WO2022197153A1 - 데이터 처리 방법 - Google Patents

데이터 처리 방법 Download PDF

Info

Publication number
WO2022197153A1
WO2022197153A1 PCT/KR2022/003837 KR2022003837W WO2022197153A1 WO 2022197153 A1 WO2022197153 A1 WO 2022197153A1 KR 2022003837 W KR2022003837 W KR 2022003837W WO 2022197153 A1 WO2022197153 A1 WO 2022197153A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
occlusal
model
occlusion
maxillary
Prior art date
Application number
PCT/KR2022/003837
Other languages
English (en)
French (fr)
Inventor
이동훈
남하종
Original Assignee
주식회사 메디트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디트 filed Critical 주식회사 메디트
Priority to EP22771819.4A priority Critical patent/EP4309622A1/en
Priority to US18/282,656 priority patent/US20240173100A1/en
Priority claimed from KR1020220033990A external-priority patent/KR20220131194A/ko
Publication of WO2022197153A1 publication Critical patent/WO2022197153A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/34Making or working of models, e.g. preliminary castings, trial dentures; Dowel pins [4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C19/00Dental auxiliary appliances
    • A61C19/04Measuring instruments specially adapted for dentistry
    • A61C19/05Measuring instruments specially adapted for dentistry for determining occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C7/00Orthodontics, i.e. obtaining or maintaining the desired position of teeth, e.g. by straightening, evening, regulating, separating, or by correcting malocclusions
    • A61C7/002Orthodontic computer assisted systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C9/00Impression cups, i.e. impression trays; Impression methods
    • A61C9/004Means or methods for taking digitized impressions
    • A61C9/0046Data acquisition means or methods
    • A61C9/0053Optical means or methods, e.g. scanning the teeth by a laser or light beam
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the present invention relates to a data processing method, and more particularly, to a data processing method in which a plurality of occlusal models are obtained and differences between the respective occlusal models can be easily identified.
  • 3D scanning technology is used in various industrial fields such as measurement, inspection, reverse engineering, content creation, CAD/CAM for dental treatment, and medical devices, and its practicality is further expanded due to the improvement of scanning performance due to the development of computing technology. .
  • a 3D scanning technique is performed for patient treatment, a 3D model obtained through 3D scanning is required to have high precision.
  • the three-dimensional scanner acquires an entire three-dimensional model by converting image data (two-dimensional or three-dimensional) obtained through imaging of a measurement object into a three-dimensional model.
  • image data two-dimensional or three-dimensional
  • a 3D model representing the inside of the patient's mouth may be obtained by scanning the inside of the patient's mouth, and an optimal treatment may be provided to the patient by analyzing the 3D model.
  • a three-dimensional model (hereinafter, may be referred to as an occlusal model in the present invention) representing the inside of the patient's oral cavity includes maxilla data representing the patient's maxilla and mandible data representing the patient's mandible, and maxilla and mandible. It can be obtained by obtaining occlusal data representing one buccal of
  • the user of the 3D scanner may obtain first occlusion data representing the opening occlusion, second occlusion data representing the lateral occlusion, and third occlusion data representing the cut occlusion.
  • first occlusion data representing the opening occlusion
  • second occlusion data representing the lateral occlusion
  • third occlusion data representing the cut occlusion.
  • the present invention aligns a plurality of occlusion data with maxillary data and mandibular data to generate a plurality of occlusal models, and by continuously displaying at least some of the plurality of occlusal models, an animation effect according to the switching of the plurality of occlusal models.
  • the data processing method includes an occlusal data acquisition step of acquiring a plurality of occlusion data including at least a portion of a shape of an upper jaw and a shape of a mandible in an object, the plurality of occlusions
  • the data processing method according to the present invention may further include other additional steps including the above-described steps, thereby allowing a user to easily obtain and compare a plurality of occlusal models.
  • a user can obtain a plurality of occlusion models aligned by a plurality of occlusion data, and there is an advantage in that the plurality of occlusion models can be easily compared.
  • the user can visually compare and analyze the plurality of occlusal models conveniently through the animation step in which the mandibular data moves while the maxillary data of the plurality of occlusal models are fixed.
  • the occlusal data is aligned with the maxillary data and the mandibular data is aligned with the occlusal data
  • accurate occlusal models according to stable alignment can be obtained, and the maxillary data and / or Since the movement of the mandibular data is effectively displayed to the user, there is an advantage in that the user's visual convenience is improved.
  • maxillary data, occlusal data, and mandibular data are aligned to obtain occlusion models while the maxillary data is fixed, accurate occlusal models can be obtained according to stable alignment, as well as the mandibular data through occlusion data.
  • the speed of obtaining a plurality of occlusal models is quickly aligned and the user's visual convenience is improved because the movement of the maxillary data and/or mandibular data is effectively displayed to the user through the animation step of continuously displaying the plurality of occlusal models.
  • the alignment initialization step restores the positions of the maxillary data and the mandibular data before they are aligned by the occlusal data or separates them by a predetermined distance, so that the maxillary data and the mandibular data are created by the new occlusion data. is aligned, a new occlusal model can be created, and the user can easily visually recognize that the aligned occlusal model before the alignment initialization step is safely stored by the alignment initialization step.
  • a movement path is obtained to switch between a plurality of occlusal models, and the mandible data moves according to the movement path, so that the movement of the object can be easily visually confirmed through an animation effect.
  • the reference occlusal model determined by the reference occlusal model determining step may be used as a reference for aligning other occlusal models, and a plurality of occlusal models are aligned based on the maxillary data of the reference occlusal model, so that the user can select the reference occlusal model.
  • the movement of a plurality of occlusal models arranged based on . can be easily visually confirmed through an animation effect.
  • there is an advantage that an accurate prosthesis design is possible through the reference occlusal model expressing the normal bite.
  • the animation step acquires the movement path of the mandibular data to continuously display the movement of the mandibular data, so that the movement of data can be quickly.
  • the plurality of occlusal models include first maxillary data and first mandibular data representing the shape before processing of the maxilla and mandible, and second maxilla data and second mandibular data representing the shape after processing of the maxilla and mandible. Since it can be generated by a combination, the user has the advantage of being able to design an accurate prosthetic treatment for the patient and provide the optimal treatment to the patient by referring to the occlusal models expressing the maxillary data and mandibular data in various states.
  • FIG. 1 is a block diagram of a data processing apparatus performing a data processing method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a data processing method according to an embodiment of the present invention.
  • 3A and 3B are for explaining various occlusion types obtained in a data processing method according to an embodiment of the present invention.
  • FIG. 4 is a detailed flowchart of the occlusal model generation step ( S120 ) of the data processing method according to an embodiment of the present invention.
  • 5 to 7 are for explaining a process of generating an occlusion model by aligning maxillary data and mandibular data by occlusal data in a data processing method according to an embodiment of the present invention.
  • FIG. 8 is for explaining an alignment initialization step S123 of a data processing method according to an embodiment of the present invention.
  • FIG. 9 is a detailed flowchart of the step of displaying the occlusal model ( S140 ) of the data processing method according to an embodiment of the present invention.
  • FIG. 10 is for explaining a plurality of occlusal models obtained by the data processing method according to an embodiment of the present invention.
  • 11 is a diagram for describing a process in which maxilla data and/or mandibular data are moved according to the conversion of a plurality of occlusal models in the data processing method according to an embodiment of the present invention.
  • 12 to 14 are for explaining a process in which the movement of the occlusal model appears by selecting different occlusal models in the data processing method according to an embodiment of the present invention.
  • 15 is a diagram for explaining an interpolation model generated between occlusal models and a process in which an animation step is performed according to the interpolation model in the data processing method according to an embodiment of the present invention.
  • 16 is a diagram for describing a process in which occlusion analysis of the first occlusion model is performed to determine a reference occlusion model in the data processing method according to an embodiment of the present invention.
  • 17 is a diagram for describing a process in which an occlusion analysis of a second occlusion model is performed in order to determine a reference occlusion model in the data processing method according to an embodiment of the present invention.
  • 18 is for explaining a process in which an occlusion analysis is performed on an arbitrary occlusion model in the data processing method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a data processing apparatus 1 performing a data processing method according to an embodiment of the present invention.
  • a data processing apparatus 1 performing a data processing method may include a scan unit 10 , a control unit 20 , and a display unit 30 .
  • the scan unit 10 may acquire data representing the object by scanning the object.
  • the object may be an actual inside of the patient's oral cavity indicating the shape of the patient's oral cavity and the oral state.
  • the object does not necessarily have to be the inside of the patient's actual oral cavity, and, in addition to the above-described inside of the patient's actual oral cavity, an impression model (intaglio model) made by imitating the inside of the patient's actual oral cavity as an impression material, and plaster on the impression model It may be at least one of the plaster models (embossed models) obtained by pouring. That is, any object representing the shape of the patient's oral cavity and the oral state may function as a subject.
  • the scan unit 10 scans an object to provide two-dimensional image data for flatly expressing the shape and color of the object, and a three-dimensional model (to be referred to as an occlusal model in the present invention) that three-dimensionally expresses the shape and color of the object. can be obtained).
  • the scan unit 10 may irradiate structured light toward the object in order to obtain depth information for generating a 3D model of the object.
  • the scan unit 10 may have a built-in light projector capable of irradiating structured light.
  • the structured light irradiated from the light projector may be reflected from the surface of the object, and the reflected light may be accommodated in the scan unit 10 .
  • the reflected light reflected from the surface of the object may be received by the camera of the scan unit 10 , and 2D image data and a 3D model may be generated based on the reflected light received by the camera.
  • the scan unit 10 may scan the object to acquire a plurality of occlusal data including at least a portion of the shape of the upper jaw and the shape of the mandible of the object.
  • the scan unit 10 may be a handheld 3D scanner that a user holds and performs a scanning process so as to have a free scan distance and a free scan angle with respect to the object.
  • the scan unit 10 may be a table-type 3D scanner capable of performing a scanning process by holding an object and rotating and/or tilting the object.
  • the control unit 20 may communicate with the scan unit 10 by wire or wireless connection.
  • the control unit 20 and the scan unit 10 may perform data communication using a known communication method.
  • the control unit 20 may process data obtained by the scanning unit 10 scanning an object.
  • the control unit 20 may generate an occlusal model by aligning the occlusal data obtained by the scanning unit 10 scanning the object with the maxillary data and the mandible data, and any An animation effect of moving from one occlusal model to another occlusal model can be implemented.
  • the controller 20 may additionally generate an interpolation model for implementing the animation effect, or may determine a reference occlusal model by analyzing a plurality of occlusal models.
  • the control unit 20 may include a database unit 21 .
  • the database unit 21 may store data obtained from the scan unit 10 .
  • the database unit 21 may store the generated occlusal models.
  • the database unit 21 may store various logics for the operation of the control unit 20 .
  • the database unit 21 may include logic for aligning occlusion data, maxillary data, and mandibular data, logic for aligning a plurality of occlusal models, logic for obtaining a movement path for performing an animation step, and movement It may include at least one of logic for generating an interpolation model corresponding to the path and logic for determining a reference occlusion model from among a plurality of occlusion models.
  • the database unit 21 may be a known storage device.
  • the database unit 21 may be a storage device such as a hard disk drive, a solid state drive, or a USB flash drive.
  • the database unit 21 may be a cloud-type storage system.
  • the control unit 20 may include a data alignment unit 22 .
  • the data aligning unit 22 may align the maxillary data and the mandibular data through the occlusal data. For example, when the scan unit 10 scans the buccal surfaces of the upper and lower jaws of the object to obtain occlusion data, the occlusal data is aligned with the maxillary data and the mandibular data, and the maxillary data and the mandibular data may have an aligned shape. have.
  • the data aligning unit 22 cancels the application of the occlusal data to obtain a new occlusal model and aligns the positions of the maxillary data and the mandibular data before aligning. It is possible to return to the position of , or to separate the maxillary data and the mandibular data by a predetermined distance from each other.
  • the control unit 20 may include an occlusal model generating unit 23 .
  • the occlusal model generating unit 23 may generate a three-dimensional occlusal model based on the maxillary data, the mandibular data, and the occlusal data aligned by the data aligning unit 22 . Meanwhile, when a plurality of occlusion data is obtained by the scan unit 10 , the occlusion model generating unit 23 may generate a plurality of occlusion models by aligning each of the plurality of occlusion data, the maxillary data, and the mandibular data.
  • the occlusal model generator 23 may acquire a plurality of occlusal models arranged by a plurality of occlusal data in a single stage.
  • the control unit 20 may include an animation unit 24 .
  • the animation unit 24 may obtain a movement path of data and may move the data along the movement path.
  • the animation unit 24 may continuously display the movement of the mandibular data from the first occlusion model to the second occlusion model along the movement path.
  • control unit 20 may include an interpolation model generation unit 25 .
  • the interpolation model generator 25 may be generated based on a movement path between the plurality of occlusal models.
  • the interpolation model generator 25 may generate at least one interpolation model between the first occlusion model and the second occlusion model.
  • the animation unit 24 may display the interpolation model generated by the interpolation model generation unit 25 between the first occlusion model and the second occlusion model to continuously display the movement of data.
  • control unit 20 may include an occlusion analysis unit 26 .
  • the occlusion analyzer 26 may determine a reference occlusion model by analyzing the plurality of occlusion models generated by the occlusion model generator 23 . For example, the occlusion analyzer 26 may determine the reference occlusal model based on the size of the occlusal area between the maxillary data and the mandibular data in the plurality of occlusion models.
  • the display unit 30 may visually display at least some of the above-described operations of the control unit 20 .
  • the display unit 30 may display 2D image data and a 3D model obtained by the scanning process of the scanning unit 10 .
  • the display unit 30 may display a process in which the occlusal data, the maxillary data, and the mandibular data are aligned.
  • the display unit 30 may display an animation process in which data is moved or an interpolation model is sequentially displayed when one occlusal model is switched to another occlusal model.
  • the display unit 30 may display a process in which the reference occlusion model is determined according to the occlusion analysis.
  • the display unit 30 may be a known visual display device, and at least one of visual display devices such as a monitor, a touch screen, and a tablet device may be used as the display unit 30 .
  • FIGS. 3A and 3B are for explaining various occlusion types obtained in the data processing method according to an embodiment of the present invention.
  • the data processing method may include obtaining occlusion data ( S110 ), generating an occlusion model ( S120 ), and displaying the occlusion model ( S140 ).
  • the scan unit scans the object to acquire occlusion data.
  • the scan unit may acquire a plurality of occlusal data including at least a portion of the shape of the upper jaw and the shape of the mandible of the object.
  • the occlusion data may be obtained by scanning the buccal surfaces of the upper and lower jaws of the object.
  • a plurality of occlusion data may be obtained to represent different occlusal shapes when the upper and lower jaws of the object are occluded in different shapes.
  • the maxillary data 101 including the tooth data t and the mandibular data 102 including the tooth data t are opened, and the first occlusion data of the opening shape
  • An exemplary first occlusion model P1001 in which the maxillary data 101 and the mandibular data 102 are aligned by (103, 1031) may be obtained.
  • the maxillary data 101 including the tooth data t and the mandibular data 102 including the tooth data t are laterally occluded to form an interlocked shape.
  • An exemplary second occlusion model P1002 in which the maxillary data 101 and the mandibular data 102 are aligned by the second occlusion data 103 and 1032 may be obtained.
  • a plurality of occlusal data 103 having various occlusal shapes a plurality of occlusal models may be generated, and the user analyzes the patient's oral structure based on the plurality of occlusal models to obtain optimal treatment.
  • the occlusal data 103 may include one occlusal data obtained by scanning one buccal surface of the maxilla and mandible and the other occlusal data obtained by scanning the other buccal surface of the maxilla and mandible.
  • the plurality of occlusion data 103 are obtained by scanning different occlusion types.
  • the plurality of occlusion data 103 may be obtained by scanning a portion of the buccal surface of the object having a plurality of different occlusal states.
  • the plurality of occlusion data 103 may include first occlusal data obtained by occluding an object in a first occlusal state, and second occlusal data obtained by occluding an object in a second occlusal state, respectively.
  • a plurality of occlusal models are obtained based on a plurality of occlusal data representing the occlusal shape of , and the user may compare and analyze the plurality of occlusal models.
  • FIG. 4 is a detailed flowchart of the occlusal model generation step ( S120 ) of the data processing method according to an embodiment of the present invention.
  • 5 to 7 show a process in which the maxillary data 101 and the mandibular data 102 are aligned by the occlusal data 103 in the data processing method according to an embodiment of the present invention to generate the occlusal model 100 is to explain
  • the occlusal model generation step S120 may be performed after the occlusion data acquisition step S110.
  • the control unit communicating with the scan unit may align the occlusal data acquired by the scan unit with the maxillary data and the mandibular data.
  • the maxillary data representing the upper jaw of the object and the mandible data representing the lower jaw of the object may be obtained by the scan unit before the occlusion data acquisition step S110.
  • the maxillary data and the mandibular data may be pre-stored in the database unit of the controller and loaded to generate an occlusal model.
  • the maxillary data and the mandibular data are not necessarily acquired before the occlusion data acquisition step S110, and may be acquired between the occlusal data acquisition step S110 and the occlusal model generation step S120, if necessary. In this case, at least one of the maxillary data and the mandibular data may be acquired. However, in describing the present invention, for convenience of description, it is assumed that the maxillary data and the mandibular data are each specially acquired one by one.
  • the occlusion model generating step S120 may generate a plurality of occlusion models by aligning each of the plurality of occlusion data obtained in the occlusion data acquisition step S110 with the maxillary data and the mandibular data.
  • the generated plurality of occlusal models may be continuously displayed in the occlusal model display step S140 to be described later, and the user can easily check the movement of the maxillary data and/or mandibular data according to the switching between the occlusal models, so that the user There is an advantage of improving the visual convenience of
  • the maxillary data, the mandibular data, and the occlusal data may be aligned according to a predetermined rule.
  • the maxillary data and the mandibular data may be aligned through the occlusal data in a state in which the maxillary data and the mandibular data are not fixed.
  • any one of the maxillary data 101 and the mandibular data 102 may be fixed, and the other may be aligned toward the fixed data side.
  • the mandibular data in a state in which the maxillary data is fixed, the mandibular data may be aligned toward the fixed maxilla data. At this time, at least one occlusal data of the plurality of occlusion data moves toward the fixed maxillary data and is aligned with the maxillary data, and the mandibular data moves toward the occlusal data aligned with the maxillary data to be aligned with the occlusal data. .
  • the maxillary data in a state in which the mandibular data is fixed, the maxillary data may be aligned toward the fixed mandibular data side.
  • the fixed data may be maxillary data.
  • the movement of the mandible is greater than that of the maxilla due to the structure of the patient's oral cavity. Accordingly, the mandibular data is aligned with the fixed maxilla data in a state in which the maxilla data representing the maxilla of the object is fixed, so that the movement of the mandibular data can be easily expressed in the occlusal model display step ( S140 ), which will be described later.
  • the occlusal model generation step (S120 ) will be described in more detail.
  • the occlusion model generation step (S120) may include an oral data alignment step (S121).
  • the data aligning unit of the controller may align at least one occlusion data, maxillary data, and mandibular data among a plurality of occlusion data.
  • the maxillary data and the mandible data may be aligned to express the occlusal shape along the shape of the occlusal data.
  • the oral data alignment step (S121) may include a first alignment step (S121a).
  • a first alignment step (S121a) at least one occlusion data from among the plurality of occlusion data acquired in the occlusion data acquisition step ( S110 ) may be moved to the maxillary data side to align.
  • FIG. 5 An arrangement process of arbitrary occlusion data 103, maxillary data 101, and mandibular data 102 will be described with reference to FIG. 5 .
  • a screen of the user interface 500 displayed by the display unit is shown.
  • the screen of the user interface 500 may include a model display unit 510 and a real-time display unit 520 .
  • the model display unit 510 may display at least one of the occlusion data 103 obtained by the occlusion data acquisition step S110 and the maxillary data 101 and the mandibular data 102 .
  • the real-time display unit 520 may display an image (eg, two-dimensional image data) acquired by the scan unit in real time.
  • the real-time display unit 520 may display an image of a portion corresponding to the scan area 512 displayed on the model display unit 510 in real time.
  • the real-time display unit 520 may display the object image 100s including the 2D maxillary image 101s in real time.
  • the scan unit scans the buccal surface of the object to obtain first occlusion data 1031 , and in the first alignment step S121a , the obtained first occlusion data 1031 is displayed on the model display unit 510 .
  • the first occlusion data 1031 may be moved toward the maxillary data 101 to align the first occlusal data 1031 and the maxillary data 101 .
  • the first occlusion data 1031 may be displayed on the model display unit 510 to have a first pattern and/or a first color before being aligned with at least one of the maxillary data 101 and the mandibular data 102 . .
  • the first occlusion data 1031 that is not aligned with the upper jaw data 101 and the mandibular data 102 may be displayed in gray.
  • the first occlusal data 1031 may be aligned by moving toward the maxillary data 101 , and the first occlusal data 1031 aligned with the maxillary data 101 may include a second pattern and / or it may be displayed on the model display unit 510 to have the second color.
  • the first occlusion data 1031 aligned with the maxillary data 101 may be displayed in light green.
  • the oral data alignment step (S121) may include a second alignment step (S121b).
  • the mandibular data 102 may be aligned by moving the mandibular data 102 toward the occlusal data 103 aligned with the maxillary data 101 .
  • the mandibular data 102 may move toward the first occlusion data 1031 to be aligned with the first occlusion data 1031 aligned with the maxillary data 101 .
  • the first occlusal data 1031 aligned with both the maxillary data 101 and the mandibular data 102 shows a third pattern and/or a third color.
  • the model display unit 510 so as to have
  • the first occlusion data 1031 aligned with the maxillary data 101 and the mandibular data 102 may be displayed in green.
  • the above-described oral data alignment step (S121) may align the occlusion data 103, the maxillary data 101, and the mandibular data 102 using a known data alignment method.
  • the oral data alignment step (S121) may align the occlusion data 103, the maxillary data 101, and the mandibular data 102 using an Iterative Closest Point (ICP) algorithm, but is not necessarily limited thereto. No, an appropriate sorting method may be used to sort the data.
  • ICP Iterative Closest Point
  • the occlusal model storage step (S122) may be performed.
  • the occlusal model generation unit of the control unit may generate the occlusal model 100 through the shape in which the maxillary data 101 and the mandibular data 102 are aligned by any one occlusion data 103 among a plurality of occlusion data, and , the generated occlusal model 100 may be stored in the database unit of the control unit.
  • the plurality of occlusal data obtained in the occlusal data acquisition step (S110) are aligned with the maxillary data 101 and the mandibular data 102 to generate and store a plurality of occlusal models 100 may be, and the plurality of occlusal models 100 may represent various occlusal states of the patient.
  • the user may provide optimal treatment to the patient by analyzing the movement trajectory and the occlusal state according to the conversion of the plurality of occlusion models 100 .
  • FIG. 8 is for explaining an alignment initialization step S123 of a data processing method according to an embodiment of the present invention.
  • generating an occlusal model may include an alignment initialization step ( S123 ).
  • the occlusion data 103 may be disaligned from the maxillary data 101 and the mandibular data 102 .
  • the first occlusion data 1031 is the maxillary data 101 . and disaligned from the mandibular data 102 .
  • new occlusal data 103 representing an occlusal state different from the occlusal state expressed by the first occlusal data 1031 is generated.
  • the maxillary data 101 and the mandibular data 102 are aligned by the new occlusion data 103 to generate a second occlusion model.
  • the position of the maxillary data 101 and the position of the mandibular data 102 may be returned to positions before alignment by the occlusal data 103 .
  • the maxillary data 101 and the mandibular data 102 may be spaced apart by a predetermined distance to have a predetermined separation distance d between the maxillary data 101 and the mandibular data 102 .
  • the maxillary data 101 and the mandibular data 102 are spaced apart by a predetermined separation distance d, and the dental data t included in the maxillary data 101 and the dental data included in the mandibular data 102 ( t) can also be spaced apart.
  • the alignment initialization step S123 when the new occlusion data 103 is acquired, the maxillary data 101 and the mandibular data 102 may be aligned by the new occlusion data 103, and the user There is an advantage in that a plurality of occlusal models 100 can be obtained by obtaining a new occlusal model aligned by the data 103 .
  • the mandibular data 102 may be spaced apart from the maxillary data 101 by a predetermined distance d while the position of the maxillary data 101 is fixed. In a state in which the maxillary data 101 is fixed, the mandibular data 102 is spaced apart to have a predetermined separation distance d, so that the maxillary data 101 and the mandibular data 102 are separated by a plurality of occlusal data 103.
  • a system for implementing the present invention because it can be aligned at a certain position, and a separate process of aligning the maxillary data 101 is omitted in the occlusal model display step (S140) to be described later.
  • S140 occlusal model display step
  • the user since the position of the maxillary data 101 is fixed in the alignment initialization step S123, the user facilitates the relative position of the mandibular data 102 with respect to the fixed maxillary data 101 when acquiring the orthodontic model 100 There are advantages to be confirmed.
  • the alignment initialization step (S123) the user can easily recognize visually that the occlusal model storage step (S122) has been performed, and the user can quickly obtain occlusal data expressing the new occlusal state of the object. There are advantages that can be
  • the above-described occlusion model generating step S120 may be repeatedly performed whenever the maxillary data 101 and the mandibular data 102 are aligned by applying each of the plurality of occlusion data 103 . That is, the first occlusion data may be applied to the maxillary data 101 and the mandibular data 102 to align the maxillary data 101 and the mandibular data 102 , and a first occlusion model may be generated.
  • the alignment of the first occlusion data is released, the second occlusion data is applied to the maxillary data 101 and the mandible data 102 so that the maxillary data 101 and the mandibular data 102 are aligned, and the second occlusion model can be created.
  • the occlusal model generation step is repeatedly performed, so that a plurality of occlusal models 100 can be obtained, and the user can obtain a plurality of occlusal models 100 .
  • the plurality of occlusion models 100 may be generated in a single stage on the user interface 500 as the plurality of occlusion data 103 are acquired.
  • the user may acquire the maxillary data 101 in the maxillary data acquisition stage, and acquire the mandibular data 102 in the mandibular data acquisition stage. Then, the user acquires a plurality of occlusion models 100 in which the maxillary data 101 and the mandibular data 102 are aligned to each occlusion data 103 by acquiring a plurality of occlusion data 103 in the occlusion data acquisition stage. can do.
  • the occlusion data acquisition stage is not divided into the first occlusion data acquisition stage, the second occlusion data acquisition stage, and the third occlusion data acquisition stage, and the user scans the buccal surface of the object to obtain a plurality of different occlusion data 103 .
  • FIG. 9 is a detailed flowchart of the occlusal model display step S140 of the data processing method according to an embodiment of the present invention
  • FIG. 10 is a plurality of occlusal models obtained by the data processing method according to an embodiment of the present invention.
  • Figure 11 is a data processing method according to an embodiment of the present invention
  • the maxillary data 101 and/or the mandible data 102 according to the conversion of a plurality of occlusal models 100 are This is to explain the process of moving.
  • 12 to 14 are for explaining a process in which the movement of the occlusal model 100 appears by selecting different occlusal models 100 in the data processing method according to an embodiment of the present invention.
  • the data processing method may include displaying an occlusal model ( S140 ).
  • the animation unit of the controller may continuously display at least some of the plurality of occlusal models 100 obtained in the occlusal model generation step S120 .
  • exemplary occlusal models 100 for explaining the occlusal model display step S140 are shown.
  • the first occlusion model 1001 aligned by the first occlusion data 1031 in the occlusal model generation step S120 is shown in FIG. 10A
  • the second occlusion data 1032 A second occlusal model 1002 that has been used is shown in FIG. 10(b)
  • a third occlusal model 1003 aligned by the third occlusal data 1033 may be shown in FIG. 10( c ).
  • the plurality of occlusal models 100 may represent different occlusal states.
  • the user through an animation process in which the user implements the movement of the maxillary data 101 and/or the mandibular data 102 according to the transition between the plurality of occlusal models 100 , the user visually sees the oral structure of the patient. Since it can be easily checked, there is an advantage in that the user's visual convenience is improved. Accordingly, the user can provide an optimal treatment to the patient by designing a prosthetic treatment suitable for the patient.
  • At least some of the plurality of occlusal models 100 may be aligned. That is, after the plurality of occlusal models 100 are generated, the corresponding portions of the remaining occlusal models 100 may be aligned based on a predetermined portion of any one of the plurality of occlusal models 100 . have.
  • the maxillary data 101 of the second occlusion model 1002 and the maxillary data 101 of the third occlusion model 1003 are aligned based on the maxillary data 101 of the first occlusion model 1001.
  • the first occlusal model 1001 may function as a reference occlusal model.
  • the position change of the maxillary data 101 may be smaller than the position change of the mandibular data 102 . Therefore, by aligning the maxillary data 10 of the plurality of occlusal models 100, quick alignment between the plurality of occlusal models 100 is possible, and the maxillary data and The difference between the plurality of occlusal models including the movement of mandibular data may be displayed to be visually maximized, the user's visual convenience may be improved, and the user may provide optimal treatment to the patient.
  • the occlusal model display step S140 may include a conversion model selection step S141 of selecting a second occlusal model 1002 different from the first occlusal model 1001 from among the plurality of occlusal models 100 .
  • a conversion model selection step S141 of selecting a second occlusal model 1002 different from the first occlusal model 1001 from among the plurality of occlusal models 100 .
  • the user selects a different occlusal model 100 from the first occlusal model 1001 .
  • the different occlusal models 100 may be displayed on the model display unit 510 .
  • the second occlusion model 1002 when the first occlusion model 1001 is displayed on the model display unit 510 , the second occlusion model 1002 is displayed on the model display unit 510 . can make it happen
  • the movement path acquisition step S142 may be performed.
  • the movement path acquisition step S142 the movement path of data from the first occlusion model 1001 to the second occlusion model 1002 may be acquired.
  • the maxillary data 101 of the plurality of occlusal models 100 is aligned and fixed, from the first occlusion model 1001 to the second occlusion model 1002 .
  • a movement path of the mandibular data 102 may be acquired.
  • the movement path may be a straight path through which the mandibular data 101 of the first occlusion model 1001 moves to the position of the mandibular data 102 of the second occlusion model 1002 .
  • the movement path may be obtained according to the anatomical joint movement of the maxillary data 101 and the mandibular data 102 .
  • at least one center of rotation for rotating the mandibular data 102 may be generated, and the movement path may be a curved path.
  • the moving path may be a mixed path of a straight line and a curved line.
  • the animation step S144 may be performed.
  • the animation unit of the controller may continuously display the movement of the mandibular data 102 from the first occlusion model 1001 to the second occlusion model 1002 along the movement path.
  • the first occlusal model 1001 is switched to the second occlusal model 1002
  • the first mandibular data 1021 of the first occlusal model 1001 is the second occlusal model 1002 .
  • the moving speed of data in the animation step S144 may be constant.
  • the mandibular data 102 when the movement path from the first occlusion model 1001 to the second occlusion model 1002 is long, the mandibular data 102 can move for a relatively long time, and when the movement path is short, the mandibular data (102) can move for a relatively short time. Accordingly, the user may compare the length of the movement path between the occlusal models 100 through the time during which the mandibular data 102 moves.
  • the animation step ( S144 ) may be performed for a predetermined time. That is, when the movement path is long, the mandibular data 102 may move relatively quickly, and when the movement path is short, the mandible data 102 may move relatively slowly. Accordingly, the user may compare the length of the movement path between the occlusal models 100 through the speed at which the mandibular data 102 moves.
  • the second mandibular data 1022 of the second occlusion model 1002 is the third of the third occlusion model 1003 . It may move along the second movement path P2 toward the position of the mandibular data 1023 . In this way, as the mandibular data 102 moves along the movement path by switching between the respective occlusal models 100, the user can easily analyze the patient's oral structure and provide optimal treatment to the patient. can
  • the occlusal model display step ( S140 ) will be described with reference to the screen of the user interface 500 .
  • the model selection unit 510 of the screen of the user interface 500 may include a multi-occlusion menu 514 .
  • the multiple occlusion menu 514 may include a multiple occlusion selection unit 5141, and the multiple occlusion selection unit 5141 corresponds to the number of occlusal models 100 created and stored by performing the occlusal model generation step S120. It can be formed as many as possible.
  • the multiple occlusion selection unit 5141 includes a first occlusion model selection unit 5141a for selecting the first occlusion model 1001 and a second occlusion model selection unit for selecting the second occlusion model 1002 . 5141b, and a third occlusion model selection unit 5141c for selecting the third occlusion model 1003 may be included.
  • the user selects any one of the first occlusion model selection unit 5141a, the second occlusion model selection unit 5141b, and the third occlusion model selection unit 5141c to display the occlusal model 100 displayed on the model display unit 510. ) can be converted.
  • the user selects the second occlusal model selection unit 5141b and the second occlusal model 1002 is displayed on the model display unit as shown in FIG. 13 .
  • 510 may be displayed.
  • the movement of the mandibular data 102 may be continuously expressed.
  • the user selects the third occlusion model selection unit 5141c and the third occlusion model 1003 is displayed as shown in FIG. 14 . It may be displayed on the model display unit 510 .
  • the third occlusion model 1003 is displayed on the model display unit 510 , the movement of the mandibular data 102 may be continuously expressed.
  • the above description has been described as a transition from the first occlusal model 1001 to the second occlusal model 1002 and from the second occlusal model 1002 to the third occlusal model 1003, but it is not necessarily limited thereto. not. That is, by selecting the third occlusal model 1003 while the first occlusal model 1001 is displayed, the movement of data from the first occlusal model 1001 to the third occlusal model 1003 can be confirmed through the animation effect. In addition, by selecting the second occlusion model 1002 in a state where the third occlusion model 1003 is displayed, the movement of data from the third occlusion model 1003 to the second occlusion model 1002 can be confirmed through the animation effect. have.
  • the user may additionally acquire a fourth occlusion model (not shown) by selecting the occlusion addition selection unit 5142 to acquire the additional occlusion model 100 from the multiple occlusion menu 514, and the user Since the movement of data according to the transition between the 1st occlusion model and the 4th occlusion model can be visually checked through an animation effect, there is an advantage in that the user's visual convenience is improved.
  • the occlusal model display step (more specifically, the animation step) that implements the movement of data according to the transition between the occlusal models is performed through the multiple occlusal menu 514 in a single stage, the user can select a plurality of occlusal models. (100) can be easily compared and analyzed visually, there is an advantage that user convenience is improved.
  • FIG. 15 shows an interpolation model 200 generated between occlusal models 100 and an animation step S144 according to the interpolation model 200 in the data processing method according to an embodiment of the present invention. to explain the process of becoming
  • the step of displaying the occlusal model ( S140 ) may further include the step of generating an interpolation model ( S143 ).
  • the interpolation model generator of the controller may generate at least one interpolation model 200 between the second occlusion model 1002 and the first occlusion model 1001 selected in the conversion model selection step S141 .
  • the interpolation model generation step (S143) is based on the movement path from the first occlusion model 1001 to the second occlusion model 1002, the first interpolation model 201, the second interpolation model 202, A third interpolation model 203 and a fourth interpolation model 204 may be generated.
  • the maxillary data 101 of the first occlusal model 1001 and the second occlusal model 1002 is fixed, and the interpolation model 200 may be generated with respect to the mandibular data 102 .
  • the animation step S144 sequentially displays the first occlusion model 1001, at least one interpolation model 200, and the second occlusion model 1002 in a predetermined order.
  • the movement of data eg, mandible data
  • the animation step S144 sequentially displays the first occlusion model 1001, at least one interpolation model 200, and the second occlusion model 1002 in a predetermined order.
  • the movement of data eg, mandible data
  • the animation step S144 sequentially displays the first occlusion model 1001, at least one interpolation model 200, and the second occlusion model 1002 in a predetermined order.
  • the user can additionally check the oral structure at a specific point in time between the first occlusion model 1001 and the second occlusion model 1002, and by the interpolation model 200
  • the user has the advantage of being able to analyze the patient's oral structure in more detail.
  • the data processing method may further include a reference occlusal model determining step (S130) after the occlusal model generation step (S120).
  • the step of determining the reference occlusal model ( S130 ) may mean determining a reference occlusal model from among the plurality of occlusal models 100 generated in the step of generating the occlusal model ( S120 ).
  • the reference occlusal model may mean the occlusal model 100 to be considered preferentially in order to analyze a patient's oral structure.
  • the reference occlusion model may represent a normal bite.
  • other occlusal models 100 may be aligned with the reference occlusal model.
  • the first occlusion model 1001 among the three occlusion models 100 is determined as the reference occlusion model
  • the second occlusion model 1002 and the third occlusion model 1003 are the first occlusal models may be aligned with respect to the occlusal model 1001 .
  • corresponding portions of the remaining occlusal models 100 may be aligned based on a predetermined portion of the reference occlusal model.
  • the maxillary data 101 of the second occlusion model 1002 and the maxillary data 101 of the third occlusion model 1003 are the maxillary data 101 of the first occlusal model 1001, which is the reference occlusion model. can be sorted based on
  • FIG. 16 is for explaining a process in which occlusion analysis of the first occlusion model 1001 is performed to determine a reference occlusion model in the data processing method according to an embodiment of the present invention. More specifically, Fig. 16 (a) shows the result of the occlusion analysis of the first occlusion model 1001 being displayed in the form of the maxillary data 101 and the mandibular data 102 occluded, and Fig. 16 (b). is the result of performing the occlusion analysis of the first occlusion model 1001 is displayed in an open form in which the maxillary data 101 and the mandibular data 102 are opened.
  • FIG. 17 is for explaining a process in which occlusion analysis of the second occlusion model 1002 is performed to determine a reference occlusion model in the data processing method according to an embodiment of the present invention.
  • Fig. 17 (a) shows the results of the occlusion analysis of the second occlusion model 1002 in the form of the maxillary data 101 and the mandibular data 102 occluded
  • Fig. 17 (b) shows the second occlusion model.
  • the result of the occlusion analysis of ( 1002 ) is displayed in an open form in which the maxillary data 101 and the mandibular data 102 are opened.
  • 18 is for explaining a process in which an occlusion analysis is performed on an arbitrary occlusion model 100 in the data processing method according to an embodiment of the present invention.
  • the occlusal analysis unit of the control unit may perform occlusion analysis on the occlusal models 100 generated in the occlusal model generation step ( S120 ).
  • the occlusion analysis may be a process of analyzing the occlusal state of each occlusion model 100 .
  • the first occlusal model 1001 and the second occlusal model 1002 may be analyzed in the model display unit 510 of the screen of the user interface 500 .
  • the screen of the user interface 500 may further include an occlusion legend 530 , wherein the occlusion legend 530 is a numerical value of the occlusion portion 540 representing the degree of occlusion between the maxillary data 101 and the mandibular data 102 .
  • the occlusal part 540 may include a first occlusal part 541 , a second occlusal part 542 , and a third occlusal part 543 according to the degree of occlusion between the maxillary data 101 and the mandibular data 102 . have.
  • the first occlusal portion 541 may mean a portion in which the maxillary data 101 and the mandibular data 102 form a gap in a first range (eg, -2.000 to -0.100), and the second occlusal portion Reference numeral 542 denotes a portion in which the maxillary data 101 and the mandibular data 102 form a gap in the second range (eg, -0.100 to 0.100), and the third occlusal part 543 is the maxilla.
  • the data 101 and the mandibular data 102 may refer to a portion forming an interval in the third range (eg, 0.100 to 2.000). If necessary, the occlusal portion may be further divided or simply divided.
  • the occlusal portion may be displayed so as to be visually distinguishable through an easily distinguishable expression element such as a predetermined color and/or a predetermined pattern according to a range of each of the occlusal portions.
  • the reference occlusal model may be determined as the occlusal model 100 having the largest size of the occlusal area among the plurality of occlusal models 100 .
  • the reference occlusal model may be determined as the occlusal model 100 in which the size of the total area of the occlusal portion 540 is maximum.
  • the occlusal model 100 in which the size of the total area of the occlusal portion 540 is the maximum can express a state in which a plurality of teeth are normally occluded, so the occlusal model 100 in which the size of the total area of the occlusal portion 540 is the maximum ( 100) may be determined as a reference occlusion model representing a normal bite state.
  • the reference occlusal model may be determined as the occlusal model 100 in which the size of the area of the second occlusal portion 542 forming the interval of the second range among the occlusal portions 540 is the largest.
  • the second occlusal portion 542 may refer to a portion in which the tooth data t of the maxillary data 101 and the tooth data t of the mandibular data 102 closely contact each other. Accordingly, as the size of the area of the second occlusal portion 542 increases, it may mean the occlusal model 100 close to the normal bite state, and the occlusal model 100 in which the size of the area of the second occlusal portion 542 is the largest. ) may be determined as a reference occlusal model.
  • the third occlusal portion 543 generated by the occlusion of the maxillary data 101 and the mandibular data 102 means a portion where the maxillary data 101 and the mandibular data 102 overlap each other.
  • the occlusal model 100 in which the maxillary data 101 and the mandibular data 102 are superimposed may mean an overbite state. Accordingly, even if the size of the total area of the occlusal portion 540 is the maximum or the size of the area of the second occlusal portion 542 is the maximum, the size of the area of the third occlusal portion 543 is equal to or greater than a predetermined threshold value. ) can be excluded from the reference occlusal model.
  • the reference occlusal model representing the normal bite state can be accurately determined, and the remaining occlusal models based on a predetermined portion of the reference occlusal model.
  • the reference occlusal model determination step S130 has been described as being determined based on the occlusal area, but is not limited thereto, and among the tooth data t of the maxillary data 101 in the occlusion model 100 , By measuring the occlusal distance or distal distance between the anterior teeth among the tooth data t of the anterior and mandibular data 102 , the occlusal model having the smallest occlusal distance or distal distance may be determined as the reference occlusal model.
  • occlusion analysis for performing the reference occlusion model determination step S130 may be performed on the tooth data t portion of the maxillary data 101 and the mandibular data 102 among the occlusion models 100 . Since the occlusion analysis process is performed on the tooth data t, unnecessary occlusion analysis for non-occlusal gingival parts can be omitted, and the user can quickly obtain a reference occlusion model.
  • the maxillary data 101 described in the present invention includes first maxillary data representing the shape before processing of the maxilla and second maxillary data representing the shape of the maxilla after processing, and the mandibular data 102 is the mandible. It includes first mandibular data representing the shape before processing of and second mandibular data representing the shape after processing of the mandible, and the plurality of occlusal models 100 includes any one of the first maxillary data and the second maxillary data.
  • One, and the first mandible data and the second mandible data may be generated by combining any one.
  • the treatment may refer to various procedures performed on the object, and the treatment includes all types of changes in the shape, position, and direction of teeth, such as tooth preparation, tooth extraction, and reattachment of fractured teeth. It may include at least one of the types of procedures.
  • the model selection unit 510 on the screen of the user interface 500 may further include an upper and lower jaw data selection unit 516 .
  • the maxillary and mandibular data selection unit 516 includes a first maxillary data selection unit 516a for selecting first maxillary data, a second maxillary data selection unit 516b for selecting second maxillary data, and a selection of first mandibular data. It may include a first mandible data selector 516c, and a second mandibular data selector 516d that selects the second mandibular data.
  • a plurality of occlusal models 100 are can be created, and the user can easily check the occlusal state change before and after the treatment.
  • At least one of the second maxillary data and the second mandibular data selected by the maxillary and mandibular data selection unit 516 and the occlusal data before the process obtained by scanning the buccal surface of the object before the process are generated.
  • the occlusal model to be used can express the most ideal fit to which the prosthesis is applied, and can be considered when designing the outer surface of the prosthesis (eg, a contact surface with adjacent teeth and antagonist teeth).
  • an occlusion model generated by aligning at least one of the second maxillary data and the second mandibular data selected by the maxillary and mandibular data selection unit 516 with the post-processed occlusal data obtained by scanning the buccal surface of the subject after the process.
  • the occlusal model generated by aligning the first maxillary data and the first mandibular data with the occlusal data before the treatment obtained by scanning the buccal surface of the object before the treatment is the inner surface of the prosthesis (for example, the contact surface) can be taken into account when designing.
  • the occlusal model generated by aligning the first maxillary data and the first mandibular data with the post-processed occlusal data obtained by scanning the buccal surface of the subject after the treatment is the maxillary data based on the changed occlusal force after the treatment of the object.
  • the degree of overlap or separation between (first maxillary data) and mandibular data (first mandibular data) may be expressed, and may be considered when designing the outer surface of the prosthesis.
  • the user can design and manufacture an accurate prosthetic treatment by reflecting the change in the occlusal state before and after treatment, and as a result, there is an advantage in that the optimal treatment can be provided to the patient.
  • the present invention aligns a plurality of occlusion data with maxillary data and mandibular data to generate a plurality of occlusal models, and continuously displays at least some of the plurality of occlusal models.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Architecture (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Processing Or Creating Images (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

본 발명에 따른 데이터 처리 방법은 대상체 중 상악의 형상과 하악의 형상의 적어도 일부를 포함하는 복수의 교합 데이터들을 획득하는 교합 데이터 획득 단계, 상기 복수의 교합 데이터들 각각을 상기 상악을 표현하는 상악 데이터 및 상기 하악을 표현하는 하악 데이터와 정렬하여 복수의 교합 모델들을 생성하는 교합 모델 생성 단계, 및 상기 복수의 교합 모델들 중 적어도 일부를 연속적으로 표시하는 교합 모델 표시 단계를 포함한다.

Description

데이터 처리 방법
본 발명은 데이터 처리 방법(Data processing method)에 관한 것이며, 보다 상세하게는 복수의 교합 모델을 획득하여, 각각의 교합 모델들 간의 차이점을 용이하게 확인 가능한 데이터 처리 방법에 관한 것이다.
3차원 스캐닝 기술은 측정, 검사, 역설계, 컨텐츠 생성, 치과 치료용 CAD/CAM, 의료기기 등 다양한 산업 분야에서 사용되고 있으며 컴퓨팅 기술의 발전으로 인한 스캐닝 성능의 향상으로 인해 그 실용성이 더욱 확대되고 있다. 특히, 치과 치료 분야에서, 3차원 스캐닝 기술은 환자의 치료를 위하여 수행되므로, 3차원 스캐닝을 통해 획득되는 3차원 모델은 높은 정밀도를 가질 것이 요구된다.
3차원 스캐너를 통해 3차원 모델을 생성하는 과정에서, 3차원 스캐너는 측정 대상에 대한 촬영을 통해 획득한 이미지 데이터(2차원 또는 3차원)를 3차원 모델로 변환함으로써 전체 3차원 모델을 획득한다. 치과 치료 분야에서는, 환자의 구강 내부를 스캔하여 환자의 구강 내부를 표현하는 3차원 모델을 획득할 수 있으며, 상기 3차원 모델을 분석하여 환자에게 최적의 치료를 제공할 수 있다. 한편, 환자의 구강 내부를 표현하는 3차원 모델(이하, 본 발명에서는 교합 모델로 지칭될 수 있다)은, 환자의 상악을 표현하는 상악 데이터와 환자의 하악을 표현하는 하악 데이터, 및 상악과 하악의 일 협면(buccal)을 표현하는 교합 데이터를 획득하여 상호 정렬함으로써 획득될 수 있다.
한편, 환자에게 최적의 치료를 제공하기 위해, 환자의 상악과 하악이 맞물리도록 다양한 교합 양상을 표현하는 교합 데이터를 획득할 필요성이 대두되고 있다. 예시적으로, 3차원 스캐너의 사용자는 개구 교합을 표현하는 제1 교합 데이터, 측방위 교합을 표현하는 제2 교합 데이터, 절단 교합을 표현하는 제3 교합 데이터를 획득할 수 있다. 복수의 교합 데이터를 획득함으로써, 복수의 교합 데이터를 기초로 복수의 3차원 교합 모델들(multi occlusion model)이 생성될 수 있다. 이에 따라, 생성된 복수의 교합 모델들을 이용하여 대상체의 이동 궤적을 분석하고 환자에게 적합한 형태의 치료(예를 들면, 보철 치료물 제공 등)를 제공하기 위한 방법이 연구되고 있다.
본 발명은 복수의 교합 데이터를 상악 데이터 및 하악 데이터와 정렬하여 복수의 교합 모델들을 생성하고, 상기 복수의 교합 모델들 중 적어도 일부를 연속적으로 표시함으로써, 복수의 교합 모델들의 전환에 따른 애니메이션 효과를 통해, 사용자가 복수의 교합 모델들을 분석하는 과정에서 사용자의 시각적 편의성을 향상시키는 데이터 처리 방법을 제공하기 위한 것이다.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.
전술한 바와 같은 목적을 달성하기 위해서, 본 발명에 따른 데이터 처리 방법은, 대상체 중 상악의 형상과 하악의 형상의 적어도 일부를 포함하는 복수의 교합 데이터들을 획득하는 교합 데이터 획득 단계, 상기 복수의 교합 데이터들 각각을 상기 상악을 표현하는 상악 데이터 및 상기 하악을 표현하는 하악 데이터와 정렬하여 복수의 교합 모델들을 생성하는 교합 모델 생성 단계, 및 상기 복수의 교합 모델들 중 적어도 일부를 연속적으로 표시하는 교합 모델 표시 단계를 포함할 수 있다.
또한, 본 발명에 따른 데이터 처리 방법은 전술한 단계들을 포함하여 다른 추가적인 단계들을 더 포함할 수 있으며, 이에 따라 사용자가 복수의 교합 모델들을 용이하게 획득하고 비교할 수 있도록 한다.
본 발명에 따른 데이터 처리 방법을 사용함으로써, 사용자는 복수의 교합 데이터들에 의해 정렬된 복수의 교합 모델들을 획득할 수 있고, 상기 복수의 교합 모델들을 용이하게 비교할 수 있는 이점이 있다.
또한, 본 발명에 따른 데이터 처리 방법을 사용함으로써, 사용자는 복수의 교합 모델들의 상악 데이터가 고정된 상태에서 하악 데이터가 이동하는 애니메이션 단계를 통해 복수의 교합 모델들을 시각적으로 편리하게 비교, 분석할 수 있는 이점이 있다.
또한, 본 발명에 따른 데이터 처리 방법에서 교합 데이터가 상악 데이터에 정렬되고, 하악 데이터가 교합 데이터에 정렬되므로, 안정적인 정렬에 따른 정확한 교합 모델들을 획득할 수 있고, 애니메이션 단계를 통해 상악 데이터 및/또는 하악 데이터의 이동이 사용자에게 효과적으로 표시되므로, 사용자의 시각적 편의성이 향상되는 이점이 있다. 특히, 상악 데이터가 고정된 상태에서 상악 데이터, 교합 데이터, 및 하악 데이터가 정렬되어 교합 모델들을 획득하는 경우, 안정적인 정렬에 따른 정확한 교합 모델들을 획득할 수 있음은 물론, 교합 데이터를 통해 하악 데이터가 신속하게 정렬되어 복수의 교합 모델들을 획득하는 속도가 빨라지고, 복수의 교합 모델들을 연속적으로 표시하는 애니메이션 단계를 통해 상악 데이터 및/또는 하악 데이터의 이동이 사용자에게 효과적으로 표시되므로, 사용자의 시각적 편의성이 향상되는 이점이 있다.
또한, 본 발명에 따른 데이터 처리 방법에서 정렬 초기화 단계는 상악 데이터와 하악 데이터의 위치를 교합 데이터에 의해 정렬되기 이전으로 복귀시키거나 소정 이격거리로 이격시킴으로써, 새로운 교합 데이터에 의해 상악 데이터와 하악 데이터가 정렬되어 새로운 교합 모델이 생성될 수 있고, 사용자는 정렬 초기화 단계에 의해 정렬 초기화 단계 이전에 정렬된 교합 모델이 안전하게 저장되었음을 시각적으로 용이하게 인지할 수 있는 이점이 있다.
또한, 본 발명에 따른 데이터 처리 방법에서 복수의 교합 모델들은 단일 스테이지에서 생성되므로, 사용자가 복수의 교합 데이터를 획득하여 개별적인 교합 모델을 획득하기 위한 스테이지 전환 과정은 생략될 수 있고, 사용자 편의성이 향상되는 이점이 있다.
또한, 본 발명에 따른 데이터 처리 방법에서 복수의 교합 모델들 사이를 전환하기 위해 이동 경로가 획득되고, 이동 경로에 따라 하악 데이터가 이동함으로써 대상체의 이동을 애니메이션 효과를 통해 시각적으로 용이하게 확인할 수 있는 이점이 있다.
또한, 복수의 교합 모델들 사이를 전환하기 위한 이동 경로에 따라 적어도 하나의 보간 모델이 생성되어 소정 순서에 따라 순차적으로 표시되므로, 애니메이션 효과를 통한 상악 데이터 및 하악 데이터의 이동을 포함하는 복수의 교합 모델들 간 차이가 시각적으로 극대화되도록 표시되어 사용자의 시각적 편의성이 향상되는 이점이 있다.
또한, 기준 교합 모델 결정 단계에 의해 결정된 기준 교합 모델은 다른 교합 모델들을 정렬하기 위한 기준으로 사용될 수 있고, 복수의 교합 모델들은 상기 기준 교합 모델의 상악 데이터를 기준으로 정렬되어, 사용자는 기준 교합 모델을 기준으로 정렬된 복수의 교합 모델들의 이동을 애니메이션 효과를 통해 시각적으로 용이하게 확인할 수 있다. 또한, 노멀 바이트를 표현하는 기준 교합 모델을 통해 정확한 보철물 설계가 가능한 이점이 있다.
또한, 복수의 교합 모델들의 상악 데이터가 기준 교합 모델의 상악 데이터를 통해 정렬되는 경우, 애니메이션 단계는 하악 데이터의 이동 경로를 획득하여 하악 데이터의 이동을 연속적으로 표시할 수 있으므로, 데이터의 이동을 신속하게 구현할 수 있는 이점이 있다.
또한, 복수의 교합 모델들은 상악과 하악의 처리 이전의 형상을 표현하는 제1 상악 데이터와 제1 하악 데이터, 및 상악과 하악의 처리 이후의 형상을 표현하는 제2 상악 데이터와 제2 하악 데이터의 조합에 의해 생성될 수 있으므로, 사용자는 다양한 상태의 상악 데이터 및 하악 데이터를 표현하는 교합 모델들을 참고하여 환자에게 정확한 보철 치료물을 설계하고 환자에게 최적의 치료를 제공할 수 있는 이점이 있다.
도 1은 본 발명의 일 실시예에 따른 데이터 처리 방법을 수행하는 데이터 처리 장치의 구성도이다.
도 2는 본 발명의 일 실시예에 따른 데이터 처리 방법의 순서도이다.
도 3a 및 도 3b는 본 발명의 일 실시예에 따른 데이터 처리 방법에서 획득되는 다양한 교합 유형을 설명하기 위한 것이다.
도 4는 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 모델 생성 단계(S120)의 세부적인 순서도이다.
도 5 내지 도 7은 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 데이터에 의해 상악 데이터와 하악 데이터가 정렬되어 교합 모델이 생성되는 과정을 설명하기 위한 것이다.
도 8은 본 발명의 일 실시예에 따른 데이터 처리 방법 중 정렬 초기화 단계(S123)를 설명하기 위한 것이다.
도 9는 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 모델 표시 단계(S140)의 세부적인 순서도이다.
도 10은 본 발명의 일 실시예에 따른 데이터 처리 방법에 의해 획득된 복수의 교합 모델들을 설명하기 위한 것이다.
도 11은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 복수의 교합 모델들의 전환에 따른 상악 데이터 및/또는 하악 데이터가 이동하는 과정을 설명하기 위한 것이다.
도 12 내지 도 14는 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 상이한 교합 모델들을 선택함으로써 교합 모델의 움직임이 나타나는 과정을 설명하기 위한 것이다.
도 15는 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 교합 모델들 사이에 생성되는 보간 모델 및 상기 보간 모델에 따라 애니메이션 단계가 수행되는 과정을 설명하기 위한 것이다.
도 16은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 기준 교합 모델을 결정하기 위해 제1 교합 모델의 교합 분석이 수행되는 과정을 설명하기 위한 것이다.
도 17은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 기준 교합 모델을 결정하기 위해 제2 교합 모델의 교합 분석이 수행되는 과정을 설명하기 위한 것이다.
도 18은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 임의의 교합 모델에 대하여 교합 분석이 수행되는 과정을 설명하기 위한 것이다.
[부호의 설명]
1: 데이터 처리 장치
10: 스캔부 20: 제어부
30: 디스플레이부
S110: 교합 데이터 획득 단계
S120: 교합 모델 생성 단계
S130: 기준 교합 모델 결정 단계
S140: 교합 모델 표시 단계
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
도 1은 본 발명의 일 실시예에 따른 데이터 처리 방법을 수행하는 데이터 처리 장치(1)의 구성도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법을 수행하는 데이터 처리 장치(1)는 스캔부(10), 제어부(20), 및 디스플레이부(30)를 포함할 수 있다.
스캔부(10)는 대상체를 스캔하여 대상체를 표현하는 데이터들을 획득할 수 있다. 이 때, 대상체는 환자의 구강 형상, 및 구강 상태를 나타내는 환자의 실제 구강 내부일 수 있다. 그러나, 대상체는 반드시 환자의 실제 구강 내부일 필요는 없으며, 대상체는 전술한 환자의 실제 구강 내부 외에도, 환자의 실제 구강 내부를 인상재로 본떠 만든 임프레션 모형(음각 모형), 및 상기 임프레션 모형에 석고를 부어 획득한 석고 모형(양각 모형) 중 적어도 하나일 수 있다. 즉, 환자의 구강 형상, 및 구강 상태를 나타내는 어떠한 물체라도 대상체로 기능할 수 있다.
스캔부(10)는 대상체를 스캔하여 상기 대상체의 형상 및 색상을 평면적으로 표현하는 2차원 이미지 데이터, 및 상기 대상체의 형상 및 색상을 입체적으로 표현하는 3차원 모델(본 발명에서는 교합 모델로 지칭할 수 있다)을 획득할 수 있다. 이 때, 스캔부(10)는 상기 대상체의 3차원 모델을 생성하기 위한 깊이 정보를 획득하기 위해, 대상체를 향해 구조광을 조사할 수 있다. 예시적으로, 스캔부(10)는 구조광을 조사할 수 있는 광 프로젝터를 내장할 수 있다. 또한, 광 프로젝터로부터 조사된 구조광은 대상체의 표면에서 반사되고, 반사광은 스캔부(10)에 수용될 수 있다. 예시적으로, 대상체의 표면으로부터 반사된 반사광은 스캔부(10)의 카메라로 수용되고, 카메라에 수용된 반사광을 기초로 2차원 이미지 데이터 및 3차원 모델이 생성될 수 있다.
스캔부(10)는 대상체를 스캔하여 대상체 중 상악의 형상과 하악의 형상의 적어도 일부를 포함하는 복수의 교합 데이터들을 획득할 수 있다. 예시적으로, 스캔부(10)는 사용자가 파지하여 대상체에 대한 자유로운 스캔 거리 및 자유로운 스캔 각도를 가지도록 스캔 과정을 수행할 수 있는 핸드헬드형 3차원 스캐너일 수 있다. 다른 예시로, 스캔부(10)는 대상체를 거치하고 상기 대상체를 회전 및/또는 틸팅시켜 스캔 과정을 수행할 수 있는 테이블형 3차원 스캐너일 수 있다.
제어부(20)는 스캔부(10)와 유선 또는 무선으로 연결되어 통신할 수 있다. 제어부(20)와 스캔부(10)는 알려진 통신 방식을 사용하여 데이터 통신할 수 있다. 제어부(20)는 스캔부(10)가 대상체를 스캔하여 획득한 데이터들을 가공할 수 있다. 예시적으로, 제어부(20)는 스캔부(10)가 대상체를 스캔하여 획득한 교합 데이터를 상악 데이터 및 하악 데이터와 정렬하여 교합 모델을 생성할 수 있고, 복수의 교합 모델들 간의 전환 과정에서 어느 하나의 교합 모델에서 다른 교합 모델로 움직이는 애니메이션 효과를 구현할 수 있다. 또한, 제어부(20)는 상기 애니메이션 효과를 구현하기 위한 보간 모델을 추가적으로 생성할 수도 있고, 복수의 교합 모델들을 분석하여 기준 교합 모델을 결정할 수도 있다.
제어부(20)는 데이터베이스부(21)를 포함할 수 있다. 데이터베이스부(21)는 스캔부(10)로부터 획득한 데이터를 저장할 수 있다. 또한, 데이터베이스부(21)는 생성된 교합 모델들을 저장할 수 있다. 또한, 데이터베이스부(21)는 제어부(20)의 동작을 위한 다양한 로직을 저장할 수 있다. 예시적으로, 데이터베이스부(21)는 교합 데이터, 상악 데이터, 및 하악 데이터를 정렬하기 위한 로직, 복수의 교합 모델들을 정렬하기 위한 로직, 애니메이션 단계를 수행하기 위한 이동 경로를 획득하기 위한 로직, 이동 경로에 대응되는 보간 모델을 생성하기 위한 로직, 복수의 교합 모델들 중 기준 교합 모델을 결정하기 위한 로직 중 적어도 하나를 포함할 수 있다. 데이터베이스부(21)는 알려진 저장 장치일 수 있다. 예시적으로, 데이터베이스부(21)는 하드디스크 드라이브, 솔리드 스테이트 드라이브, usb 플래시 드라이브와 같은 저장 장치일 수 있다. 또한, 데이터베이스부(21)는 클라우드 형태의 저장 시스템일 수도 있다.
제어부(20)는 데이터 정렬부(22)를 포함할 수 있다. 데이터 정렬부(22)는 교합 데이터를 통해 상악 데이터와 하악 데이터를 정렬할 수 있다. 예시적으로, 스캔부(10)가 대상체의 상악과 하악의 협면을 스캔하여 교합 데이터를 획득하면, 교합 데이터는 상악 데이터 및 하악 데이터와 정렬되고, 상악 데이터와 하악 데이터는 정렬된 형상을 가질 수 있다. 한편, 데이터 정렬부(22)는 후술하는 교합 모델 생성부(23)에 의해 교합 모델이 생성되면, 새로운 교합 모델을 획득하기 위해 교합 데이터의 적용을 해제하고 상악 데이터와 하악 데이터의 위치를 정렬 이전의 위치로 복귀시키거나 상악 데이터와 하악 데이터를 소정 이격거리만큼 상호 이격시킬 수 있다.
제어부(20)는 교합 모델 생성부(23)를 포함할 수 있다. 교합 모델 생성부(23)는 데이터 정렬부(22)에 의해 정렬된 상악 데이터, 하악 데이터, 및 교합 데이터를 기초로 3차원의 교합 모델을 생성할 수 있다. 한편, 스캔부(10)에서 교합 데이터가 복수개 획득되는 경우, 교합 모델 생성부(23)는 복수의 교합 데이터들 각각과 상악 데이터, 및 하악 데이터가 정렬되어 복수의 교합 모델들을 생성할 수 있다. 교합 모델 생성부(23)는 단일 스테이지에서 복수의 교합 데이터에 의해 정렬되는 복수의 교합 모델들을 획득할 수 있다.
제어부(20)는 애니메이션부(24)를 포함할 수 있다. 애니메이션부(24)는 어느 하나의 교합 모델이 다른 교합 모델로 전환될 때, 데이터의 이동 경로를 획득할 수 있고, 데이터를 이동 경로를 따라 이동시킬 수 있다. 예시적으로, 애니메이션부(24)는 이동 경로를 따라 제1 교합 모델에서 제2 교합 모델까지의 하악 데이터의 이동을 연속적으로 표시할 수 있다.
또한, 제어부(20)는 보간 모델 생성부(25)를 포함할 수 있다. 보간 모델 생성부(25)는 복수의 교합 모델들 사이의 이동 경로를 기초로 생성될 수 있다. 예시적으로, 보간 모델 생성부(25)는 제1 교합 모델과 제2 교합 모델 사이에 적어도 하나의 보간 모델을 생성할 수 있다. 애니메이션부(24)는 보간 모델 생성부(25)에 의해 생성된 보간 모델을 제1 교합 모델 및 제2 교합 모델 사이에 표시하여 데이터의 이동을 연속적으로 표시할 수 있다.
또한, 제어부(20)는 교합 분석부(26)를 포함할 수 있다. 교합 분석부(26)는 교합 모델 생성부(23)에 의해 생성된 복수의 교합 모델들을 분석하여 기준 교합 모델을 결정할 수 있다. 예시적으로, 교합 분석부(26)는 복수의 교합 모델들에서 상악 데이터와 하악 데이터가 접촉하는 교합 면적의 크기를 기초로 기준 교합 모델을 결정할 수 있다.
디스플레이부(30)는 전술한 제어부(20)의 동작들 중 적어도 일부를 시각적으로 표시할 수 있다. 디스플레이부(30)는 스캔부(10)의 스캔 과정에 의해 획득되는 2차원 이미지 데이터 및 3차원 모델을 표시할 수 있다. 또한, 디스플레이부(30)는 교합 데이터와, 상악 데이터, 및 하악 데이터가 정렬되는 과정을 표시할 수 있다. 또한, 디스플레이부(30)는 어느 하나의 교합 모델에서 다른 교합 모델로 전환될 때 데이터가 이동하거나 보간 모델이 순차적으로 표시되는 애니메이션 과정을 표시할 수 있다. 또한, 디스플레이부(30)는 교합 분석에 따라 기준 교합 모델이 결정되는 과정을 표시할 수 있다. 디스플레이부(30)는 알려진 시각적 표시 장치일 수 있으며, 디스플레이부(30)로 모니터, 터치 스크린, 태블릿 장치와 같은 시각적 표시 장치들 중 적어도 하나가 사용될 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 데이터 처리 방법에 대해 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 데이터 처리 방법의 순서도이고, 도 3a 및 도 3b는 본 발명의 일 실시예에 따른 데이터 처리 방법에서 획득되는 다양한 교합 유형을 설명하기 위한 것이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법은 교합 데이터 획득 단계(S110), 교합 모델 생성 단계(S120), 및 교합 모델 표시 단계(S140)를 포함할 수 있다.
이하에서는, 본 발명의 일 실시예에 따른 데이터 처리 방법의 각 단계에 대해 보다 상세히 설명한다.
도 2, 도 3a, 및 도 3b를 참조하면, 교합 데이터 획득 단계(S110)에서 스캔부는 대상체를 스캔하여 교합 데이터를 획득할 수 있다. 예시적으로, 교합 데이터 획득 단계(S110)에서 스캔부는 대상체 중 상악의 형상과 하악의 형상의 적어도 일부를 포함하는 복수의 교합 데이터들을 획득할 수 있다. 교합 데이터는 대상체의 상악과 하악의 협면(buccal 면)을 스캔하여 획득될 수 있다. 교합 데이터는 대상체의 상악과 하악이 상이한 형태로 교합되었을 때 상이한 교합 형상을 표현하기 위해 복수개 획득될 수 있다.
예시적으로, 도 3a에 도시된 바와 같이, 치아 데이터(t)를 포함하는 상악 데이터(101)와 치아 데이터(t)를 포함하는 하악 데이터(102)가 개구되어, 개구 형상의 제1 교합 데이터(103, 1031)에 의해 상악 데이터(101)와 하악 데이터(102)가 정렬된 예시 제1 교합 모델(P1001)이 획득될 수 있다. 또한, 다른 예시로, 도 3b에 도시된 바와 같이, 치아 데이터(t)를 포함하는 상악 데이터(101)와 치아 데이터(t)를 포함하는 하악 데이터(102)가 측방위 교합되어, 맞물린 형상의 제2 교합 데이터(103, 1032)에 의해 상악 데이터(101)와 하악 데이터(102)가 정렬된 예시 제2 교합 모델(P1002)이 획득될 수 있다. 이와 같이, 다양한 교합 형상을 가지는 복수의 교합 데이터(103)들을 획득함으로써, 복수의 교합 모델들이 생성될 수 있고, 사용자는 상기 복수의 교합 모델들을 기초로 환자의 구강 구조를 분석하여 최적의 치료를 제공할 수 있다.
한편, 본 발명을 설명함에 있어서, 교합 데이터(103)는 상악과 하악의 일측 협면을 스캔하여 획득한 일측 교합 데이터와, 상악과 하악의 타측 협면을 스캔하여 획득한 타측 교합 데이터를 포함할 수 있다. 다만, 본 발명에서 복수의 교합 데이터(103)는 상이한 교합 형태들을 스캔하여 획득한 것으로 이해될 수 있다.
즉, 복수의 교합 데이터(103)들은 서로 다른 복수의 교합 상태들을 가지는 대상체의 협면의 일부분을 스캔하여 획득될 수 있다. 예시적으로, 복수의 교합 데이터(103)는 대상체를 제1 교합 상태로 교합시켜 획득한 제1 교합 데이터, 대상체를 제2 교합 상태로 교합시켜 획득한 제2 교합 데이터를 포함할 수 있으며, 각각의 교합 형태를 표현하는 복수의 교합 데이터들을 기초로 복수의 교합 모델들이 획득되고, 사용자는 복수의 교합 모델들을 비교 분석할 수 있다.
도 4는 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 모델 생성 단계(S120)의 세부적인 순서도이다. 또한, 도 5 내지 도 7은 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 데이터(103)에 의해 상악 데이터(101)와 하악 데이터(102)가 정렬되어 교합 모델(100)이 생성되는 과정을 설명하기 위한 것이다.
도 2 및 도 4를 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 교합 데이터 획득 단계(S110) 이후 교합 모델 생성 단계(S120)가 수행될 수 있다. 예시적으로, 스캔부와 통신하는 제어부는 스캔부에서 획득한 교합 데이터를 상악 데이터 및 하악 데이터와 정렬할 수 있다. 대상체의 상악을 표현하는 상악 데이터와 대상체의 하악을 표현하는 하악 데이터는 교합 데이터 획득 단계(S110) 이전에 스캔부에 의해 획득된 것일 수 있다. 또한, 상악 데이터와 하악 데이터는 제어부의 데이터베이스부에 기저장되어, 교합 모델을 생성하기 위해 로드될 수 있다. 한편, 상악 데이터와 하악 데이터는 반드시 교합 데이터 획득 단계(S110) 이전에 획득되어야 하는 것은 아니며, 필요에 따라 교합 데이터 획득 단계(S110)와 교합 모델 생성 단계(S120) 사이에 획득될 수도 있다. 이러한 경우, 상악 데이터와 하악 데이터 각각은 적어도 하나 획득될 수 있다. 다만, 본 발명을 설명함에 있어서 설명상 편의를 위해, 상악 데이터와 하악 데이터는 각각 하나씩 기획득된 것으로 가정한다.
예시적으로, 교합 모델 생성 단계(S120)는 교합 데이터 획득 단계(S110)에서 획득한 복수의 교합 데이터들 각각을 상악 데이터 및 하악 데이터와 정렬하여 복수의 교합 모델들을 생성할 수 있다. 생성된 복수의 교합 모델들은 후술하는 교합 모델 표시 단계(S140)에서 연속적으로 표시될 수 있으며, 사용자는 교합 모델들 간의 전환에 따른 상악 데이터 및/또는 하악 데이터의 움직임을 용이하게 확인할 수 있으므로, 사용자의 시각적 편의성이 향상되는 이점이 있다.
교합 모델 생성 단계(S120)는 일정한 규칙에 따라 상악 데이터, 하악 데이터, 및 교합 데이터를 정렬할 수 있다. 예시적으로, 교합 모델 생성 단계(S120)는 상악 데이터 및 하악 데이터가 고정되지 않은 상태에서, 교합 데이터를 통해 상악 데이터와 하악 데이터가 정렬될 수 있다. 다른 예시로, 교합 모델 생성 단계(S120)는 상악 데이터(101) 및 하악 데이터(102) 중 어느 하나가 고정된 상태에서, 나머지 하나가 고정된 데이터 측을 향해 정렬될 수 있다. 예시적으로, 교합 모델 생성 단계(S120)는 상악 데이터가 고정된 상태에서, 하악 데이터가 고정된 상악 데이터 측을 향해 정렬될 수 있다. 이 때, 복수의 교합 데이터들 중 적어도 하나의 교합 데이터는 고정된 상악 데이터를 향해 이동하여 상악 데이터와 정렬되고, 하악 데이터는 상악 데이터와 정렬된 교합 데이터를 향해 이동하여 교합 데이터와 정렬될 수 있다. 다른 예시로, 교합 모델 생성 단계(S120)는 하악 데이터가 고정된 상태에서, 상악 데이터가 고정된 하악 데이터 측을 향해 정렬될 수 있다. 이 때, 복수의 교합 데이터들 중 적어도 하나의 교합 데이터는 고정된 하악 데이터를 향해 이동하여 하악 데이터와 정렬되고, 상악 데이터는 하악 데이터와 정렬된 교합 데이터를 향해 이동하여 교합 데이터와 정렬될 수 있다.
교합 모델 생성 단계(S120)에서 교합 데이터에 의해 상악 데이터와 하악 데이터가 정렬될 때, 고정된 데이터는 상악 데이터일 수 있다. 일반적으로, 환자의 구강 구조상, 상악의 움직임에 비해 하악의 움직임이 크다. 따라서, 대상체의 상악을 표현하는 상악 데이터를 고정한 상태에서 하악 데이터가 고정된 상악 데이터에 정렬되도록 하여, 후술하는 교합 모델 표시 단계(S140)에서 하악 데이터의 움직임이 용이하게 표현될 수 있다.
교합 모델 생성 단계(S120)에 대해 보다 상세히 설명한다. 교합 모델 생성 단계(S120)는 구강 데이터 정렬 단계(S121)를 포함할 수 있다. 구강 데이터 정렬 단계(S121)에서, 제어부의 데이터 정렬부는 복수의 교합 데이터들 중 적어도 어느 하나의 교합 데이터, 상악 데이터, 및 하악 데이터를 정렬할 수 있다. 구강 데이터 정렬 단계(S121)를 통해, 상악 데이터와 하악 데이터는 교합 데이터의 형상을 따라 교합된 형상을 표현하도록 정렬될 수 있다.
구강 데이터 정렬 단계(S121)는 제1 정렬 단계(S121a)를 포함할 수 있다. 예시적으로, 제1 정렬 단계(S121a)는 교합 데이터 획득 단계(S110)에서 획득된 복수의 교합 데이터들 중 적어도 어느 하나의 교합 데이터를 상악 데이터 측으로 이동시켜 정렬할 수 있다.
도 5를 참조하여 임의의 교합 데이터(103)와 상악 데이터(101), 및 하악 데이터(102)의 정렬 과정에 대해 설명한다. 도 5에 도시된 바와 같이, 디스플레이부에 의해 표시되는 유저 인터페이스(500) 화면이 도시된다. 유저 인터페이스(500) 화면은 모델 표시부(510)와 실시간 표시부(520)를 포함할 수 있다. 모델 표시부(510)는 교합 데이터 획득 단계(S110)에 의해 획득되는 교합 데이터(103)와, 상악 데이터(101) 및 하악 데이터(102) 중 적어도 하나가 표시될 수 있다. 또한, 실시간 표시부(520)는 스캔부에 의해 획득되는 영상(예를 들면, 2차원 이미지 데이터)을 실시간으로 표시할 수 있다. 실시간 표시부(520)는 모델 표시부(510)에 나타나는 스캔 영역(512)에 대응되는 부분의 영상을 실시간으로 표시할 수 있다. 예시적으로, 실시간 표시부(520)는 2차원 상악 영상(101s)를 포함하는 대상체 영상(100s)을 실시간으로 표시할 수 있다.
도 5 및 도 6을 참조하면, 스캔부가 대상체의 협면을 스캔하여 제1 교합 데이터(1031)가 획득되고, 제1 정렬 단계(S121a)는 획득된 제1 교합 데이터(1031)는 모델 표시부(510)에 표시될 수 있다. 이 때, 제1 교합 데이터(1031)는 상악 데이터(101) 측으로 이동시켜 제1 교합 데이터(1031)와 상악 데이터(101)를 정렬할 수 있다. 제1 교합 데이터(1031)는, 상악 데이터(101) 및 하악 데이터(102) 중 적어도 하나에 정렬되기 이전에 제1 패턴 및/또는 제1 색상을 가지도록 모델 표시부(510)에 표시될 수 있다. 예시적으로, 상악 데이터(101) 및 하악 데이터(102) 어디에도 정렬되지 않은 제1 교합 데이터(1031)는 회색으로 표시될 수 있다. 도 6에 도시된 바와 같이, 제1 교합 데이터(1031)는 상악 데이터(101)를 향해 이동하여 정렬될 수 있으며, 상악 데이터(101)와 정렬된 제1 교합 데이터(1031)는 제2 패턴 및/또는 제2 색상을 가지도록 모델 표시부(510)에 표시될 수 있다. 예시적으로, 상악 데이터(101)에 정렬된 제1 교합 데이터(1031)는 연녹색으로 표시될 수 있다.
또한, 구강 데이터 정렬 단계(S121)는 제2 정렬 단계(S121b)를 포함할 수 있다. 예시적으로, 제2 정렬 단계(S121b)는 상기 상악 데이터(101)와 정렬된 교합 데이터(103) 측으로 하악 데이터(102)를 이동시켜 정렬할 수 있다. 도 7을 참조하면, 하악 데이터(102)는 상악 데이터(101)와 정렬된 제1 교합 데이터(1031)와 정렬되기 위해, 제1 교합 데이터(1031) 측으로 이동할 수 있다. 하악 데이터(102)가 제1 교합 데이터(1031)와 정렬되면, 상악 데이터(101) 및 하악 데이터(102)와 모두 정렬된 제1 교합 데이터(1031)는 제3 패턴 및/또는 제3 색상을 가지도록 모델 표시부(510)에 표시될 수 있다. 예시적으로, 상악 데이터(101) 및 하악 데이터(102)와 정렬된 제1 교합 데이터(1031)는 녹색으로 표시될 수 있다.
전술한 구강 데이터 정렬 단계(S121)는 알려진 데이터 정렬 방식을 사용하여 교합 데이터(103)와 상악 데이터(101), 및 하악 데이터(102)를 정렬할 수 있다. 예시적으로, 구강 데이터 정렬 단계(S121)는 ICP(Iterative Closest Point) 알고리즘을 사용하여 교합 데이터(103)와 상악 데이터(101), 및 하악 데이터(102)를 정렬할 수 있으나 반드시 이에 한정되는 것은 아니며, 데이터들을 정렬시키기 위해 적합한 정렬 방식이 사용될 수 있다.
전술한 바와 같이 구강 데이터 정렬 단계(S121)가 수행되면, 교합 모델 저장 단계(S122)가 수행될 수 있다. 제어부 중 교합 모델 생성부는 복수의 교합 데이터들 중 어느 하나의 교합 데이터(103)에 의해 상악 데이터(101), 및 하악 데이터(102)가 정렬된 형상을 통해 교합 모델(100)을 생성할 수 있고, 생성된 교합 모델(100)은 제어부 중 데이터베이스부에 저장될 수 있다. 교합 모델 저장 단계(S122)에 의해, 교합 데이터 획득 단계(S110)에서 획득된 복수의 교합 데이터들은 상악 데이터(101) 및 하악 데이터(102)와 정렬되어 복수의 교합 모델(100)들이 생성되고 저장될 수 있으며, 복수의 교합 모델(100)들은 환자의 다양한 교합 상태를 표현할 수 있다. 사용자는 복수의 교합 모델(100)들의 전환에 따른 이동 궤적, 및 교합 상태를 분석하여 환자에게 최적의 치료를 제공할 수 있다.
도 8은 본 발명의 일 실시예에 따른 데이터 처리 방법 중 정렬 초기화 단계(S123)를 설명하기 위한 것이다.
도 4 및 도 8을 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 모델 생성 단계(S120)는 정렬 초기화 단계(S123)를 포함할 수 있다. 정렬 초기화 단계(S123)는 교합 데이터(103)를 상악 데이터(101) 및 하악 데이터(102)로부터 정렬 해제할 수 있다. 예시적으로, 제1 교합 데이터(1031)에 의해 상악 데이터(101)와 하악 데이터(102)가 정렬되어 제1 교합 모델이 생성되고 저장된 후, 제1 교합 데이터(1031)는 상악 데이터(101) 및 하악 데이터(102)로부터 정렬 해제될 수 있다. 제1 교합 데이터(1031)가 상악 데이터(101) 및 하악 데이터(102)로부터 정렬 해제됨으로써, 제1 교합 데이터(1031)가 표현하는 교합 상태와 상이한 교합 상태를 표현하는 새로운 교합 데이터(103)가 획득되면 상기 새로운 교합 데이터(103)에 의해 상악 데이터(101)와 하악 데이터(102)가 정렬되어 제2 교합 모델이 생성될 수 있다.
예시적으로, 정렬 초기화 단계(S123)는 상악 데이터(101)의 위치 및 하악 데이터(102)의 위치를 교합 데이터(103)에 의해 정렬되기 이전의 위치로 복귀시킬 수 있다. 정렬 초기화 단계(S123)는 상악 데이터(101) 및 하악 데이터(102) 간에 소정 이격거리(d)를 가지도록 상기 상악 데이터(101)와 상기 하악 데이터(102)를 일정 거리 이격시킬 수 있다. 이 때, 상악 데이터(101)와 하악 데이터(102)는 소정 이격거리(d)로 이격되어, 상악 데이터(101)에 포함된 치아 데이터(t)와 하악 데이터(102)에 포함된 치아 데이터(t) 또한 이격될 수 있다. 정렬 초기화 단계(S123)가 수행됨에 따라, 새로운 교합 데이터(103)가 획득되었을 때 상악 데이터(101) 및 하악 데이터(102)는 새로운 교합 데이터(103)에 의해 정렬될 수 있고, 사용자는 새로운 교합 데이터(103)에 의해 정렬된 새로운 교합 모델을 획득함으로써 복수의 교합 모델(100)들을 획득할 수 있는 이점이 있다.
또한, 정렬 초기화 단계(S123)에서, 상악 데이터(101)의 위치는 고정된 상태에서 하악 데이터(102)는 상악 데이터(101)로부터 소정 이격거리(d)를 가지도록 이격될 수 있다. 상악 데이터(101)가 고정된 상태에서 하악 데이터(102)가 소정 이격거리(d)를 가지도록 이격됨으로써, 복수의 교합 데이터(103)들에 의해 상악 데이터(101)와 하악 데이터(102)가 일정한 위치에서 정렬될 수 있으며, 후술하는 교합 모델 표시 단계(S140)에서 별도의 상악 데이터(101) 정렬 과정이 생략되어 본 발명을 실시하기 위한 시스템(본 발명의 일 실시예에 따른 데이터 처리 장치)의 연산 부하를 감소시키는 이점이 있다.
또한, 정렬 초기화 단계(S123)에서 상악 데이터(101)의 위치는 고정되므로, 사용자는 교정 모델(100)을 획득할 때 고정된 상악 데이터(101)에 대한 하악 데이터(102)의 상대적인 위치를 용이하게 확인할 수 있는 이점이 있다. 또한, 사용자는 정렬 초기화 단계(S123)가 수행됨에 따라 교합 모델 저장 단계(S122)가 수행되었음을 시각적으로 용이하게 인지할 수 있으며, 사용자는 대상체의 새로운 교합 상태를 표현하는 교합 데이터를 신속하게 획득할 수 있는 이점이 있다.
한편, 전술한 교합 모델 생성 단계(S120)는 복수의 교합 데이터(103)들 각각이 적용되어 상악 데이터(101) 및 하악 데이터(102)가 정렬될 때마다 반복적으로 수행될 수 있다. 즉, 제1 교합 데이터가 상악 데이터(101) 및 하악 데이터(102)에 적용되어 상악 데이터(101) 및 하악 데이터(102)가 정렬되고, 제1 교합 모델이 생성될 수 있다. 이후, 제1 교합 데이터의 정렬이 해제되고, 제2 교합 데이터가 상악 데이터(101) 및 하악 데이터(102)에 적용되어 상악 데이터(101) 및 하악 데이터(102)가 정렬되고, 제2 교합 모델이 생성될 수 있다. 이와 같이, 상악 데이터(101) 및 하악 데이터(102)가 정렬될 때마다 교합 모델 생성 단계가 반복적으로 수행됨으로써, 복수의 교합 모델(100)들이 획득될 수 있고, 사용자는 복수의 교합 모델(100)들을 사용한 다양한 데이터 분석들이 가능한 이점이 있다.
또한, 복수의 교합 모델(100)들은 복수의 교합 데이터(103)들이 획득됨에 따라 유저 인터페이스(500) 상 단일 스테이지에서 생성될 수 있다. 예시적으로, 사용자는 상악 데이터 획득 스테이지에서 상악 데이터(101)를 획득할 수 있고, 하악 데이터 획득 스테이지에서 하악 데이터(102)를 획득할 수 있다. 이후, 사용자는 교합 데이터 획득 스테이지에서 복수의 교합 데이터(103)들을 획득함으로써 각각의 교합 데이터(103)에 상악 데이터(101)와 하악 데이터(102)가 정렬된 복수의 교합 모델(100)들을 획득할 수 있다. 이 때, 교합 데이터 획득 스테이지는 제1 교합 데이터 획득 스테이지, 제2 교합 데이터 획득 스테이지, 제3 교합 데이터 획득 스테이지로 구분되지 않으며, 사용자는 대상체의 협면을 스캔하여 서로 다른 복수의 교합 데이터(103)들을 획득하는 것만으로도 복수의 교합 모델(100)들을 용이하게 획득할 수 있다. 즉, 사용자는 복수의 교합 모델 스테이지를 전환하는 과정 없이 단일의 교합 데이터 획득 스테이지에서 복수의 교합 데이터(103)들을 획득할 수 있으므로, 사용자의 스캔 집중력이 향상되고 복수의 교합 모델(100)들을 획득하기 위해 소요되는 시간 및 노력이 절약되어 사용자 편의성이 향상되는 이점이 있다.
이하에서는, 교합 모델 표시 단계(S140)에 대해 상세히 설명한다.
도 9는 본 발명의 일 실시예에 따른 데이터 처리 방법 중 교합 모델 표시 단계(S140)의 세부적인 순서도이고, 도 10은 본 발명의 일 실시예에 따른 데이터 처리 방법에 의해 획득된 복수의 교합 모델(100)들을 설명하기 위한 것이며, 도 11은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 복수의 교합 모델(100)들의 전환에 따른 상악 데이터(101) 및/또는 하악 데이터(102)가 이동하는 과정을 설명하기 위한 것이다. 또한, 도 12 내지 도 14는 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 상이한 교합 모델(100)들을 선택함으로써 교합 모델(100)의 움직임이 나타나는 과정을 설명하기 위한 것이다.
도 2 및 도 9를 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법은 교합 모델 표시 단계(S140)를 포함할 수 있다. 교합 모델 표시 단계(S140)에서, 제어부 중 애니메이션부는 교합 모델 생성 단계(S120)에서 획득한 복수의 교합 모델(100)들 중 적어도 일부를 연속적으로 표시할 수 있다.
도 10을 참조하면, 교합 모델 표시 단계(S140)를 설명하기 위한 예시적인 교합 모델(100)들이 도시된다. 예시적으로, 교합 모델 생성 단계(S120)에서 제1 교합 데이터(1031)에 의해 정렬된 제1 교합 모델(1001)이 도 10(a)에 도시되고, 제2 교합 데이터(1032)에 의해 정렬된 제2 교합 모델(1002)이 도10(b)에 도시되며, 제3 교합 데이터(1033)에 의해 정렬된 제3 교합 모델(1003)이 도 10(c)에 도시될 수 있다. 도 10에 도시된 바와 같이, 복수의 교합 모델(100)들은 상이한 교합 상태를 표현할 수 있다. 경우에 따라, 사용자는 복수의 교합 모델(100)들 간의 전환에 따라 상악 데이터(101) 및/또는 하악 데이터(102)의 이동을 구현하는 애니메이션 과정을 통해, 사용자는 환자의 구강 구조를 시각적으로 용이하게 확인할 수 있으므로 사용자의 시각적 편의성이 향상되는 이점이 있다. 이에 따라, 사용자는 환자에게 적합한 보철 치료물을 설계함으로써 환자에게 최적의 치료를 제공할 수 있다.
도 9 및 도 11을 참조하면, 복수의 교합 모델(100)들의 이동 궤적을 효과적으로 표현하기 위해, 복수의 교합 모델(100)들 중 적어도 일부는 정렬될 수 있다. 즉, 복수의 교합 모델(100)들이 생성된 후 복수의 교합 모델(100)들 중 어느 하나의 교합 모델(100)의 소정 부분을 기준으로 나머지 교합 모델(100)들의 대응되는 부분이 정렬될 수 있다. 예시적으로, 제1 교합 모델(1001)의 상악 데이터(101)를 기준으로 제2 교합 모델(1002)의 상악 데이터(101) 및 제3 교합 모델(1003)의 상악 데이터(101)가 정렬될 수 있다. 이 때, 제1 교합 모델(1001)은 기준 교합 모델로 기능할 수 있다. 구강의 해부학적 구조상, 다양한 교합 형상을 가지는 복수의 교합 모델(100)들에서, 상악 데이터(101)의 위치 변화는 하악 데이터(102)의 위치 변화보다 작을 수 있다. 따라서, 복수의 교합 모델(100)들의 상악 데이터(10)를 정렬함으로써, 복수의 교합 모델(100)들 간의 신속한 정렬이 가능하고 교합 모델(100)들 간의 전환에 따른 애니메이션 효과를 통한 상악 데이터 및 하악 데이터의 이동을 포함하는 복수의 교합 모델들 간 차이가 시각적으로 극대화되도록 표시될 수 있으며, 사용자의 시각적 편의성이 향상되고, 사용자는 환자에게 최적의 치료를 제공할 수 있다.
교합 모델 표시 단계(S140)는 복수의 교합 모델(100)들 중 제1 교합 모델(1001)과 상이한 제2 교합 모델(1002)을 선택하는 전환 모델 선택 단계(S141)를 포함할 수 있다. 예시적으로, 제1 교합 모델(1001)이 유저 인터페이스(500) 화면 중 모델 표시부(510) 상에 표시되고 있을 때, 사용자는 제1 교합 모델(1001)과 상이한 교합 모델(100)을 선택하여 상기 상이한 교합 모델(100)이 모델 표시부(510)에 표시되도록 할 수 있다. 예를 들면, 사용자는 제1 교합 모델(1001)이 모델 표시부(510) 상에 표시될 때, 제2 교합 모델(1002)을 선택함으로써 모델 표시부(510)에 제2 교합 모델(1002)이 표시되도록 할 수 있다.
전환 모델 선택 단계(S141)에서 제2 교합 모델(1002)이 선택되면, 이동 경로 획득 단계(S142)가 수행될 수 있다. 이동 경로 획득 단계(S142)는 제1 교합 모델(1001)에서 제2 교합 모델(1002)까지의 데이터들의 이동 경로를 획득할 수 있다. 예시적으로, 이동 경로 획득 단계(142)는 복수의 교합 모델(100)들의 상악 데이터(101)가 정렬 및 고정된 상태에서, 제1 교합 모델(1001)에서 제2 교합 모델(1002)까지의 하악 데이터(102)의 이동 경로를 획득할 수 있다. 예시적으로, 이동 경로는 제1 교합 모델(1001)의 하악 데이터(101)가 제2 교합 모델(1002)의 하악 데이터(102)의 위치로 이동하기 위한 직선 경로일 수 있다. 다른 예시로, 이동 경로는 상악 데이터(101)와 하악 데이터(102)의 해부학적 관절 움직임에 따라 획득될 수도 있다. 이러한 경우, 하악 데이터(102)를 회전시키기 위한 적어도 하나의 회전 중심이 생성될 수 있고, 상기 이동 경로는 곡선 경로일 수도 있다. 또한, 상기 이동 경로는 직선과 곡선의 혼합 경로일 수도 있다.
도 9, 및 도 11 내지 도 13을 참조하면, 이동 경로 획득 단계(S142)에 따라 하악 데이터(102)의 이동 경로가 획득되면, 애니메이션 단계(S144)가 수행될 수 있다. 애니메이션 단계(S144)에서, 제어부의 애니메이션부는 제1 교합 모델(1001)에서 제2 교합 모델(1002)까지의 하악 데이터(102)의 이동을 상기 이동 경로를 따라 연속적으로 표시할 수 있다. 도 11에 도시된 바와 같이, 제1 교합 모델(1001)에서 제2 교합 모델(1002)로 전환될 때, 제1 교합 모델(1001)의 제1 하악 데이터(1021)는 제2 교합 모델(1002)의 제2 하악 데이터(1022)의 위치를 향해 제1 이동 경로(P1)를 따라 이동할 수 있다.
예시적으로, 애니메이션 단계(S144)에서 데이터의 이동 속도는 일정할 수 있다. 이러한 경우, 제1 교합 모델(1001)에서 제2 교합 모델(1002)로 전환될 때의 이동 경로가 긴 경우 하악 데이터(102)는 상대적으로 긴 시간동안 움직일 수 있고, 이동 경로가 짧은 경우 하악 데이터(102)는 상대적으로 짧은 시간동안 움직일 수 있다. 이에 따라, 사용자는 하악 데이터(102)가 이동하는 시간을 통해 교합 모델(100)들 간의 이동 경로의 길이를 비교할 수 있다.
다른 예시로, 애니메이션 단계(S144)는 일정한 시간동안 수행될 수도 있다. 즉, 이동 경로가 긴 경우 하악 데이터(102)는 상대적으로 빠르게 움직이고, 이동 경로가 짧은 경우 하악 데이터(102)는 상대적으로 느리게 움직일 수 있다. 이에 따라, 사용자는 하악 데이터(102)가 이동하는 속도를 통해 교합 모델(100)들 간의 이동 경로의 길이를 비교할 수도 있다.
동일한 취지로, 제2 교합 모델(1002)에서 제3 교합 모델(1003)로 전환될 때, 제2 교합 모델(1002)의 제2 하악 데이터(1022)는 제3 교합 모델(1003)의 제3 하악 데이터(1023)의 위치를 향해 제2 이동 경로(P2)를 따라 이동할 수 있다. 이와 같이, 각각의 교합 모델(100)들 간의 전환에 의하여 하악 데이터(102)가 이동 경로를 따라 이동함으로써, 사용자는 환자의 구강 구조를 용이하게 분석할 수 있으며, 환자에게 최적의 치료를 제공할 수 있다.
이하에서는, 유저 인터페이스(500) 화면을 참조하여 교합 모델 표시 단계(S140)를 설명한다. 도 11 내지 도 14에 도시된 바에 따르면, 유저 인터페이스(500) 화면의 모델 선택부(510)는 다중 교합 메뉴(514)를 포함할 수 있다. 다중 교합 메뉴(514)는 다중 교합 선택부(5141)를 포함할 수 있으며, 다중 교합 선택부(5141)는 교합 모델 생성 단계(S120)가 수행됨으로써 생성 및 저장된 교합 모델(100)의 개수에 대응되는 수만큼 형성될 수 있다. 예시적으로, 다중 교합 선택부(5141)는 제1 교합 모델(1001)을 선택하기 위한 제1 교합 모델 선택부(5141a), 제2 교합 모델(1002)을 선택하기 위한 제2 교합 모델 선택부(5141b), 및 제3 교합 모델(1003)을 선택하기 위한 제3 교합 모델 선택부(5141c)를 포함할 수 있다. 사용자는 제1 교합 모델 선택부(5141a), 제2 교합 모델 선택부(5141b), 및 제3 교합 모델 선택부(5141c) 중 어느 하나를 선택함으로써 모델 표시부(510)에 표시되는 교합 모델(100)을 전환시킬 수 있다. 도 12와 같이 제1 교합 모델(1001)이 모델 표시부(510)에 표시된 상태에서, 사용자는 제2 교합 모델 선택부(5141b)를 선택하여 도 13과 같이 제2 교합 모델(1002)이 모델 표시부(510)에 표시되도록 할 수 있다. 한편, 제2 교합 모델(1002)이 모델 표시부(510)에 표시될 때, 하악 데이터(102)의 이동이 연속적으로 표현될 수 있다. 또한, 도 13과 같이 제2 교합 모델(1002)이 모델 표시부(510)에 표시된 상태에서, 사용자는 제3 교합 모델 선택부(5141c)를 선택하여 도 14와 같이 제3 교합 모델(1003)이 모델 표시부(510)에 표시되도록 할 수 있다. 제3 교합 모델(1003)이 모델 표시부(510)에 표시될 때, 하악 데이터(102)의 이동이 연속적으로 표현될 수 있다.
전술한 내용은 제1 교합 모델(1001)에서 제2 교합 모델(1002)로 전환되고, 제2 교합 모델(1002)에서 제3 교합 모델(1003)로 전환되는 것으로 설명되었으나, 반드시 이에 한정되는 것은 아니다. 즉, 제1 교합 모델(1001)이 표시된 상태에서 제3 교합 모델(1003)을 선택하여 제1 교합 모델(1001)로부터 제3 교합 모델(1003)까지의 데이터의 이동을 애니메이션 효과를 통해 확인할 수도 있고, 제3 교합 모델(1003)이 표시된 상태에서 제2 교합 모델(1002)을 선택하여 제3 교합 모델(1003)로부터 제2 교합 모델(1002)까지의 데이터의 이동을 애니메이션 효과를 통해 확인할 수도 있다.
또한, 사용자는 다중 교합 메뉴(514) 중 추가적인 교합 모델(100)을 획득하기 위해 교합 추가 선택부(5142)를 선택하여 제4 교합 모델(미도시)을 추가로 획득할 수 있고, 사용자는 제1 교합 모델 내지 제4 교합 모델 간의 전환에 따른 데이터의 이동을 애니메이션 효과를 통해 시각적으로 용이하게 확인할 수 있으므로, 사용자의 시각적 편의성이 향상되는 이점이 있다.
한편, 상기 교합 모델들 간의 전환에 따른 데이터의 이동을 구현하는 교합 모델 표시 단계(보다 상세하게는, 애니메이션 단계)는 단일 스테이지에서 다중 교합 메뉴(514)를 통해 수행되므로, 사용자는 복수의 교합 모델(100)들을 시각적으로 용이하게 비교 분석할 수 있고, 사용자 편의성이 향상되는 이점이 있다.
이하에서는, 교합 모델 표시 단계(S140) 중 보간 모델 생성 단계(S143)에 대해 설명한다.
도 15는 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 교합 모델(100)들 사이에 생성되는 보간 모델(interpolation model, 200) 및 상기 보간 모델(200)에 따라 애니메이션 단계(S144)가 수행되는 과정을 설명하기 위한 것이다.
도 9 및 도 15를 참조하면, 교합 모델 표시 단계(S140)는 보간 모델 생성 단계(S143)를 더 포함할 수 있다. 제어부 중 보간 모델 생성부는, 전환 모델 선택 단계(S141)에서 선택한 제2 교합 모델(1002)과 제1 교합 모델(1001) 사이에 적어도 하나의 보간 모델(200)을 생성할 수 있다. 예시적으로, 보간 모델 생성 단계(S143)는 제1 교합 모델(1001)로부터 제2 교합 모델(1002)까지의 이동 경로를 기초로 제1 보간 모델(201), 제2 보간 모델(202), 제3 보간 모델(203), 및 제4 보간 모델(204)을 생성할 수 있다. 이 때, 제1 교합 모델(1001)과 제2 교합 모델(1002)의 상악 데이터(101)는 고정되어 있으며, 보간 모델(200)은 하악 데이터(102)에 대하여 생성될 수 있다.
생성된 보간 모델(200)들에 따라, 애니메이션 단계(S144)는 제1 교합 모델(1001), 적어도 하나의 보간 모델(200), 및 제2 교합 모델(1002)을 소정 순서에 따라 순차적으로 표시하여 제1 교합 모델(1001)에서 제2 교합 모델(1002)까지의 데이터(예를 들면, 하악 데이터)의 이동을 연속적으로 표시할 수 있다. 적어도 하나의 보간 모델(200)을 생성하여 데이터의 이동을 애니메이션 효과를 통해 표시함으로써, 사용자는 용이하게 교합 모델(100)들 간의 전환에 따른 데이터의 이동을 애니메이션 효과를 통해 시각적으로 용이하게 확인할 수 있다. 보간 모델(200)의 수가 증가할 수록, 애니메이션 단계(S144)에서 하악 데이터의 이동은 부드럽게 표현될 수 있다. 한편, 보간 모델(200)이 생성됨에 따라, 사용자는 제1 교합 모델(1001)과 제2 교합 모델(1002) 사이의 특정 시점에서의 구강 구조를 추가적으로 확인할 수 있으며, 보간 모델(200)에 의해 사용자는 환자의 구강 구조를 보다 자세하게 분석할 수 있는 이점이 있다.
이하에서는, 본 발명의 일 실시예에 따른 데이터 처리 방법의 추가적인 단계인 기준 교합 모델 결정 단계(S130)에 대해 설명한다.
도 2 및 도 11을 참조하면, 본 발명의 일 실시예에 따른 데이터 처리 방법은 교합 모델 생성 단계(S120) 이후 기준 교합 모델 결정 단계(S130)를 더 포함할 수 있다. 기준 교합 모델 결정 단계(S130)는 교합 모델 생성 단계(S120)에서 생성된 복수의 교합 모델(100)들 중 기준 교합 모델을 결정하는 것을 의미할 수 있다. 기준 교합 모델은 환자의 구강 구조를 분석하기 위해 우선적으로 고려되어야 할 교합 모델(100)을 의미할 수 있다. 예시적으로, 기준 교합 모델은 노멀 바이트(normal bite)를 표현할 수 있다.
기준 교합 모델이 결정되면, 다른 교합 모델(100)들은 기준 교합 모델에 정렬될 수 있다. 예시적으로, 3개의 교합 모델(100)들 중 제1 교합 모델(1001)이 기준 교합 모델로 결정되면, 제2 교합 모델(1002) 및 제3 교합 모델(1003)은 기준 교합 모델인 제1 교합 모델(1001)에 대하여 정렬될 수 있다. 예시적으로, 복수의 교합 모델(100)들은 기준 교합 모델의 소정 부분을 기준으로 나머지 교합 모델(100)들의 대응되는 부분이 정렬될 수 있다. 보다 상세하게는, 제2 교합 모델(1002)의 상악 데이터(101) 및 제3 교합 모델(1003)의 상악 데이터(101)는 기준 교합 모델인 제1 교합 모델(1001)의 상악 데이터(101)를 기준으로 정렬될 수 있다.
도 16은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 기준 교합 모델을 결정하기 위해 제1 교합 모델(1001)의 교합 분석이 수행되는 과정을 설명하기 위한 것이다. 보다 상세하게는, 도 16(a)는 제1 교합 모델(1001)의 교합 분석이 수행된 결과가 상악 데이터(101) 및 하악 데이터(102)가 교합된 형태로 표시된 것이고, 도 16(b)는 제1 교합 모델(1001)의 교합 분석이 수행된 결과가 상악 데이터(101) 및 하악 데이터(102)가 개방된 형태로 표시된 것이다.
또한, 도 17은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 기준 교합 모델을 결정하기 위해 제2 교합 모델(1002)의 교합 분석이 수행되는 과정을 설명하기 위한 것이다. 도 17(a)는 제2 교합 모델(1002)의 교합 분석이 수행된 결과가 상악 데이터(101) 및 하악 데이터(102)가 교합된 형태로 표시된 것이고, 도 17(b)는 제2 교합 모델(1002)의 교합 분석이 수행된 결과가 상악 데이터(101) 및 하악 데이터(102)가 개방된 형태로 표시된 것이다.
또한, 도 18은 본 발명의 일 실시예에 따른 데이터 처리 방법에서, 임의의 교합 모델(100)에 대하여 교합 분석이 수행되는 과정을 설명하기 위한 것이다.
도 16 및 도 17을 참조하면, 제어부의 교합 분석부는 교합 모델 생성 단계(S120)에서 생성된 교합 모델(100)들에 대한 교합 분석을 수행할 수 있다. 교합 분석은 각각의 교합 모델(100)의 교합 상태를 분석하는 과정일 수 있다. 도 16 및 도 17을 참조하면, 유저 인터페이스(500) 화면의 모델 표시부(510)에서 제1 교합 모델(1001), 및 제2 교합 모델(1002)의 분석이 수행될 수 있다. 유저 인터페이스(500) 화면은 교합 범례(530)를 더 포함할 수 있으며, 상기 교합 범례(530)는 상악 데이터(101)와 하악 데이터(102)의 교합 정도를 표현하는 교합 부분(540)의 수치범위를 나타낼 수 있다. 교합 부분(540)은 상악 데이터(101)와 하악 데이터(102)의 교합 정도에 따라 제1 교합 부분(541), 제2 교합 부분(542), 및 제3 교합 부분(543)을 포함할 수 있다. 제1 교합 부분(541)은 상악 데이터(101)와 하악 데이터(102)가 제1 범위(예를 들면, -2.000 내지 -0.100)의 간격을 형성하는 부분을 의미할 수 있고, 제2 교합 부분(542)는 상악 데이터(101)와 하악 데이터(102)가 제2 범위(예를 들면, -0.100 내지 0.100)의 간격을 형성하는 부분을 의미할 수 있으며, 제3 교합 부분(543)은 상악 데이터(101)와 하악 데이터(102)가 제3 범위(예를 들면, 0.100 내지 2.000)의 간격을 형성하는 부분을 의미할 수 있다. 필요에 따라, 상기 교합 부분은 더욱 세부적으로 구분되거나 간소하게 구분될 수도 있다. 또한, 상기 교합 부분은 상기 각각의 교합 부분이 가지는 범위에 따라 소정 색상, 및/또는 소정 패턴과 같은 시각적으로 용이하게 구분가능한 표현 요소를 통해, 시각적으로 구분가능하도록 표시될 수 있다.
기준 교합 모델은 복수의 교합 모델(100)들 중 교합 면적의 크기가 최대인 교합 모델(100)로 결정될 수 있다. 예시적으로, 기준 교합 모델은 교합 부분(540)의 전체 면적의 크기가 최대인 교합 모델(100)로 결정될 수 있다. 교합 부분(540)의 전체 면적의 크기가 최대인 교합 모델(100)은, 다수의 치아가 정상적으로 교합되어 있는 상태를 표현할 수 있으므로, 교합 부분(540)의 전체 면적의 크기가 최대인 교합 모델(100)은 노멀 바이트(normal bite) 상태를 표현하는 기준 교합 모델로 결정될 수 있다.
다른 예시로, 기준 교합 모델은 교합 부분(540) 중 제2 범위의 간격을 형성하는 제2 교합 부분(542)의 면적의 크기가 최대인 교합 모델(100)로 결정될 수 있다. 제2 교합 부분(542)은 상악 데이터(101)의 치아 데이터(t)와 하악 데이터(102)의 치아 데이터(t)가 밀접하게 접촉하는 부분을 의미할 수 있다. 따라서, 제2 교합 부분(542)의 면적의 크기가 클수록, 노멀 바이트 상태에 가까운 교합 모델(100)을 의미할 수 있고, 제2 교합 부분(542)의 면적의 크기가 최대인 교합 모델(100)은 기준 교합 모델로 결정될 수 있다.
도 18을 참조하면, 상악 데이터(101)와 하악 데이터(102)의 교합에 의해 생성되는 제3 교합 부분(543)은 상악 데이터(101)와 하악 데이터(102)가 상호 중첩된 부분을 의미할 수 있다. 상악 데이터(101)와 하악 데이터(102)가 중첩된 교합 모델(100)은 오버바이트 상태를 의미할 수 있다. 따라서, 교합 부분(540)의 전체 면적의 크기가 최대이거나 제2 교합 부분(542)의 면적의 크기가 최대이더라도, 제3 교합 부분(543)의 면적의 크기가 소정 임계값 이상인 교합 모델(100)은 기준 교합 모델에서 제외될 수 있다. 이와 같이, 오버바이트 상태의 교합 모델(100)이 기준 교합 모델로 결정되는 것을 방지함으로써, 노멀 바이트 상태를 표현하는 기준 교합 모델이 정확하게 결정될 수 있으며, 기준 교합 모델의 소정 부분을 기준으로 나머지 교합 모델(100)들이 정렬됨으로써 사용자는 교합 모델(100) 전환에 따른 효과적인 이동을 애니메이션 효과를 통해 시각적으로 용이하게 확인할 수 있는 이점이 있다.
전술한 내용에서, 기준 교합 모델 결정 단계(S130)는 교합 면적을 기준으로 결정되는 것으로 설명되었으나, 반드시 이에 한정되는 것은 아니며, 교합 모델(100)에서 상악 데이터(101)의 치아 데이터(t) 중 전치와 하악 데이터(102)의 치아 데이터(t) 중 전치 사이의 교합 거리, 또는 원심 거리를 측정하여 상기 교합 거리 또는 원심 거리가 최소인 교합 모델을 기준 교합 모델로 결정할 수도 있다.
한편, 기준 교합 모델 결정 단계(S130)를 수행하기 위한 교합 분석은 교합 모델(100)들 중 상악 데이터(101)와 하악 데이터(102)의 치아 데이터(t) 부분에 대하여 수행될 수 있다. 교합 분석 과정이 치아 데이터(t) 부분에 대하여 수행됨으로써, 상호 교합되지 않는 치은 부분에 대한 불필요한 교합 분석이 생략될 수 있으며, 사용자는 신속하게 기준 교합 모델을 획득할 수 있는 이점이 있다.
또한, 본 발명에서 설명한 상악 데이터(101)는 상악의 처리 이전의 형상을 표현하는 제1 상악 데이터 및 상악의 처리 이후의 형상을 표현하는 제2 상악 데이터를 포함하고, 하악 데이터(102)는 하악의 처리 이전의 형상을 표현하는 제1 하악 데이터, 및 하악의 처리 이후의 형상을 표현하는 제2 하악 데이터를 포함하며, 복수의 교합 모델(100)들은 제1 상악 데이터 및 제2 상악 데이터 중 어느 하나, 및 제1 하악 데이터 및 제2 하악 데이터 중 어느 하나를 조합하여 생성될 수 있다. 이 때, 상기 처리는 대상체에 대해 수행되는 각종 시술을 의미할 수 있으며, 상기 처리는 치아 삭제(tooth preparation), 치아 발치, 파절 치아의 재접착 등과 같은 치아의 형상, 위치, 방향을 변경하는 모든 종류의 시술 중 적어도 하나를 포함할 수 있다.
도 12 내지 도 14에 도시된 바에 따르면, 유저 인터페이스(500) 화면 중 모델 선택부(510)는 상하악 데이터 선택부(516)를 더 포함할 수 있다. 상하악 데이터 선택부(516)는 제1 상악 데이터를 선택하는 제1 상악 데이터 선택부(516a), 제2 상악 데이터를 선택하는 제2 상악 데이터 선택부(516b), 제1 하악 데이터를 선택하는 제1 하악 데이터 선택부(516c), 및 제2 하악 데이터를 선택하는 제2 하악 데이터 선택부(516d)를 포함할 수 있다. 상하악 데이터 선택부(516)에 의해, 처리 이전 또는 이후의 형상을 표현하는 상악 데이터(101) 및/또는 하악 데이터(102)를 교합 데이터(103)와 정렬하여 복수의 교합 모델(100)들이 생성될 수 있고, 사용자는 처리 이전과 이후의 교합 상태 변화를 용이하게 확인할 수 있다.
보다 상세하게는, 상하악 데이터 선택부(516)에 의해 선택된 제2 상악 데이터 및 제2 하악 데이터 중 적어도 하나와, 처리 이전의 대상체의 협면을 스캔하여 획득한 처리 이전의 교합 데이터를 정렬하여 생성되는 교합 모델은, 보철물이 적용되는 가장 이상적인 fit을 표현할 수 있으며, 보철물의 외면(예를 들면, 인접치, 대합치와의 접촉면)을 설계할 때 고려될 수 있다. 또한, 상하악 데이터 선택부(516)에 의해 선택된 제2 상악 데이터 및 제2 하악 데이터 중 적어도 하나와, 처리 이후의 대상체의 협면을 스캔하여 획득한 처리 이후의 교합 데이터를 정렬하여 생성되는 교합 모델은, 사용자가 처리 이후의 환자의 구강 구조를 파악하기 위해 고려될 수 있다. 또한, 제1 상악 데이터 및 제1 하악 데이터와, 처리 이전의 대상체의 협면을 스캔하여 획득한 처리 이전의 교합 데이터를 정렬하여 생성되는 교합 모델은, 보철물의 내면(예를 들면, 삭제 치아와의 접촉면)을 설계할 때 고려될 수 있다. 또한, 제1 상악 데이터 및 제1 하악 데이터와, 처리 이후의 대상체의 협면을 스캔하여 획득한 처리 이후의 교합 데이터를 정렬하여 생성되는 교합 모델은, 대상체의 처리 이후의 변화한 교합력에 의한 상악 데이터(제1 상악 데이터)와 하악 데이터(제1 하악 데이터)의 중첩되거나 이격된 정도를 표현할 수 있고, 보철물의 외면을 설계할 때 고려될 수 있다.
따라서, 사용자는 처리 전후의 교합 상태 변화를 반영하여 정확한 보철 치료물을 설계 및 제작할 수 있고, 결과적으로 환자에게 최적의 치료를 제공할 수 있는 이점이 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은, 복수의 교합 데이터를 상악 데이터 및 하악 데이터와 정렬하여 복수의 교합 모델들을 생성하고, 상기 복수의 교합 모델들 중 적어도 일부를 연속적으로 표시함으로써, 복수의 교합 모델들의 전환에 따른 애니메이션 효과를 통해, 사용자가 복수의 교합 모델들을 분석하는 과정에서 사용자의 시각적 편의성을 향상시키는 데이터 처리 방법을 제공하기 위한 것이다.

Claims (17)

  1. 대상체 중 상악의 형상과 하악의 형상의 적어도 일부를 포함하는 복수의 교합 데이터들을 획득하는 교합 데이터 획득 단계;
    상기 복수의 교합 데이터들 각각을 상기 상악을 표현하는 상악 데이터 및 상기 하악을 표현하는 하악 데이터와 정렬하여 복수의 교합 모델들을 생성하는 교합 모델 생성 단계; 및
    상기 복수의 교합 모델들 중 적어도 일부를 연속적으로 표시하는 교합 모델 표시 단계;를 포함하는 것을 특징으로 하는 데이터 처리 방법.
  2. 청구항 1에 있어서,
    상기 복수의 교합 데이터들은 서로 다른 복수의 교합 상태들을 가지는 상기 대상체의 협면의 일부분을 스캔하여 획득되는 것을 특징으로 하는 데이터 처리 방법.
  3. 청구항 1에 있어서,
    상기 교합 모델 생성 단계는,
    상기 복수의 교합 모델들이 생성된 후 상기 복수의 교합 모델들 중 어느 하나의 교합 모델의 소정 부분을 기준으로 나머지 교합 모델들의 대응되는 부분이 정렬되는 것을 특징으로 하는 데이터 처리 방법.
  4. 청구항 1에 있어서,
    상기 교합 모델 생성 단계는,
    상기 상악 데이터 및 상기 하악 데이터 중 어느 하나가 고정된 상태에서, 나머지 하나가 고정된 데이터 측을 향해 정렬되는 것을 특징으로 하는 데이터 처리 방법.
  5. 청구항 4에 있어서,
    상기 고정된 데이터는 상기 상악 데이터인 것을 특징으로 하는 데이터 처리 방법.
  6. 청구항 1에 있어서,
    상기 교합 모델 생성 단계는,
    상기 복수의 교합 데이터들 중 적어도 어느 하나의 교합 데이터를 상기 상악 데이터 측으로 이동시켜 정렬하는 제1 정렬 단계와, 상기 하악 데이터를 정렬된 상기 교합 데이터 측으로 이동시켜 정렬하는 제2 정렬 단계를 포함하는 구강 데이터 정렬 단계;를 포함하는 것을 특징으로 하는 데이터 처리 방법.
  7. 청구항 1에 있어서,
    상기 교합 모델 생성 단계는 상기 복수의 교합 데이터들 각각이 적용되어 상기 상악 데이터 및 상기 하악 데이터가 정렬될 때마다 반복적으로 수행되는 것을 특징으로 하는 데이터 처리 방법.
  8. 청구항 1에 있어서,
    상기 교합 모델 생성 단계는,
    상기 복수의 교합 데이터들 중 어느 하나의 교합 데이터에 의해 상기 상악 데이터, 및 상기 하악 데이터가 정렬된 형상을 저장하는 교합 모델 저장 단계;를 포함하는 것을 특징으로 하는 데이터 처리 방법.
  9. 청구항 8에 있어서,
    상기 교합 모델 생성 단계는,
    상기 교합 데이터를 상기 상악 데이터 및 상기 하악 데이터로부터 정렬 해제하는 정렬 초기화 단계;를 더 포함하는 것을 특징으로 하는 데이터 처리 방법.
  10. 청구항 9에 있어서,
    상기 정렬 초기화 단계는, 상기 상악 데이터의 위치 및 상기 하악 데이터의 위치를 상기 교합 데이터에 의해 정렬되기 이전으로 복귀시키거나, 상기 상악 데이터 및 상기 하악 데이터 간의 소정 이격거리를 가지도록 상기 상악 데이터와 상기 하악 데이터를 이격하는 것을 특징으로 하는 데이터 처리 방법.
  11. 청구항 10에 있어서,
    상기 상악 데이터의 위치는 고정된 상태에서 상기 하악 데이터는 상기 상악 데이터로부터 상기 소정 이격거리를 가지도록 이격되는 것을 특징으로 하는 데이터 처리 방법.
  12. 청구항 1에 있어서,
    상기 복수의 교합 모델들은 상기 복수의 교합 데이터들이 획득됨에 따라 유저 인터페이스 상 단일 스테이지에서 생성되는 것을 특징으로 하는 데이터 처리 방법.
  13. 청구항 1에 있어서,
    상기 교합 모델 표시 단계는,
    상기 복수의 교합 모델들 중 제1 교합 모델과 상이한 제2 교합 모델을 선택하는 전환 모델 선택 단계;
    상기 제1 교합 모델에서 상기 제2 교합 모델까지의 상기 하악 데이터의 이동 경로를 획득하는 이동 경로 획득 단계;
    상기 이동 경로를 따라 상기 제1 교합 모델에서 상기 제2 교합 모델까지의 상기 하악 데이터의 이동을 연속적으로 표시하는 애니메이션 단계;를 포함하는 것을 특징으로 하는 데이터 처리 방법.
  14. 청구항 13에 있어서,
    상기 교합 모델 표시 단계는,
    상기 이동 경로를 기초로 상기 제1 교합 모델 및 상기 제2 교합 모델 사이에 적어도 하나의 보간 모델을 생성하는 보간 모델 생성 단계;를 더 포함하고,
    상기 애니메이션 단계는,
    상기 제1 교합 모델, 상기 적어도 하나의 보간 모델, 및 상기 제2 교합 모델을 소정 순서에 따라 순차적으로 표시하여 상기 제1 교합 모델에서 상기 제2 교합 모델까지의 상기 하악 데이터의 이동을 연속적으로 표시하는 것을 특징으로 하는 데이터 처리 방법.
  15. 청구항 1에 있어서,
    상기 복수의 교합 모델들 중 기준 교합 모델을 결정하는 기준 교합 모델 결정 단계;를 더 포함하고,
    상기 복수의 교합 모델들은 상기 기준 교합 모델의 소정 부분을 기준으로 나머지 교합 모델들의 대응되는 부분이 정렬되는 것을 특징으로 하는 데이터 처리 방법.
  16. 청구항 15에 있어서,
    상기 기준 교합 모델은 상기 복수의 교합 모델들 중 상기 교합 면적의 크기가 최대인 교합 모델로 결정되는 것을 특징으로 하는 데이터 처리 방법.
  17. 청구항 1에 있어서,
    상기 상악 데이터는 상기 상악의 처리 이전의 형상을 표현하는 제1 상악 데이터, 및 상기 상악의 처리 이후의 형상을 표현하는 제2 상악 데이터를 포함하고,
    상기 하악 데이터는 상기 하악의 처리 이전의 형상을 표현하는 제1 하악 데이터, 및 상기 하악의 처리 이후의 형상을 표현하는 제2 하악 데이터를 포함하며,
    상기 복수의 교합 모델들은 상기 제1 상악 데이터 및 상기 제2 상악 데이터 중 어느 하나, 및 상기 제1 하악 데이터 및 상기 제2 하악 데이터 중 어느 하나를 조합하여 생성되는 것을 특징으로 하는 데이터 처리 방법.
PCT/KR2022/003837 2021-03-19 2022-03-18 데이터 처리 방법 WO2022197153A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22771819.4A EP4309622A1 (en) 2021-03-19 2022-03-18 Data processing method
US18/282,656 US20240173100A1 (en) 2021-03-19 2022-03-18 Data processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210035960 2021-03-19
KR10-2021-0035960 2021-03-19
KR10-2022-0033990 2022-03-18
KR1020220033990A KR20220131194A (ko) 2021-03-19 2022-03-18 데이터 처리 방법

Publications (1)

Publication Number Publication Date
WO2022197153A1 true WO2022197153A1 (ko) 2022-09-22

Family

ID=83321541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003837 WO2022197153A1 (ko) 2021-03-19 2022-03-18 데이터 처리 방법

Country Status (2)

Country Link
US (1) US20240173100A1 (ko)
WO (1) WO2022197153A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150128713A (ko) * 2013-03-11 2015-11-18 케어스트림 헬스 인코포레이티드 교합 인기를 위한 방법 및 시스템
KR20150139465A (ko) * 2014-06-03 2015-12-11 오서-테인 인코포레이티드 환자의 치열교정 진단 분석을 결정하는 시스템 및 방법
KR101829409B1 (ko) * 2016-05-04 2018-02-19 주식회사 디오코 치아 교정 시뮬레이션 장치에서의 치아 교정 방법
US20190159863A1 (en) * 2011-11-28 2019-05-30 3Shape A/S Dental preparation guide
KR20190077849A (ko) * 2017-12-26 2019-07-04 오스템임플란트 주식회사 투명 교정기 디자인을 위한 치아배열 데이터 생성방법, 이를 위한 장치, 이를 기록한 기록매체

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190159863A1 (en) * 2011-11-28 2019-05-30 3Shape A/S Dental preparation guide
KR20150128713A (ko) * 2013-03-11 2015-11-18 케어스트림 헬스 인코포레이티드 교합 인기를 위한 방법 및 시스템
KR20150139465A (ko) * 2014-06-03 2015-12-11 오서-테인 인코포레이티드 환자의 치열교정 진단 분석을 결정하는 시스템 및 방법
KR101829409B1 (ko) * 2016-05-04 2018-02-19 주식회사 디오코 치아 교정 시뮬레이션 장치에서의 치아 교정 방법
KR20190077849A (ko) * 2017-12-26 2019-07-04 오스템임플란트 주식회사 투명 교정기 디자인을 위한 치아배열 데이터 생성방법, 이를 위한 장치, 이를 기록한 기록매체

Also Published As

Publication number Publication date
US20240173100A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
WO2017192020A1 (ko) 치과용 3차원 데이터 처리장치 및 그 방법
EP2964139B1 (en) Visualising a 3d dental restoration on a 2d image
JP2011110420A (ja) 義歯アイテムを設計および製造するためのシステム、方法、装置、およびコンピュータ読み取り可能な記憶媒体
CN113424523B (zh) 扫描过程再生方法
WO2021137573A2 (ko) 마진라인 설정 장치 및 방법
WO2021210723A1 (ko) 딥러닝을 이용한 3차원 의료 영상 데이터의 특징점 자동 검출 방법 및 장치
WO2017191878A1 (ko) 치아 움직임 추적 장치 및 그 방법
WO2022197153A1 (ko) 데이터 처리 방법
WO2021141424A1 (ko) 이미지 필터링 방법
US20120236135A1 (en) Intraoral Occlusion Measurement and Registration
WO2022065756A1 (ko) 구강 이미지 처리 장치, 및 구강 이미지 처리 방법
WO2022149915A1 (ko) 데이터 처리 방법
RU80111U1 (ru) Программно-аппаратная система функционального анализа окклюзии и артикуляции
WO2019088343A1 (ko) 아크라인에 기초한 보철물 디자인 방법 및 시스템
WO2022098039A1 (ko) 데이터 처리 방법
KR20220131194A (ko) 데이터 처리 방법
WO2021215840A1 (ko) 라이브러리 데이터를 사용한 스캔 데이터 보완 방법 및 시스템
WO2022197098A1 (ko) 데이터 처리 방법
WO2022260442A1 (ko) 구강 이미지를 처리하는 데이터 처리 장치 및 구강 이미지 처리 방법
WO2022103141A1 (ko) 교합 정렬 방법 및 교합 정렬 장치
WO2022092838A1 (ko) 데이터 처리 방법 및 데이터 처리 장치
WO2022197016A1 (ko) 데이터 처리 방법
WO2023128050A1 (ko) 치아 바운더리 커브를 이용한 3차원 스캔 데이터의 치아 자동 분리 방법 및 이를 컴퓨터에서 실행시키기 위한 프로그램이 기록된 컴퓨터로 읽을 수 있는 기록 매체
WO2024122875A1 (ko) 딥러닝을 이용한 크라운 교합면 3d 메쉬 생성 방법 및 이를 이용하는 장치
Seo et al. A standardization model based on image recognition for performance evaluation of an oral scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282656

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022771819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022771819

Country of ref document: EP

Effective date: 20231019