WO2022196680A1 - Device for assessing inter-vehicle distance, and method for assessing inter-vehicle distance - Google Patents

Device for assessing inter-vehicle distance, and method for assessing inter-vehicle distance Download PDF

Info

Publication number
WO2022196680A1
WO2022196680A1 PCT/JP2022/011574 JP2022011574W WO2022196680A1 WO 2022196680 A1 WO2022196680 A1 WO 2022196680A1 JP 2022011574 W JP2022011574 W JP 2022011574W WO 2022196680 A1 WO2022196680 A1 WO 2022196680A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
vehicle distance
power consumption
air volume
Prior art date
Application number
PCT/JP2022/011574
Other languages
French (fr)
Japanese (ja)
Inventor
亮 福田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2022196680A1 publication Critical patent/WO2022196680A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to an inter-vehicle distance determination device and an inter-vehicle distance determination method.
  • following driving driving
  • the own vehicle follows the preceding vehicle by manual operation by the driver or by computer control.
  • a function that realizes follow-up running by computer control is known as ACC (Adaptive Cruise Control).
  • ACC Adaptive Cruise Control
  • follow-up running the own vehicle follows the preceding vehicle while maintaining a predetermined inter-vehicle distance (the distance between the front end of the own vehicle and the rear end of the preceding vehicle) based on a predetermined vehicle speed. and run.
  • Patent Document 1 discloses a device that determines whether or not the fuel consumption deteriorates when the follow-up run is performed.
  • the traveling air volume (air resistance) that the vehicle receives changes according to the inter-vehicle distance.
  • the amount of energy consumed by the own vehicle hereinafter referred to as "consumed energy amount. For example, fuel consumption, electricity consumption, etc.) also changes. Therefore, it is desired to suppress the amount of energy consumption when the follow-up running is performed.
  • An object of one aspect of the present disclosure is to provide an inter-vehicle distance determination device and an inter-vehicle distance determination method that can accurately suppress the amount of energy consumption when follow-up driving is performed.
  • a vehicle-to-vehicle distance determination device is mounted on a vehicle that follows a preceding vehicle while maintaining a set vehicle-to-vehicle distance based on a set vehicle speed. Consumption consumed by the vehicle based on the set vehicle speed, the difference between the body of the vehicle and the body of the preceding vehicle, and the traveling air volume experienced by the vehicle for each of the following distances taken.
  • a calculation unit that calculates an energy amount, and selects, from among the plurality of inter-vehicle distances, an inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated energy consumption amounts as the set inter-vehicle distance. and a selection unit.
  • a vehicle-to-vehicle distance determination method is performed by a vehicle following a preceding vehicle while maintaining a set vehicle-to-vehicle distance based on a set vehicle speed. Consumption consumed by the vehicle based on the set vehicle speed, the difference between the body of the vehicle and the body of the preceding vehicle, and the traveling air volume experienced by the vehicle for each of the following distances taken. calculating an energy amount; and selecting, as the set inter-vehicle distance, an inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated inter-vehicle distances. and have
  • FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device according to the embodiment of the present disclosure.
  • FIG. 3 is an image diagram showing four cases of follow-up running.
  • the amount of airflow received by the vehicle (hereinafter simply referred to as (also called traveling air volume) changes, the amount of energy consumed by the own vehicle also changes.
  • the amount of air flow decreases, so the amount of energy consumed by devices other than the cooling fan (for example, the drive source) decreases, but the amount of energy consumed by the cooling fan increases.
  • the amount of air flow increases, so the amount of energy consumed by the cooling fan decreases, but the amount of energy consumed by devices other than the cooling fan increases.
  • Vehicle body differences include, for example, differences in vehicle body size (hereinafter also simply referred to as size) and vehicle body shape differences (hereinafter also simply referred to as shape).
  • FIG. 3 is an image diagram showing four cases (modes) of follow-up running.
  • the case where the size of the preceding vehicle differs from the size of the own vehicle will be described as an example without considering the respective shapes of the own vehicle and the preceding vehicle.
  • the projected area of a plane consisting of the vehicle width direction and the vehicle height direction (the projected area when the preceding vehicle is viewed from the rear, the projected area when the own vehicle is viewed from the front) will be used as an example. do.
  • cases 1 and 2 show cases where the size of the preceding vehicle is larger than the size of the own vehicle
  • cases 3 and 4 show cases where the size of the preceding vehicle is smaller than the size of the own vehicle. showing.
  • cases 1 and 3 show the case where the inter-vehicle distance between the preceding vehicle and the host vehicle is L1
  • cases 2 and 4 show the case where the distance between the preceding vehicle and the host vehicle is L1.
  • L1 is a distance shorter than L2.
  • case 1 is the case where the preceding vehicle has the greatest influence.
  • the amount of running air is the smallest, while the amount of energy consumed by the cooling fan is the largest.
  • cases 2 and 3 compared to case 1, the amount of air flow increases while the cooling fan consumes less energy. Further, in case 2 and case 3, compared to case 4, the amount of running air is smaller, but the amount of energy consumed by the cooling fan is larger.
  • case 4 is the case where the influence of the preceding vehicle is the smallest. That is, in case 4, the amount of running air is the largest compared to the other cases, while the amount of energy consumed by the cooling fan is the smallest.
  • the amount of energy consumed by the own vehicle will differ according to the length of the inter-vehicle distance and the difference in the vehicle body between the vehicles.
  • the purpose of the present disclosure is to accurately reduce energy consumption by considering individual differences between vehicles when follow-up driving is performed.
  • FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device 100. As shown in FIG.
  • the inter-vehicle distance determination device 100 shown in FIG. 1 is installed, for example, in an automobile (either a passenger car or a commercial vehicle).
  • an example will be described in which the vehicle equipped with inter-vehicle distance determination device 100 is an electric vehicle that uses only an electric motor as a drive source and consumes only electric power. Further, in the following description, the vehicle equipped with the inter-vehicle distance determination device 100 is also referred to as "own vehicle”.
  • the own vehicle is equipped with a cooling fan for cooling the electric motor.
  • the cooling fan is electric.
  • electric motor power consumption the amount of power consumed for driving the electric motor
  • cooling fan power consumption the amount of power consumed for driving the cooling fan.
  • An electric motor is an example of a “device other than a cooling fan.”
  • follow-up travel means that the own vehicle follows the preceding vehicle while no other vehicle is traveling between the own vehicle and the preceding vehicle. Further, in the present embodiment, it is assumed that the host vehicle has the same vehicle type (same size and shape) as the preceding vehicle to be followed. It is assumed that the condition that the host vehicle and the preceding vehicle are of the same vehicle type is considered in first setting data and second setting data, which will be described later.
  • the difference in vehicle body size that is taken into account in calculating the electric motor power consumption and the cooling fan power consumption is the difference in the size of the vehicle body.
  • the difference in the size of the vehicle body is assumed to be the difference between the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the host vehicle (hereinafter referred to as area difference).
  • the area difference is a positive value when the projected area of the front surface of the own vehicle is larger than the projected area of the rear surface of the preceding vehicle, and when the projected area of the rear surface of the preceding vehicle is larger than the projected area of the front surface of the own vehicle. , becomes a negative value. Note that if the areas of both are the same, the area difference is zero, but this is treated in the same way as a negative value.
  • the vehicle speed is set (designated or determined) by, for example, a user's operation before or during the follow-up run.
  • the set vehicle speed is hereinafter referred to as "set vehicle speed”.
  • the set vehicle speed is notified to the inter-vehicle distance determination device 100 .
  • the inter-vehicle distance used during follow-up travel Two different values will be described as an example of the inter-vehicle distance used during follow-up travel.
  • One is called “short inter-vehicle distance” and the other is called “long inter-vehicle distance”.
  • the long inter-vehicle distance is longer than the short inter-vehicle distance.
  • the short inter-vehicle distance is L1 shown in FIG. 3
  • the long inter-vehicle distance is L2 shown in FIG.
  • Both the short inter-vehicle distance and the long inter-vehicle distance satisfy safety requirements (for example, requirements included in regulations, guidelines, etc.).
  • the follow-up run may be performed manually by the driver of the own vehicle, or may be performed by a computer installed in the own vehicle (steering and acceleration of the own vehicle so that the follow-up run is executed).
  • a device for controlling deceleration, braking, etc. (hereinafter referred to as a follow-up running control device) may perform the control.
  • the follow-up cruise control device may be installed outside the own vehicle.
  • the inter-vehicle distance determination device 100 is a device that determines (can be said to select) an inter-vehicle distance that can reduce power consumption (an example of energy consumption) when the host vehicle follows the vehicle.
  • the inter-vehicle distance determination device 100 includes hardware such as a CPU (Central Processing Unit), a ROM (Read Only Memory) storing a computer program, a working memory RAM (Random Access Memory), and the like. have Each function of the inter-vehicle distance determination device 100 described below is realized by the CPU executing a computer program read from the ROM in the RAM. Inter-vehicle distance determination device 100 may be realized by, for example, an ECU (Electronic Control Unit).
  • ECU Electronic Control Unit
  • the inter-vehicle distance determination device 100 has a storage unit 110, a calculation unit 120, and a selection unit .
  • the storage unit 110 stores, for example, first setting data, second setting data, and third setting data. These are used for calculation processing by the calculation unit 120, which will be described later.
  • the air This data defines the electric motor power consumption calculated in consideration of the resistance (running air volume).
  • the electric motor power consumption is set to increase as the vehicle speed increases.
  • the electric motor power consumption in the first case was calculated assuming that the influence of air resistance was the smallest.
  • the electric motor power consumption in the fourth case was calculated on the assumption that the influence of air resistance is the greatest.
  • the electric motor power consumption in the second and third cases was calculated on the assumption that the influence of air resistance was greater than in the first case and less than in the fourth case. It is.
  • the second setting data is data in which the running air volume is determined for each vehicle speed for each of the first to fourth cases.
  • the traveling air volume in the first case is the smallest
  • the traveling air volume in the fourth case is the largest
  • the traveling air volume in the second and third cases is the first case. more and less than the fourth case.
  • the running air volume in the first case may be set constant (almost zero) at any vehicle speed.
  • the running air volume in the second to fourth cases may be determined to increase as the vehicle speed increases.
  • the third setting data is data in which the power consumption of the cooling fan is determined for each air volume of the cooling fan (hereinafter referred to as fan air volume).
  • the third setting data is defined so that the cooling fan power consumption increases as the fan air volume increases (in other words, the fan rotation speed increases).
  • the first to third setting data are created, for example, based on simulations or experiments performed in advance, and stored in the storage unit 110 .
  • the format of the first to third setting data may be, for example, a table, a map, or any other format.
  • the calculation unit 120 identifies the vehicle body difference between the own vehicle and the preceding vehicle.
  • calculation unit 120 calculates the area difference based on the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the own vehicle.
  • the calculation unit 120 calculates the area of the rear surface of the preceding vehicle based on the image of the rear surface of the preceding vehicle captured by a camera mounted on the host vehicle, and uses the area and a value known to the calculation unit 120 to calculate the area of the rear surface of the preceding vehicle. A difference from the projected area of the front surface of a certain own vehicle is calculated. Information indicating the projected area of the front surface of the vehicle may be stored in the storage unit 110 in advance.
  • the area difference calculated by the calculator 120 is either a positive value or a negative value.
  • the calculation unit 120 calculates the electric motor power consumption when the short inter-vehicle distance is taken (hereinafter referred to as the first power consumption) and the long inter-vehicle distance.
  • the electric motor power consumption (hereinafter referred to as second power consumption) in the case where it is taken is calculated.
  • the first power consumption is the electric motor power consumption in the first case
  • the second power consumption is the electric motor power consumption in the second case. This is motor power consumption.
  • the first power consumption is the electric motor power consumption in the third case
  • the second power consumption is the motor power consumption in the fourth case. power consumption.
  • the calculation unit 120 calculates the travel air volume when the short inter-vehicle distance is taken (hereinafter referred to as the first travel air volume) and the travel air volume when the long inter-vehicle distance is taken. (hereinafter referred to as a second running air volume) is calculated.
  • the first traveling air volume is the traveling air volume in the first case
  • the second traveling air volume is the traveling air volume in the second case.
  • the first traveling air volume is the traveling air volume in the third case
  • the second traveling air volume is the traveling air volume in the fourth case.
  • the calculation unit 120 calculates the required air amount.
  • the required amount of air is, for example, the amount of air required to cool the electric motor, and is the total value of the running air amount and the fan air amount.
  • a known method can be used to calculate the required amount of air.
  • the calculation formula disclosed in "Fan Basics and Selection (How to Use)" in "SANYO DENKI Technical Report No.40 Nov. 2015” may be used, or other calculation methods may be used.
  • the calculation unit 120 calculates the fan air volume (hereinafter referred to as the first fan air volume) when the vehicle-to-vehicle distance is short, based on the required air volume and the first running air volume. Calculation unit 120 also calculates a fan air volume (hereinafter referred to as a second fan air volume) when a long vehicle-to-vehicle distance is taken, based on the required air volume and the second running air volume.
  • the calculation unit 120 calculates the first fan air volume by subtracting the first running air volume from the required air volume. Further, the calculation unit 120 calculates the second fan air volume by subtracting the second running air volume from the required air volume.
  • the calculation unit 120 calculates the cooling fan power consumption when the inter-vehicle distance is short (hereinafter referred to as the third power consumption), A cooling fan power consumption amount (hereinafter referred to as a fourth power consumption amount) when a long inter-vehicle distance is taken is calculated.
  • the calculation unit 120 calculates the total power consumption (hereinafter referred to as the first total power consumption) in the case where the inter-vehicle distance is short, based on the first power consumption and the third power consumption. Calculation unit 120 also calculates the total power consumption (hereinafter referred to as the second total power consumption) when the long inter-vehicle distance is taken, based on the second power consumption and the fourth power consumption.
  • the calculation unit 120 calculates the first total power consumption by adding the third power consumption to the first power consumption. Further, the calculation unit 120 calculates the second total power consumption by adding the fourth power consumption to the second power consumption.
  • the calculation unit 120 uses the first to third setting data has been described as an example, but the present invention is not limited to this.
  • the calculator 120 may perform the above various calculations using other data or known calculation formulas instead of the first to third setting data.
  • the selection unit 130 compares the first total power consumption and the second total power consumption, and selects the vehicle-to-vehicle distance corresponding to the smaller value as the vehicle-to-vehicle distance to be used for following travel. That is, the inter-vehicle distance selected here is the optimum inter-vehicle distance that can suppress power consumption during follow-up running.
  • the selection unit 130 selects the short inter-vehicle distance corresponding to the first total power consumption.
  • the selection unit 130 selects the long inter-vehicle distance corresponding to the second total power consumption.
  • the selection unit 130 may output information indicating the selected inter-vehicle distance (hereinafter referred to as inter-vehicle distance information) to a predetermined device.
  • Examples of output destinations of inter-vehicle distance information include the above-mentioned follow-up running control device, a notification device mounted on the own vehicle (for example, a display, a speaker, etc. provided in the vehicle interior), a device installed outside the own vehicle ( For example, a computer used in a management center of own vehicle, etc.).
  • the following distance control device controls the following distance of the own vehicle so that the following distance indicated by the following distance information is maintained.
  • follow-up running with reduced power consumption is realized.
  • the inter-vehicle distance information is a notification device (eg, display, speaker, etc.)
  • the notification device notifies the inter-vehicle distance indicated by the inter-vehicle distance information. Therefore, the occupant (for example, the driver) of the host vehicle can grasp the selected inter-vehicle distance. Therefore, for example, when follow-up running is performed by a manual operation of the driver, the driver can perform acceleration/deceleration operations so as to maintain the notified inter-vehicle distance. As a result, follow-up running with reduced power consumption is realized.
  • the occupant sets the inter-vehicle distance to be used for the follow-up run in advance (before the current inter-vehicle distance is changed). ) can be known.
  • inter-vehicle distance information may be output to the plurality of output destinations described above.
  • the configuration of the inter-vehicle distance determination device 100 has been described above.
  • FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device 100. As shown in FIG.
  • the flowchart shown in FIG. 2 is started, for example, when the inter-vehicle distance determination device 100 receives an inter-vehicle distance determination instruction.
  • the inter-vehicle distance determination instruction is an instruction to determine the inter-vehicle distance.
  • the calculation unit 120 calculates the area difference (step S1).
  • the calculation unit 120 calculates the first power consumption and the second power consumption based on the set vehicle speed, area difference, and first setting data (step S2).
  • the calculation unit 120 calculates the first traveling air volume and the second traveling air volume based on the set vehicle speed, area difference, and second set data (step S3).
  • the calculation unit 120 calculates the required air amount (step S4).
  • the calculation unit 120 calculates the first fan air volume based on the required air volume and the first running air volume, and calculates the second fan air volume based on the required air volume and the second running air volume (step S5 ).
  • the calculator 120 calculates a third power consumption and a fourth power consumption based on the first fan air volume, the second fan air volume, and the third setting data (step S6).
  • the calculation unit 120 calculates a first total power consumption based on the first power consumption and the third power consumption, and calculates a second total power consumption based on the second power consumption and the fourth power consumption. Power consumption is calculated (step S7).
  • the selection unit 130 compares the first total power consumption and the second total power consumption, and selects the inter-vehicle distance corresponding to the smaller value (step S8).
  • the selection unit 130 may output the inter-vehicle distance information indicating the selected inter-vehicle distance to a predetermined device.
  • steps S2 to S6 described above is an example, and is not limited to the illustration in FIG.
  • steps S3 and S4 may be reversed.
  • step S2 may be performed after steps S3 to S6.
  • inter-vehicle distance determination device 100 The operation of the inter-vehicle distance determination device 100 has been described above.
  • the inter-vehicle distance determining apparatus 100 considers the vehicle body difference (for example, the area difference) when performing follow-up running at the set vehicle speed.
  • Total power consumption power consumption of cooling fans + power consumption of devices other than cooling fans (e.g., electric motors)
  • total power consumption when a long inter-vehicle distance is taken power consumption of cooling fans
  • power consumption of cooling fans power consumption of a device other than a cooling fan (for example, an electric motor)
  • the own vehicle may be an automobile driven only by an internal combustion engine that burns fuel (for example, gasoline or light oil), or an automobile driven by both an internal combustion engine and an electric motor. good too.
  • an internal combustion engine that burns fuel
  • an electric motor for example, gasoline or light oil
  • the total energy consumption (in the embodiment, the first total power consumption and the second total power consumption) used for the final comparison described in the embodiment is either fuel consumption or power consumption. It is preferable to be unified as much as possible.
  • a case where the own vehicle uses only the internal combustion engine as a drive source will be described as an example.
  • a first fuel consumption amount and a second fuel consumption amount are calculated instead of the first power consumption amount and the second power consumption amount described in the embodiment.
  • the third power consumption and the fourth power consumption (both power consumption of the cooling fan) described in the embodiment are calculated based on a predetermined conversion ratio. Convert to fuel amount. Then, a first total fuel consumption is calculated by adding the third fuel consumption to the first fuel consumption, and a second total fuel consumption is calculated by adding the fourth fuel consumption to the second fuel consumption. Then, the first total fuel consumption amount and the second total fuel consumption amount are compared, and the inter-vehicle distance corresponding to the smaller value is selected.
  • the vehicle-to-vehicle distance determination device 100 calculates the total energy consumption corresponding to each vehicle-to-vehicle distance. As a result, three or more total energy consumption amounts are calculated. Then, the inter-vehicle distance determination device 100 selects the inter-vehicle distance corresponding to the smallest total energy consumption amount among the three or more inter-vehicle distances to be used for follow-up running. Select as distance.
  • the power consumption of multiple devices other than the cooling fan may be used instead of the electric motor power consumption.
  • the plurality of devices include, in addition to the electric motor, an air conditioner condenser, an electric circuit, a battery, and a mounting (e.g., a refrigerator, etc.). good.
  • the inter-vehicle distance determination device 100 is described as being separate from the follow-up cruise control device, but the present invention is not limited to this.
  • the inter-vehicle distance determination device 100 implements the same functions as the following control device in addition to the components shown in FIG. control unit).
  • the first setting data is for each vehicle speed and for each area difference (multiple positive values and multiple negative values) for each of the short inter-vehicle distance and the long inter-vehicle distance.
  • the electric motor power consumption calculated in consideration of air resistance may be determined.
  • the second setting data is set for each vehicle speed and for each area difference (multiple positive values and multiple negative values) for each of the short inter-vehicle distance and the long inter-vehicle distance.
  • the running air volume may be determined.
  • the difference in the size of the vehicle body taken into consideration in calculating the electric motor power consumption and the cooling fan power consumption is the area difference between the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the own vehicle.
  • the difference in the size of the vehicle body may include not only the area difference (that is, the length difference in the vehicle width direction and the vehicle height direction) but also the length difference in the vehicle length direction.
  • the vehicle body difference considered in calculating the electric motor power consumption and the cooling fan power consumption is the difference in the size of the vehicle body
  • the present invention is not limited to this.
  • the vehicle body difference may be a difference in the shape of the vehicle body. Examples are described below.
  • body shapes sports type, passenger type, box type, and truck, but they are not limited to these.
  • the preceding vehicle is a sports type
  • the preceding vehicle is a passenger type
  • the preceding vehicle is a box type
  • the preceding vehicle is a truck.
  • the influence of the air resistance on the own vehicle becomes greater (specifically, the running airflow received by the own vehicle is further reduced). Therefore, in the first and second setting data of this example, the shapes of a plurality of preceding vehicles are determined instead of the area difference described in the embodiment.
  • the electric motor power consumption calculated taking air resistance into account is determined.
  • the electric motor power consumption is calculated on the assumption that the influence of air resistance increases in the order of sports type, passenger type, box type, and truck.
  • a running air volume is determined for each vehicle speed and the shape of the preceding vehicle (for example, sports type, passenger type, box type, truck) for each case where the inter-vehicle distance is taken and the case where the long inter-vehicle distance is taken.
  • the running air volume may be set constant (almost zero) at any vehicle speed.
  • the preceding vehicle is a sports type vehicle
  • the preceding vehicle is a passenger type vehicle
  • the preceding vehicle is a box type vehicle
  • the running air volume may be determined to increase as the vehicle speed increases.
  • the calculation unit 120 operates as follows.
  • the calculator 120 identifies the shape of the preceding vehicle instead of calculating the area difference described in the embodiment. This is done, for example, by analyzing an image of the preceding vehicle captured by the vehicle's on-board camera.
  • step S2 of FIG. 2 the calculation unit 120 calculates the first power consumption and the second power consumption based on the set vehicle speed, the specified shape of the preceding vehicle, and the first setting data.
  • step S3 of FIG. 2 the calculation unit 120 calculates the first running air volume and the second running air volume based on the set vehicle speed, the specified shape of the preceding vehicle, and the second set data.
  • steps after step S4 are the same as in the embodiment.
  • both the difference in size and the difference in shape may be taken into consideration when calculating the electric motor power consumption and the cooling fan power consumption.
  • inter-vehicle distance determination device and inter-vehicle distance determination method of the present disclosure are useful when following a vehicle.
  • inter-vehicle distance determination device 110 storage unit 120 calculation unit 130 selection unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Provided are a device for assessing inter-vehicle distance and a method for assessing inter-vehicle distance with which it is possible to precisely suppress an energy consumption amount when following travel is carried out. This device for assessing inter-vehicle distance has: a calculation unit mounted in a vehicle that travels in such a manner as to follow a preceding vehicle while maintaining a set inter-vehicle distance on the basis of a set vehicle speed, the calculation unit calculating an energy consumption amount consumed by the vehicle on the basis of the set vehicle speed, the difference between the body of the vehicle and the body of the preceding vehicle, and the amount of travel wind received by the vehicle, and the calculation being performed each time each of a predetermined plurality of inter-vehicle distances is employed for use in following travel; and a selection unit that selects, from among the plurality of inter-vehicle distances, an inter-vehicle distance corresponding to the smallest energy consumption amount among a plurality of calculated energy consumption amounts, this inter-vehicle distance being selected as the set inter-vehicle distance.

Description

車間距離判定装置および車間距離判定方法Inter-vehicle distance determination device and inter-vehicle distance determination method
 本開示は、車間距離判定装置および車間距離判定方法に関する。 The present disclosure relates to an inter-vehicle distance determination device and an inter-vehicle distance determination method.
 従来、運転者の手動操作により、または、コンピュータ制御により、自車両を先行車両に追従させる走行(以下、追従走行という)が行われる場合がある。コンピュータ制御によって追従走行を実現する機能は、ACC(Adaptive Cruise Control)として知られている。一般的に、追従走行では、予め定められた車速に基づいて、予め定められた車間距離(自車両の先端と先行車両の後端との間の距離)を保ちながら自車両が先行車両に追従して走行する。 Conventionally, there are cases in which driving (hereinafter referred to as "following driving") is performed in which the own vehicle follows the preceding vehicle by manual operation by the driver or by computer control. A function that realizes follow-up running by computer control is known as ACC (Adaptive Cruise Control). Generally, in follow-up running, the own vehicle follows the preceding vehicle while maintaining a predetermined inter-vehicle distance (the distance between the front end of the own vehicle and the rear end of the preceding vehicle) based on a predetermined vehicle speed. and run.
 なお、特許文献1には、追従走行を行った場合に燃費が悪化するか否かを判定する装置が開示されている。 Patent Document 1 discloses a device that determines whether or not the fuel consumption deteriorates when the follow-up run is performed.
日本国特開2017-146858号公報Japanese Patent Application Laid-Open No. 2017-146858
 追従走行が行われる場合、車間距離に応じて、自車両が受ける走行風量(空気抵抗)は変わる。これにより、自車両で消費されるエネルギ量(以下、消費エネルギ量という。例えば、燃費、電費等)も変わる。よって、追従走行が行われる場合、消費エネルギ量を抑制することが望まれる。 When follow-up driving is performed, the traveling air volume (air resistance) that the vehicle receives changes according to the inter-vehicle distance. As a result, the amount of energy consumed by the own vehicle (hereinafter referred to as "consumed energy amount. For example, fuel consumption, electricity consumption, etc.) also changes. Therefore, it is desired to suppress the amount of energy consumption when the follow-up running is performed.
 本開示の一態様の目的は、追従走行が行われる場合において消費エネルギ量を精度良く抑制することができる車間距離判定装置および車間距離判定方法を提供することである。 An object of one aspect of the present disclosure is to provide an inter-vehicle distance determination device and an inter-vehicle distance determination method that can accurately suppress the amount of energy consumption when follow-up driving is performed.
 本開示の一態様に係る車間距離判定装置は、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両に搭載され、追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速、前記車両の車体と前記先行車両の車体との差異、および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出する算出部と、前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択する選択部と、を有する。 A vehicle-to-vehicle distance determination device according to an aspect of the present disclosure is mounted on a vehicle that follows a preceding vehicle while maintaining a set vehicle-to-vehicle distance based on a set vehicle speed. Consumption consumed by the vehicle based on the set vehicle speed, the difference between the body of the vehicle and the body of the preceding vehicle, and the traveling air volume experienced by the vehicle for each of the following distances taken. a calculation unit that calculates an energy amount, and selects, from among the plurality of inter-vehicle distances, an inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated energy consumption amounts as the set inter-vehicle distance. and a selection unit.
 本開示の一態様に係る車間距離判定方法は、設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両で行われ、追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速、前記車両の車体と前記先行車両の車体との差異、および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出するステップと、前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択するステップと、を有する。 A vehicle-to-vehicle distance determination method according to an aspect of the present disclosure is performed by a vehicle following a preceding vehicle while maintaining a set vehicle-to-vehicle distance based on a set vehicle speed. Consumption consumed by the vehicle based on the set vehicle speed, the difference between the body of the vehicle and the body of the preceding vehicle, and the traveling air volume experienced by the vehicle for each of the following distances taken. calculating an energy amount; and selecting, as the set inter-vehicle distance, an inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated inter-vehicle distances. and have
 本開示によれば、追従走行が行われる場合において消費エネルギ量を精度良く抑制することができる。 According to the present disclosure, it is possible to accurately suppress the amount of energy consumed when following running is performed.
図1は、本開示の実施の形態に係る車間距離判定装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device according to an embodiment of the present disclosure. 図2は、本開示の実施の形態に係る車間距離判定装置の動作例を示すフローチャートである。FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device according to the embodiment of the present disclosure. 図3は、追従走行の4つのケースを示すイメージ図である。FIG. 3 is an image diagram showing four cases of follow-up running.
 まず、本開示に至った知見について説明する。 First, the findings that led to this disclosure will be explained.
 上述したとおり、追従走行が行われる場合では、車間距離(具体的には、自車両の先端と先行車両の後端との間の距離)に応じて、自車両が受ける走行風量(以下、単に走行風量ともいう)は変わるため、自車両における消費エネルギ量も変わる。 As described above, in the case of follow-up running, the amount of airflow received by the vehicle (hereinafter simply referred to as (also called traveling air volume) changes, the amount of energy consumed by the own vehicle also changes.
 具体的には、車間距離が短い場合では、走行風量が減少するため、冷却ファン以外の装置(例えば、駆動源)の消費エネルギ量が減少するが、冷却ファンの消費エネルギ量が増加する。その一方、車間距離が長い場合では、走行風量が増加するため、冷却ファンの消費エネルギ量が減少するが、冷却ファン以外の装置の消費エネルギ量が増加する。 Specifically, when the vehicle-to-vehicle distance is short, the amount of air flow decreases, so the amount of energy consumed by devices other than the cooling fan (for example, the drive source) decreases, but the amount of energy consumed by the cooling fan increases. On the other hand, when the vehicle-to-vehicle distance is long, the amount of air flow increases, so the amount of energy consumed by the cooling fan decreases, but the amount of energy consumed by devices other than the cooling fan increases.
 また、自車両が受ける走行風量は、自車両の車体と先行車両の車体との差異(以下、車体差異という)に応じて変わる。車体差異としては、例えば、車体のサイズ(以下、単にサイズともいう)の差異や、車体の形状(以下、単に形状ともいう)の差異が挙げられる。 In addition, the running airflow received by the own vehicle changes according to the difference between the body of the own vehicle and the body of the preceding vehicle (hereinafter referred to as "body difference"). Vehicle body differences include, for example, differences in vehicle body size (hereinafter also simply referred to as size) and vehicle body shape differences (hereinafter also simply referred to as shape).
 ここで、図3を用いて、追従走行時における車体差異および車間距離毎の走行風量の例について説明する。図3は、追従走行の4つのケース(態様)を示すイメージ図である。 Here, with reference to FIG. 3, an example of vehicle body difference and vehicle-to-vehicle distance during follow-up running will be described. FIG. 3 is an image diagram showing four cases (modes) of follow-up running.
 なお、以下では、説明を簡単にするために、自車両と先行車両それぞれの形状については考慮せず、先行車両のサイズが自車両のサイズと異なる場合を例に挙げて説明する。また、サイズとしては、車幅方向および車高方向からなる面の投影面積(先行車両を後方から見たときの投影面積、自車両を前方から見たときの投影面積)を例に挙げて説明する。 In the following, for the sake of simplicity, the case where the size of the preceding vehicle differs from the size of the own vehicle will be described as an example without considering the respective shapes of the own vehicle and the preceding vehicle. In addition, as an example of size, the projected area of a plane consisting of the vehicle width direction and the vehicle height direction (the projected area when the preceding vehicle is viewed from the rear, the projected area when the own vehicle is viewed from the front) will be used as an example. do.
 図3において、ケース1とケース2は、先行車両のサイズが自車両のサイズよりも大きい場合を示しており、ケース3とケース4は、先行車両のサイズが自車両のサイズよりも小さい場合を示している。 In FIG. 3, cases 1 and 2 show cases where the size of the preceding vehicle is larger than the size of the own vehicle, and cases 3 and 4 show cases where the size of the preceding vehicle is smaller than the size of the own vehicle. showing.
 また、図3において、ケース1とケース3は、先行車両と自車両との間の車間距離がL1である場合を示しており、ケース2とケース4は、先行車両と自車両との間の車間距離がL2である場合を示している。L1は、L2より短い距離である。 Further, in FIG. 3, cases 1 and 3 show the case where the inter-vehicle distance between the preceding vehicle and the host vehicle is L1, and cases 2 and 4 show the case where the distance between the preceding vehicle and the host vehicle is L1. This shows the case where the vehicle-to-vehicle distance is L2. L1 is a distance shorter than L2.
 ケース1は、ケース1~4のうちで、先行車両の影響が最も大きいケースである。すなわち、ケース1では、他のケースと比べて、走行風量が最も少なくなる一方で、冷却ファンの消費エネルギ量は最も大きくなる。 Among cases 1 to 4, case 1 is the case where the preceding vehicle has the greatest influence. In other words, in Case 1, compared to the other cases, the amount of running air is the smallest, while the amount of energy consumed by the cooling fan is the largest.
 ケース2およびケース3では、ケース1と比べて、走行風量が多くなる一方で、冷却ファンの消費エネルギ量は少なくなる。また、ケース2およびケース3では、ケース4と比べて、走行風量が少なくなる一方で、冷却ファンの消費エネルギ量は多くなる。 In cases 2 and 3, compared to case 1, the amount of air flow increases while the cooling fan consumes less energy. Further, in case 2 and case 3, compared to case 4, the amount of running air is smaller, but the amount of energy consumed by the cooling fan is larger.
 ケース4は、ケース1~4のうちで、先行車両の影響が最も小さいケースである。すなわち、ケース4では、他のケースと比べて、走行風量が最も多くなる一方で、冷却ファンの消費エネルギ量は最も小さくなる。 Among cases 1 to 4, case 4 is the case where the influence of the preceding vehicle is the smallest. That is, in case 4, the amount of running air is the largest compared to the other cases, while the amount of energy consumed by the cooling fan is the smallest.
 このように、車間距離の長さと、車両間の車体差異とに応じて、自車両の消費エネルギ量は異なることになる。 In this way, the amount of energy consumed by the own vehicle will differ according to the length of the inter-vehicle distance and the difference in the vehicle body between the vehicles.
 本開示では、追従走行が行われる場合において、車両間の固体差を考慮することにより、消費エネルギ量の抑制を精度良く実現することを目的とする。 The purpose of the present disclosure is to accurately reduce energy consumption by considering individual differences between vehicles when follow-up driving is performed.
 次に、図1を用いて、本実施の形態の車間距離判定装置100の構成について説明する。図1は、車間距離判定装置100の構成例を示すブロック図である。 Next, the configuration of the inter-vehicle distance determination device 100 of the present embodiment will be described using FIG. FIG. 1 is a block diagram showing a configuration example of an inter-vehicle distance determination device 100. As shown in FIG.
 図1に示す車間距離判定装置100は、例えば、自動車(乗用車でもよいし、商用車でもよい)に搭載される。本実施の形態では、車間距離判定装置100を搭載する自動車が、電動モータのみを駆動源とし、消費エネルギが電力のみである電気自動車である場合を例に挙げて説明する。また、以下の説明では、車間距離判定装置100を搭載する車両を「自車両」ともいう。 The inter-vehicle distance determination device 100 shown in FIG. 1 is installed, for example, in an automobile (either a passenger car or a commercial vehicle). In the present embodiment, an example will be described in which the vehicle equipped with inter-vehicle distance determination device 100 is an electric vehicle that uses only an electric motor as a drive source and consumes only electric power. Further, in the following description, the vehicle equipped with the inter-vehicle distance determination device 100 is also referred to as "own vehicle".
 自車両は、電動モータを冷却するための冷却ファンを搭載している。冷却ファンは、電動である。以下では、電動モータの駆動のために消費される電力量を「電動モータ消費電力量」といい、冷却ファンの駆動のために消費される電力量を「冷却ファン消費電力量」という。電動モータは、「冷却ファン以外の装置」の一例である。 The own vehicle is equipped with a cooling fan for cooling the electric motor. The cooling fan is electric. Hereinafter, the amount of power consumed for driving the electric motor will be referred to as "electric motor power consumption", and the amount of power consumed for driving the cooling fan will be referred to as "cooling fan power consumption". An electric motor is an example of a "device other than a cooling fan."
 本実施の形態ででは、追従走行とは、自車両と先行車両との間に他の車両が走行してない状態で、自車両が先行車両に追従して走行することとする。また、本実施の形態では、自車両は、追従対象の先行車両と同じ車種(同じサイズ、同じ形状)であるとする。自車両と先行車両とが同じ車種であるという条件は、後述する第1設定データおよび第2設定データにおいて考慮されているとする。 In the present embodiment, follow-up travel means that the own vehicle follows the preceding vehicle while no other vehicle is traveling between the own vehicle and the preceding vehicle. Further, in the present embodiment, it is assumed that the host vehicle has the same vehicle type (same size and shape) as the preceding vehicle to be followed. It is assumed that the condition that the host vehicle and the preceding vehicle are of the same vehicle type is considered in first setting data and second setting data, which will be described later.
 本実施の形態では、電動モータ消費電力量および冷却ファン消費電力量の算出にあたり考慮される車体差異が、車体のサイズの差異であるとする。また、車体のサイズの差異は、先行車両の後面の投影面積と、自車両の前面の投影面積との差(以下、面積差という)であるとする。面積差は、自車両の前面の投影面積が先行車両の後面の投影面積よりも大きい場合では、プラスの値となり、先行車両の後面の投影面積が自車両の前面の投影面積よりも大きい場合では、マイナスの値となる。なお、両者の面積が同じ場合では、面積差はゼロとなるが、これは、マイナスの値と同様に扱うとする。 In the present embodiment, it is assumed that the difference in vehicle body size that is taken into account in calculating the electric motor power consumption and the cooling fan power consumption is the difference in the size of the vehicle body. Also, the difference in the size of the vehicle body is assumed to be the difference between the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the host vehicle (hereinafter referred to as area difference). The area difference is a positive value when the projected area of the front surface of the own vehicle is larger than the projected area of the rear surface of the preceding vehicle, and when the projected area of the rear surface of the preceding vehicle is larger than the projected area of the front surface of the own vehicle. , becomes a negative value. Note that if the areas of both are the same, the area difference is zero, but this is treated in the same way as a negative value.
 本実施の形態では、追従走行の開始前または実行中に、例えばユーザの操作により、車速が設定(指定または決定と言ってもよい)されるとする。設定された車速を以下「設定車速」という。設定車速は、車間距離判定装置100に通知される。 In the present embodiment, it is assumed that the vehicle speed is set (designated or determined) by, for example, a user's operation before or during the follow-up run. The set vehicle speed is hereinafter referred to as "set vehicle speed". The set vehicle speed is notified to the inter-vehicle distance determination device 100 .
 本実施の形態では、追従走行時に用いられる車間距離として、互いに異なる2つの値を例に挙げて説明する。1つは「短車間距離」といい、もう1つは「長車間距離」という。長車間距離は、短車間距離より長い。例えば、短車間距離は、図3に示したL1であり、長車間距離は、図3に示したL2である。なお、短車間距離および長車間距離はいずれも、安全要件(例えば、法規やガイドライン等に含まれる要件)を満たすものとする。 In the present embodiment, two different values will be described as an example of the inter-vehicle distance used during follow-up travel. One is called "short inter-vehicle distance" and the other is called "long inter-vehicle distance". The long inter-vehicle distance is longer than the short inter-vehicle distance. For example, the short inter-vehicle distance is L1 shown in FIG. 3, and the long inter-vehicle distance is L2 shown in FIG. Both the short inter-vehicle distance and the long inter-vehicle distance satisfy safety requirements (for example, requirements included in regulations, guidelines, etc.).
 なお、本実施の形態において、追従走行は、自車両の運転者の手動操作により行われてもよいし、自車両に搭載されるコンピュータ(追従走行が実行されるように自車両の操舵、加減速、制動等を制御する装置。以下、追従走行制御装置という)の制御により行われてもよい。なお、追従走行制御装置は、自車両の外部に設置されてもよい。 In this embodiment, the follow-up run may be performed manually by the driver of the own vehicle, or may be performed by a computer installed in the own vehicle (steering and acceleration of the own vehicle so that the follow-up run is executed). A device for controlling deceleration, braking, etc. (hereinafter referred to as a follow-up running control device) may perform the control. Note that the follow-up cruise control device may be installed outside the own vehicle.
 車間距離判定装置100は、自車両が追従走行を行う場合において、消費電力量(消費エネルギ量の一例)を抑制可能な車間距離を判定(選択と言ってもよい)する装置である。 The inter-vehicle distance determination device 100 is a device that determines (can be said to select) an inter-vehicle distance that can reduce power consumption (an example of energy consumption) when the host vehicle follows the vehicle.
 図示は省略するが、車間距離判定装置100は、ハードウェアとして、例えば、CPU(Central Processing Unit)、コンピュータプログラムを格納したROM(Read Only Memory)、作業用メモリであるRAM(Random Access Memory)等を有する。以下に説明する車間距離判定装置100の各機能は、CPUがROMから読み出したコンピュータプログラムをRAMにて実行することにより実現される。車間距離判定装置100は、例えば、ECU(Electronic Control Unit)によって実現されてもよい。 Although not shown, the inter-vehicle distance determination device 100 includes hardware such as a CPU (Central Processing Unit), a ROM (Read Only Memory) storing a computer program, a working memory RAM (Random Access Memory), and the like. have Each function of the inter-vehicle distance determination device 100 described below is realized by the CPU executing a computer program read from the ROM in the RAM. Inter-vehicle distance determination device 100 may be realized by, for example, an ECU (Electronic Control Unit).
 図1に示すように、車間距離判定装置100は、記憶部110、算出部120、および選択部130を有する。 As shown in FIG. 1, the inter-vehicle distance determination device 100 has a storage unit 110, a calculation unit 120, and a selection unit .
 記憶部110は、例えば、第1設定データ、第2設定データ、および第3設定データを記憶する。これらは、後述する算出部120による算出処理に用いられる。 The storage unit 110 stores, for example, first setting data, second setting data, and third setting data. These are used for calculation processing by the calculation unit 120, which will be described later.
 第1設定データは、短車間距離が取られ、かつ、面積差がマイナスである場合(例えば、図3のケース1。以下、第1の場合という)、長車間距離が取られ、かつ、面積差がマイナスである場合(例えば、図3のケース2。以下、第2の場合という)、短車間距離が取られ、かつ、面積差がプラスである場合(例えば、図3のケース3。以下、第3の場合という)、長車間距離が取られ、かつ、面積差がプラスである場合(例えば、図3のケース4。以下、第4の場合という)のそれぞれにつき、車速毎に、空気抵抗(走行風量)を考慮して算出された電動モータ消費電力量が定められたデータである。 In the first setting data, when the short inter-vehicle distance is taken and the area difference is negative (for example, case 1 in FIG. 3; hereinafter referred to as the first case), the long inter-vehicle distance is taken and the area difference is negative. If the difference is negative (for example, case 2 in FIG. 3; hereinafter referred to as the second case), a short inter-vehicle distance is taken and the area difference is positive (for example, case 3 in FIG. 3; hereinafter referred to as the second case). , referred to as the third case), and when a long inter-vehicle distance is taken and the area difference is positive (for example, case 4 in FIG. 3; hereinafter referred to as the fourth case), the air This data defines the electric motor power consumption calculated in consideration of the resistance (running air volume).
 第1設定データでは、第1~第4の場合のいずれにおいても、車速が大きくなるほど、電動モータ消費電力量が増加するように定められている。 In the first setting data, in any of the first to fourth cases, the electric motor power consumption is set to increase as the vehicle speed increases.
 また、第1設定データにおいて、第1~第4の場合の電動モータ消費電力量のうち、第1の場合の電動モータ消費電力量は、空気抵抗の影響が最も小さいと仮定して算出されたものであり、第4の場合の電動モータ消費電力量は、空気抵抗の影響が最も大きいと仮定して算出されたものである。 In addition, in the first setting data, among the electric motor power consumption in the first to fourth cases, the electric motor power consumption in the first case was calculated assuming that the influence of air resistance was the smallest. The electric motor power consumption in the fourth case was calculated on the assumption that the influence of air resistance is the greatest.
 また、第1設定データにおいて、第2、第3の場合の電動モータ消費電力量は、空気抵抗の影響が第1の場合よりは大きく、第4の場合よりは小さいと仮定して算出されたものである。 Also, in the first setting data, the electric motor power consumption in the second and third cases was calculated on the assumption that the influence of air resistance was greater than in the first case and less than in the fourth case. It is.
 第2設定データは、第1~第4の場合のそれぞれにつき、車速毎に、走行風量が定められたデータである。 The second setting data is data in which the running air volume is determined for each vehicle speed for each of the first to fourth cases.
 第2設定データでは、同じ車速であっても、第1の場合の走行風量が最も少なく、第4の場合の走行風量が最も多く、第2、第3の場合の走行風量が第1の場合より多く、第4の場合より少なくなるように定められている。 With the second setting data, even if the vehicle speed is the same, the traveling air volume in the first case is the smallest, the traveling air volume in the fourth case is the largest, and the traveling air volume in the second and third cases is the first case. more and less than the fourth case.
 また、例えば、第1の場合の走行風量は、どの車速であっても一定(ほぼゼロ)に定められてもよい。また、例えば、第2~第4の場合の走行風量は、車速が大きくなるほど、増加するように定められてもよい。 Also, for example, the running air volume in the first case may be set constant (almost zero) at any vehicle speed. Further, for example, the running air volume in the second to fourth cases may be determined to increase as the vehicle speed increases.
 第3設定データは、冷却ファンの風量(以下、ファン風量という)毎に、冷却ファン消費電力量が定められたデータである。 The third setting data is data in which the power consumption of the cooling fan is determined for each air volume of the cooling fan (hereinafter referred to as fan air volume).
 第3設定データでは、ファン風量が大きくなる(換言すれば、ファンの回転数が増加する)ほど、冷却ファン消費電力量が大きくなるように定められている。 The third setting data is defined so that the cooling fan power consumption increases as the fan air volume increases (in other words, the fan rotation speed increases).
 第1~第3設定データは、例えば、予め実施されたシミュレーションまたは実験等に基づいて作成され、記憶部110に格納される。 The first to third setting data are created, for example, based on simulations or experiments performed in advance, and stored in the storage unit 110 .
 また、第1~第3設定データの形式は、例えば、テーブルでもよいし、マップでもよいし、それら以外の形式でもよい。 Also, the format of the first to third setting data may be, for example, a table, a map, or any other format.
 算出部120は、自車両と先行車両との車体差異を特定する。本実施の形態では例として、算出部120は、先行車両の後面の投影面積と、自車両の前面の投影面積とに基づいて、面積差を算出する。 The calculation unit 120 identifies the vehicle body difference between the own vehicle and the preceding vehicle. In the present embodiment, as an example, calculation unit 120 calculates the area difference based on the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the own vehicle.
 例えば、算出部120は、自車両に搭載されたカメラによって撮影された先行車両の後面の画像に基づいて、先行車両の後面の面積を算出し、その面積と、算出部120にとって既知の値である自車両の前面の投影面積との差を算出する。なお、自車両の前面の投影面積を示す情報が、予め記憶部110に格納されていてもよい。 For example, the calculation unit 120 calculates the area of the rear surface of the preceding vehicle based on the image of the rear surface of the preceding vehicle captured by a camera mounted on the host vehicle, and uses the area and a value known to the calculation unit 120 to calculate the area of the rear surface of the preceding vehicle. A difference from the projected area of the front surface of a certain own vehicle is calculated. Information indicating the projected area of the front surface of the vehicle may be stored in the storage unit 110 in advance.
 算出部120によって算出される面積差は、プラスの値またはマイナスの値のいずれかとなる。 The area difference calculated by the calculator 120 is either a positive value or a negative value.
 算出部120は、設定車速、面積差、および第1設定データに基づいて、短車間距離が取られた場合における電動モータ消費電力量(以下、第1消費電力量という)と、長車間距離が取られた場合における電動モータ消費電力量(以下、第2消費電力量という)とを算出する。 Based on the set vehicle speed, the area difference, and the first setting data, the calculation unit 120 calculates the electric motor power consumption when the short inter-vehicle distance is taken (hereinafter referred to as the first power consumption) and the long inter-vehicle distance. The electric motor power consumption (hereinafter referred to as second power consumption) in the case where it is taken is calculated.
 ここで、算出された面積差がマイナスの値である場合には、第1消費電力量は、第1の場合における電動モータ消費電力量であり、第2消費電力量は、第2の場合におけるモータ消費電力量である。一方、算出された面積差がプラスの値である場合には、第1消費電力量は、第3の場合における電動モータ消費電力量であり、第2消費電力量は、第4の場合におけるモータ消費電力量である。 Here, when the calculated area difference is a negative value, the first power consumption is the electric motor power consumption in the first case, and the second power consumption is the electric motor power consumption in the second case. This is motor power consumption. On the other hand, when the calculated area difference is a positive value, the first power consumption is the electric motor power consumption in the third case, and the second power consumption is the motor power consumption in the fourth case. power consumption.
 算出部120は、設定車速、面積差、および第2設定データに基づいて、短車間距離が取られた場合における走行風量(以下、第1走行風量という)と、長車間距離が取られた場合における走行風量(以下、第2走行風量という)とを算出する。 Based on the set vehicle speed, the area difference, and the second set data, the calculation unit 120 calculates the travel air volume when the short inter-vehicle distance is taken (hereinafter referred to as the first travel air volume) and the travel air volume when the long inter-vehicle distance is taken. (hereinafter referred to as a second running air volume) is calculated.
 ここで、算出された面積差がマイナスの値である場合には、第1走行風量は、第1の場合における走行風量であり、第2走行風量は、第2の場合における走行風量である。一方、算出された面積差がプラスの値である場合には、第1走行風量は、第3の場合における走行風量であり、第2走行風量は、第4の場合における走行風量である。 Here, when the calculated area difference is a negative value, the first traveling air volume is the traveling air volume in the first case, and the second traveling air volume is the traveling air volume in the second case. On the other hand, when the calculated area difference is a positive value, the first traveling air volume is the traveling air volume in the third case, and the second traveling air volume is the traveling air volume in the fourth case.
 算出部120は、必要空気量を算出する。必要空気量とは、例えば、電動モータを冷却するために必要な空気量であり、走行風量とファン風量との合計値である。 The calculation unit 120 calculates the required air amount. The required amount of air is, for example, the amount of air required to cool the electric motor, and is the total value of the running air amount and the fan air amount.
 必要空気量の算出には、公知の方法を用いることができる。例えば、「SANYO DENKI Technical Report No.40 Nov. 2015」における「ファンの基礎と選定(使い方)」に開示された算出式を用いてもよいし、これ以外の算出方法を用いてもよい。 A known method can be used to calculate the required amount of air. For example, the calculation formula disclosed in "Fan Basics and Selection (How to Use)" in "SANYO DENKI Technical Report No.40 Nov. 2015" may be used, or other calculation methods may be used.
 算出部120は、必要空気量および第1走行風量に基づいて、短車間距離が取られた場合におけるファン風量(以下、第1ファン風量という)を算出する。また、算出部120は、必要空気量および第2走行風量に基づいて、長車間距離が取られた場合におけるファン風量(以下、第2ファン風量という)を算出する。 The calculation unit 120 calculates the fan air volume (hereinafter referred to as the first fan air volume) when the vehicle-to-vehicle distance is short, based on the required air volume and the first running air volume. Calculation unit 120 also calculates a fan air volume (hereinafter referred to as a second fan air volume) when a long vehicle-to-vehicle distance is taken, based on the required air volume and the second running air volume.
 具体的には、算出部120は、必要空気量から第1走行風量を差し引くことにより、第1ファン風量を算出する。また、算出部120は、必要空気量から第2走行風量を差し引くことにより、第2ファン風量を算出する。 Specifically, the calculation unit 120 calculates the first fan air volume by subtracting the first running air volume from the required air volume. Further, the calculation unit 120 calculates the second fan air volume by subtracting the second running air volume from the required air volume.
 算出部120は、第1ファン風量、第2ファン風量、および第3設定データに基づいて、短車間距離が取られた場合における冷却ファン消費電力量(以下、第3消費電力量という)と、長車間距離が取られた場合における冷却ファン消費電力量(以下、第4消費電力量という)とを算出する。 Based on the first fan air volume, the second fan air volume, and the third setting data, the calculation unit 120 calculates the cooling fan power consumption when the inter-vehicle distance is short (hereinafter referred to as the third power consumption), A cooling fan power consumption amount (hereinafter referred to as a fourth power consumption amount) when a long inter-vehicle distance is taken is calculated.
 算出部120は、第1消費電力量および第3消費電力量に基づいて、短車間距離が取られた場合における合計消費電力量(以下、第1合計消費電力量という)を算出する。また、算出部120は、第2消費電力量および第4消費電力量に基づいて、長車間距離が取られた場合における合計消費電力量(以下、第2合計消費電力量という)を算出する。 The calculation unit 120 calculates the total power consumption (hereinafter referred to as the first total power consumption) in the case where the inter-vehicle distance is short, based on the first power consumption and the third power consumption. Calculation unit 120 also calculates the total power consumption (hereinafter referred to as the second total power consumption) when the long inter-vehicle distance is taken, based on the second power consumption and the fourth power consumption.
 具体的には、算出部120は、第1消費電力量に第3消費電力量を加えることにより、第1合計消費電力量を算出する。また、算出部120は、第2消費電力量に第4消費電力量を加えることにより、第2合計消費電力量を算出する。 Specifically, the calculation unit 120 calculates the first total power consumption by adding the third power consumption to the first power consumption. Further, the calculation unit 120 calculates the second total power consumption by adding the fourth power consumption to the second power consumption.
 なお、本実施の形態では、算出部120が第1~第3設定データを用いる場合を例に挙げて説明したが、これに限定されない。例えば、算出部120は、第1~第3設定データの代わりに、別のデータまたは公知の算出式を用いて、上記各種算出を行ってもよい。 In addition, in the present embodiment, the case where the calculation unit 120 uses the first to third setting data has been described as an example, but the present invention is not limited to this. For example, the calculator 120 may perform the above various calculations using other data or known calculation formulas instead of the first to third setting data.
 選択部130は、第1合計消費電力量と第2合計消費電力量とを比較し、値が小さい方に相当する車間距離を、追従走行に用いるための車間距離として選択する。すなわち、ここで選択された車間距離は、追従走行中において消費電力量を抑制できる最適な車間距離である。 The selection unit 130 compares the first total power consumption and the second total power consumption, and selects the vehicle-to-vehicle distance corresponding to the smaller value as the vehicle-to-vehicle distance to be used for following travel. That is, the inter-vehicle distance selected here is the optimum inter-vehicle distance that can suppress power consumption during follow-up running.
 具体的には、選択部130は、第1合計消費電力量が第2合計消費電力量よりも小さい場合、第1合計消費電力量に相当する短車間距離を選択する。または、選択部130は、第2合計消費電力量が第1合計消費電力量よりも小さい場合、第2合計消費電力量に相当する長車間距離を選択する。 Specifically, when the first total power consumption is smaller than the second total power consumption, the selection unit 130 selects the short inter-vehicle distance corresponding to the first total power consumption. Alternatively, when the second total power consumption is smaller than the first total power consumption, selection unit 130 selects the long inter-vehicle distance corresponding to the second total power consumption.
 その後、選択部130は、選択した車間距離を示す情報(以下、車間距離情報という)を所定の装置へ出力してもよい。 After that, the selection unit 130 may output information indicating the selected inter-vehicle distance (hereinafter referred to as inter-vehicle distance information) to a predetermined device.
 車間距離情報の出力先としては、例えば、上記追従走行制御装置、自車両に搭載された報知装置(例えば、車室内に設けられたディスプレイ、スピーカ等)、自車両の外部に設置された装置(例えば、自車両の管理センターで使用されるコンピュータ等)が挙げられる。 Examples of output destinations of inter-vehicle distance information include the above-mentioned follow-up running control device, a notification device mounted on the own vehicle (for example, a display, a speaker, etc. provided in the vehicle interior), a device installed outside the own vehicle ( For example, a computer used in a management center of own vehicle, etc.).
 例えば、車間距離情報が追従走行制御装置に出力された場合、追従走行制御装置は、その車間距離情報に示される車間距離が維持されるように、自車両の追従走行を制御する。これにより、消費電力量を抑制させた追従走行が実現される。 For example, when the following distance information is output to the following distance control device, the following distance control device controls the following distance of the own vehicle so that the following distance indicated by the following distance information is maintained. As a result, follow-up running with reduced power consumption is realized.
 また、例えば、車間距離情報が報知装置(例えば、ディスプレイ、スピーカ等)である場合、報知装置は、車間距離情報に示される車間距離の報知を行う。よって、自車両の乗員(例えば、運転者)は、選択された車間距離を把握することができる。よって、例えば、運転者の手動操作により追従走行が行われる場合には、運転者は、報知された車間距離を取るように、加減速操作を行うことができる。これにより、消費電力量を抑制させた追従走行が実現される。また、例えば、手動操作によらず、追従走行制御装置により追従走行が行われている場合、乗員は、追従走行に用いられることになる車間距離を事前に(現在の車間距離が変更される前に)知ることができる。 Also, for example, if the inter-vehicle distance information is a notification device (eg, display, speaker, etc.), the notification device notifies the inter-vehicle distance indicated by the inter-vehicle distance information. Therefore, the occupant (for example, the driver) of the host vehicle can grasp the selected inter-vehicle distance. Therefore, for example, when follow-up running is performed by a manual operation of the driver, the driver can perform acceleration/deceleration operations so as to maintain the notified inter-vehicle distance. As a result, follow-up running with reduced power consumption is realized. Further, for example, when the follow-up run is performed by the follow-up run control device without manual operation, the occupant sets the inter-vehicle distance to be used for the follow-up run in advance (before the current inter-vehicle distance is changed). ) can be known.
 なお、車間距離情報は、上述した複数の出力先に出力されてもよい。 Note that the inter-vehicle distance information may be output to the plurality of output destinations described above.
 以上、車間距離判定装置100の構成について説明した。 The configuration of the inter-vehicle distance determination device 100 has been described above.
 次に、図2を用いて、車間距離判定装置100の動作について説明する。図2は、車間距離判定装置100の動作例を示すフローチャートである。 Next, the operation of the inter-vehicle distance determination device 100 will be described using FIG. FIG. 2 is a flowchart showing an operation example of the inter-vehicle distance determination device 100. As shown in FIG.
 図2に示すフローチャートは、例えば、車間距離判定装置100が車間距離判定指示を受け付けたときに開始される。車間距離判定指示は、車間距離の判定を行う旨の指示であり、例えば、ユーザ(例えば、自車両の乗員)の操作によって行われてもよいし、追従走行制御装置によって行われてもよい。 The flowchart shown in FIG. 2 is started, for example, when the inter-vehicle distance determination device 100 receives an inter-vehicle distance determination instruction. The inter-vehicle distance determination instruction is an instruction to determine the inter-vehicle distance.
 まず、算出部120は、面積差を算出する(ステップS1)。 First, the calculation unit 120 calculates the area difference (step S1).
 次に、算出部120は、設定車速、面積差、第1設定データに基づいて、第1消費電力量および第2消費電力量を算出する(ステップS2)。 Next, the calculation unit 120 calculates the first power consumption and the second power consumption based on the set vehicle speed, area difference, and first setting data (step S2).
 次に、算出部120は、設定車速、面積差、第2設定データに基づいて、第1走行風量および第2走行風量を算出する(ステップS3)。 Next, the calculation unit 120 calculates the first traveling air volume and the second traveling air volume based on the set vehicle speed, area difference, and second set data (step S3).
 次に、算出部120は、必要空気量を算出する(ステップS4)。 Next, the calculation unit 120 calculates the required air amount (step S4).
 次に、算出部120は、必要空気量および第1走行風量に基づいて、第1ファン風量を算出し、必要空気量および第2走行風量に基づいて、第2ファン風量を算出する(ステップS5)。 Next, the calculation unit 120 calculates the first fan air volume based on the required air volume and the first running air volume, and calculates the second fan air volume based on the required air volume and the second running air volume (step S5 ).
 次に、算出部120は、第1ファン風量、第2ファン風量、および第3設定データに基づいて、第3消費電力量および第4消費電力量を算出する(ステップS6)。 Next, the calculator 120 calculates a third power consumption and a fourth power consumption based on the first fan air volume, the second fan air volume, and the third setting data (step S6).
 次に、算出部120は、第1消費電力量および第3消費電力量に基づいて、第1合計消費電力量を算出し、2消費電力量および第4消費電力量に基づいて、第2合計消費電力量を算出する(ステップS7)。 Next, the calculation unit 120 calculates a first total power consumption based on the first power consumption and the third power consumption, and calculates a second total power consumption based on the second power consumption and the fourth power consumption. Power consumption is calculated (step S7).
 次に、選択部130は、第1合計消費電力量と第2合計消費電力量を比較し、値が小さい方に相当する車間距離を選択する(ステップS8)。 Next, the selection unit 130 compares the first total power consumption and the second total power consumption, and selects the inter-vehicle distance corresponding to the smaller value (step S8).
 なお、上述したとおり、ステップS8の後、選択部130は、選択した車間距離を示す車間距離情報を所定の装置へ出力してもよい。 As described above, after step S8, the selection unit 130 may output the inter-vehicle distance information indicating the selected inter-vehicle distance to a predetermined device.
 また、上述したステップS2~S6の順序は、一例であり、図2の図示に限定されない。例えば、ステップS3とステップS4の順序は、逆であってもよい。また、例えば、ステップS3~S6の後で、ステップS2が行われてもよい。 Also, the order of steps S2 to S6 described above is an example, and is not limited to the illustration in FIG. For example, the order of steps S3 and S4 may be reversed. Also, for example, step S2 may be performed after steps S3 to S6.
 以上、車間距離判定装置100の動作について説明した。 The operation of the inter-vehicle distance determination device 100 has been described above.
 以上説明したように、本実施の形態の車間距離判定装置100は、設定車速で追従走行を行う場合において、車体差異(例えば、面積差)を考慮して、短車間距離が取られた場合の合計消費電力量(冷却ファンの消費電力量+冷却ファン以外の装置(例えば、電動モータ)の消費電力量)と、長車間距離が取られた場合の合計消費電力量(冷却ファンの消費電力量+冷却ファン以外の装置(例えば、電動モータ)の消費電力量)とを算出し、それらを比較し、小さい方の合計消費電力量に相当する車間距離を選択することを特徴とする。これにより、追従走行が行われる場合において消費エネルギ量を精度良く抑制することができる。 As described above, the inter-vehicle distance determining apparatus 100 according to the present embodiment considers the vehicle body difference (for example, the area difference) when performing follow-up running at the set vehicle speed. Total power consumption (power consumption of cooling fans + power consumption of devices other than cooling fans (e.g., electric motors)) and total power consumption when a long inter-vehicle distance is taken (power consumption of cooling fans) + power consumption of a device other than a cooling fan (for example, an electric motor)), compare them, and select the inter-vehicle distance corresponding to the smaller total power consumption. As a result, it is possible to accurately suppress the amount of energy consumption when the follow-up running is performed.
 なお、本開示は、上記実施の形態の説明に限定されず、その趣旨を逸脱しない範囲において種々の変形が可能である。以下、変形例について説明する。 It should be noted that the present disclosure is not limited to the description of the above embodiments, and various modifications are possible without departing from the scope of the present disclosure. Modifications will be described below.
 [変形例1]
 実施の形態では、車間距離判定装置100を搭載する自動車(すなわち、自車両)が、電力のみを用いて走行する電気自動車であり、消費エネルギが電力のみである場合を例に挙げて説明したが、これに限定されない。
[Modification 1]
In the embodiment, the case where the vehicle (that is, own vehicle) equipped with inter-vehicle distance determination device 100 is an electric vehicle that runs using only electric power and consumes only electric power has been described as an example. , but not limited to.
 例えば、自車両は、燃料(例えば、ガソリンまたは軽油等)を燃焼させる内燃機関のみを駆動源とする自動車であってもよいし、内燃機関と電動モータの両方を駆動源とする自動車であってもよい。 For example, the own vehicle may be an automobile driven only by an internal combustion engine that burns fuel (for example, gasoline or light oil), or an automobile driven by both an internal combustion engine and an electric motor. good too.
 それらの自動車では、内燃機関の駆動には燃料(消費エネルギの一例)が消費され、冷却ファンの駆動には電力(消費エネルギの一例)が消費される。よって、実施の形態で説明した最終的な比較に用いられる合計消費エネルギ量(実施の形態では、第1合計消費電力量、第2合計消費電力量)は、消費燃料量または消費電力量のいずれかに統一されることが好ましい。 In these vehicles, fuel (an example of energy consumption) is consumed to drive the internal combustion engine, and electric power (an example of energy consumption) is consumed to drive the cooling fan. Therefore, the total energy consumption (in the embodiment, the first total power consumption and the second total power consumption) used for the final comparison described in the embodiment is either fuel consumption or power consumption. It is preferable to be unified as much as possible.
 例えば、自車両が内燃機関のみを駆動源とする場合を例に挙げて説明する。その場合、実施の形態で説明した第1消費電力量、第2消費電力量に代えて、第1消費燃料量、第2消費燃料量を算出する。また、実施の形態で説明した第3消費電力量、第4消費電力量(ともに、冷却ファンの消費電力量)は、予め定められた換算比率に基づいて、第3消費燃料量、第4消費燃料量に換算する。そして、第1消費燃料量に第3消費燃料量を加えて第1合計消費燃料量を算出し、第2消費燃料量に第4消費燃料量を加えて第2合計消費燃料量を算出する。そして、第1合計消費燃料量と第2合計消費燃料量とを比較し、値が小さい方に相当する車間距離を選択する。 For example, a case where the own vehicle uses only the internal combustion engine as a drive source will be described as an example. In that case, a first fuel consumption amount and a second fuel consumption amount are calculated instead of the first power consumption amount and the second power consumption amount described in the embodiment. Further, the third power consumption and the fourth power consumption (both power consumption of the cooling fan) described in the embodiment are calculated based on a predetermined conversion ratio. Convert to fuel amount. Then, a first total fuel consumption is calculated by adding the third fuel consumption to the first fuel consumption, and a second total fuel consumption is calculated by adding the fourth fuel consumption to the second fuel consumption. Then, the first total fuel consumption amount and the second total fuel consumption amount are compared, and the inter-vehicle distance corresponding to the smaller value is selected.
 よって、燃料および電力の両方を消費する自動車であっても、消費エネルギ量(消費燃料量+消費電力量)を抑制できる車間距離を選択することができる。 Therefore, even if the vehicle consumes both fuel and electric power, it is possible to select an inter-vehicle distance that can reduce the energy consumption (fuel consumption + power consumption).
 [変形例2]
 実施の形態では、選択対象となる車間距離が短車間距離と長車間距離の2つである場合を例に挙げて説明したが、3つ以上であってもよい。
[Modification 2]
In the embodiment, the case where there are two vehicle-to-vehicle distances to be selected, a short vehicle-to-vehicle distance and a long vehicle-to-vehicle distance, has been described as an example, but three or more vehicle-to-vehicle distances may be selected.
 選択対象として追従走行用の車間距離が3つ以上定められている場合、車間距離判定装置100は、それぞれの車間距離が取られた場合に対応する合計消費エネルギ量を算出する。これにより、3つ以上の合計消費エネルギ量が算出される。そして、車間距離判定装置100は、3つ以上の車間距離のうち、3つ以上の合計消費エネルギ量の中で最も値が小さい合計消費エネルギ量に相当する車間距離を、追従走行に用いられる車間距離として選択する。 When three or more vehicle-to-vehicle distances for following travel are set as selection targets, the vehicle-to-vehicle distance determination device 100 calculates the total energy consumption corresponding to each vehicle-to-vehicle distance. As a result, three or more total energy consumption amounts are calculated. Then, the inter-vehicle distance determination device 100 selects the inter-vehicle distance corresponding to the smallest total energy consumption amount among the three or more inter-vehicle distances to be used for follow-up running. Select as distance.
 [変形例3]
 実施の形態では、合計消費電力量が、電動モータ消費電力量と冷却ファン消費電力量とに基づいて算出される場合を例に挙げて説明したが、これに限定されない。換言すれば、冷却ファン消費電力量以外に合計消費電力量に用いられる消費電力量は、電動モータのみの消費電力量に限定されない。
[Modification 3]
In the embodiment, the case where the total power consumption is calculated based on the electric motor power consumption and the cooling fan power consumption has been described as an example, but the present invention is not limited to this. In other words, the power consumption used for the total power consumption other than the cooling fan power consumption is not limited to the power consumption of only the electric motor.
 例えば、電動モータ消費電力量の代わりに、冷却ファン以外の複数の装置の消費電力量を用いてもよい。複数の装置としては、上記電動モータ以外に、例えば、エアコンコンデンサ、電気回路、バッテリ、架装(例えば、冷凍機等)が挙げられるが、これらに限定されず、電力を消費する装置であればよい。 For example, the power consumption of multiple devices other than the cooling fan may be used instead of the electric motor power consumption. Examples of the plurality of devices include, in addition to the electric motor, an air conditioner condenser, an electric circuit, a battery, and a mounting (e.g., a refrigerator, etc.). good.
 [変形例4]
 実施の形態では、車間距離判定装置100は、追従走行制御装置とは別体である場合を例に挙げて説明したが、これに限定されない。
[Modification 4]
In the embodiment, the inter-vehicle distance determination device 100 is described as being separate from the follow-up cruise control device, but the present invention is not limited to this.
 例えば、車間距離判定装置100は、図1に示した各部に加えて、追従走行制御装置と同じ機能を実現する(すなわち、追従走行が実行されるように自車両の操舵、加減速、制動を制御する)制御部を有してもよい。 For example, the inter-vehicle distance determination device 100 implements the same functions as the following control device in addition to the components shown in FIG. control unit).
 [変形例5]
 実施の形態では、第1、第2設定データにおいて、面積差は、プラスの値であるか、マイナスの値であるかに場合分けされて定められる場合を例に挙げて説明したが、これに限定されない。第1、第2設定データに定められる面積差は、複数の値(複数のプラスの値および複数のマイナスの値)であってもよい。
[Modification 5]
In the embodiment, the case where the difference in area is determined depending on whether it is a positive value or a negative value in the first and second setting data has been described as an example. Not limited. The area difference defined in the first and second setting data may be multiple values (multiple positive values and multiple negative values).
 例えば、第1設定データは、短車間距離が取られた場合と長車間距離が取られた場合のそれぞれにつき、車速毎および面積差(複数のプラスの値および複数のマイナスの値)毎に、空気抵抗を考慮して算出された電動モータ消費電力量が定められてもよい。 For example, the first setting data is for each vehicle speed and for each area difference (multiple positive values and multiple negative values) for each of the short inter-vehicle distance and the long inter-vehicle distance. The electric motor power consumption calculated in consideration of air resistance may be determined.
 また、例えば、第2設定データは、短車間距離が取られた場合と長車間距離が取られた場合のそれぞれにつき、車速毎および面積差(複数のプラスの値および複数のマイナスの値)毎に、走行風量が定められてもよい。 Further, for example, the second setting data is set for each vehicle speed and for each area difference (multiple positive values and multiple negative values) for each of the short inter-vehicle distance and the long inter-vehicle distance. , the running air volume may be determined.
 これにより、より詳細に電動モータ消費電力量(第1消費電力量および第2消費電力量)や走行風量(第1走行風量および第2走行風量)を算出することが可能となる。 This makes it possible to calculate the electric motor power consumption (first power consumption and second power consumption) and running air volume (first running air volume and second running air volume) in more detail.
 [変形例6]
 実施の形態では、電動モータ消費電力量および冷却ファン消費電力量の算出にあたり考慮される車体のサイズの差異が、先行車両の後面の投影面積と自車両の前面の投影面積との面積差である場合を例に挙げて説明したが、これに限定されない。例えば、車体のサイズの差異は、面積差(すなわち、車幅方向と車高方向それぞれの長さの差異)だけでなく、車長方向の長さの差異を含んでもよい。
[Modification 6]
In the embodiment, the difference in the size of the vehicle body taken into consideration in calculating the electric motor power consumption and the cooling fan power consumption is the area difference between the projected area of the rear surface of the preceding vehicle and the projected area of the front surface of the own vehicle. Although the case has been described as an example, it is not limited to this. For example, the difference in the size of the vehicle body may include not only the area difference (that is, the length difference in the vehicle width direction and the vehicle height direction) but also the length difference in the vehicle length direction.
 また、実施の形態では、電動モータ消費電力量および冷却ファン消費電力量の算出にあたり考慮される車体差異が車体のサイズの差異である場合を例に挙げて説明したが、これに限定されない。例えば、車体差異は、車体の形状の差異であってもよい。その例について、以下に説明する。 In addition, in the embodiment, the case where the vehicle body difference considered in calculating the electric motor power consumption and the cooling fan power consumption is the difference in the size of the vehicle body has been described as an example, but the present invention is not limited to this. For example, the vehicle body difference may be a difference in the shape of the vehicle body. Examples are described below.
 ここでは車体の形状の例として、スポーツタイプ、乗用タイプ、ボックスタイプ、トラックの4つを挙げて説明するが、これらに限定されない。 Here, four examples of body shapes are given: sports type, passenger type, box type, and truck, but they are not limited to these.
 例えば、自車両がスポーツタイプである場合では、先行車両がスポーツタイプである場合、先行車両が乗用タイプである場合、先行車両がボックスタイプである場合、先行車両がトラックであるである場合の順に、自車両における空気抵抗の影響がより大きくなる(具体的には、自車両が受ける走行風量がより減少する)。よって、本例の第1、第2設定データは、実施の形態で説明した面積差の代わりに、複数の先行車両の形状が定められたものとなる。 For example, when the own vehicle is a sports type, the preceding vehicle is a sports type, the preceding vehicle is a passenger type, the preceding vehicle is a box type, and the preceding vehicle is a truck. , the influence of the air resistance on the own vehicle becomes greater (specifically, the running airflow received by the own vehicle is further reduced). Therefore, in the first and second setting data of this example, the shapes of a plurality of preceding vehicles are determined instead of the area difference described in the embodiment.
 第1設定データでは、短車間距離が取られた場合と長車間距離が取られた場合のそれぞれにつき、車速毎および先行車両の形状(例えば、スポーツタイプ、乗用タイプ、ボックスタイプ、トラック)毎に、空気抵抗を考慮して算出された電動モータ消費電力量が定められる。 In the first setting data, for each vehicle speed and the shape of the preceding vehicle (for example, sports type, passenger type, box type, truck) for each case of short inter-vehicle distance and long inter-vehicle distance, , the electric motor power consumption calculated taking air resistance into account is determined.
 この第1設定データにおいて、電動モータ消費電力量は、スポーツタイプ、乗用タイプ、ボックスタイプ、トラックの順に、空気抵抗の影響が大きくなると仮定して算出されたものである。 In this first setting data, the electric motor power consumption is calculated on the assumption that the influence of air resistance increases in the order of sports type, passenger type, box type, and truck.
 第2設定データでは、車間距離が取られた場合と長車間距離が取られた場合のそれぞれにつき、車速毎および先行車両の形状(例えば、スポーツタイプ、乗用タイプ、ボックスタイプ、トラック)毎に、走行風量が定められる。 In the second setting data, for each vehicle speed and the shape of the preceding vehicle (for example, sports type, passenger type, box type, truck) for each case where the inter-vehicle distance is taken and the case where the long inter-vehicle distance is taken, A running air volume is determined.
 この第2設定データでは、同じ車速であっても、スポーツタイプ、乗用タイプ、ボックスタイプ、トラックの順に、走行風量が少なくなるように定められている。 In this second setting data, even if the vehicle speed is the same, it is determined that the running air volume decreases in the order of sports type, passenger type, box type, and truck.
 また、例えば、先行車両がトラックである場合の走行風量は、どの車速であっても一定(ほぼゼロ)に定められてもよい。また、例えば、先行車両がスポーツタイプである場合、先行車両が乗用タイプである場合、先行車両がボックスタイプである場合それぞれの走行風量は、車速が大きくなるほど、増加するように定められてもよい。 Also, for example, when the preceding vehicle is a truck, the running air volume may be set constant (almost zero) at any vehicle speed. Further, for example, when the preceding vehicle is a sports type vehicle, when the preceding vehicle is a passenger type vehicle, and when the preceding vehicle is a box type vehicle, the running air volume may be determined to increase as the vehicle speed increases. .
 そして、本例では、算出部120は以下のように動作する。 Then, in this example, the calculation unit 120 operates as follows.
 まず、図2のステップS1において、算出部120は、実施の形態で説明した面積差の算出に代えて、先行車両の形状を特定する。これは、例えば、自車両の車載カメラによって撮影された先行車両の画像を解析することにより、行われる。 First, in step S1 of FIG. 2, the calculator 120 identifies the shape of the preceding vehicle instead of calculating the area difference described in the embodiment. This is done, for example, by analyzing an image of the preceding vehicle captured by the vehicle's on-board camera.
 次に、図2のステップS2において、算出部120は、設定車速、特定した先行車両の形状、上記第1設定データに基づいて第1消費電力量および第2消費電力量を算出する。 Next, in step S2 of FIG. 2, the calculation unit 120 calculates the first power consumption and the second power consumption based on the set vehicle speed, the specified shape of the preceding vehicle, and the first setting data.
 次に、図2のステップS3において、算出部120は、設定車速、特定した先行車両の形状、上記第2設定データに基づいて第1走行風量および第2走行風量を算出する。 Next, in step S3 of FIG. 2, the calculation unit 120 calculates the first running air volume and the second running air volume based on the set vehicle speed, the specified shape of the preceding vehicle, and the second set data.
 なお、ステップS4以降は、実施の形態と同様である。 It should be noted that steps after step S4 are the same as in the embodiment.
 以上説明したように、電動モータ消費電力量および冷却ファン消費電力量の算出にあたり考慮される車体差異が車体の形状の差異であっても、実施の形態と同様に、追従走行が行われる場合において消費エネルギ量を精度良く抑制することができる。 As described above, even if the vehicle body difference taken into account in calculating the electric motor power consumption and the cooling fan power consumption is a difference in the shape of the vehicle body, similar to the embodiment, when follow-up running is performed, Energy consumption can be suppressed with high accuracy.
 なお、電動モータ消費電力量および冷却ファン消費電力量の算出にあたり考慮される車体差異は、サイズの差異および形状の差異の両方であってもよい。 It should be noted that both the difference in size and the difference in shape may be taken into consideration when calculating the electric motor power consumption and the cooling fan power consumption.
 上述した変形例は、適宜組み合わせて実施されてもよい。 The modifications described above may be implemented in combination as appropriate.
 本出願は、2021年3月19日付で出願された日本国特許出願(特願2021-045786)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-045786) filed on March 19, 2021, the contents of which are incorporated herein by reference.
 本開示の車間距離判定装置および車間距離判定方法は、追従走行する場合に有用である。 The inter-vehicle distance determination device and inter-vehicle distance determination method of the present disclosure are useful when following a vehicle.
 100 車間距離判定装置
 110 記憶部
 120 算出部
 130 選択部
100 inter-vehicle distance determination device 110 storage unit 120 calculation unit 130 selection unit

Claims (8)

  1.  設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両に搭載され、
     追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速、前記車両の車体と前記先行車両の車体との差異、および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出する算出部と、
     前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択する選択部と、を有する、
     車間距離判定装置。
    Based on the set vehicle speed, it is installed in the vehicle that follows the preceding vehicle while maintaining the set inter-vehicle distance.
    Each time a plurality of vehicle-to-vehicle distances predetermined for follow-up driving are taken, the set vehicle speed, the difference between the vehicle body of the vehicle and the vehicle body of the preceding vehicle, and the travel air volume received by the vehicle. a calculation unit that calculates the amount of energy consumed by the vehicle based on
    a selection unit that selects, as the set inter-vehicle distance, the inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated energy consumption amounts among the plurality of inter-vehicle distances;
    Inter-vehicle distance determination device.
  2.  前記差異は、
     車体のサイズの差異および車体の形状の差異のうち少なくとも一方である、
     請求項1に記載の車間距離判定装置。
    Said difference is
    at least one of a difference in body size and a difference in body shape,
    The inter-vehicle distance determination device according to claim 1.
  3.  前記消費エネルギ量は、
     前記車両に搭載された冷却ファンの消費エネルギ量と、前記車両に搭載された前記冷却ファン以外の装置の消費エネルギ量とを合計した値である、
     請求項1に記載の車間距離判定装置。
    The energy consumption is
    A value obtained by summing the amount of energy consumed by a cooling fan mounted on the vehicle and the amount of energy consumed by devices other than the cooling fan mounted on the vehicle.
    The inter-vehicle distance determination device according to claim 1.
  4.  前記冷却ファンの消費エネルギ量は、
     前記冷却ファン以外の装置を冷却するために必要な空気量と、前記車両が受ける走行風量との差である前記冷却ファンの風量に基づいて算出される、
     請求項3に記載の車間距離判定装置。
    The energy consumption of the cooling fan is
    Calculated based on the air volume of the cooling fan, which is the difference between the air volume required to cool devices other than the cooling fan and the running air volume received by the vehicle,
    The inter-vehicle distance determination device according to claim 3.
  5.  選択された前記車間距離に基づいて、前記追従走行が実行されるように前記車両の操舵、加減速、制動を制御する制御部をさらに有する、
     請求項1に記載の車間距離判定装置。
    a control unit that controls steering, acceleration/deceleration, and braking of the vehicle so that the follow-up running is performed based on the selected inter-vehicle distance;
    The inter-vehicle distance determination device according to claim 1.
  6.  前記選択部は、
     選択された前記車間距離を示す情報を、前記追従走行が実行されるように前記車両の操舵、加減速、制動を制御する追従走行制御装置へ出力する、
     請求項1に記載の車間距離判定装置。
    The selection unit
    outputting information indicating the selected inter-vehicle distance to a follow-up cruise control device that controls steering, acceleration/deceleration, and braking of the vehicle so that the follow-up run is performed;
    The inter-vehicle distance determination device according to claim 1.
  7.  前記選択部は、
     選択された前記車間距離を示す情報を、前記車両に搭載され、前記車両の乗員に対して前記情報を報知する報知装置へ出力する、
     請求項1に記載の車間距離判定装置。
    The selection unit
    outputting the selected information indicating the inter-vehicle distance to a notification device mounted on the vehicle and configured to notify an occupant of the vehicle of the information;
    The inter-vehicle distance determination device according to claim 1.
  8.  設定された車速に基づいて、設定された車間距離を保ちながら先行車両に追従走行する車両で行われ、
     追従走行用として予め定められた複数の車間距離のそれぞれが取られた場合毎に、前記設定された車速、前記車両の車体と前記先行車両の車体との差異、および前記車両が受ける走行風量に基づいて、前記車両で消費される消費エネルギ量を算出するステップと、
     前記複数の車間距離のうち、算出された複数の前記消費エネルギ量の中で最も小さい消費エネルギ量に相当する車間距離を、前記設定された車間距離として選択するステップと、を有する、
     車間距離判定方法。
    Based on the set vehicle speed, the vehicle follows the preceding vehicle while maintaining the set inter-vehicle distance.
    Each time a plurality of vehicle-to-vehicle distances predetermined for follow-up driving are taken, the set vehicle speed, the difference between the vehicle body of the vehicle and the vehicle body of the preceding vehicle, and the travel air volume received by the vehicle. calculating the amount of energy consumed by the vehicle based on
    selecting, from among the plurality of inter-vehicle distances, the inter-vehicle distance corresponding to the smallest energy consumption amount among the plurality of calculated energy consumption amounts as the set inter-vehicle distance;
    Inter-vehicle distance judgment method.
PCT/JP2022/011574 2021-03-19 2022-03-15 Device for assessing inter-vehicle distance, and method for assessing inter-vehicle distance WO2022196680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-045786 2021-03-19
JP2021045786A JP7367719B2 (en) 2021-03-19 2021-03-19 Inter-vehicle distance determination device and inter-vehicle distance determination method

Publications (1)

Publication Number Publication Date
WO2022196680A1 true WO2022196680A1 (en) 2022-09-22

Family

ID=83321034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011574 WO2022196680A1 (en) 2021-03-19 2022-03-15 Device for assessing inter-vehicle distance, and method for assessing inter-vehicle distance

Country Status (2)

Country Link
JP (1) JP7367719B2 (en)
WO (1) WO2022196680A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133250A (en) * 1991-11-14 1993-05-28 Toyota Motor Corp Travel controller for vehicle
JPH0789366A (en) * 1993-09-22 1995-04-04 Mitsubishi Motors Corp Travel controller for automobile
JP2020011683A (en) * 2018-07-20 2020-01-23 株式会社Subaru Vehicle control device
US20200216069A1 (en) * 2017-09-15 2020-07-09 Bayerische Motoren Werke Aktiengesellschaft Adaptive Distance Selection for Optimizing Efficiency

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3301093B2 (en) * 1991-11-12 2002-07-15 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133250A (en) * 1991-11-14 1993-05-28 Toyota Motor Corp Travel controller for vehicle
JPH0789366A (en) * 1993-09-22 1995-04-04 Mitsubishi Motors Corp Travel controller for automobile
US20200216069A1 (en) * 2017-09-15 2020-07-09 Bayerische Motoren Werke Aktiengesellschaft Adaptive Distance Selection for Optimizing Efficiency
JP2020011683A (en) * 2018-07-20 2020-01-23 株式会社Subaru Vehicle control device

Also Published As

Publication number Publication date
JP2022144674A (en) 2022-10-03
JP7367719B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
US11590974B2 (en) Method for assisting a driver in the driving of a motor vehicle
US6415746B2 (en) Apparatus and method for controlling duty ratio for cooling fan associated motor of vehicle
US11794721B2 (en) Method and apparatus for controlling electric machines
US11345347B2 (en) Brake control device for vehicle
JP6950524B2 (en) Hybrid vehicle control device
JP2006213210A (en) On-vehicle battery cooling device
JP2014240233A (en) Drive support system
JP6496790B2 (en) In-vehicle equipment cooling system
WO2022196680A1 (en) Device for assessing inter-vehicle distance, and method for assessing inter-vehicle distance
JP7322912B2 (en) Inter-vehicle distance determination device
JP7331878B2 (en) Inter-vehicle distance determination device
JPWO2014181578A1 (en) Control device for hybrid vehicle
KR20190002986A (en) Hybrid vehicle and method of controlling in response to driving load for the same
JP7359182B2 (en) Inter-vehicle distance determination device and inter-vehicle distance determination method
JP5812117B2 (en) Method for controlling vehicle, vehicle control apparatus
US20160297423A1 (en) Method and device for controlling a hybrid drive in a vehicle
JP7363702B2 (en) motor drive device
US10654485B2 (en) Controller for vehicle and information providing method
US10821962B2 (en) Vehicle control system, vehicle control method, and storage medium
JP6025023B2 (en) Alternator operation control device and operation control method
US20240192003A1 (en) Energy calculating apparatus
JP2021194991A (en) Vehicle control device
CN117922278A (en) Thermal management control method of driving system, electronic equipment and vehicle
CN113037149A (en) Motor driving device and motor driving method
JP2023045407A (en) Hybrid-vehicular control method and hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771425

Country of ref document: EP

Kind code of ref document: A1