WO2022198825A1 - 天线校正方法、装置、电子设备和存储介质 - Google Patents

天线校正方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2022198825A1
WO2022198825A1 PCT/CN2021/103205 CN2021103205W WO2022198825A1 WO 2022198825 A1 WO2022198825 A1 WO 2022198825A1 CN 2021103205 W CN2021103205 W CN 2021103205W WO 2022198825 A1 WO2022198825 A1 WO 2022198825A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
antenna
signal strength
transmission path
shift data
Prior art date
Application number
PCT/CN2021/103205
Other languages
English (en)
French (fr)
Inventor
何文卿
Original Assignee
闻泰科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 闻泰科技(深圳)有限公司 filed Critical 闻泰科技(深圳)有限公司
Publication of WO2022198825A1 publication Critical patent/WO2022198825A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to an antenna calibration method, an apparatus, an electronic device, and a storage medium.
  • millimeter-wave terminals such as 5G millimeter-wave mobile phones
  • have fewer antenna elements generally including four antenna elements due to area limitations
  • one antenna element and/or phase shifter is damaged, then the actual The influence of transmit power and receive sensitivity will be great. In actual use, there will be poor signal and difficulty in communicating with the base station.
  • the millimeter-wave terminal has fewer antenna array elements, and when one antenna array element and/or phase shifter is damaged, it will have a great impact on the actual transmit power and receiving sensitivity, making the terminal equipment in the actual use process. Problems such as poor signal and difficulty in communication with the base station occur.
  • an antenna calibration method, apparatus, electronic device, and storage medium are provided.
  • An antenna calibration method comprising:
  • the antenna signal strength includes the first signal strength received by the antenna and transmitted by the target base station, or the second signal strength received by the target base station and transmitted by the antenna;
  • the state of the corresponding phase shifter is adjusted based on the at least one set of phase shift data to correct the antenna.
  • the states of each phase shifter in the remaining transmission paths are traversed to obtain multiple sets of phase-shift data and antenna signal strengths corresponding to each set of phase-shift data, including:
  • phase shift angles of each phase shifter in the remaining transmission path to obtain all combinations of the phase shift angles of each phase shifter, wherein the phase shift angles of each combination constitute a set of phase shift data
  • the antenna signal strengths are obtained under each group of phase-shift data respectively.
  • acquiring the antenna signal strength includes:
  • the second signal strength is obtained based on the feedback information.
  • determining the target transmission path includes:
  • any one of the transmission paths does not receive a response from the target base station within the preset communication time, then the any of the transmission paths is determined as the target transmission path.
  • the method further includes:
  • allocating electromagnetic wave signals only to the remaining transmission paths includes:
  • the power division paths of the power divider are adjusted, so that the adjusted power division paths and the remaining transmission paths are connected in one-to-one correspondence.
  • the method further includes:
  • the state of each phase shifter is controlled to remain unchanged.
  • An embodiment of the present disclosure provides an antenna calibration device, the device comprising:
  • a path on-off module configured to disconnect the target emission path when determining the target emission path, wherein the target emission path has damaged antenna elements and/or phase shifters;
  • the antenna parameter acquisition module is configured to traverse the state of each phase shifter in the remaining transmission path, and obtain multiple sets of phase-shifted data and the antenna signal strength corresponding to each group of phase-shifted data, wherein the remaining transmission path is divided by the antenna.
  • the antenna signal strength includes the first signal strength received by the antenna and transmitted by the target base station, or the second signal strength received by the target base station and transmitted by the antenna;
  • a correction parameter determination module configured to determine at least one set of phase-shift data corresponding to the maximum antenna signal strength
  • An antenna correction module configured to adjust the state of the corresponding phase shifter based on the at least one set of phase shift data to correct the antenna.
  • An embodiment of the present disclosure provides an electronic device, including a memory and one or more processors, where the memory stores computer-readable instructions, and the one or more processors implement the present disclosure when executing the computer-readable instructions The steps of an antenna calibration method provided by any embodiment.
  • Embodiments of the present disclosure provide one or more non-volatile computer-readable storage media having computer-readable instructions stored thereon, the computer-readable instructions being stored thereon, and the computer-readable instructions being processed by one or more The steps of an antenna calibration method provided by any embodiment of the present disclosure are implemented when the device is executed.
  • 1 is a schematic flowchart of an antenna calibration method in one or more embodiments
  • FIG. 2 is a schematic diagram of the internal structure of an antenna in one or more embodiments
  • FIG. 3 is a structural block diagram of an antenna calibration apparatus in one or more embodiments
  • FIG. 4 is a diagram of an internal structure of an electronic device in one or more embodiments.
  • an antenna calibration method is provided.
  • the method is applied to a terminal for illustration.
  • the terminal may be, but is not limited to, various personal computers, notebook computers, etc. , smartphones, tablets and portable wearables.
  • the method includes the following steps:
  • an antenna structure wherein the signal source can be a millimeter wave signal source, configured to transmit and receive electromagnetic wave signals; the power distribution unit is specifically a power divider (power divider), configured to each The transmission channel distributes electromagnetic wave signals; each transmission channel includes a phase shifter and an antenna array element, and the phase shifter is configured to shift the phase of the phased array antenna to obtain different phase values of each antenna array element, and the antenna array elements are configured to form The antenna array realizes the angle scanning function of the phased array antenna; in the embodiment of the present disclosure, a switch can be set on each transmission path to be configured to control the on and off of the corresponding transmission path; the control module can specifically include a phase control unit and The baseband control unit, in which the phase control unit has the function of phase registration and phase control, which can control the state of each phase shifter respectively, and can also write the state of each phase shifter, and the baseband control unit can control the on
  • the antenna structure shown in FIG. 2 includes 4 transmission paths, the first transmission path includes a switch 1, a phase shifter 1 and an antenna array element 1, and the second transmission path includes a switch 2, a phase shifter 2 and an antenna.
  • Array element 2 the third transmission path includes switch 3, phase shifter 3 and antenna array element 3, and the fourth transmission path includes switch 4, phase shifter 4 and antenna array element 4.
  • FIG. 2 only schematically shows an implementable antenna structure, and the antenna calibration method of the present disclosure is also applicable to an antenna system with more antenna elements.
  • determining the target emission path includes:
  • S111 Control each transmission channel in the antenna to communicate with the target base station in sequence.
  • the switches of each transmission path only one transmission path can be turned on at a time, for example, referring to FIG.
  • the second transmission channel, the third transmission channel and the fourth transmission channel are disconnected.
  • the second transmission channel, the third transmission channel and the fourth transmission channel are controlled to be turned on in sequence, and the conductive transmission channel can be turned on.
  • the electromagnetic wave signal is transmitted to the target base station, and the electromagnetic wave signal transmitted by the target base station can also be received, wherein the target base station is the base station that establishes communication with the terminal corresponding to the antenna.
  • the preset communication time may be set as the normal response time when the base station communicates with the terminal.
  • the signal source works, and if the antenna element and/or the phase shifter on the any transmission path is not damaged, the electromagnetic wave signal will be transmitted to the target base station through the any transmission path.
  • the target base station when the target base station receives the electromagnetic wave signal, it will feedback based on the request of the electromagnetic wave signal; however, if the antenna element and/or phase shifter on any of the transmission paths are damaged, the electromagnetic wave signal will not be transmitted to the target base station. , the target base station will naturally not respond. Therefore, if any transmission channel does not receive a response from the target base station within the preset communication time, any transmission channel is determined as the target transmission channel.
  • the target transmission path is disconnected, so as to avoid the influence of damaged antenna elements and/or phase shifters on the normal transmission path.
  • S120 Traverse the states of the phase shifters in the remaining transmission paths to obtain multiple sets of phase-shift data and antenna signal strengths corresponding to each set of phase-shift data.
  • the remaining transmission paths are the transmission paths in the antenna except the target transmission path, and the antenna signal strength includes the first signal strength received by the antenna and transmitted by the target base station, or the second signal strength received by the target base station and transmitted by the antenna.
  • the states of each phase shifter in the remaining transmission paths are traversed to obtain multiple sets of phase-shift data and antenna signal strengths corresponding to each set of phase-shift data, including:
  • the phase shift angle of the phase shifter is the state of the phase shifter, and the corresponding data is the phase shift data.
  • the control module controls and adjusts the phase shift angle of each phase shifter, and each phase shifter may include multiple Adjustable phase shift angles, such as 30 degrees, 60 degrees, 90 degrees, 120 degrees, 150 degrees, 180 degrees, 210 degrees, 240 degrees, 270 degrees, 300 degrees, 330 degrees and 360 degrees.
  • the remaining transmission paths include a first transmission path, a second transmission path and a third transmission path, and the phase shifters in the first transmission path and the second transmission path are adjusted first, That is, the phase shift angle of phase shifter 1 and phase shifter 2 is 30 degrees, and then the adjustable phase shift angle of phase shifter 3 is adjusted in turn.
  • phase shift angle of phase shifter 3 is adjusted to 30 degrees, 60 degrees, 90 degrees, 120 degrees, 150 degrees, 180 degrees, 210 degrees, 240 degrees, 270 degrees, 300 degrees, 330 degrees and 360 degrees, each time it is combined with the phase shift angle of phase shifter 1 and phase shifter 2 to form a group of phase data, then adjust the phase shift angle of the phase shifter to 60 degrees, and then adjust the adjustable phase shift angle of the phase shifter 3 in turn. In this way, the states of each phase shifter in the remaining transmit paths are traversed.
  • the electromagnetic wave signal is transmitted and received under the corresponding set of phase shift data to obtain the intensity of the transmitted or received electromagnetic wave signal, that is, the antenna signal strength.
  • the antenna signal strength the intensity of the transmitted or received electromagnetic wave signal
  • the signal strength received by the antenna and transmitted by the target base station or the signal strength received by the target base station and transmitted by the antenna, that is, the first signal strength or the second signal strength can be obtained.
  • acquiring the signal strength of the antenna may include: acquiring the strength of the electromagnetic wave signal received by the signal source of the antenna as the first signal strength.
  • obtaining the antenna signal strength may include: obtaining feedback information of the target base station; and obtaining the second signal strength based on the feedback information.
  • the feedback information of the target base station includes the signal strength of the antenna transmission received by the target base station, and based on the feedback information, the signal strength of the antenna transmission received by the target base station, that is, the second signal strength, can be obtained by analysis.
  • S130 Determine at least one set of phase shift data corresponding to the maximum antenna signal strength.
  • phase shift data there may be one or more sets of phase shift data corresponding to the maximum antenna signal strength.
  • the maximum antenna signal strength can be determined by comparing all the antenna signal strengths obtained under each group of phase-shift data, and then based on the correspondence between each group of phase-shift data and the antenna signal strength determined in the above embodiment, the corresponding maximum antenna signal strength can be determined. at least one set of phase-shifted data.
  • S140 Adjust the state of the corresponding phase shifter based on at least one set of phase shift data to correct the antenna.
  • a set of phase-shift data in the multiple sets of phase-shift data may be randomly selected, and the control module adjusts the corresponding phase-shifter based on the set of phase-shift data. state, so that the first signal strength or the second signal strength can be the strongest.
  • the target transmission path with damaged antenna elements and/or phase shifters when the target transmission path with damaged antenna elements and/or phase shifters is determined, the target transmission path is disconnected, and the states of the phase shifters in the remaining transmission paths are traversed to obtain multiple groups of phase shifters.
  • data and the antenna signal strength corresponding to each group of phase shift data determine at least one group of phase shift data corresponding to the maximum antenna signal strength, and adjust the state of the corresponding phase shifter based on the at least one group of phase shift data.
  • the target transmission path is disconnected to avoid the influence of the damaged antenna array element and/or phase shifter on the normal transmission path, that is, the remaining transmission path, and then traverse the state of each phase shifter in the remaining transmission path to obtain multiple
  • the phase-shift data and the antenna signal strength corresponding to each group of phase-shift data can be used to determine at least one set of phase-shift data when the antenna signal is the strongest, and then use at least one set of phase-shift data to adjust the state of the corresponding phase shifter.
  • the communication quality of the antenna is adjusted to the optimum, so that the damage of some antenna elements and/or phase shifters does not affect the normal communication between the antenna and the base station. In this case, the antenna is calibrated to improve the communication quality of the antenna.
  • the antenna calibration method may further include: allocating electromagnetic wave signals only to the remaining transmission paths.
  • the power division paths of the power divider are adjusted, so that the adjusted power division paths are connected to the remaining transmission paths in a one-to-one correspondence.
  • the power distribution unit is a 4-way power divider, that is, it includes 4-way power division paths; when the remaining transmission paths are 3-way transmission paths, such as the first transmission path and the second transmission path. and the third transmission path, the 4 power division paths of the power distribution unit are adjusted into 3 power division paths, and are respectively connected with the first transmission path, the second transmission path and the third transmission path. In this way, the loss of signal strength can be avoided, the base station cannot receive signals due to weak radiation of the antenna, and the communication quality between the terminal and the base station can be further ensured.
  • the antenna calibration method may further include: if the target transmission path does not exist or the target transmission path has not changed, controlling the state of each phase shifter to remain unchanged.
  • the originally set phase shift data is still used to control the state of the phase shifter; when the target transmission path
  • the state of the phase shifter is controlled by using at least one set of phase shift data determined previously. In this way, the communication quality between the terminal and the base station can be guaranteed to be optimal in real time.
  • the antenna calibration method may further include: storing only at least one set of phase shift data corresponding to the maximum antenna signal strength. In this way, in the subsequent antenna calibration, only a set of phase-shift data corresponding to the maximum antenna signal strength can be determined from the at least one set of phase-shift data, which avoids a large amount of data processing and improves the antenna calibration efficiency.
  • steps in the flowchart of FIG. 1 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIG. 1 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed and completed at the same time, but may be executed at different times. The execution of these sub-steps or stages The sequence is also not necessarily sequential, but may be performed alternately or alternately with other steps or sub-steps of other steps or at least a portion of a phase.
  • an antenna calibration device includes a channel on-off module 201, an antenna parameter acquisition module 202, a calibration parameter determination module 203, and an antenna calibration module 204;
  • the path on-off module 201 is configured to disconnect the target transmission path when determining the target transmission path, wherein the target transmission path has damaged antenna elements and/or phase shifters;
  • the antenna parameter acquisition module 202 is configured to traverse the state of each phase shifter in the remaining transmission paths to obtain multiple sets of phase-shifted data and the antenna signal strength corresponding to each group of phase-shifted data, wherein the remaining transmission paths are the target transmission paths in the antennas
  • the antenna signal strength includes the first signal strength received by the antenna and transmitted by the target base station, or the second signal strength received by the target base station and transmitted by the antenna;
  • the correction parameter determination module 203 is configured to determine at least one set of phase shift data corresponding to the maximum antenna signal strength
  • the antenna correction module 204 is configured to adjust the state of the corresponding phase shifter based on the at least one set of phase shift data, so as to correct the antenna.
  • the antenna parameter acquisition module 202 may include:
  • the phase-shift angle adjustment unit is configured to adjust the phase-shift angle of each phase-shifter in the remaining transmission path, so as to obtain all combinations of the phase-shift angle of each phase-shifter, wherein the phase-shift angle of each combination constitutes a set of phase-shift data ;
  • the signal strength acquiring unit is configured to acquire the antenna signal strength under each group of phase-shift data respectively.
  • the signal strength acquiring unit may be specifically configured to:
  • the second signal strength is obtained based on the feedback information.
  • the antenna calibration apparatus further includes a transmission path determination module configured to determine a target transmission path; specifically, it may include:
  • a communication control unit configured to control each transmission path in the antenna to communicate with the target base station in sequence
  • the transmission path determination unit is configured to determine any transmission path as the target transmission path if any transmission path does not receive a response from the target base station within the preset communication time.
  • the antenna calibration apparatus further includes a power division control module configured to allocate electromagnetic wave signals only to the remaining transmission paths.
  • the power division control module is specifically configured to adjust the power division paths of the power divider, so that the adjusted power division paths and the remaining transmit paths are connected in one-to-one correspondence.
  • the antenna calibration apparatus further includes a phase shifter state control module, configured to control the state of each phase shifter to remain unchanged if the target transmission path does not exist or the target transmission path does not change.
  • Each module in the above-mentioned antenna calibration device can be implemented in whole or in part by software, hardware and combinations thereof.
  • the above modules can be embedded in or independent of one or more processors in the electronic device in the form of hardware, and can also be stored in the memory in the electronic device in the form of software, so that one or more processors can call and execute the above modules. The corresponding operation of the module.
  • an electronic device in one embodiment, the electronic device may be a terminal, and its internal structure diagram may be as shown in FIG. 4 .
  • the electronic device includes one or more processors, memory, a communication interface, a display screen, and an input device connected by a system bus. Among them, the processor of the electronic device is used to provide computing and control capabilities.
  • the memory of the electronic device includes a non-volatile storage medium and an internal memory.
  • the nonvolatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the electronic device is used for wired or wireless communication with an external terminal, and the wireless communication can be realized by WIFI, operator network, near field communication (NFC) or other technologies.
  • the computer-readable instructions when executed by one or more processors, implement an antenna calibration method.
  • the display screen of the electronic device may be a liquid crystal display screen or an electronic ink display screen, and the input device of the electronic device may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the electronic device , or an external keyboard, trackpad, or mouse.
  • FIG. 4 is only a block diagram of a partial structure related to the solution of the present disclosure, and does not constitute a limitation on the electronic device to which the solution of the present disclosure is applied.
  • the specific electronic device may be Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • the antenna correction apparatus may be implemented in the form of computer-readable instructions, and the computer-readable instructions may be executed on the electronic device as shown in FIG. 4 .
  • the memory of the electronic device can store various program modules constituting the antenna calibration device, for example, the channel on-off module 201 , the antenna parameter acquisition module 202 , the calibration parameter determination module 203 and the antenna calibration module 204 shown in FIG. 3 .
  • the computer-readable instructions constituted by each program module cause one or more processors to execute the steps in the antenna calibration method of the various embodiments of the present disclosure described in this specification.
  • the electronic device shown in FIG. 4 may perform step S110 through the path on/off module 201 in the antenna calibration apparatus shown in FIG. 3 .
  • the electronic device may execute step S120 through the antenna parameter acquisition module 202 .
  • the electronic device may execute step S130 through the correction parameter determination module 203 .
  • the electronic device may perform step S140 through the antenna calibration module 204 .
  • an electronic device comprising a memory and one or more processors, where the memory stores computer-readable instructions, and the one or more processors implement the following steps when executing the computer-readable instructions: after determining When the target transmission path is used, disconnect the target transmission path, where there are damaged antenna elements and/or phase shifters in the target transmission path; traverse the states of the phase shifters in the remaining transmission paths to obtain multiple sets of phase-shift data and each set of phase shifters.
  • the antenna signal strength corresponding to the phase-shifted data where the remaining transmission paths are the transmission paths in the antenna except the target transmission path, and the antenna signal strength includes the first signal strength received by the antenna and transmitted by the target base station, or the signal strength received by the target base station. the second signal strength transmitted by the antenna; determine at least one set of phase shift data corresponding to the maximum antenna signal strength; adjust the state of the corresponding phase shifter based on the at least one set of phase shift data to correct the antenna.
  • the one or more processors further implement the following steps when executing the computer-readable instructions: adjusting the phase-shift angles of each phase shifter in the remaining transmission paths to obtain all combinations of the phase-shift angles of each phase shifter, Wherein, the phase-shift angle of each combination constitutes a group of phase-shift data; the antenna signal strength is obtained under each group of phase-shift data respectively.
  • the following steps are further implemented: acquiring the strength of the electromagnetic wave signal received by the signal source of the antenna as the first signal strength; or acquiring feedback from the target base station information; obtaining the second signal strength based on the feedback information.
  • the following steps are further implemented: controlling each transmission channel in the antenna to communicate with the target base station in sequence; If the target base station responds, any transmission path is determined as the target transmission path.
  • the execution of the computer-readable instructions by the one or more processors further implements the step of allocating electromagnetic wave signals only to the remaining transmission paths.
  • the following steps are further implemented: adjusting the power division paths of the power divider, so that the adjusted power division paths are connected to the remaining transmit paths in a one-to-one correspondence.
  • the one or more processors executing the computer-readable instructions further implement the step of controlling the state of each phase shifter to remain unchanged if the target transmit path does not exist or the target transmit path has not changed.
  • the target transmission path with damaged antenna elements and/or phase shifters when the target transmission path with damaged antenna elements and/or phase shifters is determined, the target transmission path is disconnected, and the states of the phase shifters in the remaining transmission paths are traversed to obtain multiple groups of phase shifters.
  • data and the antenna signal strength corresponding to each group of phase shift data determine at least one group of phase shift data corresponding to the maximum antenna signal strength, and adjust the state of the corresponding phase shifter based on the at least one group of phase shift data.
  • the target transmission path is disconnected to avoid the influence of the damaged antenna array element and/or phase shifter on the normal transmission path, that is, the remaining transmission path, and then traverse the state of each phase shifter in the remaining transmission path to obtain multiple sets of
  • the phase-shift data and the antenna signal strength corresponding to each group of phase-shift data can be used to determine at least one set of phase-shift data when the antenna signal is the strongest, and then use at least one set of phase-shift data to adjust the state of the corresponding phase shifter.
  • the communication quality of the antenna is adjusted to the optimum, so that the damage of some antenna elements and/or phase shifters does not affect the normal communication between the antenna and the base station. In this case, the antenna is calibrated to improve the communication quality of the antenna.
  • one or more non-transitory computer-readable storage media having computer-readable instructions stored thereon, having computer-readable instructions stored thereon, the computer-readable instructions being stored by one or more
  • the multiple processors When the multiple processors are executed, the following steps are implemented: when the target transmission path is determined, the target transmission path is disconnected, wherein the target transmission path has damaged antenna elements and/or phase shifters; traversing the phase shifters in the remaining transmission paths The state of multiple sets of phase-shift data and the corresponding antenna signal strengths of each set of phase-shift data are obtained, wherein the remaining transmission paths are the transmission paths in the antenna except the target transmission path, and the antenna signal strength includes the transmission paths of the target base station received by the antenna.
  • the first signal strength of the antenna, or the second signal strength of the antenna transmitted by the target base station determine at least one set of phase-shift data corresponding to the maximum antenna signal strength; adjust the state of the corresponding phase shifter based on the at least one set of phase-shift data to Align the antenna.
  • the computer readable instructions further implement the following steps when executed by one or more processors: adjusting the phase shift angles of each phase shifter in the remaining transmit paths to obtain all combinations of the phase shift angles of each phase shifter , wherein the phase-shift angle of each combination constitutes a group of phase-shift data; the antenna signal strength is obtained under each group of phase-shift data respectively.
  • the following steps are further implemented: acquiring the strength of the electromagnetic wave signal received by the signal source of the antenna as the first signal strength; or, acquiring the strength of the electromagnetic wave signal of the target base station. feedback information; obtaining the second signal strength based on the feedback information.
  • the computer-readable instructions further implement the following steps when executed by one or more processors: controlling each transmit channel in the antenna to communicate with the target base station in turn; if any transmit channel fails to receive a communication within a preset communication time In response to the response to the target base station, any transmission path is determined as the target transmission path.
  • the computer readable instructions when executed by the one or more processors, further implement the step of distributing electromagnetic wave signals only for the remaining transmission paths.
  • the computer readable instructions when executed by one or more processors, further implement the following steps: adjusting the power division paths of the power divider so that the adjusted power division paths are connected to the remaining transmit paths in a one-to-one correspondence.
  • the computer readable instructions when executed by one or more processors, further implement the step of controlling the state of each phase shifter to remain unchanged if the target transmit path does not exist or the target transmit path has not changed.
  • the target transmission path with damaged antenna elements and/or phase shifters when the target transmission path with damaged antenna elements and/or phase shifters is determined, the target transmission path is disconnected, and the states of the phase shifters in the remaining transmission paths are traversed to obtain multiple groups of phase shifters.
  • data and the antenna signal strength corresponding to each group of phase shift data determine at least one group of phase shift data corresponding to the maximum antenna signal strength, and adjust the state of the corresponding phase shifter based on the at least one group of phase shift data.
  • the target transmission path is disconnected to avoid the influence of the damaged antenna array element and/or phase shifter on the normal transmission path, that is, the remaining transmission path, and then traverse the state of each phase shifter in the remaining transmission path to obtain multiple sets of
  • the phase-shift data and the antenna signal strength corresponding to each group of phase-shift data can be used to determine at least one set of phase-shift data when the antenna signal is the strongest, and then use at least one set of phase-shift data to adjust the state of the corresponding phase shifter.
  • the communication quality of the antenna is adjusted to the optimum, so that the damage of some antenna elements and/or phase shifters does not affect the normal communication between the antenna and the base station. In this case, the antenna is calibrated to improve the communication quality of the antenna.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical memory, and the like.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms, such as Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM).
  • the antenna calibration method provided by the present disclosure adjusts the state of the corresponding phase shifter through at least one set of phase shift data with the strongest antenna signal, which can improve the signal caused by damage to some antenna elements and/or phase shifters in the prior art It has strong industrial practicability because of the technical problems of poor communication and difficult communication with the base station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线校正方法、装置、电子设备和计算机可读存储介质。其中方法包括:在确定目标发射通路时,断开目标发射通路(S110),其中,目标发射通路存在损坏的天线阵元和/或移相器;遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度(S120),其中,剩余发射通路为天线中除目标发射通路之外的发射通路;确定最大天线信号强度对应的至少一组移相数据(S130);基于至少一组移相数据调整对应移相器的状态,以校正天线(S140)。采用该方案可以在移相器和/或天线阵元损坏的情况下对天线进行校正,改善天线通信质量。

Description

天线校正方法、装置、电子设备和存储介质
本公开要求于2021年3月22日提交中国专利局、申请号为202110302481.1、发明名称为“天线校正方法、装置、电子设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种天线校正方法、装置、电子设备和存储介质。
背景技术
随着毫米波在5G移动通信领域的应用,毫米波发射和接收系统的设计和优化也在开展中。
目前,由于毫米波终端,比如5G毫米波手机的天线阵元较少(因为面积的限制,一般包括四个天线阵元),如果坏掉一个天线阵元和/或移相器,那么对实际发射功率和接收灵敏度的影响就会很大,在实际使用过程中会出现信号差,与基站通讯困难等情况。
发明内容
(一)要解决的技术问题
在现有技术中,毫米波终端的天线阵元较少,一个天线阵元和/或移相器损坏时,会对实际发射功率和接收灵敏度造成很大影响,使终端设备在实际使用过程中出现信号差、与基站通讯困难等问题。
(二)技术方案
根据本公开公开的各种实施例,提供了一种天线校正方法、装置、电子设备和存储介质。
一种天线校正方法,所述方法包括:
在确定目标发射通路时,断开所述目标发射通路,其中,所述目标发射通路存在损坏的天线阵元和/或移相器;
遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,所述剩余发射通路为所述天线中除所述目标发射通路之外的发射通路,所述天线信号强度包括所述天线接收到的目标基站发射的第一信号强度,或者所述目标基站接收到的所述天线发射的第二信号强度;
确定最大天线信号强度对应的至少一组移相数据;
基于所述至少一组移相数据调整对应移相器的状态,以校正所述天线。
在一个实施例中,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,包括:
调节所述剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;
分别在各组移相数据下获取所述天线信号强度。
在一个实施例中,获取所述天线信号强度,包括:
获取所述天线的信号源接收到的电磁波信号的强度,并作为所述第一信号强度;或者,
获取所述目标基站的反馈信息;
基于所述反馈信息得到所述第二信号强度。
在一个实施例中,确定目标发射通路,包括:
控制所述天线中的各发射通路依次与所述目标基站通信;
如果任一发射通路在预设通信时间内未收到所述目标基站的应答,则将所述任一发射通路确定为所述目标发射通路。
在一个实施例中,所述方法还包括:
仅为所述剩余发射通路分配电磁波信号。
在一个实施例中,仅为所述剩余发射通路分配电磁波信号,包括:
调整功率分配器的功分通路,以使调整后的功分通路与所述剩余发射通路一一对应连接。
在一个实施例中,所述方法还包括:
如果不存在所述目标发射通路或者所述目标发射通路没有改变,则控制各移相器的状态保持不变。
本公开实施例提供一种天线校正装置,所述装置包括:
通路通断模块,配置成在确定目标发射通路时,断开所述目标发射通路,其中,所述目标发射通路存在损坏的天线阵元和/或移相器;
天线参数获取模块,配置成遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,所述剩余发射通路为所述天线中除所述目标发射通路之外的发射通路,所述天线信号强度包括所述天线接收到的目标基站发射的第一信号强度,或者所述目标基站接收到的所述天线发射的第二信号强度;
校正参数确定模块,配置成确定最大天线信号强度对应的至少一组移相数据;
天线校正模块,配置成基于所述至少一组移相数据调整对应移相器的状态,以校正所述天线。
本公开实施例提供了一种电子设备,包括存储器和一个或多个处理器,所述存储器存储有计算机可读指令,所述一个或多个处理器执行所述计算机可读指令时实现本公开任意实施例所提供的一种天线校正方法的步骤。
本公开实施例提供了一种一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现本公开任意实施例所提供的一种天线校正方法的步骤。
本公开的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开而了解。本公开的目的和其他优点在说明书、权利要求书以及附图中所特别指出的结构来实现和获得,本公开的一个或多个实施例的细节在下面的附图和描述中提出。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举可选实施例,并配合所附附图,作详细说明如下。
附图说明
图1为一个或多个实施例中天线校正方法的流程示意图;
图2为一个或多个实施例中天线的内部结构示意图;
图3为一个或多个实施例中天线校正装置的结构框图;
图4为一个或多个实施例中电子设备的内部结构图。
具体实施方式
为了使本公开的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在一个或多个实施例中,如图1所示,提供了一种天线校正方法,本实施例以该方法应用于终端进行举例说明,该终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备。本实施例中,该方法包括以下步骤:
S110:在确定目标发射通路时,断开目标发射通路。
其中,目标发射通路存在损坏的天线阵元和/或移相器。参考图2,提供了一种天线结构,其中,信号源可以为毫米波信号源,配置成电磁波信号的发射和接收;功率分配单元具体为功率分配器(功分器),配置成给每一发射通路分配电磁波信号;每路发射通路包括移相器和天线阵元,移相器配置成对相控阵天线进行移相,得到每个天线阵元的不同相位值,天线阵元配置成组成天线阵列,实现相控阵天线的角度扫描功能;本公开实施例中可以在每路发射通路上设置开关,配置成控制对应发射通路的导通与关断;控制模块具体可包括相位控制单元和基带控制单元,其中相位控制单元具有相位寄存功能与相位控制功能,可分别控制各移相器的状态,也可以写入各移相器的状态,基带控制单元可分别控制各开关的开与断以及功率分配单元的功分通路。示例性的,图2所示天线结构包括4路发射通路,第一路发射通路包括开关1、移相器1和天线阵元1,第二路发射通路包括开关2、移相器2和天线阵元2,第三路发射通路包括开关3、移相器3和天线阵元3,第四路发射通路包括开关4、移相器4和天线阵元4。可以理解的是,图2仅示意性地示出了一种可实施的天线结构,本公开的天线校正方法还可适用于具有更多天线阵元的天线系统。
在本公开实施例一实施方式中,确定目标发射通路,包括:
S111:控制天线中的各发射通路依次与目标基站通信。
示例性的,可通过控制各发射通路的开关,每次仅导通一路发射通路,例如参考图2,打开开关1,同时关闭开关2、开关3和开关4,第一路发射通路导通,第二路发射通路、第三路发射通路和第四路发射通路断开,如此,依次控制第二路发射通路、第三路发射通路和第四路发射通路导通,导通的发射通路可向目标基站发射电磁波信号,也可以接收目标基站发射的电磁波信号,其中,目标基站为与天线对应的终端建立通信的基站。
S112:如果任一发射通路在预设通信时间内未收到目标基站的应答,则将任一发射通路确定为目标发射通路。
其中,预设通信时间可设置为基站与终端通信时的常规响应时间。
示例性的,在导通任一发射通路时,信号源工作,如果该任一发射通路上的天线阵元和/或移相器没有损坏,通过该任一发射通路会向目标基站发射电磁波信号,目标基站接收到该电磁波信号时,会基于电磁波信号的请求进行反馈;但是,如果该任一发射通路上的天线阵元和/或移相器已损坏,便不会向目标基站发射电磁波信号,目标基站自然不会做出应答。因此,如果任一发射通路在预设通信时间内未收到目标基站的应答,则将任一发射通路确定为目标发射通路。
在确定目标发射通路时,断开该目标发射通路,避免了损坏的天线阵元和/或移相器对正常发射通路的影响。
S120:遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度。
其中,剩余发射通路为天线中除目标发射通路之外的发射通路,天线信号强度包括天线接收到的目标基站发射的第一信号强度,或者目标基站接收到的天线发射的第二信号强度。
在本公开实施例一实施方式中,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,包括:
S121:调节剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数 据。
具体的,移相器的移相角度即为移相器的状态,其对应的数据为移相数据,控制模块控制调整各移相器的移相角度,而每个移相器可包括多个可调的移相角度,例如30度、60度、90度、120度、150度、180度、210度、240度、270度、300度、330度和360度,此时,每个移相器可调整12个不同的移相角度,如果剩余发射通路的数量为3个,遍历剩余发射通路中各移相器的状态即可得到12*12*12=1728种组合。示例性的,继续参考图2,剩余发射通路包括第一路发射通路、第二路发射通路和第三路发射通路,先调整第一路发射通路和第二路发射通路中的移相器,即移相器1和移相器2的移相角度为30度,再依次调整移相器3可调的移相角度,例如移相器3的移相角度依次调整为30度、60度、90度、120度、150度、180度、210度、240度、270度、300度、330度和360度,每次与移相器1和移相器2的移相角度组成一组移相数据,之后将移相器的移相角度调整为60度,再依次调整移相器3可调的移相角度。如此,遍历剩余发射通路中各移相器的状态。
S122:分别在各组移相数据下获取天线信号强度。
示例性的,每次调整完剩余发射通路中各移相器的状态后,在对应该组移相数据下发射与接收电磁波信号,得到发射或接收的电磁波信号的强度,即天线信号强度。如此,可得到各组移相数据及其对应的天线信号强度。
考虑到终端与基站通信的互异性,即当天线接收到的目标基站发射的信号强度最强时,目标基站接收到的该天线发射的信号强度也最强。因此,可获取天线接收到的目标基站发射的信号强度或者目标基站接收到的该天线发射的信号强度,即第一信号强度或者第二信号强度。
示例性的,获取天线信号强度可包括:获取天线的信号源接收到的电磁波信号的强度,并作为第一信号强度。
或者,获取天线信号强度可包括:获取目标基站的反馈信息;基于反馈信息得到第二信号强度。该实施方式中,目标基站的反馈信息 包含目标基站接收到的天线发射的信号强度,基于该反馈信息可解析得到目标基站接收到的天线发射的信号强度,即第二信号强度。
S130:确定最大天线信号强度对应的至少一组移相数据。
在多种移相器的状态的组合下,可能存在一组或多组移相数据都对应最大天线信号强度。通过对比在各组移相数据下获取的全部天线信号强度,可确定最大天线信号强度,再基于上述实施例确定的每组移相数据与天线信号强度的对应关系,可确定最大天线信号强度对应的至少一组移相数据。
S140:基于至少一组移相数据调整对应移相器的状态,以校正天线。
示例性的,在至少一组移相数据包括多组移相数据时,可随机选取该多组移相数据中的一组移相数据,控制模块基于该组移相数据调整对应移相器的状态,从而可使第一信号强度或第二信号强度最强。
在上述实施例中,在确定具有损坏的天线阵元和/或移相器的目标发射通路时,通过断开目标发射通路,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,确定最大天线信号强度对应的至少一组移相数据,基于至少一组移相数据调整对应移相器的状态。如此,将目标发射通路断开,避免了损坏的天线阵元和/或移相器对正常发射通路,即剩余发射通路的影响,再遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,由此可确定天线信号最强时的至少一组移相数据,进而利用至少一组移相数据调整对应移相器的状态,可将天线的通信质量调到最优,使得部分天线阵元和/或移相器的损坏不影响天线与基站的正常通信,即本公开技术方案可以在部分移相器和/或天线阵元损坏的情况下对天线进行校正,改善天线通信质量。
在本公开上述实施例的基础上,在一些实施例中,天线校正方法还可包括:仅为剩余发射通路分配电磁波信号。
可选的,调整功率分配器(功率分配单元)的功分通路,以使调整后的功分通路与所述剩余发射通路一一对应连接。示例性的,参考图2,功率分配单元为4路功率分配器,即包括4路功分通路;当剩余 发射通路为3路发射通路时,如为第一路发射通路、第二路发射通路和第三路发射通路,将功率分配单元的4路功分通路调整为3路功分通路,且分别与第一路发射通路、第二路发射通路和第三路发射通路连接。如此,可避免信号强度的损失,防止因天线的辐射较弱而导致基站接收不到信号,进一步保证终端与基站的通信质量。
在本公开上述实施例的基础上,在一些实施例中,天线校正方法还可包括:如果不存在目标发射通路或者目标发射通路没有改变,则控制各移相器的状态保持不变。
示例性的,当不存在目标发射通路,即天线的各发射通路的移相器和天线阵元均完好无损时,仍使用原来设置的移相数据来控制移相器的状态;当目标发射通路没有改变,即目标发射通路的数量和位置均未改变时,使用前一次确定的至少一组移相数据控制移相器的状态。如此,可实时保证终端与基站的通信质量最优。
另外,在本公开上述实施例的基础上,在一些实施例中,天线校正方法还可包括:仅存储最大天线信号强度对应的至少一组移相数据。如此,在后续进行天线校正时,只在该至少一组移相数据中确定最大天线信号强度对应的一组移相数据即可,避免了大量的数据处理,提高了天线校正效率。
应该理解的是,虽然图1的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个或多个实施例中,如图3所示,提供了一种天线校正装置,该装置包括通路通断模块201、天线参数获取模块202、校正参数确定模块203和天线校正模块204;
其中,通路通断模块201,配置成在确定目标发射通路时,断开目 标发射通路,其中,目标发射通路存在损坏的天线阵元和/或移相器;
天线参数获取模块202,配置成遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,剩余发射通路为天线中除目标发射通路之外的发射通路,天线信号强度包括天线接收到的目标基站发射的第一信号强度,或者目标基站接收到的天线发射的第二信号强度;
校正参数确定模块203,配置成确定最大天线信号强度对应的至少一组移相数据;
天线校正模块204,配置成基于至少一组移相数据调整对应移相器的状态,以校正天线。
在本公开实施例一实施方式中,天线参数获取模块202可包括:
移相角度调节单元,配置成调节剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;
信号强度获取单元,配置成分别在各组移相数据下获取天线信号强度。
在本公开实施例一实施方式中,信号强度获取单元具体可配置成:
获取天线的信号源接收到的电磁波信号的强度,并作为第一信号强度;或者,
获取目标基站的反馈信息;
基于反馈信息得到第二信号强度。
在本公开实施例一实施方式中,天线校正装置还包括发射通路确定模块,配置成确定目标发射通路;具体可包括:
通信控制单元,配置成控制天线中的各发射通路依次与目标基站通信;
发射通路确定单元,配置成如果任一发射通路在预设通信时间内未收到目标基站的应答,则将任一发射通路确定为目标发射通路。
在本公开实施例一实施方式中,天线校正装置还包括功分控制模块,配置成仅为剩余发射通路分配电磁波信号。
在本公开实施例一实施方式中,功分控制模块具体配置成调整功 率分配器的功分通路,以使调整后的功分通路与剩余发射通路一一对应连接。
在本公开实施例一实施方式中,天线校正装置还包括移相器状态控制模块,配置成如果不存在目标发射通路或者目标发射通路没有改变,则控制各移相器的状态保持不变。
关于天线校正装置的具体限定可以参见上文中对于天线校正方法的限定,在此不再赘述。上述天线校正装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于电子设备中的一个或多个处理器中,也可以以软件形式存储于电子设备中的存储器中,以便于一个或多个处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种电子设备,该电子设备可以是终端,其内部结构图可以如图4所示。该电子设备包括通过系统总线连接的一个或多个处理器、存储器、通信接口、显示屏和输入装置。其中,该电子设备的处理器用于提供计算和控制能力。该电子设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该电子设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、近场通信(NFC)或其他技术实现。该计算机可读指令被一个或多个处理器执行时以实现一种天线校正方法。该电子设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该电子设备的输入装置可以是显示屏上覆盖的触摸层,也可以是电子设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图4中示出的结构,仅仅是与本公开方案相关的部分结构的框图,并不构成对本公开方案所应用于其上的电子设备的限定,具体的电子设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,本公开提供的天线校正装置可以实现为一种计算机可读指令的形式,计算机可读指令可在如图4所示的电子设备上 运行。电子设备的存储器中可存储组成该天线校正装置的各个程序模块,比如,图3所示的通路通断模块201、天线参数获取模块202、校正参数确定模块203和天线校正模块204。各个程序模块构成的计算机可读指令使得一个或多个处理器执行本说明书中描述的本公开各个实施例的天线校正方法中的步骤。
例如,图4所示的电子设备可以通过如图3所示的天线校正装置中的通路通断模块201执行步骤S110。电子设备可通过天线参数获取模块202执行步骤S120。电子设备可通过校正参数确定模块203执行步骤S130。电子设备可通过天线校正模块204执行步骤S140。
一个实施例中,提供了一种电子设备,包括存储器和一个或多个处理器,该存储器存储有计算机可读指令,该一个或多个处理器执行计算机可读指令时实现以下步骤:在确定目标发射通路时,断开目标发射通路,其中,目标发射通路存在损坏的天线阵元和/或移相器;遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,剩余发射通路为天线中除目标发射通路之外的发射通路,天线信号强度包括天线接收到的目标基站发射的第一信号强度,或者目标基站接收到的天线发射的第二信号强度;确定最大天线信号强度对应的至少一组移相数据;基于至少一组移相数据调整对应移相器的状态,以校正天线。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:调节剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;分别在各组移相数据下获取天线信号强度。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:获取天线的信号源接收到的电磁波信号的强度,并作为第一信号强度;或者,获取目标基站的反馈信息;基于反馈信息得到第二信号强度。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:控制天线中的各发射通路依次与目标基站通信;如果任一发射通路在预设通信时间内未收到目标基站的应答,则将任一发射 通路确定为目标发射通路。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:仅为剩余发射通路分配电磁波信号。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:调整功率分配器的功分通路,以使调整后的功分通路与剩余发射通路一一对应连接。
在一个实施例中,一个或多个处理器执行计算机可读指令时还实现以下步骤:如果不存在目标发射通路或者目标发射通路没有改变,则控制各移相器的状态保持不变。
在上述实施例中,在确定具有损坏的天线阵元和/或移相器的目标发射通路时,通过断开目标发射通路,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,确定最大天线信号强度对应的至少一组移相数据,基于至少一组移相数据调整对应移相器的状态。如此,将目标发射通路断开,避免了损坏的天线阵元和/或移相器对正常发射通路,即剩余发射通路的影响,再遍历余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,由此可确定天线信号最强时的至少一组移相数据,进而利用至少一组移相数据调整对应移相器的状态,可将天线的通信质量调到最优,使得部分天线阵元和/或移相器的损坏不影响天线与基站的正常通信,即本公开技术方案可以在部分移相器和/或天线阵元损坏的情况下对天线进行校正,改善天线通信质量。
在一个或多个实施例中,提供了一种一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其上存储有计算机可读指令,计算机可读指令被一个或多个处理器执行时实现以下步骤:在确定目标发射通路时,断开目标发射通路,其中,目标发射通路存在损坏的天线阵元和/或移相器;遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,剩余发射通路为天线中除目标发射通路之外的发射通路,天线信号强度包括天线接收到的目标基站发射的第一信号强度,或者目标基站接收到的天线发射的第二信号强度;确定最大天线信号强度对应的至少一组移相 数据;基于至少一组移相数据调整对应移相器的状态,以校正天线。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:调节剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;分别在各组移相数据下获取天线信号强度。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:获取天线的信号源接收到的电磁波信号的强度,并作为第一信号强度;或者,获取目标基站的反馈信息;基于反馈信息得到第二信号强度。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:控制天线中的各发射通路依次与目标基站通信;如果任一发射通路在预设通信时间内未收到目标基站的应答,则将任一发射通路确定为目标发射通路。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:仅为剩余发射通路分配电磁波信号。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:调整功率分配器的功分通路,以使调整后的功分通路与剩余发射通路一一对应连接。
在一个实施例中,计算机可读指令被一个或多个处理器执行时还实现以下步骤:如果不存在目标发射通路或者目标发射通路没有改变,则控制各移相器的状态保持不变。
在上述实施例中,在确定具有损坏的天线阵元和/或移相器的目标发射通路时,通过断开目标发射通路,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,确定最大天线信号强度对应的至少一组移相数据,基于至少一组移相数据调整对应移相器的状态。如此,将目标发射通路断开,避免了损坏的天线阵元和/或移相器对正常发射通路,即剩余发射通路的影响,再遍历余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,由此可确定天线信号最强时的至少一组移相数据,进而利用至少一组移相数据调整对应移相器的状态,可将 天线的通信质量调到最优,使得部分天线阵元和/或移相器的损坏不影响天线与基站的正常通信,即本公开技术方案可以在部分移相器和/或天线阵元损坏的情况下对天线进行校正,改善天线通信质量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本公开所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,比如静态随机存取存储器(Static Random Access Memory,SRAM)和动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。
工业实用性
本公开提供的天线校正方法,通过天线信号最强的至少一组移相数据调整对应移相器的状态,可改善现有技术中由于部分天线阵元和/或移相器损坏而导致的信号差以及与基站通讯困难的技术问题,具有很强的工业实用性。

Claims (20)

  1. 一种天线校正方法,其特征在于,包括:
    在确定目标发射通路时,断开所述目标发射通路,其中,所述目标发射通路存在损坏的天线阵元和/或移相器;
    遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,所述剩余发射通路为所述天线中除所述目标发射通路之外的发射通路,所述天线信号强度包括所述天线接收到的目标基站发射的第一信号强度,或者所述目标基站接收到的所述天线发射的第二信号强度;
    确定最大天线信号强度对应的至少一组移相数据;
    基于所述至少一组移相数据调整对应移相器的状态,以校正所述天线。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述至少一组移相数据包括多组移相数据时,随机选取所述多组移相数据中的一组移相数据;
    基于该一组移相数据调整对应移相器的状态。
  3. 根据权利要求1所述的方法,其特征在于,遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,包括:
    调节所述剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;
    分别在各组移相数据下获取所述天线信号强度。
  4. 根据权利要求3所述的方法,其特征在于,获取所述天线信号强度,包括:
    获取所述天线的信号源接收到的电磁波信号的强度,并作为所述第一信号强度;或者,
    获取所述目标基站的反馈信息;
    基于所述反馈信息得到所述第二信号强度。
  5. 根据权利要求1所述的方法,其特征在于,确定目标发射通路, 包括:
    控制所述天线中的各发射通路依次与所述目标基站通信;
    如果任一发射通路在预设通信时间内未收到所述目标基站的应答,则将所述任一发射通路确定为所述目标发射通路。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    仅为所述剩余发射通路分配电磁波信号。
  7. 根据权利要求6所述的方法,其特征在于,仅为所述剩余发射通路分配电磁波信号,包括:
    调整功率分配器的功分通路,以使调整后的功分通路与所述剩余发射通路一一对应连接。
  8. 根据权利要求1所述的方法,其特征在于,所述确定最大天线信号强度对应的至少一组移相数据,包括:
    通过对比在各组移相数据下获取的全部天线信号强度,确定所述最大天线信号强度;
    基于各组移相数据与天线信号强度的对应关系,确定所述最大天线信号强度对应的至少一组移相数据。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果不存在所述目标发射通路或者所述目标发射通路没有改变,则控制各移相器的状态保持不变。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    存储所述最大天线信号强度对应的至少一组移相数据;并在后续进行天线校正时,在所述至少一组移相数据中确定最大天线信号强度对应的一组移相数据。
  11. 一种天线校正装置,其特征在于,包括:
    通路通断模块,配置成在确定目标发射通路时,断开所述目标发射通路,其中,所述目标发射通路存在损坏的天线阵元和/或移相器;
    天线参数获取模块,配置成遍历剩余发射通路中各移相器的状态,得到多组移相数据以及各组移相数据对应的天线信号强度,其中,所述剩余发射通路为所述天线中除所述目标发射通路之外的发射通路,所述天线信号强度包括所述天线接收到的目标基站发射的第一信号强 度,或者所述目标基站接收到的所述天线发射的第二信号强度;
    校正参数确定模块,配置成确定最大天线信号强度对应的至少一组移相数据;
    天线校正模块,配置成基于所述至少一组移相数据调整对应移相器的状态,以校正所述天线。
  12. 根据权利要求11所述的装置,其特征在于,所述天线参数获取模块,包括:
    移相角度调节单元,配置成调节所述剩余发射通路中各移相器的移相角度,得到各移相器的移相角度的全部组合,其中,每种组合的移相角度构成一组移相数据;
    信号强度获取单元,配置成分别在各组移相数据下获取所述天线信号强度。
  13. 根据权利要求12所述的装置,其特征在于,所述信号强度获取单元具体配置成获取所述天线的信号源接收到的电磁波信号的强度,并作为所述第一信号强度;或者,获取所述目标基站的反馈信息;基于所述反馈信息得到所述第二信号强度。
  14. 根据权利要求11所述的装置,其特征在于,所述装置还包括:发射通路确定模块,配置成确定目标发射通路,具体包括:
    通信控制单元,配置成控制所述天线中的各发射通路依次与所述目标基站通信;
    发射通路确定单元,如果任一发射通路在预设通信时间内未收到所述目标基站的应答,则配置成确定任一发射通路为所述目标发射通路。
  15. 根据权利要求11所述的装置,其特征在于,所述装置还包括:
    功分控制模块,配置成仅为所述剩余发射通路分配电磁波信号。
  16. 根据权利要求15所述的装置,其特征在于,所述功分控制模块具体配置成调整功率分配器的功分通路,以使调整后的功分通路与所述剩余发射通路一一对应连接。
  17. 根据权利要求11所述的装置,其特征在于,所述校正参数确定模块,具体配置成存储所述最大天线信号强度对应的至少一组移相 数据;并在后续进行天线校正时,在所述至少一组移相数据中确定最大天线信号强度对应的一组移相数据。
  18. 根据权利要求11所述的装置,其特征在于,所述装置还包括:移相器状态控制模块;
    如果不存在所述目标发射通路或者所述目标发射通路没有改变,则配置成控制各移相器的状态保持不变。
  19. 一种电子设备,包括存储器和一个或多个处理器,所述存储器存储有计算机可读指令,其特征在于,所述一个或多个处理器执行所述计算机可读指令时实现权利要求1至10中任一项所述方法的步骤。
  20. 一个或多个存储有计算机可读指令的非易失性计算机可读存储介质,其上存储有计算机可读指令,其特征在于,所述计算机可读指令被一个或多个处理器执行时实现权利要求1至10中任一项所述的方法的步骤。
PCT/CN2021/103205 2021-03-22 2021-06-29 天线校正方法、装置、电子设备和存储介质 WO2022198825A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110302481.1 2021-03-22
CN202110302481.1A CN113206713A (zh) 2021-03-22 2021-03-22 天线校正方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022198825A1 true WO2022198825A1 (zh) 2022-09-29

Family

ID=77025640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103205 WO2022198825A1 (zh) 2021-03-22 2021-06-29 天线校正方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN113206713A (zh)
WO (1) WO2022198825A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064902A (zh) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 实时校准智能天线的方法
CN103716075A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
US20160345286A1 (en) * 2014-01-30 2016-11-24 Ucl Business Plc Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
CN106803782A (zh) * 2015-11-26 2017-06-06 中兴通讯股份有限公司 一种大规模天线系统的通道降秩方法及装置
US20180175946A1 (en) * 2016-12-20 2018-06-21 National Chung Shan Institute Of Science And Technology System and method for array antenna failure detection and antenna self-correction
CN109150324A (zh) * 2017-06-28 2019-01-04 中兴通讯股份有限公司 天线校正方法及装置、基站及计算机可读存储介质
CN111505591A (zh) * 2020-04-13 2020-08-07 西安电子科技大学 基于应答机制的相控阵和差通道误差校正系统
CN111769889A (zh) * 2020-06-18 2020-10-13 上海闻泰信息技术有限公司 射频功率校正方法、装置、测试设备和存储介质
CN111884672A (zh) * 2020-08-31 2020-11-03 维沃移动通信有限公司 天线选择方法、装置和电子设备
CN112134629A (zh) * 2020-09-24 2020-12-25 合肥若森智能科技有限公司 一种简易相控阵卫星天线校准设备及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101916918A (zh) * 2010-07-01 2010-12-15 中国电子科技集团公司第五十四研究所 一种自动极化调整天线系统及其极化校准方法
CN101938305B (zh) * 2010-08-13 2012-12-26 四川九洲电器集团有限责任公司 一种相控阵体制接收通道的幅相校准方法
CN102932039B (zh) * 2012-10-17 2015-03-25 大唐移动通信设备有限公司 一种天线校准方法和系统
JP6650599B2 (ja) * 2016-03-29 2020-02-19 パナソニックIpマネジメント株式会社 フェーズドアレイ送信装置及びキャリアリーク補正方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064902A (zh) * 2006-04-25 2007-10-31 大唐移动通信设备有限公司 实时校准智能天线的方法
CN103716075A (zh) * 2012-09-29 2014-04-09 华为技术有限公司 一种多个射频拉远单元间联合通道校正的方法和装置
US20160345286A1 (en) * 2014-01-30 2016-11-24 Ucl Business Plc Apparatus and method for calibrating a wireless access point comprising an array of multiple antennas
CN106803782A (zh) * 2015-11-26 2017-06-06 中兴通讯股份有限公司 一种大规模天线系统的通道降秩方法及装置
US20180175946A1 (en) * 2016-12-20 2018-06-21 National Chung Shan Institute Of Science And Technology System and method for array antenna failure detection and antenna self-correction
CN109150324A (zh) * 2017-06-28 2019-01-04 中兴通讯股份有限公司 天线校正方法及装置、基站及计算机可读存储介质
CN111505591A (zh) * 2020-04-13 2020-08-07 西安电子科技大学 基于应答机制的相控阵和差通道误差校正系统
CN111769889A (zh) * 2020-06-18 2020-10-13 上海闻泰信息技术有限公司 射频功率校正方法、装置、测试设备和存储介质
CN111884672A (zh) * 2020-08-31 2020-11-03 维沃移动通信有限公司 天线选择方法、装置和电子设备
CN112134629A (zh) * 2020-09-24 2020-12-25 合肥若森智能科技有限公司 一种简易相控阵卫星天线校准设备及方法

Also Published As

Publication number Publication date
CN113206713A (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
US11005546B2 (en) Antenna system, signal processing system, and signal processing method
US8320942B2 (en) Wireless device with directional antennas for use in millimeter-wave peer-to-peer networks and methods for adaptive beam steering
US10980035B2 (en) Supplemental use of millimeter wave spectrum
CN108549058A (zh) 一种二次雷达宽带有源相控阵系统及其动态校准方法
WO2014028837A1 (en) Method of using zoning map for beam searching, tracking and refinement
US9706415B2 (en) Method for RF management, frequency reuse and increasing overall system capacity using network-device-to-network-device channel estimation and standard beamforming techniques
US20210313679A1 (en) Antenna system, mobile terminal, and antenna system switching method
EP3744016B1 (en) Beam selection priority
US11038270B2 (en) Active antenna steering for network security
CN110945717A (zh) 使用相控阵天线进行波束成形的系统和方法
WO2022198825A1 (zh) 天线校正方法、装置、电子设备和存储介质
US11011856B2 (en) Dual vertical beam cellular array
US10193606B2 (en) Beam configuration method and device
US20190306725A1 (en) Qos (quality of service) beamforming by centrally controlling real-time locationing to control beamforming transmissions from access points independent of beamforming capability of stations
JPWO2019026831A1 (ja) ユーザ装置及び通信方法
WO2017070825A1 (zh) 一种反射面天线及天线对准方法
CN114976637A (zh) 天线控制方法、天线模组和通信设备
WO2022147751A1 (en) Uplink power control to enhance physical uplink channel reliability
US10931359B2 (en) Method and apparatus for detecting beam
Soszka et al. Coverage and capacity optimization in cellular radio networks with advanced antennas
CN112421243A (zh) 全向波束和定向自跟踪波束双模式的无线自组网天线阵列
US20220201512A1 (en) Electronic device for detecting error and method for operating same
EP3917019A1 (en) Self-configuring radio frequency systems
US12035227B2 (en) Electronic device managing UE capability and method for operating the same
US20230253704A1 (en) Beamforming Method and Apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2024)