WO2022196642A1 - Transient voltage absorbing circuit - Google Patents

Transient voltage absorbing circuit Download PDF

Info

Publication number
WO2022196642A1
WO2022196642A1 PCT/JP2022/011359 JP2022011359W WO2022196642A1 WO 2022196642 A1 WO2022196642 A1 WO 2022196642A1 JP 2022011359 W JP2022011359 W JP 2022011359W WO 2022196642 A1 WO2022196642 A1 WO 2022196642A1
Authority
WO
WIPO (PCT)
Prior art keywords
transient voltage
stray capacitance
component
signal line
characteristic
Prior art date
Application number
PCT/JP2022/011359
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 安藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022196642A1 publication Critical patent/WO2022196642A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/01Frequency selective two-port networks

Definitions

  • the present invention relates to a transient voltage absorption circuit that protects electronic devices by absorbing transient high voltage abnormal voltages caused by ESD (electrostatic discharge) and the like, lightning surges, switching surges, and other surges.
  • ESD electrostatic discharge
  • Patent Document 1 discloses a high-frequency semiconductor circuit that reduces harmonic distortion and has an electrostatic discharge protection circuit, and a wireless communication device that includes the same.
  • Patent Document 1 by inserting an inductor in series with a transient voltage absorbing element, leakage of high frequency signals to the ground is suppressed, and the high frequency passing characteristics of the transmission line are improved.
  • the inductor connected in series with the transient voltage absorbing element can be a factor that hinders the function of the transient voltage absorbing element.
  • an object of the present invention is to provide a transient voltage absorption circuit in which the surge absorption function of the transient voltage absorption element is enhanced without degrading the high frequency pass characteristics of the transmission line.
  • a transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element connected in a shunt between the signal line and a reference potential,
  • the transient voltage absorbing element has a stray capacitance component between terminals, and the impedance of the impedance element and the stray capacitance component of the transient voltage absorbing element are in a Butterworth low-pass filter composed of the impedance element and the transient voltage absorbing element. It is characterized by being a value that constitutes a characteristic.
  • a transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element shunt-connected between the signal line and a reference potential,
  • the stray capacitance component between terminals of the transient voltage absorbing element is C
  • the inductance component of the impedance element is L
  • the characteristic impedance of the signal line is Zm
  • a transient voltage absorbing circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorbing element shunt-connected between the signal line and a reference potential,
  • the impedance element includes an inductance component
  • the transient voltage absorption element has a stray capacitance component between terminals
  • the lower limit of the inductance component is 19.1 pH and 0 3 pF
  • the lower limit of the inductance component and the upper limit of the stray capacitance component are set at 378.6 pH and 0.48 pF
  • the upper limit of the inductance component is 1636 pH and the lower limit of the stray capacitance component is 1636 pH.
  • 9 pH and 0.3 pF and the upper limit of the inductance component and the upper limit of the stray capacitance component are determined at 673.2 pH and 0.48 pF.
  • a transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element connected in a shunt between the signal line and a reference potential,
  • the impedance element includes an inductance component
  • the transient voltage absorption element has a stray capacitance component between terminals
  • the lower limit of the inductance component is 6.1 pH and 0
  • the lower limit of the inductance component and the upper limit of the stray capacitance component are set to 126.2 pH and 0.16 pF
  • the upper limit of the inductance component is 545 pF. .6 pH and 0.10 pF
  • the upper limit of the inductance component and the upper limit of the stray capacitance component are set at 224.4 pH and 0.16 pF.
  • the present invention it is possible to obtain a transient voltage absorption circuit in which the surge absorption function of the transient voltage absorption element is enhanced without deteriorating the high frequency pass characteristics of the transmission line.
  • FIG. 1 is a circuit diagram of a transient voltage absorption circuit 101 according to the first embodiment.
  • FIG. 2 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 101.
  • FIG. 3 shows the conditions showing the Butterworth characteristics and the upper and lower limits of the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit 101 and the stray capacitance component of the transient voltage absorption element 11.
  • FIG. 10 shows.
  • FIG. 4 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG. FIG.
  • FIG. 5 is a diagram showing pass characteristics when the stray capacitance component is 0.4 pF and the inductance component is 1200 pH.
  • the upper part of FIG. 6 is a plan view of the transient voltage absorption circuit 102, the middle part of FIG. 6 is a cross-sectional view of the AA part in the upper figure, and the lower part of FIG. 6 is a cross-sectional view of the BB part in the upper figure. be.
  • FIG. 7 is a circuit diagram of the transient voltage absorption circuit 103 according to the third embodiment.
  • FIG. 8 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 103. As shown in FIG. The upper part of FIG.
  • FIG. 9 is a plan view of the transient voltage absorption circuit 103A, and the lower part of FIG. 9 is a cross-sectional view of the CC portion in the upper figure.
  • the upper part of FIG. 10 is a plan view of the transient voltage absorption circuit 103B, and the lower part of FIG.
  • FIG. 11 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit according to the fourth embodiment.
  • FIG. 12 shows the conditions showing the Butterworth characteristics and the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit according to the fourth embodiment and the stray capacitance of the transient voltage absorption element 11. is a diagram showing the upper and lower limits of .
  • FIG. 13 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
  • FIG. 1 is a circuit diagram of a transient voltage absorption circuit 101 according to the first embodiment.
  • the transient voltage absorption circuit 101 comprises a first terminal T1, a second terminal T2, a third terminal T3, and a signal line SL existing between the first terminal T1 and the second terminal T2.
  • the third terminal T3 is connected to a reference potential such as ground.
  • Impedance elements Z1 and Z2 are connected in series to the signal line SL, and a transient voltage absorbing element 11 is shunt-connected between the signal line SL and the third terminal T3 (reference potential).
  • the transient voltage absorption element 11 is a two-terminal element and has a stray capacitance component between its terminals.
  • the impedance of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11 constitute a low-pass filter.
  • the impedance of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11 are values that indicate the Butterworth characteristic of the low-pass filter composed of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11.
  • the transient voltage absorption element 11 is composed of two diodes connected in series with forward directions opposite to each other.
  • the impedance elements Z1 and Z2 are an inductance component and a resistance component included in the signal line SL, and the impedance elements Z1 and Z2 are illustrated as circuit elements in FIG.
  • FIG. 2 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 101.
  • B is the characteristic of the transient voltage absorption circuit 101 according to this embodiment
  • A is the characteristic of the transient voltage absorption circuit as a comparative example.
  • the "pass characteristic improvement section" is 16 GHz or less.
  • the characteristic A of the transient voltage absorption circuit of the comparative example is the non-Butterworth characteristic
  • the characteristic B of the transient voltage absorption circuit 101 according to the present embodiment is the Butterworth characteristic.
  • Property A is the Bessel property in this example.
  • the Bessel characteristic which is also called the Bessel filter characteristic, is a type of linear filter characterized by maximally flat group delay (linear phase response).
  • the Butterworth characteristic also called the Butterworth filter characteristic or the maximum average characteristic, is a frequency characteristic in which the passband is as flat as possible mathematically, and ripples in the passband (non-direct current appearing in the output) component) is as few as possible.
  • the pass characteristic improvement section of the low-pass filter of the transient voltage absorption circuit 101 of the present embodiment and the pass characteristic improvement section of the low-pass filter of the transient voltage absorption circuit of the comparative example are compared, the passage in the high frequency band of the pass characteristic improvement section loss is small.
  • the impedance elements Z1 and Z2 shown in FIG. 1 each contain an inductance component, and the transient voltage absorption element 11 has a stray capacitance component between terminals.
  • FIG. 3 shows the conditions showing the Butterworth characteristics and the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit 101 according to the present embodiment and the stray capacitance component of the transient voltage absorption element 11. is a diagram showing the upper and lower limits of .
  • FIG. 4 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
  • L is the inductance component of the impedance elements Z1 and Z2
  • C is the stray capacitance component of the transient voltage absorbing element 11
  • Zm is the impedance of the low-pass filter, which is the characteristic impedance of the signal line SL.
  • the characteristic line MIN is the lower limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained
  • the characteristic line MAX is the characteristics similar to the Butterworth characteristics.
  • the inductance components of the impedance elements Z1 and Z2 are 375 pH, and the stray capacitance component of the transient voltage absorbing element 11 is 0.48 pF.
  • the inductance components of the impedance elements Z1 and Z2 are 600 pH.
  • the lower limit characteristic line MIN of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained is 19.1 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.30 pF. and 378.6 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.48 pF.
  • the upper limit characteristic line MAX of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 1636.9 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.30 pF. and 673.2 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.48 pF.
  • a transient voltage absorption circuit inserted between the USB4 signal line and ground is required to have a pass characteristic of -0.8 dB or more at 10 GHz.
  • the stray capacitance component is within the range of 0.30 pF to 0.48 pF, and the inductance component of the signal line is the lower limit characteristic line MIN and the upper limit characteristic line MIN in FIG. It must be within the range surrounded by lines MAX and .
  • the stray capacitance component When the stray capacitance component is less than 0.30 pF, the characteristics required for USB4 can be satisfied without using the configuration shown in this embodiment. Further, when the stray capacitance component exceeds 0.48 pF, even if the configuration shown in this embodiment is used, the characteristics required for USB4 cannot be satisfied.
  • FIG. 5 shows pass characteristics when the stray capacitance component is 0.4 pF and the inductance component is 1200 pH, which are outside the range of the inductance component shown in FIG.
  • the pass characteristic at 10 GHz is -1.2 dB, which does not satisfy the characteristics required for USB4.
  • the second embodiment illustrates the structure of the transient voltage absorption circuit.
  • the upper part of FIG. 6 is a plan view of the transient voltage absorption circuit 102
  • the middle part of FIG. 6 is a cross-sectional view of the AA part in the upper figure
  • the lower part of FIG. 6 is a cross-sectional view of the BB part in the upper figure. be.
  • the transient voltage absorption circuit 102 includes a semiconductor substrate 10 and a rewiring layer 20 .
  • a transient voltage absorbing element 11 is formed on a semiconductor substrate 10 .
  • the transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
  • a rewiring layer 20 is formed on the surface of the semiconductor substrate 10 .
  • a first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 .
  • an internal wiring 12 is formed to connect between the first terminal T1 and the second terminal T2.
  • An internal wiring connection portion 13 is formed for connecting 12 and the third terminal T3.
  • a transient voltage absorbing element connecting portion 14 for connecting between the internal wiring 12 and the transient voltage absorbing element 11 is formed inside the rewiring layer 20 .
  • a circuit diagram of the transient voltage absorption circuit 102 according to the present embodiment is as shown in FIG. It is composed of a voltage absorbing element connecting portion 14 .
  • a transient voltage absorption circuit connected in parallel to a signal line or connected to a capacitor that passes the signal line is illustrated.
  • FIG. 7 is a circuit diagram of the transient voltage absorption circuit 103 according to the third embodiment.
  • the transient voltage absorption circuit 103 includes a first terminal T1, a second terminal T2, a third terminal T3, and a signal line SL existing between the first terminal T1 and the second terminal T2.
  • the third terminal T3 is connected to a reference potential such as ground.
  • Inductance components L1 and L2 are connected in series to the signal line SL, and a transient voltage absorbing element 11 is shunt-connected between the signal line SL and the third terminal T3 (reference potential).
  • the inductance components L1 and L2 are the inductance components of the signal line SL.
  • the inductance of the inductance components L1 and L2 and the stray capacitance component of the transient voltage absorption element 11 are values that indicate the Butterworth characteristic of the low-pass filter composed of the inductance components L1 and L2 and the stray capacitance component of the transient voltage absorption element 11.
  • a capacitor C1 is connected between the first terminal T1 and the second terminal T2. That is, the capacitor C1 is connected in parallel with the inductance components L1 and L2.
  • the capacitor C1 and the inductance components L1 and L2 constitute a band rejection filter and a notch filter.
  • FIG. 8 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 103.
  • A is the characteristic of the transient voltage absorption circuit as a comparative example
  • B is the characteristic of the transient voltage absorption circuit 101 according to the first embodiment
  • C is the transient voltage absorption circuit 103 according to the present embodiment. is a characteristic of
  • frequency fo corresponds to the parallel resonance frequency of capacitor C1 and inductance components L1 and L2 shown in FIG.
  • the transmission coefficient S21 from the first terminal T1 to the second terminal T2 decreases at the frequency fo and increases at higher frequencies. Therefore, a low insertion loss characteristic can be obtained even in a frequency band higher than the frequency fo.
  • FIG. 9 The upper part of FIG. 9 is a plan view of the transient voltage absorption circuit 103A, and the lower part of FIG. 9 is a cross-sectional view of the CC portion in the upper figure.
  • the transient voltage absorption circuit 103A includes a semiconductor substrate 10 and a rewiring layer 20.
  • a transient voltage absorbing element 11 is formed on a semiconductor substrate 10 .
  • the transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
  • a rewiring layer 20 is formed on the surface of the semiconductor substrate 10 .
  • a first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 .
  • an internal wiring 12 is formed inside the rewiring layer 20, to form (connect) a stray capacitance C12 between the first terminal T1 and the second terminal T2.
  • Other configurations are the same as the example shown in FIG.
  • FIG. 10 The upper part of FIG. 10 is a plan view of the transient voltage absorption circuit 103B, and the lower part of FIG. 10 is a cross-sectional view of the CC portion in the upper figure.
  • the transient voltage absorption circuit 103B includes a semiconductor substrate 10 and a rewiring layer 20.
  • a transient voltage absorbing element 11 is formed on a semiconductor substrate 10 .
  • the transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
  • a rewiring layer 20 is formed on the surface of the semiconductor substrate 10 .
  • a first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 .
  • the first terminal T1 and the second terminal T2 are shaped to form a stray capacitance C12 therebetween.
  • Other configurations are the same as the example shown in FIG.
  • FIG. 11 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit according to this embodiment.
  • B is the characteristic of the transient voltage absorption circuit according to this embodiment
  • A is the characteristic of the transient voltage absorption circuit as a comparative example.
  • the "pass characteristic improvement section" is 46 GHz or less.
  • FIG. 12 shows the conditions showing the Butterworth characteristic and the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit according to the present embodiment and the stray capacitance component of the transient voltage absorption element 11, and the relationship between the inductance components. It is a figure which shows an upper limit and a lower limit.
  • FIG. 13 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
  • the stray capacitance component of the transient voltage absorption element is less than 0.16 pF, and the "transmission characteristic improvement section" is 46 GHz or less.
  • the characteristic line MIN is the lower limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained
  • the characteristic line MAX is the characteristics similar to the Butterworth characteristics.
  • the inductance components of the impedance elements Z1 and Z2 are 125 pH, and the stray capacitance component of the transient voltage absorbing element 11 is 0.10 pF.
  • the inductance components of impedance elements Z1 and Z2 are 200 pH.
  • the lower limit characteristic line MIN of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 6.1 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.10 pF. and 126.2 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.16 pF.
  • the upper limit characteristic line MAX of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 545.6 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.10 pF. and 224.4 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.16 pF.
  • the transient voltage absorption circuit inserted between the signal line and the ground is required to have a pass characteristic of -0.8 dB or more at 30 GHz
  • the transient voltage absorption circuit according to the present embodiment must have a stray capacitance to satisfy this characteristic.
  • the component is within the range of 0.10 pF to 0.16 pF, and the inductance component of the signal line must be within the range surrounded by the lower limit characteristic line MIN and the upper limit characteristic line MAX in FIG.
  • the above characteristics can be satisfied without using the configuration shown in this embodiment. Further, when the stray capacitance component exceeds 0.16 pF, even if the configuration shown in this embodiment is used, the above characteristics cannot be satisfied.
  • the impedance of the signal line SL has a resistance component
  • the resistance component and the stray capacitance component of the transient voltage absorption element constitute a low-pass filter
  • the resistance component and the stray capacitance component of the low-pass filter have Butterworth characteristics. It may be a value indicating
  • the impedance elements Z1 and Z2 may be impedance elements as circuit elements as well as impedance components of the signal line SL.

Abstract

A transient voltage absorbing circuit (101) comprises impedance elements (Z1, Z2) connected in series to a signal line (SL), and a transient voltage absorbing element (11) connected as a shunt between the signal line (SL) and a reference potential. The transient voltage absorbing element (11) has a floating capacitance component across terminals. The impedance of the impedance elements (Z1, Z2) and the floating capacitance component of the transient voltage absorbing element (11) have values such that a low-pass filter composed of the impedance elements (Z1, Z2) and the transient voltage absorbing element (11) exhibits a Butterworth characteristic.

Description

過渡電圧吸収回路Transient voltage absorption circuit
 本発明は、ESD(静電気放電)等による過渡的な高電圧異常電圧や、雷サージ、開閉サージ等のサージを吸収して、電子機器を保護する過渡電圧吸収回路に関する。 The present invention relates to a transient voltage absorption circuit that protects electronic devices by absorbing transient high voltage abnormal voltages caused by ESD (electrostatic discharge) and the like, lightning surges, switching surges, and other surges.
 一般に、伝送線路とグランドとの間に過渡電圧吸収素子を挿入すると、過渡電圧吸収素子の寄生容量によって高周波信号がグランドへ漏れ、伝送線路の伝送特性が悪化する。 In general, when a transient voltage absorption element is inserted between the transmission line and the ground, high-frequency signals leak to the ground due to the parasitic capacitance of the transient voltage absorption element, deteriorating the transmission characteristics of the transmission line.
 特許文献1には、高調波歪を低減し且つ静電放電保護回路を有する高周波半導体回路及びそれを備えた無線通信機器が示されている。この特許文献1では、過渡電圧吸収素子に対して直列にインダクタを挿入することで、グランドへの高周波信号の漏れを抑制し、伝送線路の高周波通過特性が改善される。 Patent Document 1 discloses a high-frequency semiconductor circuit that reduces harmonic distortion and has an electrostatic discharge protection circuit, and a wireless communication device that includes the same. In Patent Document 1, by inserting an inductor in series with a transient voltage absorbing element, leakage of high frequency signals to the ground is suppressed, and the high frequency passing characteristics of the transmission line are improved.
特開2007-13031号公報Japanese Unexamined Patent Application Publication No. 2007-13031
 特許文献1に記載の高周波半導体回路及びそれを備えた無線通信機器では、過渡電圧吸収素子に対して直列に接続しているインダクタは、過渡電圧吸収素子の機能を阻害する要因となり得る。 In the high-frequency semiconductor circuit and the wireless communication device including the same described in Patent Document 1, the inductor connected in series with the transient voltage absorbing element can be a factor that hinders the function of the transient voltage absorbing element.
 そこで、本発明の目的は、伝送線路の高周波通過特性を低下させることなく、過渡電圧吸収素子のサージ吸収機能を高めた過渡電圧吸収回路を提供することにある。 Therefore, an object of the present invention is to provide a transient voltage absorption circuit in which the surge absorption function of the transient voltage absorption element is enhanced without degrading the high frequency pass characteristics of the transmission line.
(A)本開示の一例としての過渡電圧吸収回路は、信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、前記インピーダンス素子のインピーダンス及び前記過渡電圧吸収素子の浮遊容量成分は、前記インピーダンス素子及び前記過渡電圧吸収素子で構成されるローパスフィルタがバターワース特性を構成する値であることを特徴とする。 (A) A transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element connected in a shunt between the signal line and a reference potential, The transient voltage absorbing element has a stray capacitance component between terminals, and the impedance of the impedance element and the stray capacitance component of the transient voltage absorbing element are in a Butterworth low-pass filter composed of the impedance element and the transient voltage absorbing element. It is characterized by being a value that constitutes a characteristic.
(B)本開示の一例としての過渡電圧吸収回路は、信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、前記過渡電圧吸収素子が有する、端子間の浮遊容量成分をC、前記インピーダンス素子のインダクタンス成分をL、前記信号ラインの特性インピーダンスをZmで表すとき、2L=CZm^2の関係にあることを特徴とする。 (B) A transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element shunt-connected between the signal line and a reference potential, When the stray capacitance component between terminals of the transient voltage absorbing element is C, the inductance component of the impedance element is L, and the characteristic impedance of the signal line is Zm, the relationship is 2L=CZm^2. and
(C)本開示の一例としての過渡電圧吸収回路は、信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、前記インピーダンス素子はインダクタンス成分を含み、前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、前記インダクタンス成分の下限は、前記インダクタンス成分の下限かつ前記浮遊容量成分の下限が19.1pHかつ0.3pFであり、前記インダクタンス成分の下限かつ前記浮遊容量成分の上限が378.6pHかつ0.48pFで定められ、前記インダクタンス成分の上限は、前記インダクタンス成分の上限かつ前記浮遊容量成分の下限が1636.9pHかつ0.3pFであり、前記インダクタンス成分の上限かつ前記浮遊容量成分の上限が673.2pHかつ0.48pFで定められる。 (C) A transient voltage absorbing circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorbing element shunt-connected between the signal line and a reference potential, The impedance element includes an inductance component, the transient voltage absorption element has a stray capacitance component between terminals, and the lower limit of the inductance component is 19.1 pH and 0 3 pF, and the lower limit of the inductance component and the upper limit of the stray capacitance component are set at 378.6 pH and 0.48 pF, and the upper limit of the inductance component is 1636 pH and the lower limit of the stray capacitance component is 1636 pH. 9 pH and 0.3 pF, and the upper limit of the inductance component and the upper limit of the stray capacitance component are determined at 673.2 pH and 0.48 pF.
(D)本開示の一例としての過渡電圧吸収回路は、信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、前記インピーダンス素子はインダクタンス成分を含み、前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、前記インダクタンス成分の下限は、前記インダクタンス成分の下限かつ前記浮遊容量成分の下限が6.1pHかつ0.10pFであり、前記インダクタンス成分の下限かつ前記浮遊容量成分の上限が126.2pHかつ0.16pFで定められ、前記インダクタンス成分の上限は、前記インダクタンス成分の上限かつ前記浮遊容量成分の下限が545.6pHかつ0.10pFであり、前記インダクタンス成分の上限かつ前記浮遊容量成分の上限が224.4pHかつ0.16pFで定められる。 (D) A transient voltage absorption circuit as an example of the present disclosure includes an impedance element connected in series to a signal line, and a transient voltage absorption element connected in a shunt between the signal line and a reference potential, The impedance element includes an inductance component, the transient voltage absorption element has a stray capacitance component between terminals, and the lower limit of the inductance component is 6.1 pH and 0 The lower limit of the inductance component and the upper limit of the stray capacitance component are set to 126.2 pH and 0.16 pF, and the upper limit of the inductance component is 545 pF. .6 pH and 0.10 pF, and the upper limit of the inductance component and the upper limit of the stray capacitance component are set at 224.4 pH and 0.16 pF.
 本発明によれば、伝送線路の高周波通過特性を低下させることなく、過渡電圧吸収素子のサージ吸収機能を高めた過渡電圧吸収回路が得られる。 According to the present invention, it is possible to obtain a transient voltage absorption circuit in which the surge absorption function of the transient voltage absorption element is enhanced without deteriorating the high frequency pass characteristics of the transmission line.
図1は第1の実施形態に係る過渡電圧吸収回路101の回路図である。FIG. 1 is a circuit diagram of a transient voltage absorption circuit 101 according to the first embodiment. 図2は過渡電圧吸収回路101の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。FIG. 2 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 101. As shown in FIG. 図3は、過渡電圧吸収回路101のインピーダンス素子Z1,Z2のインダクタンス成分と、過渡電圧吸収素子11の浮遊容量成分との関係で示される、バターワース特性を示す条件と、インダクタンス成分の上限及び下限を示す図である。FIG. 3 shows the conditions showing the Butterworth characteristics and the upper and lower limits of the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit 101 and the stray capacitance component of the transient voltage absorption element 11. FIG. 10 shows. 図4は図3中の各点の浮遊容量成分とインダクタンス成分の数値を示す図である。FIG. 4 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG. 図5は、浮遊容量成分が0.4pF、インダクタンス成分が1200pHである場合の通過特性を示す図である。FIG. 5 is a diagram showing pass characteristics when the stray capacitance component is 0.4 pF and the inductance component is 1200 pH. 図6の上部は過渡電圧吸収回路102の平面図、図6の中部は上部の図におけるA-A部分の断面図であり、図6の下部は上部の図におけるB-B部分の断面図である。The upper part of FIG. 6 is a plan view of the transient voltage absorption circuit 102, the middle part of FIG. 6 is a cross-sectional view of the AA part in the upper figure, and the lower part of FIG. 6 is a cross-sectional view of the BB part in the upper figure. be. 図7は第3の実施形態に係る過渡電圧吸収回路103の回路図である。FIG. 7 is a circuit diagram of the transient voltage absorption circuit 103 according to the third embodiment. 図8は過渡電圧吸収回路103の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。FIG. 8 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 103. As shown in FIG. 図9の上部は過渡電圧吸収回路103Aの平面図、図9の下部は上部の図におけるC-C部分の断面図である。The upper part of FIG. 9 is a plan view of the transient voltage absorption circuit 103A, and the lower part of FIG. 9 is a cross-sectional view of the CC portion in the upper figure. 図10の上部は過渡電圧吸収回路103Bの平面図、図10の下部は上部の図におけるC-C部分の断面図である。The upper part of FIG. 10 is a plan view of the transient voltage absorption circuit 103B, and the lower part of FIG. 図11は第4の実施形態に係る過渡電圧吸収回路の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。FIG. 11 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit according to the fourth embodiment. 図12は、第4の実施形態に係る過渡電圧吸収回路のインピーダンス素子Z1,Z2のインダクタンス成分と、過渡電圧吸収素子11の浮遊容量との関係で示される、バターワース特性を示す条件と、インダクタンス成分の上限及び下限を示す図である。FIG. 12 shows the conditions showing the Butterworth characteristics and the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit according to the fourth embodiment and the stray capacitance of the transient voltage absorption element 11. is a diagram showing the upper and lower limits of . 図13は図12中の各点の浮遊容量成分とインダクタンス成分の数値を示す図である。FIG. 13 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、実施形態を説明の便宜上、複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, a plurality of modes for carrying out the present invention will be shown by giving several specific examples with reference to the drawings. The same symbols are attached to the same parts in each figure. For ease of explanation or understanding of the main points, the embodiment is divided into a plurality of embodiments for convenience of explanation, but partial replacement or combination of configurations shown in different embodiments is possible. In the second and subsequent embodiments, descriptions of matters common to the first embodiment will be omitted, and only different points will be described. In particular, similar actions and effects due to similar configurations will not be mentioned sequentially for each embodiment.
《第1の実施形態》
 図1は第1の実施形態に係る過渡電圧吸収回路101の回路図である。この過渡電圧吸収回路101は、第1端子T1、第2端子T2、第3端子T3、及び第1端子T1と第2端子T2との間に存在する信号ラインSLを備える。第3端子T3はグランド等の基準電位に接続される。また、信号ラインSLにはインピーダンス素子Z1,Z2がシリーズに接続されていて、信号ラインSLと第3端子T3(基準電位)との間に過渡電圧吸収素子11がシャントに接続されている。
<<1st Embodiment>>
FIG. 1 is a circuit diagram of a transient voltage absorption circuit 101 according to the first embodiment. The transient voltage absorption circuit 101 comprises a first terminal T1, a second terminal T2, a third terminal T3, and a signal line SL existing between the first terminal T1 and the second terminal T2. The third terminal T3 is connected to a reference potential such as ground. Impedance elements Z1 and Z2 are connected in series to the signal line SL, and a transient voltage absorbing element 11 is shunt-connected between the signal line SL and the third terminal T3 (reference potential).
 過渡電圧吸収素子11は2端子素子であり、その端子間に浮遊容量成分を有する。インピーダンス素子Z1,Z2のインピーダンスと過渡電圧吸収素子11の浮遊容量成分とで、ローパスフィルタが構成されている。 The transient voltage absorption element 11 is a two-terminal element and has a stray capacitance component between its terminals. The impedance of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11 constitute a low-pass filter.
 インピーダンス素子Z1,Z2のインピーダンス及び過渡電圧吸収素子11の浮遊容量成分は、インピーダンス素子Z1,Z2及び過渡電圧吸収素子11の浮遊容量成分で構成されるローパスフィルタがバターワース特性を示す値である。 The impedance of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11 are values that indicate the Butterworth characteristic of the low-pass filter composed of the impedance elements Z1 and Z2 and the stray capacitance component of the transient voltage absorption element 11.
 過渡電圧吸収素子11は、順方向を互いに逆向きに直列接続した2つのダイオードで構成されている。 The transient voltage absorption element 11 is composed of two diodes connected in series with forward directions opposite to each other.
 インピーダンス素子Z1,Z2は、信号ラインSLに含まれるインダクタンス成分及び抵抗成分であり、図1においてはインピーダンス素子Z1,Z2を回路素子として図示している。 The impedance elements Z1 and Z2 are an inductance component and a resistance component included in the signal line SL, and the impedance elements Z1 and Z2 are illustrated as circuit elements in FIG.
 図2は過渡電圧吸収回路101の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。図2において、Bは本実施形態に係る過渡電圧吸収回路101の特性であり、Aは比較例としての過渡電圧吸収回路の特性である。図2において、「通過特性改善区間」は16GHz以下である。 FIG. 2 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 101. FIG. In FIG. 2, B is the characteristic of the transient voltage absorption circuit 101 according to this embodiment, and A is the characteristic of the transient voltage absorption circuit as a comparative example. In FIG. 2, the "pass characteristic improvement section" is 16 GHz or less.
 図2において、比較例の過渡電圧吸収回路の特性Aは非バターワース特性であり、本実施形態に係る過渡電圧吸収回路101の特性Bはバターワース特性である。特性Aはこの例ではベッセル特性である。ベッセル特性は、ベッセルフィルタ特性とも呼ばれ、線形フィルタの一種で、群遅延が最大限平坦(線形位相応答)であることが特徴である。一方、バターワース特性は、バターワースフィルタ(Butterworth filter)特性、最大平均特性、とも呼ばれ、通過域が数学的に可能な限り平坦な周波数特性であり、通過帯域でのリプル(出力に現れる直流以外の成分)が可能な限り無いフィルタ特性のことである。そのため、本実施形態の過渡電圧吸収回路101のローパスフィルタの通過特性改善区間と、比較例の過渡電圧吸収回路のローパスフィルタの通過特性改善区間とを比較すると、通過特性改善区間の高周波帯における通過損失は小さい。 In FIG. 2, the characteristic A of the transient voltage absorption circuit of the comparative example is the non-Butterworth characteristic, and the characteristic B of the transient voltage absorption circuit 101 according to the present embodiment is the Butterworth characteristic. Property A is the Bessel property in this example. The Bessel characteristic, which is also called the Bessel filter characteristic, is a type of linear filter characterized by maximally flat group delay (linear phase response). On the other hand, the Butterworth characteristic, also called the Butterworth filter characteristic or the maximum average characteristic, is a frequency characteristic in which the passband is as flat as possible mathematically, and ripples in the passband (non-direct current appearing in the output) component) is as few as possible. Therefore, when the pass characteristic improvement section of the low-pass filter of the transient voltage absorption circuit 101 of the present embodiment and the pass characteristic improvement section of the low-pass filter of the transient voltage absorption circuit of the comparative example are compared, the passage in the high frequency band of the pass characteristic improvement section loss is small.
 図1に示すインピーダンス素子Z1,Z2はそれぞれインダクタンス成分を含み、過渡電圧吸収素子11は端子間に浮遊容量成分を有する。図3は、本実施形態に係る過渡電圧吸収回路101のインピーダンス素子Z1,Z2のインダクタンス成分と、過渡電圧吸収素子11の浮遊容量成分との関係で示される、バターワース特性を示す条件と、インダクタンス成分の上限及び下限を示す図である。図4は図3中の各点の浮遊容量成分とインダクタンス成分の数値を示す図である。 The impedance elements Z1 and Z2 shown in FIG. 1 each contain an inductance component, and the transient voltage absorption element 11 has a stray capacitance component between terminals. FIG. 3 shows the conditions showing the Butterworth characteristics and the inductance components, which are shown by the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit 101 according to the present embodiment and the stray capacitance component of the transient voltage absorption element 11. is a diagram showing the upper and lower limits of . FIG. 4 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
 バターワース特性が得られる条件は、
 2L=CZm2    -(1)
を満たすことである。ここで、Lはインピーダンス素子Z1,Z2のインダクタンス成分、Cは過渡電圧吸収素子11の浮遊容量成分、Zmはローパスフィルタのインピーダンスであり、信号ラインSLの特性インピーダンスである。
The conditions for obtaining Butterworth characteristics are
2L=CZm 2 -(1)
is to satisfy Here, L is the inductance component of the impedance elements Z1 and Z2, C is the stray capacitance component of the transient voltage absorbing element 11, and Zm is the impedance of the low-pass filter, which is the characteristic impedance of the signal line SL.
 図3において、特性ラインTYPは、Zm=50Ωとした場合に、上記式(1)を満たす条件をプロットしたものである。また、図3において特性ラインMINはバターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の下限の特性ラインであり、特性ラインMAXはバターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の上限の特性ラインである。 In FIG. 3, the characteristic line TYP plots the conditions satisfying the above formula (1) when Zm=50Ω. In FIG. 3, the characteristic line MIN is the lower limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained, and the characteristic line MAX is the characteristics similar to the Butterworth characteristics. is the upper limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that
 バターワース特性が得られる条件において、過渡電圧吸収素子11の浮遊容量成分が0.30pFである場合、インピーダンス素子Z1,Z2のインダクタンス成分は375pHであり、過渡電圧吸収素子11の浮遊容量成分が0.48pFである場合、インピーダンス素子Z1,Z2のインダクタンス成分は600pHである。 When the transient voltage absorbing element 11 has a stray capacitance component of 0.30 pF under the condition that the Butterworth characteristic is obtained, the inductance components of the impedance elements Z1 and Z2 are 375 pH, and the stray capacitance component of the transient voltage absorbing element 11 is 0.48 pF. , the inductance components of the impedance elements Z1 and Z2 are 600 pH.
 また、バターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の下限の特性ラインMINは、過渡電圧吸収素子11の寄生容量が0.30pFであるとき19.1pHであり、過渡電圧吸収素子11の寄生容量が0.48pFであるとき、378.6pHである。また、バターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の上限の特性ラインMAXは、過渡電圧吸収素子11の寄生容量が0.30pFであるとき1636.9pHであり、過渡電圧吸収素子11の寄生容量が0.48pFであるとき、673.2pHである。 Further, the lower limit characteristic line MIN of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained is 19.1 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.30 pF. and 378.6 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.48 pF. In addition, the upper limit characteristic line MAX of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 1636.9 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.30 pF. and 673.2 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.48 pF.
 一般に、USB4の信号ライン-グランド間に挿入する過渡電圧吸収回路には、10GHzにおいて-0.8dB以上の通過特性が求められる。本発明の回路で、この特性を満たすには、浮遊容量成分は0.30pFから0.48pFの範囲内であり、信号ラインのインダクタンス成分は、図3中の下限の特性ラインMINと上限の特性ラインMAXとで囲まれる範囲内にある必要がある。 In general, a transient voltage absorption circuit inserted between the USB4 signal line and ground is required to have a pass characteristic of -0.8 dB or more at 10 GHz. In the circuit of the present invention, in order to satisfy this characteristic, the stray capacitance component is within the range of 0.30 pF to 0.48 pF, and the inductance component of the signal line is the lower limit characteristic line MIN and the upper limit characteristic line MIN in FIG. It must be within the range surrounded by lines MAX and .
 浮遊容量成分が0.30pF未満の場合、本実施形態で示す構成を用いずとも、USB4に求められる特性を満たすことができる。また、浮遊容量成分が0.48pFを超える場合、本実施形態で示す構成を用いても、USB4に求められる特性を満たすことはできない。 When the stray capacitance component is less than 0.30 pF, the characteristics required for USB4 can be satisfied without using the configuration shown in this embodiment. Further, when the stray capacitance component exceeds 0.48 pF, even if the configuration shown in this embodiment is used, the characteristics required for USB4 cannot be satisfied.
 図3に示す、インダクタンス成分の範囲を超える条件では、USB4に求められる特性を満たすことができない。例えば、図3に示すインダクタンス成分の範囲外である、浮遊容量成分が0.4pF、インダクタンス成分が1200pHである場合の通過特性を図5に示す。この図5から分かるように、10GHzにおける通過特性は-1.2dBであり、USB4に求められる特性を満たせない。  Under the conditions exceeding the range of the inductance component shown in Fig. 3, the characteristics required for USB4 cannot be satisfied. For example, FIG. 5 shows pass characteristics when the stray capacitance component is 0.4 pF and the inductance component is 1200 pH, which are outside the range of the inductance component shown in FIG. As can be seen from FIG. 5, the pass characteristic at 10 GHz is -1.2 dB, which does not satisfy the characteristics required for USB4.
《第2の実施形態》
 第2の実施形態では、過渡電圧吸収回路の構造について例示する。図6の上部は過渡電圧吸収回路102の平面図、図6の中部は上部の図におけるA-A部分の断面図であり、図6の下部は上部の図におけるB-B部分の断面図である。
<<Second embodiment>>
The second embodiment illustrates the structure of the transient voltage absorption circuit. The upper part of FIG. 6 is a plan view of the transient voltage absorption circuit 102, the middle part of FIG. 6 is a cross-sectional view of the AA part in the upper figure, and the lower part of FIG. 6 is a cross-sectional view of the BB part in the upper figure. be.
 過渡電圧吸収回路102は、半導体基板10と再配線層20とを備える。半導体基板10には過渡電圧吸収素子11が形成されている。過渡電圧吸収素子11は、それぞれPチャンネル領域及びNチャンネル領域で構成される2つのダイオードが逆方向にシリーズに接続された構成である。 The transient voltage absorption circuit 102 includes a semiconductor substrate 10 and a rewiring layer 20 . A transient voltage absorbing element 11 is formed on a semiconductor substrate 10 . The transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
 半導体基板10の表面に再配線層20が形成されている。この再配線層20の表面には第1端子T1、第2端子T2及び第3端子T3が形成されている。再配線層20の内部には第1端子T1と第2端子T2との間を接続する内部配線12が形成されている。また、再配線層20の内部には、内部配線12と第1端子T1とを接続させる内部配線接続部13、内部配線12と第2端子T2とを接続させる内部配線接続部13、及び内部配線12と第3端子T3とを接続させる内部配線接続部13が形成されている。また、再配線層20の内部には内部配線12と過渡電圧吸収素子11との間を接続する過渡電圧吸収素子接続部14が形成されている。 A rewiring layer 20 is formed on the surface of the semiconductor substrate 10 . A first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 . Inside the rewiring layer 20, an internal wiring 12 is formed to connect between the first terminal T1 and the second terminal T2. Further, inside the rewiring layer 20, an internal wiring connection portion 13 for connecting the internal wiring 12 and the first terminal T1, an internal wiring connection portion 13 for connecting the internal wiring 12 and the second terminal T2, and an internal wiring An internal wiring connection portion 13 is formed for connecting 12 and the third terminal T3. A transient voltage absorbing element connecting portion 14 for connecting between the internal wiring 12 and the transient voltage absorbing element 11 is formed inside the rewiring layer 20 .
 本実施形態に係る過渡電圧吸収回路102の回路図は図1に示したとおりであり、第1端子T1から第2端子T2までの信号ラインSLは、内部配線12、内部配線接続部13及び過渡電圧吸収素子接続部14で構成されている。 A circuit diagram of the transient voltage absorption circuit 102 according to the present embodiment is as shown in FIG. It is composed of a voltage absorbing element connecting portion 14 .
《第3の実施形態》
 第3の実施形態では、信号ラインに並列接続された、または信号ラインをパスするキャパシタが接続された過渡電圧吸収回路について例示する。
<<Third Embodiment>>
In the third embodiment, a transient voltage absorption circuit connected in parallel to a signal line or connected to a capacitor that passes the signal line is illustrated.
 図7は第3の実施形態に係る過渡電圧吸収回路103の回路図である。この過渡電圧吸収回路103は、第1端子T1、第2端子T2、第3端子T3、及び第1端子T1と第2端子T2との間に存在する信号ラインSLを備える。第3端子T3はグランド等の基準電位に接続される。また、信号ラインSLにはインダクタンス成分L1,L2がシリーズに接続されていて、信号ラインSLと第3端子T3(基準電位)との間に過渡電圧吸収素子11がシャントに接続されている。インダクタンス成分L1,L2は信号ラインSLのインダクタンス成分である。 FIG. 7 is a circuit diagram of the transient voltage absorption circuit 103 according to the third embodiment. The transient voltage absorption circuit 103 includes a first terminal T1, a second terminal T2, a third terminal T3, and a signal line SL existing between the first terminal T1 and the second terminal T2. The third terminal T3 is connected to a reference potential such as ground. Inductance components L1 and L2 are connected in series to the signal line SL, and a transient voltage absorbing element 11 is shunt-connected between the signal line SL and the third terminal T3 (reference potential). The inductance components L1 and L2 are the inductance components of the signal line SL.
 インダクタンス成分L1,L2のインダクタンス及び過渡電圧吸収素子11の浮遊容量成分は、インダクタンス成分L1,L2及び過渡電圧吸収素子11の浮遊容量成分で構成されるローパスフィルタがバターワース特性を示す値である。 The inductance of the inductance components L1 and L2 and the stray capacitance component of the transient voltage absorption element 11 are values that indicate the Butterworth characteristic of the low-pass filter composed of the inductance components L1 and L2 and the stray capacitance component of the transient voltage absorption element 11.
 過渡電圧吸収回路103においては、第1端子T1と第2端子T2との間にキャパシタC1が接続されている。つまり、インダクタンス成分L1,L2に対して並列にキャパシタC1が接続されている。このキャパシタC1とインダクタンス成分L1,L2とでバンドリジェクションフィルタやノッチフィルタを構成する。 In the transient voltage absorption circuit 103, a capacitor C1 is connected between the first terminal T1 and the second terminal T2. That is, the capacitor C1 is connected in parallel with the inductance components L1 and L2. The capacitor C1 and the inductance components L1 and L2 constitute a band rejection filter and a notch filter.
 図8は過渡電圧吸収回路103の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。図8において、Aは比較例としての過渡電圧吸収回路の特性であり、Bは第1の実施形態に係る過渡電圧吸収回路101の特性であり、Cは本実施形態に係る過渡電圧吸収回路103の特性である。 FIG. 8 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit 103. FIG. In FIG. 8, A is the characteristic of the transient voltage absorption circuit as a comparative example, B is the characteristic of the transient voltage absorption circuit 101 according to the first embodiment, and C is the transient voltage absorption circuit 103 according to the present embodiment. is a characteristic of
 図8において、周波数foは、図7に示したキャパシタC1とインダクタンス成分L1,L2との並列共振周波数に相当する。本実施形態に係る過渡電圧吸収回路103では、第1端子T1から第2端子T2への透過係数S21が周波数foで低下し、それより高周波域で向上する。したがって、周波数foより高い周波数帯についても低挿入損失特性が得られる。 In FIG. 8, frequency fo corresponds to the parallel resonance frequency of capacitor C1 and inductance components L1 and L2 shown in FIG. In the transient voltage absorption circuit 103 according to the present embodiment, the transmission coefficient S21 from the first terminal T1 to the second terminal T2 decreases at the frequency fo and increases at higher frequencies. Therefore, a low insertion loss characteristic can be obtained even in a frequency band higher than the frequency fo.
 図9の上部は過渡電圧吸収回路103Aの平面図、図9の下部は上部の図におけるC-C部分の断面図である。 The upper part of FIG. 9 is a plan view of the transient voltage absorption circuit 103A, and the lower part of FIG. 9 is a cross-sectional view of the CC portion in the upper figure.
 過渡電圧吸収回路103Aは、半導体基板10と再配線層20とを備える。半導体基板10には過渡電圧吸収素子11が形成されている。過渡電圧吸収素子11は、それぞれPチャンネル領域及びNチャンネル領域で構成される2つのダイオードが逆方向にシリーズに接続された構成である。 The transient voltage absorption circuit 103A includes a semiconductor substrate 10 and a rewiring layer 20. A transient voltage absorbing element 11 is formed on a semiconductor substrate 10 . The transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
 半導体基板10の表面に再配線層20が形成されている。この再配線層20の表面には第1端子T1、第2端子T2及び第3端子T3が形成されている。再配線層20の内部には第1端子T1と第2端子T2との間に浮遊容量C12を形成(接続)する内部配線12が形成されている。その他の構成は図6に示した例と同様である。 A rewiring layer 20 is formed on the surface of the semiconductor substrate 10 . A first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 . Inside the rewiring layer 20, an internal wiring 12 is formed to form (connect) a stray capacitance C12 between the first terminal T1 and the second terminal T2. Other configurations are the same as the example shown in FIG.
 図10の上部は過渡電圧吸収回路103Bの平面図、図10の下部は上部の図におけるC-C部分の断面図である。 The upper part of FIG. 10 is a plan view of the transient voltage absorption circuit 103B, and the lower part of FIG. 10 is a cross-sectional view of the CC portion in the upper figure.
 過渡電圧吸収回路103Bは、半導体基板10と再配線層20とを備える。半導体基板10には過渡電圧吸収素子11が形成されている。過渡電圧吸収素子11は、それぞれPチャンネル領域及びNチャンネル領域で構成される2つのダイオードが逆方向にシリーズに接続された構成である。 The transient voltage absorption circuit 103B includes a semiconductor substrate 10 and a rewiring layer 20. A transient voltage absorbing element 11 is formed on a semiconductor substrate 10 . The transient voltage absorbing element 11 has a configuration in which two diodes, each composed of a P-channel region and an N-channel region, are connected in series in opposite directions.
 半導体基板10の表面に再配線層20が形成されている。この再配線層20の表面には第1端子T1、第2端子T2及び第3端子T3が形成されている。第1端子T1及び第2端子T2は、それらの間に浮遊容量C12を形成する形状に形成されている。その他の構成は図6に示した例と同様である。 A rewiring layer 20 is formed on the surface of the semiconductor substrate 10 . A first terminal T1, a second terminal T2 and a third terminal T3 are formed on the surface of the rewiring layer 20 . The first terminal T1 and the second terminal T2 are shaped to form a stray capacitance C12 therebetween. Other configurations are the same as the example shown in FIG.
《第4の実施形態》
 第4の実施形態では、「通過特性改善区間」が第1の実施形態で示した例とは異なる過渡電圧吸収回路について例示する。
<<Fourth embodiment>>
In the fourth embodiment, a transient voltage absorption circuit having a "transmission characteristic improvement section" different from the example shown in the first embodiment will be illustrated.
 本実施形態に係る過渡電圧吸収回路の回路図は図1に示したとおりである。図11は本実施形態に係る過渡電圧吸収回路の第1端子T1から第2端子T2への透過係数S21の周波数特性を示す図である。図11において、Bは本実施形態に係る過渡電圧吸収回路の特性であり、Aは比較例としての過渡電圧吸収回路の特性である。図11において、「通過特性改善区間」は46GHz以下である。 The circuit diagram of the transient voltage absorption circuit according to this embodiment is as shown in FIG. FIG. 11 is a diagram showing frequency characteristics of the transmission coefficient S21 from the first terminal T1 to the second terminal T2 of the transient voltage absorption circuit according to this embodiment. In FIG. 11, B is the characteristic of the transient voltage absorption circuit according to this embodiment, and A is the characteristic of the transient voltage absorption circuit as a comparative example. In FIG. 11, the "pass characteristic improvement section" is 46 GHz or less.
 図12は、本実施形態に係る過渡電圧吸収回路のインピーダンス素子Z1,Z2のインダクタンス成分と、過渡電圧吸収素子11の浮遊容量成分との関係で示される、バターワース特性を示す条件と、インダクタンス成分の上限及び下限を示す図である。図13は図12中の各点の浮遊容量成分とインダクタンス成分の数値を示す図である。 FIG. 12 shows the conditions showing the Butterworth characteristic and the relationship between the inductance components of the impedance elements Z1 and Z2 of the transient voltage absorption circuit according to the present embodiment and the stray capacitance component of the transient voltage absorption element 11, and the relationship between the inductance components. It is a figure which shows an upper limit and a lower limit. FIG. 13 is a diagram showing numerical values of the stray capacitance component and the inductance component at each point in FIG.
 本実施形態では、過渡電圧吸収素子の浮遊容量成分が0.16pFより小さく、「通過特性改善区間」が46GHz以下である。 In this embodiment, the stray capacitance component of the transient voltage absorption element is less than 0.16 pF, and the "transmission characteristic improvement section" is 46 GHz or less.
 図12において、特性ラインTYPは、Zm=50Ωとした場合に、式(1)を満たす条件をプロットしたものである。また、図12において特性ラインMINはバターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の下限の特性ラインであり、特性ラインMAXはバターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の上限の特性ラインである。 In FIG. 12, the characteristic line TYP is obtained by plotting the conditions satisfying formula (1) when Zm=50Ω. In FIG. 12, the characteristic line MIN is the lower limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that characteristics similar to the Butterworth characteristics are obtained, and the characteristic line MAX is the characteristics similar to the Butterworth characteristics. is the upper limit characteristic line of the inductance components of the impedance elements Z1 and Z2 under the condition that
 バターワース特性が得られる条件において、過渡電圧吸収素子11の浮遊容量成分が0.10pFである場合、インピーダンス素子Z1,Z2のインダクタンス成分は125pHであり、過渡電圧吸収素子11の浮遊容量成分が0.16pFである場合、インピーダンス素子Z1,Z2のインダクタンス成分は200pHである。 When the transient voltage absorbing element 11 has a stray capacitance component of 0.10 pF under the condition that the Butterworth characteristic is obtained, the inductance components of the impedance elements Z1 and Z2 are 125 pH, and the stray capacitance component of the transient voltage absorbing element 11 is 0.10 pF. In the case of 16 pF, the inductance components of impedance elements Z1 and Z2 are 200 pH.
 また、バターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の下限の特性ラインMINは、過渡電圧吸収素子11の寄生容量が0.10pFであるとき6.1pHであり、過渡電圧吸収素子11の寄生容量が0.16pFであるとき、126.2pHである。また、バターワース特性に類似の特性が得られる条件での、インピーダンス素子Z1,Z2のインダクタンス成分の上限の特性ラインMAXは、過渡電圧吸収素子11の寄生容量が0.10pFであるとき545.6pHであり、過渡電圧吸収素子11の寄生容量が0.16pFであるとき、224.4pHである。 In addition, the lower limit characteristic line MIN of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 6.1 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.10 pF. and 126.2 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.16 pF. In addition, the upper limit characteristic line MAX of the inductance components of the impedance elements Z1 and Z2 under the condition that a characteristic similar to the Butterworth characteristic is obtained is 545.6 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.10 pF. and 224.4 pH when the parasitic capacitance of the transient voltage absorbing element 11 is 0.16 pF.
 信号ライン-グランド間に挿入する過渡電圧吸収回路には、30GHzにおいて-0.8dB以上の通過特性が求められる場合、本実施形態にかかる過渡電圧吸収回路で、この特性を満たすには、浮遊容量成分は0.10pFから0.16pFの範囲内であり、信号ラインのインダクタンス成分は、図12中の下限の特性ラインMINと上限の特性ラインMAXとで囲まれる範囲内にある必要がある。 If the transient voltage absorption circuit inserted between the signal line and the ground is required to have a pass characteristic of -0.8 dB or more at 30 GHz, the transient voltage absorption circuit according to the present embodiment must have a stray capacitance to satisfy this characteristic. The component is within the range of 0.10 pF to 0.16 pF, and the inductance component of the signal line must be within the range surrounded by the lower limit characteristic line MIN and the upper limit characteristic line MAX in FIG.
 浮遊容量成分が0.10pF未満であれば、本実施形態で示す構成を用いずとも、上記特性を満たすことができる。また、浮遊容量成分が0.16pFを超える場合、本実施形態で示す構成を用いても、上記特性を満たすことはできない。 If the stray capacitance component is less than 0.10 pF, the above characteristics can be satisfied without using the configuration shown in this embodiment. Further, when the stray capacitance component exceeds 0.16 pF, even if the configuration shown in this embodiment is used, the above characteristics cannot be satisfied.
 最後に、本発明は上述した各実施形態に限られるものではない。当業者によって適宜変形及び変更が可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変形及び変更が含まれる。 Finally, the present invention is not limited to each embodiment described above. Appropriate modifications and changes can be made by those skilled in the art. The scope of the invention is indicated by the claims rather than the above-described embodiments. Furthermore, the scope of the present invention includes modifications and changes from the embodiments within the scope of claims and equivalents.
 例えば、信号ラインSLのインピーダンスが抵抗成分を有し、この抵抗成分と過渡電圧吸収素子の浮遊容量成分とでローパスフィルタが構成される場合、その抵抗成分及び浮遊容量成分は、ローパスフィルタがバターワース特性を示す値であってもよい。 For example, if the impedance of the signal line SL has a resistance component, and the resistance component and the stray capacitance component of the transient voltage absorption element constitute a low-pass filter, the resistance component and the stray capacitance component of the low-pass filter have Butterworth characteristics. It may be a value indicating
 また、例えば、インピーダンス素子Z1,Z2は信号ラインSLのインピーダンス成分だけでなく、回路素子としてのインピーダンス素子であってもよい。 Also, for example, the impedance elements Z1 and Z2 may be impedance elements as circuit elements as well as impedance components of the signal line SL.
C1…キャパシタ
C12…浮遊容量
L1,L2…インダクタンス成分
SL…信号ライン
T1…第1端子
T2…第2端子
T3…第3端子
Z1,Z2…インピーダンス素子
10…半導体基板
11…過渡電圧吸収素子
12…内部配線
13…内部配線接続部
14…過渡電圧吸収素子接続部
20…再配線層
101,102,103,103A,103B…過渡電圧吸収回路
C1...capacitor C12...stray capacitance L1, L2...inductance component SL...signal line T1...first terminal T2...second terminal T3...third terminals Z1, Z2...impedance element 10...semiconductor substrate 11...transient voltage absorbing element 12... Internal wiring 13 Internal wiring connection portion 14 Transient voltage absorption element connection portion 20 Rewiring layers 101, 102, 103, 103A, 103B Transient voltage absorption circuit

Claims (6)

  1.  信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、
     前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、前記インピーダンス素子のインピーダンス及び前記過渡電圧吸収素子の浮遊容量成分は、前記インピーダンス素子及び前記過渡電圧吸収素子で構成されるローパスフィルタがバターワース特性を示す値である、
     過渡電圧吸収回路。
    an impedance element connected in series to a signal line; and a transient voltage absorbing element connected in a shunt between the signal line and a reference potential;
    The transient voltage absorbing element has a stray capacitance component between terminals, and the impedance of the impedance element and the stray capacitance component of the transient voltage absorbing element are in a Butterworth low-pass filter composed of the impedance element and the transient voltage absorbing element. A value that indicates a characteristic,
    Transient voltage absorption circuit.
  2.  前記バターワース特性は、前記ローパスフィルタの通過周波数帯内の高周波数域での挿入損失がベッセル特性に比べて小さい、
     請求項1に記載の過渡電圧吸収回路。
    The Butterworth characteristic has a smaller insertion loss in a high frequency range within the passband of the low-pass filter than the Bessel characteristic,
    2. The transient voltage absorption circuit of claim 1.
  3.  信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、
     前記過渡電圧吸収素子が有する、端子間の浮遊容量成分をC、前記インピーダンス素子のインダクタンス成分をL、前記信号ラインの特性インピーダンスをZmで表すとき、
     2L=CZm^2
     の関係にある、
     過渡電圧吸収回路。
    an impedance element connected in series to a signal line; and a transient voltage absorbing element connected in a shunt between the signal line and a reference potential;
    When the stray capacitance component between terminals of the transient voltage absorbing element is represented by C, the inductance component of the impedance element by L, and the characteristic impedance of the signal line by Zm,
    2L = CZm^2
    in the relationship of
    Transient voltage absorption circuit.
  4.  前記インピーダンス素子に対して並列に接続されたキャパシタを含む、
     請求項1から3のいずれかに記載の過渡電圧吸収回路。
    a capacitor connected in parallel with the impedance element;
    4. A transient voltage absorption circuit as claimed in any one of claims 1 to 3.
  5.  信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、
     前記インピーダンス素子はインダクタンス成分を含み、
     前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、
     前記インダクタンス成分の下限は、前記インダクタンス成分の下限かつ前記浮遊容量成分の下限が19.1pHかつ0.3pFであり、前記インダクタンス成分の下限かつ前記浮遊容量成分の上限が378.6pHかつ0.48pFで定められ、
     前記インダクタンス成分の上限は、前記インダクタンス成分の上限かつ前記浮遊容量成分の下限が1636.9pHかつ0.3pFであり、前記インダクタンス成分の上限かつ前記浮遊容量成分の上限が673.2pHかつ0.48pFで定められる、
     過渡電圧吸収回路。
    an impedance element connected in series to a signal line; and a transient voltage absorbing element connected in a shunt between the signal line and a reference potential;
    the impedance element includes an inductance component,
    The transient voltage absorption element has a stray capacitance component between terminals,
    As for the lower limit of the inductance component, the lower limit of the inductance component and the lower limit of the stray capacitance component are 19.1 pH and 0.3 pF, and the lower limit of the inductance component and the upper limit of the stray capacitance component are 378.6 pH and 0.48 pF. determined by
    As for the upper limit of the inductance component, the upper limit of the inductance component and the lower limit of the stray capacitance component are 1636.9 pH and 0.3 pF, and the upper limit of the inductance component and the upper limit of the stray capacitance component are 673.2 pH and 0.48 pF. determined by
    Transient voltage absorption circuit.
  6.  信号ラインにシリーズに接続されたインピーダンス素子と、前記信号ラインと基準電位との間にシャントに接続された過渡電圧吸収素子とを含み、
     前記インピーダンス素子はインダクタンス成分を含み、
     前記過渡電圧吸収素子は端子間に浮遊容量成分を有し、
     前記インダクタンス成分の下限は、前記インダクタンス成分の下限かつ前記浮遊容量成分の下限が6.1pHかつ0.10pFであり、前記インダクタンス成分の下限かつ前記浮遊容量成分の上限が126.2pHかつ0.16pFで定められ、
     前記インダクタンス成分の上限は、前記インダクタンス成分の上限かつ前記浮遊容量成分の下限が545.6pHかつ0.10pFであり、前記インダクタンス成分の上限かつ前記浮遊容量成分の上限が224.4pHかつ0.16pFで定められる、
     過渡電圧吸収回路。
    an impedance element connected in series to a signal line; and a transient voltage absorbing element connected in a shunt between the signal line and a reference potential;
    the impedance element includes an inductance component,
    The transient voltage absorption element has a stray capacitance component between terminals,
    As for the lower limit of the inductance component, the lower limit of the inductance component and the lower limit of the stray capacitance component are 6.1 pH and 0.10 pF, and the lower limit of the inductance component and the upper limit of the stray capacitance component are 126.2 pH and 0.16 pF. determined by
    As for the upper limit of the inductance component, the upper limit of the inductance component and the lower limit of the stray capacitance component are 545.6 pH and 0.10 pF, and the upper limit of the inductance component and the upper limit of the stray capacitance component are 224.4 pH and 0.16 pF. determined by
    Transient voltage absorption circuit.
PCT/JP2022/011359 2021-03-16 2022-03-14 Transient voltage absorbing circuit WO2022196642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-042011 2021-03-16
JP2021042011 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196642A1 true WO2022196642A1 (en) 2022-09-22

Family

ID=83320377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011359 WO2022196642A1 (en) 2021-03-16 2022-03-14 Transient voltage absorbing circuit

Country Status (1)

Country Link
WO (1) WO2022196642A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033727A (en) * 1983-08-04 1985-02-21 Matsushita Electric Ind Co Ltd Tuner
JPH04155614A (en) * 1990-10-19 1992-05-28 Sony Corp Adjustment signal reproducing device
JP2004349740A (en) * 2003-05-14 2004-12-09 Advantest Corp Input signal processing apparatus, high-frequency component acquiring method, and low-frequency component acquiring method
JP2005198167A (en) * 2004-01-09 2005-07-21 Toyota Central Res & Dev Lab Inc Balanced line-unbalanced line connector
JP2005217043A (en) * 2004-01-28 2005-08-11 Toshiba Corp Electrostatic discharge protection circuit
JP2006320023A (en) * 2006-08-07 2006-11-24 Toshiba Corp Transceiver integrated high-frequency signal apparatus
JP2008141716A (en) * 2006-11-10 2008-06-19 Matsushita Electric Ind Co Ltd Electronic tuner and portable telephone device using the same
JP2012156847A (en) * 2011-01-27 2012-08-16 Sharp Corp Semiconductor integrated device and display device comprising the same
JP2013074496A (en) * 2011-09-28 2013-04-22 Onkyo Corp Branch circuit
WO2018025695A1 (en) * 2016-08-01 2018-02-08 株式会社村田製作所 Mounting type composite component having esd protection function

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033727A (en) * 1983-08-04 1985-02-21 Matsushita Electric Ind Co Ltd Tuner
JPH04155614A (en) * 1990-10-19 1992-05-28 Sony Corp Adjustment signal reproducing device
JP2004349740A (en) * 2003-05-14 2004-12-09 Advantest Corp Input signal processing apparatus, high-frequency component acquiring method, and low-frequency component acquiring method
JP2005198167A (en) * 2004-01-09 2005-07-21 Toyota Central Res & Dev Lab Inc Balanced line-unbalanced line connector
JP2005217043A (en) * 2004-01-28 2005-08-11 Toshiba Corp Electrostatic discharge protection circuit
JP2006320023A (en) * 2006-08-07 2006-11-24 Toshiba Corp Transceiver integrated high-frequency signal apparatus
JP2008141716A (en) * 2006-11-10 2008-06-19 Matsushita Electric Ind Co Ltd Electronic tuner and portable telephone device using the same
JP2012156847A (en) * 2011-01-27 2012-08-16 Sharp Corp Semiconductor integrated device and display device comprising the same
JP2013074496A (en) * 2011-09-28 2013-04-22 Onkyo Corp Branch circuit
WO2018025695A1 (en) * 2016-08-01 2018-02-08 株式会社村田製作所 Mounting type composite component having esd protection function

Similar Documents

Publication Publication Date Title
US7982557B2 (en) Layered low-pass filter capable of producing a plurality of attenuation poles
US8525617B2 (en) Common-mode filter with coupled inductances
US9344054B2 (en) Common mode filter
US9882542B2 (en) Filter component
US10176927B2 (en) Composite electronic component
US7418251B2 (en) Compact radio frequency harmonic filter using integrated passive device technology
US7378900B2 (en) EMI filter
EP1073208A2 (en) High frequency switching component
US10886730B2 (en) Filter having an ESD protection device
JP6341461B2 (en) Power amplifier
US8581676B2 (en) Common-mode filter
US8355229B2 (en) Semiconductor device with an inductor
US7800465B2 (en) Passive component
US7679473B2 (en) Low pass filter incorporating coupled inductors to enhance stop band attenuation
JPH1167486A (en) Esd protection circuit and package including esd protection circuit
WO2022196642A1 (en) Transient voltage absorbing circuit
US20230029621A1 (en) Lc filter, and diplexer and multiplexer using same
US20220294411A1 (en) Branching filter
US5834988A (en) Frequency compensated PIN diode attenuator
CN112865741A (en) Multiplexer and method for improving isolation of multiplexer and communication equipment
JP5217491B2 (en) Filter circuit
JP2009124410A (en) Emi filter, and electronic apparatus
WO2022220130A1 (en) Transient voltage absorbing element and transient voltage absorbing circuit
WO2023021994A1 (en) Transient voltage absorbing element
US20230268902A1 (en) Filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771388

Country of ref document: EP

Kind code of ref document: A1