WO2022198629A1 - 光学膜片、背光模组及显示装置 - Google Patents

光学膜片、背光模组及显示装置 Download PDF

Info

Publication number
WO2022198629A1
WO2022198629A1 PCT/CN2021/083226 CN2021083226W WO2022198629A1 WO 2022198629 A1 WO2022198629 A1 WO 2022198629A1 CN 2021083226 W CN2021083226 W CN 2021083226W WO 2022198629 A1 WO2022198629 A1 WO 2022198629A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
frame
backlight module
top support
frame member
Prior art date
Application number
PCT/CN2021/083226
Other languages
English (en)
French (fr)
Inventor
邱怡仁
巫崧辅
陈英廷
Original Assignee
瑞仪(广州)光电子器件有限公司
瑞仪光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞仪(广州)光电子器件有限公司, 瑞仪光电股份有限公司 filed Critical 瑞仪(广州)光电子器件有限公司
Priority to CN202180004794.7A priority Critical patent/CN115413330A/zh
Priority to PCT/CN2021/083226 priority patent/WO2022198629A1/zh
Priority to TW110118443A priority patent/TWI766692B/zh
Priority to US17/658,258 priority patent/US11681089B2/en
Publication of WO2022198629A1 publication Critical patent/WO2022198629A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • G02B6/0088Positioning aspects of the light guide or other optical sheets in the package
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0086Positioning aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means

Definitions

  • the present invention relates to an optical film, a backlight module and a display device, and in particular, to an optical film favorable for narrow frame design, and a backlight module and display device including the optical film.
  • FIG. 1 is a schematic diagram of changes of the conventional backlight module 500 when heated and expanded, wherein the upper half and the lower half are schematic diagrams of the backlight module 500 at room temperature and high temperature, respectively.
  • the backlight module 500 includes a frame member 510 , an optical film 520 and an optical plate 530 . As shown in FIG. 1 , when the optical film 520 expands to a certain extent, the side edge of the optical film 520 is squeezed by the frame member 510 during thermal expansion, and the optical film 520 is limited by the frame member 510 at the same time.
  • FIG. 2 is a schematic diagram of the changes of the conventional backlight module 500 when the backlight module 500 shrinks when cold, wherein the upper half and the lower half are schematic diagrams of the backlight module 500 at room temperature and low temperature, respectively.
  • the optical film 520 shrinks under cooling, the area pressed by the frame member 510 becomes smaller due to the shrinkage, so that the optical film 520 easily escapes the frame member 510 from being pressed by the frame member 510 . If the width E of the frame member 510 is increased in order to solve the problem of the optical film 520 escaping, it is not conducive to the design of the narrow frame.
  • the purpose of the present invention is to provide an optical film, a backlight module and a display device to solve the above problems.
  • an optical film is provided.
  • the optical film is divided by two imaginary lines extending along a first direction and parallel to each other into a body and two extending parts arranged along a second direction, wherein , the second direction is substantially perpendicular to the first direction, the body is between two extension parts, each extension part includes a top support edge, and the first length W0 of the body extending along the first direction is greater than the top support edge along the first support edge A second length W1 extending in the direction.
  • a backlight module which includes a frame member, an optical plate, a light source and the above-mentioned optical film.
  • the frame member includes two first frame portions opposite to each other.
  • the optical plate is arranged in the frame, and the optical plate includes a light-emitting surface, a bottom surface and a side surface.
  • the bottom surface is opposite to the light-emitting surface, and the side surface is connected between the light-emitting surface and the bottom surface.
  • the light source is arranged on the bottom surface or the side surface of the optical plate.
  • the optical film is arranged in the frame and above the light-emitting surface.
  • Another embodiment according to the present invention is to provide a display device including the above-mentioned backlight module and a display panel, wherein the display panel is disposed above the backlight module.
  • a backlight module including a frame member, an optical plate, a light source and an optical film.
  • the frame member includes two first frame portions opposite to each other, and each of the first frame portions extends along the first direction.
  • the optical board is arranged in the frame, and the optical board includes a light-emitting surface, a bottom surface and a side surface, the bottom surface is opposite to the light-emitting surface, and the side surface is connected between the light-emitting surface and the bottom surface.
  • the light source is arranged on the bottom surface or the side surface of the optical plate.
  • the optical film is arranged in the frame and located above the light emitting surface, and the optical film has two top supporting edges extending along the first direction and parallel to each other.
  • each top support edge abuts each first frame portion, and the height of the expansion space is configured to make the optical film along the vertical direction. Arched in an arc.
  • Another embodiment according to the present invention is to provide a display device including the above-mentioned backlight module and a display panel, wherein the display panel is disposed above the backlight module.
  • the expansion space is located between the display panel and the optical film, and the height of the expansion space is the distance between the display panel and the optical film in the vertical direction.
  • the present invention provides an extension portion on the optical film, and the length of the top support edge of the extension portion extending along the first direction is smaller than the length of the main body extending along the first direction, which can avoid the shrinkage of the optical film. At the corners, it interferes with the frame member or jumps out of the frame member, and at the same time, it is not necessary to increase the width of the frame member, which is beneficial to the design of the narrow frame.
  • the optical film can be arched in an arc along the vertical direction, so as to avoid permanent deformation such as wavy deformation or wrinkle of the optical film due to insufficient expansion space.
  • FIG. 1 is a schematic diagram of the change of a conventional backlight module when it is thermally expanded.
  • FIG. 2 is a schematic diagram of a change in a conventional backlight module when it shrinks when cooled.
  • FIG 3 is a schematic cross-sectional view of a display device at a default temperature according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the display device of FIG. 3 at an expansion temperature.
  • FIG. 5 is a schematic top view of the frame member and the optical film in FIG. 3 .
  • FIG. 6 is a schematic diagram of the change from the default temperature to the shrinkage temperature of the optical film in FIG. 5 .
  • FIG. 7 is a schematic plan view of the optical film of FIG. 3 .
  • FIG. 8 is a schematic top view of a frame member and an optical film at a default temperature according to another embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the change of the optical film in FIG. 8 from the default temperature to the shrinkage temperature.
  • FIG. 10 is a schematic cross-sectional view of a display device at a default temperature according to another embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the device shown in FIG. 10 at an expansion temperature.
  • FIG. 12 is a schematic diagram illustrating the change of a conventional optical film from a default temperature to a shrinkage temperature.
  • two elements being parallel or substantially parallel means that there is an included angle between the two elements, and the included angle is 0° ⁇ 10°, preferably 0° ⁇ 5°, or the included angle is 180° degrees ⁇ 10 degrees, preferably 180 degrees ⁇ 5 degrees.
  • the two elements are perpendicular or substantially perpendicular means that there is an included angle between the two elements, and the included angle is 90 degrees ⁇ 10 degrees, preferably 90 degrees ⁇ 5 degrees.
  • the backlight module can be used to provide a light source for a liquid crystal display (LCD) panel
  • each element in the backlight module includes a bottom surface and a top surface, and the definition of the bottom surface and the top surface is based on the LCD panel as a reference.
  • the side of each component away from the LCD panel is the bottom side
  • the side facing the LCD panel is the top side.
  • one element is disposed above another element, which means that one element is disposed on the top surface of the other element or above the top surface of the other element.
  • the default temperature may be room temperature, such as but not limited to 25°C.
  • the expansion temperature is higher than the default temperature, such as but not limited to the maximum temperature that the backlight module and/or display device can withstand, or the specified temperature during the specified challenge test, such as but not limited to 95°C.
  • the shrinkage temperature is lower than the default temperature, such as but not limited to the lowest temperature that the backlight module and/or display device can withstand, or the specified temperature during the specified challenge test, such as but not limited to -40°C.
  • FIG. 3 is a schematic cross-sectional view of the display device 1 at a default temperature according to an embodiment of the present invention.
  • the display device 1 includes a backlight module 10 and a display panel 20 , and the display panel 20 is disposed above the backlight module 10 .
  • the backlight module 10 is used to provide light to the display panel 20, and the display panel 20 may be an LCD panel.
  • the backlight module 10 includes a frame member 200 , an optical film 100 , an optical plate 300 and a light source 400 .
  • the optical plate 300 is disposed in the frame member 200 .
  • the optical plate 300 includes a light emitting surface 310 , a bottom surface 320 and a side surface 330 .
  • the light source 400 is disposed on the bottom surface 320 or the side surface 330 of the optical plate 300 , that is, the backlight module 10 can be a direct type or an edge type backlight module.
  • the light source 400 is disposed on the side surface 330 and the backlight module 10 is an edge entry type
  • a type backlight module is an example, the light source 400 can be selectively disposed on a side surface parallel to the first direction D1 or the second direction D2, and is not limited to this embodiment.
  • the light source 400 can be, but is not limited to, a cold cathode fluorescent lamp (Cold Cathode Fluorescent Lamp, CCFL) or an LED light bar.
  • CCFL Cold Cathode Fluorescent Lamp
  • an LED light bar is used as an example, and the LED light bar includes a plurality of LEDs 410 .
  • the backlight module 10 may include other optical films or other elements according to actual needs.
  • the optical film 100 is disposed in the frame member 200 and located above the light emitting surface 310 of the optical plate 300 .
  • FIG. 7 is a schematic plan view of the optical film 100 in FIG. 3 .
  • the optical film 100 is divided by two imaginary lines L extending along the first direction D1 and parallel to each other into a body 110 and two extending parts 120 arranged along the second direction D2.
  • the area of the display panel 20 that can be used to display images is generally a complete rectangle, and the two extending portions 120 are areas extending toward the second direction D2 relative to the rectangular body 110 .
  • the second direction D2 is substantially perpendicular to the first direction D1.
  • the body 110 is interposed between the two extension parts 120 , and each extension part 120 includes a top support edge 121 .
  • the aforementioned optical film 100 with the top support edge 121 is closer to the display panel 20 than the other optical films.
  • FIG. 5 is a schematic top view of the frame member 200 and the optical film 100 in FIG. 3 .
  • the optical film 100 is drawn here as a solid line rather than a dashed line.
  • the light emitting surface 130 of the optical film 100 is covered by the frame member 200 .
  • the frame member 200 is a front frame.
  • the frame member 200 includes two first frame portions 210 opposite to each other. Both the frame portion 210 and the two extending portions 120 of the optical film 100 extend along the first direction D1.
  • the first frame portion 210 in this embodiment includes a first horizontal wall 213 and a first upright wall 214 that are connected to each other, the first upright wall 214 is parallel to the upright direction Z, and the first horizontal wall 213 is formed by the top of the first upright wall 214 It extends inwardly parallel to the second direction D2. More specifically, the light-emitting surface 130 of the optical film 100 is covered by the first horizontal wall 213, and the first horizontal wall 213 interferes with the extending portion 120 of the optical film. , so that the optical film 100 or other optical films will not come out from the frame member 200 .
  • the surface of the first upright wall 214 of the first frame portion 210 facing the optical film 100 is the first surface 212
  • the end of the first horizontal wall 213 of the first frame portion 210 opposite to the first upright wall 214 is the first end surface 211 .
  • the first predetermined gap G1 refers to the first surface 212 of the first frame portion 210 and the The gap that exists between the top support edges 121 of the optical film 100 at a default temperature.
  • There is an expansion space S above the optical film 100 and the expansion space S has a height H along the vertical direction Z.
  • the expansion space S refers to the space between the first horizontal wall 213 of the first frame portion 210 and the optical film 100 . space that exists at the default temperature.
  • FIG. 4 is a schematic cross-sectional view of the display device 1 shown in FIG. 3 at the expansion temperature.
  • the optical film 100 expands, so that each top support edge 121 abuts against the first surface 212 of the first frame portion 210 , in other words, the first predetermined gap no longer exists at the expansion temperature G1, and by means of each top support edge 121 abutting against the first surface 212 of the first frame portion 210, the expansion length of the optical film 100 along the second direction D2 has exceeded the first predetermined gap G1, and further by means of the expansion space S
  • the height H is configured so that the optical film 100 is arched in an arc along the vertical direction Z.
  • the optical film 100 is arched in a unidirectional arc along the vertical direction Z, thereby reducing irreversible wave-like deformation or wrinkling of the optical film 100; when the ambient temperature returns to the default temperature, the optical film 100
  • the length in the second direction D1 will also return to the length at the predetermined temperature, and each top support edge 121 of the optical film 100 and the first surface 212 of the first frame portion 210 form the aforementioned first predetermined gap G1 again.
  • the expansion space S when the optical film 100 is expanded, in addition to extending along the second direction D2 and reducing the size of the first predetermined gap G1, it can also be arched along the vertical direction Z, which is beneficial to the design of narrow frame.
  • the first length W0 of the main body 110 of the optical film 100 extending along the first direction D1 is greater than the second length W1 of the top support edge 121 extending along the first direction D1, so that the optical film 100 can be avoided. During expansion, it interferes with the frame member 200 at the corners to generate permanent deformation such as wrinkles. It should be noted that, referring to FIG.
  • the first length W0 of the main body 110 and the second length W1 of the top support edge 121 may satisfy the following conditions: In this way, it can be ensured that the top supporting edge 121 of the optical film 100 has a sufficiently long second length W1 to abut against the first upright wall 214 of the first frame portion 210, so as to provide sufficient supporting force to make the optical film 100 stand upright. It is arched in a unidirectional arc in the direction Z; that is to say, when the first length W0 of the main body 110 is less than 2/3 of the second length W1 of the top support edge 121, it may not be enough to provide the optical film 100 in the upright direction. If the unidirectional arc is formed on the Z, permanent deformation such as wavy deformation or wrinkles may occur.
  • the main body 110 of the optical film 100 has a first thickness T1
  • the extension portion 120 has a second thickness T2 .
  • the second thickness T2 of the extension portion 120 may be greater than the first thickness T1 of the main body 110 (ie, T2 > T1 ), which is beneficial to provide the necessary requirements for the top support edge 121 to abut the first frame portion 210 .
  • Structural strength refers to the length of the main body 110 or the extension portion 120 in the upright direction Z when the optical film 100 is not arched.
  • the extending portion 120 of the optical film 100 has two missing corner structures 122 relative to the body 110 along the first direction D1 or/and the second direction D2.
  • the two missing corner structures 122 are respectively arranged on both sides of the top support edge 121 .
  • each cutaway structure 122 includes an indented edge 123 , and the indented edge 123 is connected between the edge of the body 110 extending in parallel along the second direction D2 and the top support edge 121 of the extension portion 120 , the indented edge 123 Relative to the top support edge 121, at the expansion temperature, the top support edge 121 of the optical film 100 abuts against the first surface 212 of the first frame portion 210, and the retracted edge 123 of the optical film 100 (corresponding to the optical The corners of the film 100 will not contact the first frame portion 210 , whereby the central portion of the optical film 10 can be arched along the upright direction Z.
  • the optical film 100 can be avoided.
  • the edges and corners of the optical film 100 interfere with the frame member 200 to cause permanent deformation such as wrinkles at the edges of the optical film 100 extending parallel to the second direction D2.
  • the frame member 200 further includes two second frame portions 220 opposite to each other, and each second frame portion 220 is connected between the two first frame portions 210 .
  • the hollow area P corresponds to the expansion space S, and is surrounded by the two first frame portions 210 and the two second frame portions.
  • the portion 220 surrounds.
  • the second frame portion 220 includes a second horizontal wall 223 and a second upright wall 224 , the second upright wall 224 is parallel to the upright direction Z, and the second horizontal wall 223 is parallel to the first direction D1 along the top of the second upright wall 224 Extend inward.
  • the surface of the second upright wall 224 of the second frame portion 220 facing the optical film 100 is the second surface 222 , and the end of the second horizontal wall 223 of the second frame portion 220 opposite to the second upright wall 224 is the second end surface 221 .
  • FIG. 6 is a schematic diagram of the change of the optical film 100 from the default temperature to the shrinking temperature in FIG. 5 , which corresponds to part A of FIG. 5 , wherein the thick line A1 represents the optical film 100 relative to the frame at the shrinking temperature. 200 status position.
  • the shrinking temperature there is a second predetermined gap G2 between the top support edge 121 and the first surface 212, the second predetermined gap G2 is greater than the first predetermined gap G1 at the default temperature, and the top support edge 121 can still correspond to the first predetermined gap G1.
  • the first end surface 211 and the first surface 212 of the frame portion 210 Between the first end surface 211 and the first surface 212 of the frame portion 210 , and between the second end surface 221 and the second surface 222 corresponding to the second frame portion 220 .
  • a part a1 of the indented edge 123 is located between the first surface 212 and the first end surface 211 of the first frame portion 210 , another part a2 is located in the hollow area P, and another part a3 is located in the second between the second surface 222 and the second end surface 221 of the frame portion 220 .
  • the indented edge 123 is simultaneously pressed by the first frame portion 210 and the second frame portion 220, which can improve the effect of preventing the optical film 100 from jumping off or climbing the frame.
  • FIG. 12 is a schematic diagram of the change of the conventional optical film 100 ′ from the default temperature to the shrinking temperature.
  • the viewing angle is the same as that of FIG. 6 , wherein the thick line C1 represents the optical film 100 ′ at the shrinking temperature.
  • the optical film 100 ′ shrinks when cooled. Due to manufacturing tolerances, the right side (not marked) of the optical film 100 ′ may be separated from the first end surface 211 and the first surface 212 of the first frame portion 210 When the temperature rises, it is easy to jump out or climb the frame.
  • the body 110 of the optical film 100 can completely correspond to the hollow.
  • the area P that is, the area of the main body 110 is larger than the area of the hollow area P, and the hollow area P is located within the range covered by the main body 110, whereby the main body 110 can be completely covered by the frame member 200, ensuring that the backlight module 10 of the present invention is applied to The light-emitting effect of the display device 1 .
  • a portion of the indented edge 123 is located between the first end surface 211 and the first surface 212 of the first frame portion 210" means that at the default temperature or the shrinkage temperature, at least a portion of the indented edge 123 is located between the first end surface 211 and the first surface 212 of the first frame portion 210.
  • the indented edge 123 may be partially or completely covered by the first frame portion 210 , so that it can be ensured that the optical film 100 will not jump out after experiencing the shrinking temperature. Or the problem of climbing the frame.
  • the body 110 of the optical film 100 may further include two side edges 111 opposite to each other, each side edge 111 is located between two imaginary lines L, and each side edge 111 is along the extending in the second direction D2. At the default temperature and the shrinking temperature, the side edges 111 are completely covered by the frame member 200 , thereby preventing the optical film 100 from jumping off or climbing the frame at the two side edges 111 .
  • the two sides 111 of the optical film 100 are long sides, and the optical film 100 is provided with extension parts 120 on the left and right sides of the two sides 111 .
  • the frame 100 can be pressed against the frame member 200 along the direction of the long side that expands and shrinks greatly due to temperature, so as to avoid the occurrence of permanent deformation, and at the same time, it can also achieve the mechanism design purpose of the narrow frame.
  • the optical film 100 can be provided with the extension portions 120 on the left and right sides and the upper and lower sides at the same time, so as to ensure that the optical film 100 can form an arc-shaped arch in both the first direction D1 and the second direction D2 , the length of the first horizontal wall 213 of the first frame portion 210 along the second direction D2 and the length of the second horizontal wall 223 of the second frame portion 220 along the first direction D1 are reduced, so as to achieve a narrow frame mechanism design Purpose.
  • the first horizontal wall 213 is located above the optical film 100 , the first vertical wall 214 is bent relative to the first horizontal wall 213 , and the first horizontal wall 213 is directed toward the optical plate 300 along the vertical direction Z from the first horizontal wall 213 .
  • the first horizontal wall 213 is used to carry the display panel 20 , and the hollow area P corresponds to the viewable area of the display panel 20 .
  • the expansion space S is located between the display panel 20 and the optical film 100 , and the height H of the expansion space S is the distance between the display panel 20 and the optical film 100 in the vertical direction Z.
  • the maximum height of the optical film 100 arched in an arc shape along the vertical direction Z is substantially equal to the aforementioned distance.
  • the size of the display device 1 in the vertical direction Z can be reduced, which is beneficial to the thinning of the display device 1 .
  • the height H of the expansion space S can also be configured as the distance between the first horizontal wall 213 and the optical film 100 (or the second horizontal wall 223 and the optical film 100 ) in the vertical direction Z, so that The optical film 100 will not contact the display panel 20 located above the first horizontal wall 213 and the second horizontal wall 223 when the optical film 100 is thermally expanded, thereby achieving the effect of avoiding contact with the display panel 20 and reducing friction.
  • FIG. 8 is a schematic top view of the frame member 200 and the optical film 100 a at the default temperature according to another embodiment of the present invention.
  • the difference between the optical film 100a and the optical film 100 is that the cutaway structure 122a of the extending portion 120a is a right angle, and at least a part of the indented edge 123a is perpendicular to the top support edge 121a and the side edge 111 respectively.
  • FIG. 9 which is a schematic diagram of the change of the optical film 100 a from the default temperature to the shrinking temperature in FIG. 8 , which corresponds to part B of FIG. 8 , wherein the thick line B1 represents the optical film 100 a at the shrinking temperature.
  • a part b1 of each indentation edge 123a is located between the first surface 212 and the first end surface 211 of the first frame part 210 , another part b2 is located in the hollow area P, and another part b3 is located in the second frame part 220 between the first surface 212 and the first end surface 211 .
  • Part b1 of the indented edge 123a is covered by the first frame part 210 and another part b3 is covered by the second frame part 220, so that the optical film 100a can be prevented from jumping off or climbing the frame when the temperature returns to the default temperature.
  • the optical film 100a please refer to the relevant description of the optical film 100 .
  • FIG. 10 is a schematic cross-sectional view of a display device 1 a at a default temperature according to another embodiment of the present invention.
  • Fig. 11 is a schematic cross-sectional view of the display device 1a of Fig. 10 at the expansion temperature.
  • the difference between the display device 1a and the display device 1 is that the frame member 200a of the backlight module 10a is a back plate, and the first frame portion 210a is an upright wall of the back plate.
  • the height H of the expansion space S is the distance between the display panel 20 and the optical film 100 in the vertical direction Z.
  • the display device 1a please refer to the relevant description of the display device 1 .
  • the present invention provides an extension part on the optical film, and the length of the top support edge of the extension part extending along the first direction is smaller than the length of the main body extending along the first direction, so that the shrinkage of the optical film can be avoided.
  • the optical film can be arched in an arc shape along the vertical direction, so as to avoid permanent deformation such as wavy deformation or wrinkle of the optical film due to insufficient expansion space.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光学膜片(100)被沿着第一方向(D1)延伸且互相平行的两个假想线(L)划分成沿着第二方向(D2)排列的本体(110)以及两个延伸部(120),第二方向(D2)与第一方向(D1)实质上垂直,本体(110)介于两个延伸部(120)之间,每一延伸部(120)包含顶撑边(121),本体(110)沿着第一方向(D1)延伸的第一长度W0大于顶撑边(121)沿着第一方向(D1)延伸的第二长度W1。

Description

光学膜片、背光模组及显示装置 技术领域
本发明涉及光学膜片、背光模组及显示装置,且特别是,涉及有利于窄边框设计的光学膜片及包含此光学膜片的背光模组及显示装置。
背景技术
随着科技进步,搭载有显示装置的电子装置,例如手机、笔记本电脑等,已成为现代人生活中不可或缺的物品。为了满足消费者对外观及轻量化的需求,在显示装置的设计上,窄边框已成为流行趋势。
然而,背光模组会受温度影响而产生热胀冷缩。请参照图1,其是习知背光模组500受热膨胀时的变化示意图,其中上半部及下半部分别是背光模组500于室温及高温时的示意图。背光模组500包含框件510、光学膜片520及光学板530。如图1所示,在受热膨胀时,当光学膜片520膨胀到一定程度时,其侧缘受框件510挤压,同时光学膜片520又会被框件510局限,此时光学膜片520的受框件510压制的位置处会产生皱折(waving or wrinkle),并因结构应力过大而产生永久变形。请参照图2,其是习知背光模组500遇冷收缩时的变化示意图,其中上半部及下半部分别是背光模组500于室温及低温时的示意图。如图2所示,在遇冷收缩时,光学膜片520因收缩而导致其被框件510压制的面积变小,使得光学膜片520容易脱离框件510的压制而跳脱出框件510。如果为了解决光学膜片520的跳脱问题而加大框件510的宽度E,则不利于窄边框的设计。
发明内容
本发明的目的在于提供光学膜片、背光模组及显示装置,以解决上述问题。
依据本发明的一实施方式在于提供一种光学膜片,光学膜片被沿着第 一方向延伸且互相平行的两个假想线划分成沿着第二方向排列的本体以及两个延伸部,其中,第二方向与第一方向实质上垂直,本体介于两个延伸部之间,每一延伸部包含顶撑边,本体沿着第一方向延伸的第一长度W0大于顶撑边沿着第一方向延伸的第二长度W1。
依据本发明的另一实施方式在于提供一种背光模组,包含框件、光学板、光源以及上述的光学膜片。框件包含彼此相对的两个第一框部。光学板设置于框件内,光学板包含出光面、底面以及侧面。底面与出光面相对,侧面连接于出光面及底面之间。光源设置于光学板的底面或侧面。光学膜片设置于框件内且位于出光面的上方。
依据本发明的又一实施方式在于提供一种显示装置,包含上述的背光模组以及显示面板,显示面板设置在背光模组的上方。
依据本发明的又一实施方式在于提供一种背光模组,包含框件、光学板、光源以及光学膜片。框件包含彼此相对的两个第一框部,且每一第一框部皆沿着第一方向延伸。光学板设置于框件内,光学板包含出光面、底面以及侧面,底面与出光面相对,侧面连接于出光面及底面之间。光源设置于光学板的底面或侧面。光学膜片设置于框件内且位于出光面的上方,光学膜片具有沿着第一方向延伸且互相平行的两个顶撑边。光学膜片上方具有膨胀空间,膨胀空间沿着直立方向具有高度,于膨胀温度时,每一顶撑边抵顶每一第一框部,且膨胀空间的高度配置以使光学膜片沿直立方向呈弧形拱起。
依据本发明的又一实施方式在于提供一种显示装置,包含上述的背光模组以及显示面板,显示面板设置在背光模组的上方。膨胀空间位于显示面板及光学膜片之间,且膨胀空间的高度为显示面板及光学膜片在直立方向上的间距。
相较于先前技术,本发明在光学膜片设置延伸部,借助于延伸部的顶撑边沿着第一方向延伸的长度小于本体沿着第一方向延伸的长度,可避免光学膜片在收缩时于边角处与框件干涉或跳脱出框件,同时也无需增加框件的宽度而有利于窄边框设计。另一方面,借助于配置膨胀空间,可以使光学膜片沿直立方向呈弧形拱起,从而可避免光学膜片因膨胀空间不足而 产生波浪状形变或皱褶等永久形变。
附图说明
图1是习知背光模组受热膨胀时的变化示意图。
图2是习知背光模组遇冷收缩时的变化示意图。
图3是依据本发明的一实施方式的显示装置于默认温度时的剖视示意图。
图4是图3中的显示装置于膨胀温度时的剖视示意图。
图5是图3中的框件及光学膜片的俯视示意图。
图6是图5中的光学膜片由默认温度至收缩温度的变化示意图。
图7是图3中的光学膜片的平面示意图。
图8是依据本发明的另一实施方式的框件及光学膜片于默认温度时的俯视示意图。
图9是图8中光学膜片由默认温度至收缩温度的变化示意图。
图10是依据本发明的又一实施方式的显示装置于默认温度时的剖视示意图。
图11是图10中显示装置于膨胀温度时的剖视示意图。
图12是习知光学膜片由默认温度至收缩温度的变化示意图。
具体实施方式
有关本发明的前述及其它技术内容、特点与功效,在以下参考附图的较佳实施方式的详细说明中,将可清楚地呈现。以下实施方式所提到的方向用语,例如:上、下、左、右、前、后等,仅参考了附图中的方向。因此,所使用的方向用语仅用以说明,而非限制本发明。附图中各元件的尺寸仅为相对位置或配置的示意,并非对本发明元件的尺寸加以限制。此外,在下列各实施方式中,相同或相似的元件将采用相同或相似的标号。
在本发明中,两个元件平行或实质上平行是指两个元件之间具有夹角,该夹角为0度±10度,较佳为0度±5度,或者,该夹角为180度±10度,较佳为180度±5度。在本发明中,两个元件垂直或实质上垂直是指两 个元件之间具有夹角,该夹角为90度±10度,较佳为90度±5度。
在本发明中,背光模组可用于提供液晶显示(Liquid Crystal Display,LCD)面板的光源,背光模组中的各元件包含底面与顶面,底面及顶面的定义是以LCD面板为参考基准,各元件的远离LCD面板的一面为底面,而面向LCD面板的一面为顶面。在本发明中,一个元件设置于另一元件的上方,是指设置于该另一元件的顶面或该另一元件的顶面的上方。
在本发明中,默认温度可为室温,例如但不限于25℃。膨胀温度高于默认温度,例如但不限于背光模组及/或显示装置可耐受的最高温度、或所指定挑战测试时的规定温度,例如但不限于95℃。收缩温度低于默认温度,例如但不限于背光模组及/或显示装置可耐受的最低温度、或所指定挑战测试时的规定温度,例如但不限于-40℃。
请参照图3,其是依据本发明的一实施方式的显示装置1于默认温度时的剖视示意图。显示装置1包含背光模组10及显示面板20,显示面板20设置在背光模组10的上方。背光模组10用于向显示面板20提供光线,显示面板20可为LCD面板。
背光模组10包含框件200、光学膜片100、光学板300及光源400。光学板300设置于框件200内,光学板300包含出光面310、底面320及侧面330,底面320与出光面310相对,侧面330连接于出光面310及底面320之间。光源400设置于光学板300的底面320或侧面330,亦即,背光模组10可为直下式或侧入式背光模组,在此以光源400设置于侧面330、背光模组10为侧入式背光模组为例示,光源400可以选择设置于与第一方向D1或第二方向D2平行的侧面,并不以本实施方式为限。光源400可为但不限于冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)或LED灯条,在此以LED灯条为例示,LED灯条包含多个LED410。背光模组10可依实际需求包含其他光学膜片或其他元件。
光学膜片100设置于框件200内且位于光学板300的出光面310的上方。请同时参照图7,其是图3中光学膜片100的平面示意图。光学膜片100被沿着第一方向D1延伸且互相平行的两个假想线L划分成沿着第二方向D2排列的本体110以及两个延伸部120,举例而言,本体110是指对 应于显示面板20中可用以显示影像的区块,通常为完整矩形,两个延伸部120则是相对于矩形本体110朝向第二方向D2延伸的区块。第二方向D2与第一方向D1实质上垂直。本体110介于两个延伸部120之间,每一延伸部120包含顶撑边121。在其他实施方式中,背光模组10还包含其他光学膜片时,前述具有顶撑边121的光学膜片100相对于其他光学膜片较靠近显示面板20。
请同时参照图5,其是图3中框件200及光学膜片100的俯视示意图。为了清楚呈现光学膜片100,在此以实线而非虚线绘制光学膜片100。在本实施方式中,光学膜片100的出光面130被框件200覆盖,框件200为前框,框件200包含彼此相对的两个第一框部210,框件200的两个第一框部210与光学膜片100的两个延伸部120皆沿着第一方向D1延伸。本实施方式中的第一框部210包含彼此相连的第一水平壁213及第一直立壁214,第一直立壁214平行于直立方向Z,第一水平壁213由第一直立壁214的顶部沿着平行于第二方向D2往内延伸,更详言之,光学膜片100的出光面130被第一水平壁213覆盖,借助于第一水平壁213与光学膜片的延伸部120互相干涉,使光学膜片100或其他光学膜片不会自框件200脱出。第一框部210的第一直立壁214朝向光学膜片100的表面为第一表面212,第一框部210的第一水平壁213相对于连接第一直立壁214的一端为第一端面211。
于默认温度时,每一顶撑边121与第一框部210之间具有第一预定间隙G1,于一实施方式中,第一预定间隙G1是指第一框部210的第一表面212与光学膜片100的顶撑边121之间在默认温度时存在的间隙。光学膜片100上方具有膨胀空间S,膨胀空间S沿着直立方向Z具有高度H,于一实施方式中,膨胀空间S是指第一框部210的第一水平壁213与光学膜片100之间在默认温度时存在的空间。
请同时参照图4,其是图3中显示装置1于膨胀温度时的剖视示意图。于膨胀温度时,光学膜片100发生膨胀现象,而使每一顶撑边121抵顶第一框部210的第一表面212,换句话说,于膨胀温度时已不复见第一预定间隙G1,且借助于每一顶撑边121顶抵第一框部210的第一表面 212,光学膜片100沿第二方向D2的膨胀长度已经超过第一预定间隙G1,进一步借助于膨胀空间S的高度H配置以使光学膜片100沿直立方向Z呈弧形拱起。具体来说,光学膜片100沿直立方向Z呈单向弧形拱起,从而可减少光学膜片100发生不可逆的波浪状形变或皱褶;当环境温度恢复为默认温度,则光学膜片100于第二方向D1的长度也将恢复至预定温度时的长度,则光学膜片100的每一顶撑边121与第一框部210的第一表面212再度形成前述第一预定间隙G1。借助于配置膨胀空间S,使光学膜片100膨胀时,除了沿着第二方向D2伸展,而缩小第一预定间隙G1的大小,还可沿直立方向Z拱起,而有利于窄边框设计。借助于为膨胀空间S配置足够的高度H,可避免光学膜片100因无直立方向Z的膨胀空间而产生的波浪状形变或皱褶等永久形变,这有利于光学膜片100在恢复预定温度时,收缩至原本的尺寸及回复至平整状态。
在一实施方式中,光学膜片100的本体110沿着第一方向D1延伸的第一长度W0大于顶撑边121沿着第一方向D1延伸的第二长度W1,即可避免光学膜片100在膨胀时于边角处与框件200干涉而产生皱折等永久形变。需特别说明的是,请参照图7,本体110的第一长度W0及顶撑边121的第二长度W1可满足下列条件:
Figure PCTCN2021083226-appb-000001
如此,可确保光学膜片100的顶撑边121有足够长的第二长度W1去顶抵第一框部210的第一直立壁214,以提供足够的顶撑力使光学膜片100在直立方向Z上呈单向弧形拱起;也就是说,当本体110的第一长度W0小于2/3顶撑边121的第二长度W1时,恐怕不足以提供将光学膜片100于直立方向Z上形成单向弧形拱起的状态,则可能会产生波浪状形变或皱褶等永久形变。
在图3中,光学膜片100的本体110具有第一厚度T1,延伸部120具有第二厚度T2,在一实施方式中,光学膜片100可为厚度均一的型态(即T1=T2)。然而,在其他实施方式中,延伸部120的第二厚度T2可大于本体110的第一厚度T1(即T2>T1),这有利于提供顶撑边121抵顶第一框部210所需的结构强度。前述「厚度」是光学膜片100未产生弧形拱起时,本体110或延伸部120在直立方向Z上的长度。
如图7所示,光学膜片100的延伸部120沿第一方向D1或/及第二方 向D2上相对于本体110具有两个缺角结构122,在本实施方式中,两个缺角结构122分别设置于顶撑边121的两侧。更详言之,每一缺角结构122包含内缩边123,内缩边123连接于本体110沿第二方向D2平行延伸的边缘及延伸部120的顶撑边121之间,内缩边123相对于顶撑边121倾斜,于膨胀温度时,光学膜片100的顶撑边121顶抵于第一框部210的第一表面212,而光学膜片100的内缩边123(对应于光学膜片100的边角处)不会接触到第一框部210,藉此,光学膜片10的中央部分可沿直立方向Z拱起,利用缺角结构122的设置,可避免光学膜片100的边角处与框件200产生干涉而在光学膜片100沿第二方向D2平行延伸的边缘处产生皱折等永久形变。
在一实施方式中,如图3和图5所示,框件200更包含彼此相对的两个第二框部220,每一第二框部220连接于两个第一框部210之间。框件200的第一框部210与第二框部220所框围出的区域共同定义镂空区P,镂空区P对应膨胀空间S,且被两个第一框部210及两个第二框部220环绕。第二框部220包含第二水平壁223及第二直立壁224,第二直立壁224平行于直立方向Z,第二水平壁223由第二直立壁224的顶部沿着平行于第一方向D1往内延伸。第二框部220的第二直立壁224朝向光学膜片100的表面为第二表面222,第二框部220的第二水平壁223相对于连接第二直立壁224的一端为第二端面221。
请参照图6,其是图5中光学膜片100由默认温度至收缩温度的变化示意图,其对应图5的A部分,其中粗线A1表示于收缩温度时的光学膜片100相对于框件200的状态位置。于收缩温度时,顶撑边121与第一表面212之间具有第二预定间隙G2,第二预定间隙G2大于默认温度时的第一预定间隙G1,且顶撑边121仍可对应于第一框部210的第一端面211及第一表面212之间,以及对应于第二框部220的第二端面221及第二表面222之间。更详言之,于收缩温度时,内缩边123的一部分a1位于第一框部210的第一表面212及第一端面211之间、另一部分a2位于镂空区P、又一部分a3位于第二框部220的第二表面222及第二端面221之间。藉此,内缩边123同时被第一框部210及第二框部220压制,可提升防止光 学膜片100跳脱或爬框的效果。
借助于延伸部120,可使光学膜片100于收缩温度时,其左右两侧仍可被第一框部210压制,这有利于光学膜片100在温度上升时,不易发生跳脱或爬框的现象。相反地,请参照图12,其是习知光学膜片100'由默认温度至收缩温度的变化示意图,其视角与图6相同,其中粗线C1表示于收缩温度时的光学膜片100'。当温度下降时,光学膜片100'遇冷收缩,由于制作公差,光学膜片100'的右侧边(未另标号)可能会由第一框部210的第一端面211及第一表面212之间位移至镂空区P,由此于温度上升时易发生跳脱或爬框。
在一实施方式中,如图5所示,于默认温度时,顶撑边121与第一框部210之间具有第一预定间隙G1,此时光学膜片100的本体110可完全对应于镂空区P,即本体110的面积大于镂空区P的面积,且镂空区P位于本体110涵盖的范围内,藉此,本体110可被框件200完整覆盖,确保本发明的背光模组10应用于显示装置1的发光效果。在一实施方式中,「内缩边123的一部分位于第一框部210的第一端面211及第一表面212之间」是指在默认温度或收缩温度时,内缩边123的至少一部分位于第一框部210涵盖的范围内,即内缩边123可部分地或全部地被第一框部210覆盖,如此,便可确保光学膜片100在经历过收缩温度后,不会发生跳脱或爬框的问题。
在图5、图6、图7中,光学膜片100的本体110可还包含彼此相对的两个侧边111,每一侧边111位于两个假想线L之间,每一侧边111沿着第二方向D2延伸。于默认温度及收缩温度时,侧边111皆被框件200完整覆盖,由此可避免光学膜片100在两个侧边111处发生跳脱或爬框。
需特别注意的是,在本实施方式中,光学膜片100的两个侧边111为长边,光学膜片100在两个侧边111的左右两侧设置延伸部120,如此,光学膜片100可以沿着因温度而发生胀缩幅度较大的长边的方向顶抵框件200,以达到避免永久形变问题的发生,同时也可达到窄边框的机构设计目的。在其他实施方式中,光学膜片100可同时于左右两侧、上下两侧设置延伸部120,以确保光学膜片100可以在第一方向D1及第二方向D2上 皆能形成弧形拱起,缩减第一框部210的第一水平壁213沿着第二方向D2的长度,及第二框部220的第二水平壁223沿着第一方向D1的长度,以达到窄边框的机构设计目的。
在图3中,第一水平壁213位于光学膜片100的上方,第一直立壁214相对于第一水平壁213弯折,且由第一水平壁213沿着直立方向Z朝光学板300的方向延伸,其中第一水平壁213用以承载显示面板20,镂空区P对应于显示面板20的可视区。膨胀空间S位于显示面板20及光学膜片100之间,膨胀空间S的高度H为显示面板20及光学膜片100在直立方向Z上的间距。较佳地,光学膜片100沿直立方向Z呈弧形拱起的最大高度与前述间距实质上相等。由此,可以缩减显示装置1在直立方向Z上的尺寸,这有利于显示装置1的薄型化。在其他实施方式中,膨胀空间S的高度H也可配置为第一水平壁213及光学膜片100(或是第二水平壁223及光学膜片100)在直立方向Z上的间距,以使得光学膜片100在受热膨胀时不会接触到位于第一水平壁213、第二水平壁223上方的显示面板20,由此达到避免接触显示面板20而减少摩擦的功效。
请参照图8,其是依据本发明的另一实施方式的框件200及光学膜片100a于默认温度时的俯视示意图。光学膜片100a与光学膜片100的不同之处,在于延伸部120a的缺角结构122a为直角,内缩边123a的至少一部分相对于顶撑边121a与侧边111分别垂直。请参照图9,其是图8中光学膜片100a由默认温度至收缩温度的变化示意图,其对应于图8的B部分,其中粗线B1表示于收缩温度时的光学膜片100a。于收缩温度时,每一内缩边123a的一部分b1位于第一框部210的第一表面212及第一端面211之间、另一部分b2位于镂空区P、又一部分b3位于第二框部220的第一表面212及第一端面211之间。借助于内缩边123a的一部分b1被第一框部210覆盖及另一部分b3被第二框部220覆盖,可以防止光学膜片100a于温度恢复至默认温度时发生跳脱或爬框。关于光学膜片100a的其他细节可参照光学膜片100的相关说明。
请参照图10和图11,图10是依据本发明的又一实施方式的显示装置1a于默认温度时的剖视示意图。图11是图10中显示装置1a于膨胀温度 时的剖视示意图。显示装置1a与显示装置1的不同之处,在于背光模组10a的框件200a为背板,第一框部210a为背板的直立壁。在本实施方式中,膨胀空间S的高度H为显示面板20及光学膜片100在直立方向Z上的间距。关于显示装置1a的其他细节可参照显示装置1的相关说明。
相较于先前技术,本发明在光学膜片上设置延伸部,借助于延伸部的顶撑边沿着第一方向延伸的长度小于本体沿着第一方向延伸的长度,可以避免光学膜片在收缩时于边角处与框件干涉或跳脱出框件,同时也无需增加框件的宽度而有利于窄边框设计。另一方面,借助于配置膨胀空间,可以使光学膜片沿直立方向呈弧形拱起,从而可避免光学膜片因膨胀空间不足而产生波浪状形变或皱褶等永久形变。
以上所述仅为本揭露的较佳实施例,凡依本揭露申请专利范围所做的均等变化与修饰,皆应属本揭露的涵盖范围。
【附图标记列表】
1、1a:显示装置
10、10a、500:背光模组
20:显示面板
100、100a、100’、520:光学膜片
110:本体
111:侧边
120、120a:延伸部
121、121a:顶撑边
122、122a:缺角结构
123、123a:内缩边
130:出光面
200、200a、510:框件
210、210a:第一框部
211:第一端面
212:第一表面
213:第一水平壁
214:第一直立壁
220:第二框部
221:第二端面
222:第二表面
223:第二水平壁
224:第二直立壁
300、530:光学板
310:出光面
320:底面
330:侧面
400:光源
410:LED
A、B、a1、a2、a3、b1、b2、b3:部分
A1、B1、C1:粗线
D1:第一方向
D2:第二方向
E:宽度
H:高度
G1:第一预定间隙
G2:第二预定间隙
L:假想线
P:镂空区
S:膨胀空间
T1:第一厚度
T2:第二厚度
W0:第一长度
W1:第二长度
Z:直立方向。

Claims (13)

  1. 一种光学膜片,所述光学膜片被沿着第一方向延伸且互相平行的两个假想线划分成沿着第二方向排列的本体以及两个延伸部,其中,所述第二方向与所述第一方向实质上垂直,所述本体介于所述两个延伸部之间,每一所述延伸部包含顶撑边,所述本体沿着所述第一方向延伸的第一长度W0大于所述顶撑边沿着所述第一方向延伸的第二长度W1。
  2. 根据权利要求1所述的光学膜片,其满足下列条件:
    Figure PCTCN2021083226-appb-100001
  3. 根据权利要求1所述的光学膜片,其中每一所述延伸部的厚度大于所述本体的厚度。
  4. 一种背光模组,包含:
    框件,其包含彼此相对的两个第一框部;
    光学板,其设置于所述框件内,所述光学板包含:
    出光面;
    底面,其与所述出光面相对;以及
    侧面,其连接于所述出光面及所述底面之间;
    光源,其设置于所述光学板的所述底面或所述侧面;以及
    根据权利要求1至3任一项所述的光学膜片,其设置于所述框件内且位于所述出光面的上方。
  5. 根据权利要求4所述的背光模组,其中,所述光学膜片的每一所述延伸部更包含:
    两个缺角结构,其分别设置于所述顶撑边的两侧,每一所述缺角结构包含内缩边,所述内缩边连接于所述本体及所述顶撑边之间,且所述内缩边的至少一部分相对于所述顶撑边倾斜或垂直。
  6. 根据权利要求5所述的背光模组,其中:
    每一所述第一框部包含彼此相连的第一直立壁及第一水平壁,所述第一直立壁具有朝向所述光学膜片的第一表面,所述第一水平壁由所述第一 直立壁的顶部往内延伸,且所述第一水平壁相对于连接所述第一直立壁的一端具有第一端面;
    于默认温度时,每一所述顶撑边位于所述第一框部的所述第一表面及所述第一端面之间,且所述顶撑边与所述第一表面之间具有第一预定间隙;
    于收缩温度时,每一所述顶撑边位于所述第一框部的所述第一表面及所述第一端面之间,且所述顶撑边与所述第一表面之间具有第二预定间隙,所述第二预定间隙大于所述第一预定间隙。
  7. 根据权利要求6所述的背光模组,其中:
    所述框件用以承载显示面板,所述框件定义镂空区,且所述镂空区对应于所述显示面板的可视区;
    于所述默认温度时,所述本体对应所述镂空区,且每一所述缺角结构的所述内缩边的一部分位于所述第一框部的所述第一表面及所述第一端面之间;
    于所述收缩温度时,每一所述缺角结构的所述内缩边的一部分位于所述镂空区,另一部分位于所述第一框部的所述第一表面及所述第一端面之间。
  8. 根据权利要求7所述的背光模组,其中:
    所述框件更包含彼此相对的两个第二框部,每一所述第二框部连接于两个所述第一框部之间,每一所述第二框部包含彼此相对的第二表面以及第二端面;
    于收缩温度时,每一所述缺角结构的所述内缩边的一部分位于所述第一框部的所述第一表面及所述第一端面之间、另一部分位于所述镂空区、又一部分位于所述第二框部的所述第二表面及所述第二端面之间。
  9. 根据权利要求4所述的背光模组,其中:
    所述光学膜片上方具有膨胀空间,所述膨胀空间沿着直立方向具有高度,于膨胀温度时,每一所述顶撑边抵顶每一所述第一框部,且所述膨胀空间的所述高度配置以使所述光学膜片沿所述直立方向呈弧形拱起。
  10. 一种显示装置,包含:
    根据权利要求4至9任一项所述的背光模组;以及
    显示面板,其设置在所述背光模组的上方。
  11. 一种背光模组,包含:
    框件,其包含彼此相对的两个第一框部,且每一所述第一框部皆沿着第一方向延伸;
    光学板,其设置于所述框件内,所述光学板包含:
    出光面;
    底面,其与所述出光面相对;以及
    侧面,其连接于所述出光面及所述底面之间;
    光源,其设置于所述光学板的所述底面或所述侧面;以及
    光学膜片,其设置于所述框件内且位于所述出光面的上方,所述光学膜片具有沿着所述第一方向延伸且互相平行的两个顶撑边;
    其中,所述光学膜片上方具有膨胀空间,所述膨胀空间沿着直立方向具有高度,于膨胀温度时,每一所述顶撑边抵顶每一所述第一框部,且所述膨胀空间的所述高度配置以使所述光学膜片沿所述直立方向呈弧形拱起。
  12. 一种显示装置,包含:
    根据权利要求11所述的背光模组;以及
    显示面板,其设置在所述背光模组的上方;
    其中,所述膨胀空间位于所述显示面板及所述光学膜片之间,且所述膨胀空间的所述高度为所述显示面板及所述光学膜片在所述直立方向上的间距。
  13. 根据权利要求12所述的显示装置,其中,所述光学膜片沿所述直立方向呈弧形拱起的最大高度与所述间距实质上相等。
PCT/CN2021/083226 2021-03-26 2021-03-26 光学膜片、背光模组及显示装置 WO2022198629A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180004794.7A CN115413330A (zh) 2021-03-26 2021-03-26 光学膜片、背光模组及显示装置
PCT/CN2021/083226 WO2022198629A1 (zh) 2021-03-26 2021-03-26 光学膜片、背光模组及显示装置
TW110118443A TWI766692B (zh) 2021-03-26 2021-05-21 背光模組及顯示裝置
US17/658,258 US11681089B2 (en) 2021-03-26 2022-04-07 Optical film, backlight module and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/083226 WO2022198629A1 (zh) 2021-03-26 2021-03-26 光学膜片、背光模组及显示装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/658,258 Continuation US11681089B2 (en) 2021-03-26 2022-04-07 Optical film, backlight module and display device

Publications (1)

Publication Number Publication Date
WO2022198629A1 true WO2022198629A1 (zh) 2022-09-29

Family

ID=83103701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/083226 WO2022198629A1 (zh) 2021-03-26 2021-03-26 光学膜片、背光模组及显示装置

Country Status (4)

Country Link
US (1) US11681089B2 (zh)
CN (1) CN115413330A (zh)
TW (1) TWI766692B (zh)
WO (1) WO2022198629A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200720766A (en) * 2005-11-18 2007-06-01 Radiant Opto Electronics Corp Corner positioning structure of periphery light-input type backlight module of liquid crystal display
JP2009075545A (ja) * 2008-04-21 2009-04-09 Sony Corp 光学素子包括体、これを備えるバックライトおよび液晶表示装置、ならびに光学素子包括体の製造方法
CN201764409U (zh) * 2010-09-03 2011-03-16 昆山龙腾光电有限公司 光学膜片及采用该光学膜片的背光模组和液晶显示装置
CN202125822U (zh) * 2011-06-02 2012-01-25 海尔集团公司 Led侧光式背光模组
JP2013175367A (ja) * 2012-02-24 2013-09-05 Sharp Corp バックライトユニット及び液晶表示装置
CN103982869A (zh) * 2014-03-07 2014-08-13 友达光电股份有限公司 显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058066A (ja) * 2001-08-03 2003-02-28 Three M Innovative Properties Co 光学フィルタ
TWI368781B (en) * 2007-08-03 2012-07-21 Chimei Innolux Corp Backlight module and application thereof
KR101698512B1 (ko) * 2010-09-17 2017-01-23 삼성디스플레이 주식회사 표시 장치
CN202253135U (zh) * 2011-08-05 2012-05-30 深圳市华星光电技术有限公司 背光模组及液晶显示器
TWI457661B (zh) * 2011-09-29 2014-10-21 Au Optronics Corp 背光模組以及顯示模組
US10146075B2 (en) * 2013-12-24 2018-12-04 Sony Corporation Display device
CN204387808U (zh) * 2014-11-10 2015-06-10 深圳市德仓科技有限公司 一种背光模组及液晶模组
CN104714335B (zh) * 2015-03-20 2018-09-14 深圳市华星光电技术有限公司 光学膜片、背光模组及显示装置
TWI628476B (zh) * 2016-12-30 2018-07-01 友達光電股份有限公司 顯示面板
CN107340563B (zh) * 2017-08-29 2019-10-25 友达光电(厦门)有限公司 背光模块
TWI662328B (zh) * 2018-03-06 2019-06-11 友達光電股份有限公司 顯示面板
TWI676844B (zh) * 2018-05-16 2019-11-11 住華科技股份有限公司 液晶顯示裝置及其製造方法
TWI681231B (zh) * 2018-12-19 2020-01-01 友達光電股份有限公司 背光模組
TWI682223B (zh) * 2018-12-21 2020-01-11 友達光電股份有限公司 顯示模組
TWI696871B (zh) * 2019-05-16 2020-06-21 友達光電股份有限公司 顯示裝置
TWM612751U (zh) * 2021-01-29 2021-06-01 中強光電股份有限公司 背光模組與顯示器
CN215642159U (zh) * 2021-03-26 2022-01-25 瑞仪光电股份有限公司 光学膜片、背光模组及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200720766A (en) * 2005-11-18 2007-06-01 Radiant Opto Electronics Corp Corner positioning structure of periphery light-input type backlight module of liquid crystal display
JP2009075545A (ja) * 2008-04-21 2009-04-09 Sony Corp 光学素子包括体、これを備えるバックライトおよび液晶表示装置、ならびに光学素子包括体の製造方法
CN201764409U (zh) * 2010-09-03 2011-03-16 昆山龙腾光电有限公司 光学膜片及采用该光学膜片的背光模组和液晶显示装置
CN202125822U (zh) * 2011-06-02 2012-01-25 海尔集团公司 Led侧光式背光模组
JP2013175367A (ja) * 2012-02-24 2013-09-05 Sharp Corp バックライトユニット及び液晶表示装置
CN103982869A (zh) * 2014-03-07 2014-08-13 友达光电股份有限公司 显示装置

Also Published As

Publication number Publication date
CN115413330A (zh) 2022-11-29
US20220308283A1 (en) 2022-09-29
TW202238231A (zh) 2022-10-01
US11681089B2 (en) 2023-06-20
TWI766692B (zh) 2022-06-01

Similar Documents

Publication Publication Date Title
US9442316B2 (en) Display device comprising a light-transmitting cover having a lens portion
US8446546B2 (en) Backlight module with bent reflector sheet and display panel device
TWI457649B (zh) 顯示器
US10217768B2 (en) Display device with support member having a dent
KR20020015238A (ko) 액정표시장치
TWM263730U (en) A frame structure for a liquid crystal module
US20110242749A1 (en) Electronic Device
CN112987402A (zh) 背光模组及显示装置
WO2021218580A1 (zh) 背光模组与液晶显示器
US20090002928A1 (en) Display device
US20150316811A1 (en) Liquid crystal display device
CN215642159U (zh) 光学膜片、背光模组及显示装置
TW202020492A (zh) 背光模組
US8827481B2 (en) Illumination device, display device, and television reception device
TWI681231B (zh) 背光模組
WO2021227752A1 (zh) 背光模组及显示装置
US8310615B2 (en) Backlight module for preventing films from waving or curving
WO2022198629A1 (zh) 光学膜片、背光模组及显示装置
US20140022763A1 (en) Display device
JP6463883B2 (ja) 表示装置
US11156765B2 (en) Back plate having connecting and supporting portions for a display
TW201725942A (zh) 軟性電路板以及顯示裝置
TW200528836A (en) Display module
US20190129233A1 (en) Block Having Phase Change Material and Backlight Module and Display Device Using the Same
US11050030B2 (en) OLED display and OLED display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE