WO2022196469A1 - コンピュータプログラム、情報処理方法及び情報処理装置 - Google Patents
コンピュータプログラム、情報処理方法及び情報処理装置 Download PDFInfo
- Publication number
- WO2022196469A1 WO2022196469A1 PCT/JP2022/010162 JP2022010162W WO2022196469A1 WO 2022196469 A1 WO2022196469 A1 WO 2022196469A1 JP 2022010162 W JP2022010162 W JP 2022010162W WO 2022196469 A1 WO2022196469 A1 WO 2022196469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heart
- artery
- computer
- displacement
- causing
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims description 61
- 238000004590 computer program Methods 0.000 title claims description 38
- 238000003672 processing method Methods 0.000 title claims description 10
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 107
- 238000006073 displacement reaction Methods 0.000 claims abstract description 88
- 230000005856 abnormality Effects 0.000 claims abstract description 76
- 238000000034 method Methods 0.000 claims abstract description 70
- 238000012545 processing Methods 0.000 claims description 124
- 230000010349 pulsation Effects 0.000 claims description 84
- 210000001367 artery Anatomy 0.000 claims description 37
- 210000001715 carotid artery Anatomy 0.000 claims description 27
- 210000002683 foot Anatomy 0.000 claims description 26
- 210000002321 radial artery Anatomy 0.000 claims description 15
- 210000000707 wrist Anatomy 0.000 claims description 15
- 210000002302 brachial artery Anatomy 0.000 claims description 14
- 230000002123 temporal effect Effects 0.000 claims description 14
- 230000006496 vascular abnormality Effects 0.000 claims description 14
- 230000033764 rhythmic process Effects 0.000 claims description 13
- 210000001994 temporal artery Anatomy 0.000 claims description 13
- 210000002559 ulnar artery Anatomy 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 11
- 210000001142 back Anatomy 0.000 claims description 9
- 238000001514 detection method Methods 0.000 claims description 8
- 230000033001 locomotion Effects 0.000 claims description 7
- 210000003813 thumb Anatomy 0.000 claims description 7
- 210000004731 jugular vein Anatomy 0.000 claims description 6
- 206010019280 Heart failures Diseases 0.000 claims description 5
- 210000004932 little finger Anatomy 0.000 claims description 5
- 210000003141 lower extremity Anatomy 0.000 claims description 5
- 206010000060 Abdominal distension Diseases 0.000 claims description 3
- 210000005069 ears Anatomy 0.000 claims description 3
- 210000004709 eyebrow Anatomy 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 201000002818 limb ischemia Diseases 0.000 claims description 3
- 210000001364 upper extremity Anatomy 0.000 claims description 3
- 230000001815 facial effect Effects 0.000 claims description 2
- 238000004891 communication Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 14
- 230000000284 resting effect Effects 0.000 description 9
- 238000000605 extraction Methods 0.000 description 6
- 230000000747 cardiac effect Effects 0.000 description 5
- 206010008118 cerebral infarction Diseases 0.000 description 5
- 208000026106 cerebrovascular disease Diseases 0.000 description 5
- 206010008111 Cerebral haemorrhage Diseases 0.000 description 4
- 208000006011 Stroke Diseases 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000002008 hemorrhagic effect Effects 0.000 description 4
- 230000000302 ischemic effect Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 206010003210 Arteriosclerosis Diseases 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 208000011775 arteriosclerosis disease Diseases 0.000 description 3
- 238000010009 beating Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 210000000245 forearm Anatomy 0.000 description 3
- 206010059865 Jugular vein distension Diseases 0.000 description 2
- 238000013527 convolutional neural network Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 208000028867 ischemia Diseases 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 210000002569 neuron Anatomy 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010061216 Infarction Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 206010057469 Vascular stenosis Diseases 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 210000004191 axillary artery Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000001105 femoral artery Anatomy 0.000 description 1
- 230000005831 heart abnormality Effects 0.000 description 1
- 230000007574 infarction Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 210000003137 popliteal artery Anatomy 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 210000002465 tibial artery Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/0245—Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
Definitions
- the present invention relates to a computer program, an information processing method, and an information processing apparatus.
- Patent Document 1 discloses a biological information monitoring device that monitors biological information such as pulse by radiating high-frequency electromagnetic waves, detecting reflected waves scattered on the surface of a person's biological body, and calculating temporal variations of the biological surface. disclosed.
- Patent Document 1 does not disclose a technique for determining specific heart or blood vessel abnormalities.
- An object of the present invention is to provide a computer program, an information processing method, and an information processing apparatus capable of detecting heart or blood vessel pulsations of a living body and determining abnormalities in the heart or blood vessels.
- a computer program is a computer program for causing a computer to determine an abnormality of a heart or blood vessel of a living body, wherein a displacement site where a body surface is displaced by the heart or blood vessel is identified, and at the identified displacement site Based on the displacement of the living body surface, heart or blood vessel pulsation is detected, and based on the detected heart or blood vessel pulsation information, heart or blood vessel abnormality is determined by the computer.
- An information processing method is an information processing method for determining abnormalities in the heart or blood vessels of a living body, in which a displacement site where the surface of a living body is displaced by the heart or the blood vessels is identified, and the body surface is displaced at the identified displacement site.
- Heart or blood vessel pulsation is detected based on the displacement of the surface, and abnormality of the heart or blood vessel is determined based on information related to the detected heart or blood vessel pulsation.
- An information processing apparatus for determining an abnormality of a heart or a blood vessel of a living body, comprising: a specifying unit that specifies a displacement site where the surface of the living body is displaced by the heart or the blood vessel; a detection unit for detecting the pulsation of the heart or blood vessels based on the displacement of the surface of the living body in; Prepare.
- FIG. 1 is an explanatory diagram showing a configuration example of an information processing system according to Embodiment 1;
- FIG. 1 is a block diagram showing a configuration example of an information processing apparatus according to Embodiment 1;
- FIG. 4 is a conceptual diagram showing an example of a learning model according to Embodiment 1;
- FIG. FIG. 1 is an explanatory diagram showing a configuration example of an information processing system according to Embodiment 1;
- FIG. 1 is a block diagram showing a configuration example of an information processing apparatus according to Embodiment 1;
- FIG. 4 is a conceptual diagram showing an example of a learning model according to Embodiment 1;
- FIG. 2 is a conceptual diagram showing a displacement site, heart and blood vessels; 4 is a flowchart showing an information processing procedure according to the first embodiment; 4 is a flowchart showing an information processing procedure according to the first embodiment; 4 is a flow chart showing a process procedure for identifying a displaced portion; 4 is a flow chart showing a process procedure for identifying a displaced portion; 4 is a flowchart showing an abnormality determination processing procedure; It is a schematic diagram which shows an example of the determination result display image. It is a schematic diagram which shows an example of the determination result display image. It is a schematic diagram which shows an example of the determination result display image. It is a schematic diagram which shows an example of the determination result display image. It is a schematic diagram which shows an example of the determination result display image.
- FIG. 11 is an explanatory diagram showing a configuration example of an information processing system according to a second embodiment; 9 is a flowchart showing an information processing procedure according to the second embodiment;
- FIG. 1 is an explanatory diagram showing a configuration example of an information processing system according to the first embodiment.
- the information processing system includes the information processing device 1 according to the first embodiment.
- the information processing device 1 is wirelessly connected to the first communication terminal 2, the second communication terminal 3, the server 4, and the like, and can transmit and receive various information.
- the information processing device 1 is a device that uses infrared rays and millimeter waves to detect heartbeats and blood vessel pulsations of a user (living body), and determines the presence or absence of abnormalities in the heart and blood vessels. It is assumed that the information processing device 1 is installed in the room R where the user is.
- the first communication terminal 2 is a communication device used by the user's family.
- the second communication terminal 3 is a communication terminal used by medical personnel.
- the server 4 is a device that provides information related to the environment, such as temperature and humidity, that affects the user's heartbeat. Note that each device may be configured to be connected by a wired cable. It should be noted that an abnormality of the heart in this embodiment refers to a disease of the heart itself. Abnormalities of blood vessels include abnormalities of blood vessels themselves such as arteriosclerosis, and abnormalities of organs, organs, and sites due to abnormal blood flow such as cerebral infarction and foot infarction (severe lower extremity ischemia).
- FIG. 2 is a block diagram showing a configuration example of the information processing device 1 according to the first embodiment.
- the information processing device 1 is a computer including a processing unit 11 , a storage unit 12 , an infrared sensor 13 , a millimeter wave sensor 14 , a communication unit 15 , an operation unit 16 and a display unit 17 .
- the information processing apparatus 1 may be a multicomputer composed of a plurality of computers, or may be a virtual machine virtually constructed by software.
- the processing unit 11 includes one or more CPU (Central Processing Unit), MPU (Micro-Processing Unit), GPU (Graphics Processing Unit), GPGPU (General-purpose computing on graphics processing units), TPU (Tensor Processing Unit), etc. It is an arithmetic processing unit having The processing unit 11 reads and executes the computer program P stored in the storage unit 12, thereby executing processing for determining abnormalities in the user's heart and blood vessels.
- CPU Central Processing Unit
- MPU Micro-Processing Unit
- GPU Graphics Processing Unit
- GPGPU General-purpose computing on graphics processing units
- TPU Torsor Processing Unit
- the storage unit 12 is a storage device such as a hard disk, EEPROM (Electrically Erasable Programmable ROM), flash memory, or the like.
- the storage unit 12 stores a computer program P, a user DB 18, and a learning model 19, which are used by the processing unit 11 to cause the computer to determine abnormalities in the user's heart and blood vessels.
- the computer program P is a program for causing a computer to function as the information processing apparatus 1 according to the first embodiment and executing the information processing method according to the first embodiment.
- the computer program P identifies a displacement site where the body surface is displaced by the user's heart or blood vessels, detects the pulsation of the heart or blood vessels based on the displacement of the body surface at the identified displacement site, and detects the detected heart.
- it is for causing a computer to execute a process of judging an abnormality of the heart or blood vessels based on information related to pulsation of blood vessels.
- the computer program P may be recorded on the recording medium 10 in a computer-readable manner.
- the storage unit 12 stores a computer program P read from the recording medium 10 by a reading device (not shown).
- a recording medium 10 is a semiconductor memory such as a flash memory, an optical disk, a magnetic disk, a magneto-optical disk, or the like.
- the computer program P according to the present embodiment may be downloaded from a program providing server (not shown) connected to a communication network and stored in the storage unit 12 .
- the user DB 18 stores basic user information such as identification information for identifying users, authentication information for authenticating individual users, name, gender, and age.
- the user DB 18 stores environment information such as the user's pulse and heartbeat, detection date and time, temperature and humidity detected by the information processing apparatus 1, in association with the user's identification information.
- the user DB 18 stores the determination result by the information processing apparatus 1, that is, information indicating whether the user's heart or blood vessels are normal, in association with the user's identification information.
- the user DB 18 may be a cloud database.
- the infrared sensor 13 is, for example, an infrared laser such as LiDAR, an infrared camera, or the like, and uses infrared rays to identify, without contact, each part of the user's human body, or a displaced part where the body surface is displaced by the pulsation of the heart or blood vessels. It is a sensor for The infrared sensor 13 is an example of a non-contact sensor for identifying displacement sites on the surface of the living body.
- the infrared sensor 13 has a high spatial resolution and is suitable for capturing the structure of an object. However, there is a demerit in that it is easily absorbed by clothes and the displacement of the body surface hidden by clothes cannot be detected.
- An infrared camera is a camera equipped with a lens and a CMOS image sensor for receiving infrared rays reflected by a user's body surface or clothing, and outputs infrared image data (signal data) as user's two-dimensional information.
- Infrared image data is image data consisting of a plurality of pixels arranged horizontally and vertically.
- the infrared sensor 13, which is LiDAR includes a light-emitting element that emits infrared rays to the user and a light-receiving element that receives the infrared rays emitted and reflected by the user.
- the light emitting element is, for example, an infrared laser such as a vertical cavity surface emitting laser (VCSEL: Vertical Cavity Surface Emitting LASER), and irradiates a user with a dot pattern arranged vertically and horizontally.
- the light receiving element is, for example, a CMOS image sensor.
- the infrared sensor 13 calculates the distance to the user based on the round-trip time from when the light is emitted toward the user to when it is reflected back.
- the infrared sensor 13 calculates the distance to each dot pattern and outputs point cloud data (signal data), which is three-dimensional information of the user.
- the point cloud data represents, for example, a large number of points on the user's body surface or clothing surface by three-dimensional coordinates.
- the processing unit 11 can convert the point cloud data into voxel data.
- the processing unit 11 can also convert point cloud data or voxel data into two-dimensional infrared image data.
- point cloud data or voxel data into two-dimensional infrared image data.
- two-dimensional infrared image data is used to specify each part of the user's body and the displaced parts where the body surface is displaced by the pulsation of the heart and blood vessels. explain.
- the millimeter wave sensor 14 is a sensor that uses millimeter waves to detect the pulsation of the displaced portion of the user.
- the millimeter wave sensor 14 is inferior in spatial resolution to the infrared sensor 13, but since millimeter wave electromagnetic waves are transmitted through the user's clothing without being absorbed and are reflected by the surface of the living body, displacement of the surface of the living body is detected. Suitable for capturing.
- the millimeter wave sensor 14 includes a synthesizer that generates millimeter wave signals, a transmitting antenna, a receiving antenna, a mixer, and the like.
- the transmitting antenna transmits millimeter-wave electromagnetic waves generated by the synthesizer.
- the receiving antenna receives millimeter-wave electromagnetic waves reflected by the user's biological surface.
- a mixer is a circuit that mixes a transmitted wave and a received wave to generate an intermediate frequency signal.
- the processing unit 11 can calculate the distance to the user based on the data of the intermediate frequency signal. In particular, the processing unit 11 can calculate the variation in the distance to the displacement site of the user, that is, the displacement of the surface of the living body, and can detect the pulsation of the heart or blood vessels at the displacement site.
- the millimeter wave sensor 14 can irradiate millimeter waves by aiming at an arbitrary displacement site by an electronic scanning method, and the processing unit 11 can detect the pulsation at the displacement site.
- the communication unit 15 includes a processing circuit for performing wireless communication processing, a communication circuit, etc., and transmits and receives various types of information to and from the first communication terminal 2, the second communication terminal 3, and the server 4 via a router (not shown). I do.
- the operation unit 16 is an input device that receives operations of the information processing device 1 by the user.
- the input device is, for example, a pointing device such as a touch panel, or a keyboard.
- the display unit 17 is an output device that outputs the determination result of abnormality of the user's heart or blood vessels.
- the output device is, for example, a liquid crystal display or an EL display.
- FIG. 3 is a conceptual diagram showing an example of the learning model 19 according to the first embodiment.
- the learning model 19 is a model for recognizing a predetermined object included in the infrared image.
- the learning model 19 can, for example, classify objects by pixel by using image recognition technology using semantic segmentation, and recognize each part of the human body included in the infrared image as an object. be able to.
- the learning model 19 is based on the facial, right temporal, left temporal, right neck, left neck, right carotid triangle, left carotid triangle, right chest, left chest, upper right
- the arm, left upper arm, right forearm, left forearm, right hand root, left hand root, right hand palm, left hand palm, right back, left hand back, right back, left back, etc. are recognized pixel by pixel.
- the upper arm, forearm, wrist, palm and dorsum constitute the upper limb.
- the learning model 19 is, for example, a convolutional neural network (CNN) that has been trained by deep learning.
- the learning model 19 outputs an input layer 19a to which infrared image data is input, an intermediate layer 19b that extracts and restores the feature amount of the infrared image, and part extraction image data that indicates an object included in the infrared image in units of pixels. and an output layer 19c.
- the learning model 19 is U-Net, for example.
- the input layer 19a of the learning model 19 has a plurality of neurons that receive input of infrared image data, that is, the pixel values of each pixel that constitutes the infrared image, and passes the input pixel values to the intermediate layer 19b.
- the intermediate layer 19b has a convolution layer (CONV layer) and a deconvolution layer (DECONV layer).
- CONV layer convolution layer
- DECONV layer deconvolution layer
- a convolutional layer is a layer that dimensionally compresses the infrared image data. Dimensional compression extracts the features of the object.
- the deconvolution layer performs the deconvolution process to restore the original dimensions. Restoration processing in the deconvolution layer generates part extraction image data in which each pixel has a pixel value (class data) corresponding to the class of the object.
- the output layer 19c has a plurality of neurons that output part extraction image data.
- the part extraction image is an image that is classified according to each part of the human body, for example, classified by
- the learning model 19 is training data having infrared image data obtained by the infrared sensor 13 and part extraction image data in which each pixel of the infrared image is given class data according to the type of each part of the corresponding human body. It can be generated by preparing and machine learning an unlearned neural network using the training data.
- each part of the human body is classified by pixel unit by inputting the infrared image data of the human body obtained by the infrared sensor 13 as shown in FIG. Then, extracted site image data is obtained.
- the processing unit 11 converts point cloud data into voxel data, generates a plurality of two-dimensional image data based on the voxel data, performs image recognition processing on each of the two-dimensional image data in the same manner as described above, and performs 2
- the processing unit 11 converts point cloud data into voxel data, generates a plurality of two-dimensional image data based on the voxel data, performs image recognition processing on each of the two-dimensional image data in the same manner as described above, and performs 2
- By inversely converting a plurality of dimensional part extraction image data into voxel data or point cloud data it is possible to obtain data indicating the type of each part of the human body in three-dimensional data in voxel units or point data units. can.
- each part of the human body may be recognized using a learning model 19 such as 3D U-Net that can directly recognize each part of the user in voxel data.
- each part of the human body in three-dimensional information may be recognized using a known machine learning method.
- the processing unit 11 can recognize each part of the user's human body in the infrared image.
- the living body surface has a displacement site where the pulsation of the heart or blood vessels specifically propagates and appears as a periodic displacement of the living body surface.
- the processing unit 11 identifies the displacement site based on the recognition result using the learning model 19 .
- FIG. 4 is a conceptual diagram showing a displacement site, heart and blood vessels.
- the displaced parts are, for example, the neck, temporal region, upper arm, the inner side of the wrist near the thumb, the inner side of the wrist near the little finger, the dorsum of the foot, the chest, or the like.
- There is the carotid artery in the neck the superficial temporal artery in the temporal region, the brachial artery in the upper arm, the radial artery on the inside of the wrist near the thumb, and the inside of the wrist near the little finger.
- the processing unit 11 uses the infrared sensor 13 to detect the user by infrared rays (step S111). Specifically, when the infrared sensor 13 is an infrared camera, the processing unit 11 captures an image of the user using the infrared camera and acquires infrared image data of the user. When the infrared sensor 13 is a LiDAR, the processing unit 11 uses the LiDAR to acquire point cloud data of the user. The processing unit 11 converts the point cloud data into two-dimensional infrared image data.
- the processing unit 11 identifies an individual by face authentication processing using the results of infrared detection (step S112). For example, the processing unit 11 extracts a predetermined feature amount from the user's infrared image data or point cloud data, and identifies the individual user by comparing the extracted feature amount with the authentication information registered in the user DB 18. do.
- the processing unit 11 recognizes each part of the user's human body in the infrared image by inputting the infrared image data into the learning model 19 (step S113). Then, the processing unit 11 identifies a displaced portion where the surface of the living body is periodically displaced by the pulsation of the heart or blood vessels (step S114). The details of the process of identifying the displacement site will be described later. Note that the processing unit 11 that executes the process of step S114 functions as a specifying unit that specifies a displaced site where the body surface is displaced by the heart or blood vessels.
- the processing unit 11 successively aligns the sights on the identified displaced regions, irradiates them with millimeter waves, receives the reflected waves (step S115), and determines whether the heart or blood vessel in each displaced region is detected. is detected (step S116).
- the processing unit 11 detects changes in pulsation over time, pulse rate, heart rate, pulse rhythm, or amplitude of pulse fluctuation, peak point of pulsation, and the like.
- the change in pulsation over time is the change over time in the amount of displacement of the living body surface at the displaced site.
- the pulse rate is, for example, the number of arterial beats per minute.
- Heart rate is, for example, the number of heart beats per minute.
- the pulse rhythm is, for example, a pulsation period at a displacement site or a numerical value indicating the regularity of the pulsation period.
- the amplitude of pulse deflection is the amplitude of displacement of the biological surface at the displacement site.
- the pulsation peak point is the point at which the amount of displacement at the displacement site becomes maximum. It should be noted that it is also possible to detect the point in time when the amount of displacement becomes minimal.
- the processing unit 11 that executes the processes of steps S115 and S116 functions as a detection unit that detects the pulsation of the heart or blood vessels based on the displacement of the living body surface at the specified displacement site.
- the processing unit 11 determines whether or not the user is in a resting state based on the detected beat cycle (step S117). For example, the processing unit 11 reads from the user DB 18 information about the past beat of the individual identified by face authentication, and compares the currently detected beat cycle with the past beat cycle. It can be determined whether the user is in a resting state. If the current beating period is extremely shorter than the past beating period, it may be determined that the subject is not in a resting state.
- step S117: NO If it is determined that the subject is not in a resting state (step S117: NO), the processing unit 11 returns the process to step S113. If it is determined to be in a resting state (step S117: YES), the processing unit 11 determines whether or not the pulsation of each displaced part has been detected for a predetermined time (step S118).
- the predetermined time is, for example, several times longer than the average heart and blood vessel pulsation period. When determining that it is less than the predetermined time (step S118: NO), the processing unit 11 returns the process to step S113. If it is determined that the pulsation has been detected for the predetermined time or longer (step S118: YES), the processing unit 11 accesses the server 4 and acquires environmental information such as the current temperature and humidity (step S119).
- the processing unit 11 associates the pulsation detection result indicating the pulsation at each displacement site, the date and time when the pulsation was detected, and the environmental information acquired in step S119 with the user identification information. Store in the user DB 18 (step S120).
- the processing unit 11 determines abnormality of the heart or blood vessels based on the detection results of pulsations in each of the identified displacement regions (step S121). Specifically, by comparing changes in pulsation over time, pulse rate, heart rate, pulse rhythm, or amplitude of pulse fluctuation, peak point of pulsation, etc., at each of the identified displacement sites, Determine cardiac or vascular abnormalities. Details of the abnormality determination process will be described later. Note that the processing unit 11 that executes the process of step S121 functions as a determination unit that determines an abnormality of the heart or blood vessels based on the information regarding the detected heartbeat or blood vessel pulsation.
- the processing unit 11 determines whether or not there is an abnormality in the heart or blood vessels (step S122). When it is determined that there is no abnormality (step S122: NO), the processing unit 11 determines whether or not it is a predetermined notification timing (step S123). If it is normal, it is thought that it is not necessary to display the determination result and notify the relevant parties each time an abnormality is determined, so the notification timing is determined in step S123. Note that display and notification may be performed each time the determination process is performed.
- step S123: NO If it is determined that it is not the notification timing (step S123: NO), the process ends. If it is determined that it is the notification timing (step S123: YES), the processing unit 11 generates a determination result display image 171 (see FIG. 10) indicating normality, and displays it on the display unit 17 (step S124). . Then, the processing unit 11 transmits the determination result to the family's first communication terminal 2 and the medical staff's communication terminal (step S125). In addition, the processing unit 11 may transmit the determination result to the first communication terminal 2 and the second communication terminal 3 together with information such as the user's name, identification information, and contact information. It should be noted that personal information such as the name of the user may be configured not to be transmitted to the second communication terminal 3 of the medical personnel.
- step S122 If it is determined that there is an abnormality in step S122 (step S122: YES), the processing unit 11 generates a determination result display image 171 (see FIGS. 11 and 12) indicating that there is an abnormality, and displays it on the display unit 17. (step S126). Then, the processing unit 11 transmits the determination result to the first communication terminal 2 of the family and the second communication terminal 3 of the medical staff (step S127).
- the medical personnel can receive the information on the determination result at the second communication terminal 3 and transmit the findings information indicating the findings on the determination result to the information processing device 1 .
- the processing unit 11 of the information processing device 1 receives the findings information transmitted from the second communication terminal 3 of the medical staff at the communication unit 15 (step S128), and displays the received findings information of the medical staff on the display unit 17. is displayed (step S129). In addition, the processing unit 11 transmits the finding information of the medical staff to the family's first communication terminal 2 (step S130), and ends the process.
- FIGS. 7 and 8 are flow charts showing the process procedure for identifying a displaced part.
- the processing unit 11 determines whether or not the region of the carotid artery triangle is recognized by the process of step S113 (step S151). When the region of the carotid triangle is recognized (step S151: YES), the processing unit 11 identifies the region as a displaced site including the carotid artery and jugular vein (step S152).
- step S152 When the process of step S152 is finished, or when it is determined that the carotid artery triangle region is not recognized in step S151 (step S151: NO), the processing unit 11 recognizes the user's face by the process of step S113. It is determined whether or not (step S153). If it is determined that the user's face has been recognized (step S153: YES), the processing unit 11 detects any one of the contour of the face, the eyes, the eyebrows, the nose, the mouth, the nasolabial fold, the ears and the chin, Based on the amount of deviation of each part such as the eyes from the midline, the displaced part of the carotid artery is identified (step S154).
- the processing unit 11 uses the learning model 19, for example, to detect the outline of the face, the eyes, the eyebrows, the nose, the mouth, the nasolabial folds, the ears, or the chin. Further, it is also possible to extract the image portion of the face in the infrared image and detect the eyes and the like of the face on a rule basis by binarization, pattern matching processing, or the like. On the other hand, the processing unit 11 can recognize the left and right parts of the body, for example, the right chest and left chest, the right upper arm and the left arm, etc., by the processing of step S113. can be identified as a line.
- the left side of the neck recognized by the learning model 19 may be specified as the displacement site where the carotid artery is located. If the face is facing left, the right side of the neck can be identified as the displacement site where the carotid artery is located. Further, it may be configured to further narrow down and specify the displaced portion from the portion corresponding to the right carotid artery or the left carotid artery according to the amount of rotation of the neck.
- step S154 determines whether the temporal region of the user is recognized by the process of step S113. It is determined whether or not (step S155). When it is determined that the temporal region is recognized (step S155: YES), the processing unit 11 identifies the measurement unit as a displaced site having a superficial temporal artery (step S156).
- step S156 determines whether or not the upper arm is recognized by the process of step S113. is determined (step S157). If it is determined that the upper arm has been recognized (step S157: YES), the processing unit 11 identifies the upper arm as a displaced site having the brachial artery (step S158).
- step S158 determines whether or not the palm is recognized by the process of step S113. Determine (step S159).
- step S159 determines whether or not the palm is recognized by the process of step S113.
- the processing unit 11 recognizes the position of the thumb from the image portion of the palm (step S160), and recognizes the portion near the thumb of the wrist recognized by the process of step S113.
- the radial artery is identified as a displaced site (step S161). Further, the processing unit 11 identifies the part of the carpal closer to the little finger recognized by the process of step S113 as a displaced part having the ulnar artery (step S162).
- the learning model 19 recognizes the inner side of the wrist as the wrist.
- the medial side of the carpal is a site where the body surface is displaced by the pulsation of the radial and ulnar arteries.
- the learning model 19 recognizes the outer side of the wrist as the wrist.
- the learning model 19 is machine-learned so as to distinguish and recognize the thumb side of the inner side of the wrist, the little finger side of the inner side of the wrist, and the outer side of the wrist, the recognition processing of the orientation of the palm and the position of the thumb is unnecessary. is.
- the learning model 19 can directly recognize the displacement site with the radial artery and the displacement site with the ulnar artery.
- step S162 determines whether or not the dorsum of the foot is recognized by the processing of step S113. Determine (step S163). If it is determined that the dorsum of the foot has been recognized (step S163: YES), the processing unit 11 identifies the dorsum of the foot as a displaced site having the dorsal artery of the foot (step S164).
- step S164 determines whether or not the chest is recognized by the process of step S113. Determine (step S165). If it is determined that the chest is not recognized (step S165: NO), the processing unit 11 ends the process of identifying the displacement site. If it is determined that the chest is recognized (step S165: YES), the processing unit 11 identifies the chest as a displaced region where the heart is located (step S166), and ends the displaced region identifying process.
- the processing unit 11 can identify the carotid artery, the temporal artery, the brachial artery, the radial artery, the ulnar artery, the dorsalis pedis artery, and a displaced site where the body surface is displaced by the heartbeat.
- the processing unit 11 can identify the site where the jugular vein is present.
- FIG. 9 is a flowchart showing an abnormality determination processing procedure.
- the processing unit 11 determines an abnormality of the blood vessel or the heart based on the amount of pulse rhythm deviation and the difference in amplitude between the left carotid artery and the right carotid artery (step S171). If the deviation amount of the pulse rhythm is equal to or greater than a predetermined threshold value, the processing unit 11 determines abnormality of blood vessels or heart. In other words, when the time difference between the peak time of pulsation at the first displacement site and the peak time of pulsation at the second displacement site is equal to or greater than a predetermined threshold, the processing unit 11 determines an abnormality of the blood vessel or heart. do.
- the processing unit 11 determines an abnormality in blood vessels or heart. If there is a large difference between the amount of pulse rhythm deviation and the amplitude of pulse fluctuation, abnormalities such as arteriosclerosis and vascular stenosis are suspected. For example, the processing unit 11 determines ischemic or hemorrhagic cerebrovascular abnormalities. That is, the processing unit 11 determines abnormalities related to stroke, cerebral infarction, and cerebral hemorrhage. The same applies hereinafter.
- the processing unit 11 determines abnormalities in blood vessels or the heart based on the amount of pulse rhythm deviation and the difference in amplitude between the left temporal artery and the right temporal artery (step S172). For example, the processing unit 11 determines ischemic or hemorrhagic cerebrovascular abnormalities. That is, the processing unit 11 determines abnormalities related to stroke, cerebral infarction, and cerebral hemorrhage.
- the processing unit 11 determines abnormalities in blood vessels or the heart based on the amount of pulse rhythm deviation and the difference in amplitude between the left brachial artery and the right brachial artery (step S173).
- the processing unit 11 determines abnormalities in blood vessels or the heart based on the amount of deviation in the pulse rhythm of the left dorsalis pedis artery and the right dorsal pedis artery and the difference in the amplitude of the swing (step S174). For example, the processing unit 11 determines abnormalities in leg blood vessels.
- the processing unit 11 determines a blood vessel or heart abnormality based on the difference between the pulsation propagation velocity between the heart and the left carotid artery and the pulsation propagation velocity between the heart and the right carotid artery (step S175). If the difference between the propagation velocities is greater than or equal to a predetermined threshold, some cardiac or vascular abnormality is suspected. For example, the processing unit 11 determines ischemic or hemorrhagic cerebrovascular abnormalities. That is, the processing unit 11 determines abnormalities related to stroke, cerebral infarction, and cerebral hemorrhage.
- the processing unit 11 determines an abnormality related to severe lower limb ischemia based on the amplitude of pulse fluctuation in the dorsalis pedis artery (step S176). If the fluctuation of the pulse of the dorsalis pedis artery is less than the predetermined threshold, the processing unit 11 determines that there is an abnormality of critical lower extremity ischemia.
- the processing unit 11 analyzes the infrared image data of the carotid trigone region or analyzes the point cloud data in the carotid trigone region to execute a process of detecting jugular vein distention. Abnormalities associated with heart failure are determined based on the presence or absence of hypertension (step S177).
- brachial artery, radial artery, ulnar artery, dorsalis pedis artery pulse or pulse time change, pulse rate, heart rate, pulse rhythm, deviation of pulse peak point, magnitude of fluctuation Cardiac or blood vessel abnormalities may be determined based on the difference in thickness or the like.
- an abnormality related to heart failure may be determined based on the size and shape of swelling of the jugular vein.
- the presence or absence of jugular vein distension and an abnormality related to heart failure may be determined by comparing with the arterial pulse or heartbeat fluctuation.
- abnormality determination is performed based on the current heartbeat and blood vessel beat. It may be configured to determine an abnormality of the heart or blood vessels by For example, the processing unit 11 may determine an increase or decrease in the user's heart rate as a heart or blood vessel abnormality. Furthermore, it is preferable to compare the information about the past beats detected in an environment similar to the current environment with the information about the current beats. Abnormalities in the heart or blood vessels can be determined with higher accuracy.
- FIGS. 10 to 12 are schematic diagrams showing an example of the determination result display image 171.
- FIG. The processing unit 11 generates the judgment result display image 171 as shown in FIGS. 10 to 12 by the processing of steps S124 and S126.
- the judgment result display image 171 displays, for example, a human body image 172 depicting a human body and various arteries and hearts to be detected.
- the human body image 172 includes character images indicating the names of various arteries "(1) temporal artery", "(2) carotid artery”, “(3) brachial artery”, “(4) radial artery”, "(5) ulnar artery” and “(6) dorsalis pedis artery”.
- the processing unit 11 may display character images corresponding to arteries for which pulsation could be detected and character images corresponding to arteries for which pulsation could not be detected in different modes. For example, the processing unit 11 may highlight character images corresponding to arteries for which pulsation could be detected, and display character images corresponding to arteries for which pulsation could not be detected in light characters.
- the determination result display image 171 includes graphs 173a and 173b showing temporal changes in pulsation of a plurality of arteries.
- two graphs 173a and 173b are displayed showing temporal changes in pulsation of the carotid artery and radial artery.
- the graphs 173a and 173b may display the state of pulsation in real time, or may statically display the state of pulsation for a certain period of time.
- a plurality of graphs 173a and 173b showing the pulsation of each artery may be displayed at predetermined screen positions corresponding to each artery and the heart, or only the graphs 173a and 173b showing the detected pulsation of the artery may be displayed. may be displayed.
- the processing unit 11 may receive selection of a graph to be displayed by the operation unit 16, and display graphs 173a and 173b showing the selected arterial pulsation. Also, it is preferable to display the peak of the beat as a zero point.
- the processing unit 11 may display graphs 173a and 173b showing the pulsation states of one or more representative arteries, as shown in FIG. For example, graphs 173a and 173b showing the pulsating states of the carotid artery and radial artery are displayed. Also, the processing unit 11 may display the character image corresponding to the artery displayed in the graph in a manner different from other character images. For example, it may be highlighted.
- the processing unit 11 converts graphs 173a and 173b showing temporal changes in the pulsations of the two arteries, which are the basis for the determination of abnormality, into a determination result display image, as shown in FIGS. 171.
- the processing unit 11 preferably displays the character image indicating the artery, which is the basis for the abnormality determination, in a manner that is different from the normal state. For example, the processing unit 11 may highlight the character image indicating the detected artery in green when the determination is normal, and highlight the artery used as the basis for the determination of abnormality in red.
- the determination result display image 171 includes a message image 174 indicating whether or not the determination result was normal.
- the determination result display image 171 includes a finding message image 175 indicating finding information, as shown in FIG.
- the user can know the beating state of the heart and blood vessels and whether the heart or blood vessels are normal. Needless to say, the determination result display image 171 may be transmitted to the first communication terminal 2 and the second communication terminal 3 as the determination result.
- determination result display image 171 described above is an example, and may be configured to display other information.
- graphs showing temporal changes in heart or blood vessel beats one day ago, one week ago, or one year ago may be displayed side by side or superimposed for comparison with the current graph.
- Information such as heart rate and pulse rate may also be displayed.
- the processing unit 11 can determine heart or blood vessel abnormalities such as arteriosclerosis and stenosis by comparing the pulse rate, heart rate, pulse rhythm, amplitude of vibration, and the like at a plurality of displacement sites. can. More specifically, heart or blood vessel abnormality can be determined based on the time difference between the pulsation peaks of the carotid artery and the radial artery, or the paired left and right arteries, and the difference in the magnitude of vibration.
- ischemic or hemorrhagic cerebrovascular abnormalities can be determined based on the amplitude of the temporal artery, carotid artery, or the like. That is, abnormalities related to stroke, cerebral infarction, and cerebral hemorrhage can be determined. Further, it is possible to determine the presence or absence of abnormal severe lower limb ischemia based on the magnitude of the swing of the dorsalis pedis artery. Further, by detecting jugular vein distention, abnormalities associated with heart failure can be determined.
- the infrared sensor 13 is used to identify the displacement site and then irradiate the displacement site with millimeter waves, the pulsation of blood vessels and the heart at the displacement site can be detected more accurately and efficiently. can do.
- the infrared sensor 13 can identify the displacement site with higher accuracy than millimeter waves.
- the millimeter wave sensor 14 can also detect pulsations at displacement sites hidden by clothes, which cannot be detected by the infrared sensor 13 .
- the information processing apparatus 1 is configured to irradiate millimeter waves while aiming at the displacement site specified by the infrared sensor 13 and detect the pulsation, the information processing apparatus 1 can efficiently and accurately detect the heart or each artery. Beats can be detected.
- the information processing apparatus 1 can display the medical staff's findings information on the display unit 17 when there is an abnormality in the heart or blood vessels and there is medical staff's findings information.
- medical staff's finding information can be transmitted to the family's first communication terminal 2 . Therefore, it is possible to detect an abnormality of the heart or blood vessels at an early stage and notify the user and the family of highly reliable information provided by medical personnel.
- the infrared sensor 13 is used to recognize various parts and displacement parts of the user's human body. good too.
- the processing unit 11 can similarly recognize each part of the human body and specify the displaced part based on the image data of the user imaged with visible light.
- a sensor that transmits and receives electromagnetic waves in the terahertz band may be provided.
- the pulsation at the displacement site can be detected in the same manner as the millimeter wave sensor 14 .
- the information processing apparatus 1 including the infrared sensor 13 and the millimeter wave sensor 14 has been described, the infrared sensor 13 or the millimeter wave sensor 14 may be a device externally connected by wire or wirelessly.
- Embodiment 1 an example in which a computer at home executes the computer program P according to Embodiment 1 has been described, but a cloud computer executes the computer program P according to Embodiment 1 to perform information processing. It may be configured to implement the method. Further, needless to say, the computer program P may be distributed and executed on a plurality of server computers.
- the information processing apparatus 1 according to the second embodiment differs from the first embodiment in that the acceleration sensor 5 and the contact sensor 6 are used to detect the user's body motion and pulse. Since other configurations of the information processing apparatus 1 are the same as those of the information processing apparatus 1 according to the first embodiment, similar portions are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 13 is an explanatory diagram showing a configuration example of an information processing system according to the second embodiment.
- the information processing system according to the second embodiment includes an information processing device 1 similar to that of the first embodiment, and further includes an acceleration sensor 5 attached to the user and a contact sensor 6 for detecting heart or blood vessel beats.
- the acceleration sensor 5 transmits to the information processing device 1 acceleration signal data indicating acceleration according to the movement of the user's body.
- the contact sensor 6 is attached to a site where the body surface is displaced by the pulsation of the heart or blood vessels, and transmits pulsation signal data indicating the pulsation to the information processing apparatus 1 .
- the contact-type sensor 6 is preferably attached to a site where millimeter waves from the information processing apparatus 1 are difficult to irradiate.
- FIG. 14 is a flowchart showing an information processing procedure according to the second embodiment.
- the processing unit 11 of the information processing device 1 determines whether or not it is a predetermined monitoring timing (step S211).
- the predetermined monitoring timing is arbitrary timing and can be set by the user as appropriate. If it is determined that it is not the monitoring timing (step S211: NO), the processing unit 11 returns the process to step S211 and waits.
- step S211 When it is determined that it is the monitoring timing (step S211: YES), the processing unit 11 receives the acceleration signal data transmitted from the acceleration sensor 5 (step S212), and detects the pulse signal data transmitted from the contact sensor 6. is received (step S213).
- the processing unit 11 determines whether or not the user is in a resting state by determining whether or not the magnitude of body movement is less than a predetermined value based on the acceleration signal data (step S214). If it is determined that the body movement is greater than or equal to the predetermined value and the subject is not in a resting state (step S214: NO), the processing unit 11 returns the process to step S212.
- step S214 When it is determined that the magnitude of the body movement is less than the predetermined value and the body is in a resting state (step S214: YES), the processing unit 11 identifies the displaced part by the same processing procedure as in the first embodiment, pulsation is detected, and heart and blood vessel abnormality determination processing is executed. However, the processing unit 11 according to the second embodiment distinguishes between the pulsation detected by the millimeter wave sensor 14, which is a non-contact sensor, and the pulsation indicated by the pulsation signal data transmitted from the contact sensor 6. is used to determine cardiac or vascular abnormalities.
- the pulse of arteries in more parts can be detected.
- cardiac or vascular abnormalities For example, the pulsation of the axillary artery can be detected by attaching the contact sensor 6 to the armpit.
- the contact sensor 6 by attaching the contact sensor 6 to the base of the thigh, the back of the knee, and the back of the inner malleolus, it is possible to detect the pulsation of the femoral artery, the popliteal artery, the posterior tibial artery, etc.
- vascular abnormalities can be determined.
- the displacement part is identified and the pulsation is detected, so the abnormality determination process can be executed efficiently.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Cardiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Signal Processing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
コンピュータは、心臓又は血管により生体表面が変位する変位部位を特定し、特定された前記変位部位における生体表面の変位に基づいて、心臓又は血管の拍動を検出し、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する処理を実行する。
Description
本発明は、コンピュータプログラム、情報処理方法及び情報処理装置に関する。
特許文献1には、高周波の電磁波を放射し、人の生体表面で散乱した反射波を検出し、生体表面の時間変動を演算することによって、脈拍等の生体情報を監視する生体情報モニタ装置が開示されている。
しかしながら、特許文献1には、心臓又は血管の具体的な異常を判定する技術は開示されていない。
本発明の目的は、生体の心臓又は血管の拍動を検出し、心臓又は血管の異常を判定することができるコンピュータプログラム、情報処理方法及び情報処理装置を提供することにある。
本態様に係るコンピュータプログラムは、生体の心臓又は血管の異常をコンピュータに判定させるためのコンピュータプログラムであって、心臓又は血管により生体表面が変位する変位部位を特定し、特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出し、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する処理を前記コンピュータに実行させる。
本態様に係る情報処理方法は、生体の心臓又は血管の異常を判定する情報処理方法であって、心臓又は血管により生体表面が変位する変位部位を特定し、特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出し、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する。
本態様に係る情報処理装置は、生体の心臓又は血管の異常を判定する情報処理装置であって、心臓又は血管により生体表面が変位する変位部位を特定する特定部と、特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出する検出部と、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する判定部とを備える。
上記によれば、生体の心臓又は血管の拍動を検出し、心臓又は血管の異常を判定することができるコンピュータプログラム、情報処理方法及び情報処理装置を提供することができる。
本発明の実施形態に係るコンピュータプログラム、情報処理方法及び情報処理装置の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。また、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
(実施形態1)
図1は、実施形態1に係る情報処理システムの構成例を示す説明図である。情報処理システムは、実施形態1に係る情報処理装置1を備える。情報処理装置1は、第1通信端末2、第2通信端末3及びサーバ4等と無線接続されており、各種情報を送受信することができる。
情報処理装置1は、赤外線及びミリ波を用いて、ユーザ(生体)の心臓及び血管の拍動を検出し、心臓及び血管の異常の有無を判定する装置である。情報処理装置1はユーザがいる部屋Rの中に設置されているものとする。第1通信端末2はユーザの家族が用いる通信装置である。第2通信端末3は医療関係者が用いる通信端末である。サーバ4は、気温及び湿度等、ユーザの心拍に影響を与える環境に係る情報を提供する装置である。なお、各装置を有線ケーブルで接続するように構成してもよい。
なお、本実施形態における心臓の異常は、心臓そのものの疾患をいう。血管の異常には、動脈硬化等の血管そのものの異常、脳梗塞、足梗塞(重症下肢虚血)等の、血流の異常による臓器、器官、部位の異常が含まれる。
図1は、実施形態1に係る情報処理システムの構成例を示す説明図である。情報処理システムは、実施形態1に係る情報処理装置1を備える。情報処理装置1は、第1通信端末2、第2通信端末3及びサーバ4等と無線接続されており、各種情報を送受信することができる。
情報処理装置1は、赤外線及びミリ波を用いて、ユーザ(生体)の心臓及び血管の拍動を検出し、心臓及び血管の異常の有無を判定する装置である。情報処理装置1はユーザがいる部屋Rの中に設置されているものとする。第1通信端末2はユーザの家族が用いる通信装置である。第2通信端末3は医療関係者が用いる通信端末である。サーバ4は、気温及び湿度等、ユーザの心拍に影響を与える環境に係る情報を提供する装置である。なお、各装置を有線ケーブルで接続するように構成してもよい。
なお、本実施形態における心臓の異常は、心臓そのものの疾患をいう。血管の異常には、動脈硬化等の血管そのものの異常、脳梗塞、足梗塞(重症下肢虚血)等の、血流の異常による臓器、器官、部位の異常が含まれる。
図2は、実施形態1に係る情報処理装置1の構成例を示すブロック図である。情報処理装置1は、処理部11、記憶部12、赤外線センサ13、ミリ波センサ14、通信部15、操作部16及び表示部17を備えたコンピュータである。なお、情報処理装置1は複数のコンピュータからなるマルチコンピュータであってもよく、ソフトウェアによって仮想的に構築された仮想マシンであってもよい。
処理部11は、一又は複数のCPU(Central Processing Unit)、MPU(Micro-Processing Unit)、GPU(Graphics Processing Unit)、GPGPU(General-purpose computing on graphics processing units)、TPU(Tensor Processing Unit)等を有する演算処理装置である。処理部11は、記憶部12が記憶するコンピュータプログラムPを読み出して実行することにより、ユーザの心臓及び血管の異常を判定する処理を実行する。
記憶部12は、ハードディスク、EEPROM(Electrically Erasable Programmable ROM)、フラッシュメモリ等の記憶装置である。記憶部12は、処理部11が、ユーザの心臓及び血管の異常をコンピュータに判定させる処理を実行させるためのコンピュータプログラムP、ユーザDB18及び学習モデル19を記憶する。
コンピュータプログラムPは、コンピュータを本実施形態1に係る情報処理装置1として機能させ、本実施形態1に係る情報処理方法を実行するためのプログラムである。コンピュータプログラムPは、ユーザの心臓又は血管により生体表面が変位する変位部位を特定し、特定された変位部位における生体表面の変位に基づいて、心臓又は血管の拍動を検出し、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する処理をコンピュータに実行させるためのものである。
なお、コンピュータプログラムPは、記録媒体10にコンピュータ読み取り可能に記録されている態様でも良い。記憶部12は、図示しない読出装置によって記録媒体10から読み出されたコンピュータプログラムPを記憶する。記録媒体10はフラッシュメモリ等の半導体メモリ、光ディスク、磁気ディスク、磁気光ディスク等である。また、通信網に接続されている図示しないプログラム提供サーバから本実施形態に係るコンピュータプログラムPをダウンロードし、記憶部12に記憶させる態様であってもよい。
ユーザDB18は、ユーザを識別するための識別情報、各ユーザ個人を認証するための認証情報、氏名、性別、年齢等、ユーザの基本的な情報を記憶する。また、ユーザDB18は、情報処理装置1によって検出された、ユーザの脈拍及び心拍、検出日時、気温及び湿度等の環境情報を、当該ユーザの識別情報に対応付けて記憶する。更に、ユーザDB18は、情報処理装置1による判定結果、つまりユーザの心臓又は血管が正常であるか否かを示す情報を、当該ユーザの識別情報に対応付けて記憶する。なお、ユーザDB18は、クラウドデータベースであってもよい。
赤外線センサ13は、例えば、LiDAR等の赤外線レーザ、赤外線カメラ等であり、赤外線を用いてユーザの人体の各部位、心臓又は血管の拍動により生体表面が変位する変位部位を非接触で特定するためのセンサである。赤外線センサ13は、生体表面の変位部位を特定するための非接触式センサの一例である。赤外線センサ13は空間分解能が高く、対象物の構造を捉える用途に向いている。しかし、衣服等に吸収され易く、衣服で隠れた生体表面の変位を捉えることができないというデメリットがある。
赤外線カメラは、ユーザの生体表面又は衣服で反射された赤外線を受光するレンズ及びCMOSイメージセンサを備えたカメラであり、ユーザの2次元情報として、赤外線画像データ(信号データ)を出力する。赤外線画像データは、水平方向及び垂直方向に並ぶ複数の画素からなる画像データである。
一方、LiDARである赤外線センサ13は、ユーザへ赤外線を照射する発光素子と、ユーザに照射され反射された赤外線を受光する受光素子を備える。発光素子は、例えば垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)等の赤外線レーザであり、縦横に並んだドットパターンをユーザへ照射する。受光素子は、例えばCMOSイメージセンサである。赤外線センサ13は、ユーザへ向けて照射され、反射されて戻ってくるまでの往復時間に基づいて、ユーザまでに距離を算出する。赤外線センサ13は、各ドットパターンまでの距離を算出して、ユーザの3次元情報である点群データ(信号データ)を出力する。点群データは、例えばユーザの体表面又は衣服表面上の多数の点を3次元座標で表したものである。処理部11は、点群データをボクセルデータに変換することができる。また、処理部11は点群データ又はボクセルデータを、2次元の赤外線画像データに変換することができる。
以下、説明を簡単にするために、2次元の赤外線画像データを用いて、ユーザであるユーザの体の各部位、並びに心臓及び血管の拍動により生体表面が変位する変位部位を特定する例を説明する。
一方、LiDARである赤外線センサ13は、ユーザへ赤外線を照射する発光素子と、ユーザに照射され反射された赤外線を受光する受光素子を備える。発光素子は、例えば垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting LASER)等の赤外線レーザであり、縦横に並んだドットパターンをユーザへ照射する。受光素子は、例えばCMOSイメージセンサである。赤外線センサ13は、ユーザへ向けて照射され、反射されて戻ってくるまでの往復時間に基づいて、ユーザまでに距離を算出する。赤外線センサ13は、各ドットパターンまでの距離を算出して、ユーザの3次元情報である点群データ(信号データ)を出力する。点群データは、例えばユーザの体表面又は衣服表面上の多数の点を3次元座標で表したものである。処理部11は、点群データをボクセルデータに変換することができる。また、処理部11は点群データ又はボクセルデータを、2次元の赤外線画像データに変換することができる。
以下、説明を簡単にするために、2次元の赤外線画像データを用いて、ユーザであるユーザの体の各部位、並びに心臓及び血管の拍動により生体表面が変位する変位部位を特定する例を説明する。
ミリ波センサ14は、ミリ波を用いて、ユーザの上記変位部位における拍動を検出するためのセンサである。ミリ波センサ14は、赤外線センサ13に比べると空間分解能に劣るが、ミリ波の電磁波はユーザの衣服に吸収されずに透過し、生体表面で反射される性質があるため、生体表面の変位を捉える用途に向いている。
ミリ波センサ14は、ミリ波信号を生成するシンセサイザ、送信アンテナ、受信アンテナ及びミキサ等を備える。送信アンテナはシンセサイザで生成されたミリ波の電磁波を送信する。受信アンテナは、ユーザの生体表面で反射されたミリ波の電磁波を受信する。ミキサは、送信波と受信波を混合し、中間周波信号を生成する回路である。処理部11は、中間周波信号のデータに基づいて、ユーザまでの距離を算出することができる。処理部11は、特に、ユーザの変位部位までの距離の変動、つまり生体表面の変位を算出することができ、当該変位部位における心臓又は血管の拍動を検出することができる。ミリ波センサ14は、電子スキャン方式により、任意の変位部位に照準を合わせて、ミリ波を照射することができ、処理部11は当該変位部位における拍動を検出することができる。
ミリ波センサ14は、ミリ波信号を生成するシンセサイザ、送信アンテナ、受信アンテナ及びミキサ等を備える。送信アンテナはシンセサイザで生成されたミリ波の電磁波を送信する。受信アンテナは、ユーザの生体表面で反射されたミリ波の電磁波を受信する。ミキサは、送信波と受信波を混合し、中間周波信号を生成する回路である。処理部11は、中間周波信号のデータに基づいて、ユーザまでの距離を算出することができる。処理部11は、特に、ユーザの変位部位までの距離の変動、つまり生体表面の変位を算出することができ、当該変位部位における心臓又は血管の拍動を検出することができる。ミリ波センサ14は、電子スキャン方式により、任意の変位部位に照準を合わせて、ミリ波を照射することができ、処理部11は当該変位部位における拍動を検出することができる。
通信部15は、無線通信処理を行うための処理回路、通信回路等を含み、図示しないルータを介して、第1通信端末2、第2通信端末3及びサーバ4との間で各種情報の送受信を行う。
操作部16は、ユーザによる情報処理装置1の操作を受け付ける入力装置である。入力装置は、例えばタッチパネル等のポインティングデバイス、キーボードである。
表示部17は、ユーザの心臓又は血管の異常判定結果を出力する出力装置である。出力装置は、例えば液晶ディスプレイ又はELディスプレイである。
図3は、実施形態1に係る学習モデル19の一例を示す概念図である。学習モデル19は、赤外線画像に含まれる所定のオブジェクトを認識するモデルである。学習モデル19は、例えば、セマンティックセグメンテーション(Semantic Segmentation)を用いた画像認識技術を利用することにより、オブジェクトを画素単位でクラス分けすることができ、赤外線画像に含まれる人体の各部をオブジェクトとして認識することができる。具体的には、学習モデル19は、赤外線画像における人体の顔面、右側頭部、左側頭部、右頸部、左頸部、右頸動脈三角、左頸動脈三角、右胸部、左胸部、右上腕、左上腕、右前腕、左前腕、右手根、左手根、右手掌、左手掌、右手背、左手背、右足背、左足背等を画素単位で認識する。なお、上腕、前腕、手根、手掌及び手背は上肢を構成する。
学習モデル19は、例えば深層学習による学習済みの畳み込みニューラルネットワーク(CNN:Convolutional neural network)である。学習モデル19は、赤外線画像データが入力される入力層19aと、赤外線画像の特徴量を抽出し復元する中間層19bと、赤外線画像に含まれるオブジェクトを画素単位で示す部位抽出画像データを出力する出力層19cとを有する。学習モデル19は、例えばU-Netである。
学習モデル19の入力層19aは、赤外線画像データ、つまり赤外線画像を構成する各画素の画素値の入力を受け付ける複数のニューロンを有し、入力された画素値を中間層19bに受け渡す。中間層19bは、畳み込み層(CONV層)と、逆畳み込み層(DECONV層)とを有する。畳み込み層は、赤外線画像データを次元圧縮する層である。次元圧縮により、オブジェクトの特徴量が抽出される。逆畳み込み層は逆畳み込み処理を行い、元の次元に復元する。逆畳み込み層における復元処理により、各画素がオブジェクトのクラスに対応する画素値(クラスデータ)を有する部位抽出画像データが生成される。出力層19cは、部位抽出画像データを出力する複数のニューロンを有する。部位抽出画像は、人体の部位毎にクラス分け、例えば色分けされたような画像である。
学習モデル19は、赤外線センサ13にて得られる赤外線画像データと、当該赤外線画像の各画素に、対応する人体の各部の種類に応じたクラスデータを付与した部位抽出画像データとを有する訓練データを用意し、当該訓練データを用いて未学習のニューラルネットワークを機械学習させることにより生成することができる。
このように学習された学習モデル19によれば、図3に示すように人体を赤外線センサ13にて得られる赤外線画像データを学習モデル19に入力することによって、人体の各部が画素単位でクラス分けされた部位抽出画像データが得られる。
なお、上記の例では2次元情報である赤外線画像における人体の各部位を認識する例を説明したが、LiDARで得られた3次元の点群データ、又はボクセルデータにおける人体の各部を認識するように構成してもよい。処理部11は、例えば点群データをボクセルデータに変換し、ボクセルデータに基づいて複数の2次元画像データを生成し、各2次元画像データについて上記と同様の手法で画像認識処理を行い、2次元の部位抽出画像データを複数の画像をボクセルデータ、又は点群データに逆変換することによって、3次元データにおける人体の各部位の種類をボクセル単位又は点データ単位で示したデータを得ることができる。
また、ボクセルデータにおけるユーザの各部位を直接的に認識することができる3D U-Net等の学習モデル19を用いて、人体の各部位の種類を認識するように構成してもよい。その他、公知の機械学習手法を用いて、3次元情報における人体の各部位を認識すればよい。
また、ボクセルデータにおけるユーザの各部位を直接的に認識することができる3D U-Net等の学習モデル19を用いて、人体の各部位の種類を認識するように構成してもよい。その他、公知の機械学習手法を用いて、3次元情報における人体の各部位を認識すればよい。
処理部11は、学習モデル19を用いることによって赤外線画像におけるユーザの人体の各部位を認識することができる。生体表面には、心臓又は血管の拍動が特異的に伝播し、生体表面の周期的な変位として表れる変位部位がある。処理部11は、学習モデル19を用いた認識結果に基づいて、変位部位を特定する。
図4は、変位部位と、心臓及び血管を示す概念図である。変位部位は、例えば頸部、側頭部、上腕部、手根内側の親指寄り部分、手根内側の小指寄り部分、足背又は胸部等である。頸部には頸動脈があり、側頭部には浅側頭動脈があり、上腕部には上腕動脈があり、手根内側の親指寄り部分には橈骨動脈があり、手根内側の小指寄り部分には尺骨動脈があり、足背には足背動脈があり、胸部には心臓がある。
図5及び図6は、実施形態1に係る情報処理手順を示すフローチャートである。情報処理装置1は、任意のタイミング、例えば毎日3回、定期的に以下の処理を実行する。処理部11は、赤外線センサ13を用いてユーザを赤外線検出する(ステップS111)。具体的には、赤外線センサ13が赤外線カメラである場合、処理部11は当該赤外線カメラを用いてユーザを撮像し、ユーザの赤外線画像データを取得する。赤外線センサ13がLiDARである場合、処理部11は、当該LiDARを用いて、ユーザの点群データを取得する。処理部11は、点群データを2次元の赤外線画像データに変換する。
次いで、処理部11は、赤外線検出の結果を用いた顔認証処理により個人を特定する(ステップS112)。例えば、処理部11はユーザの赤外線画像データ又は点群データから所定の特徴量を抽出し、抽出された特徴量と、ユーザDB18に登録されている認証情報とを照合することによってユーザ個人を特定する。
次いで、処理部11は、赤外線画像データを学習モデル19に入力することによって、赤外線画像におけるユーザの人体の各部位を認識する(ステップS113)。そして、処理部11は、心臓又は血管の拍動によって生体表面が周期的に変位する変位部位を特定する(ステップS114)。変位部位を特定する処理の詳細は後述する。なお、ステップS114の処理を実行する処理部11は、心臓又は血管により生体表面が変位する変位部位を特定する特定部として機能する。
次いで、ステップS114の特定結果に基づいて、処理部11は特定された各変位部位に順次照準を合わせてミリ波を照射させ、反射波を受信し(ステップS115)、各変位部位における心臓又は血管の拍動を検出する(ステップS116)。
例えば、処理部11は、拍動の時間変化、脈拍数、心拍数、脈拍リズム、又は脈拍の振れの大きさ、拍動のピーク時点等を検出する。拍動の時間変化は、つまり変位部位の生体表面の変位量の時間変化である。脈拍数は、例えば1分当たりの動脈の拍動回数である。心拍数は、例えば1分当たりの心臓の拍動回数である。脈拍リズムは、例えば変位部位における拍動周期、又は拍動周期の規則性を示す数値である。脈拍の振れの大きさは、変位部位における生体表面の変位の振幅である。拍動のピーク時点は、変位部位における変位量が極大になる時点である。なお、変位量が極小になる時点を検出するようにしてもよい。
なお、ステップS115~ステップS116の処理を実行する処理部11は、特定された変位部位における生体表面の変位に基づいて、心臓又は血管の拍動を検出する検出部として機能する。
例えば、処理部11は、拍動の時間変化、脈拍数、心拍数、脈拍リズム、又は脈拍の振れの大きさ、拍動のピーク時点等を検出する。拍動の時間変化は、つまり変位部位の生体表面の変位量の時間変化である。脈拍数は、例えば1分当たりの動脈の拍動回数である。心拍数は、例えば1分当たりの心臓の拍動回数である。脈拍リズムは、例えば変位部位における拍動周期、又は拍動周期の規則性を示す数値である。脈拍の振れの大きさは、変位部位における生体表面の変位の振幅である。拍動のピーク時点は、変位部位における変位量が極大になる時点である。なお、変位量が極小になる時点を検出するようにしてもよい。
なお、ステップS115~ステップS116の処理を実行する処理部11は、特定された変位部位における生体表面の変位に基づいて、心臓又は血管の拍動を検出する検出部として機能する。
次いで、処理部11は検出された拍動の周期に基づいて、ユーザが安静状態にあるか否かを判定する(ステップS117)。例えば、処理部11は、顔認証により特定された個人の過去の拍動に係る情報をユーザDB18から読み出し、現在検出されている拍動周期と、過去の拍動周期とを比較することによって、ユーザが安静状態にあるか否かを判定することができる。現在の拍動周期が、過去の拍動周期よりも極端に短い場合、安静状態に無いと判定すればよい。
安静状態に無いと判定した場合(ステップS117:NO)、処理部11は処理をステップS113へ戻す。安静状態にあると判定した場合(ステップS117:YES)、処理部11は各変位部位の拍動を所定時間検出したか否かを判定する(ステップS118)。所定時間は、例えば平均的な心臓及び血管の拍動周期の数倍の時間である。所定時間未満であると判定した場合(ステップS118:NO)、処理部11は処理をステップS113へ戻す。所定時間以上、拍動を検出したと判定した場合(ステップS118:YES)、処理部11は、サーバ4にアクセスし、現在の気温、湿度等の環境情報を取得する(ステップS119)。
次いで、処理部11は、各変位部位における拍動を示す拍動検出結果と、拍動の検出を行った日時と、ステップS119にて取得した環境情報とを、ユーザの識別情報に対応付けてユーザDB18に記憶する(ステップS120)。
次いで、処理部11は、特定された複数の各変位部位それぞれにおける拍動の検出結果に基づいて、心臓又は血管の異常を判定する(ステップS121)。具体的には、特定された複数の変位部位それぞれにおける、拍動の時間変化、脈拍数、心拍数、脈拍リズム、又は脈拍の振れの大きさ、拍動のピーク時点等を比較することにより、心臓又は血管の異常を判定する。異常判定処理の詳細は後述する。なお、ステップS121の処理を実行する処理部11は、検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する判定部として機能する。
処理部11は、心臓又は血管に異常があるか否かを判定する(ステップS122)。異常が無いと判定した場合(ステップS122:NO)、処理部11は、所定の通知タイミングであるか否かを判定する(ステップS123)。正常である場合、異常判定の都度、判定結果の表示及び関係者への通知を行わなくてもよいと考えられるため、ステップS123で通知タイミングの判定を行っている。なお、判定処理の都度、表示及び通知を行ってもよい。
通知タイミングで無いと判定した場合(ステップS123:NO)、処理を終える。通知タイミングであると判定した場合(ステップS123:YES)、処理部11は、正常であることを示す判定結果表示画像171(図10参照)を生成し、表示部17に表示する(ステップS124)。そして、処理部11は、判定結果を家族の第1通信端末2及び医療関係者の通信端末へ送信する(ステップS125)。なお、処理部11は、ユーザの氏名、識別情報、連絡先等の情報と共に判定結果を第1通信端末2及び第2通信端末3へ送信するとよい。なお、医療関係者の第2通信端末3へは、ユーザの氏名等の個人情報を送信しないように構成してもよい。
ステップS122において異常があると判定した場合(ステップS122:YES)、処理部11は、異常があることを示す判定結果表示画像171(図11、図12参照)を生成し、表示部17に表示する(ステップS126)。そして、処理部11は、判定結果を家族の第1通信端末2及び医療関係者の第2通信端末3へ送信する(ステップS127)。
医療関係者は、判定結果の情報を第2通信端末3にて受信することができ、判定結果に対する所見を示す所見情報を情報処理装置1へ送信する。
情報処理装置1の処理部11は、医療関係者の第2通信端末3から送信された所見情報を通信部15にて受信し(ステップS128)、受信した医療関係者の所見情報を表示部17に表示する(ステップS129)。また、処理部11は、医療関係者の所見情報を家族の第1通信端末2へ送信し(ステップS130)、処理を終える。
図7及び図8は、変位部位の特定処理手順を示すフローチャートである。処理部11は、ステップS113の処理により、頸動脈三角の領域を認識したか否かを判定する(ステップS151)。頸動脈三角の領域を認識している場合(ステップS151:YES)、処理部11は、当該領域を、頸動脈及び頸静脈がある変位部位として特定する(ステップS152)。
ステップS152の処理を終えた場合、又はステップS151で頸動脈三角の領域を認識していないと判定した場合(ステップS151:NO)、処理部11は、ステップS113の処理により、ユーザの顔面を認識したか否かを判定する(ステップS153)。ユーザの顔面を認識したと判定した場合(ステップS153:YES)、処理部11は、顔の輪郭、目、眉、鼻、口、ほうれい線、耳及び顎のいずれか一つを検出し、目等の各部の正中線からのずれ量に基づいて頸動脈がある変位部位を特定する(ステップS154)。処理部11は、例えば、学習モデル19を用いて、顔の輪郭、目、眉、鼻、口、ほうれい線、耳又は顎を検出する。また、赤外線画像における顔面の画像部分を抽出し、二値化、パターンマッチング処理等により、顔の目等をルールベースで検出するように構成してもよい。一方、処理部11は、ステップS113の処理により、体の左右の部位、例えば、右胸部及び左胸部、右上腕及び左上腕等を認識することができるため、左右の各部位を分ける直線を正中線として特定することができる。この正中線と、左右の目等の各部の位置関係から、顔が右側を向いているか、左側を向いているか、首の回転角度等を推定することができる。顔が右を向いている場合、学習モデル19で認識した頸部の左側部分を、頸動脈がある変位部位として特定すればよい。顔が左を向いている場合、頸部の右側部分を、頸動脈がある変位部位として特定すればよい。また、首の回転量に応じて、右頸動脈又は左頸動脈に相当する部位から、変位部位を更に絞り込んで特定するように構成してもよい。
ステップS154の処理を終えた場合、又はステップS153で顔面を認識していないと判定した場合(ステップS153:NO)、処理部11は、ステップS113の処理により、ユーザの側頭部を認識したか否かを判定する(ステップS155)。側頭部を認識したと判定した場合(ステップS155:YES)、処理部11は、当該測定部を浅側頭動脈がある変位部位として特定する(ステップS156)。
ステップS156の処理を終えた場合、又はステップS155で側頭部を認識していないと判定した場合(ステップS155:NO)、処理部11は、ステップS113の処理により、上腕部を認識したか否かを判定する(ステップS157)。上腕部を認識したと判定した場合(ステップS157:YES)、処理部11は、当該上腕部を上腕動脈がある変位部位として特定する(ステップS158)。
ステップS158の処理を終えた場合、又はステップS157で上腕部を認識していないと判定した場合(ステップS157:NO)、処理部11は、ステップS113の処理により、手掌を認識したか否かを判定する(ステップS159)。手掌を認識したと判定した場合(ステップS159:YES)、処理部11は、手掌の画像部分から親指の位置を認識し(ステップS160)、ステップS113の処理により認識した手根の親指寄り部分を橈骨動脈がある変位部位として特定する(ステップS161)。また、処理部11は、ステップS113の処理により認識した手根の小指寄り部分を尺骨動脈がある変位部位として特定する(ステップS162)。
なお、手掌を認識している状態、つまり、手掌が赤外線センサ13を向いている場合、学習モデル19は、手根内側を手根として認識する。手根内側は、橈骨動脈及び尺骨動脈の拍動により生体表面が変位する部位である。なお、手背が赤外線センサ13を向いている場合、学習モデル19は、手根外側を手根として認識する。
また、手根内側の親指側、手根内側の小指側及び手根外側を区別して認識するように学習モデル19を機械学習させている場合、上記手掌の向き、親指の位置の認識処理は不要である。学習モデル19は、直接的に橈骨動脈がある変位部位及び尺骨動脈がある変位部位を認識することができる。
また、手根内側の親指側、手根内側の小指側及び手根外側を区別して認識するように学習モデル19を機械学習させている場合、上記手掌の向き、親指の位置の認識処理は不要である。学習モデル19は、直接的に橈骨動脈がある変位部位及び尺骨動脈がある変位部位を認識することができる。
ステップS162の処理を終えた場合、又はステップS159で手掌を認識していないと判定した場合(ステップS159:NO)、処理部11は、ステップS113の処理により、足背を認識したか否かを判定する(ステップS163)。足背を認識したと判定した場合(ステップS163:YES)、処理部11は、当該足背を足背動脈がある変位部位として特定する(ステップS164)。
ステップS164の処理を終えた場合、又はステップS163で足背を認識していないと判定した場合(ステップS163:NO)、処理部11は、ステップS113の処理により、胸部を認識したか否かを判定する(ステップS165)。胸部を認識していないと判定した場合(ステップS165:NO)、処理部11は、変位部位の特定処理を終える。胸部を認識したと判定した場合(ステップS165:YES)、処理部11は、当該胸部を心臓がある変位部位として特定し(ステップS166)、変位部位の特定処理を終える。
以上の処理によれば、振動又は血管の拍動が伝播して生体表面が変位する変位部位を特定することができる。具体的には、処理部11は、頸動脈、側頭動脈、上腕動脈、橈骨動脈、尺骨動脈、足背動脈、心臓の拍動によって生体表面が変位する変位部位を特定することができる。また、処理部11は、頸静脈がある部位を特定することができる。
図9は、異常判定処理手順を示すフローチャートである。処理部11は、左頸動脈及び右頸動脈の脈拍リズムのずれ量、振れの大きさの差に基づいて、血管又は心臓の異常を判定する(ステップS171)。脈拍リズムのずれ量が所定の閾値以上である場合、処理部11は血管又は心臓の異常を判定する。言い換えると、第1の変位部位における拍動のピーク時点と、第2の変位部位における拍動のピーク時点との時間差が所定の閾値以上である場合、処理部11は血管又は心臓の異常を判定する。同様に、振れの大きさの差が所定の閾値以上である場合、処理部11は血管又は心臓の異常を判定する。脈拍リズムのずれ量、脈拍の振れの大きさの差が大きい場合、動脈硬化、血管の狭窄等の異常が疑われる。例えば、処理部11は、虚血性、出血性脳血管の異常を判定する。すなわち、処理部11は、脳卒中、脳梗塞、脳出血に係る異常を判定する。以下、同様である。
次いで、処理部11は、左側頭動脈及び右側頭動脈の脈拍リズムのずれ量、振れの大きさの差に基づいて、血管又は心臓の異常を判定する(ステップS172)。例えば、処理部11は、虚血性、出血性脳血管の異常を判定する。すなわち、処理部11は、脳卒中、脳梗塞、脳出血に係る異常を判定する。
処理部11は、左上腕動脈及び右上腕動脈の脈拍リズムのずれ量、振れの大きさの差に基づいて、血管又は心臓の異常を判定する(ステップS173)。
処理部11は、左足背動脈及び右足背動脈の脈拍リズムのずれ量、振れの大きさの差に基づいて、血管又は心臓の異常を判定する(ステップS174)。例えば、処理部11は、足の血管の異常を判定する。
次いで、処理部11は、心臓と左頸動脈間の拍動伝播速度と、心臓と右頸動脈の拍動伝播速度との差異に基づいて、血管又は心臓の異常を判定する(ステップS175)。各伝播速度の差異が所定の閾値以上である場合、心臓又は血管の何らかの異常が疑われる。例えば、処理部11は、虚血性、出血性脳血管の異常を判定する。すなわち、処理部11は、脳卒中、脳梗塞、脳出血に係る異常を判定する。
次いで、処理部11は、足背動脈の脈拍の振れの大きさに基づいて、重症下肢虚血に係る異常を判定する(ステップS176)。足背動脈の脈拍の振れが所定の閾値未満である場合、処理部11は、重症下肢虚血の異常があると判定する。
次いで、処理部11は、頸動脈三角の領域の赤外線画像データを解析し、又は頸動脈三角の領域にける点群データを解析することにより、頸静脈怒張を検知する処理を実行し、頸静脈怒張の有無に基づいて心不全に係る異常を判定する(ステップS177)。
なお、上記の説明では、主に左右の動脈の脈拍リズムのずれ量、振れの大きさの差に基づいて、心臓又は血管の異常を判定する例を説明したが、頸動脈、浅側頭動脈、上腕動脈、橈骨動脈、尺骨動脈、足背動脈の脈拍又は心拍のいずれか2つの拍動の時間変化、脈拍数、心拍数、脈拍リズム、又は拍動のピーク時点のずれ量、振れの大きさの差等に基づいて、心臓又は血管の異常を判定してもよい。頚静脈怒張の有無については、頚静脈の膨れ上がっている大きさ、形状に基づいて、心不全に係る異常を判定してもよい。更に、上記動脈の脈拍又は心拍の振れの大きさ等と比較して、頚静脈怒張の有無と、それに基づく心不全に係る異常を判定するようにしてもよい。
また、上記の説明では、心臓及び血管の現在の拍動に基づいて異常判定を行っているが、ユーザDB18が記憶するユーザの過去の拍動の情報と、現在の拍動の情報とを比較することによって、心臓又は血管の異常を判定するように構成してもよい。例えば、処理部11はユーザの心拍数の増加又は減少を、心臓又は血管の異常として判定するようにしてもよい。更に、現在の環境と類似の環境で検出された過去の拍動に係る情報と、現在の拍動に係る情報とを比較するとよい。より精度良く、心臓又は血管の異常を判定することができる。
図10、図11及び図12は、判定結果表示画像171の一例を示す模式図である。処理部11は、ステップS124及びステップS126の処理により図10~図12に示すような判定結果表示画像171を生成する。判定結果表示画像171は、例えば人体と、検出対象である各種動脈及び心臓を描いた人体画像172を表示する。人体画像172は、各種動脈の名称を示す文字画像「(1)側頭動脈」、「(2)頸動脈」、「(3)上腕動脈」、「(4)橈骨動脈」、「(5)尺骨動脈」、「(6)足背動脈」を含む。
処理部11は、拍動を検出できた動脈に対応する文字画像と、拍動を検出できなかった動脈に対応する文字画像とを異なる態様で表示するとよい。例えば、処理部11は、拍動を検出できた動脈に対応する文字画像をハイライト表示し、拍動を検出できなかった動脈に対応する文字画像を薄文字で表示するとよい。
処理部11は、拍動を検出できた動脈に対応する文字画像と、拍動を検出できなかった動脈に対応する文字画像とを異なる態様で表示するとよい。例えば、処理部11は、拍動を検出できた動脈に対応する文字画像をハイライト表示し、拍動を検出できなかった動脈に対応する文字画像を薄文字で表示するとよい。
判定結果表示画像171は、複数の動脈の拍動の時間変化を示すグラフ173a,173bを含む。図10~図12に示す例では、頸動脈と橈骨動脈の拍動の時間変化を示す2つのグラフ173a,173bが表示されている。グラフ173a,173bは、拍動の様子をリアルタイムで表示してもよいし、一定期間の拍動の様子を静的に表示してもよい。
なお、各動脈の拍動を示す複数のグラフ173a,173bは、各動脈及び心臓に対応する既定の画面位置に表示してもよいし、検出できた動脈の拍動を示すグラフ173a,173bのみを表示するようにしてもよい。処理部11は、操作部16にて表示するグラフの選択を受け付け、選択された動脈の拍動を示すグラフ173a,173bを表示するようにしてもよい。また、拍動のピークをゼロ点にして表示するとよい。
なお、各動脈の拍動を示す複数のグラフ173a,173bは、各動脈及び心臓に対応する既定の画面位置に表示してもよいし、検出できた動脈の拍動を示すグラフ173a,173bのみを表示するようにしてもよい。処理部11は、操作部16にて表示するグラフの選択を受け付け、選択された動脈の拍動を示すグラフ173a,173bを表示するようにしてもよい。また、拍動のピークをゼロ点にして表示するとよい。
判定結果が正常である場合、処理部11は、図10に示すように、代表的な1又は複数の動脈の拍動状態を示すグラフ173a,173bを表示すればよい。例えば、頸動脈と、橈骨動脈の拍動状態を示すグラフ173a,173bを表示する。また、処理部11は、グラフ表示している動脈に対応する文字画像を他の文字画像と異なる態様で表示するとよい。例えば、ハイライト表示するとよい。
判定結果が異常である場合、処理部11は、図11及び図12に示すように、異常判定の根拠になった2つの動脈の拍動の時間変化を示すグラフ173a,173bを判定結果表示画像171に表示する。また、処理部11は、異常判定の根拠になった動脈を示す文字画像を、正常な状態と異なる態様を強調表示するとよい。例えば、処理部11は、正常判定時は検出された動脈を示す文字画像を緑色でハイライト表示し、異常判定時の根拠になった動脈を赤色でハイライト表示するとよい。
更に、判定結果表示画像171は、図10及び図11に示すように、判定結果が正常であったか否かを示すメッセージ画像174を含む。
更にまた、医療関係者の所見情報を受信している場合、判定結果表示画像171は、図12に示すように、所見情報を示す所見メッセージ画像175を含む。
図10~図12に示すような判定結果表示画像171により、ユーザは心臓及び血管の拍動状態、心臓又は血管が正常であるか否かを知ることができる。なお、言うまでも無く、判定結果表示画像171を判定結果として、第1通信端末2及び第2通信端末3へ送信してもよい。
なお、上記の判定結果表示画像171は一例であり、その他の情報を表示するように構成してもよい。例えば、1日前、1週間前、又は1年前における心臓又は血管の拍動の時間変化を示すグラフを、現在のグラフと比較可能に並べて、又は重畳させて表示してもよい。また、心拍数、脈拍数等の情報を表示してもよい。
以上の通り、本実施形態1に係る情報処理装置1等によれば、ユーザの心臓又は血管の拍動を検出し、心臓又は血管の異常を判定することができる。具体的には、処理部11は、複数の変位部位における脈拍数、心拍、脈拍リズム、振れの大きさ等を比較することにより、動脈硬化、狭窄等の心臓又は血管の異常を判定することができる。より具体的には、頸動脈と橈骨動脈、あるいは対をなす左右の動脈の拍動のピーク時点の時間差、振れの大きさの差に基づいて、心臓又は血管の異常を判定することができる。また、側頭動脈、頸動脈等の振れの大きさに基づいて、虚血性、出血性脳血管の異常を判定することができる。すなわち、脳卒中、脳梗塞、脳出血に係る異常を判定することができる。また、足背動脈の振れの大きさに基づいて、重症下肢虚血の異常の有無を判定することができる。更に、頸静脈怒張を検出することによって、心不全に係る異常を判定することができる。
また、赤外線センサ13を用いて、変位部位を特定した上で、ミリ波を当該変位部位へ照射する構成であるため、より精度良く、効率的に当該変位部位における血管及び心臓の拍動を検出することができる。赤外線センサ13によれば、ミリ波に比べて精度良く変位部位を特定することができる。一方、ミリ波センサ14によれば、赤外線センサ13では検出できないような、衣服で隠れている変位部位における拍動も検出することができる。このように赤外線センサ13及びミリ波センサ14の長所と短所とを補い合うことによって、精度良く効率的に各種動脈及び心臓の拍動を検出することができ、血管及び心臓の異常を判定することができる。
更に、情報処理装置1は、赤外線センサ13にて特定された変位部位に照準を合わせてミリ波を照射し、拍動を検出する構成であるため、効率的かつ精度良く、心臓又は各動脈の拍動を検出することができる。
更に、本実施形態1によれば、判定結果を家族又は医療関係者へ通知することができる。また情報処理装置1は、心臓又は血管に異常があり、医療関係者の所見情報がある場合、医療関係者の所見情報を表示部17に表示することができる。また、医療関係者の所見情報を家族の第1通信端末2へ送信することができる。従って、心臓又は血管の異常を早期に検出した上で、医療関係者による信頼性に高い情報をユーザ及び家族に通知することができる。
なお、本実施形態1では、赤外線センサ13にてユーザの人体の各位部及び変位部位を認識する例を説明したが、赤外線センサ13に代えて可視光にてユーザを撮像する撮像装置を備えてもよい。処理部11は、可視光にて撮像されたユーザの画像データに基づいて、同様にして人体の各部位を認識し、変位部位を特定することができる。
また、ミリ波センサ14を用いて、人体の変位部位における拍動を検出する例を説明したが、テラヘルツ帯の電磁波を送受信するセンサを備えてもよい。テラヘルツ帯の電磁波を変位部位へ照射し、当該変位部位からの反射波を受信することによって、ミリ波センサ14と同様にして、変位部位における拍動を検出することができる。
更に、赤外線センサ13及びミリ波センサ14を備える情報処理装置1を説明したが、赤外線センサ13又はミリ波センサ14は有線又は無線で外部接続される機器であってもよい。
更にまた、本実施形態1では、宅内のコンピュータが本実施形態1に係るコンピュータプログラムPを実行する例を説明したが、クラウドコンピュータが、本実施形態1に係るコンピュータプログラムPを実行し、情報処理方法を実施するように構成してもよい。また、言うまでも無く、コンピュータプログラムPは、複数のサーバコンピュータにおいて分散して実行されてもよい。
(実施形態2)
実施形態2に係る情報処理装置1は、加速度センサ5及び接触式センサ6を用いて、ユーザの体動及び拍動を検出する点が実施形態1と異なる。情報処理装置1のその他の構成は、実施形態1に係る情報処理装置1と同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
実施形態2に係る情報処理装置1は、加速度センサ5及び接触式センサ6を用いて、ユーザの体動及び拍動を検出する点が実施形態1と異なる。情報処理装置1のその他の構成は、実施形態1に係る情報処理装置1と同様であるため、同様の箇所には同じ符号を付し、詳細な説明を省略する。
図13は、実施形態2に係る情報処理システムの構成例を示す説明図である。実施形態2に係る情報処理システムは、実施形態1と同様の情報処理装置1を備え、更に、ユーザに取り付けられた加速度センサ5と、心臓又は血管の拍動を検出する接触式センサ6とを備える。加速度センサ5は、ユーザの体の動きに応じた加速度を示す加速度信号データを情報処理装置1へ送信する。接触式センサ6は、心臓又は血管の拍動によって生体表面が変位する部位に取り付けられ、拍動を示す拍動信号データを情報処理装置1へ送信する。接触式センサ6は、情報処理装置1からミリ波が照射されにくい部位に取り付けるとよい。
図14は、実施形態2に係る情報処理手順を示すフローチャートである。情報処理装置1の処理部11は、所定の監視タイミングであるか否かを判定する(ステップS211)。所定の監視タイミングは、任意のタイミングであり、ユーザが適宜設定することができる。監視タイミングで無いと判定した場合(ステップS211:NO)、処理部11は処理をステップS211に戻して待機する。
監視タイミングであると判定した場合(ステップS211:YES)、処理部11は、加速度センサ5から送信された加速度信号データを受信し(ステップS212)、接触式センサ6から送信された拍動信号データを受信する(ステップS213)。
次いで、処理部11は、加速度信号データに基づいて、体動の大きさが所定値未満であるか否かを判定することによって、ユーザが安静状態にあるか否かを判定する(ステップS214)。体動の大きさが所定値以上であり、安静状態に無いと判定した場合(ステップS214:NO)、処理部11は処理をステップS212へ戻す。
体動の大きさが所定値未満であり、安静状態にあると判定した場合(ステップS214:YES)、処理部11は、実施形態1と同様の処理手順で変位部位を特定し、心臓及び血管の拍動を検出し、心臓及び血管の異常判定処理を実行する。ただし、実施形態2に係る処理部11は、非接触式センサであるミリ波センサ14を用いて検出される拍動と、接触式センサ6から送信された拍動信号データが示す拍動とを用いて、心臓又は血管の異常を判定する。
以上の通り、本実施形態2に係る情報処理装置1によれば、接触式センサ6を、ミリ波センサ14が照射されにくい場所に取り付けることによって、より多くの部位の動脈の拍動に基づいて、心臓又は血管の異常を検知することができる。例えば、接触式センサ6を脇の下に取り付けることによって腋窩動脈の拍動を検出することができる。また、接触式センサ6を、太ももの付け根、膝の裏、内くるぶしの後に取り付けることによって、大腿動脈、膝窩動脈、後脛骨動脈等の拍動を検出することができ、より精度良く、心臓又は血管の異常を判定することができる。
更に、加速度センサ5を用いてユーザの安静状態を確認した上で、変位部位の特定及び拍動の検出を行うため、効率的に異常判定処理を実行することができる。
1 情報処理装置
2 第1通信端末
3 第2通信端末
4 サーバ
5 加速度センサ
6 接触式センサ
10 記録媒体
11 処理部
12 記憶部
13 赤外線センサ
14 ミリ波センサ
15 通信部
16 操作部
17 表示部
18 ユーザDB
19 学習モデル
19a 入力層
19b 中間層
19c 出力層
171 判定結果表示画像
P コンピュータプログラム
R 部屋
2 第1通信端末
3 第2通信端末
4 サーバ
5 加速度センサ
6 接触式センサ
10 記録媒体
11 処理部
12 記憶部
13 赤外線センサ
14 ミリ波センサ
15 通信部
16 操作部
17 表示部
18 ユーザDB
19 学習モデル
19a 入力層
19b 中間層
19c 出力層
171 判定結果表示画像
P コンピュータプログラム
R 部屋
Claims (25)
- 生体の心臓又は血管の異常をコンピュータに判定させるためのコンピュータプログラムであって、
心臓又は血管により生体表面が変位する変位部位を特定し、
特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出し、
検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるためのコンピュータプログラム。 - 複数の前記変位部位を特定し、
特定された複数の前記変位部位それぞれにおける脈拍数、脈拍リズム、又は振れの大きさを比較することにより、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項1に記載のコンピュータプログラム。 - 複数の前記変位部位を特定し、
第1の前記変位部位における拍動のピークと、第2の前記変位部位における拍動のピークとの時間差が閾値以上である場合、心臓又は血管に異常があると判定する
処理を前記コンピュータに実行させるための請求項1又は請求項2に記載のコンピュータプログラム。 - 非接触式センサから出力される信号データに基づいて前記変位部位を特定する
処理を前記コンピュータに実行させるための請求項1から請求項3のいずれか1項に記載のコンピュータプログラム。 - 赤外線又は可視光にて前記変位部位を特定し、
ミリ波又はテラヘルツ帯の電磁波を照射し、前記生体の前記変位部位からの反射波により、心臓又は血管の拍動を検出する
処理を前記コンピュータに実行させるための請求項1から請求項4のいずれか1項に記載のコンピュータプログラム。 - 特定された前記変位部位に照準を合わせてミリ波又はテラヘルツ帯の電磁波を照射し、該変位部位からの反射波により、心臓又は血管の拍動を検出する
処理を前記コンピュータに実行させるための請求項1から請求項5のいずれか1項に記載のコンピュータプログラム。 - 少なくとも一つの前記変位部位における心臓又は血管の拍動を、前記生体に取り付けられた接触式センサから出力される信号データに基づいて検出し、少なくとも一つの前記変位部位における心臓又は血管の拍動を非接触式センサから出力される信号データに基づいて検出する
処理を前記コンピュータに実行させるための請求項1から請求項6のいずれか1項に記載のコンピュータプログラム。 - 前記生体に取り付けられた加速度センサから出力される信号データに基づいて、体動の大きさが所定値未満であるか否かを判定し、
体動の大きさが所定値未満である場合、特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出する
処理を前記コンピュータに実行させるための請求項1から請求項7のいずれか1項に記載のコンピュータプログラム。 - 前記変位部位は、頸部、側頭部、上肢、足背又は胸部であり、前記頸部における頸動脈、前記側頭部における浅側頭動脈、前記上肢における上腕動脈、橈骨動脈若しくは尺骨動脈、前記足背における足背動脈又は前記胸部における心臓の拍動を検出する
処理を前記コンピュータに実行させるための請求項1から請求項8のいずれか1項に記載のコンピュータプログラム。 - 頸動脈三角の領域を前記変位部位として特定し、
頸動脈の脈拍を検出する
処理を前記コンピュータに実行させるための請求項9に記載のコンピュータプログラム。 - 顔の輪郭、目、眉、鼻、口、ほうれい線、耳及び顎のいずれか一つを検出し、
検出された部位の正中線からのずれ量に基づいて、頸動脈がある前記変位部位を特定し、
頸動脈の脈拍を検出する
処理を前記コンピュータに実行させるための請求項9又は請求項10のいずれか1項に記載のコンピュータプログラム。 - 上腕を前記変位部位として特定し、上腕動脈の拍動を検出する
処理を前記コンピュータに実行させるための請求項9から請求項11のいずれか1項に記載のコンピュータプログラム。 - 手根内側の親指寄り部分を前記変位部位として特定し、橈骨動脈の拍動を検出する
処理を前記コンピュータに実行させるための請求項9から請求項12のいずれか1項に記載のコンピュータプログラム。 - 手根内側の小指寄り部分を前記変位部位として特定し、尺骨動脈の拍動を検出する
処理を前記コンピュータに実行させるための請求項9から請求項13のいずれか1項に記載のコンピュータプログラム。 - 頸動脈、浅側頭動脈、上腕動脈、橈骨動脈、尺骨動脈、足背動脈の脈拍、又は心拍のいずれか2つに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項14のいずれか1項に記載のコンピュータプログラム。 - 頸動脈、浅側頭動脈、上腕動脈、橈骨動脈、尺骨動脈、又は足背動脈の脈拍と、心拍とに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項15のいずれか1項に記載のコンピュータプログラム。 - 頸動脈、浅側頭動脈、上腕動脈、橈骨動脈、尺骨動脈、又は足背動脈の脈拍のピークのずれに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項16のいずれか1項に記載のコンピュータプログラム。 - 足背動脈の振れの大きさに基づいて、重症下肢虚血に係る異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項17のいずれか1項に記載のコンピュータプログラム。 - 左頸動脈の脈拍と、右頸動脈の脈拍とに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項18のいずれか1項に記載のコンピュータプログラム。 - 左側頭動脈の脈拍と、右側頭動脈の脈拍とに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項19のいずれか1項に記載のコンピュータプログラム。 - 左上腕動脈の脈拍と、右上腕動脈の脈拍とに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項20のいずれか1項に記載のコンピュータプログラム。 - 左足背動脈の脈拍と、右足背動脈の脈拍とに基づいて、心臓又は血管の異常を判定する
処理を前記コンピュータに実行させるための請求項9から請求項21のいずれか1項に記載のコンピュータプログラム。 - 頸動脈三角の領域を前記変位部位として特定し、
頸静脈怒張を検出し、
心不全に係る異常を判定する
処理を前記コンピュータに実行させるための請求項1から請求項22のいずれか1項に記載のコンピュータプログラム。 - 生体の心臓又は血管の異常を判定する情報処理方法であって、
心臓又は血管により生体表面が変位する変位部位を特定し、
特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出し、
検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する
情報処理方法。 - 生体の心臓又は血管の異常を判定する情報処理装置であって、
心臓又は血管により生体表面が変位する変位部位を特定する特定部と、
特定された前記変位部位における前記生体表面の変位に基づいて、心臓又は血管の拍動を検出する検出部と、
検出された心臓又は血管の拍動に係る情報に基づいて心臓又は血管の異常を判定する判定部と
を備える情報処理装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-042841 | 2021-03-16 | ||
JP2021042841 | 2021-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022196469A1 true WO2022196469A1 (ja) | 2022-09-22 |
Family
ID=83320524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/010162 WO2022196469A1 (ja) | 2021-03-16 | 2022-03-09 | コンピュータプログラム、情報処理方法及び情報処理装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022196469A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094526A (ja) * | 1996-09-24 | 1998-04-14 | Nippon Colin Co Ltd | 大動脈圧波形検出装置 |
JP2003501194A (ja) * | 1999-06-16 | 2003-01-14 | ジョージズ アスマー,ブーロス | 心臓血管機能を評価するための装置及び方法 |
JP2005237569A (ja) * | 2004-02-25 | 2005-09-08 | Daikin Ind Ltd | 携帯型測定機器、健康管理システム及び健康管理方法 |
JP2005270570A (ja) * | 2004-03-26 | 2005-10-06 | Canon Inc | 生体情報モニタ装置 |
JP2012005863A (ja) * | 2001-06-21 | 2012-01-12 | Nihon Univ | 血管疾患検査装置およびバイパス血管診断装置 |
JP2017023704A (ja) * | 2015-07-17 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 注意情報提示装置および注意情報提示方法 |
JP2017100039A (ja) * | 2015-12-01 | 2017-06-08 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 体調推定装置、体調推定システム及びプロセッサ |
JP2020510487A (ja) * | 2017-03-13 | 2020-04-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 対象の生理学的信号を測定及び処理するデバイス、システム並びに方法 |
-
2022
- 2022-03-09 WO PCT/JP2022/010162 patent/WO2022196469A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1094526A (ja) * | 1996-09-24 | 1998-04-14 | Nippon Colin Co Ltd | 大動脈圧波形検出装置 |
JP2003501194A (ja) * | 1999-06-16 | 2003-01-14 | ジョージズ アスマー,ブーロス | 心臓血管機能を評価するための装置及び方法 |
JP2012005863A (ja) * | 2001-06-21 | 2012-01-12 | Nihon Univ | 血管疾患検査装置およびバイパス血管診断装置 |
JP2005237569A (ja) * | 2004-02-25 | 2005-09-08 | Daikin Ind Ltd | 携帯型測定機器、健康管理システム及び健康管理方法 |
JP2005270570A (ja) * | 2004-03-26 | 2005-10-06 | Canon Inc | 生体情報モニタ装置 |
JP2017023704A (ja) * | 2015-07-17 | 2017-02-02 | パナソニックIpマネジメント株式会社 | 注意情報提示装置および注意情報提示方法 |
JP2017100039A (ja) * | 2015-12-01 | 2017-06-08 | パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America | 体調推定装置、体調推定システム及びプロセッサ |
JP2020510487A (ja) * | 2017-03-13 | 2020-04-09 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 対象の生理学的信号を測定及び処理するデバイス、システム並びに方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | MetaPhys: few-shot adaptation for non-contact physiological measurement | |
Zhao et al. | Heart rate sensing with a robot mounted mmwave radar | |
US11986286B2 (en) | Gait-based assessment of neurodegeneration | |
KR102219911B1 (ko) | 신체 내부 조직의 광학적인 검출 및 분석 방법 및 장치 | |
Zhao et al. | PPG-based finger-level gesture recognition leveraging wearables | |
EP4002385A2 (en) | Motor task analysis system and method | |
EP3740124A2 (en) | Sensor device | |
US20150320343A1 (en) | Motion information processing apparatus and method | |
US20200073435A1 (en) | Movement-based data input device | |
JP2013248386A (ja) | 血管パターン検出および心臓機能分析のためにビデオを処理すること | |
US20220361840A1 (en) | Displaying blood vessels in ultrasound images | |
Alnaggar et al. | Video-based real-time monitoring for heart rate and respiration rate | |
CN109480908A (zh) | 换能器导航方法及成像设备 | |
KR101310464B1 (ko) | 생체 정보 감시 시스템 및 그 시스템을 이용한 생체 정보 감시 방법 | |
Gupta et al. | Automatic contact-less monitoring of breathing rate and heart rate utilizing the fusion of mmWave radar and camera steering system | |
WO2020019346A1 (zh) | 生物特征识别方法、装置、系统及终端设备 | |
WO2022196469A1 (ja) | コンピュータプログラム、情報処理方法及び情報処理装置 | |
Khan et al. | Contactless monitoring of PPG using radar | |
WO2022196471A1 (ja) | コンピュータプログラム、情報処理方法、情報処理装置及び情報処理システム | |
Malasinghe et al. | A comparative study of common steps in video-based remote heart rate detection methods | |
AU2022374130B2 (en) | Cardiac signal based biometric identification | |
Kraft et al. | Reliability factor for accurate remote PPG systems | |
CN112233769A (zh) | 一种基于数据采集的患后康复系统 | |
US20170286786A1 (en) | Deviation-induced dynamic modulation of impulse response for detection and modeling | |
US20230020039A1 (en) | Biometric detection using photodetector array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22771221 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22771221 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |