务的DRX周期的持续时间计时器内是否唤醒。第一业务可以是通信业务或定位业务。
可选的,上述第一唤醒指示位的长度为1比特。
可见,本方案通过单独为通信业务的DRX周期或定位业务的DRX周期新设计一个二阶SCI来指示第二设备在其周期内是否唤醒,其含义清晰,有利于降低功耗,实现功耗与通信性能或定位性能的权衡。
结合第三方面,在一种可能的设计中,该方法还包括:第一设备以广播的形式发送第五SCI,再以组播或单播的形式在预设时间窗内发送第六SCI。该第五SCI用于指示该第六SCI的格式是第三格式。该第三格式的第五SCI包括第二唤醒指示位。该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒。其中,第二业务是通信业务,第一业务是定位业务;或者,第二业务是定位业务,第一业务是通信业务。
可选的,该第五SCI是一阶SCI(1st stage SCI),该第六SCI是二阶SCI(2nd stage SCI)。
可选的,该第五SCI中二阶SCI格式字段的长度为k个比特,k是大于2的整数。当该第五SCI中二阶SCI格式字段的取值与上述第三SCI中二阶SCI字段的取值不相同,且该第五SCI中二阶SCI格式字段的取值是大于或等于十进制2且小于或等于2 k-1中的整数时,用于指示该第六SCI的格式为第三格式。该第三格式既不是现有SCI format 2-A和SCI format 2-B中任一种,也不是上述第二格式。其中,k等于3。
可选的,上述第二唤醒指示位的长度为1比特。
可见,本方案针对通信业务的DRX周期和定位业务的DRX周期分别新设计一个二阶SCI来指示第二设备在其周期内是否唤醒,其含义清晰,两种业务的DRX周期中的唤醒指示互不干扰,灵活性高,可适用于各种场景,有利于降低功耗,实现功耗与通信性能和定位性能的权衡。
结合第三方面,在一种可能的设计中,第一设备发送第四SCI之前,该方法还包括:第一设备向第二设备发送第一SL RRC信令,该第一SL RRC信令用于指示该第四SCI的起始比特和/或该第四SCI的大小。
结合第三方面,在一种可能的设计中,第一设备发送第六SCI之前,该方法还包括:第一设备向第二设备发送第二SL RRC信令,该第二SL RRC信令用于指示该第六SCI的起始比特和/或该第六SCI的大小。
可见,本方案为新设计的二阶SCI(即第四SCI或第六SCI)格式配套设置SL RRC信令, 用来指示该二阶SCI中唤醒指示位的起始比特和大小,以支持双DRX模式下唤醒指示的实现。
结合第三方面,在一种可能的设计中,上述第四SCI和上述第六SCI均包括第一字段和第二字段。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。该第一字段的长度为24比特,第二字段的长度也为24比特。
结合第三方面,在一种可能的设计中,上述第四SCI和上述第六SCI均包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;第四字段用于指示该第二设备在用于第一业务的DRX周期或者用于第二业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,第六字段用于指示该第二设备进行PSCCH检测或第三SCI或第五SCI检测的周期。该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元。该第三字段的长度可以等于用于通信业务的载波单元个数或用于定位业务的载波单元个数。
第四方面,本申请提供一种双DRX模式下唤醒指示方法,应用于sidelink系统中,该方法包括:第二设备接收第三SCI,再接收第四SCI。其中,该第三SCI用于指示该第四SCI的格式是第二格式,该第二格式的第四SCI包括第一唤醒指示位。该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
可选的,该第三SCI是一阶SCI(1st stage SCI),该第四SCI是二阶SCI(2nd stage SCI)。
可选的,该第三SCI中二阶SCI格式字段的长度为k个比特,k是大于2的整数。当该二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数时,用于指示该第四SCI的格式为第二格式。该第二格式不是现有SCI format 2-A和SCI format 2-B中任一种。其中,k等于3。
可选的,上述第一唤醒指示位具体用于指示第二设备在用于第一业务的DRX周期的持续时间计时器内是否唤醒。第一业务可以是通信业务或定位业务。
可选的,上述第一唤醒指示位的长度为1比特。
结合第四方面,在一种可能的设计中,该方法还包括:第二设备接收第五SCI,再接收第六SCI。该第五SCI用于指示该第六SCI的格式是第三格式。该第三格式的第五SCI包括第二唤醒指示位。该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒。其中,第二业务是通信业务,第一业务是定位业务;或者,第二业务是定位业务,第一业务是通信业务。
可选的,该第五SCI是一阶SCI(1st stage SCI),该第六SCI是二阶SCI(2nd stage SCI)。
可选的,该第五SCI中二阶SCI格式字段的长度为k个比特,k是大于2的整数。当该第五SCI中二阶SCI格式字段的取值与上述第三SCI中二阶SCI字段的取值不相同,且该第五SCI中二阶SCI格式字段的取值是大于或等于十进制2且小于或等于2 k-1中的整数时,用于指示该第六SCI的格式为第三格式。该第三格式既不是现有SCI format 2-A和SCI format 2-B中任一种,也不是上述第二格式。其中,k等于3。
可选的,上述第二唤醒指示位的长度为1比特。
结合第四方面,在一种可能的设计中,第二设备接收第四SCI之前,该方法还包括:第二设备接收第一SL RRC信令,该第一SL RRC信令用于指示该第四SCI的起始比特和/或该第四SCI的大小。
结合第四方面,在一种可能的设计中,第二设备接收第六SCI之前,该方法还包括:第二设备接收第二SL RRC信令,该第二SL RRC信令用于指示该第六SCI的起始比特和/或该第六SCI的大小。
结合第四方面,在一种可能的设计中,如果上述第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内唤醒,则第二设备在DRX周期的持续时间计时器内唤醒并进行PSCCH检测。和/或,如果上述第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内唤醒,则第二设备在用于第二业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
结合第四方面,在一种可能的设计中,第二设备接收第四SCI之后,该方法还包括:第二设备根据该第四SCI中第一唤醒指示位的指示,在DRX周期的持续时间计时器内唤醒或休眠。
结合第四方面,在一种可能的设计中,第二设备接收第六SCI之后,该方法还包括:第二设备根据该第六SCI中第二唤醒指示位的指示,在用于第二业务的DRX周期的持续时间计时器内唤醒或休眠。
结合第四方面,在一种可能的设计中,上述第四SCI和上述第六SCI均包括第一字段和第二字段。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。该第一字段的长度为24比特,第二字段的长度也为24比特。
结合第四方面,在一种可能的设计中,上述第四SCI和上述第六SCI均包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;第四字段用于指示该第二设备在用于第一业务的DRX周期或者用于第二业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,第六字段用于指示该第二设备进行PSCCH检测或第三SCI或第五SCI检测的周期。该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元。该第三字段的长度可以等于用于通信业务的载波单元个数或用于定位业务的载波单元个数。
第五方面,本申请提供一种双DRX模式下唤醒指示方法,应用于蜂窝系统中,该方法包括:网络设备在预设时间窗内发送下行控制信息(downlink control information,DCI),该预设时间窗可以是一个DRX周期前的功率节省偏移持续时间内(power saving offset duration)。其中,该DCI包括唤醒指示位,该唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。该DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该DCI的格式是DCI format 2-6。
可选的,上述DCI采用块状设计,该DCI的每个块中包括一个唤醒指示位。该唤醒指示位的长度为2比特。
可见,本方案通过对传统DCI fromat 2-6的功能进行扩展,使其能够同时指示终端设备在用于通信业务的DRX周期的drx-on duration内是否唤醒以及在用于定位业务的DRX周期的drx-on duration内是否唤醒,一方面无需为通信业务和定位业务单独设计DCI,可以减少信令开销;另一方面可以单独指示通信和定位业务的唤醒或休眠以实现功耗与通信性能和/或定位性能的权衡。
结合第五方面,在一种可能的设计中,上述DCI中还包括第一指示位,该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。P为大于或等于0的整数。
可见,本方案在不仅通过唤醒指示位指示主小区上的唤醒与休眠,还通过第一指示位指示辅小区上的唤醒与休眠,可以进一步节省功耗。
第六方面,本申请提供一种双DRX模式下唤醒指示方法,应用于蜂窝系统中,该方法包括:终端设备接收该DCI。其中,该DCI包括唤醒指示位,该唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。该DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该DCI的格式是DCI format 2-6。
可选的,上述DCI采用块状设计,该DCI的每个块中包括一个唤醒指示位。该唤醒指示位的长度为2比特。
结合第六方面,在一种可能的设计中,如果上述唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内唤醒,则终端设备在用于通信业务的DRX周期的持续时间计时器内唤醒并进行物理下行控制信道PDCCH检测。和/或,如果上述唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒,则终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PDCCH检测。
结合第六方面,在一种可能的设计中,终端设备接收该DCI之后,该方法还包括:终端设备对该第一DCI进行解析,根据该第一DCI中第一唤醒指示位的指示,在用于通信业务的DRX周期的持续时间计时器内唤醒或休眠,和在用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。
结合第六方面,在一种可能的设计中,上述DCI中还包括第一指示位,该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。P为大于或等于0的整数。
第七方面,本申请提供一种双DRX模式下唤醒指示方法,应用于蜂窝系统中,该方法包括:网络设备在预设时间窗内发送第一DCI,该预设时间窗可以是一个DRX周期前的功率节省偏移持续时间(power saving offset duration)。该第一DCI包括第一唤醒指示位,该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内是否唤醒。该第一DCI的格式不是用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第一DCI的格式不是现有的DCI format 2-6。
可选的,上述第一DCI采用块状设计,该第一DCI的每个块中包括一个第一唤醒指示位。该第一唤醒指示位的长度为1比特。
可见,本方案在蜂窝系统中单独为定位业务的DRX周期设计一种新的DCI格式,来指示定位业务的DRX周期中drx-on duration内的唤醒或休眠,一方面含义清晰,灵活性高,可适用于各种场景;另一方面可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
结合第七方面,在一种可能的设计中,该方法还包括:网络设备发送第二DCI,该第二DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第二DCI的格式是现有DCI format 2-6。该第二DCI包括第二唤醒 指示位,该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述第二DCI采用块状设计,该第二DCI的每个块中包括一个第二唤醒指示位。该第二唤醒指示位的长度为1比特。
结合第七方面,在一种可能的设计中,网络设备发送第一DCI之前,该方法还包括:网络设备发送RRC信令,该RRC信令用于指示该第一唤醒指示位的起始比特和/或大小。
可见,本方案为新设计的DCI(即第一DCI)格式配套设置RRC信令,用来指示与终端设备对应的第一唤醒指示位的起始比特和该第一唤醒指示位所在的块(block)的大小,以支持双DRX模式下唤醒指示的实现。
结合第七方面,在一种可能的设计中,上述第一DCI中还包括第一指示位,该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。P为大于或等于0的整数。
第八方面,本申请提供一种双DRX模式下唤醒指示方法,应用于蜂窝系统中,该方法包括:终端设备接收该第一DCI,该第一DCI包括第一唤醒指示位,该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内是否唤醒。该第一DCI的格式不是用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第一DCI的格式不是现有DCI format 2-6。
可选的,上述第一DCI采用块状设计,该第一DCI的每个块中包括一个第一唤醒指示位。该第一唤醒指示位的长度为1比特。
结合第八方面,在一种可能的设计中,该方法还包括:终端设备接收第二DCI,该第二DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第二DCI的格式是现有DCI format 2-6。该第二DCI包括第二唤醒指示位,该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述第二DCI采用块状设计,该第二DCI的每个块中包括一个第二唤醒指示位。该第二唤醒指示位的长度为1比特。
结合第八方面,在一种可能的设计中,终端设备接收第一DCI之前,该方法还包括:终端设备接收RRC信令,该RRC信令用于指示该第一唤醒指示位的起始比特和/或大小。
结合第八方面,在一种可能的设计中,如果上述第一唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器(drx-on duration Timer)内唤醒,则终端设备在用于通信业务的DRX周期的持续时间计时器内唤醒并进行物理下行控制信道PDCCH检测。和/或,如果上述第二唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒,则终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PDCCH检测。
结合第八方面,在一种可能的设计中,终端设备接收该第一DCI之后,该方法还包括:终端设备对该第一DCI进行解析,根据该第一DCI中第一唤醒指示位的指示,在该用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。
结合第八方面,在一种可能的设计中,上述第一DCI中还包括第一指示位,该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。P为大于或等于 0的整数。
第九方面,本申请提供一种通信装置,该通信装置可以是第一设备或第一设备中的芯片。该通信装置包括用于执行上述第一方面、或上述第三方面、或上述第一方面的任意一种可能的实现方式、或上述第三方面的任意一种可能的实现方式所提供的双DRX模式下唤醒指示方法的单元和/或模块,因此也能实现第一方面或第三方面提供的双DRX模式下唤醒指示方法所具备的有益效果(或优点)。
第十方面,本申请提供一种通信装置,该通信装置可以是第二设备或第二设备中的芯片。该通信装置包括用于执行上述第二方面、或上述第四方面、或上述第二方面的任意一种可能的实现方式、或上述第四方面的任意一种可能的实现方式所提供的双DRX模式下唤醒指示方法的单元和/或模块,因此也能实现第二方面或第四方面提供的双DRX模式下唤醒指示方法所具备的有益效果(或优点)。
第十一方面,本申请提供一种通信装置,该通信装置可以包括处理器、存储器、以及收发器。其中,该存储器用于存储计算机程序,该收发器用于收发各种信息或信令,该计算机程序包括程序指令,当该处理器运行该程序指令时,使得该通信装置执行上述第一方面至上述第八方面中任一方面、或其中任一方面的任意一种可能的实现方式描述的双DRX模式下唤醒指示方法。其中,收发器可以为通信装置中的射频模块,或,射频模块和天线的组合,或,芯片或电路的输入输出接口。
第十二方面,本申请提供一种可读存储介质,该可读存储介质上存储有程序指令,当其在计算机上运行时,使得计算机执行上述第一方面至上述第八方面中任一方面、或其中任一方面的任意一种可能的实现方式描述的双DRX模式下唤醒指示方法。
第十三方面,本申请提供一种包含指令的程序产品,当其运行时,使得上述第一方面至上述第八方面中任一方面的任意一种可能的实现方式描述的双DRX模式下唤醒指示方法被执行。
第十四方面,本申请提供一种装置,该装置可以以芯片的形式实现,也可以为设备的形式,该装置包括处理器。该处理器用于读取并执行存储器中存储的程序,以执行上述第一方面至上述第八方面中任一方面中的一项或多项,或,其中任一方面的任意可能的实现方式中的一项或多项提供的双DRX模式下唤醒指示方法。可选的,该装置还包括存储器,该存储器与该处理器通过电路连接。进一步可选的,该装置还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的信息和/或信令,该处理器从该通信接口获取该信息和/或信令,并对该信息和/或信令进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十五方面,本申请提供一种通信系统,该通信系统包括上述第三方面或上述第七方面描述的通信装置,和上述第四方面或上述第八方面描述的通信装置。
实施本申请实施例,可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的几种定位场景示意图;
图2是本申请实施例提供的两个DRX周期中持续时间计时器在起始时刻对齐的示意图;
图3是本申请实施例提供的双DRX模式下唤醒指示方法的第一种示意流程图;
图4是本申请实施例提供的第二SCI的格式示意图;
图5是本申请实施例提供的DRX-C和DRX-P的drx-on duration Timer对齐场景示意图一;
图6是本申请实施例提供的DRX-C的休眠期内存在定位业务的场景示意图一;
图7是本申请实施例提供的DRX-C的drx-on duration Timer内存在定位业务的场景示意图一;
图8是本申请实施例提供的双DRX模式下唤醒指示方法的第二种示意流程图;
图9是本申请实施例提供的SCI format 2-C和SCI format 2-D的格式示意图;
图10是本申请实施例提供的DRX-C的休眠期内存在定位业务的场景示意图二;
图11是本申请实施例提供的DRX-C与DRX-P在时间上不存在重叠的场景示意图;
图12是本申请实施例提供的DRX-P的drx-on duration Timer内存在定位业务的场景示意图二;
图13是本申请实施例提供的DRX-C和DRX-P的drx-on duration Timer对齐场景示意图二;
图14是本申请实施例提供的双DRX模式下唤醒指示方法的第三种示意流程图;
图15是本申请实施例提供的DCI的格式示意图;
图16是本申请实施例提供的双DRX模式下唤醒指示方法的第四种示意流程图;
图17是本申请实施例提供的第一DCI的格式示意图;
图18是NR系统中DCI format 2-6的格式示意图;
图19是本申请实施例提供的通信装置1的结构示意图;
图20是本申请实施例提供的通信装置2的结构示意图;
图21是本申请实施例提供的通信装置3的结构示意图;
图22是本申请实施例提供的通信装置4的结构示意图;
图23是本申请实施例提供的通信装置1000的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一SCI和第二SCI仅仅是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c;a和b;a和c;b和c;或a和b和c。其中a,b,c 可以是单个,也可以是多个。
本申请实施例中,“双DRX模式”是指针对通信业务和定位业务分别进行DRX模式配置和参数配置的情况。
为便于理解本申请实施例提供的双DRX模式下唤醒指示方法,下面将对本申请实施例提供的双DRX模式下唤醒指示方法的应用场景进行说明。可理解的,本申请实施例描述的应用场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。
本申请实施例提供的双DRX模式下唤醒指示方法可以用于5G NR、sidelink、无线保真(wireless fidelity,WiFi)、超宽带(ultra wide band,UWB)、蓝牙等支持无线通信的定位场景。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”、“信息传输”或“传输”。
参见图1,图1是本申请实施例提供的几种定位场景示意图。如图1所示,图1示出了几种常见的定位场景:蜂窝定位、sidelink通信与定位、WiFi定位、以及UWB定位/蓝牙定位。其中,从网络拓扑结构来看,如果是蜂窝定位系统,各终端设备位于基站的覆盖范围之内。如果是sidelink通信与定位系统,各终端设备可以位于基站的覆盖范围之内,也可以位于基站的覆盖范围之外。如果是WiFi定位,各终端设备(比如站点)可以位于无线接入点(access point,AP)的覆盖范围之内,也可以位于AP的覆盖范围之外。如果是蓝牙定位或UWB定位,终端设备即可以位于锚点的覆盖范围之内,也可以位于锚点的覆盖范围之外。可选的,参与定位的各设备可以发送定位参考信号(positioning reference signal,PRS)、或信道状态信息参考信息(channel state information reference signal,CSI-RS)、或同步跟踪参考信号(tracking reference signal,TRS)等定位测量参考信号,并且具备DRX能力。应理解,本申请实施例提供的双DRX模式下唤醒指示方法可以应用于图1所示的各种定位场景中,还应理解,图1仅是示例性的,本申请实施例提供的双DRX模式下唤醒指示方法还可以应用于其他支持无线通信的定位场景中。
本申请实施例涉及到的网络设备是网络侧的一种用于发射或接收信号的实体,例如基站(base station,BS),WiFi AP,UWB锚点,室内覆盖小站等。网络设备是一种部署在无线接入网中能够和终端进行无线通信的设备。基站(BS)可以是固定的,也可以是移动的。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、发送接收点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、网络控制器、接入节点、无线节点、传输节点、收发节点、基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、有源天线单元(AAU)、射频头(RRH)、中心单元(CU)、分布单元(DU)、定位节点等。网络设备可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请实施例涉及到的终端设备是用户侧的一种用于接收或发射信号的实体,如手机。终端设备可以用于连接人、物和机器。终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是用户设备(user equipment,UE),移动台(mobile station,MS),移动终端(mobile terminal,MT)等。其中,UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备(手环、智能手表)、传感器、数据卡或计算设备。示例性地,UE可以是手机(mobile phone)、 笔记本电脑、平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,UE也可以用于充当基站。例如,UE可以充当调度实体,其在车辆外联(vehicle-to-everything,V2X)、设备到设备(device-to-device,D2D)或点对点(peer to peer,P2P)等中的UE之间提供侧行链路信号。
应理解,本申请实施例涉及到的网络设备和终端设备均具备DRX能力,并且支持通信和定位功能。
上述内容简要阐述了本申请实施例可能的应用场景,为更好地理解本申请实施例的技术方案,下面将简要介绍蜂窝网络中的DRX和唤醒指示。
在载波聚合(carrier aggregation,CA)场景下,由于不同的服务小区所使用的载波频段不一样,比如,主小区(primary cell,Pcell)使用FR1频段,而辅小区(secondary cell,Scell)使用FR2频段,所以针对主小区和辅小区可以配置不同的DRX参数并引入辅非连续接收组(Secondary DRX Group)机制。其中,因为FR2频段的频率高于FR1频段的频率,且UE工作在更大的射频和基带带宽时,UE的功耗会更高,所以给Scell小区配置非连续接收组2(DRX group2),对应的DRX参数为短DRX持续时间计时器(short drx-on Duration Timer)和短DRX不活跃计时器(short drx-Inactivity Timer),以使UE在Scell能够更快的进入非激活态或休眠状态,从而获得更高的功耗节省增益。同时,使用一个唤醒信号(WUS)来指示两个DRX group的唤醒或休眠。当两个DRX group的周期不一致时(比如Pcell配置长DRX周期,Scell配置短DRX周期),使用单比特的WUS进行指示,并且长周期DRX group的唤醒和休眠听从与其相近的短周期DRX group的WUS指示。又因为Secondary DRX Group机制是用一个WUS(即单比特的WUS指示)来指示两个服务小区的唤醒或休眠,所以Secondary DRX Group机制只适用于两个DRX周期的持续时间计时器(drx-on Duration Timer)在起始时刻对齐(或相同)的场景。参见图2,图2是本申请实施例提供的两个DRX周期中持续时间计时器在起始时刻对齐的示意图。如图2所示,UE在drx-on Duration Timer所指示的一段时间内唤醒以进行PDCCH检测。此外,Secondary DRX Group机制不支持跨载波调度,因此在进行载波单元(component carrier,CC)测量时功耗仍然比较大。
因此,本申请实施例提供一种双DRX模式下唤醒指示方法,不仅可以在两个DRX周期中持续时间计时器的起始时刻不对齐(或不相同)的场景下,分别指示用于定位业务的唤醒或休眠、以及用于通信业务的唤醒或休眠;还可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
下面将结合更多的附图对本申请提供的技术方案进行详细说明。
本申请提供的技术方案通过四个实施例来详细说明。其中,实施例一阐述在sidelink系统中针对通信业务的DRX周期和针对定位业务的DRX周期统一设计唤醒指示的方案。实施例二阐述在sidelink系统中针对通信业务的DRX周期和针对定位业务的DRX周期分别独立设计唤醒指示的方案。实施例三阐述在蜂窝系统中针对通信业务的DRX周期和针对定位业务的DRX周期统一设计唤醒指示的方案。实施例四阐述在蜂窝系统中针对定位业务的DRX周 期独立设计唤醒指示的方案。可理解的,本申请实施例一至实施例四中所涉及概念或方案相同或相似的部分可以相互参考或组合。下面分别对各个实施例进行详细说明。
可选的,本申请提供的技术方案可通过第一设备和第二设备来实现。其中,第一设备既可以是网络设备,如基站;也可以是终端设备,如UE。第二设备是终端设备,如UE。第一设备和第二设备具备DRX能力,并且支持通信和定位功能。应理解,在sidelink系统中,第一设备和第二设备是参与定位的不同终端设备。在蜂窝系统中,第一设备是参与定位的网络设备,第二设备是参与定位的终端设备。
为便于描述,下文将用于通信业务的DRX周期记为DRX-C,即DRX-communication;将用于定位业务的DRX周期即为DRX-P,即DRX-positioning。
应理解,本申请实施例提及的“双DRX模式”是指针对通信业务和定位业务分别设置DRX周期的情况。
实施例一
本申请实施例一主要介绍sidelink系统中一段时间内同时存在通信业务和定位业务的情况下,针对通信业务的DRX周期和针对定位业务的DRX周期统一设计唤醒指示的方案,也就是使用一个唤醒信号分别指示两种业务的DRX周期内的唤醒或休眠。
参见图3,图3是本申请实施例提供的双DRX模式下唤醒指示方法的第一种示意流程图。如图3所示,该双DRX模式下唤醒指示方法包括但不限于以下步骤:
S101,第一设备发送第一侧行链路控制信息(sidelink control information,SCI)。
S102,第一设备发送第二SCI,该第一SCI用于指示该第二SCI的格式是第一格式,该第一格式的第二SCI包括唤醒指示位,该唤醒指示位用于指示第二设备在用于通信业务的非连续接收DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,本申请实施例中的第一设备与第二设备之间既存在通信业务也存在定位业务,并且第一设备和第二设备均进入双DRX模式。第一设备以广播的形式发送第一侧行链路控制信息(sidelink control information,SCI)。第一设备再以组播或单播的形式在预设时间窗内发送第二SCI。该预设时间窗可以是一个DRX周期前的功率节省偏移(Power saving offset)期间。其中,该第一SCI是一阶SCI(1st stage SCI),该第二SCI是二阶SCI(2nd stage SCI)。一阶SCI(1st stage SCI)中包含二阶SCI(2nd stage SCI)的资源指示,二阶SCI是UE专有的。换句话说,所有UE都可以解析一阶SCI获得其中二阶SCI的资源指示,但一个二阶SCI只能被一个特定的UE解析以获得其中包含的信息。具体地,一阶SCI(1st stage SCI)可用来指示二阶SCI(2nd stage SCI)的格式(format)类型,所以该第一SCI可用于指示该第二SCI的格式(format)。该第一SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为2个比特,当该二阶SCI格式字段的取值为二进制10或11时,用于指示该第二SCI的格式为第一格式。该第一格式不是现有SCI format 2-A和SCI format 2-B中任一种,比如第二SCI的格式为SCI format 2-C。应理解,本申请实施例对第二SCI的格式的名称不做限定,为便于与SCI format 2-A和SCI format 2-B区分,下文将第二SCI的格式记为SCI format 2-C。二阶SCI(2nd stage SCI)可用于承载唤醒信号的指示比特,所以该第二SCI包括唤醒指示位。该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器(drx-on duration Timer)内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
应理解,在本申请中,术语“唤醒信号”与“唤醒指示位”可替换使用。术语“持续时 间计时器”和“drx-on duration Timer”还可以简称为“持续时间”,术语“持续时间”还可以描述为“唤醒时间”。
下面分别对第一SCI和第二SCI的实现方式进行详细说明。
可选的,由于sidelink系统中的唤醒指示是UE专有的(UE-specific),所以承载唤醒指示的SCI也是针对每个UE的,或者说是UE specific的,因此需要两阶SCI(two stage SCI)来指示。其中1st stage SCI(如上述第一SCI)用于指示2nd stage SCI的format类型,2nd stage SCI(如上述第二SCI)用于承载唤醒信号的指示比特。又因为3GPP sidelink系统中2nd stage SCI只有SCI format 2-A和SCI format 2-B两种格式,并且SCI format 2-A和SCI format 2-B均是用于通信业务的调度控制信息。所以,本申请实施例首先对2nd SCI format类型进行扩展,引入一个新的2nd SCI format来承载唤醒指示位。
具体地,上述第一SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为2个比特,本申请实施例对该二阶SCI格式字段进行功能扩展,当该二阶SCI格式字段的取值为预留值时,如“10”或“11”,用于指示上述第二SCI的格式为SCI format 2-C(即第一格式)。其中,本申请实施例的第一SCI中二阶SCI格式字段的取值为10或11。
参见下述表1所示,表1示出了1st stage SCI中2nd-stage SCI format field的取值和含义。如表1所示,当二阶SCI格式字段取值为00时,表示二阶SCI格式是SCI format 2-A;当二阶SCI格式字段取值为01时,表示二阶SCI格式是SCI format 2-B;当二阶SCI格式字段取值为10时,表示二阶SCI格式是SCI format 2-C;当二阶SCI格式字段取值为11时,表示预留或用作其他功能扩展。应理解,也可以是二阶SCI格式字段取值为11时,表示二阶SCI格式是SCI format 2-C;二阶SCI格式字段取值为10时,表示预留或用作其他功能扩展。
表1
Figure PCTCN2022081735-appb-000001
可选的,上述第二SCI的格式是SCI format 2-C,该第二SCI包括唤醒指示位、第一字段、以及第二字段。该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒和在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。其中,该第一字段可以称为源标识字段,该第二字段可以称为目标标识字段,应理解,该第一字段和第二字段还可以有其他名称,本申请实施例不做限定。
可选的,上述第二SCI还包括以下一个或多个字段:第三字段、第四字段、第五字段以及第六字段。该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元(component carrier,CC)。该第三字段用于指示第二设备在该第三字段包括的每个比特对应的一个或多个载波单元上是否唤醒。该第三字段的长度可以等于用于通信业务的载波单元个数与用于定位业务的载波单元个数之和。该第四字段用于指示第二设备在DRX-C和DRX-P的drx-on  duration Timer内进入休眠的起始时刻和休眠时长。或者,该第四字段用于指示第二设备在DRX-C的drx-on duration Timer内进入休眠的起始时刻和休眠时长,该第五字段用于指示第二设备在DRX-P的drx-on duration Timer内进入休眠的起始时刻和休眠时长。该第六字段用于指示第二设备进行物理侧行链路控制信道(physical sidelink control channel,PSCCH)或第一SCI检测的周期。其中,该第三字段可以称为休眠指示字段,该第四字段可以称为PSCCH跳过指示字段或PSCCH跳过指示1字段,该第五字段可以为称为PSCCH跳过指示2字段,该第六字段可以称为检测周期指示字段;应理解,该第三字段、该第四字段、该第五字段以及该第六字段还可以有其他名称,本申请实施例不做限定。
参见图4,图4是本申请实施例提供的第二SCI的格式示意图。如图4所示,第二SCI(即SCI format 2-C)包括源标识(source ID)字段、目标标识(destination ID)字段、以及唤醒指示(Wake-up indication)位,可选的还包括休眠指示(dormancy indication)字段、PSCCH跳过指示(PSCCH skipping indication)字段、检测周期指示(monitoring periodic indication)字段中的一个或多个。
其中,source ID字段(即上述第一字段)的长度为24比特,用于表示源UE(即上述第一设备)的完整层2标识(Layer2-ID)。源UE(即上述第一设备)的完整层2标识也可以是24比特。应理解,source ID字段(即上述第一字段)的长度还可以大于24比特,本申请实施例对此不做限定。destination ID字段(即上述第二字段)的长度为24比特,用于表示目标UE(即上述第二设备)的完整层2标识(Layer2-ID)。目标UE(即上述第二设备)的完整层2标识也可以是24比特。应理解,destination ID字段(即上述第二字段)的长度还可以大于24比特,本申请实施例对此不做限定。可见,因为源UE(即上述第一设备)和目标UE(即上述第二设备)之间可能不存在通信调度,也就没有办法在物理侧行链路共享信道(physical sidelink share channel,PSSCH)中发送媒体接入控制(media access control,MAC)层头(即MAC header),所以目标UE不能根据MAC header恢复出完整的层2标识。因此,本申请实施例通过在第二SCI中直接携带UE的完整层2标识,可以避免在没有MAC header情况下无法恢复出完整的层2标识的情况。
图4中唤醒指示(Wake-up indication)位的长度为2比特,分别用于指示目标UE(即上述第二设备)在用于通信业务的DRX周期的drx-on duration Timer是否唤醒、和在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。在唤醒情况下,目标UE(即上述第二设备)进行PSCCH检测。参见下述表2,表2示出了唤醒指示位的取值与含义的一种映射关系;当然,唤醒指示位的取值和含义还可以有其他映射关系,这里不一一列举。如表2所示,当该唤醒指示位是11时,表示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测,并在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测。当该唤醒指示位是00时,表示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内休眠,并在用于定位业务的DRX周期的drx-on duration Timer内休眠。当该唤醒指示位是01时,表示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内休眠,并在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测。当该唤醒指示位是10时,表示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测,并在用于定位业务的DRX周期的drx-on duration Timer内休眠。应理解,本申请实施例具体用“1”还是“0”表示唤醒不做限定。
表2
Figure PCTCN2022081735-appb-000002
应理解,如果唤醒指示位指示目标UE(即上述第二设备)在用于通信业务的DRX周期的drx-on duration Timer内唤醒,则源UE(即上述第一设备)在此期间内也是唤醒的。同理,如果唤醒指示位指示目标UE(即上述第二设备)在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则源UE(即上述第一设备)在此期间内也是唤醒的。因为唤醒情况下,目标UE(即上述第二设备)需要进行PSCCH检测,所以源UE(即上述第一设备)在唤醒情况下需要发送PSCCH以支持目标UE的PSCCH检测。还应理解,本申请实施例中提及的“唤醒”和“休眠”是针对PSCCH检测(或PSCCH盲检)而言,也就是说,本申请实施例中提及的“唤醒”可以等效替换为“进行PSCCH检测”,“休眠”可以等效替换为“不进行PSCCH检测”。
图4中休眠指示(dormancy indication)字段(即上述第三字段)以比特位图(bitmap)的形式存在,其长度是m+n比特。m表示用于通信业务的载波单元个数,n表示用于定位业务的载波单元个数。此时,休眠指示字段的一个比特对应一个载波单元。休眠指示字段(即上述第三字段)的一个比特用于指示(载波聚合情况下)目标UE(即上述第二设备)在该比特对应的载波单元上是否唤醒,比如,该比特为1,表示目标UE(即上述第二设备)在该比特对应的载波单元上唤醒以进行PSCCH检测,该比特为0,表示目标UE(即上述第二设备)在该比特对应的载波单元上休眠。可选的,休眠指示字段(即上述第三字段)包括一个或多个比特,一个比特对应一组载波单元,一组载波单元中包括一个或多个载波单元。此时,休眠指示字段(即上述第三字段)的一个比特指示目标UE(即上述第二设备)在该比特对应的一组载波单元上是否唤醒。或者,休眠指示字段(即上述第三字段)包括多个子字段,一个子字段包括一个或多个比特,每个子字段对应一个或多个载波单元。比如,休眠指示字段(即上述第三字段)包括通信休眠子字段和定位休眠子字段,通信休眠子字段的长度等于用于通信业务的载波单元个数m,定位休眠子字段等于用于定位业务的载波单元个数n。
图4中PSCCH跳过指示(PSCCH skipping indication)字段(即上述第四字段),用于指示目标UE(即上述第二设备)在DRX-C和DRX-P的drx-on duration Timer内进入休眠的休眠时间段,以进一步节省功耗。该休眠时间段可通过以下至少两项信息确定:起始时刻、休眠时长、结束时刻。可选的,休眠时长可半静态配置,也可通过PSCCH跳过指示字段指示;如果休眠时长半静态配置,起始时刻和/或结束时刻可通过PSCCH跳过指示字段指示。示例性的,可利用PSCCH跳过指示字段指示的PSCCH跳过模式来隐式指示(或间接指示)目标UE(即上述第二设备)在DRX-C和DRX-P的drx-on duration Timer内进入休眠的起始时刻和休眠时长,其中一种PSCCH跳过模式对应一个起始时刻和一个休眠时长(或者说,一种PSCCH跳过模式对应一个休眠时间段)。
可选的,PSCCH跳过指示(PSCCH skipping indication)字段可以包括两个子字段,一个 子字段(即上述第四字段)用于指示目标UE(即上述第二设备)在DRX-C的drx-on duration Timer内进入休眠的休眠时间段,另一个子字段(即上述第五字段)用于指示目标UE(即上述第二设备)在DRX-P的持续时间(或唤醒时间)内进入休眠的休眠时间段。该休眠时间段可通过以下至少两项信息确定:起始时刻、休眠时长、结束时刻。
图4中检测周期指示(monitoring periodic indication)字段(即上述第六字段)用于指示目标UE(即上述第二设备)进行PSCCH或第一SCI(或一阶SCI)检测的周期,以进一步降低功耗。
可选的,图4中还包括预留字段,用于后续进行其他功能的扩展。
应理解,图4仅是第二SCI的一种格式示意图,第二SCI中包括的各个字段的长度和排列顺序,本申请实施例不做限定。
可选的,上述第二SCI可以基于每个UE单独设计,即上述第二SCI只包括第二设备相关的信息。因为上述第二SCI(或SCI format 2-C)是新定义的二阶SCI格式,所以第一设备在发送第二SCI之前,需要通过高层参数来指示上述第二SCI的起始比特和该第二SCI的大小。应理解,这里的第二SCI是针对一个UE设计的,即这里的第二SCI只包括一个UE的信息。因此,第一设备在发送第二SCI之前,发送侧行链路(sidelink,SL)无线资源控制(radio resource control,RRC)信令。本申请实施例在该SL RRC信令中新增配置参数(如size SCI-2-C)用于指示该第二SCI的起始比特和/或该第二SCI的大小(即长度)。或者,该SL RRC信令用于指示该第二SCI的起始比特和结束比特。或者,该SL RRC信令用于指示该第二SCI的结束比特和/或该第二SCI的大小(即长度)。
可选的,上述第二SCI也可以基于块状进行设计,即上述第二SCI包括一个或多个块(block),一个块用于指示一个UE的信息,每个块的结构可参考上述图4所示,即上述第二SCI的每个块中包括源标识字段、目标标识字段、以及唤醒指示位,可选的还包括休眠指示字段、PSCCH跳过指示字段、检测周期指示(字段中的一个或多个。因此,第一设备在发送第二SCI之前,发送SL RRC信令。该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的起始比特和/或大小。或者,该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的起始比特和结束比特。或者,该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的结束比特和/或该第二SCI的大小(即长度)。
作为一个可选实施例,可通过在上述第二SCI中是否携带唤醒指示位来指示唤醒或休眠。示例性的,当上述第二SCI中携带唤醒指示位时,指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测,并在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测。当上述第二SCI中不携带唤醒指示位时,指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内和在用于定位业务的DRX周期的drx-on duration Timer内休眠。
S103,第二设备接收该第一SCI。
S104,第二设备接收该第二SCI。
可选的,第二设备接收上述第一SCI,并根据该第一SCI中包含的第二SCI的时频资源指示信息以及该第二SCI格式的指示信息,接收并解析该第二SCI。第二设备再根据该第二SCI中唤醒指示位的指示,在该用于通信业务的DRX周期的drx-on duration Timer内唤醒或休眠,和在该用于定位业务的DRX周期的drx-on duration Timer内唤醒或休眠。其中,如果 第二SCI中的唤醒指示位指示第二设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒,则第二设备就在该用于通信业务的DRX周期的drx-on duration Timer内唤醒并进行PSCCH检测(或盲检)。同理,如果二SCI中的唤醒指示位指示第二设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则第二设备就在该用于定位业务的DRX周期的drx-on duration Timer内唤醒并进行PSCCH检测(或盲检)。因此,本申请实施例中第二SCI包括的唤醒指示位的含义,还可以理解为:该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测或者休眠,和在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测或者休眠。
可选的,第二设备在接收第二SCI之前,接收SL RRC信令。如果上述第二SCI是基于每个UE单独设计,则该SL RRC信令用于指示该第二SCI的起始比特和/或该第二SCI大小(即长度)。或者,该SL RRC信令用于指示该第二SCI的起始比特和结束比特。或者,该SL RRC信令用于指示该第二SCI的结束比特和/或大小(即长度)。如果上述第二SCI基于块状进行设计,则该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的起始比特和/或大小。或者,该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的起始比特和结束比特。或者,该SL RRC信令用于指示该第二SCI中与第二设备相关的块(即上述唤醒指示位所在的块)的结束比特和/或该第二SCI的大小(即长度)。
可见,本申请实施例通过新设计一个二阶SCI(即第二SCI)来分别指示目标UE(即第二设备)在用于通信业务的DRX周期的持续时间内是否唤醒和在用于定位业务的DRX周期的持续时间内是否唤醒,一方面无需为通信业务和定位业务单独设计SCI,可以减少信令开销;另一方面可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
上述内容介绍了本申请实施例的技术方案,下面对本申请实施例适用的部分场景进行说明。本申请实施例主要应用于DRX-C(即用于通信业务的DRX周期)与DRX-P(即用于定位业务的DRX周期)在时间上存在重叠的场景,或者说,一段时间内(比如一个DRX-C内)既有通信业务也有定位业务的场景。应理解,下述各个场景的介绍仅是示例,不对本申请实施例提供的技术方案产生限定。
场景1-1:用于通信业务的DRX周期(记为DRX-C)的drx-on duration Timer与用于定位业务的DRX周期(记为DRX-P)的drx-on duration Timer在起始时刻对齐的场景。参见图5,图5是本申请实施例提供的DRX-C和DRX-P的drx-on duration Timer对齐场景示意图一。如图5所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX周期之前,通过一个统一的唤醒信号(或唤醒指示位)来指示第二设备在DRX-C的drx-on duration Timer内是否唤醒和在DRX-P的drx-on duration Timer内是否唤醒。其中,图5中的SCI-WUS for DRX-C and DRX-P表示DRX-C和DRX-P的SCI-WUS(这里的SCI-WUS可以表示承载唤醒信号的SCI,如上述第二SCI)。应理解,这里的SCI-WUS的格式如前述图4所示,此处不再赘述。本申请实施例中唤醒信号是以唤醒指示位的形式存在于第二SCI中,因此本申请实施例中唤醒信号与唤醒指示位可相互替换使用。
可见,本申请实施例在两个DRX周期的drx-on duration Timer对齐情况下,使用一个统一的唤醒信号来分别指示第二设备在DRX-C的drx-on duration Timer内是否唤醒和在DRX-P的drx-on duration Timer内是否唤醒,可以节省信令开销,降低终端复杂度和功耗。
场景1-2:DRX-C的休眠期内存在定位业务的场景。参见图6,图6是本申请实施例提 供的DRX-C的休眠期内存在定位业务的场景示意图一。如图6所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX周期之前,通过一个统一的唤醒信号(或唤醒指示位)来指示第二设备在DRX-C的drx-on duration Timer内是否唤醒和在DRX-P的drx-on duration Timer内是否唤醒。其中,图6中的SCI-WUS for DRX-C and DRX-P表示DRX-C和DRX-P的SCI-WUS(这里的SCI-WUS可以表示承载唤醒信号的SCI,如上述第二SCI)。应理解,这里的SCI-WUS的格式如前述图4所示,此处不再赘述。
场景1-3:DRX-C的drx-on duration Timer内存在定位业务,且一个DRX-C周期所指示的时间段内存在多个DRX-P周期的场景。参见图7,图7是本申请实施例提供的DRX-C的drx-on duration Timer内存在定位业务的场景示意图一。如图7所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX周期之前,通过一个统一的唤醒信号(或唤醒指示位)来指示第二设备在DRX-C的drx-on duration Timer内是否唤醒和在DRX-P的drx-on duration Timer内是否唤醒。其中,图7中的SCI-WUS for DRX-C and DRX-P表示DRX-C和DRX-P的SCI-WUS(这里的SCI-WUS可以表示承载唤醒信号的SCI,如上述第二SCI)。
应理解,这里的SCI-WUS的格式可以如前述图4所示,其唤醒指示位的长度为2比特,分别指示第二设备在接下来的一个DRX-C的drx-on duration Timer内是否唤醒和在接下来的一个DRX-P的drx-on duration Timer内是否唤醒。此时,如图7从左往右后面两个DRX-P的唤醒或休眠跟随第一个DRX-P的唤醒或休眠。比如,如果唤醒指示位指示出第二设备在接下来的一个(即图7中从左往右第一个)DRX-P的drx-on duration Timer内唤醒,则第二设备在图7的第二个DRX-P和第三个DRX-P的drx-on duration Timer内也唤醒。如果唤醒指示位指示出第二设备在接下来的一个(即图7中从左往右第一个)DRX-P的drx-on duration Timer内休眠,则第二设备在图7的第二个DRX-P和第三个DRX-P的drx-on duration Timer内也休眠。
或者,这里的SCI-WUS的格式仍然如前述图4所示,但SCI-WUS中的唤醒指示位的长度扩展为大于或等于2个比特,一个比特对应一个DRX周期。如图7所示场景,SCI-WUS中的唤醒指示位的长度为4个比特,前2个比特可用于指示第二设备在接下来的一个DRX-C的drx-on duration Timer内是否唤醒和在接下来的第一个DRX-P的drx-on duration Timer内是否唤醒,第3个比特用于指示第二设备在接下来的第二个DRX-P的drx-on duration Timer内是否唤醒,第4个比特用于指示第二设备在接下来的第三个DRX-P的drx-on duration Timer内是否唤醒。可见,本申请实施例通过扩展唤醒指示位的长度来分别指示每个DRX周期内的唤醒与休眠,可以进一步降低功耗,并可以避免漏检PSCCH的情况,从而提高定位性能。
实施例二
本申请实施例二主要介绍在sidelink系统中针对通信业务的DRX周期和针对定位业务的DRX周期分别独立设计唤醒指示的方案,也就是:为通信业务的DRX周期设计一个唤醒指示来指示通信业务的DRX周期内的唤醒或休眠,为定位业务的DRX周期也设计一个唤醒指示来指示定位业务的DRX周期内的唤醒或休眠。
参见图8,图8是本申请实施例提供的双DRX模式下唤醒指示方法的第二种示意流程图。如图8所示,该双DRX模式下唤醒指示方法包括但不限于以下步骤:
S201,第一设备发送第三侧行链路控制信息SCI。
S202,第一设备发送第四SCI,该第三SCI用于指示该第四SCI的格式是第二格式,该第二格式的第四SCI包括第一唤醒指示位,该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
可选的,本申请实施例中的第一设备与第二设备之间可能只存在通信业务或只存在定位业务,并且第一设备和第二设备均进入双DRX模式。第一设备以广播的形式发送第三SCI。第一设备再以组播或单播的形式在预设时间窗内发送第四SCI。该预设时间窗可以是一个DRX周期前的功率节省偏移期间。其中,该第三SCI是一阶SCI(1st stage SCI),该第四SCI是二阶SCI(2nd stage SCI)。一阶SCI(1st stage SCI)中包含二阶SCI(2nd stage SCI)的资源指示,二阶SCI是UE专有的。换句话说,所有UE都可以解析一阶SCI获得其中二阶SCI的资源指示,但一个二阶SCI只能被一个或一组特定的UE解析以获得其中包含的信息。具体地,一阶SCI(1st stage SCI)可用来指示二阶SCI(2nd stage SCI)的格式(format)类型,所以该第三SCI可用于指示该第四SCI的格式(format)。该第三SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为k个比特,k是大于2的整数。当该二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数时,用于指示该第四SCI的格式为第二格式。该第二格式不是现有SCI format 2-A和SCI format 2-B中任一种,比如,第四SCI的格式为SCI format 2-C或SCI format 2-D。应理解,本申请实施例对第四SCI的格式的名称不做限定,为便于与SCI format 2-A和SCI format 2-B区分,下文将第四SCI的格式记为SCI format 2-C或SCI format 2-D。二阶SCI(2nd stage SCI)可用于承载唤醒信号的指示比特,所以该第四SCI包括第一唤醒指示位。该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器(drx-on duration Timer)内是否唤醒。具体地,该第一唤醒指示位具体用于指示第二设备在用于第一业务的DRX周期的持续时间计时器内是否唤醒。其中,第一业务可以是通信业务或定位业务。
应理解,在本申请中,术语“唤醒信号”与“唤醒指示位”可替换使用。术语“持续时间计时器”和“drx-on duration Timer”还可以简称为“持续时间”,术语“持续时间”还可以描述为“唤醒时间”。
下面分别对第三SCI和第四SCI的实现方式进行详细说明。
可选的,与前述实施例一类似,由于sidelink系统中的唤醒指示是UE专有的(UE-specific),所以承载唤醒指示的SCI也是针对每个UE的,或者说是UE specific的,因此需要两阶SCI(two stage SCI)来指示,其中1st stage SCI(如上述第三SCI)用于指示2nd stage SCI的format类型,2nd stage SCI(如上述第四SCI)用于承载唤醒信号的指示比特。又因为3GPP sidelink系统中2nd stage SCI只有SCI format 2-A和SCI format 2-B两种格式,并且SCI format 2-A和SCI format 2-B均是用于通信业务的调度信息。所以,本申请实施例首先对2nd SCI format类型进行扩展,引入新的2nd SCI format来承载唤醒指示位。
具体地,传统二阶SCI格式字段(2nd-stage SCI format field)的长度为2个比特,本申请实施例对二阶SCI格式字段进行功能扩展,将该二阶SCI格式字段扩展为k比特,k是大于2的整数,比如k等于3。如果上述第一业务是通信业务,则上述第四SCI的格式(即上述第二格式)是一个新的格式;如果上述第一业务是定位业务,则上述第四SCI的格式(即上述第二格式)是另一个新的格式。比如,当上述第一业务是通信业务时,第四SCI的格式(即第二格式)是SCI format 2-C;当上述第一业务是定位业务时,第四SCI的格式(即第二格式)是SCI format 2-D。因此,针对不同的业务,需要引入两个二阶SCI格式来分别承载不 同业务的唤醒指示位。
参见下述表3所示,表3示出了1st stage SCI中2nd-stage SCI format field的取值和含义,其中k=3。如下述表3所示,当二阶SCI格式字段取值为000时,表示二阶SCI格式是SCI format 2-A;当二阶SCI格式字段取值为001时,表示二阶SCI格式是SCI format 2-B;当二阶SCI格式字段取值为010时,表示二阶SCI格式是SCI format 2-C;当二阶SCI格式字段取值为011时,表示二阶SCI格式是SCI format 2-D;当二阶SCI格式字段取值为其他值(比如100、101、110、111)时,表示预留或用作其他功能扩展,比如引入新的2nd stage SCI format用来指示定位调度、测量等,本申请实施例不举例说明。为便于描述,本申请实施例以SCI format 2-C是针对通信业务设计的二阶SCI为例,以SCI format 2-D是针对定位业务设计的二阶SCI为例进行说明。应理解,也可以是二阶SCI格式字段取值为011时,表示二阶SCI格式是SCI format 2-C;二阶SCI格式字段取值为010时,表示二阶SCI格式是SCI format 2-D,本申请实施例对此不做限定。
表3
Figure PCTCN2022081735-appb-000003
可选的,上述第四SCI的格式是SCI format 2-C或SCI format 2-D,该第四SCI包括第一唤醒指示位、第一字段、以及第二字段。如果该第四SCI的格式是SCI format 2-C,则该第一唤醒指示位用于指示第二设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒。如果该第四SCI的格式是SCI format 2-D,则该第一唤醒指示位用于指示第二设备在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。该第一字段用于指示第一设备的标识,该第一设备的标识是该第一设备的完整层2标识(完整Layer2-ID),用24比特表示。该第二字段用于指示第二设备的标识,该第二设备的标识是该第二设备的完整层2标识(完整Layer2-ID),也用24比特表示。其中,该第一字段可以称为源标识字段,该第二字段可以称为目标标识字段,应理解,该第一字段和第二字段还可以有其他名称,本申请实施例不做限定。
可选的,上述第四SCI还包括以下一个或多个字段:第三字段、第四字段、以及第六字段。该第三字段包括一个或多个比特,每个比特对应一个或多个载波单元(component carrier,CC)。该第三字段用于指示第二设备在该第三字段包括的每个比特对应的一个或多个载波单元上是否唤醒。该第三字段的长度可以等于用于第一业务的载波单元个数。该第四字段用于指示第二设备在用于第一业务的DRX周期的drx-on duration Timer内进入休眠的起始时刻和休眠时长。该第六字段用于指示第二设备进行PSCCH或第三SCI检测的周期。其中,该第三字段可以称为休眠指示字段,该第四字段可以称为PSCCH跳过指示字段,该第六字段可以称为检测周期指示字段;应理解,该第三字段、该第四字段、以及该第六字段还可以有其他名称,本申请实施例不做限定。
参见图9,图9是本申请实施例提供的SCI format 2-C和SCI format 2-D的格式示意图。 如图9所示,SCI format 2-C和SCI format 2-D类似,均包括源标识(source ID)字段、目标标识(destination ID)字段、以及唤醒指示(Wake-up indication)位,可选的还包括休眠指示(dormancy indication)字段、PSCCH跳过指示(PSCCH skipping indication)字段、检测周期指示(monitoring periodic indication)字段中的一个或多个。
其中,source ID字段(即上述第一字段)和destination ID字段(即上述第二字段)参考前述图4中相应描述,此处不再赘述。
图9中唤醒指示(Wake-up indication)位(即上述第一唤醒指示位)的长度为1比特,用于指示目标UE(即上述第二设备)在用于第一业务的DRX周期的drx-on duration Timer内是否唤醒。在唤醒情况下,目标UE(即上述第二设备)进行PSCCH检测。当该唤醒指示位(即上述第一唤醒指示位)为0时,表示目标UE(即上述第二设备)在用于第一业务的DRX周期的drx-on duration Timer内休眠。当该唤醒指示位(即上述第一唤醒指示位)为1时,表示目标UE(即上述第二设备)在用于第一业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测。当然,还可以是该唤醒指示位(即上述第一唤醒指示位)为0时,表示唤醒;该唤醒指示位(即上述第一唤醒指示位)为1时,表示休眠,本申请实施例对该唤醒指示位(即上述第一唤醒指示位)的取值与含义的对应关系不做限定。示例性的,如果上述第四SCI的格式是SCI format 2-C,则该第四SCI中的第一唤醒指示位用于指示目标UE(即上述第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒;如果上述第四SCI的格式是SCI format 2-D,则该第四SCI中的第一唤醒指示位用于指示目标UE(即上述第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
应理解,如果图9中的唤醒指示位(即上述第一唤醒指示位)指示目标UE(即上述第二设备)在用于第一业务的DRX周期的drx-on duration Timer内唤醒,则源UE(即上述第一设备)在此期间内也是唤醒的。因为唤醒情况下,目标UE(即上述第二设备)需要进行PSCCH检测,所以源UE(即上述第一设备)在唤醒情况下需要发送PSCCH以支持目标UE的PSCCH检测。还应理解,本申请实施例中提及的“唤醒”和“休眠”是针对PSCCH检测(或PSCCH盲检)而言,也就是说,本申请实施例中提及的“唤醒”可以等效替换为“进行PSCCH检测”,“休眠”可以等效替换为“不进行PSCCH检测”。
图9中休眠指示(dormancy indication)字段(即上述第三字段)以比特位图(bitmap)的形式存在,其长度是m或n比特。m表示用于通信业务的载波单元个数,n表示用于定位业务的载波单元个数。此时,休眠指示字段的一个比特对应一个载波单元。休眠指示字段(即上述第三字段)的一个比特用于指示(载波聚合情况下)目标UE(即上述第二设备)在该比特对应的载波单元上是否唤醒,比如,该比特为1,表示目标UE(即上述第二设备)在该比特对应的载波单元上唤醒以进行PSCCH检测,该比特为0,表示目标UE(即上述第二设备)在该比特对应的载波单元上休眠。可选的,休眠指示字段(即上述第三字段)包括一个或多个比特,一个比特对应一组载波单元,一组载波单元中包括一个或多个载波单元。此时,休眠指示字段(即上述第三字段)的一个比特指示目标UE(即上述第二设备)在该比特对应的一组载波单元上是否唤醒。
图9中PSCCH跳过指示(PSCCH skipping indication)字段(即上述第四字段),用于指示目标UE(即上述第二设备)在用于第一业务的drx-on duration Timer内进入休眠的休眠时间段,以进一步节省功耗。该休眠时间段可通过以下至少两项信息确定:起始时刻、休眠时长、结束时刻。可选的,休眠时长可半静态配置,也可通过PSCCH跳过指示字段指示;如果休眠时长半静态配置,起始时刻和/或结束时刻可通过PSCCH跳过指示字段指示。示例性 的,可利用PSCCH跳过指示字段指示的PSCCH跳过模式来隐式指示(或间接指示)目标UE(即上述第二设备)在DRX-C和DRX-P的drx-on duration Timer内进入休眠的起始时刻和休眠时长,其中一种PSCCH跳过模式对应一个起始时刻和一个休眠时长(或者说,一种PSCCH跳过模式对应一个休眠时间段)。
图9中检测周期指示(monitoring periodic indication)字段(即上述第六字段)用于指示目标UE(即上述第二设备)进行PSCCH或第三SCI(或一阶SCI)检测的周期,以进一步降低功耗。
可选的,图9中还包括预留字段,用于后续进行其他功能的扩展。
应理解,图9仅是SCI format 2-C和SCI format 2-D的一种格式示意图,SCI format 2-C和SCI format 2-D中包括的各个字段的长度和排列顺序,本申请实施例不做限定。
可选的,上述第四SCI可以基于每个UE单独设计,即上述第四SCI只包括第二设备相关的信息。因为上述第四SCI(或SCI format 2-C,或SCI format 2-D)是新定义的二阶SCI格式,所以第一设备在发送第三SCI之前,需要通过高层参数来指示上述第四SCI的起始比特和该第四SCI的大小。具体地,第一设备在发送第四SCI之前,发送第一SL RRC信令。该第一SL RRC用于指示该第四SCI的起始比特和/或与该第四SCI的大小(即长度)。或者,该第一SL RRC信令用于指示该第四SCI的起始比特和结束比特。或者,该第一SL RRC信令用于指示该第四SCI的结束比特和/或该第四SCI的大小(即长度)。
可选的,上述第四SCI也可以基于块状进行设计,即上述第四SCI包括一个或多个块(block),一个块用于指示一个UE的信息,每个块的结构可参考上述图9所示,即上述第四SCI的每个块中包括源标识字段、目标标识字段、以及唤醒指示位,可选的还包括休眠指示字段、PSCCH跳过指示字段、检测周期指示字段中的一个或多个。因此,第一设备在发送第四SCI之前,发送第一SL RRC信令。该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的起始比特和/或大小。或者,该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的起始比特和结束比特。或者,该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的结束比特和/或该第四SCI的大小(即长度)。
作为一个可选实施例,可通过在上述第四SCI中是否携带第一唤醒指示位来指示唤醒或休眠。示例性的,当上述第四SCI中携带第一唤醒指示位时,指示目标UE(即第二设备)在用于第一业务的DRX周期的持续时间(或唤醒时间)内唤醒以进行PSCCH检测。当上述第四SCI中不携带第一唤醒指示位时,指示目标UE(即第二设备)在用于第一业务的DRX周期的持续时间(或唤醒时间)内休眠。
S203,第二设备接收该第三SCI。
S204,第二设备接收该第四SCI。
可选的,第二设备接收上述第三SCI,并根据该第三SCI中包含的第四SCI的时频资源指示信息以及第四SCI的格式指示信息,接收并解析该第四SCI。第二设备再根据该第四SCI中第一唤醒指示位的指示,在该用于第一业务的DRX周期的drx-on duration Timer内唤醒或休眠。其中,如果第二SCI中的第一唤醒指示位指示第二设备在用于第一业务的DRX周期的drx-on duration Timer内唤醒,则第二设备就在该用于第一业务的DRX周期的drx-on duration Timer内唤醒并进行PSCCH检测(或盲检)。因此,本申请实施例中第四SCI中包括的第一唤醒指示位的含义,还可以理解为:该第一唤醒指示位用于指示第二设备在用于第一 业务的DRX周期的drx-on duration Timer内唤醒以进行PSCCH检测或者休眠。
可选的,第二设备在接收第四SCI之前,接收第一SL RRC信令。如果上述第四SCI是基于每个UE单独设计,则该第一SL RRC用于指示该第四SCI的起始比特和该第四SCI的大小(即长度)。或者,该第一SL RRC信令用于指示该第四SCI的起始比特和结束比特。或者,该第一SL RRC信令用于指示该第四SCI的结束比特和/或该第四SCI的大小(即长度)。如果上述第四SCI基于块状进行设计,则该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的起始比特和/或大小。或者,该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的起始比特和结束比特。或者,该第一SL RRC信令用于指示该第四SCI中与第二设备相关的块(即上述第一唤醒指示位所在的块)的结束比特和/或该第四SCI的大小(即长度)。
可见,本申请实施例针对通信业务的DRX周期和定位业务的DRX周期分别新设计一个二阶SCI来指示目标UE(即第二设备)在各自周期内是否唤醒,其含义清晰,两种业务的DRX周期中的唤醒指示互不干扰,灵活性高。
可选的,该双DRX模式下唤醒指示方法还包括以下步骤:
S205,第一设备发送第五SCI。
S206,第一设备发送第六SCI,该第五SCI用于指示该第六SCI的格式是第三格式,该第三格式的第五SCI包括第二唤醒指示位,该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒。
可选的,本申请实施例中的第一设备与第二设备之间既存在通信业务,也存在定位业务的情况下,第一设备还以广播的形式发送第五SCI。第一设备再以组播或单播的形式在预设时间窗内发送第六SCI。该预设时间窗可以是一个DRX周期前的Power saving offset期间。其中,该第五SCI是一阶SCI(1st stage SCI),该第六SCI是二阶SCI(2nd stage SCI)。该第五SCI可用于指示该第六SCI的格式(format)。该第五SCI中二阶SCI格式字段(2nd-stage SCI format field)的长度为k个比特,k是大于2的整数。当该第五SCI中二阶SCI格式字段的取值与上述第三SCI中二阶SCI字段的取值不相同,且该第五SCI中二阶SCI格式字段的取值是大于或等于十进制2且小于或等于2 k-1中的整数时,用于指示该第六SCI的格式为第三格式。该第三格式既不是现有SCI format 2-A和SCI format 2-B中任一种,也不是上述第二格式。该第六SCI包括第二唤醒指示位。该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器(drx-on duration Timer)内是否唤醒。其中,该第二业务与上述第一业务是不相同的两种业务。如果上述第四SCI的格式(即第二格式)是SCI format 2-C,该第六SCI的格式(即第三格式)是SCI format 2-D,上述第一业务可以是通信业务,该第二业务可以是定位业务。如果上述第四SCI的格式是SCI format 2-D,该第六SCI的格式是SCI format 2-C,则上述第一业务可以是定位业务,则该第二业务可以是通信业务。
可选的,上述第五SCI的实现方式可参考前述第三SCI的实现方式,此处不再赘述。上述第五SCI与前述第三SCI的区别在于:第五SCI中二阶SCI格式字段的取值与第三SCI中二阶SCI格式字段的取值不相同。示例性的,如前述表3所示,第三SCI中二阶SCI格式字段取值为010,指示第四SCI的格式是SCI format 2-C或者说第四SCI中包括第一唤醒指示位;第五SCI中二阶SCI格式字段取值为011,指示第六SCI的格式是SCI fromat 2-D或者说第六SCI中包括第二唤醒指示位。上述第六SCI的实现方式可参考前述第四SCI的实现方式,不同之处在于:第六SCI与第四SCI的格式不相同,以及第六SCI与第四SCI中包括的唤醒指示位的含义不相同。示例性的,第四SCI的格式是SCI format 2-C,该第四SCI中包括的第一 唤醒指示位用于指示目标UE(即第二设备)在用于通信业务的DRX周期的持续时间(或唤醒时间)内是否唤醒;第六SCI的格式是SCI format 2-D,该第六SCI中包括的第二唤醒指示位用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。或者,第四SCI的格式是SCI format 2-D,该第四SCI中包括的第一唤醒指示位用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒;第六SCI的格式是SCI format 2-C,该第六SCI中包括的第二唤醒指示位用于指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒。
可选的,上述第六SCI可以基于每个UE单独设计,即上述第六SCI只包括第二设备相关的信息。因为上述第六SCI(即SCI format 2-C或SCI format 2-D)也是新定义的二阶SCI格式,所以第一设备在发送第五SCI之前,需要通过高层参数来指示上述第六SCI的大小和/或起始比特。具体地,第一设备在发送第五SCI之前,发送第二SL RRC信令。该第二SL RRC用于指示该第六SCI的起始比特和/或该第六SCI的大小(即长度)。或者,该第二SL RRC信令用于指示该第六SCI的起始比特和结束比特。或者,该第二SL RRC信令用于指示该第六SCI的结束比特和/或该第六SCI的大小(即长度)。
可选的,上述第六SCI也可以基于块状进行设计,即上述第六SCI包括一个或多个块(block),一个块用于指示一个UE的信息,每个块的结构可参考上述图9所示,即上述第六SCI的每个块中包括源标识字段、目标标识字段、以及唤醒指示位,可选的还包括休眠指示字段、PSCCH跳过指示字段、检测周期指示(字段中的一个或多个。因此,第一设备在发送第六SCI之前,发送第二SL RRC信令。该第二SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的起始比特和/或大小。或者,该第二SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的起始比特和结束比特。或者,该第二SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的结束比特和/或该第六SCI的大小(即长度)。
作为一个可选实施例,可通过在上述第六SCI中是否携带第二唤醒指示位来指示唤醒或休眠。示例性的,当上述第六SCI中携带第二唤醒指示位时,指示目标UE(即第二设备)在用于第二业务的DRX周期的持续时间(或唤醒时间)内唤醒以进行PSCCH检测。当上述第六SCI中不携带第二唤醒指示位时,指示目标UE(即第二设备)在用于第二业务的DRX周期的持续时间(或唤醒时间)内休眠。
应理解,步骤S203-S204与步骤S205-S206之间的执行顺序不做限定。比如,步骤S203-S204在步骤S205-S206之前执行,或者步骤S203-S204在步骤S205-S206之后执行,或者步骤S203-S204与步骤S205-S206同时/并行执行。
S207,第二设备接收该第五SCI。
S208,第二设备接收该第六SCI。
可选的,第二设备接收上述第五SCI,并根据该第五SCI中包含的第六SCI的时频资源指示以及第六SCI的格式指示信息,接收并解析该第六SCI。第二设备再根据该第六SCI中第二唤醒指示位的指示,在该用于第二业务的DRX周期的持续时间计时器(on_duration Timer)内唤醒或休眠。其中,如果第六SCI中的第二唤醒指示位指示第二设备在用于第二业务的DRX周期的持续时间(或唤醒时间)内唤醒,则第二设备就在该用于第二业务的DRX周期的持续时间(或唤醒时间)内唤醒并进行PSCCH检测(或盲检)。因此,本申请实施例中第六SCI中包括的第二唤醒指示位的含义,还可以理解为:该第二唤醒指示位用于指示第 二设备在用于第二业务的DRX周期的持续时间(或唤醒时间)内唤醒以进行PSCCH检测或者休眠。
可选的,第二设备在接收第六SCI之前,接收第二SL RRC信令。如果上述第六SCI是基于每个UE单独设计,则该第二SL RRC用于指示该第六SCI的起始比特和/或该第六SCI的大小(即长度)。或者,该第二SL RRC信令用于指示该第六SCI的起始比特和结束比特。或者,该第二SL RRC信令用于指示该第六SCI的结束比特和/或该第六SCI的大小(即长度)。如果上述第六SCI基于块状进行设计,则该第一SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的起始比特和/或大小。或者,该第一SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的起始比特和结束比特。或者,该第一SL RRC信令用于指示该第六SCI中与第二设备相关的块(即上述第二唤醒指示位所在的块)的结束比特和/或该第六SCI的大小(即长度)。
上述内容介绍了本申请实施例的技术方案,为便于理解,下面对本申请实施例适用的部分场景进行说明。本申请实施例既可以应用于DRX-C(即用于通信业务的DRX周期)与DRX-P(即用于定位业务的DRX周期)在时间上存在重叠的场景,也可以应用于DRX-C与DRX-P在时间上不存在重叠的场景,也就是说,一段时间内只有通信业务或定位业务的场景,比如一个DRX-C内只有通信业务,一个DRX-P内只有定位业务。应理解,下述各个场景的介绍仅是示例,不对本申请实施例提供的技术方案产生限定。
场景2-1:DRX-C的休眠期内存在定位业务的场景。参见图10,图10是本申请实施例提供的DRX-C的休眠期内存在定位业务的场景示意图二。如图10所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX周期之前,发送两个SCI来分别指示第二设备在DRX-C的drx-on duration Timer内是否唤醒、以及第二设备在DRX-P的drx-on duration Timer内是否唤醒。图10中的SCI-WUS for DRX-C表示DRX-C的SCI-WUS,用于指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒;SCI-WUS for DRX-P表示DRX-P的SCI-WUS,用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
场景2-2:DRX-C与DRX-P在时间上不存在重叠的场景,即DRX-C与DRX-P在时间上串行的场景。参见图11,图11是本申请实施例提供的DRX-C与DRX-P在时间上不存在重叠的场景示意图。如图11所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX-C之前,发送一个SCI来指示第二设备在DRX-C的drx-on duration Timer内是否唤醒。在第一设备(即源UE)向第二设备(即目标UE)指示DRX-P之前,发送另一个SCI来指示第二设备在DRX-P的drx-on duration Timer内是否唤醒。图11中的SCI-WUS for DRX-C表示DRX-C的SCI-WUS,用于指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒;SCI-WUS for DRX-P表示DRX-P的SCI-WUS,用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
场景2-3:DRX-C的on_duration Timer内存在定位业务,且一个DRX-C周期所指示的时间段内存在多个DRX-P周期的场景。参见图12,图12是本申请实施例提供的DRX-P的drx-on duration Timer内存在定位业务的场景示意图二。如图12所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX 周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX-C之前,发送一个SCI来指示第二设备在接下来的一个DRX-C的drx-on duration Timer内是否唤醒。在第一设备(即源UE)每次向第二设备(即目标UE)指示DRX-P之前,发送另一个SCI来指示第二设备在接下来的一个DRX-P的drx-on duration Timer内是否唤醒。图12中的SCI-WUS for DRX-C表示DRX-C的SCI-WUS,用于指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒;SCI-WUS for DRX-P表示DRX-P的SCI-WUS,用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
场景2-4:DRX-C与DRX-P的on_duration Timer在起始时刻对齐的场景。参见图13,图13是本申请实施例提供的DRX-C和DRX-P的on_duration Timer对齐场景示意图二。如图13所示,DRX for SL-C表示sidelink系统中用于通信业务的DRX周期,DRX for SL-P表示sidelink系统中用于定位业务的DRX周期。在第一设备(即源UE)向第二设备(即目标UE)指示DRX周期之前,发送两个SCI来分别指示第二设备在DRX-C的drx-on duration Timer内是否唤醒、以及第二设备在DRX-P的drx-on duration Timer内是否唤醒。图13中的SCI-WUS for DRX-C表示DRX-C的SCI-WUS,用于指示目标UE(即第二设备)在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒;SCI-WUS for DRX-P表示DRX-P的SCI-WUS,用于指示目标UE(即第二设备)在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
可见,本申请实施例在sidelink系统中分别为通信业务的DRX周期和定位业务的DRX周期设计一种新的二阶SCI(即第四SCI和第六SCI),来分别指示各自DRX周期的drx-on duration Timer内是否唤醒,一方面含义清晰,灵活性高,可适用于各种场景;另一方面可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
实施例三
本申请实施例三主要介绍蜂窝系统中一段时间内同时存在通信业务和定位业务的情况下,针对通信业务的DRX周期和针对定位业务的DRX周期统一设计唤醒指示的方案,也就是使用一个唤醒信号分别指示两种业务的DRX周期内的唤醒或休眠。
参见图14,图14是本申请实施例提供的双DRX模式下唤醒指示方法的第三种示意流程图。如图14所示,该双DRX模式下唤醒指示方法包括但不限于以下步骤:
S301,网络设备发送下行控制信息(downlink control information,DCI),该DCI包括唤醒指示位,该唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,本申请实施例中的网络设备与终端设备之间同时存在通信业务和定位业务,并且网络设备和终端设备均进入双DRX模式。网络设备在预设时间窗内发送DCI,该预设时间窗可以是一个DRX周期前的Power saving offset期间。该DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该DCI的格式是传统DCI format 2-6。或者,该DCI的格式也可以是新设计的一种DCI格式,如DCI format 2-7或DCI format 2-8等。由于传统DCI format 2-6是基于块(block)状设计的,一个block对应一个UE,具体指示时,网络设备通过RRC高层信令(如Position DCI2-6)告诉每个UE应该读取的DCI format 2-6的起始比特,并通过RRC高层信令(如SizeDCI2-6)告诉每个UE自己对应的block的大小。所以,本申请实施例中的DCI也沿用块状设计。该DCI的每个块中包括一个唤醒指示位,该唤醒指示位用于指示终端设备在用于通信业务的DRX周 期的持续时间计时器(on_duration Timer)内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
应理解,在本申请中,术语“持续时间计时器”和“drx-on duration Timer”还可以简称为“持续时间”,术语“持续时间”还可以描述为“唤醒时间”。
可选的,上述DCI中还包括第一指示位,该第一指示位包括一个或多个比特。该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。也就是说,该第一指示位中的一个比特对应一个辅小区或一个辅小区组。应理解,第一指示位可以称为休眠指示位,该第一指示位还可以有其他名称,本申请实施例不做限定。
参见图15,图15是本申请实施例提供的DCI的格式示意图。图15是对传统DCI format 2-6进行功能扩展后得到,使功能扩展后的DCI format 2-6既能够指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒,也能够指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。在唤醒情况下,终端设备进行物理下行控制信道(physical downlink control channel,PDCCH)检测。图15是以DCI format 2-6中某一个块(block)内的指示为例进行说明的。如图15所示,一个Block内一共有(2+c+p)(c和p均为大于或等于0的整数)个指示比特,其中用于通信业务的DRX周期的指示比特数为1+c个,用于定位业务的DRX周期的指示比特数为1+p个。应理解,图15中1+c个比特是传统DCI format 2-6的指示比特,其中1个比特是通信的唤醒指示位,用于指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒,c(示例性的,c=0,1,2,3,4,5)个比特中的每个比特用来指示终端设备在该比特对应的辅小区上是否唤醒。图15中1+p个比特是DCI format 2-6中新增的指示比特,其中1个比特是定位的唤醒指示位,用于指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒,比如,该比特为1,表示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或盲检;该比特为0,表示终端设备在用于定位业务的DRX周期的drx-on duration Timer内休眠;或者反之。p(p为正整数)个比特(即上述第一指示位)中的每个比特用于指示终端设备在该比特对应的辅小区上是否唤醒。换句话说,图15通过2个连续(c=0时连续)或不连续(c大于0时不连续)的比特(即上述唤醒指示位)来分别指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒和在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒。
应理解,如果唤醒指示位指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒,则网络设备在此期间内也是唤醒的。同理,如果唤醒指示位指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则网络设备在此期间内也是唤醒的。因为唤醒情况下,终端设备需要进行PDCCH检测,所以网络设备在唤醒情况下需要发送PDCCH以支持终端设备的PDCCH检测。还应理解,本申请实施例中提及的“唤醒”和“休眠”是针对PDCCH检测(或PDCCH盲检)而言,也就是说,本申请实施例中提及的“唤醒”可以等效替换为“进行PDCCH检测”,“休眠”可以等效替换为“不进行PDCCH检测”。
S302,终端设备接收该DCI。
可选的,终端设备接收该DCI,并对该DCI进行解析,根据该DCI中唤醒指示位的指示,在该用于通信业务的DRX周期的持续时间计时器(on_duration Timer)内唤醒或休眠,和在该用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。其中,如果DCI中的唤醒指 示位指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒,则终端设备就在该用于通信业务的DRX周期的drx-on duration Timer内唤醒并进行PDCCH检测(或盲检)。同理,如果DCI中的唤醒指示位指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则终端设备就在该用于定位业务的DRX周期的drx-on duration Timer内唤醒并进行PDCCH检测(或盲检)。因此,本申请实施例中DCI中包括的唤醒指示位的含义,还可以理解为:该唤醒指示位用于指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或者休眠,和在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或者休眠。
可选的,本申请实施例提供的技术方案可适用于前述实施例一中的场景1-1、场景1-2、以及场景1-3,其中,场景1-1、场景1-2、以及场景1-3中的sidelink系统应替换成蜂窝系统,SCI应替换成DCI。
可见,本申请实施例通过对传统DCI fromat 2-6的功能进行扩展,使其能够同时指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒以及在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒,一方面无需为通信业务和定位业务单独设计DCI,可以减少信令开销;另一方面可以同时进行通信和/或定位业务的唤醒休眠指示以实现功耗与通信性能和/或定位性能的权衡。
实施例四
本申请实施例四主要介绍蜂窝系统中针对定位业务的DRX周期独立设计唤醒指示的方案。
参见图16,图16是本申请实施例提供的双DRX模式下唤醒指示方法的第四种示意流程图。如图16所示,该双DRX模式下唤醒指示方法包括但不限于以下步骤:
S401,网络设备发送第一下行控制信息DCI,该第一DCI包括第一唤醒指示位,该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,本申请实施例中的网络设备与终端设备之间可能只存在定位业务,并且网络设备和终端设备均进入双DRX模式。网络设备在预设时间窗内发送第一DCI,该预设时间窗可以是一个DRX周期前的Power saving offset期间。该第一DCI的格式不是用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第一DCI的格式不是DCI format 2-6。为便于与DCI format 2-6区分,下文以第一DCI的格式是DCI format 2-7为例进行说明。应理解,第一DCI的格式的名称也可以称为DCI format 2-8、DCI format 2-9等等,本申请实施例对此不做限定。该第一DCI采用块状设计,该第一DCI的每个块中包括一个第一唤醒指示位,该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器(on_duration Timer)内是否唤醒。
应理解,在本申请中,术语“持续时间计时器”和“drx-on duration Timer”还可以简称为“持续时间”,术语“持续时间”还可以描述为“唤醒时间”。
可选的,上述第一DCI中还包括第一指示位,该第一指示位包括一个或多个比特。该第一指示位用于指示终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。其中,该第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。也就是说,该第一指示位中的一个比特对应一个辅小区或一个辅小区组。应理解,第一指示位可以称为休眠指示位,该第一指示位还可以有其他名称,本申请实施例不做限定。
参见图17,图17是本申请实施例提供的第一DCI的格式示意图。该第一DCI的格式是 DCI format 2-7。图17是以第一DCI(即DCI format 2-7)中某一个块(block)内的指示为例进行说明的。如图17所示,一个Block内一共有(1+p)(p为正整数)个指示比特,其中1个比特是第一唤醒指示位,用于指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内是否唤醒,比如,该比特为1,指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或盲检;该比特为0,指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内休眠。或者反之,即该比特为0,指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或盲检;该比特为1,指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内休眠。p(p为大于或等于0的整数)个比特(即上述第一指示位)中的一个比特用于指示终端设备在该比特对应的辅小区上是否唤醒。
应理解,如果唤醒指示位指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则网络设备在此期间内也是唤醒的。因为唤醒情况下,终端设备需要进行PDCCH检测,所以网络设备在唤醒情况下需要发送PDCCH以支持终端设备的PDCCH检测。还应理解,本申请实施例中提及的“唤醒”和“休眠”是针对PDCCH检测(或PDCCH盲检)而言,也就是说,本申请实施例中提及的“唤醒”可以等效替换为“进行PDCCH检测”,“休眠”可以等效替换为“不进行PDCCH检测”。
可选的,因为上述第一DCI是新定义的DCI格式,所以网络设备在发送第一DCI之前,需要高层参数来指示第一DCI中第一唤醒指示位的起始比特和/或该第一唤醒指示位所在块(block)的大小。具体地,网络设备发送第一DCI之前,发送RRC信令。该RRC信令用于指示该第一DCI中第一唤醒指示位的起始比特和/或该第一唤醒指示位所在块(block)的大小(即长度)。或者,该RRC信令用于指示该第一DCI中第一唤醒指示位的起始比特和结束比特。或者,该RRC信令用于指示该第一DCI中第一唤醒指示位的结束比特和/或该第一唤醒指示位所在块(block)的大小(即长度)。
作为一个可选实施例,可通过在第一DCI中是否携带第一唤醒指示位来指示唤醒或休眠。示例性的,当上述第一DCI携带第一唤醒指示位时,指示终端设备在在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测。当上述第一DCI中不携带第一唤醒指示位时,指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内休眠。
S402,终端设备接收该第一DCI。
可选的,终端设备接收该第一DCI,并对该第一DCI进行解析,根据该第一DCI中第一唤醒指示位的指示,在该用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。如果第一DCI中的第一唤醒指示位指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒,则终端设备就在该用于定位业务的DRX周期的drx-on duration Timer内唤醒并进行PDCCH检测(或盲检)。因此,本申请实施例中第一DCI包括的第一唤醒指示位的含义,还可以理解为:该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或者休眠。
可选的,终端设备在接收第一DCI之前,接收RRC信令。该RRC信令用于指示该第一DCI中第一唤醒指示位的起始比特和/或该第一唤醒指示位所在块(block)的大小(即长度)。或者,该RRC信令用于指示该第一DCI中第一唤醒指示位的起始比特和结束比特。或者,该RRC信令用于指示该第一DCI中第一唤醒指示位的结束比特和/或该第一唤醒指示位所在块(block)的大小(即长度)。
可选的,该双DRX模式下唤醒指示方法还包括以下步骤:
S403,网络设备发送第二DCI,该第二DCI包括第二唤醒指示位,该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,网络设备与终端设备之前还存在通信业务。网络设备在预设时间窗内发送第二DCI。该预设时间窗可以是一个DRX周期前的Power saving offset期间。该第二DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第二DCI的格式是传统DCI format 2-6,该第二DCI中包括第二唤醒指示位,用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述第二DCI的实现方式可参考NR系统中对DCI format 2-6的描述,此处不展开说明。参见图18,图18是NR系统中DCI format 2-6的格式示意图。图18是以DCI format 2-6中某一个块(block)内的指示为例进行说明的。如图18所示,一个Block内一共有(1+c)(c为大于或等于0的整数)个指示比特,其中1个比特是第二唤醒指示位,用于指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内是否唤醒。c(示例性的,c=0,1,2,3,4,5)个比特中的每个比特用来指示终端设备在该比特对应的辅小区上是否唤醒。
S404,终端设备接收该第二DCI。
可选的,终端设备接收该第二DCI,并对该第二DCI进行解析,根据该第二DCI中第二唤醒指示位的指示,在该用于通信业务的DRX周期的持续时间计时器(on_duration Timer)内唤醒或休眠。其中,如果第二DCI中的第二唤醒指示位指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒,则终端设备就在该用于通信业务的DRX周期的drx-on duration Timer内唤醒并进行PDCCH检测(或盲检)。因此,本申请实施例中第二DCI包括的第二唤醒指示位的含义,还可以理解为:该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的drx-on duration Timer内唤醒以进行PDCCH检测或者休眠。
可选的,本申请实施例提供的技术方案既可以应用于DRX-C(即用于通信业务的DRX周期)与DRX-P(即用于定位业务的DRX周期)在时间上存在重叠的场景,也可以应用于DRX-C与DRX-P在时间上不存在重叠的场景,如前述实施例二中的场景2-1、场景2-2、场景2-3以及场景2-4。其中,场景2-1、场景2-2、场景2-3以及场景2-4中的sidelink系统应替换成蜂窝系统,SCI应替换成DCI。
可见,本申请实施例在蜂窝系统中单独为定位业务的DRX周期设计一种新的DCI格式(如DCI format 2-7),来指示定位业务的DRX周期中drx-on duration Timer内的唤醒或休眠,一方面含义清晰,灵活性高,可适用于各种场景;另一方面可以降低功耗,实现功耗与通信性能和/或定位性能的权衡。
上述内容详细阐述了本申请的方法,为便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对第一设备和第二设备进行功能模块的划分,根据上述方法示例对网络设备和终端设备也进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图19至图23详细描述本申请实施例的通信装置。
在采用集成的单元的情况下,参见图19,图19是本申请实施例提供的通信装置1的结构示意图。该通信装置1可以为第一设备或者可以设置于第一设备中的芯片或电路。如图19 所示,该通信装置1包括:收发单元11,可选的包括处理单元12。
一种设计中,该收发单元11,用于发送第一SCI;该收发单元11,还用于发送第二SCI,该第一SCI用于指示该第二SCI的格式是第一格式,该第一格式的第二SCI包括唤醒指示位,该唤醒指示位用于指示第二设备在用于通信业务的非连续接收DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,该处理单元12,用于生成第一SCI和第二SCI。
可选的,上述收发单元11,还用于发送SL RRC信令,该SL RRC信令用于指示该第二SCI的起始比特和/或该第二SCI的大小。
可选的,上述第二SCI还包括第一字段和第二字段。该第一字段用于指示该第一设备的标识,该第一设备的标识为该第一设备的层2标识;该第二字段用于指示该第二设备的标识,该第二设备的标识为该第二设备的层2标识。
可选的,第一设备的标识为24比特,第二设备的标识为24比特;或,该第一设备的标识为该第一设备的完整层2标识,该第二设备的标识为该第二设备的完整层2标识。
可选的,上述第二SCI还包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;第四字段用于指示该第二设备在用于通信业务的DRX周期和用于定位业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,或者第四字段用于指示该第二设备在用于通信业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长,第五字段用于指示该第二设备在用于定位业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长;第六字段用于指示该第二设备进行第一SCI检测的周期。
可选的,上述第三字段的长度等于用于通信业务的载波单元个数与用于定位业务的载波单元个数之和。
可选的,上述第一SCI中二阶SCI格式字段的长度为2个比特,该第一SCI中用于指示该第一格式的二阶SCI格式字段的取值为二进制10或11。
应理解,该种设计中的通信装置1可对应执行前述实施例一,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一中第一设备的相应操作,其技术效果参见前述实施例一中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该收发单元11,用于发送第三SCI;该收发单元11,还用于发送第四SCI,该第三SCI用于指示该第四SCI的格式是第二格式,该第二格式的第四SCI包括第一唤醒指示位,该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
可选的,上述处理单元12,用于生成第三SCI和第四SCI。
可选的,上述收发单元11,还用于发送第五SCI;该收发单元11,还用于发送第六SCI,该第五SCI用于指示该第六SCI的格式是第三格式,该第三格式的第五SCI包括第二唤醒指示位,该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒;其中,该第二业务是通信业务,该第一业务是定位业务;或者,该第二业务是定位业务,该第一业务是通信业务。
可选的,上述收发单元11,还用于发送第一SL RRC信令,该第一SL RRC信令用于指示该第四SCI的起始比特和/或该第四SCI的大小。
可选的,上述收发单元11,还用于发送第二SL RRC信令,该第二SL RRC信令用于指示该第六SCI的起始比特和/或该第六SCI的大小。
可选的,上述第一唤醒指示位用于指示第二设备在用于第一业务的DRX周期的持续时间 计时器内是否唤醒。
可选的,该第四SCI和该第六SCI均包括第一字段和第二字段。该第一字段用于指示该第一设备的标识,该第一设备的标识为该第一设备的层2标识;该第二字段用于指示该第二设备的标识,该第二设备的标识为该第二设备的层2标识。
可选的,第一设备的标识为24比特,第二设备的标识为24比特;或,该第一设备的标识为该第一设备的完整层2标识,该第二设备的标识为该第二设备的完整层2标识。
可选的,该第四SCI和该第六SCI均包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;该第四字段用于指示该第二设备在用于第一业务的DRX周期或者用于第二业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,该第六字段用于指示该第二设备进行第三SCI或第五SCI检测的周期。
可选的,上述第三字段的长度等于用于第一业务的载波单元个数或者用于第二业务的载波单元个数。
可选的,该第三SCI中二阶SCI格式字段的长度为k个比特,该第三SCI中用于指示该第二格式的二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数;和/或,该第五SCI中二阶SCI格式字段的长度为k个比特,该第五SCI中用于指示该第三格式的二阶SCI格式字段的取值与该第三SCI中二阶SCI格式字段的取值不相同,且是大于或等于十进制2且小于或等于2 k-1中的整数。k为大于2的整数。
应理解,该种设计中的通信装置1可对应执行前述实施例二,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例二中第一设备的相应操作,其技术效果参见前述实施例二中的技术效果,为了简洁,在此不再赘述。
参见图20,图20是本申请实施例提供的通信装置2的结构示意图。该通信装置2可以为第二设备或者可以设置于第二设备中的芯片或电路。如图20所示,该通信装置2包括:收发单元21。
一种设计中,该收发单元21,用于接收第一SCI;该收发单元21,还用于接收第二SCI,该第一SCI用于指示该第二SCI的格式是第一格式,该第一格式的第二SCI包括唤醒指示位,该唤醒指示位用于指示该第二设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,该通信装置2还包括PSCCH检测单元22。该PSCCH检测单元22用于当该唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内唤醒时,在用于通信业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测;和/或,当该唤醒指示位用于指示第二设备在用于定位业务的DRX周期的持续时间计时器内唤醒时,在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
可选的,上述收发单元21,还用于接收SL RRC信令,该SL RRC信令用于指示该第二SCI的起始比特和/或该第二SCI的大小。
可选的,该通信装置2还包括唤醒或休眠单元23。该唤醒或休眠单元23,用于根据该第二SCI中唤醒指示位的指示,在该用于通信业务的DRX周期的持续时间计时器内唤醒或休眠,和在该用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。
可选的,上述第二SCI还包括第一字段和第二字段。该第一字段用于指示该第一设备的标识,该第一设备的标识为该第一设备的层2标识;该第二字段用于指示该第二设备的标识, 该第二设备的标识为该第二设备的层2标识。
可选的,第一设备的标识为24比特,第二设备的标识为24比特;或,该第一设备的标识为该第一设备的完整层2标识,该第二设备的标识为该第二设备的完整层2标识。
可选的,上述第二SCI还包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;第四字段用于指示该第二设备在用于通信业务的DRX周期和用于定位业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,或者第四字段用于指示该第二设备在用于通信业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长,第五字段用于指示该第二设备在用于定位业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长;第六字段用于指示该第二设备进行第一SCI检测的周期。
可选的,上述第三字段的长度等于用于通信业务的载波单元个数与用于定位业务的载波单元个数之和。
可选的,上述第一SCI中二阶SCI格式字段的长度为2个比特,该第一SCI中用于指示该第一格式的二阶SCI格式字段的取值为二进制10或11。
其中,上述PSCCH检测单元22和上述唤醒或休眠单元23可以集成为一个单元,例如处理单元。
应理解,该种设计中通信装置2可对应执行前述实施例一,并且该通信装置1中的各个单元的上述操作或功能分别为了实现前述实施例一中第二设备的相应操作,其技术效果参见前述实施例一中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该收发单元21,用于接收第三SCI;该收发单元21,还用于接收第四SCI,该第三SCI用于指示该第四SCI的格式是第二格式,该第二格式的第四SCI包括第一唤醒指示位,该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
可选的,上述收发单元21,还用于接收第五SCI;该收发单元21,还用于接收第六SCI,该第五SCI用于指示该第六SCI的格式是第三格式,该第三格式的第五SCI包括第二唤醒指示位,该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒;其中,该第二业务是通信业务,该第一业务是定位业务;或者,该第二业务是定位业务,该第一业务是通信业务。
可选的,上述收发单元21,还用于接收第一SL RRC信令,该第一SL RRC信令用于指示该第四SCI的起始比特和/或该第四SCI的大小。
可选的,上述收发单元21,还用于接收第二SL RRC信令,该第二SL RRC信令用于指示该第六SCI的起始比特和/或该第六SCI的大小。
可选的,该通信装置2还包括PSCCH检测单元22。该PSCCH检测单元22用于当该第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内唤醒时,在DRX周期的持续时间计时器内唤醒并进行PSCCH检测;和/或,当该第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内唤醒时,在用于第二业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
可选的,该通信装置2还包括唤醒或休眠单元23。该唤醒或休眠单元23,用于根据该第四SCI中唤醒指示位的指示,在该用于第一业务的DRX周期的持续时间计时器内唤醒或休眠;或根据该第六SCI中唤醒指示位的指示,在该用于第二业务的DRX周期的持续时间计时器内唤醒或休眠。
可选的,上述第一唤醒指示位用于指示第二设备在用于第一业务的DRX周期的持续时间 计时器内是否唤醒。
可选的,该第四SCI和该第六SCI均包括第一字段和第二字段。该第一字段用于指示该第一设备的标识,该第一设备的标识为该第一设备的层2标识;该第二字段用于指示该第二设备的标识,该第二设备的标识为该第二设备的层2标识。
可选的,第一设备的标识为24比特,第二设备的标识为24比特;或,该第一设备的标识为该第一设备的完整层2标识,该第二设备的标识为该第二设备的完整层2标识。
可选的,该第四SCI和该第六SCI均包括以下一个或多个字段:第三字段用于指示该第二设备在该第三字段的每个比特对应的载波单元上是否唤醒;该第四字段用于指示该第二设备在用于第一业务的DRX周期或者用于第二业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,该第六字段用于指示该第二设备进行第三SCI或第五SCI检测的周期。
可选的,上述第三字段的长度等于用于第一业务的载波单元个数或者用于第二业务的载波单元个数。
可选的,该第三SCI中二阶SCI格式字段的长度为k个比特,该第三SCI中用于指示该第二格式的二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数;和/或,该第五SCI中二阶SCI格式字段的长度为k个比特,该第五SCI中用于指示该第三格式的二阶SCI格式字段的取值与该第三SCI中二阶SCI格式字段的取值不相同,且是大于或等于十进制2且小于或等于2 k-1中的整数。k为大于2的整数。
其中,上述PSCCH检测单元22和上述唤醒或休眠单元23可以集成为一个单元,例如处理单元。
应理解,该种设计中的通信装置2可对应执行前述实施例二,并且该通信装置2中的各个单元的上述操作或功能分别为了实现前述实施例二中第二设备的相应操作,其技术效果参见前述实施例二中的技术效果,为了简洁,在此不再赘述。
参见图21,图21是本申请实施例提供的通信装置3的结构示意图。该通信装置3可以为网络设备或者可以设置于网络设备中的芯片或电路。如图21所示,该通信装置3包括:收发单元31,可选的包括处理单元32。
一种设计中,该收发单元31,用于发送DCI,该DCI包括唤醒指示位,该唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述处理单元32,用于生成DCI。
可选的,上述DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该DCI的格式是DCI format 2-6。
可选的,上述DCI中还包括第一指示位,该第一指示位用于指示该终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。
可选的,上述第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。
应理解,该种设计中该通信装置3可对应执行前述实施例三,并且该通信装置3中的各个单元的上述操作或功能分别为了实现前述实施例三中网络设备的相应操作,其技术效果参见前述实施例三中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该收发单元31,用于发送第一DCI,该第一DCI包括第一唤醒指示位, 该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述收发单元31,还用于发送第二DCI,该第二DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第二DCI的格式是传统DCI format 2-6,该第二DCI包括第二唤醒指示位,该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述处理单元32,用于生成第一DCI和第二DCI。
可选的,上述收发单元31,还用于发送RRC信令,该RRC信令用于指示该第一唤醒指示位的起始比特和/或该第一唤醒指示位所在块的大小。
可选的,上述第一DCI的格式不是用于指示该终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式。
可选的,上述第一DCI中还包括第一指示位,该第一指示位用于指示该终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。
可选的,上述第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。
应理解,该种设计中该通信装置3可对应执行前述实施例四,并且该通信装置3中的各个单元的上述操作或功能分别为了实现前述实施例四中网络设备的相应操作,其技术效果参见前述实施例四中的技术效果,为了简洁,在此不再赘述。
参见图22,图22是本申请实施例提供的通信装置4的结构示意图。该通信装置4可以为终端设备或者可以设置于终端设备中的芯片或电路。如图22所示,该通信装置4包括:收发单元41。
一种设计中,该收发单元41,用于接收DCI,该DCI包括唤醒指示位,该唤醒指示位用于指示该终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,该通信装置4还包括PDCCH检测单元42。该PDCCH检测单元42,用于当该唤醒指示位用于指示该终端设备在用于通信业务的DRX周期的持续时间计时器内唤醒时,在用于通信业务的DRX周期的持续时间计时器内唤醒并进行物理下行控制信道PDCCH检测;和/或,当该唤醒指示位用于指示该终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒时,在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PDCCH检测。
可选的,上述DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该DCI的格式是DCI format 2-6。
可选的,上述DCI中还包括第一指示位,该第一指示位用于指示该终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。
可选的,上述第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。
其中,上述PDCCH检测单元42还可以称为处理单元。
应理解,该种设计中该通信装置4可对应执行前述实施例三,并且该通信装置4中的各个单元的上述操作或功能分别为了实现前述实施例三中终端设备的相应操作,其技术效果参见前述实施例三中的技术效果,为了简洁,在此不再赘述。
另一种设计中,该收发单元41,用于接收第一DCI,该第一DCI包括第一唤醒指示位, 该第一唤醒指示位用于指示终端设备在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述收发单元41,还用于接收第二DCI,该第二DCI的格式是NR系统中用于指示终端设备在通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式,即该第二DCI的格式是传统DCI format 2-6,该第二DCI包括第二唤醒指示位,该第二唤醒指示位用于指示终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒。
可选的,上述收发单元41,还用于接收RRC信令,该RRC信令用于指示该第一唤醒指示位的起始比特和/或该第一唤醒指示位所在块的大小。
可选的,该通信装置4还包括PDCCH检测单元42。该PDCCH检测单元42,用于当该第一唤醒指示位用于指示该终端设备在用于通信业务的DRX周期的持续时间计时器内唤醒时,在用于通信业务的DRX周期的持续时间计时器内唤醒并进行物理下行控制信道PDCCH检测;和/或,当该第二唤醒指示位用于指示该终端设备在用于定位业务的DRX周期的持续时间计时器内唤醒时,在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PDCCH检测。
可选的,上述第一DCI的格式不是用于指示该终端设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒的DCI的格式。
可选的,上述第一DCI中还包括第一指示位,该第一指示位用于指示该终端设备在该第一指示位包括的每个比特对应的辅小区上是否唤醒。
可选的,上述第一指示位的长度为p比特,p等于用于定位业务的辅小区个数或辅小区组数。
其中,上述PDCCH检测单元42还可以称为处理单元。
应理解,该种设计中该通信装置4可对应执行前述实施例四,并且该通信装置4中的各个单元的上述操作或功能分别为了实现前述实施例四中终端设备的相应操作,其技术效果参见前述实施例四中的技术效果,为了简洁,在此不再赘述。
参见图23,图23是本申请实施例提供的通信装置1000的结构示意图。如图23所示,本申请实施例提供的通信装置1000可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。该通信装置1000可以是前述第一设备和前述第二设备中的任意一种。
通信装置1000包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,UE、基站或芯片等)进行控制,执行软件程序,处理软件程序的数据。该装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,该收发单元可以是芯片的输入和/或输出电路,或者通信接口。该芯片可以用于终端设备(比如UE)或接入网设备(比如基站)。又如,装置可以为终端设备(比如UE)或接入网设备(比如基站),该收发单元可以为收发器,射频芯片等。
通信装置1000包括一个或多个处理器1001,该一个或多个处理器1001可实现前述任一实施例中第一设备、或第二设备的方法。
可选的,处理器1001除了实现前述任一实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器1001也可以包括指令1003,所述指令可以在所述处理器上被运行,使得通信装置1000执行上述任一方法实施例中描述的方法。
在又一种可能的设计中,通信装置1000也可以包括电路,所述电路可以实现前述任一方 法实施例中第一设备或第二设备的功能。
在又一种可能的设计中,通信装置1000中可以包括一个或多个存储器1002,其上存有指令1004,所述指令可在所述处理器上被运行,使得通信装置1000执行上述任一方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器1002可以存储上述实施例中所描述的DCI或SCI,或者上述实施例中所涉及的其他信息。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,通信装置1000还可以包括收发单元1005以及天线1006,或者,包括通信接口。收发单元1005可以称为收发机、收发电路、或者收发器等,用于通过天线1006实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和接入网设备,或是,接入网设备和接入网设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
处理器1001可以称为处理单元,对装置(比如通信设备)进行控制。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线,例如光纤,或是无线,例如红外、无线、微波等,方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述实施例所描述的第一设备的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行前述实施例所描述的第二设备的方法步骤。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有程序指令,当其在计算机上运行时,使得该计算机执行前述实施例所描述的第一设备的方法步骤;或者当该计算机程序代码在计算机上运行时,使得该计算机执行前述实施例所描述的第二设备的方法步骤。
本申请实施例还提供一种装置,该装置可以为芯片。该芯片包括处理器。该处理器用于读取并执行存储器中存储的计算机程序,以执行前述任一实施例的任意可能的实现方式中的方法。可选的,该芯片还包括存储器,该存储器与该处理器通过电路或电线连接。进一步可选的,该芯片还包括通信接口,该处理器与该通信接口连接。该通信接口用于接收需要处理的数据和/或信号,该处理器从该通信接口获取该数据和/或信号,并对该数据和/或信号进行处理,并通过该通信接口输出处理结果。该通信接口可以是输入输出接口。
可选的,上述的处理器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请的另一实施例中,还提供一种通信系统,该通信系统包括第一设备和第二设备。该第一设备和该第二设备可以执行前述任一实施例中的方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种双非连续接收DRX模式下唤醒指示方法,应用于第一设备,其特征在于,包括:
    发送第一侧行链路控制信息SCI;
    发送第二SCI,所述第一SCI用于指示所述第二SCI的格式是第一格式,所述第一格式的第二SCI包括唤醒指示位,所述唤醒指示位用于指示第二设备在用于通信业务的非连续接收DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
  2. 一种双DRX模式下唤醒指示方法,应用于第二设备,其特征在于,包括:
    接收第一SCI;
    接收第二SCI,所述第一SCI用于指示所述第二SCI的格式是第一格式,所述第一格式的第二SCI包括唤醒指示位,所述唤醒指示位用于指示所述第二设备在用于通信业务的DRX周期的持续时间计时器内是否唤醒和在用于定位业务的DRX周期的持续时间计时器内是否唤醒。
  3. 根据权利要求2所述的方法,其特征在于,若所述唤醒指示位用于指示第二设备在用于通信业务的DRX周期的持续时间计时器内唤醒,则所述第二设备在用于通信业务的DRX周期的持续时间计时器内唤醒并进行物理侧行链路控制信道PSCCH检测;和/或,
    若所述唤醒指示位用于指示第二设备在用于定位业务的DRX周期的持续时间计时器内唤醒,则所述第二设备在用于定位业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述第二SCI还包括第一字段和第二字段;
    所述第一字段用于指示所述第一设备的标识,所述第一设备的标识为所述第一设备的层2标识;
    所述第二字段用于指示所述第二设备的标识,所述第二设备的标识为所述第二设备的层2标识。
  5. 根据权利要求4所述的方法,其特征在于,所述第一设备的标识为24比特,所述第二设备的标识为24比特;
    或,所述第一设备的标识为所述第一设备的完整层2标识,所述第二设备的标识为所述第二设备的完整层2标识。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第二SCI还包括以下一个或多个字段:
    第三字段用于指示所述第二设备在所述第三字段包括的每个比特对应的载波单元上是否唤醒;
    第四字段用于指示所述第二设备在用于通信业务的DRX周期和用于定位业务的DRX周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,或者第四字段用于指示所述第二设备在用于通信业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长,第五字段用于指示所述第二设备在用于定位业务的DRX周期的DRX持续时间内进入休眠的起始时刻和休眠时长;
    第六字段用于指示所述第二设备进行第一SCI检测的周期。
  7. 根据权利要求6所述的方法,其特征在于,所述第三字段的长度等于用于通信业务的载波单元个数与用于定位业务的载波单元个数之和。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述第一SCI中二阶SCI格式字段的长度为2个比特,所述第一SCI中用于指示所述第一格式的二阶SCI格式字段的取值为二进制10或11。
  9. 根据权利要求1、4-8中任一项所述的方法,其特征在于,所述发送第二SCI之前,所述方法还包括:
    发送侧行链路SL无线资源控制RRC信令,所述SL RRC信令用于指示所述第二SCI的起始比特和/或所述第二SCI的大小。
  10. 根据权利要求2-8中任一项所述的方法,其特征在于,所述接收第二SCI之前,所述方法还包括:
    接收SL RRC信令,所述SL RRC信令用于指示所述第二SCI的起始比特和/或所述第二SCI的大小。
  11. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    根据所述第二SCI中唤醒指示位的指示,在所述用于通信业务的DRX周期的持续时间计时器内唤醒或休眠,和在所述用于定位业务的DRX周期的持续时间计时器内唤醒或休眠。
  12. 一种双DRX模式下唤醒指示方法,应用于第一设备,其特征在于,包括:
    发送第三SCI;
    发送第四SCI,所述第三SCI用于指示所述第四SCI的格式是第二格式,所述第二格式的第四SCI包括第一唤醒指示位,所述第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
  13. 根据权利要求12所述的方法,其特征在于,所述第一唤醒指示位用于指示第二设备在用于第一业务的DRX周期的持续时间计时器内是否唤醒。
  14. 根据权利要求12或13所述的方法,其特征在于,所述方法还包括:
    发送第五SCI;
    发送第六SCI,所述第五SCI用于指示所述第六SCI的格式是第三格式,所述第三格式的第五SCI包括第二唤醒指示位,所述第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒;
    其中,所述第二业务是通信业务,所述第一业务是定位业务;或者,所述第二业务是定位业务,所述第一业务是通信业务。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述发送第四SCI之前,所述方法还包括:
    发送第一SL RRC信令,所述第一SL RRC信令用于指示所述第四SCI的起始比特和/或所述第四SCI的大小。
  16. 根据权利要求14或15所述的方法,其特征在于,所述发送第六SCI之前,所述方法还包括:
    发送第二SL RRC信令,所述第二SL RRC信令用于指示所述第六SCI的起始比特和/或所述第六SCI的大小。
  17. 一种双DRX模式下唤醒指示方法,应用于第二设备,其特征在于,包括:
    接收第三SCI;
    接收第四SCI,所述第三SCI用于指示所述第四SCI的格式是第二格式,所述第二格式的第四SCI包括第一唤醒指示位,所述第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内是否唤醒。
  18. 根据权利要求17所述的方法,其特征在于,所述第一唤醒指示位用于指示第二设备在用于第一业务的DRX周期的持续时间计时器内是否唤醒。
  19. 根据权利要求17或18所述的方法,其特征在于,所述方法还包括:
    接收第五SCI;
    接收第六SCI,所述第五SCI用于指示所述第六SCI的格式是第三格式,所述第三格式的第五SCI包括第二唤醒指示位,所述第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内是否唤醒;
    其中,所述第二业务是通信业务,所述第一业务是定位业务;或者,所述第二业务是定位业务,所述第一业务是通信业务。
  20. 根据权利要求17-19中任一项所述的方法,其特征在于,所述接收第四SCI之前,所述方法还包括:
    接收第一SL RRC信令,所述第一SL RRC信令用于指示所述第四SCI的起始比特和/或所述第四SCI的大小。
  21. 根据权利要求19或20所述的方法,其特征在于,所述接收第六SCI之前,所述方法还包括:
    接收第二SL RRC信令,所述第二SL RRC信令用于指示所述第六SCI的起始比特和/或所述第六SCI的大小。
  22. 根据权利要求17-21中任一项所述的方法,其特征在于,若所述第一唤醒指示位用于指示第二设备在DRX周期的持续时间计时器内唤醒,则所述第二设备在DRX周期的持续时间计时器内唤醒并进行PSCCH检测;
    和/或,若所述第二唤醒指示位用于指示第二设备在用于第二业务的DRX周期的持续时间计时器内唤醒,则所述第二设备在用于第二业务的DRX周期的持续时间计时器内唤醒并进行PSCCH检测。
  23. 根据权利要求12-22中任一项所述的方法,其特征在于,所述第四SCI和所述第六SCI均包括第一字段和第二字段;
    所述第一字段用于指示所述第一设备的标识,所述第一设备的标识为所述第一设备的层2标识;
    所述第二字段用于指示所述第二设备的标识,所述第二设备的标识为所述第二设备的层2标识。
  24. 根据权利要求23所述的方法,其特征在于,所述第一设备的标识为24比特,所述第二设备的标识为24比特;
    或,所述第一设备的标识为所述第一设备的完整层2标识,所述第二设备的标识为所述第二设备的完整层2标识。
  25. 根据权利要求12-24中任一项所述的方法,其特征在于,所述第四SCI和所述第六SCI均包括以下一个或多个字段:
    第三字段用于指示所述第二设备在所述第三字段的每个比特对应的载波单元上是否唤醒;
    第四字段用于指示所述第二设备在用于第一业务的DRX周期或者用于第二业务的DRX 周期中的DRX持续时间内进入休眠的起始时刻和休眠时长,
    第六字段用于指示所述第二设备进行第三SCI或第五SCI检测的周期。
  26. 根据权利要求25所述的方法,其特征在于,所述第三字段的长度等于用于第一业务的载波单元个数或者用于第二业务的载波单元个数。
  27. 根据权利要求12-26中任一项所述的方法,其特征在于,所述第三SCI中二阶SCI格式字段的长度为k个比特,所述第三SCI中用于指示所述第二格式的二阶SCI格式字段的取值为大于或等于十进制2且小于或等于2 k-1中任一整数;
    和/或,所述第五SCI中二阶SCI格式字段的长度为k个比特,所述第五SCI中用于指示所述第三格式的二阶SCI格式字段的取值与所述第三SCI中二阶SCI格式字段的取值不相同,且是大于或等于十进制2且小于或等于2 k-1中的整数;
    k为大于2的整数。
  28. 一种通信装置,其特征在于,包括用于执行权利要求1-27中任一项所述方法的单元或模块。
  29. 一种计算机可读存储介质,所述计算机可读存储介质中存储有程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-27中任一项所述的方法。
  30. 一种包含程序指令的计算机程序产品,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1-27中任一项所述的方法。
PCT/CN2022/081735 2021-03-22 2022-03-18 双drx模式下唤醒指示方法及相关装置 WO2022199489A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110303033 2021-03-22
CN202110303033.3 2021-03-22
CN202110432825.0A CN115134895A (zh) 2021-03-22 2021-04-21 双drx模式下唤醒指示方法及相关装置
CN202110432825.0 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022199489A1 true WO2022199489A1 (zh) 2022-09-29

Family

ID=83375470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081735 WO2022199489A1 (zh) 2021-03-22 2022-03-18 双drx模式下唤醒指示方法及相关装置

Country Status (2)

Country Link
CN (1) CN115134895A (zh)
WO (1) WO2022199489A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623995A (en) * 2022-11-03 2024-05-08 Nokia Technologies Oy Sidelink Positioning
GB2623998A (en) * 2022-11-03 2024-05-08 Nokia Technologies Oy Sidelink positioning

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078783A1 (en) * 2015-11-06 2017-05-11 Intel Corporation Methods and devices for communication via sidelink
CN110677883A (zh) * 2019-09-30 2020-01-10 中兴通讯股份有限公司 一种指示方法、接收处理方法、装置、终端和存储介质
CN111771421A (zh) * 2020-04-28 2020-10-13 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质
CN111972037A (zh) * 2018-04-05 2020-11-20 瑞典爱立信有限公司 多级副链路控制信息
US20210051587A1 (en) * 2019-08-15 2021-02-18 Qualcomm Incorporated Discontinuous reception operation for sidelink communication
US20210068189A1 (en) * 2019-08-30 2021-03-04 Hyundai Motor Company Method and apparatus for radio link management in sidelink communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017078783A1 (en) * 2015-11-06 2017-05-11 Intel Corporation Methods and devices for communication via sidelink
CN111972037A (zh) * 2018-04-05 2020-11-20 瑞典爱立信有限公司 多级副链路控制信息
US20210051587A1 (en) * 2019-08-15 2021-02-18 Qualcomm Incorporated Discontinuous reception operation for sidelink communication
US20210068189A1 (en) * 2019-08-30 2021-03-04 Hyundai Motor Company Method and apparatus for radio link management in sidelink communication
CN110677883A (zh) * 2019-09-30 2020-01-10 中兴通讯股份有限公司 一种指示方法、接收处理方法、装置、终端和存储介质
CN111771421A (zh) * 2020-04-28 2020-10-13 北京小米移动软件有限公司 信息处理方法及装置、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Discussion on Sidelink DRX", 3GPP DRAFT; R2-2009923, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online meeting; 20201102 - 20201113, 23 October 2020 (2020-10-23), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051942698 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2623995A (en) * 2022-11-03 2024-05-08 Nokia Technologies Oy Sidelink Positioning
GB2623998A (en) * 2022-11-03 2024-05-08 Nokia Technologies Oy Sidelink positioning

Also Published As

Publication number Publication date
CN115134895A (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
TWI528772B (zh) 用於延伸的不連續接收之技術及系統
WO2022199489A1 (zh) 双drx模式下唤醒指示方法及相关装置
WO2021204215A1 (zh) 一种drx控制方法及装置
JP6854354B2 (ja) New Radio免許不要周波数帯でのデバイス能力に基づくスタンドアローンページング
US20180027494A1 (en) Apparatus, system and method of neighbor awareness networking (nan) data link (ndl) power save
JP2022550159A (ja) ウェイクアップ信号検出方法および装置
CN113597812A (zh) Pdcch监听方法、终端设备和网络设备
EP4207884A1 (en) Communication method and device
WO2022068611A1 (zh) 侧行链路的传输方法和终端
WO2022188105A1 (zh) 无线通信的方法及设备
WO2020150871A1 (en) Discontinuous reception configuration of terminal device
JP7457797B2 (ja) 無線通信方法、端末デバイス及びネットワークデバイス
CN114286429A (zh) 一种通信方法及设备
WO2018120661A1 (zh) 无线通信的方法和设备
WO2021134577A1 (zh) 一种数据传输方法及装置
EP3413635A1 (en) Synchronizing connectivity in wireless communication networks
WO2022083418A1 (zh) 一种节能信号传输方法及装置
WO2022094775A1 (zh) 寻呼方法、终端设备和网络设备
WO2022056684A1 (zh) 节能方法、终端设备和网络设备
WO2020088455A1 (zh) 通信方法和通信装置
WO2019149109A1 (zh) 一种系统消息更新的方法、装置及系统
WO2022067828A1 (zh) 寻呼信息发送、监听方法及通信装置、系统
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023207990A1 (zh) 信号传输的方法和通信装置
WO2023141760A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774150

Country of ref document: EP

Kind code of ref document: A1