WO2022198414A1 - 一种电池、用电装置、电池的充电方法及装置 - Google Patents

一种电池、用电装置、电池的充电方法及装置 Download PDF

Info

Publication number
WO2022198414A1
WO2022198414A1 PCT/CN2021/082193 CN2021082193W WO2022198414A1 WO 2022198414 A1 WO2022198414 A1 WO 2022198414A1 CN 2021082193 W CN2021082193 W CN 2021082193W WO 2022198414 A1 WO2022198414 A1 WO 2022198414A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
charging
mth
discharge
Prior art date
Application number
PCT/CN2021/082193
Other languages
English (en)
French (fr)
Inventor
陈晨
黄磊
徐广玉
赵微
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21908116.3A priority Critical patent/EP4092806B1/en
Priority to PCT/CN2021/082193 priority patent/WO2022198414A1/zh
Priority to CN202180071368.5A priority patent/CN116368658A/zh
Priority to US17/839,607 priority patent/US20220320888A1/en
Publication of WO2022198414A1 publication Critical patent/WO2022198414A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present application relate to the technical field of battery charging, and in particular, to a battery, an electrical device, and a battery charging method and device.
  • Lithium-ion batteries are widely used in consumer electronic products because of their high energy density, and with the development of power vehicles, lithium-ion battery packs have become the current development trend of lithium-ion batteries as a power source.
  • Lithium-ion battery management system Battery Management System, referred to as BMS
  • BMS Battery Management System
  • BMS often controls the charging and discharging of lithium-ion battery packs in the following two ways.
  • the first method shallow charging and shallow discharging.
  • the output circuit is disconnected, and the lithium-ion battery pack stops external discharge.
  • the processor disconnects the charging circuit and automatically stops charging.
  • the second way use deep discharge when discharging. to reduce the capacity decay of the battery.
  • the related technology can only delay the battery capacity decay, and cannot guarantee that the battery capacity does not decay.
  • embodiments of the present application provide a battery, an electrical device, and a battery charging method and device, so as to ensure that the releasable capacity of the battery after being fully charged will not be attenuated as the battery ages.
  • a method for charging a battery comprising:
  • the start time of the kth discharge process is the end time of the m-1th charging state of the battery
  • the end time of the kth discharge process is the start time of the mth state of charge
  • k is an integer greater than or equal to 1
  • m is an integer greater than or equal to 1;
  • the historical capacity decay of the battery is obtained;
  • the battery is charged for the m-th time.
  • the historical capacity decay is first determined, then the full charge voltage is determined based on the historical capacity decay, and then the battery is charged according to the determined full charge voltage. Since the historical capacity decay increases continuously with the use of the battery, the full charge voltage of the battery in the charging process in the present application also increases continuously, that is, the full charge voltage is continuously opened. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.
  • acquiring the capacity decay of the battery during the kth discharge process including:
  • the discharge parameters include average current, average temperature, battery capacity interval and cumulative throughput.
  • the upper limit of the battery capacity interval is the battery capacity at the end of the m-1th charge.
  • the lower limit of the battery capacity interval is the battery capacity at the beginning of the mth charge;
  • the capacity decay of the battery during the kth discharge process is obtained.
  • the discharge parameters in the k-th discharge process are obtained, and the capacity decay of the battery in the k-th discharge process can be accurately determined according to the discharge parameters in the k-th discharge process. According to this method, the present application can accurately determine the capacity fading of each discharge process of the battery.
  • the capacity decay of the battery in the k-th discharge process is obtained according to the average current, average temperature, battery capacity interval and cumulative throughput of the battery in the k-th discharge process, including:
  • the capacity decay of the k-th discharge process is determined by the following formula:
  • ⁇ SOH k refers to the capacity decay during the kth discharge
  • Ca , Eb and z are predetermined constants of the battery
  • R is 8.314
  • T is the average temperature
  • T0 is the 298.15 Kelvin temperature
  • SOC upk is the kth discharge
  • SOC lowk is the lower limit of the battery capacity interval during the kth discharge process
  • Ck is the average current of the kth discharge process
  • ⁇ Ck is the cumulative throughput of the kth discharge process.
  • SOH refers to the state of health of the battery
  • its full English name is state of health
  • SOC refers to the remaining capacity of the battery
  • its full English name is state of charge.
  • the capacity decay of the battery in the k-th discharge process can be accurately determined. According to this method, the present application can accurately determine the capacity fading of each discharge process of the battery.
  • determine the full charge voltage of the battery during the mth charging process including:
  • the full charge voltage of the battery during the mth charge is obtained.
  • the full charge voltage of the battery during the m-th charging process is determined based on the historical capacity decay. Since the historical capacity decay continues to increase with the use of the battery, the full charge voltage of the battery during the charging process in the present application is also continuously increased. The increase is not fixed, which improves the accuracy of the determined full charge voltage.
  • determine the full charge voltage of the battery during the mth charging process including:
  • the full charge voltage of the battery in the mth charging process is determined according to the nominal capacity of the battery and the historical capacity decay.
  • the full charge voltage of the battery in the mth charging process is determined only when the historical capacity decay reaches the mth preset threshold. In this way, it is possible to avoid frequent determination of the full charge voltage of the battery during the charging process and waste of resources .
  • the m-th charge is performed on the battery according to the full charge voltage of the m-th charging process, including:
  • the battery when the actual voltage of the battery rises to the full charge voltage in the mth charging process, the battery is stopped charging, otherwise, the battery is continued to be charged, so as to ensure that the battery is fully charged in the mth charging process. It can be fully charged to ensure that there is no capacity decay during subsequent discharge.
  • a device for charging a battery comprising:
  • the processing module is used to obtain the capacity decay of the kth discharge process of the battery.
  • the start time of the kth discharge process is the end time of the m-1th charging state of the battery, and the end time of the kth discharge process is the mth charge.
  • k is an integer greater than or equal to 1
  • m is an integer greater than or equal to 1;
  • the processing module is also used to obtain the historical capacity decay of the battery according to the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge processes;
  • the processing module is also used to determine the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery;
  • the charging module is used to charge the battery for the mth time according to the full charging voltage of the mth charging process.
  • processing module is used to:
  • the discharge parameters include average current, average temperature, battery capacity interval and cumulative throughput.
  • the upper limit of the battery capacity interval is the battery capacity at the end of the m-1th charge.
  • the lower limit of the battery capacity interval is the battery capacity at the beginning of the mth charge;
  • the capacity decay of the battery during the kth discharge process is obtained.
  • processing module is used to:
  • the capacity decay of the k-th discharge process is determined by the following formula:
  • ⁇ SOH k refers to the capacity decay during the kth discharge
  • Ca , Eb and z are predetermined constants of the battery
  • R is 8.314
  • T is the average temperature
  • T0 is the 298.15 Kelvin temperature
  • SOC upk is the kth discharge
  • SOC lowk is the lower limit of the battery capacity interval during the kth discharge process
  • Ck is the average current of the kth discharge process
  • ⁇ Ck is the cumulative throughput of the kth discharge process.
  • processing module is used to:
  • the full charge voltage of the battery during the mth charge is obtained.
  • processing module is used to:
  • the full charge voltage of the battery in the mth charging process is determined according to the nominal capacity of the battery and the historical capacity decay.
  • the charging module is used to:
  • a battery including the charging device of the second aspect.
  • an electrical device includes a battery, the battery is used for providing electrical energy, and the electrical device charges the battery by using the method of the first aspect.
  • a battery charging device including: a processor, a memory, and a bus, and the processor and the memory communicate with each other through the bus;
  • the memory is used for storing at least one executable instruction, and the executable instruction causes the processor to execute the steps of the battery charging method described in the first aspect.
  • the historical capacity decay of the battery is determined according to the capacity decay of the k-th discharge process and the capacity decay of the k-1 discharge process, and the full charge voltage of the m-th charging process is determined based on the historical capacity decay, and then determined according to the The battery is charged for the mth time using the full charge voltage obtained during the mth charging process. Since the historical capacity decay increases with the use of the battery, the full charge voltage of the battery in the present application also increases continuously during the charging process, that is, the full charge voltage is continuously opened. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.
  • FIG. 1 is a schematic flowchart of a method for charging a battery according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another battery charging method provided by an embodiment of the present application.
  • FIG. 3 is a corresponding relationship diagram of an open circuit voltage and a discharge amount provided by an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a battery charging device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another battery charging device provided by an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a battery charging method provided by an embodiment of the present application.
  • the method can be applied to a battery charging device.
  • the device includes a main body and a battery disposed in the main body, and the battery is used to provide electrical energy.
  • the device may be a vehicle, such as a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle, or an extended-range vehicle.
  • the main body of the vehicle is provided with a driving motor, which is electrically connected to the battery, and the battery provides electrical energy.
  • the device may also be a drone or a ship or the like.
  • the batteries in the embodiments of the present application may be lithium-ion batteries, lithium-metal batteries, lead-acid batteries, nickel-separated batteries, nickel-hydrogen batteries, lithium-sulfur batteries, lithium-air batteries, or sodium-ion batteries in terms of battery types.
  • the battery in the embodiment of the present application includes a battery management system (BMS), and the method can be specifically applied to the BMS.
  • BMS battery management system
  • the BMS in the embodiment of the present application can also be an independent device or equipment. It is also possible to control the battery to charge the battery according to the charging method provided in the embodiment of the present application. As shown in Figure 1, the method includes:
  • Step 101 Acquire the capacity decay of the battery in the kth discharge process.
  • the start time of the kth discharge process is the end time of the m-1th charging state of the battery
  • the end time of the kth discharge process is the start time of the mth state of charge
  • k is an integer greater than or equal to 1
  • m is Integer greater than or equal to 1.
  • Step 102 Obtain the historical capacity decay of the battery according to the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge processes.
  • Step 103 Determine the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery.
  • Step 104 according to the full charge voltage of the mth charging process, perform the mth charging on the battery.
  • the historical capacity decay of the battery is determined according to the capacity decay of the k-th discharge process and the capacity decay of the k-1 discharge process, and the full charge voltage of the m-th charging process is determined based on the historical capacity decay, and then determined according to the The battery is charged for the mth time using the full charge voltage obtained during the mth charging process. Since the historical capacity decay increases with the use of the battery, the full charge voltage of the battery in the present application also increases continuously during the charging process, that is, the present application keeps opening the full charge voltage. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.
  • FIG. 2 is a schematic flowchart of another battery charging method according to an embodiment of the present application.
  • the interactive subject of the method is the BMS and the charging pile, as shown in Figure 2, the method includes the following steps.
  • Step 201 The BMS acquires the capacity decay of the battery in the kth discharge process.
  • the battery charging device of the embodiment of the present application may be provided with a charging socket.
  • the charging device When the charging gun is inserted into the charging socket, the charging device can be charged. When the charging gun is pulled out from the charging socket, the charging socket is terminated. Charging of the charging device.
  • the BMS can detect the plug-in and pull-out states of the charging gun, and detect whether the charging device is in a charging state or a discharging state according to the plug-in and pull-out states of the charging gun.
  • the BMS can determine the moment when the charging gun is pulled out of the charging socket as the end moment of the m-1th charging state, or the start moment of the kth discharge process, and determine the moment when the charging gun is inserted into the charging socket next time as The start time of the mth charging state, or the end time of the kth discharge process.
  • k can be greater than or equal to m, or less than m.
  • the third case: k 1, m>1, in this case, the battery first goes through m-1 charging process, and then goes through the first discharging process.
  • the BMS can detect the k-th discharge process of the charging device according to the plug-in and pull-out states of the charging gun, and can obtain the capacity decay of the battery during the k-th discharge process.
  • the implementation process of the BMS acquiring the capacity decay of the battery in the kth discharge process may be: acquiring the discharge parameters of the battery in the kth discharge process, where the discharge parameters include the average current, the average temperature, the battery capacity interval, and the cumulative throughput.
  • the upper limit of the battery capacity interval is the battery capacity at the end of the m-1th charge
  • the lower limit of the battery capacity interval is the battery capacity at the start of the mth charge. According to the average current, average temperature, battery capacity interval and cumulative throughput of the battery during the kth discharge process, the capacity decay of the battery during the kth discharge process is obtained.
  • the BMS can start to collect the discharge parameters of the battery during the discharge process when it detects the end of the m-1th charging state of the battery, and stops the collection of discharge parameters until it detects the beginning of the mth charging state of the battery. to obtain the discharge parameters of the battery during the kth discharge process.
  • the BMS can collect the discharge parameters of the battery in the k-th discharge process in real time.
  • the sampling interval can also be preset, and the discharge parameters are collected every preset sampling interval during the k-th discharge process.
  • the sampling interval may be 100ms (milliseconds), 110ms, 150ms, etc., which is not limited in this embodiment of the present application.
  • the cumulative throughput during the kth discharge process is the sum of the total discharge capacity and the total recharge capacity during the kth discharge process.
  • the total discharge capacity and total recharge capacity in the kth discharge process can be obtained respectively, and then the total discharge capacity and total recharge capacity in the kth discharge process can be obtained.
  • the summation of the charging capacity, or the weighted summation obtains the cumulative throughput in the kth discharge process.
  • the realization process of obtaining the capacity decay of the battery in the k-th discharge process according to the average current, average temperature, battery capacity interval and cumulative throughput of the battery in the k-th discharge process may be: according to the battery in the k-th discharge process
  • the average current, average temperature, battery capacity interval and cumulative throughput during the discharge process are determined by the following formula to determine the capacity decay of the kth discharge process:
  • ⁇ SOH k refers to the capacity decay during the kth discharge
  • Ca , Eb and z are predetermined constants of the battery
  • R is 8.314
  • T is the average temperature
  • T0 is the 298.15 Kelvin temperature
  • SOC upk is the kth discharge
  • SOC lowk is the lower limit of the battery capacity interval in the kth discharge process
  • Ck is the average current of the kth discharge process
  • ⁇ Ck is the cumulative throughput of the kth discharge process
  • f(SOC lowk ) is a function related to the lower limit of the battery capacity interval during the kth discharge process
  • f(C k ) is related to the The function related to the average current of the k-th discharge process is not limited in this embodiment of the present application.
  • the capacity decay of the k-th discharge process may also be determined in other ways, which are not limited in this embodiment of the present application.
  • the present application can accurately determine the capacity decay of the battery in the k-th discharge process according to the average current, average temperature, battery capacity interval and cumulative throughput in the k-th discharge process.
  • the BMS can obtain the discharge parameters of each discharge process in the manner of the above kth discharge process, and then determine the capacity decay of each discharge process according to the discharge parameters of each discharge process. After that, the BMS can store the relationship between the discharge process, the discharge parameters, and the capacity decay of the discharge process correspondingly for subsequent use.
  • Table 1 shows the correspondence between the discharge process, the discharge parameters, and the capacity fading of the discharge process.
  • Step 202 The BMS obtains the historical capacity decay of the battery according to the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge processes.
  • the historical capacity fading is the sum of the capacity fading of the battery in the previous (that is, the first k times) discharge process before the mth charge, so it can be based on the capacity decay of the kth discharge process and the capacity of the first k-1 discharge process. Decay determines the historical capacity decay of the battery.
  • the BMS can obtain the capacity decay of the first k-1 discharge process, and sum the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge process to obtain the historical capacity decay of the battery.
  • the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge processes are weighted and summed to obtain the historical capacity decay of the battery, which is not limited in this embodiment of the present application.
  • the BMS obtains the capacity decay of the first k-1 discharge process
  • the capacity decay of each discharge process in the first k-1 discharge process can be obtained, and then the capacity decay of each discharge process in the first k-1 discharge process can be obtained.
  • step 203 may be directly performed without step 202 .
  • Step 203 The BMS determines whether the historical capacity attenuation is greater than or equal to the mth preset threshold.
  • the historical capacity decay of the battery is obtained through step 202.
  • the mth preset threshold may also be set, and it is determined by step 203 whether the historical capacity attenuation is greater than or equal to the mth preset threshold.
  • Step 205 is only executed when it is determined that the historical capacity attenuation is greater than or equal to the mth preset threshold, otherwise, step 205 is not executed.
  • the mth preset threshold is a preset threshold corresponding to the mth charging process.
  • the mth preset threshold may be set in advance, and the mth preset threshold may be any positive number.
  • the mth preset threshold may be 1%, 2%, etc., which is not limited in this embodiment of the present application.
  • a preset threshold corresponding to the charging process can be set.
  • the m-1 th preset threshold may be set
  • the m+1 th preset threshold may be set.
  • each charging process corresponds to The preset thresholds.
  • the preset threshold is incremented as the charging process progresses.
  • Step 204 When the BMS determines that the historical capacity attenuation is greater than or equal to the mth preset threshold, step 205 is performed; otherwise, step 201 is returned to.
  • the full-charge voltage of the battery in the m-th charging process is determined according to the battery's nominal capacity and historical capacity decay.
  • the BMS determines that the historical capacity decay is less than the mth preset threshold, it will not determine the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery, but returns to obtain the kth discharge of the battery. The capacity decay steps of the process.
  • Step 205 The BMS determines the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery.
  • the start time of the mth charging process of the battery is the start time of the mth charging state of the battery
  • the ending time of the mth charging process is the end time of the mth charging state.
  • the initial full charge voltage and nominal capacity of the battery are for fresh batteries
  • the initial full charge voltage of the battery is the full charge voltage when the capacity of the battery is not attenuated
  • the initial full charge voltage corresponds to the nominal capacity, that is, when When a fresh battery is charged so that its voltage reaches the initial full charge voltage, the amount of electricity that the fresh battery can discharge to the outside is equal to the nominal capacity in value.
  • the nominal capacity refers to the design and manufacture of the battery that stipulates or guarantees that the battery should release the minimum amount of electricity under certain discharge conditions.
  • the historical capacity decay is for aging batteries.
  • step 205 may be: based on the nominal capacity and historical capacity decay, obtain the capacity to be reached by the battery in the mth charge; The full charge voltage of the mth charging process.
  • the nominal capacity and historical capacity decay can be summed to obtain the battery The capacity to be reached on the mth charge.
  • the nominal capacity and the historical capacity decay may be weighted and summed to obtain the capacity to be achieved by the battery during the mth charge, which is not specifically limited in the embodiment of the present application.
  • the BMS obtains the full charge voltage of the battery in the mth charging process based on the capacity to be achieved by the battery in the mth charging process
  • the corresponding relationship between the open circuit voltage and the capacity of the battery can be obtained.
  • the capacity to be reached during the second charge, and the full charge voltage of the battery in the mth charge process is obtained according to the corresponding relationship between the open circuit voltage and the capacity.
  • the corresponding relationship between open circuit voltage and capacity can be expressed as an open circuit voltage-capacity curve (as shown in Figure 3), and the open circuit voltage-capacity curve can be obtained by conducting the same discharge test on multiple fresh batteries of the same batch. , so the open-circuit voltage-capacity curve represents the corresponding relationship between the open-circuit voltage and capacity of a fresh battery.
  • the open circuit voltage-capacity curve of the battery has multiple coordinate points, and each coordinate point in the multiple coordinate points has an abscissa and an ordinate, the abscissa represents the capacity, and the ordinate represents the voltage.
  • Historical capacity fading refers to the sum of the capacity fading of the battery during the previous (that is, the first k times) discharges before the mth charge.
  • the historical capacity decay refers to the battery’s How much the battery capacity decays relative to a fresh battery after the first k discharge processes.
  • the capacity to be reached by the battery during the mth charge is obtained based on the nominal capacity and the historical capacity decay, and the part of the capacity attenuated relative to the fresh battery can be supplemented to the battery after k times of discharge (also referred to as, aging battery), and after replenishment, the capacity to be reached at the mth charge is obtained.
  • the full charge voltage of the battery in the mth charging process is determined according to the capacity to be achieved in the mth charging process, and after the mth charging of the battery is performed according to the full charging voltage in the mth charging process, the battery capacity is compared. No decay in fresh batteries.
  • a coordinate point where the capacity is equal to the capacity to be reached when the battery is charged for the mth time can be determined on the open-circuit voltage-capacity curve of the battery. The full charge voltage during m times of charging.
  • FIG. 3 is a schematic diagram of an open-circuit voltage-capacity curve of a fresh battery provided by an embodiment of the present application.
  • point A is the capacity determined on the open-circuit voltage-capacity curve of the battery equal to the m-th charge to be reached.
  • the coordinate point of the capacity, the abscissa of point A is X1, the ordinate is Y1, X1 is equal to the capacity to be reached during the mth charging, then Y1 is equal to the full charge voltage of the battery during the mth charging process.
  • the abscissa of point B is X2, the ordinate is Y2, X2 is equal to the nominal capacity of the battery, and Y2 is equal to the initial full charge voltage of the battery.
  • the difference between X1 and X2 is the historical capacity decay of the battery
  • the difference between Y1 and Y2 is the increase in the full charge voltage of the battery during the mth charging process compared to the initial full charge voltage.
  • This value can be called the open voltage, thus It can be seen that, in the embodiment of the present application, an open voltage is added on the basis of the initial full charge voltage to obtain the full charge voltage of the battery in the mth charging process. Subsequently, according to the full charge voltage of the battery in the m-th charging process, the m-th charge is then discharged, so that the capacity attenuation corresponding to the open voltage can be supplemented to ensure that the battery capacity is not attenuated.
  • the present application determines the full charge voltage of the battery in the mth charging process based on the nominal capacity and historical capacity decay of the battery. Since the historical capacity decay of the battery continues to increase with the use of the battery, the full charge voltage of the battery during the charging process in the present application also increases continuously, which is not fixed, thereby improving the accuracy of the determined full charge voltage. sex.
  • steps 201 and 202 after the historical capacity decay of the battery is obtained through steps 201 and 202, steps 203 and 204 may not be performed, and step 205 is directly used to determine the full charge of the battery in the mth charging process.
  • pressure which is not limited in this embodiment of the present application.
  • the m-th charging of the battery can be implemented through the following step 206 .
  • Step 206 The BMS charges the battery for the mth time according to the full charge voltage of the mth time charging process.
  • the implementation process of step 206 may be: in the process of charging the battery, detecting the actual voltage of the battery; judging whether the actual voltage has risen to the full charge voltage of the battery in the mth charging process; when it is determined that the actual voltage has risen When the battery reaches the full charge voltage in the mth charging process, stop charging the battery.
  • the BMS can communicate with the charging pile.
  • the BMS determines that the actual voltage rises to the full charging voltage of the battery in the mth charging process, it can send an indication of the end of charging to the charging pile.
  • the charging pile can receive the instruction, and according to the instruction, control the charging gun to be pulled out from the charging socket to stop charging the battery.
  • the BMS determines that the actual voltage has not risen to the full charge voltage of the mth charging process, it does not send an indication of the end of charging to the charging pile, but continues to detect the actual voltage of the battery during the charging process until it is determined that the actual voltage rises to the Only when the charging voltage is full for m times of charging process, the charging end instruction is sent to the charging pile.
  • the actual voltage of the battery can be detected in real time, but since the charging is not completed instantaneously and requires a process, the time interval can be preset, and the actual voltage can be carried out according to a larger time interval in the early stage of charging. For voltage detection, the actual voltage is detected at small time intervals in the later stage of charging.
  • the first time interval and the second time interval can be set.
  • the first time interval is greater than In the second time interval, during the first 2/3t of the charging process, the actual voltage can be detected every first time interval, and during the last 1/3t of the charging process, the actual voltage can be detected every second time interval. In this way, large power consumption due to frequent detection of the actual voltage can be avoided.
  • the first time interval may also be equal to the second time interval.
  • the embodiment of the present application is not limited to dividing the charging process into two charging stages: the early charging stage and the late charging stage, and the charging process can also be divided into For more than two charging stages, for example, the charging process is divided into 3, 4, and 5 charging stages, and correspondingly, 3, 4, and 5 time intervals can be set accordingly.
  • the battery continues to age, and the historical capacity fade continues to increase.
  • the full charge voltage of the battery during the mth charging process is also larger.
  • the full charge voltage of the battery during the mth charging process continues to increase to a certain extent. If the battery continues to be charged according to the full charging voltage of the battery during the mth charging process, it will bring about safety problems when the battery is used. Therefore, a preset upper voltage limit of a battery can be set. Before step 206, it can be determined whether the full charge voltage of the mth charging process is less than or equal to the preset voltage upper limit of the battery.
  • step 206 When determining the full charge voltage of the mth charging process When it is less than or equal to the preset voltage upper limit of the battery, step 206 is executed, and when it is determined that the full charge voltage of the mth charging process is greater than the preset voltage upper limit of the battery, the battery is charged for the mth time according to the preset voltage upper limit.
  • the preset voltage upper limit can be set in advance, and can be set according to the properties of the battery.
  • the upper limit of the preset voltage may be greater than the nominal capacity, and the upper limit of the preset voltage may be the maximum voltage that can be reached when the battery is charged under the premise of ensuring the safe use of the battery.
  • the full charge voltage is determined based on the historical capacity decay, and then the battery is charged according to the determined full charge voltage.
  • the historical capacity decay increases continuously with the use of the battery, so the full charge voltage of the battery in the charging process in the present application also increases continuously, that is, the full charge voltage is continuously opened. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.
  • the BMS obtains the capacity decay of the first discharge process of the battery, which is the historical capacity decay of the battery, and then based on the nominal capacity of the battery and the capacity of the first discharge process Attenuate, determine the full charge voltage of the battery during the first charging process, and finally charge the battery for the first time according to the full charge voltage during the first charging process.
  • the BMS obtains the capacity decay of the battery in the third discharge process, and then obtains the historical capacity decay of the battery according to the capacity decay of the third discharge process and the capacity decay of the first two discharge processes.
  • the nominal capacity and historical capacity decay of determine the full charge voltage of the battery during the first charging process, and finally charge the battery for the first time according to the full charge voltage during the first charging process.
  • BMS obtains the capacity decay of the battery in the first discharge process.
  • the capacity decay of the first discharge process is the historical capacity decay of the battery, and then according to the nominal capacity of the battery and the capacity decay of the first discharge process Capacity decay, determine the full charge voltage of the battery during the second charging process, and finally charge the battery for the second time according to the full charge voltage during the second charging process.
  • BMS obtains the capacity decay of the battery during the second discharge process, and then obtains the historical capacity decay of the battery according to the capacity decay of the second discharge process and the capacity decay of the first discharge process. , and then determine the full charge voltage of the battery in the third charging process according to the nominal capacity and historical capacity decay of the battery, and finally charge the battery for the third time according to the full charging voltage of the third charging process.
  • FIG. 4 is a schematic structural diagram of a battery charging device provided by an embodiment of the present application.
  • the battery charging device provided by an embodiment of the present application includes a processing module 401 and a charging module 402 .
  • the processing module 401 is used to obtain the capacity decay of the kth discharge process of the battery, the start time of the kth discharge process is the end time of the m-1th charging state of the battery, and the end time of the kth discharge process is the mth time At the charging state start time, k is an integer greater than or equal to 1, and m is an integer greater than or equal to 1.
  • the processing module 401 is further configured to acquire the historical capacity decay of the battery according to the capacity decay of the k-th discharge process and the capacity decay of the first k-1 discharge processes.
  • the processing module 401 is further configured to determine the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery.
  • the charging module 402 is configured to charge the battery for the mth time according to the full charging voltage of the mth charging process.
  • the processing module 401 is used to: obtain the discharge parameters of the battery in the kth discharge process, the discharge parameters include the average current, the average temperature, the battery capacity interval and the cumulative throughput, and the upper limit of the battery capacity interval is the battery in the mth discharge process.
  • the battery capacity at the end of 1 charge, the lower limit of the battery capacity interval is the battery capacity at the beginning of the mth charge; according to the average current, average temperature, battery capacity interval and cumulative throughput of the battery during the kth discharge process, Obtain the capacity decay of the battery's kth discharge process.
  • the processing module 401 is configured to: according to the average current, average temperature, battery capacity interval and cumulative throughput of the battery in the k-th discharge process, determine the capacity decay of the k-th discharge process by the following formula:
  • ⁇ SOH k refers to the capacity decay during the kth discharge
  • Ca , Eb and z are predetermined constants of the battery
  • R is 8.314
  • T is the average temperature
  • T0 is the 298.15 Kelvin temperature
  • SOC upk is the kth discharge
  • SOC lowk is the lower limit of the battery capacity interval during the kth discharge process
  • Ck is the average current of the kth discharge process
  • ⁇ Ck is the cumulative throughput of the kth discharge process.
  • the processing module 401 is configured to: based on the nominal capacity and historical capacity decay, obtain the capacity to be reached by the battery at the mth charge; The full charge voltage during the second charge.
  • the processing module 401 is configured to: if the historical capacity decay is greater than or equal to the mth preset threshold, determine the full charge voltage of the battery in the mth charging process according to the nominal capacity and historical capacity decay of the battery.
  • the charging module 402 is used to: in the process of charging the battery, detect the actual voltage of the battery; check whether the actual voltage rises to the full charge voltage of the battery in the mth charging process; when it is determined that the actual voltage rises to the battery At the full charging voltage of the mth charging process, stop charging the battery.
  • the full charge voltage is determined based on the historical capacity decay, and then the battery is charged according to the determined full charge voltage.
  • the historical capacity decay increases continuously with the use of the battery, so the full charge voltage of the battery in the charging process in the present application also increases continuously, that is, the full charge voltage is continuously opened. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.
  • each unit in the above apparatus can be realized in the form of software calling through the processing element; also can all be realized in the form of hardware; some units can also be realized in the form of software calling through the processing element, and some units can be realized in the form of hardware.
  • each unit can be a separately established processing element, or can be integrated in a certain chip of the device to be implemented, and can also be stored in the memory in the form of a program, which can be called by a certain processing element of the device and execute the unit's processing. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in the processing element or implemented in the form of software being invoked by the processing element.
  • An embodiment of the present application further provides a battery, including the charging device provided by the embodiment shown in FIG. 4 .
  • An embodiment of the present application further provides an electrical device, the electrical device includes a battery, the battery is used to provide electrical energy, and the electrical device charges the battery by using the charging method provided by the embodiments shown in FIG. 1 to FIG. 3 .
  • FIG. 5 is a schematic structural diagram of another battery charging device provided by an embodiment of the present application.
  • the battery charging device includes: a processor 510, a memory 520, and an interface 530.
  • the processor 510, the memory 520, and the interface 530 are connected by a bus 540, which can be implemented by connecting circuits.
  • the memory 520 is used for storing a program, and when the program is called by the processor 510, the method executed by the battery charging apparatus in the above embodiment can be implemented.
  • the interface 530 is used to implement communication with other battery charging devices, and the interface 530 can communicate with other battery charging devices through wired connection or wireless connection.
  • each unit of the above battery charging device can be implemented by the processor 510 calling programs stored in the memory 520 . That is, the above battery charging apparatus includes a processor 510 and a memory 520, and the memory 520 is used for storing a program, and the program is called by the processor 510 to execute the method in the above method embodiment.
  • the processor 510 here can be a general-purpose processor, or other processors that can invoke programs; or the processor 510 can be configured as one or more integrated circuits that implement the method for executing the battery charging apparatus in the above embodiments , for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more microprocessors (digital singnal processor, DSP), or, one or more field programmable gate arrays (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • ASIC Application Specific Integrated Circuit
  • DSP digital singnal processor
  • FPGA Field Programmable Gate Array
  • the processor 510 can be a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller , microcontroller or other processors that can call programs.
  • CPU central processing unit
  • controller a controller
  • microcontroller a microcontroller
  • microcontroller a microcontroller or other processors that can call programs.
  • these units can be integrated together and implemented in the form of a system-on-chip.
  • the number of the memory 520 is not limited, and may be one or more.
  • the memory 520 includes at least one type of readable storage medium, and the readable storage medium includes non-volatile memory (non-volatile memory) or volatile memory, for example, flash memory (flash memory), hard disk, multimedia card, card type Memory (for example, SD or DX memory, etc.), random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EEPROM), programmable read-only memory (programmable read-only memory, PROM), magnetic memory, magnetic disk or optical disk, etc.
  • RAM can include Static RAM or Dynamic RAM.
  • memory 520 may be the device's internal memory, eg, the device's hard disk or memory.
  • the memory 520 may also be an external storage device of the device, such as a plug-in hard disk, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card equipped on the device Or flash card (Flash Card) and so on.
  • the memory 520 may also include both the internal memory of the apparatus and its external storage device.
  • the memory 520 is generally used to store the operating system and various application software installed in the device, such as program codes of a battery charging method, and the like.
  • the memory 520 may also be used to temporarily store various types of data that have been output or will be output.
  • the bus 540 may be an industry standard architecture (Industry Standard Architecture, ISA) bus, a peripheral component interconnect standard (Peripheral Component Interconnect, PCI) bus or an extended industry standard architecture (Extended Industry Standard Architecture, EISA) bus and the like.
  • the bus 540 may include an address bus, a data bus, a control bus, or the like. For ease of presentation, only one thick line is used in the figure, but it does not mean that there is only one bus or one type of bus.
  • the processor 510 is typically used to control the overall operation of the device.
  • the memory 520 is used to store program codes or instructions
  • the program codes include computer operation instructions
  • the processor 510 is used to execute the program codes or instructions stored in the memory 520 or process data, such as program codes for running a battery charging method.
  • the full charge voltage is determined based on the historical capacity decay, and then the battery is charged according to the determined full charge voltage.
  • the historical capacity decay increases continuously with the use of the battery, so the full charge voltage of the battery in the charging process in the present application also increases continuously, that is, the full charge voltage is continuously opened. In this way, the decayed part of the battery capacity can be compensated for each time it is charged, so that the battery is truly fully charged, thereby ensuring that the battery has no capacity decay during discharge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池、用电装置、电池的充电方法及装置,属于电池充电技术领域。本申请根据第k次放电过程的容量衰减和k-1次放电过程的容量衰减确定电池的历史容量衰减,基于历史容量衰减确定第m次充电过程的满充电压,再根据确定出的第m次充电过程的满充电压对电池进行第m次充电。由于历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。

Description

一种电池、用电装置、电池的充电方法及装置 技术领域
本申请实施例涉及电池充电技术领域,尤其涉及一种电池、用电装置、电池的充电方法及装置。
背景技术
锂离子电池因其具有较高的能量密度而广泛用于消费类电子产品中,且随着动力车辆的发展,锂离子电池组作为动力能源已经成为目前锂离子电池的发展趋势。锂离子电池组管理系统(Battery Management system,简称BMS)作为对锂离子电池组的充放电循环控制管理的应用系统,控制锂离子电池组按照一定的模式进行充放电。
目前,BMS常通过如下两种方式控制锂离子电池组充放电。第一种方式:浅充浅放。在常态放电过程中,当处理器检测到当前的实际电量下降到预定的下限值时,断开输出电路,锂离子电池组停止对外放电。在常态充电过程中,当对锂离子电池充电使当前的实际电量上升到了预定的电量上限(该预定的电量上限为本锂离子电池组标称容量的80%-90%的任一值)时,处理器断开充电电路,自动停止充电。第二种方式:在放电时采用深度放电。来减少电池的容量衰减。
然而,相关技术只能延缓电池容量衰减,并不能保证电池容量无衰减。
发明内容
鉴于上述问题,本申请实施例提供了一种电池、用电装置、电池的充电方法及装置,保证电池满充后可放出的容量不会随着电池的老化而衰减。
根据本申请实施例的第一方面,提供了一种电池的充电方法,该方法包括:
获取电池的第k次放电过程的容量衰减,第k次放电过程的开始时刻是电池第m-1次充电状态结束时刻,第k次放电过程的结束时刻是第m次充电状态开始时刻,k是大于或等于1的整数,m是大于或等于1的整数;
根据第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取电池的历史容量衰减;
根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压;
根据第m次充电过程的满充电压,对电池进行第m次充电。
本申请实施例中,先确定历史容量衰减,再基于历史容量衰减确定满充电压,之后根据确定出的满充电压对电池进行充电。由于历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也 不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
可选地,获取电池的第k次放电过程的容量衰减,包括:
获取电池在第k次放电过程中的放电参数,放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,电池容量区间的上限是电池在第m-1次充电结束时的电池容量,电池容量区间的下限是第m次充电开始时的电池容量;
根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取电池的第k次放电过程的容量衰减。
本申请实施例中,获取第k次放电过程中的放电参数,根据第k次放电过程中的放电参数可以精确确定出电池的第k次放电过程的容量衰减。按照此方法,本申请可以精确确定出电池的每个放电过程的容量衰减。
可选地,根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量获取电池的第k次放电过程的容量衰减,包括:
根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定第k次放电过程的容量衰减:
Figure PCTCN2021082193-appb-000001
其中,ΔSOH k指第k次放电过程的容量衰减,C a、Eb和z是电池的预定常数,R是8.314,T是平均温度,T 0是298.15开氏温度,SOC upk是第k次放电过程中电池容量区间的上限,SOC lowk是第k次放电过程中电池容量区间的下限,C k是第k次放电过程的平均电流,ΔC k是第k次放电过程的累计吞吐量。其中,SOH指的是电池的健康状态,其英文全称是state of health,SOC指的是电池的剩余容量,其英文全称是state of charge。
本申请实施例中,根据第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,可以精确确定出电池的第k次放电过程的容量衰减。按照此方法,本申请可以精确确定出电池的每个放电过程的容量衰减。
可选地,根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压,包括:
基于标称容量与历史容量衰减,获取电池在第m次充电时要达到的容量;
基于电池在第m次充电时要达到的容量,获取电池在第m次充电过程的满充电压。
本申请实施例中,基于历史容量衰减确定电池在第m次充电过程的满充电压,由于历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,并不是固定不变,提高了确定出的满充电压的准确性。
可选地,根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压,包括:
若历史容量衰减大于或等于第m预设阈值,则根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
本申请实施例中,只有当历史容量衰减达到第m预设阈值时,才确定电池在第m次充电过程的满充电压,这样,可以避免频繁确定电池在充电过程的满充电压而耗费资源。
可选地,根据第m次充电过程的满充电压对电池进行第m次充电,包括:
在对电池进行充电的过程中,检测电池的实际电压;
判断实际电压是否上升到电池在第m次充电过程的满充电压;
当确定实际电压上升到电池在第m次充电过程的满充电压时,停止向电池充电。
本申请实施例中,当电池的实际电压上升到在第m次充电过程的满充电压时,停止向电池充电,否则,继续向电池充电,如此可以保证电池以第m次充电过程的满充电压进行满充,从而保证后续放电时无容量衰减。
根据本申请实施例的第二方面,提供了一种电池的充电装置,该装置包括:
处理模块,用于获取电池的第k次放电过程的容量衰减,第k次放电过程的开始时刻是电池第m-1次充电状态结束时刻,第k次放电过程的结束时刻是第m次充电状态开始时刻,k是大于或等于1的整数,m是大于或等于1的整数;
处理模块,还用于根据第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取电池的历史容量衰减;
处理模块,还用于根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压;
充电模块,用于根据第m次充电过程的满充电压,对电池进行第m次充电。
可选地,处理模块用于:
获取电池在第k次放电过程中的放电参数,放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,电池容量区间的上限是电池在第m-1次充电结束时的电池容量,电池容量区间的下限是第m次充电开始时的电池容量;
根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取电池的第k次放电过程的容量衰减。
可选地,处理模块用于:
根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定第k次放电过程的容量衰减:
Figure PCTCN2021082193-appb-000002
其中,ΔSOH k指第k次放电过程的容量衰减,C a、Eb和z是电池的预定常数,R是8.314,T是平均温度,T 0是298.15开氏温度,SOC upk是第k次放电过程中电池容量区间的上限,SOC lowk是第k次放电过程中电池容量区间的下限,C k是第k次放电过程的平均电流,ΔC k是第k次放电过程的累计吞吐量。
可选地,处理模块用于:
基于标称容量与历史容量衰减,获取电池在第m次充电时要达到的容量;
基于电池在第m次充电时要达到的容量,获取电池在第m次充电过程的满充电压。
可选地,处理模块用于:
若历史容量衰减大于或等于第m预设阈值,则根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
可选地,充电模块用于:
在对电池进行充电的过程中,检测电池的实际电压;
判断实际电压是否上升到电池在第m次充电过程的满充电压;
当确定实际电压上升到电池在第m次充电过程的满充电压时,停止向电池充电。
根据本申请实施例的第三方面,提供了一种电池,包括上述第二方面的充电装置。
根据本申请实施例的第四方面,提供了一种用电装置,该用电装置包括电池,电池用于提供电能,用电装置通过上述第一方面的方法对电池进行充电。
根据本申请实施例的第五方面,提供了一种电池的充电装置,包括:处理器、存储器和总线,处理器和存储器通过总线完成相互间的通信;
存储器用于存放至少一可执行指令,可执行指令使处理器执行上述第一方面所述的电池的充电方法的步骤。
本申请实施例中,根据第k次放电过程的容量衰减和k-1次放电过程的容量衰减确定电池的历史容量衰减,基于历史容量衰减确定第m次充电过程的满充电压,再根据确定出的第m次充电过程的满充电压对电池进行第m次充电。由于历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述 中所需要使用的附图做简单地介绍。显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种电池的充电方法的流程示意图;
图2为本申请实施例提供的另一种电池的充电方法的流程示意图;
图3为本申请实施例提供的一种开路电压与放电量的对应关系图;
图4是本申请实施例提供的一种电池的充电装置的结构示意图;
图5是本申请实施例提供的另一种电池的充电装置的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
图1为本申请实施例提供的一种电池的充电方法的流程示意图,该方法可以应用于电池的充电装置中,该装置包括主体以及设置于主体内的电池,电池用于提供电能。该装置可以是车辆,例如新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的主体设置有驱动电机,驱动电机与电池电连接,由电池提供电能,驱动电机通过传动机构与车辆的主体上的车轮连接,从而驱动汽车行进。或者,该装置也可以是无人机或轮船等。
本申请实施例中的电池,从电池的种类而言,可以是锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池的规模而言,可以是电芯或电池单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。另外,本申请实施例中的电池包括电池管理系统(battery management system,BMS),该方法具体可以应用于BMS中,当然,本申请实施例中BMS也可以是独立的装置或设备,通过该BMS也可以控制电池按照本申请实施例提供的充电方法对电池进行充电。如图1所示,该方法包括:
步骤101:获取电池的第k次放电过程的容量衰减。
其中,第k次放电过程的开始时刻是电池第m-1次充电状态结束时刻,第k次放电过程的结束时刻是第m次充电状态开始时刻,k是大于或等于1的整数,m是大于或等于1的整数。
步骤102:根据第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取电池的历史容量衰减。
步骤103:根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
步骤104:根据第m次充电过程的满充电压,对电池进行第m次充电。
本申请实施例中,根据第k次放电过程的容量衰减和k-1次放电过程的容量衰减确定电池的历史容量衰减,基于历史容量衰减确定第m次充电过程的满充电压,再根据确定出的第m次充电过程的满充电压对电池进行第m次充电。由于历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即本申请不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
图2为本申请实施例提供的一另种电池的充电方法的流程示意图。该方法的交互主体为BMS和充电桩,如图2所示,该方法包括以下步骤。
步骤201:BMS获取电池的第k次放电过程的容量衰减。
需要说明的是,本申请实施例的电池的充电装置可以设置有充电插座,在充电枪插入充电插座时,可以对该充电装置进行充电,当充电枪从充电插座中拔出时,结束对该充电装置的充电。BMS可以检测充电枪的插入与拔出状态,并根据充电枪插入与拔出状态检测充电装置处于充电状态还是放电状态。例如,BMS可以将充电枪从充电插座中拔出的时刻确定为第m-1次充电状态的结束时刻,或者第k次放电过程的开始时刻,将充电枪下次插入充电插座的时刻确定为第m次充电状态的开始时刻,或者第k次放电过程的结束时刻。
电池在出厂后可以先充电后放电,也可以先放电后充电,还可以在电池多次放电之后再进行一次充电,因此,k可以或等于大于m,也可以小于m,本申请实施例对此不作限定。根据k与m的关系,本申请实施例中电池的充放电过程可以分为四种情况。第一这种情况:k=m=1,在这种情况下,电池先经历第1次放电过程,再经历第1次充电过程。第二种情况:k>1,m=1,在这种情况下,电池先经历k次放电过程,再经历第1次充电过程。第三种情况:k=1,m>1,在这种情况下,电池先经历m-1次充电过程,再经历第1次放电过程。第四种情况:k>1,m>1,在这种情况下,电池在经历第k次放电过程之前,已经经历了m-1次放电过程。
不论电池是哪种充放电模式,BMS均可以根据充电枪插入与拔出状态检测充电装置的第k次放电过程,并可以获取电池的第k次放电过程的容量 衰减。
示例性地,BMS获取电池的第k次放电过程的容量衰减的实现过程可以是:获取电池在第k次放电过程中的放电参数,放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,电池容量区间的上限是电池在第m-1次充电结束时的电池容量,电池容量区间的下限是第m次充电开始时的电池容量。根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取电池的第k次放电过程的容量衰减。
需要说明的是,BMS可以在检测到电池第m-1次充电状态结束时,就开始采集电池在放电过程的放电参数,直到检测到电池第m次充电状态开始时,停止放电参数的采集,以得到电池在第k次放电过程中的放电参数。其中,BMS可以实时采集电池在第k次放电过程中的放电参数,当然,为了减少采样能耗,也可以预设采样间隔,在第k次放电过程中每隔预设采样间隔采集一次放电参数。示例地,采样间隔可以是100ms(毫秒)、110ms、150ms等,本申请实施例对此不作限定。
另外,第k次放电过程中的累计吞吐量是第k次放电过程中的总放电容量与总回充容量之和。在获取电池在第k次放电过程中的累计吞吐量时,可以分别获取第k次放电过程中的总放电容量和总回充容量,然后将第k次放电过程中的总放电容量和总回充容量求和,或者加权求和,得到第k次放电过程中的累计吞吐量。
示例性地,根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量获取电池的第k次放电过程的容量衰减的实现过程可以是:根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定第k次放电过程的容量衰减:
Figure PCTCN2021082193-appb-000003
其中,ΔSOH k指第k次放电过程的容量衰减,C a、Eb和z是电池的预定常数,R是8.314,T是平均温度,T 0是298.15开氏温度,SOC upk是第k次放电过程中电池容量区间的上限,SOC lowk是第k次放电过程中电池容量区间的下限,C k是第k次放电过程的平均电流,ΔC k是第k次放电过程的累计吞吐量,f(SOC upk).是与第k次放电过程中电池容量区间的上限有关的函数,f(SOC lowk)是与第k次放电过程中电池容量区间的下限有关的函数,f(C k)是与第k次放电过程的平均电流有关的函数,本申请实施例对此不作限定。
当然,根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,还可以通过其它方式确定第k次放电过程的容量衰减,本申请实施例对此不作限定。
值得说明的是,本申请根据第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,可以精确确定出电池的第k次放电过程的容量 衰减。对于电池的每个放电过程,BMS均可以按照上述第k次放电过程的方式获取每个放电过程的放电参数,然后根据每个放电过程的放电参数确定每个放电过程的容量衰减。之后,BMS可以将放电过程、放电参数以及放电过程的容量衰减的关系进行对应存储,以便后续使用。
表1示出了放电过程、放电参数以及放电过程的容量衰减之间的对应关系。
表1
Figure PCTCN2021082193-appb-000004
本申请实施例中,仅以上述表1所示的对应关系为例进行说明,上述表1并不对本申请实施例构成限定。
步骤202:BMS根据第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取电池的历史容量衰减。
历史容量衰减是第m次充电之前,电池在历次(即前k次)放电过程中产生的容量衰减之和,因此可以基于第k次放电过程的容量衰减和前k-1次放电过程的容量衰减确定电池的历史容量衰减。
示例性地,BMS可以获取前k-1次放电过程的容量衰减,将第k次放电过程的容量衰减和前k-1次放电过程的容量衰减求和,得到电池的历史容量衰减。或者,将第k次放电过程的容量衰减和前k-1次放电过程的容量衰减加权求和,得到电池的历史容量衰减,本申请实施例对此不作限定。
在BMS获取前k-1次放电过程的容量衰减时,可以获取前k-1次放电过程中每次放电过程的容量衰减,然后将前k-1次放电过程中每次放电过程的容量衰减求和,或者加权求和,得到前k-1次放电过程中的容量衰减。
值得指出的是,当k=1时,k-1=0,电池的历史容量衰减就是第1次放电过程的容量衰减。因此,在根据步骤201获取到电池的第1次放电过程的容量衰减后,可以跳过步骤202直接执行步骤203。
步骤203:BMS判断历史容量衰减是否大于或等于第m预设阈值。
由于电池单次放电过程的容量衰减通常比较小,甚至可以小到几毫伏,因此,为了避免频繁确定电池在充电过程的满充电压而耗费资源,在通过步骤202获取到电池的历史容量衰减之后,还可以设置第m预设阈值,通过步骤203判断历史容量衰减是否大于或等于第m预设阈值。当确定历史容量衰减大于或等于第m预设阈值时才执行步骤205,否则不执行步骤205。
需要说明的是,第m预设阈值是与第m次充电过程对应的预设阈值。第m预设阈值可以预先进行设置,且第m预设阈值可以是任意正数,例如,第m预设阈值可以是1%、2%等,本申请实施例对此不作限定。
对于其它充电过程,均可以设置与充电过程对应的预设阈值。例如,对于第m-1次充电过程,可以设置第m-1预设阈值,对于第m+1次充电过程,可以设置第m+1预设阈值。以第m-1次充电过程、第m次充电过程和第m+1次充电过程为例进行说明,对于与充电过程对应的预设阈值,在一种可能的情况下,每个充电过程对应的预设阈值相同。例如,第m-1预设阈值=第m预设阈值=第m+1预设阈值。在第二种可能的情况下,预设阈值随着充电过程的进行而递增。例如,第m-1预设阈值<第m预设阈值<第m+1预设阈值。在第二种情况中,预设阈值可以随着充电过程的进行按一定的步幅递增,例如,第m-1预设阈值=1%,第m预设阈值=2%,第m+1预设阈值=3%,也可以不按一定的步幅递增,例如,第m-1预设阈值=1%,第m预设阈值=1.5%,第m+1预设阈值=4%,本申请实施例对此不作限定。
步骤204:当BMS确定历史容量衰减大于或等于第m预设阈值时,执行步骤205;否则,返回执行步骤201。
当BMS确定历史容量衰减大于或等于第m预设阈值,则根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。当BMS确定历史容量衰减小于第m预设阈值,则不会根据电池的标称容量和历史容量衰减确定电池在第m次充电过程的满充电压,而是返回执行获取电池的第k次放电过程的容量衰减的步骤。
值得说明的是,本申请实施例中,只有当BMS确定历史容量衰减达到第m预设阈值时,才确定电池在第m次充电过程的满充电压,这样,可以避免频繁确定电池在充电过程的满充电压而耗费资源。
步骤205:BMS根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
需要说明的是,电池的第m次充电过程的开始时刻是电池第m次充电状态开始时刻,第m次充电过程的结束时刻是第m次充电状态结束时刻。
电池的初始满充电压和标称容量是针对新鲜电池而言,电池的初始满充电压是电池的容量未衰减时的满充电压,初始满充电压与标称容量对应,也就是说,当向新鲜电池充电,使其电压达到初始满充电压时,该新鲜电池对外可以放出的电量在数值上等于标称容量。其中,标称容量是指设计与制造电池时规定或保证电池在一定的放电条件下,应该放出最低限度的电量。而历史容量衰减是针对老化电池而言。
示例性地,步骤205的实现过程可以是:基于标称容量与历史容量衰减,获取电池在第m次充电时要达到的容量;基于电池在第m次充电时要达到的容量,获取电池在第m次充电过程的满充电压。
其中,BMS在基于标称容量与历史容量衰减,获取电池在第m次充电时要达到的容量时,在一种可能的实现方式中,可以将标称容量与历史容量 衰减求和,得到电池在第m次充电时要达到的容量。在另一种可能的实现方式中,可以将标称容量与历史容量衰减加权求和,得到电池在第m次充电时要达到的容量,本申请实施例对此不作具体限定。
另外,BMS在基于电池在第m次充电时要达到的容量,获取电池在第m次充电过程的满充电压时,可以获取电池的开路电压与容量之间的对应关系,基于电池在第m次充电时要达到的容量,根据开路电压与容量之间的对应关系获取电池在第m次充电过程的满充电压。
需要说明的是,开路电压与容量之间的对应关系可以表现为开路电压-容量曲线(如图3所示),开路电压-容量曲线可以通过对多个同批新鲜电池进行相同的放电测试得到,故而开路电压-容量曲线表征的是新鲜电池的开路电压与容量之间的对应关系。电池的开路电压-容量曲线上具有多个坐标点,该多个坐标点中每个坐标点具有横坐标和纵坐标,横坐标表征容量,纵坐标表征电压。
历史容量衰减指的是第m次充电之前,电池在历次(即前k次)放电过程中产生的容量衰减之和,换句话说,历史容量衰减指的是在第m次充电之前,电池在前k次放电过程之后,电池容量相对于新鲜电池衰减了多少。本申请实施例基于标称容量与历史容量衰减获取电池在第m次充电时要达到的容量,可以将相对于新鲜电池衰减的那部分容量补充给经过k次放电之后的电池(也称为,老化电池),补充之后得到在第m次充电时要达到的容量。后续根据在第m次充电时要达到的容量确定电池在第m次充电过程的满充电压,再根据在第m次充电过程的满充电压对电池进行第m次充电之后,电池容量相较于新鲜电池没有衰减。
在得到电池第m次充电时要达到的容量之后,可以在电池的开路电压-容量曲线上确定容量等于第m次充电时要达到的容量的坐标点,该坐标点的纵坐标就是电池在第m次充电过程的满充电压。
图3是本申请实施例提供的一种新鲜电池的开路电压-容量曲线的示意图,参考图3,A点是在电池的开路电压-容量曲线上确定出的容量等于第m次充电时要达到的容量的坐标点,A点的横坐标是X1,纵坐标是Y1,X1等于第m次充电时要达到的容量,则Y1等于电池在第m次充电过程的满充电压。B点的横坐标是X2,纵坐标是Y2,X2等于电池的标称容量,Y2等于电池的初始满充电压。X1与X2的差值是电池的历史容量衰减,Y1与Y2的差值是电池在第m次充电过程的满充电压较初始满充电压增加的值,该值可以称为开放电压,由此可见,本申请实施例在初始满充电压的基础上增加一个开放电压,得到电池在第m次充电过程的满充电压。后续根据电池在第m次充电过程的满充电压进行第m次充电后再放电,便可以补充开放电压对应的容量衰减,保证电池容量无衰减。
值得说明的是,本申请基于电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。由于电池的历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,并不是固 定不变,由此提高了确定出的满充电压的准确性。
需要说明的是,本申请实施例在通过步骤201和步骤202获取到电池的历史容量衰减之后,也可以不执行步骤203和步骤204,直接通过步骤205确定电池在第m次充电过程的满充电压,本申请实施例对此不作限定。
在通过上述步骤确定出电池在第m次充电过程的满充电压之后,便可以通过如下步骤206来实现对电池的第m次充电。
步骤206:BMS根据第m次充电过程的满充电压,对电池进行第m次充电。
示例性地,步骤206的实现过程可以是:在对电池进行充电的过程中,检测电池的实际电压;判断实际电压是否上升到电池在第m次充电过程的满充电压;当确定实际电压上升到电池在第m次充电过程的满充电压时,停止向电池充电。
进一步地,当确定实际电压未上升到电池在第m次充电过程的满充电压时,继续向电池充电,并返回执行在对电池进行充电的过程中,检测电池的实际电压的步骤。如此,可以保证电池以第m次充电过程的满充电压进行第m次满充,从而保证后续放电时无容量衰减。
本申请实施例中,BMS可以与充电桩进行通信。当BMS确定实际电压上升到电池在第m次充电过程的满充电压时,可以向充电桩发送充电结束的指示。相应地,充电桩可以接收该指示,并根据该指示,控制充电枪从充电插座中拔出,以停止向电池充电。当BMS确定实际电压未上升到第m次充电过程的满充电压时,不向充电桩发送充电结束的指示,而是继续在充电过程中检测电池的实际电压,直到当确定实际电压上升到第m次充电过程的满充电压时,才向充电桩发送充电结束的指示。
在对电池进行充电的过程中,可以实时检测电池的实际电压,但是由于充电并不是瞬间完成的,需要一个过程,因此可以预设时间间隔,且可以在充电前期按照较大的时间间隔进行实际电压的检测,在充电后期按照较小的时间间隔进行实际电压的检测。
例如,假设充电过程总时长为t,前2/3t的充电过程为充电前期,后1/3t的充电过程为充电后期,那么可以设置第一时间间隔和第二时间间隔,第一时间间隔大于第二时间间隔,在前2/3t的充电过程中,可以每隔第一时间间隔检测一次实际电压,在后1/3t的充电过程中,可以每隔第二时间间隔检测一次实际电压。这样,可以避免由于频繁检测实际电压而产生较大的能耗。
当然,本申请实施例中第一时间间隔也可以等于第二时间间隔,另外,本申请实施例不限于将充电过程划分为充电前期和充电后期这两个充电阶段,也可以将充电过程划分为两个以上的充电阶段,例如,将充电过程划分为3个、4个、5个等充电阶段,相应地,可以对应设置3个、4个、5个等时间间隔。
进一步地,在一些实施例中,随着电池不断放电,电池在持续老化,历史容量衰减在不断增大。当m的取值较大时,电池在第m次充电过程的满充 电压也较大,当m的取值继续增大,电池在第m次充电过程的满充电压继续增大到一定程度时,如果继续根据电池在第m次充电过程的满充电压对电池充电,则会带来电池使用时的安全问题。因此,可以设置一个电池的预设电压上限,在步骤206之前,可以判断第m次充电过程的满充电压是否小于或等于电池的预设电压上限,当确定第m次充电过程的满充电压小于或等于电池的预设电压上限时,执行步骤206,当确定第m次充电过程的满充电压大于电池的预设电压上限时,则根据预设电压上限对电池进行第m次充电。
需要说明的是,预设电压上限可以预先进行设置,且可以根据电池的属性进行设置。预设电压上限可以大于标称容量,且预设电压上限可以是保证电池安全使用的前提下电池充电时所能达到的最大电压。
本申请实施例中,考虑到历史容量衰减,基于历史容量衰减确定满充电压,再根据确定出的满充电压对电池进行充电。而历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
为了便于理解,下面针对上述实施例提及的四种充放电情况下的充电方法进行举例说明。
针对第一种放电情况:k=m=1,即,电池当前经历了1次放电过程,即将经历第1次充电过程。在这种情况下,BMS获取电池的第1次放电过程的容量衰减,该第1次放电过程的容量衰减就是电池的历史容量衰减,然后根据电池的标称容量和第1次放电过程的容量衰减,确定电池在第1次充电过程的满充电压,最后根据第1次充电过程的满充电压,对电池进行第1次充电。
针对第二种放电情况:k>1,m=1,即,电池当前经历了k次放电过程,即将经历第1次充电过程。以k=3为例,BMS获取电池的第3次放电过程的容量衰减,然后根据第3次放电过程的容量衰减和前2次放电过程的容量衰减,获取电池的历史容量衰减,之后根据电池的标称容量和历史容量衰减,确定电池在第1次充电过程的满充电压,最后根据第1次充电过程的满充电压,对电池进行第1次充电。
针对第三种放电情况:k=1,m>1,即,电池当前经历了1次放电过程,即将经历第m次充电过程。以m=2为例,BMS获取电池的第1次放电过程的容量衰减,该第1次放电过程的容量衰减就是电池的历史容量衰减,然后根据电池的标称容量和第1次放电过程的容量衰减,确定电池在第2次充电过程的满充电压,最后根据第2次充电过程的满充电压,对电池进行第2次充电。
针对第四种放电情况:k>1,m>1,即,电池当前经历了k次放电过程,即将经历第m次放电过程。以k=2,m=3为例,BMS获取电池的第2次放电过程的容量衰减,然后根据第2次放电过程的容量衰减和第1次放电过程的 容量衰减,获取电池的历史容量衰减,之后根据电池的标称容量和历史容量衰减,确定电池在第3次充电过程的满充电压,最后根据第3次充电过程的满充电压,对电池进行第3次充电。
图4是本申请实施例提供的一种电池的充电装置的结构示意图,如图4所示,本申请实施例提供的电池的充电装置包括:处理模块401和充电模块402。
处理模块401,用于获取电池的第k次放电过程的容量衰减,第k次放电过程的开始时刻是电池第m-1次充电状态结束时刻,第k次放电过程的结束时刻是第m次充电状态开始时刻,k是大于或等于1的整数,m是大于或等于1的整数。
处理模块401,还用于根据第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取电池的历史容量衰减。
处理模块401,还用于根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
充电模块402,用于根据第m次充电过程的满充电压,对电池进行第m次充电。
可选地,处理模块401用于:获取电池在第k次放电过程中的放电参数,放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,电池容量区间的上限是电池在第m-1次充电结束时的电池容量,电池容量区间的下限是第m次充电开始时的电池容量;根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取电池的第k次放电过程的容量衰减。
可选地,处理模块401用于:根据电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定第k次放电过程的容量衰减:
Figure PCTCN2021082193-appb-000005
其中,ΔSOH k指第k次放电过程的容量衰减,C a、Eb和z是电池的预定常数,R是8.314,T是平均温度,T 0是298.15开氏温度,SOC upk是第k次放电过程中电池容量区间的上限,SOC lowk是第k次放电过程中电池容量区间的下限,C k是第k次放电过程的平均电流,ΔC k是第k次放电过程的累计吞吐量。
可选地,处理模块401用于:基于标称容量与历史容量衰减,获取电池在第m次充电时要达到的容量;基于电池在第m次充电时要达到的容量,获取电池在第m次充电过程的满充电压。
可选地,处理模块401用于:若历史容量衰减大于或等于第m预设阈值,则根据电池的标称容量和历史容量衰减,确定电池在第m次充电过程的满充电压。
可选地,充电模块402用于:在对电池进行充电的过程中,检测电池 的实际电压;断实际电压是否上升到电池在第m次充电过程的满充电压;当确定实际电压上升到电池在第m次充电过程的满充电压时,停止向电池充电。
本申请实施例中,考虑到历史容量衰减,基于历史容量衰减确定满充电压,再根据确定出的满充电压对电池进行充电。而历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
本申请实施例还提供一种电池,包括上述图4所示实施例提供的充电装置。
本申请实施例还提供一种用电装置,该用电装置包括电池,电池用于提供电能,该用电装置通过图1至图3所示实施例提供的充电方法对电池进行充电。
图5是本申请实施例提供的另一种电池的充电装置的结构示意图。参照图5,该电池的充电装置包括:处理器510,存储器520,和接口530,处理器510、存储器520和接口530通过总线540连接,该总线可以通过连接电路来实现。其中,存储器520用于存储程序,该程序被处理器510调用时,可以实现以上实施例中电池的充电装置执行的方法。接口530用于实现与其它电池的充电装置的通信,且接口530可以通过有线连接的方式或者无线连接的方式,与其他电池的充电装置进行通信。
以上电池的充电装置各个单元的功能可以通过处理器510调用存储器520中存储的程序来实现。即,以上电池的充电装置包括处理器510和存储器520,存储器520用于存储程序,该程序被处理器510调用,以执行以上方法实施例中的方法。这里的处理器510,可以是通用处理器,还可以是其它可以调用程序的处理器;或者该处理器510可以被配置成实施以上实施例中电池的充电装置执行方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处 理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等等。再如,当电池的充电装置中的单元可以通过处理器调度程序的形式实现时,该处理器510可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)、控制器、微控制器、单片机或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统的形式实现。
存储器520的数量不做限制,可以是一个也可以是多个。
存储器520至少包括一种类型的可读存储介质,可读存储介质包括非易失性存储器(non-volatile memory)或易失性存储器,例如,闪存(flash memory)、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、电可擦写可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、可编程只读存储器(programmable read-only memory,PROM)、磁性存储器、磁盘或光盘等,RAM可以包括静态RAM或动态RAM。在一些实施例中,存储器520可以是该装置的内部存储器,例如,该装置的硬盘或内存。在另一些实施例中,存储器520也可以是该装置的外部存储设备,例如该装置上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC)、安全数字(Secure Digital,SD)卡或闪存卡(Flash Card)等。当然,存储器520还可以既包括该装置的内部存储器也包括其外部存储设备。本实施例中,存储器520通常用于存储安装于该装置的操作系统和各类应用软件,例如电池的充电方法的程序代码等。此外,存储器520还可以用于暂时地存储已经输出或者将要输出的各类数据。
总线540可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。该总线540可以包括地址总线、数据总线或控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
该处理器510通常用于控制该装置的总体操作。本实施例中,存储器520用于存储程序代码或指令,程序代码包括计算机操作指令,处理器510用于执行存储器520存储的程序代码或指令或者处理数据,例如运行电池的充电方法的程序代码。
综上所述,本申请实施例中,考虑到历史容量衰减,基于历史容量衰减确定满充电压,再根据确定出的满充电压对电池进行充电。而历史容量衰减随着电池的使用不断增大,因此本申请中电池在充电过程的满充电压也不断增大,即不断开放满充电压。如此,每次充电时都可以将衰减的那部分电池容量弥补进去,使得电池真正达到满充,从而可以保证电池在放电时无容量衰减。
本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种电池的充电方法,其特征在于,所述方法包括:
    获取电池的第k次放电过程的容量衰减,所述第k次放电过程的开始时刻是所述电池第m-1次充电状态结束时刻,所述第k次放电过程的结束时刻是第m次充电状态开始时刻,所述k是大于或等于1的整数,所述m是大于或等于1的整数;
    根据所述第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取所述电池的历史容量衰减;
    根据所述电池的标称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压;
    根据所述第m次充电过程的满充电压,对所述电池进行第m次充电。
  2. 根据权利要求1所述的方法,其特征在于,获取所述电池的第k次放电过程的容量衰减,包括:
    获取所述电池在第k次放电过程中的放电参数,所述放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,所述电池容量区间的上限是所述电池在第m-1次充电结束时的电池容量,所述电池容量区间的下限是所述第m次充电开始时的电池容量;
    根据所述电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取所述电池的第k次放电过程的容量衰减。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量获取所述电池的第k次放电过程的容量衰减,包括:
    根据所述电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定所述第k次放电过程的容量衰减:
    Figure PCTCN2021082193-appb-100001
    其中,所述ΔSOH k指第k次放电过程的容量衰减,所述C a、所述Eb和所述z是所述电池的预定常数,所述R是8.314,所述T是平均温度,所述T 0是298.15开氏温度,所述SOC upk是第k次放电过程中电池容量区间的上限,所述SOC lowk是第k次放电过程中电池容量区间的下限,所述C k是第k次放电过程的平均电流,所述ΔC k是第k次放电过程的累计吞吐量。
  4. 根据权利要求1-3所述的方法,其特征在于,根据所述电池的标称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压,包括:
    基于所述标称容量与所述历史容量衰减,获取所述电池在第m次充电时要达到的容量;
    基于所述电池在第m次充电时要达到的容量,获取所述电池在第m次充电过程的满充电压。
  5. 根据权利要求1-4所述的方法,其特征在于,所述根据所述电池的标 称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压,包括:
    若所述历史容量衰减大于或等于第m预设阈值,则根据所述电池的标称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压。
  6. 根据权利要求1-5所述的方法,其特征在于,所述根据所述第m次充电过程的满充电压对所述电池进行第m次充电,包括:
    在对所述电池进行充电的过程中,检测所述电池的实际电压;
    判断所述实际电压是否上升到所述电池在第m次充电过程的满充电压;
    当确定所述实际电压上升到所述电池在第m次充电过程的满充电压时,停止向所述电池充电。
  7. 一种电池的充电装置,其特征在于,所述装置包括:
    处理模块,用于获取电池的第k次放电过程的容量衰减,所述第k次放电过程的开始时刻是所述电池第m-1次充电状态结束时刻,所述第k次放电过程的结束时刻是第m次充电状态开始时刻,所述k是大于或等于1的整数,所述m是大于或等于1的整数;
    所述处理模块,还用于根据所述第k次放电过程的容量衰减和前k-1次放电过程的容量衰减,获取所述电池的历史容量衰减;
    所述处理模块,还用于根据所述电池的标称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压;
    充电模块,用于根据所述第m次充电过程的满充电压,对所述电池进行第m次充电。
  8. 根据权利要求7所述的装置,其特征在于,所述处理模块用于:
    获取所述电池在第k次放电过程中的放电参数,所述放电参数包括平均电流、平均温度、电池容量区间和累计吞吐量,所述电池容量区间的上限是所述电池在第m-1次充电结束时的电池容量,所述电池容量区间的下限是所述第m次充电开始时的电池容量;
    根据所述电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,获取所述电池的第k次放电过程的容量衰减。
  9. 根据权利要求8所述的装置,其特征在于,所述处理模块用于:
    根据所述电池在第k次放电过程中的平均电流、平均温度、电池容量区间和累计吞吐量,通过如下公式确定所述第k次放电过程的容量衰减:
    Figure PCTCN2021082193-appb-100002
    其中,所述ΔSOH k指第k次放电过程的容量衰减,所述C a、所述Eb和所述z是所述电池的预定常数,所述R是8.314,所述T是平均温度,所述T 0是298.15开氏温度,所述SOC upk是第k次放电过程中电池容量区间的上限,所述SOC lowk是第k次放电过程中电池容量区间的下限,所述C k是第k次放电过程的平均电流,所述ΔC k是第k次放电过程的累计吞吐量。
  10. 根据权利要求7-9所述的装置,其特征在于,所述处理模块用于:
    基于所述标称容量与所述历史容量衰减,获取所述电池在第m次充电时要达到的容量;
    基于所述电池在第m次充电时要达到的容量,获取所述电池在第m次充电过程的满充电压。
  11. 根据权利要求7-10所述的装置,其特征在于,所述处理模块用于:
    若所述历史容量衰减大于或等于第m预设阈值,则根据所述电池的标称容量和所述历史容量衰减,确定所述电池在第m次充电过程的满充电压。
  12. 根据权利要求7-11所述的装置,其特征在于,所述充电模块用于:
    在对所述电池进行充电的过程中,检测所述电池的实际电压;
    判断所述实际电压是否上升到所述电池在第m次充电过程的满充电压;
    当确定所述实际电压上升到所述电池在第m次充电过程的满充电压时,停止向所述电池充电。
  13. 一种电池,其特征在于,包括权利要求7至12任一项所述的充电装置。
  14. 一种用电装置,其特征在于,所述用电装置包括电池,所述电池用于提供电能,所述用电装置通过权利要求1至6任一项所述的方法对所述电池进行充电。
  15. 一种电池的充电装置,包括:处理器、存储器和总线,所述处理器和所述存储器通过所述总线完成相互间的通信;
    所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如权利要求1-6任意一项所述的电池的充电方法的步骤。
PCT/CN2021/082193 2021-03-22 2021-03-22 一种电池、用电装置、电池的充电方法及装置 WO2022198414A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21908116.3A EP4092806B1 (en) 2021-03-22 2021-03-22 Battery, electricity utilization apparatus, and battery charging method and apparatus
PCT/CN2021/082193 WO2022198414A1 (zh) 2021-03-22 2021-03-22 一种电池、用电装置、电池的充电方法及装置
CN202180071368.5A CN116368658A (zh) 2021-03-22 2021-03-22 一种电池、用电装置、电池的充电方法及装置
US17/839,607 US20220320888A1 (en) 2021-03-22 2022-06-14 Battery, electric apparatus, and charging method and apparatus for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082193 WO2022198414A1 (zh) 2021-03-22 2021-03-22 一种电池、用电装置、电池的充电方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/839,607 Continuation US20220320888A1 (en) 2021-03-22 2022-06-14 Battery, electric apparatus, and charging method and apparatus for battery

Publications (1)

Publication Number Publication Date
WO2022198414A1 true WO2022198414A1 (zh) 2022-09-29

Family

ID=83396194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082193 WO2022198414A1 (zh) 2021-03-22 2021-03-22 一种电池、用电装置、电池的充电方法及装置

Country Status (4)

Country Link
US (1) US20220320888A1 (zh)
EP (1) EP4092806B1 (zh)
CN (1) CN116368658A (zh)
WO (1) WO2022198414A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456948B1 (en) * 1999-04-21 2002-09-24 Samsung Sdi Co., Ltd. Method of generating data for use in monitoring and controlling charge and discharge status of secondary battery
CN101609359A (zh) * 2008-06-17 2009-12-23 联想(北京)有限公司 一种笔记本电脑及其电池控制方法
CN103969585A (zh) * 2013-01-31 2014-08-06 国际商业机器公司 评估电池的使用状况的方法和装置、相关系统和车辆
CN111106400A (zh) * 2019-12-27 2020-05-05 联想(北京)有限公司 一种电池控制方法置和电池管理设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223665A (ja) * 1998-02-04 1999-08-17 Nissan Motor Co Ltd 電池の残存容量演算装置
JP4583765B2 (ja) * 2004-01-14 2010-11-17 富士重工業株式会社 蓄電デバイスの残存容量演算装置
CN112946496B (zh) * 2019-06-24 2024-07-12 宁德时代新能源科技股份有限公司 电池荷电状态确定方法、装置、管理系统以及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456948B1 (en) * 1999-04-21 2002-09-24 Samsung Sdi Co., Ltd. Method of generating data for use in monitoring and controlling charge and discharge status of secondary battery
CN101609359A (zh) * 2008-06-17 2009-12-23 联想(北京)有限公司 一种笔记本电脑及其电池控制方法
CN103969585A (zh) * 2013-01-31 2014-08-06 国际商业机器公司 评估电池的使用状况的方法和装置、相关系统和车辆
CN111106400A (zh) * 2019-12-27 2020-05-05 联想(北京)有限公司 一种电池控制方法置和电池管理设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092806A4 *

Also Published As

Publication number Publication date
EP4092806C0 (en) 2024-07-10
CN116368658A (zh) 2023-06-30
EP4092806A4 (en) 2023-04-26
EP4092806B1 (en) 2024-07-10
EP4092806A1 (en) 2022-11-23
US20220320888A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
KR102634816B1 (ko) 배터리의 전하 균형을 탐지하는 배터리 모니터링 장치 및 방법
EP3641095B1 (en) Battery charging management apparatus and method
US10236702B2 (en) Method and apparatus for rapidly charging battery
US11391780B2 (en) Battery diagnostic device and method
JP7279294B2 (ja) バッテリー管理装置及び方法
CN107710545A (zh) 预测电池充电极限的方法和使用该方法对电池迅速充电的方法和设备
US11662388B2 (en) Apparatus for estimating a battery free capacity
EP3872957A1 (en) Charging method, electronic apparatus, and storage medium
WO2020259039A1 (zh) 荷电状态修正方法及装置
US12095299B2 (en) Electronic device and method for charging battery
CN114069077B (zh) 电化学装置管理方法、电子设备及电池系统
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
WO2024103801A1 (zh) 一种电池包的管理方法、装置、储能系统和电池包
WO2019230131A1 (ja) 充電制御装置、輸送機器、及びプログラム
US12050252B2 (en) State-of-charge cut-off control method, apparatus and system, and storage medium
US11397213B2 (en) Method, controlling unit and electronic charging arrangement for determining state of charge of a battery during charging of the battery
CN114545241A (zh) 基于冻结容量的soc估算方法及电子设备
WO2022198414A1 (zh) 一种电池、用电装置、电池的充电方法及装置
WO2023035163A1 (zh) 动力电池充电的方法和电池管理系统
CN113013935B (zh) 供电装置的控制方法及系统、终端设备、存储介质
KR20210098215A (ko) 배터리 충방전 제어 장치 및 방법
WO2012091432A2 (ko) 2차 전지의 잔존수명 연산 방법 및 장치
KR102554505B1 (ko) 배터리 진단 장치 및 방법
US20230266400A1 (en) Battery Diagnosing Apparatus and Method
CN112540315B (zh) 一种电池过放电程度检测方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021908116

Country of ref document: EP

Effective date: 20220701

NENP Non-entry into the national phase

Ref country code: DE