WO2022198470A1 - 集流体、使用该集流体的电化学装置和电子设备 - Google Patents

集流体、使用该集流体的电化学装置和电子设备 Download PDF

Info

Publication number
WO2022198470A1
WO2022198470A1 PCT/CN2021/082530 CN2021082530W WO2022198470A1 WO 2022198470 A1 WO2022198470 A1 WO 2022198470A1 CN 2021082530 W CN2021082530 W CN 2021082530W WO 2022198470 A1 WO2022198470 A1 WO 2022198470A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
current collector
conductive layer
intermediate coating
layer
Prior art date
Application number
PCT/CN2021/082530
Other languages
English (en)
French (fr)
Inventor
杨晓兵
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/082530 priority Critical patent/WO2022198470A1/zh
Priority to CN202180004796.6A priority patent/CN114616699A/zh
Publication of WO2022198470A1 publication Critical patent/WO2022198470A1/zh
Priority to US18/371,642 priority patent/US20240014404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of energy storage, and in particular, to a current collector, an electrochemical device using the current collector, and an electronic device.
  • Secondary batteries represented by lithium-ion batteries are widely used in various consumer electronic products, electric vehicles and wind energy due to their advantages of high energy density, high output power, long cycle life, low self-discharge rate, and low environmental pollution. , solar energy and other required large-scale energy storage devices and other fields. With the further development of social science and technology and the continuous expansion of the application range of secondary batteries, people have also put forward higher and higher requirements for the energy density of secondary batteries.
  • the current collector runs through the entire processing process of the battery and serves the entire life cycle of the battery. It is the carrier of the battery active material and provides a channel for electron transmission. It is an important part of the secondary battery and is closely related to the energy density of the battery. . However, there is still room for improvement in the current collecting performance of the current collectors in the related art or in improving the energy density of the secondary battery. Accordingly, the energy density of the secondary battery is expected to be further improved. For example, existing secondary batteries use metal current collectors on the one hand.
  • the use of a composite current collector which obtains a metal polymer film on the surface of a low-density polymer film by physical vapor deposition of metal and forms a composite current collector, can reduce the density of the battery current collector and improve the weight energy density of the battery.
  • the inventors of the present application have carried out a lot of research, aiming to improve the traditional current collector, so that it has good electrical conductivity and current collecting performance, while reducing or avoiding the delamination phenomenon of the composite current collector, and improving the performance of each layer in the composite current collector.
  • the adhesive force between them can be improved, thereby providing an electrochemical device that can take into account high gravimetric energy density and good comprehensive electrochemical performance at the same time.
  • a current collector is provided, the current collector includes an organic support layer, a conductive layer and an intermediate coating, the conductive layer is provided on at least one surface of the organic supporting layer, and the intermediate coating is provided on the organic supporting layer between the conductive layer.
  • the intermediate coating layer includes a resin composition
  • the resin composition includes a first resin and a second resin
  • the adhesive force of the first resin to the organic support layer is smaller than that of the second resin to the organic support layer layer adhesion
  • the adhesion of the first resin to the conductive layer is smaller than the adhesion of the second resin to the conductive layer.
  • the adhesion force of the first resin to the organic support layer is 1.8N/15mm to 2.5N/15mm, further 2.1N/15mm to 2.3N/15mm;
  • the adhesive force of the organic support layer is 3.5N/15mm to 7.5N/15mm, further 4.0N/15mm to 5.0N/15mm.
  • the adhesive force of the first resin to the conductive layer is 2.0N/15mm to 5.5N/15mm, further 4.0N/15mm to 5.0N/15mm;
  • the adhesive force of the second resin to the conductive layer is 3.5N/15mm to 7.5N/15mm, further 4.0N/15mm to 5.5N/15mm.
  • the difference between the swelling ratio of the second resin in the electrolyte and the swelling ratio of the first resin in the electrolyte is greater than or equal to 3 in terms of soaking in the electrolyte at a temperature of 85°C for 72 hours. % by mass, further ⁇ 14% by mass.
  • the solubility parameter of the intermediate coating layer is in the range of 7.5 to 12; the thermal expansion coefficient of the intermediate coating layer is in the range of 50 ⁇ 10 -6 K -1 to 80 ⁇ 10 -6 K -1 .
  • the first resin includes at least one of polyacrylic resin (PAA), modified polyolefin resin (MPO) or silicone resin (OS), and the second resin includes polyacrylate ( At least one of PEA), polyurethane (PU), unsaturated polyester (UP), phenolic resin (PF), ethylene-acrylic acid copolymer (EAA), ethylene-vinyl acetate copolymer (EVA) or epoxy resin (EPO) A sort of.
  • PAA polyacrylic resin
  • MPO modified polyolefin resin
  • OS silicone resin
  • the second resin includes polyacrylate ( At least one of PEA), polyurethane (PU), unsaturated polyester (UP), phenolic resin (PF), ethylene-acrylic acid copolymer (EAA), ethylene-vinyl acetate copolymer (EVA) or epoxy resin (EPO) A sort of.
  • the first resin includes epoxy resin (EPO)
  • the second resin includes polyacrylate (PEA), polyurethane (PU), unsaturated polyester (UP), phenolic resin (PF) , at least one of ethylene-acrylic acid copolymer (EAA) and ethylene-vinyl acetate copolymer (EVA).
  • the mass ratio between the first resin and the second resin in the intermediate coating is 2:98 to 98:2; further, the first resin and the second resin The mass ratio between them is 10:90 to 90:10; the first resin is modified polyolefin resin, the second resin is polyurethane and/or epoxy resin, and the second resin is in the resin combination
  • the mass percentage in the material is 2% to 30%; the thickness of the intermediate coating layer is 0.2 ⁇ m to 2 ⁇ m.
  • the organic support layer includes an organic polymer
  • the organic polymer includes polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polypara Ethylene naphthalate, polyparaphenylene terephthalate, polyimide, polycarbonate, polyether ether ketone, polyoxymethylene, polyparaphenylene sulfide, polyparaphenylene ether, polyvinyl chloride , at least one of polyamide, polytetrafluoroethylene, polyvinylidene fluoride or polystyrene; the thickness of the organic support layer is 2 ⁇ m to 36 ⁇ m.
  • the material of the conductive layer includes at least one of metal conductive material or carbon-based conductive material;
  • the metal conductive material includes aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, chromium At least one of , molybdenum or tungsten
  • the carbon-based conductive material includes at least one of graphite, acetylene black, graphene or carbon nanotubes; the thickness of the conductive layer is 100nm to 5000nm; the conductive layer is Vapor deposited layer.
  • the conductive layer includes a first conductive layer and a second conductive layer, and the first conductive layer and the second conductive layer are respectively disposed on two surfaces of the organic support layer;
  • the intermediate coating includes a first intermediate coating and a second intermediate coating
  • the first conductive layer, the first intermediate coating layer, the organic support layer, the second intermediate coating layer, and the second conductive layer are stacked in sequence.
  • an electrochemical device comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode and/or the negative electrode comprise the current collector according to the first aspect of the present application.
  • an electronic device comprising the electrochemical device as described in the second aspect of the present application.
  • the current collector provided by the present application is a composite current collector including an organic support layer, an intermediate coating layer and a conductive layer, wherein the intermediate coating layer disposed between the organic supporting layer and the conductive layer comprises at least a first resin and a second resin.
  • the resin composition, the adhesive ability of the first resin in the resin composition to the organic support layer and the conductive layer is less than the adhesion ability of the second resin to the organic support layer and the conductive layer, so that the first resin is resistant to electrolyte swelling.
  • the performance is better than the electrolyte swelling resistance of the second resin.
  • the constructed composite resin system can give full play to the electrolyte resistance of the first resin and the adhesion of the second resin, so as to flexibly adjust the interfacial adhesion and electrolyte resistance in the intermediate coating and the composite current collector. , which can reduce or avoid the delamination problem of the current collector during the operation of the battery, which is beneficial to improve the stability and reliability of the current collector during use, and ensure that the current collector can maintain good electrical conductivity during the use of the electrochemical device. and current set performance.
  • the electronic device of the present application includes the electrochemical device provided by the present application, and thus has at least the same advantages as the electrochemical device.
  • FIG. 1 shows a schematic structural diagram of a current collector provided by an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of a current collector provided by another embodiment of the present application.
  • any lower limit can be combined with any upper limit to form an unspecified range; and any lower limit can be combined with any other lower limit to form an unspecified range, and likewise any upper limit can be combined with any other upper limit to form an unspecified range.
  • every point or single value between the endpoints of a range is included within the range, even if not expressly recited.
  • each point or single value may serve as its own lower or upper limit in combination with any other point or single value or with other lower or upper limits to form a range not expressly recited.
  • a first aspect of the present application provides a current collector, which can reduce its own weight compared with the traditional metal current collector, and can improve the stability and reliability of the structure compared with the traditional composite current collector, so that the current collector of the present application can reduce its own weight.
  • the fluid can simultaneously take into account low weight and good electrical conductivity, current collection and structurally stable and reliable properties, so that the electrochemical device comprising the current collector can simultaneously take into account high gravimetric energy density and good comprehensive electrochemical performance.
  • Figure 1 schematically shows a current collector as an example.
  • the current collector includes an organic support layer 30, an intermediate coating layer 20 and a conductive layer 10 arranged in layers; the intermediate coating layer 20 is arranged between the organic supporting layer 30 and the conductive layer 10; the intermediate coating layer 20 comprises a resin composition consisting of at least a first resin and a second resin; the adhesion of the first resin to the organic support layer 30 is less than the adhesion of the second resin to the organic support layer 30; the first resin to the conductive layer 10 The adhesion force of the second resin is smaller than the adhesion force of the second resin to the conductive layer 10 .
  • cohesion and cohesion have the same meaning, and thus cohesion may also be referred to as cohesion.
  • an intermediate coating 20 is provided between the conductive layer 10 and the organic support layer 30, and the intermediate coating 20 can play the role of connecting the conductive layer 10 and the organic supporting layer 30. Can improve the adhesion between layers.
  • the embodiment of the present application uses a resin composition comprising at least a first resin and a second resin, and the adhesive force of the first resin to the organic support layer 30 is smaller than the adhesion force of the second resin to the organic support layer 30 , the adhesion of the first resin to the conductive layer 10 is smaller than the adhesion of the second resin to the conductive layer 10, so that the resistance to electrolyte swelling of the first resin is better than that of the second resin.
  • the combination can effectively improve the interface adhesion and strong electrolyte resistance, so as to reduce or avoid the phenomenon of the conductive layer of the current collector falling off in the electrode pole piece processing and electrochemical devices such as the life cycle of the secondary battery. , which can make the secondary battery have good cycle performance and storage performance.
  • the first resin and the second resin in the intermediate coating layer 20 have different adhesion to the organic support layer 30, different adhesion to the conductive layer 10, and different electrolyte resistance.
  • the adhesion force of the first resin to the organic support layer 30 is smaller than the adhesion force of the second resin to the organic support layer 30, and the adhesion force of the first resin to the conductive layer 10 is smaller than that of the second resin to the conductive layer
  • the adhesive force of 10, the resistance to electrolyte swelling of the first resin is better than that of the second resin, so that the performance advantages of each resin component can be fully exerted by adjusting the composition of the segment and the proportion of the resin.
  • the constructed composite resin system enhances the interfacial adhesion of the composite current collector and improves the swelling performance of the electrolyte. Therefore, compared with the existing composite current collectors, the current collectors of the embodiments of the present application can reduce or avoid the delamination problem during the processing of electrode sheets or battery operation, and can improve the stability and reliability of the current collectors during use. This ensures that the current collector can maintain good electrical conductivity and current collecting performance during the use of the electrochemical device. In addition, compared with the existing metal current collectors, the weight of the current collectors in the embodiments of the present application is significantly reduced, and the weight of the current collectors can generally be reduced by about 50%, thereby improving the weight energy density of the battery.
  • using the current collectors of the embodiments of the present application can take into account both low quality and good electrical conductivity, current collection, and stable and reliable performance of structure.
  • the adhesion of the first resin to the organic support layer is 1.8N/15mm to 2.5N/15mm; the adhesion of the second resin to the organic support layer is 3.5N/15mm to 7.5N/15mm. In some embodiments, the adhesion of the first resin to the organic support layer is 1.9N/15mm to 2.4N/15mm; the adhesion of the second resin to the organic support layer is 4.0N/15mm to 7.0N/15mm. In some embodiments, the adhesion force of the first resin to the organic support layer is 2.1 N/15mm to 2.3N/15mm; the adhesion force of the second resin to the organic support layer is 4.0N/15mm to 5.0N/15mm.
  • the upper chuck of the tensile testing machine will return to its position.
  • the test plate will be taken out from the lower chuck. At least three data were taken for each test, and the average value was used to represent the adhesion of the samples.
  • the adhesion force of the first resin to the conductive layer is 2.0N/15mm to 5.5N/15mm; the adhesion force of the second resin to the conductive layer is 3.5N/15mm to 7.5N/15mm. In some embodiments, the adhesive force of the first resin to the conductive layer is 2.5N/15mm to 5.2N/15mm; the adhesive force of the second resin to the conductive layer is 4.0N/15mm to 6.0N/15mm. In some embodiments, the adhesion force of the first resin to the conductive layer is 4.0N/1.mm to 5.0N/15mm; the adhesion force of the second resin to the conductive layer is 4.0N/15mm to 5.5N/15mm.
  • the adhesion of the resin to the conductive layer can be measured by methods known in the art.
  • an exemplary test method for the adhesion of the resin to the conductive layer is as follows: (1) Sample preparation: resin (such as the first resin or The second resin) is prepared into a thin film with a thickness of about 5um in a rectangular mold made of release paper, and a metal layer is deposited on the thin film with a thickness of about 0.5um. (2) The EAA hot melt adhesive with a thickness of about 80 ⁇ m and the PET film with a thickness of 12 ⁇ m are hot-pressed by a LCP200-A2008N type hot press. The hot-pressing conditions are: temperature 85 ° C, pressure 0.7 MPa, time 30s.
  • the upper chuck of the tensile testing machine will return to its position.
  • the test plate will be taken out from the lower chuck. At least three data were taken for each test, and the average value was used to represent the adhesion of the samples.
  • the swelling ratio of the second resin in the electrolyte is 7 mass %, 12 mass %, 16 mass %, 18 mass %, 20 mass %, 25 mass % mass %, 30 mass %, 31 mass %, 32 mass % or 33 mass %, and satisfy the difference between the swelling ratio of the second resin in the electrolyte and the swelling ratio of the first resin in the electrolyte ⁇ 3 mass %; Further, the difference between the swelling ratio of the second resin in the electrolyte and the swelling ratio of the first resin in the electrolyte is ⁇ 14% by mass.
  • the swelling ratio of the resin in the electrolyte can be tested using methods known in the art.
  • the test method for the swelling ratio of the resin in the electrolyte is as follows: (1) The resin (such as the first resin or the second resin) is made into a film and fully dried; (2) The initial film weight is weighed, Denoted as W1; (3) put the film into a pocket (bag) of 15cm*15cm, and add 50ml of 1mol/L lithium hexafluorophosphate electrolyte to seal it with a heat sealer; (4) seal the above-mentioned sealed The pocket was placed in an oven at 85°C, and the pocket was taken out after 72 hours in the oven.
  • the solubility parameter of the intermediate coating ranges from 7.5 to 12. In some embodiments, the solubility parameter of the intermediate coating ranges from 8 to 11. In some embodiments, the solubility parameter of the intermediate coating may be 7.5, 8, 8.2, 8.6, 9, 9.5, 9.8, 10, 10.5, 11, 11.5, or 12.
  • the adhesive force of the first resin and the second resin is different, the adhesive force of the first resin is smaller than that of the second resin, and the swelling ratio of the first resin and the second resin in the electrolyte Also different, the swelling ratio of the first resin in the electrolyte is smaller than the swelling ratio of the second resin in the electrolyte, and the solubility parameters of the first resin and the second resin may be the same or similar.
  • the advantages of various resins can be fully utilized, which is more conducive to enhancing the interfacial adhesion of the current collector and improving the electrolyte resistance.
  • the solubility parameter of the intermediate coating satisfies the above range, it is beneficial to make the electrochemical device have higher electrochemical performance, such as longer cycle life.
  • the solubility parameter of the intermediate coating can be tested using methods known in the art.
  • the test method for the solubility parameter of the intermediate coating can be tested by turbidimetric titration, which specifically includes the following steps: (1) Weigh about 0.2 g of a polymer sample and dissolve it in 25 ml of chloroform, and use a pipette Pipette 10ml of the solution into the test tube, first titrate the polymer solution with n-pentane to form a precipitate, shake the test tube to dissolve the precipitate, continue to drip n-pentane, the precipitate is gradually difficult to shake and dissolve, and titrate until the precipitate that appears just cannot be dissolved.
  • the thermal expansion coefficient of the intermediate coating ranges from 50 ⁇ 10 ⁇ 6 K ⁇ 1 to 80 ⁇ 10 ⁇ 6 K ⁇ 1 . In some embodiments, the thermal expansion coefficient of the intermediate coating ranges from 55 ⁇ 10 ⁇ 6 K ⁇ 1 to 75 ⁇ 10 ⁇ 6 K ⁇ 1 .
  • the thermal expansion coefficient of the intermediate coating may be 50 ⁇ 10 ⁇ 6 K ⁇ 1 , 51 ⁇ 10 ⁇ 6 K ⁇ 1 , 53 ⁇ 10 ⁇ 6 K ⁇ 1 , 55 ⁇ 10 ⁇ 6 K ⁇ 1 , 57 ⁇ 10 -6 K -1 , 57.6 ⁇ 10 -6 K -1 , 59 ⁇ 10 -6 K -1 , 60 ⁇ 10 -6 K -1 , 65 ⁇ 10 -6 K -1 , 69 ⁇ 10 -6 K -1 , 70 ⁇ 10 -6 K -1 , 75 ⁇ 10 -6 K -1 , or 80 ⁇ 10 -6 K -1 .
  • the thermal expansion coefficients of the first resin and the second resin may be the same or similar.
  • the above-mentioned polymer intermediate coatings use two or more resin systems with similar solubility parameters and thermal expansion coefficients, but with obvious differences in adhesion and electrolyte resistance. , using the composite resin system to enhance the interfacial adhesion of the composite current collector and improve the electrolyte resistance.
  • the first resin includes at least one of polyacrylic resin (PAA), modified polyolefin resin (MPO), silicone resin (OS), or epoxy resin (EPO), and the second resin includes polyacrylic resin Acrylate (PEA), Polyurethane (PU), Unsaturated Polyester (UP), Phenolic (PF), Ethylene-Acrylic (EAA), Ethylene-Vinyl Acetate (EVA) or Epoxy (EPO) At least one of , and the first resin and the second resin are not selected from epoxy resin (EPO) at the same time. Further, in some embodiments, the first resin further comprises a polyethylene grafted maleic anhydride resin.
  • the above-mentioned several resins are selected as the first resin, so that the resistance of the electrolyte of the first resin is better, and the cohesive force is low, and the above-mentioned resins are selected as the second resin, so that the The adhesion is higher, while the resistance of the electrolyte is slightly less.
  • the second resin when the first resin is a silicone resin, the second resin is a polyurethane, or the second resin is an epoxy resin, or the second resin is a polyurethane and an epoxy resin.
  • the thickness of the intermediate coating is 0.2 ⁇ m to 2 ⁇ m. In some embodiments, the thickness of the intermediate coating is 0.2 ⁇ m to 1.5 ⁇ m. In some embodiments, the thickness of the intermediate coating is 0.5 ⁇ m to 1 ⁇ m. In some embodiments, the thickness of the intermediate coating may be 0.2 ⁇ m, 0.5 ⁇ m, 0.8 ⁇ m, 1 ⁇ m, 1.2 ⁇ m, 1.5 ⁇ m, 1.8 ⁇ m, or 2 ⁇ m.
  • An intermediate coating with an appropriate thickness can not only ensure that the current collector has good electrical conductivity and current collecting performance, so that the battery has good electrochemical performance, but also can make the current collector have a lower weight, so that the battery has a higher weight energy density.
  • an appropriate thickness of the intermediate coating can also help reduce or avoid breakage during processing, so that the current collector has good mechanical stability and working stability.
  • the organic support layer includes an organic polymer including, but not limited to, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene Butylene phthalate, polyethylene terephthalate (PEN), polyparaphenylene terephthalate (PPTA), polyimide (PI), polycarbonate (PC), Polyetheretherketone (PEEK), polyoxymethylene (POM), polyparaphenylene sulfide (PPS), polyparaphenylene oxide (PPO), polyvinyl chloride (PVC), polyamide (PA), polytetrafluoroethylene (PTFE) ), at least one of polyvinylidene fluoride and polystyrene.
  • the organic polymer may be polyethylene (PE), polyethylene terephthalate (PET), or polycarbonate (PC), for example.
  • the thickness of the organic support layer is 2 ⁇ m to 36 ⁇ m. In some embodiments, the thickness of the organic support layer is 4 ⁇ m to 36 ⁇ m. In some embodiments, the thickness of the organic support layer is 6 ⁇ m to 30 ⁇ m. In some embodiments, the thickness of the organic support layer may be 2 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m, 32 ⁇ m, or 36 ⁇ m.
  • An organic support layer with an appropriate thickness can effectively play a supporting role, and at the same time, it is also beneficial for the battery to have a higher weight energy density.
  • the material of the conductive layer includes, but is not limited to, at least one of a metal conductive material and a carbon-based conductive material; the metal conductive material includes aluminum, copper, nickel, iron, titanium, silver, gold, cobalt, At least one of chromium, molybdenum or tungsten, and the carbon-based conductive material includes at least one of graphite, acetylene black, graphene or carbon nanotubes.
  • the material of the conductive layer may be, for example, aluminum, copper, nickel, copper alloy, nickel alloy, or aluminum alloy.
  • the thickness of the conductive layer is 100 nm to 5000 nm. In some embodiments, the thickness of the conductive layer is 500 nm to 4000 nm. In some embodiments, the thickness of the conductive layer is 1000 nm to 3000 nm. In some embodiments, the thickness of the conductive layer may be 100 nm, 200 nm, 500 nm, 800 nm, 1000 nm, 1500 nm, 2000 nm, 2500 nm, 3000 nm, 4000 nm, or 5000 nm.
  • the conductive layer may be formed by a vacuum evaporation method. It can include: placing the organic support layer coated with the intermediate coating in a vacuum plating chamber, melting and evaporating the high-purity metal wire in the metal evaporation chamber at a high temperature of 1200°C-1500°C, and the evaporated metal passes through the vacuum plating chamber. The cooling system is finally deposited on the intermediate coating to form a conductive layer.
  • the first conductive layer 101 , the first intermediate coating layer 201 , the organic support layer 30 , the second intermediate coating layer 202 , and the second conductive layer 102 are stacked in sequence.
  • a second aspect of the present application provides an electrochemical device comprising a positive electrode, a negative electrode, and an electrolyte, wherein the positive electrode and/or the negative electrode include the current collector according to the first aspect of the present application.
  • the current collector of the present application can be used for the preparation of positive electrode/negative electrode.
  • a mixture comprising positive electrode active material/negative electrode active material and a binder is prepared into a slurry and coated on the current collector, and the positive electrode/negative electrode is obtained by drying.
  • the current collector of the present application is particularly preferable as a current collector of a positive electrode of a secondary battery.
  • the positive electrode includes a positive electrode current collector and a positive electrode active material layer coated on the surface of the positive electrode current collector. Further, the positive electrode active material layer contains a positive electrode active material, a conductive agent and a binder. Wherein, the positive electrode current collector is the current collector provided in any of the above embodiments of the present application.
  • the positive active material layer may include a lithium transition metal composite oxide, wherein the transition metal may be one of Mn, Fe, Ni, Co, Cr, Ti, Zn, V, Al, Zr, Ce, and Mg one or more.
  • the lithium transition metal composite oxide can also be doped with elements with large electronegativity, such as one or more of S, F, Cl and I. This enables cathode active materials with high structural stability and electrochemical performance.
  • the conductive agent may be selected from one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, or carbon nanofibers.
  • the binder may be selected from styrene-butadiene rubber (SBR), water-based acrylic esin, carboxymethyl cellulose (CMC), polyvinylidene fluoride (PVDF) , one or more of polytetrafluoroethylene (PTFE), ethylene-vinyl acetate copolymer (EVA), polyvinyl alcohol (PVA) or polyvinyl butyral (PVB).
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • EVA ethylene-vinyl acetate copolymer
  • PVB polyvinyl butyral
  • the positive electrode can form a uniform positive electrode slurry by dispersing the positive electrode active material and optional conductive agent and binder in a solvent (such as N-methylpyrrolidone, abbreviated as NMP); coating the positive electrode slurry on the positive electrode collector. On the fluid, after drying and other processes, the positive electrode is obtained.
  • a solvent such as N-methylpyrrolidone, abbreviated as NMP
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on the negative electrode current collector.
  • the negative electrode current collector is the current collector provided by any one of the above embodiments of the present application.
  • the negative electrode current collector may be a metal foil, a carbon-coated metal foil, and a porous metal foil.
  • the negative electrode current collector may include one or more of copper, copper alloys, nickel, nickel alloys, iron, iron alloys, titanium, titanium alloys, silver, and silver alloys.
  • the negative electrode active material layer may use metallic lithium, natural graphite, artificial graphite, mesophase microcarbon spheres (abbreviated as MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, SiO, Li- At least one of Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO2, spinel-structured lithium titanate or Li-Al alloy.
  • metallic lithium natural graphite, artificial graphite, mesophase microcarbon spheres (abbreviated as MCMB), hard carbon, soft carbon, silicon, silicon-carbon composite, SiO, Li- At least one of Sn alloy, Li-Sn-O alloy, Sn, SnO, SnO2, spinel-structured lithium titanate or Li-Al alloy.
  • the anode active material layer may further include a conductive agent.
  • the conductive agent may be selected from one or more of graphite, superconducting carbon, acetylene black, carbon black, Ketjen black, carbon dots, carbon nanotubes, graphene, or carbon nanofibers.
  • the negative electrode can disperse the negative electrode active material and optional conductive agent, binder, thickening and dispersing agent in a solvent, and the solvent can be NMP or deionized water to form a uniform negative electrode slurry; the negative electrode slurry is coated On the negative electrode current collector, after drying and other processes, the negative electrode is obtained.
  • the electrolyte includes organic solvent, lithium salt and additives.
  • the organic solvent is selected from one or more of conventional organic solvents such as cyclic carbonate, linear carbonate, and carboxylate.
  • organic solvents such as cyclic carbonate, linear carbonate, and carboxylate.
  • it can be selected from the following organic solvents without limitation: ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), Fluoroethylene carbonate (FEC), vinylene carbonate (VC), propylene carbonate, dipropyl carbonate, methyl formate, ethyl formate, ethyl propionate (EP), propyl propionate, butyric acid One or more of methyl ester and ethyl acetate.
  • the lithium salt it is selected from at least one of inorganic lithium salts and organic lithium salts.
  • the inorganic lithium salt is selected from at least one of lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium perchlorate (LiClO 4 ).
  • the organic lithium salt is selected from at least lithium bis-oxalate borate (LiB(C 2 O 4 ) 2 , abbreviated as LiBOB), lithium bisfluorosulfonimide (LiFSI) and lithium bistrifluoromethanesulfonimide (LiTFSI) A sort of.
  • the additive is selected from one or more of fluorine-containing, sulfur-containing and unsaturated double bond-containing compounds.
  • fluorine-containing, sulfur-containing and unsaturated double bond-containing compounds can be selected from the following substances without limitation: fluoroethylene carbonate, vinyl sulfite, propane sultone, N-methylpyrrolidone, N-methylformamide, N-methylacetamide, acetonitrile, One or more of acrylonitrile, ⁇ -butyrolactone and methyl sulfide.
  • the material of the separator includes, but is not limited to, a polymer separator, such as one selected from polyethylene, polypropylene and ethylene-propylene copolymer.
  • the electrochemical device of the present application includes any device in which an electrochemical reaction occurs, and specific examples thereof include all kinds of primary batteries, secondary batteries, fuel cells, solar cells, or capacitors.
  • the electrochemical device is a lithium secondary battery, including a lithium metal secondary battery, a lithium ion secondary battery, a lithium polymer secondary battery, or a lithium ion polymer secondary battery.
  • an electronic device comprising the electrochemical device according to the second aspect of the present application.
  • Electrochemical devices can be used as power sources for electronic devices, as well as as energy storage units for electronic devices.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, and the like.
  • This electronic device is generally required to be thin and light, and a secondary battery can be used as a power source.
  • lithium ion batteries The preparation of lithium ion batteries is described below by taking lithium ion batteries as an example and in conjunction with specific embodiments. Those skilled in the art will understand that the preparation methods described in this application are only examples, and any other suitable preparation methods are included in the scope of this application. within the range.
  • the PET film of the organic support layer is subjected to corona treatment, the carboxylated polyolefin and the carboxyl-curable polyurethane are mixed uniformly in a mass ratio of 30:70 and coated on the surface of the PET film, and dried at 120 ° C to evaporate the solvent;
  • the coated PET film (including the organic support layer and the intermediate coating) is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber is sealed, the air pressure of the vacuum aluminizer is pumped to 10 -3 Pa, and the crucible is The boat temperature was adjusted to 1200°C-1500°C, and aluminum plating was started. After the Al thickness reached 1000 nm, aluminum plating was stopped, and a conductive layer was formed on the surface of the intermediate coating, thereby obtaining current collector 1 .
  • the current collector 2 to the current collector 20 are prepared according to the above-mentioned preparation method of the current collector 1.
  • the present invention also prepares the current collector 2 to the current collector 20.
  • the difference is that the types and proportions of the first resin and the second resin in each current collector are different. , or the thickness of the intermediate coating is different, or the thickness or composition of the organic support layer is different, or the thickness of the conductive layer is different.
  • the corona-treated PET film surface is coated with bisphenol A epoxy resin, it is placed in the vacuum chamber of the crucible boat vacuum evaporation aluminizer, the vacuum chamber is sealed, and the air pressure of the vacuum aluminizer is pumped to 10 -3 Pa , the temperature of the crucible boat was adjusted to 1200°C-1500°C, and the aluminum plating was started. After the Al thickness reached 1000 nm, the aluminum plating was stopped, and the comparative current collector 3# was obtained.
  • the present invention also prepares current collector 4# to current collector 8#, the difference is that the type of resin or the proportion of resin is different.
  • the mass ratio represents the mass ratio of the first resin to the second resin
  • the first adhesive force-30 represents the adhesive force of the first resin to the organic support layer, N/15mm
  • the second adhesive force Force-30 represents the adhesion of the second resin to the organic support layer, N/15mm
  • the first adhesion-10 represents the adhesion of the first resin to the conductive layer, N/15mm
  • the second adhesion The knot force-10 represents the adhesion force of the second resin to the conductive layer, N/15mm.
  • the positive active material nickel cobalt lithium manganate (NCM811), the conductive agent (Super p), and the binder polyvinylidene fluoride are mixed according to the weight ratio of about 97:1.4:1.6, and N-methylpyrrolidone (NMP) is added.
  • NMP N-methylpyrrolidone
  • the negative electrode active material artificial graphite, sodium carboxymethyl cellulose (CMC), and the binder styrene-butadiene rubber (SBR) are mixed in deionized water in a mass ratio of about 97:1:2, fully mixed and stirred to obtain a negative electrode slurry .
  • the negative electrode slurry was uniformly coated on the negative electrode current collector, dried at 85°C, then cold-pressed, cut into pieces, slit, and dried under vacuum at 120°C for 12 hours to obtain the negative electrode.
  • the concentration of lithium hexafluorophosphate is 1 mol/L
  • the organic solvent is composed of ethylene carbonate, propylene carbonate, diethyl carbonate, ethyl propionate, fluoroethylene carbonate, and 1,3-propanesultone.
  • the separator film is wound into a battery core, which is packaged with aluminum-plastic film, baked in a vacuum state for 24 hours to remove moisture, and then injected into the above-mentioned electrolyte, and left to stand at high temperature.
  • the batteries were formed and sorted to obtain square soft-pack lithium-ion batteries with thickness, width and height of 3.8mm, 64mm and 82mm, respectively.
  • Example 17 in the process of preparing the negative electrode, the negative electrode current collector was the above-mentioned current collector 17, and the corresponding lithium-ion battery B17 was obtained by the above-mentioned method.
  • Comparative Example 1 Comparative Examples 3 to 8, in the process of preparing the positive electrode, the positive electrode current collector adopts the above-mentioned current collector 1#, current collector 3# to 8# respectively, and adopts the above method to obtain the corresponding lithium ion batteries D1, D3 to D8 .
  • Comparative Example 2 In the process of preparing the negative electrode, the negative electrode current collector adopts the above-mentioned current collector 2#, and the corresponding lithium ion battery D2 is obtained by the above method.
  • the relevant test methods for the release of the battery after the injection of the battery include: injecting the wound and top-side sealed battery into the electrolyte according to the liquid retention coefficient of 0.0015g/mAh, then placing it in an oven at 80 ° C, and leaving it at a high temperature for 16 hours. After taking out and cooling to room temperature, disassemble the battery and observe the damage of the pole piece.
  • Table 3 lists the performance test results of each embodiment and comparative example.
  • the weight percentage of the current collector refers to the percentage of the increase or decrease of the weight of the current collector provided by the present application relative to the weight of the conventional current collector, wherein the conventional current collector is an Al foil with a thickness of 13 ⁇ m and a thickness of 7 ⁇ m. Cu foil.
  • the current collector thickness percentage refers to the percentage of the current collector thickness increased ⁇ or decreased ⁇ relative to the current collector thickness of 13 ⁇ m Al foil and 7 ⁇ m thick Cu foil.
  • the capacity and voltage platforms can be considered fixed, and the cell weight directly affects the GED.
  • the type and thickness of the current collector are changed inside the cell.
  • the weight of the current collector can be calculated according to the area, thickness and density of the current collector in a single cell. According to the thickness of the current collector and the number of layers designed for the cell , the total thickness of the current collector can be calculated, and the variation of GED can be obtained from this.
  • X/Y means that X lithium-ion batteries pass through among Y lithium-ion batteries.
  • the composite resin system constructed in the present application gives full play to the electrolyte resistance of the first resin and the adhesion of the second resin. performance, so that the pass numbers of the prepared batteries B1 to B20 are better than those of the batteries D6 and D9.
  • batteries D7 to D8 provide an intermediate coating containing two resins, their adhesion to the organic support layer or conductive layer is the same or similar, and the resistance to electrolyte swelling is also the same or similar, so that the prepared The number of passes of the batteries D7 to D8 is less than that of the batteries B1 to B20.
  • the batteries B1 to B20 of the present application reduce the weight of the current collector, also reduce the thickness of the current collector, and improve the weight energy density of the battery.
  • the present application also selects some current collectors for performance testing after soaking.
  • the above-mentioned current collectors 1 to 10 and current collectors 1#, current collectors 2# to current collectors 4# were soaked in the electrolyte solution at 85° C. for 72 hours to test the soaking performance, which specifically included: cutting each current collector sample into pieces.
  • the splines with a length of 5 cm and a width of 2 cm were immersed in the electrolyte and packaged with aluminum-plastic film to remove environmental interference. Finally, they were placed in a constant temperature drying box at 85 °C for 72 h and taken out to observe the external conditions of the current collector.
  • the test results show that most of the current collectors 1 to 10 have no aluminum layer falling off, only the aluminum layer of the current collector 1 is slightly peeled off, and the aluminum layer of the current collector 2 is wrinkled; while the aluminum powder of the current collector 1# A large area fell off, and the flaky aluminum layer fell off from collector 2# to collector 4#.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

一种集流体、使用该集流体的电化学装置和电子设备,涉及储能技术领域。集流体,包括:有机支撑层(30);导电层(10);中间涂层(20),中间涂层(20)设置于有机支撑层(30)和导电层(10)之间;其中,中间涂层(20)包括至少由第一树脂和第二树脂组成的树脂组合物;第一树脂对有机支撑层(30)的粘结力小于第二树脂对有机支撑层(30)的粘结力;第一树脂对导电层(10)的粘结力小于第二树脂对导电层(10)的粘结力。集流体可同时兼顾低质量以及良好的导电、集流和结构稳定可靠的性能,从而有利于使包含该集流体的电化学装置能同时兼顾较高的重量能量密度以及良好的综合电化学性能。

Description

集流体、使用该集流体的电化学装置和电子设备 技术领域
本申请涉及储能技术领域,具体讲,涉及一种集流体、使用该集流体的电化学装置和电子设备。
背景技术
以锂离子电池为代表的二次电池由于具备能量密度大、输出功率高、循环寿命长、自放电率低、环境污染小等优点,而被广泛应用于各类消费电子产品、电动车以及风能、太阳能等所需的大型储能装置等领域中。随着社会科技的进一步发展及二次电池的应用范围不断扩大,人们对二次电池的能量密度也提出了越来越高的要求。
相关技术中集流体贯穿了电池全部的加工过程以及服务于电池的整个生命周期,是电池活性材料的载体并为电子传输提供通道,是二次电池中重要组成部分,与电池的能量密度密切相关。但是相关技术中的集流体的集流性能或对于提高二次电池的能量密度所起的作用仍然存在改进的空间,相应的,二次电池的能量密度也期待能够进一步提高。例如现有的二次电池,一方面采用金属集流体,由于金属材料的特性(如断裂延伸率低),当集流体厚度降低至一定水平后,集流体易发生断裂,破损等不良现象,造成原材料浪费、产能降低等问题,从而采用具有较大厚度和较高密度的金属集流体,然而不利地降低了电池的能量密度。另一方面采用复合集流体,其在低密度的聚合物薄膜表面通过金属的物理气相沉积得到金属聚合物薄膜并形成复合集流体,可以降低电池集流体的密度,提升电池的重量能量密度。然而通过气相沉积获得的复合集流体的表层金属与聚合物薄膜之间的附着力低,在极片加工与电池生命周期中通常存在复合集流体表层导电层脱落等现象,严重影响电池的循环及存储性能。从而使用现 有复合集流体的二次电池在长时间循环(≥1000次)以及高温存储(≥85℃)后,存在金属层脱落、电芯容量衰减加快等问题。
因此,相关技术中的集流体以及电化学装置存在改进的需求。
发明内容
本申请发明人进行了大量的研究,旨在改善传统的集流体,使得其在具有良好的导电和集流性能的同时,减少或避免复合集流体的脱层现象,提高复合集流体中各层之间的粘接力,从而提供可同时兼顾较高的重量能量密度以及良好的综合电化学性能的电化学装置。
因此,本申请的首要申请目的在于提出一种集流体。本申请的第二申请目的在于提出一种使用该集流体的电化学装置和电子设备。根据本申请的第一方面,提供一种集流体,该集流体包括有机支撑层、导电层和中间涂层,导电层设置于有机支撑层的至少一个表面上,中间涂层设置于有机支撑层和导电层之间。
其中,所述中间涂层包括树脂组合物,树脂组合物包括第一树脂和第二树脂;所述第一树脂对所述有机支撑层的粘结力小于所述第二树脂对所述有机支撑层粘结力;所述第一树脂对所述导电层的粘结力小于所述第二树脂对所述导电层的粘结力。
在上述集流体中,所述第一树脂对所述有机支撑层的粘结力为1.8N/15mm至2.5N/15mm,进一步为2.1N/15mm至2.3N/15mm;所述第二树脂对所述有机支撑层的粘结力为3.5N/15mm至7.5N/15mm,进一步为4.0N/15mm至5.0N/15mm。
在上述集流体中,所述第一树脂对所述导电层的粘结力为2.0N/15mm至5.5N/15mm,进一步为4.0N/15mm至5.0N/15mm;
所述第二树脂对所述导电层的粘结力为3.5N/15mm至7.5N/15mm,进一步为4.0N/15mm至5.5N/15mm。
在上述集流体中,以在温度为85℃的电解液中浸泡72h计,所述第二树脂在电解液中的溶胀比与所述第一树脂在电解液中的溶胀比的差值≥3 质量%,进一步为≥14质量%。
在上述集流体中,所述中间涂层的溶度参数的范围为7.5至12;所述中间涂层的热膨胀系数的范围为50×10 -6K -1至80×10 -6K -1
在上述集流体中,所述第一树脂包括聚丙烯酸树脂(PAA)、改性聚烯烃树脂(MPO)或有机硅树脂(OS)中的至少一种,所述第二树脂包括聚丙烯酸酯(PEA)、聚氨酯(PU)、不饱和聚酯(UP)、酚醛树脂(PF)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)或环氧树脂(EPO)中的至少一种。
在上述集流体中,所述第一树脂包括环氧树脂(EPO),所述第二树脂包括聚丙烯酸酯(PEA)、聚氨酯(PU)、不饱和聚酯(UP)、酚醛树脂(PF)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)中的至少一种。
在上述集流体中,所述中间涂层中所述第一树脂与所述第二树脂之间的质量比为2:98至98:2;进一步,所述第一树脂与所述第二树脂之间的质量比为10:90至90:10;所述第一树脂为改性聚烯烃树脂,所述第二树脂为聚氨酯和/或环氧树脂,所述第二树脂在所述树脂组合物中的质量百分含量为2%至30%;所述中间涂层的厚度为0.2μm至2μm。
在上述集流体中,所述有机支撑层包括有机聚合物,所述有机聚合物包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对萘二甲酸乙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺、聚碳酸酯、聚醚醚酮、聚甲醛、聚对苯硫醚、聚对苯醚、聚氯乙烯、聚酰胺、聚四氟乙烯、聚偏氟乙烯或聚苯乙烯中的至少一种;所述有机支撑层的厚度为2μm至36μm。
在上述集流体中,所述导电层的材料包括金属导电材料或碳基导电材料中的至少一种;所述金属导电材料包括铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种,所述碳基导电材料包括石墨、乙炔黑、石墨烯或碳纳米管中的至少一种;所述导电层的厚度为100nm至5000nm;所述导电层为气相沉积层。
在上述集流体中,所述导电层包括第一导电层和第二导电层,所述第一导电层和所述第二导电层分别设置于所述有机支撑层的两个表面上;
所述中间涂层包括第一中间涂层和第二中间涂层;
所述第一导电层、所述第一中间涂层、所述有机支撑层、所述第二中间涂层、所述第二导电层依次层叠设置。
根据本申请的第二方面,提供一种电化学装置,其包括正极、负极及电解液,其中所述正极和/或所述负极包括如本申请第一方面所述的集流体。
根据本申请的第三方面,提供一种电子设备,其包括如本申请第二方面所述的电化学装置。
本申请所提供的集流体为包括有机支撑层、中间涂层和导电层的复合集流体,其中设置于有机支撑层和导电层之间的中间涂层包括至少由第一树脂和第二树脂组成的树脂组合物,该树脂组合物中的第一树脂对于有机支撑层和导电层的粘接能力小于第二树脂对于有机支撑层和导电层的粘接能力,从而第一树脂的耐电解液溶胀性能优于第二树脂的耐电解液溶胀性能。由此,通过所构建的复合树脂体系充分发挥第一树脂的耐电解液性能以及第二树脂的粘结性能,以灵活调节中间涂层及复合集流体中界面粘接力和电解液耐受性,进而可减少或避免集流体在电池运行过程中的脱层问题,这有利于提高集流体在使用过程中的稳定可靠性,保证集流体在电化学装置的使用过程中,能够保持良好的导电和集流的性能。
本申请的电子设备包括本申请提供的电化学装置,因而至少具有与所述电化学装置相同的优势。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个实施例提供的集流体的结构示意图。
图2示出了本申请另一个实施例提供的集流体的结构示意图。
主要元件符号说明
10-导电层;
101-第一导电层;
102-第二导电层;
20-中间涂层;
201-第一中间涂层;
202-第一中间涂层;
30-有机支撑层。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合实施例对本申请进行进一步详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
除非另有说明,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中,在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
下面结合附图和具体实施例详细说明本申请的集流体、电化学装置和电子设备。
[集流体]
本申请的第一方面提供一种集流体,其与传统的金属集流体相比,能够减轻自身重量,其与传统的复合集流体相比,能够提高结构的稳定可靠性,从而本申请的集流体可同时兼顾低重量以及良好的导电、集流和结构稳定可靠的性能,从而有利于使包含该集流体的电化学装置能同时兼顾较高的重量能量密度以及良好的综合电化学性能。
图1示意性的示出了作为一个示例的集流体。请参阅图1所示,该集流体包括层叠设置的有机支撑层30、中间涂层20和导电层10;其中的中间涂层20设置在有机支撑层30和导电层10之间;中间涂层20包括至少由第一树脂和第二树脂组成的树脂组合物;第一树脂对有机支撑层30的粘结力小于第二树脂对有机支撑层30的粘结力;第一树脂对导电层10的粘结力小于第二树脂对导电层10的粘结力。
本文中,粘结力和粘接力具有相同的含义,因而粘结力也可称为粘接力。
上述集流体中,在导电层10和有机支撑层30之间设有中间涂层20,该中间涂层20可起到连接导电层10和有机支撑层30的作用,通过中间涂层20的设置可提高层间附着力。进一步,本申请实施例通过使用包含至少由第一树脂和第二树脂组成的树脂组合物,且第一树脂对有机支撑层30的粘结力小于第二树脂对有机支撑层30的粘结力,第一树脂对导电层10的粘结力小于第二树脂对导电层10的粘结力,从而第一树脂的耐电解液溶胀性能优于第二树脂的耐电解液溶胀性能,两种树脂的搭配可以有效起到提高界面粘接力及较强的耐电解液的功能,从而在电极极片加工与电化学装置例如二次电池生命周期中可减少或避免集流体的导电层脱落等现象,能够使二次电池具有良好的循环性能及存储性能。
具体讲,上述中间涂层20中的第一树脂与第二树脂对有机支撑层30的粘接力不同,对导电层10的粘接力也不同,电解液耐受能力也不同。 比如在一些情况下,第一树脂对有机支撑层30的粘结力小于第二树脂对有机支撑层30的粘结力,第一树脂对导电层10的粘结力小于第二树脂对导电层10的粘结力,第一树脂的耐电解液溶胀性能优于第二树脂的耐电解液溶胀性能,从而通过调配链段组成及树脂比例等可充分发挥各树脂组分的性能优势,利用所构建的复合树脂体系增强复合集流体界面粘接力及改善电解液溶胀性能。因此,相较于现有的复合集流体,本申请实施例的集流体可减少或避免电极极片加工或电池运行过程中的脱层问题,能提高集流体在使用过程中的稳定可靠性,由此保证集流体在电化学装置的使用过程中,能够保持良好的导电和集流的性能。此外,相较于现有的金属集流体来说,本申请实施例的集流体自身的重量显著降低,一般可使集流体减重约50%,从而能提高电池的重量能量密度。
因此,采用本申请实施例的集流体可同时兼顾低质量以及良好的导电、集流和结构稳定可靠的性能。
在一些实施例中,第一树脂对有机支撑层的粘结力为1.8N/15mm至2.5N/15mm;第二树脂对有机支撑层的粘结力为3.5N/15mm至7.5N/15mm。在一些实施例中,第一树脂对有机支撑层的粘结力为1.9N/15mm至2.4N/15mm;第二树脂对有机支撑层的粘结力为4.0N/15mm至7.0N/15mm。在一些实施例中,第一树脂对有机支撑层的粘结力为2.1N/15mm至2.3N/15mm;第二树脂对有机支撑层的粘结力为4.0N/15mm至5.0N/15mm。例如,在一些实施例中,第一树脂对有机支撑层的粘结力可以为1.8N/15mm、1.9N/15mm、2.0N/15mm、2.1N/15mm、2.2N/15mm、2.3N/15mm、2.4N/15mm或2.5N/15mm;第二树脂对有机支撑层的粘结力可以为3.5N/15mm、3.6N/15mm、3.7N/15mm、3.8N/15mm、4.0N/15mm、4.1N/15mm、4.2N/15mm、4.3N/15mm、4.4N/15mm、4.5N/15mm、4.6N/15mm、4.8N/15mm、4.9N/15mm、5.0N/15mm、5.5N/15mm、6.0N/15mm、7.0N/15mm或7.5N/15mm。第一树脂、第二树脂对有机支撑层的粘结力分别满足上述范围时,利于增强复合集流体的界面粘结力,能够有效发挥有机支撑层的支撑作用,保证集流体具有良好的结构稳定性和工作稳定性,使集流体具有 较高的使用寿命。
树脂对于有机支撑层的粘结力可以采用本领域已知的方法测定,作为示例,树脂与有机支撑层的粘结力的示例性测试方法如下:(1)样品制备:将12μm的PET(聚对苯二甲酸乙二醇酯)膜进行电晕处理,将已混合好的树脂(如第一树脂或第二树脂)和固化剂的混合物涂覆于电晕处理后的PET膜的表面,并在一定温度下干燥形成厚度为1μm的涂层。(2)将厚度约80μm的EAA(乙烯丙烯酸共聚物)热熔胶与12μm的PET薄膜经LCP200-A2008N型热压机热压,热压条件为:温度85℃,压力0.7MPa,时间30s。(3)将上述涂覆完涂层的样品裁切为2cm×10cm规格的样条,并使用无水乙醇润湿的无尘纸擦拭干净。(4)将经过热压复合的EAA表层的离型纸剥掉,并将粘接面与裁切好的涂覆完涂层的样品正对放置,且使用热压机热压,热压条件为:温度85℃,压力0.7MPa,时间45s。(5)将双面胶贴在长度为125±1mm、宽度为50±1mm、厚度为1.5-2mm的钢板上并剥掉离型纸,将步骤(4)制备好的复合样品中的基膜侧贴在双面胶上。使用美工刀及直尺将测试样裁切成长为80mm、宽为15mm规格的待测样。(6)开启INSTRON 3365型电子万能试验机,选择180°剥离测试项准备测试:将样品自由端对折180°,并从实验板上剥开粘合面约25mm,把样品自由端和实验板分别夹在上、下夹持器上且传感器恰好不受力,夹持时剥离面与拉力机力线保持一致。(7)按控制面板上试验键开始测试,测试行程完成后,拉力试验机上夹头将回位,在上夹头回位到位时,将试验板从下夹头上取出。每次测试至少取三个数据,以均值表示样品的粘结力。
在一些实施例中,第一树脂对导电层的粘结力为2.0N/15mm至5.5N/15mm;所述第二树脂对导电层的粘结力为3.5N/15mm至7.5N/15mm。在一些实施例中,第一树脂对导电层的粘结力为2.5N/15mm至5.2N/15mm;第二树脂对导电层的粘结力为4.0N/15mm至6.0N/15mm。在一些实施例中,第一树脂对导电层的粘结力为4.0N/1.mm至5.0N/15mm;第二树脂对导电层的粘结力为4.0N/15mm至5.5N/15mm。例如,在一些 实施例中,第一树脂对导电层的粘结力可以为2.0N/15mm、2.2N/15mm、2.4N/15mm、2.5N/15mm、2.8N/15mm、3.0N/15mm、3.5N/15mm、4.0N/15mm、4.3N/15mm、4.5N/15mm、4.9N/15mm、5.0N/15mm、5.5N/15mm;第二树脂对导电层的粘结力可以为3.5N/15mm、3.8N/15mm、4.0N/15mm、4.1N/15mm、4.2N/15mm、4.3N/15mm、4.5N/15mm、4.7N/15mm、4.8N/15mm、4.9N/15mm、5.0N/15mm、5.5N/15mm、6.0N/15mm、7.0N/15mm或7.5N/15mm。第一树脂、第二树脂对导电层的粘结力分别满足上述范围时,利于增强复合集流体的界面粘结力,可减少或避免导电层的脱落,保证集流体具有良好的结构稳定性和工作稳定性,使集流体具有较高的使用寿命。
树脂对于导电层的粘结力可以采用本领域已知的方法测定,作为示例,树脂与导电层的粘结力的示例性测试方法如下:(1)样品制备:将树脂(如第一树脂或第二树脂)在使用离型纸制成的长方体模具中制备成厚度约5um的薄胶膜,对此薄胶膜进行金属层沉积,沉积厚度约0.5um。(2)将厚度约80μm的EAA热熔胶与12μm的PET薄膜经LCP200-A2008N型热压机热压,热压条件为:温度85℃,压力0.7MPa,时间30s。(3)将上述经过金属层沉积的样品裁切为2cm×10cm规格的样条,并使用无水乙醇润湿的无尘纸擦拭干净。(4)将经过热压复合的EAA表层的离型纸剥掉,并将粘接面与裁切好的经过金属层沉积的样品正对放置,且使用热压机热压,热压条件为:温度85℃,压力0.7MPa,时间45s。(5)将双面胶贴在长度为125±1mm、宽度为50±1mm、厚度为1.5-2mm的钢板上并剥掉离型纸,将步骤(4)制备好的复合样品中的基膜侧贴在双面胶上。使用美工刀及直尺将测试样裁切成长为80mm、宽为15mm规格的待测样。(6)开启INSTRON 3365型电子万能试验机,选择180°剥离测试项准备测试:将样品自由端对折180°,并从实验板上剥开粘合面约25mm,把样品自由端和实验板分别夹在上、下夹持器上且传感器恰好不受力,夹持时剥离面与拉力机力线保持一致。(7)按控制面板上试验键开始测试,测试行程完成后,拉力试验机上夹头将回位,在上夹头回位到位时,将试验 板从下夹头上取出。每次测试至少取三个数据,以均值表示样品的粘结力。
在一些实施例中,以在温度为85℃的电解液中浸泡72h计,所述第二树脂在电解液中的溶胀比与所述第一树脂在电解液中的溶胀比的差值≥3质量%,即(第二树脂在电解液中的溶胀比-第一树脂在电解液中的溶胀比)≥3质量%。进一步,第二树脂在电解液中的溶胀比与所述第一树脂在电解液中的溶胀比的差值≥5质量%。更进一步,第二树脂在电解液中的溶胀比与所述第一树脂在电解液中的溶胀比的差值≥15质量%。第一树脂和第二树脂不仅对于导电层的粘结力不同,对于有机支撑层的粘结力不同,二者在电解液中的溶胀比也不同,第一树脂在电解液中的溶胀比要小于第二树脂在电解液中的溶胀比,这样,更利于增强集流体界面粘结力及改善电解液抵抗能力,保证集流体具有良好的结构稳定性和工作稳定性。
在一些实施例中,以在温度为85℃的电解液中浸泡72h计,第一树脂在电解液中的溶胀比为4质量%至18质量%,第二树脂在电解液中的溶胀比为7质量%至33质量%。在一些实施例中,以在温度为85℃的电解液中浸泡72h计,第一树脂在电解液中的溶胀比可以为4质量%、5质量%、6质量%、7质量%、8质量%、10质量%、15质量%、16质量%或18质量%,第二树脂在电解液中的溶胀比为7质量%、12质量%、16质量%、18质量%、20质量%、25质量%、30质量%、31质量%、32质量%或33质量%,且满足第二树脂在电解液中的溶胀比与第一树脂在电解液中的溶胀比的差值≥3质量%;进一步,第二树脂在电解液中的溶胀比与第一树脂在电解液中的溶胀比的差值≥14质量%。
可以采用本领域已知的方法测试树脂在电解液中的溶胀比。作为一个示例,树脂在电解液中的溶胀比的测试方法如下:(1)将树脂(如第一树脂或第二树脂)制成胶膜并充分干燥;(2)称量初始胶膜重量,记为W1;(3)将胶膜放入15cm*15cm的pocket(袋子)中,并加入50ml的1mol/L的六氟磷酸锂电解液后用热封机将其密封;(4)将上述经过密封的pocket置于85℃的烘箱中,在烘箱中搁置72h后将pocket取出,将pocket中的胶膜取出并用无尘纸吸干胶膜表面的电解液后称重,记为W2。按照公式: (W2-W1)/W1计算得到树脂在电解液中的溶胀比。值得注意的是,测试过程中,同种树脂至少制备三块胶膜,同一胶膜至少称量三次,以减少偶然误差,提升测试的准确度。
在一些实施例中,中间涂层的溶度参数的范围为7.5至12。在一些实施例中,中间涂层的溶度参数的范围为8至11。在一些实施例中,中间涂层的溶度参数的可以为7.5、8、8.2、8.6、9、9.5、9.8、10、10.5、11、11.5或12。上述中间涂层中,第一树脂和第二树脂的粘结力不同,第一树脂的粘结力要小于第二树脂的粘结力,第一树脂和第二树脂在电解液中的溶胀比也不同,第一树脂在电解液中的溶胀比要小于第二树脂在电解液中的溶胀比,而第一树脂和第二树脂的溶度参数可以相同或相近。由此,可充分发挥各种树脂的优势,更利于增强集流体界面粘结力及改善电解液抵抗能力。其中当中间涂层的溶度参数满足上述范围时,利于使得电化学装置具有较高的电化学性能,如较长的循环寿命。
可以采用本领域已知的方法测试中间涂层的溶度参数。作为一个示例,中间涂层的溶度参数的测试方法,可以采用浊度滴定法进行测试,具体包括以下步骤:(1)称取0.2g左右的聚合物样品溶于25ml的氯仿中,用移液管移取10ml溶液于试管中,先用正戊烷滴定聚合物溶液出现沉淀,振荡试管使沉淀溶解,继续滴入正戊烷,沉淀逐渐难以振荡溶解,滴定至出现的沉淀刚好无法溶解为止,记下用去的正戊烷体积V 正戊烷;(2)参照步骤(1)的实验过程,将正戊烷替换为甲醇,记录甲醇所用体积V 甲醇;(3)根据式δ 混合=δ 1X1+δ 2X2计算出正戊烷/氯仿混合溶剂和甲醇/氯仿混合溶剂的溶度参数,其中δ表示单组分物质的溶度参数,X表示单组分物质的体积分数;(4)根据式δ 涂层=(δ 正戊烷-氯仿甲醇-氯仿)/2,计算得出涂层的溶度参数。
在一些实施例中,中间涂层的热膨胀系数的范围为50×10 -6K -1至80×10 -6K -1。在一些实施例中,中间涂层的热膨胀系数的范围为55×10 -6K -1至75×10 -6K -1。在一些实施例中,中间涂层的热膨胀系数可以为50×10 -6K -1、51×10 -6K -1、53×10 -6K -1、55×10 -6K -1、57×10 -6K -1、57.6×10 -6K -1、 59×10 -6K -1、60×10 -6K -1、65×10 -6K -1、69×10 -6K -1、70×10 -6K -1、75×10 -6K -1或80×10 -6K -1。上述中间涂层中,第一树脂和第二树脂的热膨胀系数可以相同或相近。
上述高分子中间涂层使用溶度参数、热膨胀系数相近,但粘接能力、电解液耐受能力差异明显的两种或多种树脂体系,通过调配链段组成及树脂比例发挥各树脂体系的优点,利用复合树脂体系增强复合集流体界面粘接力及改善电解液抵抗能力。
在一些实施例中,第一树脂与第二树脂之间的质量比为2:98至98:2。在一些实施例中,第一树脂与第二树脂之间的质量比为5:95至95:5。在一些实施例中,第一树脂与第二树脂之间的质量比为10:90至90:10。在一些实施例中,第一树脂与第二树脂之间的质量比为15:85至85:15。在一些实施例中,第一树脂与第二树脂之间的质量比可以为2:98、3:97、5:95、8:92、10:90、12:88、15:85、20:80、30:70、40:60、50:50、60:40、70:30、80:20、85:15、90:10、95:5或98:2。当第一树脂和第二树脂的质量比满足上述范围时,可以平衡粘接力和电解液耐受性,使辅助树脂在主体树脂中呈现连续性,以及使胶层具有适当的柔韧性。
在一些实施例中,第一树脂包括聚丙烯酸树脂(PAA)、改性聚烯烃树脂(MPO)、有机硅树脂(OS)或环氧树脂(EPO)中的至少一种,第二树脂包括聚丙烯酸酯(PEA)、聚氨酯(PU)、不饱和聚酯(UP)、酚醛树脂(PF)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)或环氧树脂(EPO)中的至少一种,且所述第一树脂和所述第二树脂不同时选自环氧树脂(EPO)。进一步,在一些实施例中,第一树脂还包括聚乙烯接枝的马来酸酐树脂。相对而言,选用上述几种树脂作为第一树脂,使得第一树脂的电解液的耐受性较好,而粘结力较低,选用上述几种树脂作为第二树脂,使得第二树脂的粘结力较高,而电解液的耐受性略差。
在一些实施例中,树脂组合物包括聚氨酯(PU)、环氧树脂(EPO),聚丙烯酸酯(PEA)、酚醛树脂(PF)、不饱和聚酯(UP)、改性聚烯烃树 脂(MPO)、有机硅树脂(OS)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)、聚丙烯酸树脂(PAA)和聚乙烯接枝的马来酸酐树脂中的两种或两种以上。
在一些实施例中,树脂组合物包括,但不限于,聚氨酯和环氧树脂、聚氨酯和改性聚烯烃树脂、环氧树脂和改性聚烯烃树脂、聚氨酯和有机硅树脂、聚丙烯酸酯和改性聚烯烃树脂、聚氨酯和酚醛树脂、聚氨酯和聚丙烯酸树脂、聚氨酯、环氧树脂和有机硅树脂、聚氨酯、环氧树脂和改性聚烯烃树脂中的任一组合。
在一些实施例中,第一树脂为有机硅树脂时,第二树脂为聚氨酯,或者第二树脂为环氧树脂,或者第二树脂为聚氨酯和环氧树脂。
在一些实施例中,第一树脂为改性聚烯烃树脂时,第二树脂为聚氨酯,或者第二树脂为环氧树脂,或者第二树脂为环氧树脂和聚氨酯。
上述各类树脂中,环氧树脂包括双酚A类环氧树脂,聚氨酯包括羟基固化型聚氨酯,有机硅树脂包括苯基硅树脂,改性聚烯烃树脂包括羧化聚烯烃。
在一些实施例中,所述第一树脂为改性聚烯烃树脂,所述第二树脂为聚氨酯和环氧树脂,所述第二树脂在所述树脂组合物中的质量百分含量为2%至30%;也即,当树脂组合物选自聚氨酯、环氧树脂和改性聚烯烃树脂时,聚氨酯和环氧树脂在树脂组合物中的质量百分含量为2%至30%。这样,有利于充分利用MPO的高电解液耐受性。
上述中间涂层中,复配树脂的配比原则主要在于平衡涂层的粘接力(与金属层及聚合物膜层均可形成较高牢度)与电解液耐受性,同时兼顾掺杂的小比例辅助物质在主体物质中的连续性,以及复配树脂的可加工性(胶液的粘度、流动性)、胶层起到的缓冲作用及抗弯折性(胶层的硬度及柔韧性性)等问题。
值得注意的是,复配体系中某种组分的作用需凸显时可适当加大其配比,但要保证可用同种或同类溶剂溶解,混合时无凝胶或粘度突增的现象发生,且复配胶液在整个加工过程稳定存在。
在一些实施例中,中间涂层的厚度为0.2μm至2μm。在一些实施例中,中间涂层的厚度为0.2μm至1.5μm。在一些实施例中,中间涂层的厚度为0.5μm至1μm。在一些实施例中,中间涂层的厚度可以为0.2μm、0.5μm、0.8μm、1μm、1.2μm、1.5μm、1.8μm或2μm。
具有适当厚度的中间涂层既能保证集流体具有良好的导电和集流的性能,使电池具有良好的电化学性能,又能使集流体具有较低的重量,使电池具有较高的重量能量密度。此外,适宜厚度的中间涂层还有助于减少或避免在加工过程中的破损,从而使集流体具有良好的机械稳定性和工作稳定性。
在一些实施例中,有机支撑层包括有机聚合物,有机聚合物包括,但不限于,聚乙烯(PE)、聚丙烯(PP)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯、聚对萘二甲酸乙二醇酯(PEN)、聚对苯二甲酰对苯二胺(PPTA)、聚酰亚胺(PI)、聚碳酸酯(PC)、聚醚醚酮(PEEK)、聚甲醛(POM)、聚对苯硫醚(PPS)、聚对苯醚(PPO)、聚氯乙烯(PVC)、聚酰胺(PA)、聚四氟乙烯(PTFE)、聚偏氟乙烯和聚苯乙烯中的至少一种。在一些实施例中,有机聚合物例如可以为聚乙烯(PE)、聚对苯二甲酸乙二醇酯(PET)或聚碳酸酯(PC)。
在一些实施例中,有机支撑层的厚度为2μm至36μm。在一些实施例中,有机支撑层的厚度为4μm至36μm。在一些实施例中,有机支撑层的厚度为6μm至30μm。在一些实施例中,有机支撑层的厚度可以为2μm、4μm、5μm、6μm、8μm、10μm、12μm、15μm、20μm、25μm、30μm、32μm或36μm。具有适当厚度的有机支撑层,在有效起到支撑作用的同时,还利于使电池具有较高的重量能量密度。
在一些实施例中,导电层的材料包括,但不限于,金属导电材料和碳基导电材料中的至少一种;金属导电材料包括铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种,碳基导电材料包括石墨、乙炔黑、石墨烯或碳纳米管中的至少一种。在一些实施例中,导电层的材料例如可以为铝、铜、镍、铜合金、镍合金或铝合金等。
在一些实施例中,导电层的厚度为100nm至5000nm。在一些实施例中,导电层的厚度为500nm至4000nm。在一些实施例中,导电层的厚度为1000nm至3000nm。在一些实施例中,导电层的厚度可以为100nm、200nm、500nm、800nm、1000nm、1500nm、2000nm、2500nm、3000nm、4000nm或5000nm。具有适当厚度的导电层既能保证集流体具有良好的导电和集流的性能,使电池具有良好的电化学性能,又能使集流体具有较低的重量,使电池具有较高的重量能量密度。
在一些实施例中,导电层为气相沉积层。该导电层可以通过气相沉积、化学镀、电镀或机械辊轧等手段形成于中间涂层上,其中优选气相沉积。这样,可以实现导电层、中间涂层及有机支撑层之间更紧密的结合。
气相沉积法优选为物理气相沉积法。物理气相沉积法优选蒸发法及溅射法中的至少一种;蒸发法优选真空蒸镀法、热蒸发法及电子束蒸发法中的至少一种,溅射法优选磁控溅射法。
作为一个示例,可通过真空蒸镀法形成导电层。其中可以包括:将经过中间涂层涂覆处理的有机支撑层置于真空镀室内,以1200℃-1500℃的高温将金属蒸发室内的高纯金属丝熔化蒸发,蒸发后的金属经过真空镀室内的冷却系统,最后沉积于中间涂层上,形成导电层。
图2示意性的示出了作为另一个示例的集流体。请参阅图2所示,在一些实施例中,导电层包括第一导电层101和第二导电层102,中间涂层包括第一中间涂层201和第二中间涂层202;
第一导电层101、第一中间涂层201、有机支撑层30、第二中间涂层202、第二导电层102依次层叠设置。
可以理解,在一些情况下,可以在有机支撑层的一侧表面设置中间涂层和导电层;在另一些情况下,也可以在有机支撑层的两侧表面均设置中间涂层和导电层,具体可以根据实际需求进行选择设定。
[电化学装置]
本申请的第二方面提供一种电化学装置,其包括正极、负极及电解液,其中正极和/或负极包括如本申请第一方面所述的集流体。
本申请的集流体可用于正极/负极的制备,将包含正极活性物质/负极活性物质、粘结剂的混合物制备成浆料涂覆于集流体上,经干燥得到正极/负极。其中,本申请的集流体作为二次电池的正极的集流体是特别优选的。
在一些实施例中,正极包括正极集流体及涂布在正极集流体表面的正极活性物质层。进一步地,正极活性物质层中含有正极活性物质、导电剂和粘结剂。其中,正极集流体为本申请上述任一实施例提供的集流体。
在一些实施例中,正极活性物质层可包括锂过渡金属复合氧化物,其中过渡金属可以是Mn、Fe、Ni、Co、Cr、Ti、Zn、V、Al、Zr、Ce及Mg中的一种或多种。锂过渡金属复合氧化物中还可以掺杂电负性大的元素,如S、F、Cl及I中的一种或多种。这使正极活性材料具有较高的结构稳定性和电化学性能。作为示例,锂过渡金属复合氧化物可选自LiMn 2O 4、LiNiO 2、LiCoO 2、LiNi 1-yCo yO 2(0<y<1)、LiNi aCo bAl 1-a-bO 2(0<a<1,0<b<1,0<a+b<1)、LiMn 1-m-nNi mCo nO 2(0<m<1,0<n<1,0<m+n<1)、LiMPO 4(M可以为Fe、Mn、Co中的一种或多种)及Li 3V 2(PO 4) 3中的一种或多种。
在一些实施例中,作为示例,导电剂可选自石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯或碳纳米纤维中一种或多种。
在一些实施例中,作为示例,粘结剂可选自丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic esin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇(PVA)或聚乙烯醇缩丁醛(PVB)中的一种或多种。
正极可以按照将正极活性材料及可选的导电剂、粘结剂分散于溶剂(例如N-甲基吡咯烷酮,简称为NMP)中,形成均匀的正极浆料;将正极浆料涂覆在正极集流体上,经烘干等工序后,得到正极。
在一些实施例中,负极可包括负极集流体及设置于负极集流体上的负极活性材料层。其中,负极集流体为本申请上述任一实施例提供的集流体。或者,负极集流体可以是金属箔材、涂炭金属箔材及多孔金属箔材。作为示例,负极集流体可包括铜、铜合金、镍、镍合金、铁、铁合金、钛、钛合金、银及银合金中的一种或多种。
在一些实施例中,负极活性材料层可采用金属锂、天然石墨、人造石墨、中间相微碳球(简写为MCMB)、硬碳、软碳、硅、硅-碳复合物、SiO、Li-Sn合金、Li-Sn-O合金、Sn、SnO、SnO2、尖晶石结构的钛酸锂或Li-Al合金中的至少一种。
可选地,负极活性材料层还可包括粘结剂。作为示例,粘结剂可选自丁苯橡胶(SBR)、水性丙烯酸树脂(water-based acrylic resin)、羧甲基纤维素(CMC)、聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、乙烯-醋酸乙烯酯共聚物(EVA)、聚乙烯醇(PVA)或聚乙烯醇缩丁醛(PVB)中的一种或多种。
可选地,负极活性材料层还可包括导电剂。作为示例,导电剂可选自石墨、超导碳、乙炔黑、炭黑、科琴黑、碳点、碳纳米管、石墨烯或碳纳米纤维中一种或多种。
负极可以按照将负极活性材料及可选的导电剂、粘结剂、增稠及分散剂分散于溶剂中,溶剂可以是NMP或去离子水,形成均匀的负极浆料;将负极浆料涂覆在负极集流体上,经烘干等工序后,得到负极。
作为电解液的一种改进,其包括有机溶剂、锂盐和添加剂。
作为有机溶剂的一种改进,其选自环状碳酸酯、线性碳酸酯、羧酸酯等常规有机溶剂中的一种或几种。具体可选自以下有机溶剂并不限于此:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、氟代碳酸乙烯酯(FEC)、碳酸亚乙烯酯(VC)、碳酸亚丙酯、碳酸二丙酯、甲酸甲酯、甲酸乙酯、丙酸乙酯(EP)、丙酸丙酯、丁酸甲酯、乙酸乙酯中的一种或多种。
作为锂盐的一种改进,其选自无机锂盐和有机锂盐中的至少一种。无机锂盐选自六氟磷酸锂(LiPF 6)、四氟硼酸锂(LiBF 4)、六氟砷酸锂(LiAsF 6)和高氯酸锂(LiClO 4)中的至少一种。有机锂盐选自双草酸硼酸锂(LiB(C 2O 4) 2,简写为LiBOB)、双氟磺酰亚胺锂(LiFSI)和双三氟甲烷磺酰亚胺锂(LiTFSI)中的至少一种。
作为添加剂的一种改进,其选自含氟类、含硫类、含不饱和双键类化合物中的一种或几种。具体可选自以下物质并不限于此:氟代碳酸乙烯酯、 亚硫酸乙烯酯、丙磺酸内酯、N-甲基吡咯烷酮、N-甲基甲酰胺、N-甲基乙酰胺、乙腈、丙烯腈、γ-丁内酯、甲硫醚中的一种或多种。
为了防止短路,在正极与负极之间通常设置有隔离膜。这种情况下,电解液通常渗入该隔离膜而使用。
本申请对隔离膜的材料及形状没有特别限制,只要不显著损害本申请的效果即可。隔离膜可为由对电解液稳定的材料所形成的树脂、玻璃纤维、无机物等。
在本申请的电化学装置中,隔离膜的材料包括,但不限于,聚合物隔离膜,例如可选自聚乙烯、聚丙烯和乙烯-丙烯共聚物中的一种。
本申请的电化学装置包括发生电化学反应的任何装置,它的具体实例包括所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。特别地,该电化学装置是锂二次电池,包括锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
[电子设备]
本申请的第三方面,提供一种电子设备,其包括如本申请第二方面所述的电化学装置。
本申请的电化学装置的用途没有特别限定,其可用于现有技术中已知的任何电子设备。电化学装置可以用作电子设备的电源,也可以作为电子设备的能量存储单元。
在一些实施例中,本申请的电化学装置可用于,但不限于,笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池和锂离子电容器等。
作为一个示例的电子设备可以是手机、平板电脑、笔记本电脑等。该电子设备通常要求轻薄化,可采用二次电池作为电源。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。除非另有说明,以下实施例中所报道的所有份、百分比或比值都是基于质量计。在下述实施例、对比例中,所使用到的试剂、材料以及仪器如没有特殊的说明,均可商购获得。
实施例、对比例
集流体的制备
(1)集流体1的制备
将有机支撑层PET膜进行电晕处理,将羧化聚烯烃与羧基固化型聚氨酯按照30:70的质量比混合均匀并涂覆于PET膜表面,在120℃下干燥以蒸发溶剂;随后将经过涂层涂覆的PET膜(包含有机支撑层和中间涂层)置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封,将真空镀铝机气压抽至10 -3Pa,将坩埚舟温度调节至1200℃-1500℃,开始镀铝,待Al厚度达到1000nm后,停止镀铝,在中间涂层的表面形成导电层,进而得到集流体1。
(2)集流体2至集流体20的制备
按照上述集流体1的制备方法制备集流体2-集流体20,本发明还制备了集流体2至集流体20,区别在于,各集流体中的第一树脂和第二树脂的类型、比例不同,或中间涂层的厚度不同,或有机支撑层的厚度或成分不同,或导电层的厚度不同。
集流体1至集流体20的相关性能参数详见下表1和表2所示。
(3)集流体1#至集流体2#的制备
将经过电晕处理的PET膜置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封,将真空镀铝机气压抽至10 -3Pa,将坩埚舟温度调节至1200℃-1500℃,开始镀铝,待Al厚度达到1000nm后,停止镀铝,得到对比集流体1#。
按照上述集流体1#的制备方法,本发明还制备了集流体2#,区别在于,有机支撑层的厚度、导电层的厚度不同。
(4)集流体3#至集流体8#的制备
将经过电晕处理的PET膜表面涂覆双酚A类环氧树脂后,置于坩埚舟式真空蒸发镀铝机真空室,将真空室密封,将真空镀铝机气压抽至10 -3Pa,将坩埚舟温度调节至1200℃-1500℃,开始镀铝,待Al厚度达到1000nm后,停止镀铝,得到对比集流体3#。
按照上述集流体3#的制备方法,本发明还制备了集流体4#至集流体8#,区别在于,树脂的类型的或树脂的比例不同。
集流体1#至集流体8#的相关性能参数详见下表1和表2所示。其中,树脂对有机支撑层的粘结力、树脂对导电层的粘结力、树脂在电解液中的溶胀比、中间涂层的溶度参数分别采用前文所述的测试方法进行测试。
表1中,质量比表示的是第一树脂与第二树脂的质量比;第一粘结力-30表示的是第一树脂对有机支撑层的粘结力,N/15mm;第二粘结力-30表示的是第二树脂对有机支撑层的粘结力,N/15mm;第一粘结力-10表示的是第一树脂对导电层的粘结力,N/15mm;第二粘结力-10表示的是第二树脂对导电层的粘结力,N/15mm。
表1:
Figure PCTCN2021082530-appb-000001
Figure PCTCN2021082530-appb-000002
Figure PCTCN2021082530-appb-000003
其中“/”表示的是未添加或无数据。
表2中,溶胀比1表示的是第一树脂在电解液中的溶胀比,溶胀比2表示的是第二树脂在电解液中的溶胀比,溶度参数1表示的是第一树脂溶度参数,溶度参数2表示的是第二树脂溶度参数,热膨胀系数1表示的是第一树脂热膨胀系数,热膨胀系数2表示的是第二树脂热膨胀系数。其中,集流体3中的有机支撑层的成分为PEN,其余集流体1、2、4至20以及集流体1#至8#中的有机支撑层的成分均为PET。集流体1至16、18至20以及集流体1#、3#至8#中的导电层的成分均为Al,集流体17和集流体 2#中的导电层的成分均为Cu。
表2:
Figure PCTCN2021082530-appb-000004
Figure PCTCN2021082530-appb-000005
其中“/”表示的是未添加或无数据。
锂离子电池的制备
(1)正极的制备
将正极活性材料镍钴锰酸锂(NCM811)、导电剂(Super p)、粘结剂聚偏二氟乙烯按照重量比约97:1.4:1.6进行混合,加入N-甲基吡咯烷酮(NMP),在真空搅拌机作用下搅拌至均一状态,获得正极浆料;将正极浆料均匀涂覆于正极集流体上;在约85℃下烘干,然后经过冷压、裁片、分切后,在约85℃的真空条件下干燥约4h,得到正极。
(2)负极的制备
将负极活性材料人造石墨、羧甲基纤维素钠(CMC)、粘结剂丁苯橡胶(SBR)按质量比约97:1:2混合在去离子水中,充分混合搅拌均匀,得到负极浆料。将负极浆料均匀地涂布在负极集流体上,将其在85℃下烘干,然后经过冷压、裁片、分切,在120℃的真空条件下干燥12h,得到负极。
(3)电解液的制备
电解液中,六氟磷酸锂浓度为1mol/L,有机溶剂由碳酸乙烯酯、碳酸丙烯酯、碳酸二乙酯、丙酸乙酯、氟代碳酸乙烯酯、1,3-丙磺内酯组成。
(4)隔离膜
采用PE基膜+单面涂陶瓷+双面涂水性偏二氟乙烯-六氟丙烯共聚物作为隔离膜。
(5)锂离子电池的制备
将上述正极极片、负极极片焊接上极耳后和隔离膜卷绕成电芯,采用铝塑膜封装,在真空状态下烘烤24小时去除水分后,注入上述电解液,高温静置,对电池进行化成和分选,得到厚度、宽度、高度分别为3.8mm、64mm、82mm的方形软包锂离子电池。
实施例1至16、实施例18至20,在制备正极过程中,正极集流体分别采用上述集流体1至16、集流体18至20,并采用上述方式得到相应的锂离子电池B1至B16、B18至B20。实施例17,在制备负极过程中,负极集流体采用上述集流体17,并采用上述方式得到相应的锂离子电池B17。
对比例1、对比例3至8,在制备正极过程中,正极集流体分别采用上述集流体1#、集流体3#至8#,并采用上述方式得到相应的锂离子电池D1、D3至D8。对比例2在制备负极过程中,负极集流体采用上述集流体2#,并采用上述方式得到相应的锂离子电池D2。
测试部分
将锂离子电池进行注液通过率测试:
电池的注液后的脱膜的相关测试方法包括:将经过卷绕及顶侧封的电池按照0.0015g/mAh的保液系数注入电解液后置于80℃的烘箱中,高温静置16h,取出待冷却至室温后,拆解电池,观察极片的破损状况。
表3列出了各实施例和对比例的性能测试结果。
表3中,集流体重量百分数是指本申请提供的集流体重量相对于常规集流体重量升高↑或降低↓的百分数,其中,常规集流体是厚度为13μm的Al箔片和厚度为7μm的Cu箔片。同理,集流体厚度百分数是指本申请提供的集流体厚度相对于13μm的Al箔片和厚度为7μm的Cu箔片的集流体厚度升高↑或降低↓的百分数。
重量能量密度计算公式:GED=容量*电压平台/电芯重量。
对于给定的电芯设计体系,容量和电压平台可视为是固定的,电芯重量直接影响GED。根据本申请,电芯内部仅改变了集流体的种类和厚度,依据单电芯中集流体的面积、厚度、密度可计算出集流体的重量,依据集 流体的厚度、电芯设计的层数,可计算出集流体的总厚度,以此可得出GED的变化量。
表3:
Figure PCTCN2021082530-appb-000006
Figure PCTCN2021082530-appb-000007
其中,“X/Y”表示Y个锂离子电池中X个锂离子电池通过。
由表3可知,当进行集流体涂膜冷压的注液测试时,电池B1至B20的通过数优于电池D1和D2的通过数,电池D1和D2中的集流体未设置中间涂层,其通过数为0,这是因为电池B1至B20采用了本申请所提供的集流体,集流体中的中间涂层的设置有效增强了集流体中金属层和聚合物层的粘接力集流体整体的电解液耐受性,提高了注液测试的通过率。
此外,相较于电池D3至D6,即相比于使用单一类型的树脂的中间涂层,本申请通过所构建的复合树脂体系充分发挥第一树脂的耐电解液性能以及第二树脂的粘结性能,使得所制备的电池B1至B20的通过数优于电池D6和D9的通过数。类似的,电池D7至D8虽然提供了包含两种树脂的中间涂层,但是其对于有机支撑层或导电层的粘接能力相同或类似,耐电解液溶胀性能也相同或类似,使得所制备的电池D7至D8的通过数少于电池B1至B20的通过数。
再者,总体而言,本申请的电池B1至B20降低了集流体的重量,还降低了集流体的厚度,提高了电池的重量能量密度。
另外,本申请还选取了部分集流体进行了浸泡后的性能测试。示例性的,将上述集流体1至集流体10以及集流体1#、集流体2#至集流体4#在85℃下浸泡电解液72h,测试浸泡性能,具体包括:将各集流体样品裁切成长度5cm、宽度2cm的样条浸泡于电解液中,并用铝塑膜封装起来以除去环境干扰,最终将其置于85℃的恒温干燥箱中保持72h取出观察集流体外情况。测试结果表明,集流体1至集流体10中大部分都无铝层脱落,仅有其中的集流体1的铝层轻微脱落、集流体2的铝层起皱;而集流体1# 的铝粉大面积脱落,集流体2#至集流体4#出现片状铝层脱落。由此说明,采用本申请的集流体增强了界面粘接力以及集流体整体的电解液耐受性,缓解了集流体容易脱层的问题。
本申请虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本申请构思的前提下,都可以做出若干可能的变动和修改,因此本申请的保护范围应当以本申请权利要求所界定的范围为准。

Claims (13)

  1. 一种集流体,其特征在于,包括:
    有机支撑层;
    导电层,设置于有机支撑层的至少一个表面上;
    中间涂层,所述中间涂层设置于所述有机支撑层和所述导电层之间;
    其中,所述中间涂层包括树脂组合物,所述树脂组合物包括第一树脂和第二树脂;
    所述第一树脂对所述有机支撑层的粘结力小于所述第二树脂对所述有机支撑层的粘结力;
    所述第一树脂对所述导电层的粘结力小于所述第二树脂对所述导电层的粘结力。
  2. 根据权利要求1所述的集流体,其特征在于,所述第一树脂对所述有机支撑层的粘结力为1.8N/15mm至2.5N/15mm;
    所述第二树脂对所述有机支撑层的粘结力为3.5N/15mm至7.5N/15mm。
  3. 根据权利要求1所述的集流体,其特征在于,所述第一树脂对所述导电层的粘结力为2.0N/15mm至5.5N/15mm;
    所述第二树脂对所述导电层的粘结力为3.5N/15mm至7.5N/15mm。
  4. 根据权利要求1所述的集流体,其特征在于,以在温度为85℃的电解液中浸泡72h计,所述第二树脂在电解液中的溶胀比与所述第一树脂在电解液中的溶胀比的差值≥3质量%。
  5. 根据权利要求1所述的集流体,其特征在于,所述中间涂层具有以下特征中的至少一个:
    a)所述中间涂层的溶度参数的范围为7.5至12;
    b)所述中间涂层的热膨胀系数的范围为50×10 -6K -1至80×10 -6K -1
  6. 根据权利要求1所述的集流体,其特征在于,所述第一树脂包括聚丙烯酸树脂(PAA)、改性聚烯烃树脂(MPO)或有机硅树脂(OS)中 的至少一种,所述第二树脂包括聚丙烯酸酯(PEA)、聚氨酯(PU)、不饱和聚酯(UP)、酚醛树脂(PF)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)或环氧树脂(EPO)中的至少一种。
  7. 根据权利要求1所述的集流体,其特征在于,所述第一树脂包括环氧树脂(EPO),所述第二树脂包括聚丙烯酸酯(PEA)、聚氨酯(PU)、不饱和聚酯(UP)、酚醛树脂(PF)、乙烯-丙烯酸共聚物(EAA)、乙烯-醋酸乙烯共聚物(EVA)中的至少一种。
  8. 根据权利要求1所述的集流体,其特征在于,所述中间涂层具有以下特征中的至少一个:
    c)所述第一树脂与所述第二树脂之间的质量比为2:98至98:2;
    d)所述第一树脂为改性聚烯烃树脂,所述第二树脂为聚氨酯和/或环氧树脂,所述第二树脂在所述树脂组合物中的质量百分含量为2%至30%;
    e)所述中间涂层的厚度为0.2μm至2μm。
  9. 根据权利要求1所述的集流体,其特征在于,所述有机支撑层具有以下特征中的至少一个:
    f)所述有机支撑层包括有机聚合物,所述有机聚合物包括聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚对萘二甲酸乙二醇酯、聚对苯二甲酰对苯二胺、聚酰亚胺、聚碳酸酯、聚醚醚酮、聚甲醛、聚对苯硫醚、聚对苯醚、聚氯乙烯、聚酰胺、聚四氟乙烯、聚偏氟乙烯或聚苯乙烯中的至少一种;
    g)所述有机支撑层的厚度为2μm至36μm。
  10. 根据权利要求1所述的集流体,其特征在于,所述导电层具有以下特征中的至少一个:
    h)所述导电层的材料包括金属导电材料或碳基导电材料中的至少一种;所述金属导电材料包括铝、铜、镍、铁、钛、银、金、钴、铬、钼或钨中的至少一种,所述碳基导电材料包括石墨、乙炔黑、石墨烯或碳纳米管中的至少一种;
    i)所述导电层的厚度为100nm至5000nm。
  11. 根据权利要求1至10任一项所述的集流体,其特征在于,所述导电层包括第一导电层和第二导电层,所述第一导电层和所述第二导电层分别设置于所述有机支撑层的两个表面上;
    所述中间涂层包括第一中间涂层和第二中间涂层;
    所述第一导电层、所述第一中间涂层、所述有机支撑层、所述第二中间涂层、所述第二导电层依次层叠设置。
  12. 一种电化学装置,其特征在于,包括正极、负极及电解液,其中所述正极和/或所述负极包括权利要求1至11任一项所述的集流体。
  13. 一种电子设备,其特征在于,包括如权利要求12所述的电化学装置。
PCT/CN2021/082530 2021-03-24 2021-03-24 集流体、使用该集流体的电化学装置和电子设备 WO2022198470A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/082530 WO2022198470A1 (zh) 2021-03-24 2021-03-24 集流体、使用该集流体的电化学装置和电子设备
CN202180004796.6A CN114616699A (zh) 2021-03-24 2021-03-24 集流体、使用该集流体的电化学装置和电子设备
US18/371,642 US20240014404A1 (en) 2021-03-24 2023-09-22 Current collector, electrochemical apparatus using current collector and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082530 WO2022198470A1 (zh) 2021-03-24 2021-03-24 集流体、使用该集流体的电化学装置和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/371,642 Continuation US20240014404A1 (en) 2021-03-24 2023-09-22 Current collector, electrochemical apparatus using current collector and electronic device

Publications (1)

Publication Number Publication Date
WO2022198470A1 true WO2022198470A1 (zh) 2022-09-29

Family

ID=81857863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082530 WO2022198470A1 (zh) 2021-03-24 2021-03-24 集流体、使用该集流体的电化学装置和电子设备

Country Status (3)

Country Link
US (1) US20240014404A1 (zh)
CN (1) CN114616699A (zh)
WO (1) WO2022198470A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116247222A (zh) * 2023-05-08 2023-06-09 宁德时代新能源科技股份有限公司 集流体、极片、电极组件、电池单体、电池及用电设备
CN116722148A (zh) * 2023-08-11 2023-09-08 宁德时代新能源科技股份有限公司 复合集流体、极片、电池、用电设备
WO2024092882A1 (zh) * 2022-11-02 2024-05-10 扬州纳力新材料科技有限公司 复合铜集流体及其制备方法、极片、二次电池和用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115966702B (zh) * 2022-09-13 2023-11-28 扬州纳力新材料科技有限公司 一种轻量化安全型复合正极集流体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
CN102891323A (zh) * 2011-07-22 2013-01-23 夏普株式会社 集流体和非水系二次电池
CN106935901A (zh) * 2015-12-31 2017-07-07 东莞新能源科技有限公司 锂离子电池及其阴极极片
CN106941149A (zh) * 2016-01-04 2017-07-11 宁德新能源科技有限公司 锂离子电池及其正极极片
CN112366291A (zh) * 2020-02-18 2021-02-12 万向一二三股份公司 一种高粘结力负极极片及其制备方法、应用
CN212648279U (zh) * 2020-08-10 2021-03-02 深圳市海鸿新能源技术有限公司 复合集流体及二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017187904A1 (ja) * 2016-04-27 2018-05-17 Dic株式会社 ラミネート用接着剤組成物、積層体、及び二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436091A (en) * 1989-05-11 1995-07-25 Valence Technology, Inc. Solid state electrochemical cell having microroughened current collector
CN102891323A (zh) * 2011-07-22 2013-01-23 夏普株式会社 集流体和非水系二次电池
CN106935901A (zh) * 2015-12-31 2017-07-07 东莞新能源科技有限公司 锂离子电池及其阴极极片
CN106941149A (zh) * 2016-01-04 2017-07-11 宁德新能源科技有限公司 锂离子电池及其正极极片
CN112366291A (zh) * 2020-02-18 2021-02-12 万向一二三股份公司 一种高粘结力负极极片及其制备方法、应用
CN212648279U (zh) * 2020-08-10 2021-03-02 深圳市海鸿新能源技术有限公司 复合集流体及二次电池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092882A1 (zh) * 2022-11-02 2024-05-10 扬州纳力新材料科技有限公司 复合铜集流体及其制备方法、极片、二次电池和用电装置
CN116247222A (zh) * 2023-05-08 2023-06-09 宁德时代新能源科技股份有限公司 集流体、极片、电极组件、电池单体、电池及用电设备
CN116722148A (zh) * 2023-08-11 2023-09-08 宁德时代新能源科技股份有限公司 复合集流体、极片、电池、用电设备
CN116722148B (zh) * 2023-08-11 2023-11-28 宁德时代新能源科技股份有限公司 复合集流体、极片、电池、用电设备

Also Published As

Publication number Publication date
CN114616699A (zh) 2022-06-10
US20240014404A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
WO2022198470A1 (zh) 集流体、使用该集流体的电化学装置和电子设备
WO2022267535A1 (zh) 锂金属负极极片、电化学装置及电子设备
WO2021189255A1 (zh) 一种电解液及电化学装置
WO2021000511A1 (zh) 负极集流体、负极极片、电化学装置、电池模块、电池包及设备
CN113422063A (zh) 电化学装置和电子装置
WO2023184416A1 (zh) 一种隔膜、包含该隔膜的电化学装置及电子装置
WO2023070989A1 (zh) 电化学装置和包含其的电子装置
WO2021000503A1 (zh) 负极集流体、负极极片、电化学装置、电池模块、电池包及设备
WO2021000504A1 (zh) 正极集流体、正极极片、电化学装置、电池模块、电池包及设备
WO2023092389A1 (zh) 正极浆料、正极极片及包括所述正极极片的二次电池
WO2023087209A1 (zh) 电化学装置及电子装置
US20240076531A1 (en) Primer adhesive for dry electrode and preparation method therefor, composite current collector, battery electrode plate, secondary battery, battery module, battery pack and power consuming device
CN113540437A (zh) 一种改善循环性能的低温锂离子电池
WO2022110041A1 (zh) 一种电化学装置和电子装置
KR20190044443A (ko) 리튬 이차전지용 양극 활물질의 제조방법, 이에 의해 제조된 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021128203A1 (zh) 一种电解液及电化学装置
WO2023206405A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
WO2021196019A1 (zh) 一种电解液及电化学装置
WO2021174417A1 (zh) 一种电解液及电化学装置
WO2024055162A1 (zh) 负极极片、用于制备负极极片的方法、二次电池和用电装置
CN113078285B (zh) 一种柔性电池
WO2023184125A1 (zh) 电化学装置和电子设备
WO2022056818A1 (zh) 电化学装置以及包括其的电子装置
WO2022267012A1 (zh) 电化学装置及电子装置
US20230094322A1 (en) Electrolyte, secondary battery, battery module, battery pack and power consumption apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932099

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932099

Country of ref document: EP

Kind code of ref document: A1