WO2022196849A1 - 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도 - Google Patents

아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도 Download PDF

Info

Publication number
WO2022196849A1
WO2022196849A1 PCT/KR2021/003442 KR2021003442W WO2022196849A1 WO 2022196849 A1 WO2022196849 A1 WO 2022196849A1 KR 2021003442 W KR2021003442 W KR 2021003442W WO 2022196849 A1 WO2022196849 A1 WO 2022196849A1
Authority
WO
WIPO (PCT)
Prior art keywords
antigen protein
seq
swine fever
fever virus
african swine
Prior art date
Application number
PCT/KR2021/003442
Other languages
English (en)
French (fr)
Inventor
정대균
윤선우
송대섭
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to PCT/KR2021/003442 priority Critical patent/WO2022196849A1/ko
Publication of WO2022196849A1 publication Critical patent/WO2022196849A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to an antigenic protein composition for diagnosing African swine fever virus infection, methods and uses thereof.
  • African swine fever virus is a large double-stranded DNA virus that replicates the cytoplasm of infected cells as a causative agent of African swine fever.
  • This virus is a DNA virus with a diameter of about 200 nm belonging to the Asfarviridae and Asfivirus genus. do. Some isolated viruses can cause rapid animal death within a week after infection. The virus does not cause any apparent disease in all other species.
  • the virus is endemic to sub-Saharan Africa and is present in the wild through cycles of infection between ticks, wild boars, wild boars, and warthogs.
  • African swine fever virus is usually classified into high pathogenicity, moderate pathogenicity and low pathogenicity according to pathogenicity. Highly pathogenic is usually acute (pigs die 1-4 days after infection) and acute (pigs die 3-8 days after infection) diseases, while severe pathogenic strains are acute (pigs die 11-15 days after infection) and It causes subacute (pigs die 20 days after infection) type disease. Low pathogenicity has been reported only in endemic areas and causes subclinical or chronic disease. Morbidity (proportion of infected animals) depends on the virus infected and the route of exposure, and the incubation period for natural infection varies from 4 to 19 days. The mortality rate is characterized by nearly 100% mortality when infected with a highly pathogenic virus, and less than 20% in the chronic form. In some endemic areas, pigs' adaptation to the virus may lead to higher survival rates in highly pathogenic pigs.
  • African swine fever spreads again in Europe and spreads to the Asian continent, attention is focused on the development of vaccines that have not been well progressed in the past, but no treatment has been developed yet. Accordingly, it is best to prevent the virus from entering the country, but when it enters, it is necessary to diagnose and confirm it as soon as possible and isolate it to prevent its spread. In addition, due to clinically similar findings, the lesion of African swine fever needs to be differentiated from other systemic hemorrhagic and septic infectious diseases.
  • porcine dermatitis nephrotic syndrome (PDNS) is also a target for differentiation.
  • PDNS porcine dermatitis nephrotic syndrome
  • Obacillus infection can also be differentiated.
  • rodenticides such as warfarin accompanied by bleeding lesions, some mycotoxins such as aflatoxins, and insecticides may be included.
  • the laboratory diagnostic test may include a method of detecting ASFV in blood and internal organs or detecting an antibody in the serum of an infected pig, but the related technology is currently very incomplete.
  • the present inventors have completed the present invention by developing a composition and diagnostic method for diagnosing African swine fever virus infection using African swine fever virus CD2v, p54, p22 and/or CAP80 antigen proteins.
  • An object of the present invention is (a) any one selected from the group consisting of the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7, and the antigen protein of CAP80 of SEQ ID NO: 8 reacting the above antigenic protein with the sample; and
  • step (b) detecting an antibody bound to any one or more antigenic proteins selected from the group consisting of antigenic proteins of African swine fever virus proteins CD2v, p54, p22 and CAP80 in the sample of step (a); Africa comprising a; To provide a method for diagnosing swine fever virus infection.
  • Another object of the present invention is any one or more selected from the group consisting of the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7, and the antigen protein of CAP80 of SEQ ID NO: 8
  • An object of the present invention is to provide a kit for diagnosing African swine fever virus infection comprising an antigenic protein.
  • the present invention provides (a) any one or more antigens selected from the group consisting of the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7, and the antigen protein of CAP80 of SEQ ID NO: 8 reacting the protein with the sample; and
  • step (b) detecting an antibody bound to any one or more antigenic proteins selected from the group consisting of antigenic proteins of African swine fever virus proteins CD2v, p54, p22 and CAP80 in the sample of step (a); Africa comprising a; A method for diagnosing swine fever virus infection is provided.
  • CD2v, p54, p22 and/or CAP80 with high antigenicity are used to rapidly and conveniently detect African swine fever virus infection with high specificity and sensitivity. It is possible to confirm the excellent diagnostic effect, and through this, confirm the usefulness of the detection of African swine fever virus, and at the same time protect the domestic livestock industry and contribute to domestic livestock quarantine.
  • the "diagnosis” refers to determining whether a subject currently has a specific virus, disease or disease of a subject, such as Suidae , and determining the prognosis of a subject suffering from a specific virus, disease or disease. , or therametrics (eg, monitoring a subject's condition to provide information about treatment efficacy).
  • the diagnosis is to confirm the presence/absence of carrier/carrying of African swine fever virus. In particular, it is to confirm the presence or absence of carrier/carrying of African swine fever virus in swine animals.
  • the pigs to be diagnosed with the above African swine fever virus infection are preferably domestic pigs and wild boars of Europe and America, which are pigs that are not resistant to the virus. These animals may exhibit clinically, for example, the following lesions upon infection with African swine fever virus:
  • the acute form is caused by infection with a highly pathogenic virus, and is characterized by a high fever of 41-42°C, lack of appetite, lethargy, hyperventilation, and hyperemia of the skin. Pigs usually die suddenly within 1-4 days after the onset of clinical symptoms, and no obvious lesions appear in the organs.
  • the spleen exhibits characteristic congestive splenomegaly, in which the size of the spleen can become up to 6 times larger than normal, at which time the spleen margins become rounded, soft and dark purple to the touch, and can become large enough to occupy the entire abdominal cavity.
  • bleeding mainly occurs in the lymph node medulla of the stomach, liver, and kidney. Therefore, the cross-section of the affected lymph node sometimes shows a marble pattern, and petechiae in the medulla of the kidney, the renal pelvis, and the bladder mucosa, epicardium, endocardium, and pleura. have.
  • the subacute form is caused by a severely pathogenic virus, and the affected animals show similar clinical symptoms to pigs infected with the acute form but less pronounced.
  • the vascular changes such as bleeding and edema seen in the subacute form are much more severe than those reported in the acute form.
  • transient bleeding associated with the onset of severe thrombocytopenia is observed in the early and intermediate stages of the disease.
  • Abortion is usually the first clinical symptom of a subacute form.
  • Affected pigs usually die within 7-20 days, and mortality rates range from 30 to 70%.
  • the chronic type does not have vascular lesions, and there are no vascular lesions, such as fibrinous pleurisy or pericarditis, chest adhesions, necrotizing pneumonia, fibrinous arthritis/periarthritis and necrotic skin lesions, as well as necrotic areas on the tonsils and tongue. It is characterized by the presence of lesions involving bacteria.
  • the method for diagnosing African swine fever virus infection of the present invention includes reacting an antigen protein composition for diagnosing African swine fever virus infection with a sample. Specifically, (a) any one selected from the group consisting of antigen protein of CD2v antigen of SEQ ID NO: 5, antigen protein of p54 of SEQ ID NO: 6, antigen protein of p22 of SEQ ID NO: 7, and antigen protein of CAP80 antigen protein of SEQ ID NO: 8 and reacting one or more antigenic proteins with the sample.
  • the sample according to the present invention includes, but is not limited to, whole blood, serum, plasma, sputum, urine, pleural fluid, or ascites fluid. In one embodiment according to the present invention, it may be blood, in particular serum.
  • the antigen protein composition according to the present invention uses the sequences of CD2v, p54, p22 and/or CAP80, which are known antigen proteins expressed in African swine fever virus, and enables excellent diagnostic effects by using high antigenicity.
  • the antigen protein composition according to the present invention comprises the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, and the antigen protein of p22 of SEQ ID NO: 7 synthesized from the nucleotide sequences of SEQ ID NO: 1, 2, 3 or 4, respectively Or it may be an antigen protein of the CAP80 antigen protein of SEQ ID NO: 8. Synthesis of a protein sequence from such a nucleotide sequence may be performed using a conventional method known in the art.
  • the protein or base sequence includes a functional equivalent.
  • the "functional equivalent” means that as a result of addition, substitution or deletion of amino acids, at least 70% or more, preferably 80% or more, more preferably 90% or more, even more preferably 95% or more of the sequences of the same sex, most preferably greater than or equal to 99%.
  • it refers to a protein that exhibits substantially the same physiological activity as the protein consisting of the amino acid sequence shown in SEQ ID NOs: 5 to 8.
  • the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7, and the antigen protein of CAP80 antigen protein of SEQ ID NO: 8 are all included. can be reacted with the sample antigen protein composition. By including them all, it is possible to diagnose African swine fever virus with better sensitivity and accuracy.
  • the reaction between the antigen-protein composition and the sample is an antigen-antibody complex reaction.
  • the African swine fever virus infection diagnosis method of the present invention (b) binds to any one or more antigenic proteins selected from the group consisting of antigenic proteins of the African swine fever virus proteins CD2v, p54, p22 and CAP80 in the sample of step (a) detecting the antibody.
  • the step of detecting the antibody according to the present invention means detecting the antibody generated from the antigen-antibody complex formation reaction according to the reaction between the antigen protein composition and the sample. Its biggest advantage is that it uses an antigen protein with high antigenicity, so the specificity and sensitivity for the detection of the antibody are high.
  • Detection by the antigen-antibody complex reaction may be performed using a known method, and a method including ELISA (Enzyme Linked Immunosorbent Assay) is most preferred.
  • ELISA Enzyme Linked Immunosorbent Assay
  • ELISA Enzyme Linked Immunosorbent Assay
  • ELISA includes direct ELISA for detecting antigen and indirect ELISA for detecting antibody, direct sandwich ELISA using another labeled antibody that recognizes antigen in a complex of an antibody and antigen attached to a solid support, and antibody and antigen attached to a solid support.
  • the control in the step of detecting the antibody may be a sample derived from a normal control that does not have the African swine fever virus, that is, a healthy porcine animal or a porcine animal having another swine-related virus.
  • a normal control that does not have the African swine fever virus
  • the detection level of the antibody is detected and the detection level is increased to a certain level or more compared to the control group, it is determined that the antibody has African swine fever virus.
  • the present invention relates to any one or more antigens selected from the group consisting of the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7, and the antigen protein of CAP80 antigen protein of SEQ ID NO: 8
  • a kit for diagnosing African swine fever virus infection comprising a protein.
  • the kit for diagnosing African swine fever virus infection according to the present invention confirms an excellent effect of rapidly and conveniently diagnosing African swine fever virus infection while having high specificity and sensitivity, and is useful for detecting African swine fever virus through this It can protect the livestock industry and contribute to domestic livestock quarantine.
  • the present invention preferably relates to an African swine fever virus comprising all of the antigen protein of CD2v of SEQ ID NO: 5, the antigen protein of p54 of SEQ ID NO: 6, the antigen protein of p22 of SEQ ID NO: 7 and the antigen protein of CAP80 antigen protein of SEQ ID NO: 8
  • a kit for diagnosing infection is provided.
  • the diagnostic kit may further include a kit device related to ELISA (Enzyme Linked Immunosorbent Assay).
  • the ELISA kit includes an antibody specific for an antigenic protein, and an agent for measuring the protein level.
  • the ELISA kit may include a reagent capable of detecting an antibody in which an “antigen-antibody complex” has been formed, for example, a labeled secondary antibody, chromopores, an enzyme (eg, conjugated to an antibody) and a substrate thereof. have.
  • an antibody specific for the quantitative control protein may be included.
  • the diagnostic kit may be an indirect ELISA kit. That is, after coating the antigen protein on the microtiter folate, the antibody is bound using the antigen-antibody reaction, and the amount of the bound antibody is reacted with the enzyme-bound secondary antibody to finally measure the enzyme activity. Diagnosis can be performed.
  • kit may further include a user's manual describing optimal conditions for performing the reaction.
  • Instructions include a brochure in the form of a pamphlet or leaflet, a label affixed to the kit, and instructions on the surface of the package containing the kit.
  • the manual includes information published or provided through an electronic medium such as the Internet.
  • the method and kit for diagnosing African swine fever virus infection using an antigenic protein of the present invention uses a specific African swine fever virus antigen protein to rapidly and conveniently diagnose African swine fever virus infection with high specificity and sensitivity, and to detect similar clinical pathology. Eggplant shows excellent diagnostic effect that can be distinguished from other diseases.
  • Figure 5 shows the results of confirming whether or not African swine fever virus infection using the commercial kit ID Screen® African Swine Fever Indirect (IDvet).
  • FIG. 6 shows the results of confirming whether or not the African swine fever virus was infected using the antigen proteins of CD2v, p54, p22 and CAP80 according to the present invention.
  • the nucleotide sequences of the structural protein of African swine fever used in the experiment are shown in SEQ ID NO: 1 (CD2v), SEQ ID NO: 2 (p54), SEQ ID NO: 3 (p22) or SEQ ID NO: 4 (CAP80), respectively.
  • the sequence is a partial or full sequence of SEQ ID NO: 9 (CD2v total gene sequence), 10 (p54 total gene sequence), 11 (p22 total gene sequence), or 12 (CAP80 total gene sequence), each of the entire gene sequence.
  • the position of the amino acid residue and the base sequence used can be specifically identified through sequence information.
  • the gene sequence (SEQ ID NO: 1) of amino acid residues 20-197 among the entire CD2v protein was added to the pAcGP-67a-6HT vector using EcoRI and NotI.
  • Six histidines at the C-terminus of the protein After subcloning in such a manner as to attach to them, they were expressed using an insect cell expression system.
  • His-tagged pAcGP-67a-CD2v-N(20-197)-6HT was purified by nickel-affinity chromatography and purified by Q ion exchange chromatography.
  • the flow through was called CD2v-N1
  • the purified fractions were called CD2v-N2
  • the CD2v-N2 was subjected to SP ion exchange chromatography.
  • CD2v-N1 and CD2v-N2 were purified by Superdex 200 gel filtration chromatography so that the final solution was 2X PBS. The above purification results are shown in FIG. 1 .
  • the gene sequence (SEQ ID NO: 2) of amino acid residues 59-184 positions among the total p54 protein was added to the pET-28a-MBP vector using BamHI and XhoI. After subcloning to attach histidine, Escherichia coli was overexpressed using BL21(DE3) RIL strain. Protein was inoculated into E. coli, 0.2 mM IPTG was added at an OD of 600 nm between 0.5 and 0.6, and incubated at 290 K for 18 hours.
  • His-tagged pET-28a-MBP-p54 (59-184) was purified by nickel-affinity chromatography and treated with TEV protease to excise MBP and 6-His-tag. Nickel-affinity chromatography was performed once more to remove the cut MBP and 6-His-tag, and the final solution was purified to 2X PBS through SP ion exchange chromatography and Superdex 75 gel filtration chromatography. The purification results are shown in FIG. 2 .
  • the gene sequence (SEQ ID NO: 3) of amino acid residues 32-177 among the total p22 protein was used to attach 6 histidines to the C-terminus of the protein in the pAcGP-67a-6HT vector using BamHI and NotI. After subcloning, expression was performed using an insect cell expression system. His-tagged pAcGP-67a-p22(32-177)-6HT was purified by nickel-affinity chromatography and final purification by Superdex 200 gel filtration chromatography so that the final solution was 2X PBS. The purification results are shown in FIG. 3 .
  • the gene sequence of the entire CAP80 protein (SEQ ID NO: 4) was subcloned in a pET-28a vector with 6 histidines attached to the N-terminus of the protein using EcoRI and NotI, and then Escherichia coli ( Escherichia coli ) ) BL21 (DE3) was overexpressed using the RIL strain (strain). Protein was inoculated into E. coli, 0.2mM IPTG was added at OD 600nm between 0.5 and 0.6, and incubated at 290K for 18 hours.
  • His-tagged pET-28a-CAP80 was purified by nickel-affinity chromatography, followed by Q ion exchange chromatography and Sepacrly 200 gel filtration chromatography to obtain a final solution of 2X PBS. The purification results are shown in FIG. 4 .
  • the antigen protein sequences prepared from the above results are shown in SEQ ID NOs: 5 to 8, respectively.
  • Example 2 Diagnostic test of African swine fever virus using the prepared recombinant protein
  • Samples (80 samples) expected to be infected with African swine fever were obtained from Vietnamese pig farms.
  • the obtained infection sample was subjected to qPCR using a qPCR kit, VDx® ASFV qPCR (Mediandinostic), according to the manufacturer's instructions to obtain Ct Value.
  • ID Screen® African Swine Fever Indirect a commercial kit, infection was confirmed in some samples. However, when the degree of dilution of the anti-serum is increased, it was confirmed that the detection is hardly made, and it was confirmed that the specificity and the sensitivity are low.
  • each antigen recombinant protein was reacted at a concentration of 1 ⁇ g/ml using 0.2 M Carbonate-Bicarbonate buffer at 4 °C for 16 to 24 hours. Then, in order to block non-specific reactions, the reaction was carried out at 37 ° C. for 1 hour using 2% BSA/PBS, and after washing, the serum of pigs infected with African swine fever virus and the serum of pigs not infected with the African swine fever virus were treated at 37 ° C for 3 hours. reacted. After washing, the secondary antibody with the conjugate solution (HRP) was reacted at 37°C for 1 hour, and the substrate solution was reacted at room temperature for 7 minutes after washing.
  • HRP conjugate solution
  • Example 2.2 samples obtained by diluting anti-sera with 10 -1 , 10 -2 , 10 -3 , 10 -4 , 10 -5 , and 10 -6 were used.
  • the CD2v, p54, p22 and CAP80 antigen protein combination kit according to the present invention excellently detects viruses even in samples with a high degree of dilution of anti-serum with very good specificity and sensitivity.
  • the CD2v, p54, p22 and CAP80 antigen protein combination kit according to the present invention was able to diagnose infection with excellent effect even at concentrations that were not detected in commercial kits.
  • Example 2.3 Indirect ELISA experiment was performed on the serum of pigs infected with African swine fever virus and the serum of pigs not infected with each of the antigen proteins CD2v, p54, p22 or CAP80. An experiment was performed using a sample diluted with anti-serum to 10 -3 , 10 -4 , 10 -5 , 10 -6 , and the results of each experiment are specifically described in FIGS. 7 to 10 .
  • FIG. 7 shows the results using the CD2v antigen protein
  • FIG. 8 shows the results using the p54 antigen protein
  • FIG. 9 shows the results using the p22 antigen protein
  • FIG. 10 shows the results using the CAP80 antigen protein.
  • each of the CD2v, p54, p22, or CAP80 antigen proteins had excellent specificity and sensitivity, and excellent detection of viruses even in samples with a high degree of dilution of anti-serum.
  • the method and kit for diagnosing African swine fever virus infection using the antigenic protein of the present invention can quickly and conveniently diagnose African swine fever virus infection with high specificity and sensitivity using a specific African swine fever virus antigen protein, and similar It was confirmed that it exhibits an excellent diagnostic effect that can be distinguished from other diseases with clinical pathology.
  • the technology was excellent in that it showed an effect in diagnosing viral infection with a very excellent effect compared to a commercially available kit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 항원 단백질을 이용한 아프리카 돼지 열병 바이러스 감염 진단 방법 및 키트에 관한 것이다. 본 발명의 항원 단백질을 이용한 아프리카 돼지 열병 바이러스 감염 진단 방법 및 키트는 특정의 아프리카 돼지 열병 바이러스 항원 단백질을 이용하여 높은 특이성 및 민감성으로 신속하면서 편리하게 아프리카 돼지 열병 바이러스 감염을 진단하고 유사한 임상적 병리를 가지는 다른 질환과도 구분할 수 있는 우수한 진단 효과를 나타낸다.

Description

아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도
본 발명은 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물, 이의 방법 및 용도에 관한 것이다.
아프리카 돼지 열병 바이러스(African swine fever virus, ASFV)는 아프리카 돼지 열병의 원인 인자로서 감염 세포의 세포질을 복제하는 거대 이중 나선 DNA 바이러스이다. 이 바이러스는 아스파바이러스 과( Asfarviridae), 아스피바이러스 속( Asfivirus)에 속하는 약 200nm 정도의 DNA 바이러스이고 유전자 염기서열 분석을 통해 총 23개의 유전형(genotype)으로 구분되고 있으며, 돼지에게 치명적인 출혈열을 야기한다. 어떤 분리 바이러스는 감염 후 한 주만에 빠르게 동물의 죽음을 야기할 수 있다. 이 바이러스는 다른 모든 종에게는 명백한 질병을 야기하지 않는다. 이 바이러스는 사하라 이남 아프리카에 풍토적이고, 진드기, 멧돼지, 강멧돼지, 혹멧돼지 사이의 감염 주기를 거쳐 야생 상태로 현존한다.
아프리카 돼지 열병 바이러스는 병원성에 따라 보통 고병원성, 중병원성 및 저병원성으로 분류된다. 고병원성은 보통 심급성(감염 1-4일 후 돼지가 죽음) 및 급성형(감염 3-8일 후 돼지가 죽음) 질병을, 중병원성 균주는 급성(감염 11-15일 후 돼지가 죽음) 및 아급성(감염 20일 후 돼지가 죽음)형 질병을 일으킨다. 저병원성은 풍토병화된 지역에서만 보고되었으며 준임상형 또는 만성형 질병을 일으킨다. 이병률(감염된 동물의 비율)은 감염된 바이러스와 노출 경로에 따라 달라지며 자연 감염 시 잠복기는 4일에서 19일까지 다양하다. 폐사율은 고병원성 바이러스에 감염된 경우 거의 100% 폐사되는 것이 특징이며 만성형에서는 20% 이하이다. 일부 풍토병화된 지역에서는 바이러스에 대한 돼지의 적응으로 인해 고병원성에 감염된 돼지에서의 생존률이 좀 더 높아질 수 있다.
이러한 아프리카 돼지 열병은 21세기에 접어들면서 2007년 조지아를 시작으로 동부 유럽지역과 러시아 연방에서 발생을 지속하고 있다. 아시아에서는 이란에서 발생한 이후 2018년 들어 중국에서 8월 첫 발생하였고 점차 발생지역이 확대되고 있어 시간이 갈수록 문제의 심각성이 높아지고 있다. 이에 따라 대한민국 농림축산식품부도 아프리카 돼지 열병 예방관리대책에 이어 긴급행동지침(SOP)을 제작하여 배포할 정도로 이의 심각성에 대해 크게 인지하고 있다.
현재 아프리카 돼지 열병을 방어할 수 있는 백신은 상용화되어 있지 않다. 유럽지역에서 아프리카 돼지 열병이 다시 확산되고 아시아 대륙까지 전파되면서 과거 제대로 진행되지 못했던 백신에 대한 개발 연구에 이목이 집중되고 있으나 아직 개발된 치료제가 없는 상태이다. 이에 따라 바이러스가 국내에 유입되지 않도록 하는 것이 최선이나, 이의 유입시 이를 빠른 시간 내에 진단하고 확인하여 이를 격리시켜 이의 확산을 막을 필요가 있다. 또한, 임상적으로 유사한 소견 때문에 아프리카 돼지 열병의 병변은 다른 전신 출혈성 및 패혈증성 전염병과 감별이 필요하다. 임상 증상이나 병변이 가장 유사한 형태는 돼지 열병(classical swine fever), 돈단독, 전신성 살모넬라증( Salmonella Cholerasuis 감염증) 등이 있으며, 최근 중국 및 동남아 지역에서 발생하는 고병원성 돼지생식기호흡기증후군(HP-PRRS)과 피부 병변의 특성상 돼지피부염신증증후군(PDNS)도 감별대상이다. 유사산 또는 자돈의 청색증 등의 소견을 고려하면 오제스키병이나 액티노바실러스 감염증도 감별대상이 된다. 비감염성 원인 중에서는 출혈성 병변을 동반하는 와파린 등의 살서제, 아플라톡신과 같은 일부 곰팡이독소, 살충제 등이 포함될 수 있다.
위와 같은 문제점으로 인하여, 아프리카 돼지 열병의 확진을 위한 공인된 실험실의 진단 검사가 필수적으로 수행될 필요가 있다. 실험실 진단 검사는 혈액 및 내부 장기에서 ASFV를 검출하거나 감염된 돼지의 혈청에서 항체를 검출하는 방법 등이 있을 수 있겠으나, 이와 관련된 기술은 현재 매우 미비한 실정이다.
이러한 배경하에, 본 발명자들은 아프리카 돼지 열병 바이러스 CD2v, p54, p22 및/또는 CAP80 항원 단백질들을 이용하여 아프리카 돼지 열병 바이러스 감염 진단을 위한 조성물 및 진단 방법을 개발함으로써 본 발명을 완성하였다.
본 발명의 목적은 (a) 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 시료와 반응시키는 단계; 및
(b) 상기 (a) 단계의 시료 중 아프리카 돼지 열병 바이러스 단백질 CD2v, p54, p22 및 CAP80의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질과 결합된 항체를 검출하는 단계;를 포함하는 아프리카 돼지 열병 바이러스 감염 진단 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 포함하는 아프리카 돼지 열병 바이러스 감염 진단용 키트를 제공하는 것이다.
본 발명은 (a) 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 시료와 반응시키는 단계; 및
(b) 상기 (a) 단계의 시료 중 아프리카 돼지 열병 바이러스 단백질 CD2v, p54, p22 및 CAP80 의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질과 결합된 항체를 검출하는 단계;를 포함하는 아프리카 돼지 열병 바이러스 감염 진단 방법을 제공한다.
본 발명에서는, 아프리카 돼지 열병 바이러스의 다양한 항원 단백질들을 검토하여 그 중 항원성이 높은 CD2v, p54, p22 및/또는 CAP80을 이용함으로써 높은 특이성 및 민감성을 가지면서도 신속하면서 편리하게 아프리카 돼지 열병 바이러스 감염을 진단하는 우수한 효과를 확인하고, 이를 통해 아프리카 돼지 열병 바이러스의 검출의 유용성을 확인함과 동시에 국내 축산업을 보호하고 국내 가축방역에 기여할 수 있다.
본 발명에서 상기 "진단"은 대상, 예컨대 돼지과 ( Suidae)의 특정 바이러스, 질병 또는 질환을 현재 가지고 있는지 여부를 판정하는 것, 특정 바이러스 보유, 질병 또는 질환에 걸린 대상의 예후(prognosis)를 판정하는 것, 또는 테라메트릭스(therametrics)(예컨대, 치료 효능에 대한 정보를 제공하기 위하여 객체의 상태를 모니터링하는 것)을 포함한다. 본 발명의 목적상, 상기 진단은 아프리카 돼지 열병 바이러스의 보균/보유의 유무를 확인하는 것이다. 특히 돼지과 동물에서의 아프리카 돼지 열병 바이러스의 보균/보유의 유무를 확인하는 것이다.
위 아프리카 돼지 열병 바이러스 감염 진단의 대상이 되는 돼지과 동물은 바람직하게 사육돼지와 유럽과 아메리카대륙의 야생멧돼지로 바이러스에 대한 내성이 없는 돼지과 동물이다. 이들 동물은 아프리카 돼지 열병 바이러스 감염시 임상적으로 예컨대 아래와 같은 병변을 나타낼 수 있다 :
(1) 심급성형(Peracute)
심급성형은 고병원성 바이러스에 감염되어 나타나며, 41-42°C의 고열, 식욕결핍, 무기력, 호흡항진 및 피부의 충혈이 나타나는 것이 특징이다. 보통 임상증상이 시작된 지 1-4일 만에 돼지가 갑자기 죽고 장기에 뚜렷한 병변이 나타나지 않는다.
(2) 급성형(Acute)
가장 일반적으로 나타나는 유형이며 고병원성이나 중병원성 바이러스에 의해 유발된다. 거의 대부분의 감염된 돼지는 발열이 시작된 지 1주일 후에 쇼크로 죽으며 일반적으로 입과 코 주변에 기포가 관찰된다.
또한, 비장의 크기가 정상보다 6배까지 커질 수 있는 특징적인 충혈성 비장비대증을 나타내는데, 이때 비장 변연부가 둥그렇게 되고 만져보면 무르고 검보라색이며 복강 전체를 차지할 만큼 커질 수 있다. 그리고, 주로 위와 간 및 신장의 림프절 수질에 출혈을 나타내며 따라서 이환된 림프절 단면부위가 가끔 대리석 양상을 보이며, 신장의 수질부위와 신우, 그리고 방광 점막, 심외막, 심내막 및 흉막 부위에 점상출혈이 있다.
(3) 아급성형(Subacute)
아급성형은 중병원성 바이러스로 인해 발생하며 이환된 동물은 급성형에 감염된 돼지와 유사하나 덜 뚜렷한 임상증상을 나타낸다. 그러나, 아급성형에서 보이는 출혈이나 부종 같은 혈관성 변화들은 급성형에서 보고된 것보다 훨씬 더 심하다. 비록 일시적이긴 하지만 심한 혈소판 감소증의 발현과 관련이 있는 출혈은 이 질병의 초기와 중기 단계에서 관찰된다. 일반적으로 유산이 아급성형의 첫번째 임상증상이다. 이환된 돼지들은 보통 7-20일 이내에 죽고 폐사율은 30~70% 범위에 달한다.
(4) 만성형(Chronic)
저병원성 바이러스에 의해 발생하며 다른 유형과 달리 만성형은 혈관 병변이 없고 섬유소성 흉막염 또는 심낭염, 흉부유착, 괴사성 폐염, 섬유소성 관절염/관절주위염 및 괴사성 피부병변 뿐만 아니라 편도선과 혀에 괴사 부위과 같은 세균이 연루된 병변이 존재하는 것이 특징이다.
본 발명의 아프리카 돼지 열병 바이러스 감염 진단 방법은 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물을 시료와 반응시키는 단계를 포함한다. 구체적으로, (a) 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 시료와 반응시키는 단계;를 포함한다.
본 발명에 따른 시료는 전혈, 혈청, 혈장, 가래, 소변, 흉수, 또는 복수액 등을 포함하나, 이로 제한하는 것은 아니다. 본원 발명에 따른 일실시양태에서는 혈액, 특히 혈청일 수 있다.
본 발명에 따른 항원 단백질 조성물은 아프리카 돼지 열병 바이러스에서 발현되는 항원 단백질로 알려져 있는 CD2v, p54, p22 및/또는 CAP80의 서열을 이용한 것으로, 높은 항원성을 이용하여 우수한 진단 효과를 나타낼 수 있게 한다.
본 발명에 따른 항원 단백질 조성물은 각각 서열번호 1, 2, 3 또는 4의 염기서열로부터 합성된 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 또는 서열번호 8의 CAP80 항원 단백질의 항원 단백질일 수 있다. 이러한 염기서열로부터 단백질서열의 합성은 당업계에 알려진 통상의 방법을 이용하여 수행될 수 있다.
상기 단백질 또는 염기서열은 기능적 동등물을 포함한다. 상기 “기능적 동등물”이란 아미노산의 부가, 치환 또는 결실의 결과 상기 서열들과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성, 가장 바람직하게는 99% 이상 갖는 것이다. 예컨대, 서열번호 5 내지 8으로 표시되는 아미노산 서열로 이루어진 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다.
본 발명의 (a) 단계에서 바람직하게 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질의 항원 단백질을 모두 포함하는 항원 단백질 조성물을 시료와 반응시킬 수 있다. 이들을 모두 포함함으로써 보다 더 우수한 민감성과 정확성으로 아프리카 돼지 열병 바이러스를 진단할 수 있다.
이러한 항원 단백질 조성물과 시료의 반응은 항원-항체 복합체 반응이다.
본 발명의 아프리카 돼지 열병 바이러스 감염 진단 방법은 (b) 상기 (a) 단계의 시료 중 아프리카 돼지 열병 바이러스 단백질 CD2v, p54, p22 및 CAP80의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질과 결합된 항체를 검출하는 단계를 포함한다.
본원 발명에 따른 항체를 검출하는 단계는 위 항원 단백질 조성물과 시료의 반응에 따른 항원-항체 복합체 형성 반응으로부터 생성된 항체를 검출하는 것을 의미한다. 이의 가장 큰 장점은 항원성이 높은 항원 단백질을 이용하므로 항체의 검출에 대한 특이도 및 민감도가 높다.
항원-항체 복합체 반응에 의한 검출은 기존에 공지된 방법을 이용하여 수행될 수 있으며, ELISA (Enzyme Linked Immunosorbent Assay)를 포함하는 방법이 가장 바람직하다.
본 발명에서 "ELISA (Enzyme Linked Immunosorbent Assay)"란 항체에 효소를 결합시켜 항원-항체 반응을 확인하는 방법을 말한다. ELISA에는 항원을 검출하는 직접 ELISA와 항체를 검출하는 간접 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 표지된 또 다른 항체를 이용하는 직접적 샌드위치 ELISA, 고체지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 또 다른 항체와 반응시킨 후 이 항체를 인지하는 표지된 2차 항체를 이용하는 간접적 샌드위치 ELISA 등이 있으나, 이에 제한되지 않으며, 본 발명의 일 실시예에서는 간접 ELISA를 이용하였다
이러한 항체를 검출하는 단계에서의 대조군은 아프리카 돼지 열병 바이러스를 가지지 않은 정상 대조군 즉 건강한 돼지과 동물 또는 타 돼지 관련 바이러스를 가지는 돼지과 동물 등으로부터 유래한 시료일 수 있다. 상기 항체를 검출하여 대조군 대비 일정 수준 이상 검출 수준이 증가하는 경우 아프리카 돼지 열병 바이러스를 보유하는 것으로 판단한다.
본 발명은 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 포함하는 아프리카 돼지 열병 바이러스 감염 진단용 키트를 제공한다.
본 발명에 따른 아프리카 돼지 열병 바이러스 감염 진단용 키트는 높은 특이성 및 민감성을 가지면서도 신속하면서 편리하게 아프리카 돼지 열병 바이러스 감염을 진단하는 우수한 효과를 확인하고, 이를 통해 아프리카 돼지 열병 바이러스의 검출에 유용하여, 국내 축산업을 보호하고 국내 가축방역에 기여할 수 있다.
본원 발명은 바람직하게 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질의 항원 단백질을 모두 포함하는 아프리카 돼지 열병 바이러스 감염 진단용 키트를 제공한다.
상기 진단용 키트는 ELISA (Enzyme Linked Immunosorbent Assay)와 관련된 키트 장치를 더 포함할 수 있다. ELISA 키트는 항원 단백질에 대한 특이적인 항체를 포함하며, 상기 단백질 수준을 측정하는 제제를 포함한다. 상기 ELISA 키트는 “항원-항체 복합체”를 형성한 항체를 검출할 수 있는 시약, 예를 들면 표지된 2차 항체, 발색단(chromopores), 효소(예:항체와 접합) 및 그의 기질을 포함할 수 있다. 또한, 정량 대조구 단백질에 특이적인 항체를 포함할 수 있다.
가장 바람직하게는 상기 진단용 키트는 간접(Indirect) ELISA 키트일 수 있다. 즉, microtiter 폴레이트에 항원 단백질을 coating 한 후 항원-항체반응을 이용 항체를 결합시키고 결합된 항체의 양을 효소가 결합된 2차 항체와 반응시켜 최종적으로 효소활성을 측정함으로서 검정하는 방식을 통해 진단을 수행할 수 있다.
또한, 상기 키트는 최적의 반응 수행 조건을 기재한 사용자 설명서를 추가로 포함할 수 있다. 설명서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다.
또한, 설명서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.
본 발명의 항원 단백질을 이용한 아프리카 돼지 열병 바이러스 감염 진단 방법 및 키트는 특정의 아프리카 돼지 열병 바이러스 항원 단백질을 이용하여 높은 특이성 및 민감성으로 신속하면서 편리하게 아프리카 돼지 열병 바이러스 감염을 진단하고 유사한 임상적 병리를 가지는 다른 질환과도 구분할 수 있는 우수한 진단 효과를 나타낸다.
도 1은 본 발명에 따른 CD2v 항원 단백질을 정제하여 확인한 결과를 나타낸다.
도 2는 본 발명에 따른 p54 항원 단백질을 정제하여 확인한 결과를 나타낸다.
도 3은 본 발명에 따른 p22 항원 단백질을 정제하여 확인한 결과를 나타낸다.
도 4는 본 발명에 따른 CAP80 항원 단백질을 정제하여 확인한 결과를 나타낸다.
도 5는 상용화 키트인 ID Screen® African Swine Fever Indirect (IDvet)를 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
도 6은 본 발명에 따른 CD2v, p54, p22 및 CAP80의 항원 단백질을 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
도 7은 본 발명에 따른 CD2v 항원 단백질을 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
도 8은 본 발명에 따른 p54 항원 단백질을 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
도 9는 본 발명에 따른 p22 항원 단백질을 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
도 10은 본 발명에 따른 CAP80 항원 단백질을 이용하여 아프리카 돼지 열병 바이러스 감염 여부를 확인한 결과를 나타낸다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1. 아프리카 돼지 열병 바이러스 항원 단백질의 제조
실험에 사용된 아프리카 돼지 열병 구조 단백질의 염기서열은 각각 서열번호 1 (CD2v), 서열번호 2 (p54), 서열번호 3 (p22) 또는 서열 번호 4(CAP80)에 나타내었다. 상기 서열은 각각의 전체 유전자 서열인 서열번호 9(CD2v 전체 유전자 서열), 10 (p54 전체 유전자 서열), 11 (p22 전체 유전자 서열), 또는 12(CAP80 전체 유전자 서열)의 일부 또는 전체 서열을 사용한 것으로 아미노산 잔기의 위치 및 사용된 염기 서열은 서열정보를 통해 구체적으로 확인할 수 있다.
CD2v-N 말단 항원을 제작하기 위하여 전체 CD2v 단백질 중 아미노산 잔기 20-197 위치의 유전자 서열(서열번호 1)을 EcoRI과 NotI을 사용하여 pAcGP-67a-6HT 벡터에 단백질의 C-말단에 6개의 히스티딘이 붙도록 서브클론한 후, 곤충 세포 발현 시스템을 이용하여 발현하였다.
His-태그된 pAcGP-67a-CD2v-N(20-197)-6HT를 니켈-친화성 크로마토그래피로 정제하였고, Q 이온 교환 크로마토그래피를 통해 정제하였다. Q 이온 교환 크로마토그래피 과정 중 flow through를 CD2v-N1, 정제된 분획을 모은 것을 CD2v-N2라 하고 CD2v-N2는 SP 이온 교환 크로마토그래피를 과정을 진행하였다. CD2v-N1와 CD2v-N2는 Superdex 200 겔 여과 크로마토그래피를 통해 최종 용액이 2X PBS가 되도록 정제하였다. 위 정제 결과는 도 1에 나타내었다.
또한, p54 항원을 제작하기 위하여 전체 p54 단백질 중 아미노산 잔기 59-184 위치의 유전자 서열(서열번호 2)을 BamHI과 XhoI을 사용하여 pET-28a-MBP 벡터에 단백질의 N- 말단에 MBP와 6개의 히스티딘이 붙도록 서브클론한 후, 대장균( Escherichia coli) BL21(DE3) RIL 균주 (strain)를 사용하여 과발현 시켰다. 단백질을 대장균에 접종하고 OD 600nm에서 0.5~0.6사이에 0.2mM IPTG를 넣고 18시간 동안 290 K에서 배양하였다. His-태그된 pET-28a-MBP-p54(59-184)를 니켈-친화성 크로마토그래피로 정제하였고, TEV protease를 처리하여 MBP와 6-His-tag를 잘라내었다. 니켈-친화성 크로마토그래피를 한 번 더 진행하여 잘라낸 MBP와 6-His-tag를를 제거하였고 SP 이온 교환 크로마토그래피와 Superdex 75 겔 여과 크로마토그래피를 통해 최종 용액이 2X PBS가 되도록 정제하였다. 정제 결과는 도 2에 나타내었다.
p22 항원을 제작하기 위하여 전체 p22 단백질 중 아미노산 잔기 32-177 위치의 유전자 서열(서열번호 3)을 BamHI과 NotI을 사용하여 pAcGP-67a-6HT 벡터에 단백질의 C- 말단에 6개의 히스티딘이 붙도록 서브클론한 후, 곤충 세포 발현 시스템을 이용하여 발현하였다. His-태그된 pAcGP-67a-p22(32-177)-6HT를 니켈-친화성 크로마토그래피로 정제하였고, 최종 용액이 2X PBS가 되도록 Superdex 200 겔 여과 크로마토그래피로 최종 정제하였다. 정제 결과는 도 3에 나타내었다.
CAP80 항원을 제작하기 위하여 전체 CAP80 단백질의 유전자 서열(서열번호 4)을 EcoRI과 NotI을 이용하여 pET-28a 벡터에 단백질의 N- 말단에 6개의 히스티딘이 붙도록 서브클론한 후, 대장균( Escherichia coli) BL21(DE3) RIL 균주 (strain)를 사용하여 과발현시켰다. 단백질을 대장균에 접종하고 OD 600nm에서 0.5~0.6사이에 0.2mM IPTG를 넣고 18시간 동안 290K에서 배양하였다. His-태그된 pET-28a-CAP80을 니켈-친화성 크로마토그래피로 정제한 후, Q 이온 교환 크로마토그래피와 Sepacrly 200 겔 여과 크로마토그래피를 통해 최종 용액이 2X PBS가 되도록 정제하였다. 정제 결과는 도 4에 나타내었다.
위 결과로부터 제조된 항원 단백질 서열을 각각 서열번호 5 내지 8로 나타내었다.
실시예2. 제작된 재조합 단백질을 이용한 아프리카 돼지 열병 바이러스의 진단 실험
2.1. 시료의 확인
아프리카돼지열병에 감염되었을 것으로 예상되는 시료(80개)를 베트남 돼지 농장들로부터 얻었다. 얻은 감염 시료를 qPCR 키트인 VDx® ASFV qPCR(메디안디노스틱)를 이용하여 제조사의 지침서에 따라 qPCR을 수행하여, Ct Value를 얻었다.
그 결과를 표 1에 나타내었다.
[표 1]
Figure PCTKR2021003442-appb-img-000001
상기 확인할 수 있는 바와 같이, 총 80 종의 시료 중 총 70 종의 시료에서 아프리카 돼지 열병 바이러스 감염을 확인하고 나머지 10 종의 시료의 경우 감염되지 않음을 확인하였다.
2.2. 대조군 상용화 키트를 이용한 아프리카 돼지 열병 바이러스 감염 확인
상기 실시예 2.1.에서 감염이 확인된 총 70종의 시료 및 비감염된 시료 10종에 대하여 상용화 키트인 ID Screen® African Swine Fever Indirect (IDvet)을 이용하여 10 -1, 10 -2, 10 -3, 10 -4, 10 -5, 10 -6으로 항-혈청을 희석한 후 ELISA를 제조사의 지침에 따라 수행하였다.
그 결과를 도 5에 나타내었다.
도 5에서 확인할 수 있는 바와 같이, 상용화 키트인 ID Screen® African Swine Fever Indirect (IDvet) 경우 일부 시료에서 감염을 확인할 수 있었다. 그러나, 항-혈청의 희석 정도가 높아지는 경우 검출이 거의 이루어지지 않음이 확인되어, 특이성 및 민감도가 낮은 것으로 확인되었다.
2.3. 아프리카 돼지 열병 바이러스 단백질 CD2v, p54, p22 및 CAP80의 항원 단백질을 이용한 아프리카 돼지 열병 바이러스 감염 확인
제작된 재조합 단백질을 각각 혹은 섞어서 96 well plate에 코팅하여 아프리카 돼지 열병 바이러스에 걸린 돼지의 혈청과 걸리지 않은 돼지 혈청에 대해 Indirect ELISA 실험을 수행하였다.
먼저, 각각의 항원 재조합 단백질을 1 μg/ml의 농도로 0.2 M Carbonate-Bicarbonate buffer를 이용하여 4 ℃에서 16~24 시간 동안 반응시켰다. 이후 비-특이적인 반응을 Block 시키기 위해 2% BSA/PBS를 이용하여 1시간 동안 37 ℃에서 반응 시키고, 세척 후 아프리카 돼지 열병 바이러스에 걸린 돼지의 혈청과 걸리지 않은 돼지 혈청을 3 시간 동안 37 ℃에서 반응시켰다. 세척 후 접합체액(HRP)이 붙은 2차 항체를 1 시간 동안 37 ℃에서 반응 시키고, 세척 후 Substrate solution을 7 분 동안 상온에서 반응시켰다. 그 다음 0.5 M 황산(H 2SO 4)를 이용하여 반응을 중지시켜서 450nm에서 OD값을 측정하여 양성 혹은 음성을 파악하였다. 앞서 실시예 2.2.와 마찬가지로 10 -1, 10 -2, 10 -3, 10 -4, 10 -5, 10 -6으로 항-혈청을 희석한 시료를 사용하였다.
그 결과를 도 6에 나타내었다.
도 6에서 확인할 수 있는 바와 같이, 본 발명에 따른 CD2v, p54, p22 및 CAP80 항원 단백질 조합 키트는 매우 우수한 특이성 및 민감도로 항-혈청의 희석 정도가 높은 시료에서도 우수하게 바이러스를 검출하였다.
특히, 본 발명에 따른 CD2v, p54, p22 및 CAP80 항원 단백질 조합 키트는 상용화 키트에서 검출되지 않았던 농도 등에서도 우수한 효과로 감염 여부를 진단할 수 있었다.
2.4 각각의 재조합 항원 단백질들의 아프리카 돼지 열병 바이러스에 대한 반응 실험
상기 실시예 2.3과 동일한 방식으로 각각의 항원 단백질 CD2v, p54, p22 또는 CAP80를 이용하여 아프리카 돼지 열병 바이러스에 걸린 돼지의 혈청과 걸리지 않은 돼지 혈청에 대해 Indirect ELISA 실험을 수행하였다. 10 -3, 10 -4, 10 -5, 10 -6으로 항-혈청을 희석한 시료를 사용하여 실험을 수행하였고, 각각의 실험 결과를 도 7 내지 10에 구체적으로 기재하였다.
도 7은 CD2v 항원 단백질을 사용한 결과를 나타내며, 도 8은 p54 항원 단백질을 사용한 결과를 나타내며, 도 9는 p22 항원 단백질을 사용한 결과를 나타내며, 도 10은 CAP80 항원 단백질을 사용한 결과를 나타낸다.
각각의 도 7 내지 10에서 확인할 수 있는 바와 같이, CD2v, p54, p22 또는 CAP80 항원 단백질 각각은 우수한 특이성 및 민감도로 항-혈청의 희석 정도가 높은 시료에서도 우수하게 바이러스를 검출하였다.
상기 결과들로부터 본 발명의 항원 단백질을 이용한 아프리카 돼지 열병 바이러스 감염 진단 방법 및 키트가 특정의 아프리카 돼지 열병 바이러스 항원 단백질을 이용하여 높은 특이성 및 민감성으로 신속하면서 편리하게 아프리카 돼지 열병 바이러스 감염을 진단하고 유사한 임상적 병리를 가지는 다른 질환과도 구분할 수 있는 우수한 진단 효과를 나타냄을 확인하였다. 특히, CD2v, p54, p22 및 CAP80 항원 단백질 조합의 경우 상용화되고 있는 키트와 대비하여 매우 우수한 효과로 바이러스 감염 진단에 효과를 나타낸다는 점에서 그 기술 우수성이 뛰어난 것을 확인하였다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (9)

  1. (a) 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질의 항원 단백질로 이루어진 군으로부터 선택되는 항원 단백질을 시료와 반응시키는 단계; 및
    (b) 상기 (a) 단계의 시료 중 아프리카 돼지 열병 바이러스 단백질 CD2v, P54, p22 및 CAP80의 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질과 결합된 항체를 검출하는 단계;를 포함하는 아프리카 돼지 열병 바이러스 감염 진단 방법.
  2. 제1항에 있어서, 상기 (a) 단계의 시료는 전혈, 혈청, 혈장, 가래, 소변, 흉수 및 복수액으로 이루어진 군으부터 선택되는 어느 하나 이상인 아프리카 돼지 열병 바이러스 감염 진단 방법.
  3. 제1항에 있어서, 상기 (b) 단계의 항원과 결합된 항체를 검출하는 단계는 ELISA (Enzyme Linked Immunosorbent Assay)에 의한 것인 아프리카 돼지 열병 바이러스 감염 진단 방법.
  4. 제3항에 있어서, 상기 (b) 단계의 ELISA는 직접 ELISA, 간접 ELISA, 직접적 샌드위치 ELISA 및 간접적 샌드위치 ELISA로 이루어진 군에서 선택된 어느 하나인 아프리카 돼지 열병 바이러스 감염 진단 방법.
  5. 제1항에 있어서,
    (a) 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질을 시료와 반응시키는 단계; 및
    (b) 상기 (a) 단계의 시료 중 아프리카 돼지 열병 바이러스 단백질 CD2v, p54, p22 및 CAP80의 항원 단백질과 결합된 항체를 검출하는 단계;를 포함하는 아프리카 돼지 열병 바이러스 감염 진단 방법.
  6. 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질로 이루어진 군으로부터 선택되는 어느 하나 이상의 항원 단백질을 포함하는 아프리카 돼지 열병 바이러스 감염 진단용 키트.
  7. 제6항에 있어서, 상기 키트는 ELISA (Enzyme Linked Immunosorbent Assay) 키트인 아프리카 돼지 열병 바이러스 감염 진단용 키트.
  8. 제7항에 있어서, 상기 ELISA (Enzyme Linked Immunosorbent Assay) 키트는 직접 ELISA 키트, 간접 ELISA 키트, 직접적 샌드위치 ELISA 키트 및 간접적 샌드위치 ELISA 키트로 이루어진 군에서 선택된 어느 하나인 아프리카 돼지 열병 바이러스 감염 진단용 키트.
  9. 제6항에 있어서, 서열번호 5의 CD2v의 항원 단백질, 서열번호 6의 p54의 항원 단백질, 서열번호 7의 p22의 항원 단백질 및 서열번호 8의 CAP80 항원 단백질을 포함하는 아프리카 돼지 열병 바이러스 감염 진단용 키트.
PCT/KR2021/003442 2021-03-19 2021-03-19 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도 WO2022196849A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/003442 WO2022196849A1 (ko) 2021-03-19 2021-03-19 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2021/003442 WO2022196849A1 (ko) 2021-03-19 2021-03-19 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도

Publications (1)

Publication Number Publication Date
WO2022196849A1 true WO2022196849A1 (ko) 2022-09-22

Family

ID=83320511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003442 WO2022196849A1 (ko) 2021-03-19 2021-03-19 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도

Country Status (1)

Country Link
WO (1) WO2022196849A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094674A (ko) * 2015-02-02 2016-08-10 대한민국(농림축산식품부 농림축산검역본부장) 아프리카 돼지열병 바이러스 단백질 k205r에 대한 단클론항체 및 이를 포함하는 아프리카 돼지열병 바이러스 진단용 조성물
CN111537741A (zh) * 2020-05-24 2020-08-14 广州敏捷生物技术有限公司 用于检测非洲猪瘟病毒CD2v蛋白抗体的双抗原夹心免疫荧光层析试剂盒

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160094674A (ko) * 2015-02-02 2016-08-10 대한민국(농림축산식품부 농림축산검역본부장) 아프리카 돼지열병 바이러스 단백질 k205r에 대한 단클론항체 및 이를 포함하는 아프리카 돼지열병 바이러스 진단용 조성물
CN111537741A (zh) * 2020-05-24 2020-08-14 广州敏捷生物技术有限公司 用于检测非洲猪瘟病毒CD2v蛋白抗体的双抗原夹心免疫荧光层析试剂盒

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EPIFANO CAROLINA, KRIJNSE-LOCKER JACOMINE, SALAS MARÍA L., RODRÍGUEZ JAVIER M., SALAS JOSÉ: "The African Swine Fever Virus Nonstructural Protein pB602L Is Required for Formation of the Icosahedral Capsid of the Virus Particle", JOURNAL OF VIROLOGY, THE AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 80, no. 24, 15 December 2006 (2006-12-15), US , pages 12260 - 12270, XP055967627, ISSN: 0022-538X, DOI: 10.1128/JVI.01323-06 *
PÉREZ-NÚÑEZ DANIEL, SUNWOO SUN-YOUNG, SÁNCHEZ ELENA G., HALEY NICHOLAS, GARCÍA-BELMONTE RAQUEL, NOGAL MARISA, MOROZOV IGOR, MADDEN: "Evaluation of a viral DNA-protein immunization strategy against African swine fever in domestic pigs", VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 208, 1 February 2019 (2019-02-01), AMSTERDAM, NL, pages 34 - 43, XP055967620, ISSN: 0165-2427, DOI: 10.1016/j.vetimm.2018.11.018 *
RICHT JUERGEN: "Improving African swine fever diagnostics through the use of Multi Antigen Print Immunoassay (MAPIA) technology – NPB-CEEZAD #16-021 ", PORK CHECKOFF, 31 August 2019 (2019-08-31), XP055967624, Retrieved from the Internet <URL:https://porkcheckoff.org/wp-content/uploads/2021/02/16-021-RICHT-Final-Report-REVISED.pdf> [retrieved on 20221004] *

Similar Documents

Publication Publication Date Title
WO2021179371A1 (zh) 新冠病毒n-s优势表位融合蛋白、制备方法、应用,及表达蛋白、微生物、应用,试剂盒
US20230296601A1 (en) Novel coronavirus antibody detection kit based on magnetic particle chemiluminescence
CN111856027A (zh) 适用于无明显症状者排查的新冠病毒抗体检测试剂盒
CN111929433B (zh) 一种非洲猪瘟病毒抗体elisa检测试剂盒及其制备方法
CN111751553B (zh) 小反刍兽疫病毒H蛋白抗体iELISA检测方法及应用
KR102648716B1 (ko) 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도
CN115176162B (zh) 新型冠状病毒抗原及其检测用途
WO2011045056A1 (en) Methods for prrsv detection
WO2021221493A1 (ko) 사스 코로나바이러스 2 스파이크 단백질과 결합하는 수용체와 항체를 포함하는 사스 코로나바이러스 2 진단 키트
Fusconi et al. Anti-CagA reactivity in Helicobacter pylori-negative subjects (a comparison of three different methods)
WO2022196849A1 (ko) 아프리카 돼지 열병 바이러스 감염 진단을 위한 항원 단백질 조성물 및 이의 용도
WO2018166079A1 (zh) 嗜吞噬细胞无形体蛋白aph1384的应用
CN117229367A (zh) 一种非洲猪瘟病毒抗原表位多肽及elisa抗体检测试剂盒
JP2007309851A (ja) エキノコックス多包虫症の診断法
CN106188249B (zh) 用于检测pedv变异株抗体的抗原及方法和试剂盒
Latha et al. Development of recombinant nucleocapsid protein based IgM-ELISA for the early detection of distemper infection in dogs
EP1240519B1 (en) Compositions and methods for detecting treponema pallidum
WO2014198216A1 (zh) 一种呼吸道病毒的生物素-亲和素酶联免疫检测方法
KR101141678B1 (ko) 돼지호흡기복합질병 원인체의 유전자 진단을 위한 프로브 세트, 유전자칩, 유전자 진단키트 및 이를 이용한 진단방법
Grillner et al. Enzyme-linked immunosorbent assay for detection and typing of herpes simplex virus
CN112213493A (zh) 可用于区分疫苗免疫和自然感染的小反刍兽疫检测试剂盒
CN112444626B (zh) 一种非洲猪瘟病毒抗体elisa检测试剂盒及其制备方法
CN110346566A (zh) 小反刍兽疫病毒抗体检测试剂盒
Shi et al. Seroprevalence of porcine bocavirus in pigs in north-central China using a recombinant-NP1-protein-based indirect ELISA
CN117417416B (zh) 用于检测非洲猪瘟病毒的重组抗原蛋白及其制备方法、elisa试剂盒和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931793

Country of ref document: EP

Kind code of ref document: A1