WO2022196353A1 - Electroacoustic converter - Google Patents

Electroacoustic converter Download PDF

Info

Publication number
WO2022196353A1
WO2022196353A1 PCT/JP2022/008702 JP2022008702W WO2022196353A1 WO 2022196353 A1 WO2022196353 A1 WO 2022196353A1 JP 2022008702 W JP2022008702 W JP 2022008702W WO 2022196353 A1 WO2022196353 A1 WO 2022196353A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
piezoelectric
film
electroacoustic transducer
layer
Prior art date
Application number
PCT/JP2022/008702
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 香川
輝男 芦川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023506950A priority Critical patent/JPWO2022196353A1/ja
Publication of WO2022196353A1 publication Critical patent/WO2022196353A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present invention relates to a windable electroacoustic transducer.
  • a technique is known in which sound is output by attaching an acoustic film having a piezoelectric material to a windable panel such as a poster or screen, vibrating the panel with the acoustic film.
  • an acoustic film having a piezoelectric material is adhered to the back of a screen on which an image is projected, and sound is output from the screen by vibrating the screen with this acoustic film.
  • Patent Document 1 discloses a screen surface for displaying an image, an acoustic film (piezoelectric layer) formed on the back surface of the screen, an electrode for supplying power to the acoustic film, and power to be supplied according to an acoustic signal.
  • a screen with a modulating circuit is described.
  • Patent Document 2 describes a projection screen in which a speaker made of an acoustic film (piezoelectric film) with electrode films laminated on both sides is attached to either the back or front of a sheet-like screen body. It is
  • a driving power is supplied to the acoustic film.
  • Wiring is required.
  • the panel is wound, the line pressure of the wiring is applied, and there is a possibility that the panel will be damaged, for example, the shape of the line will be transferred to the surface of the panel.
  • An object of the present invention is to solve the problems of the prior art. To provide an electroacoustic transducer capable of outputting sound of high sound pressure by preventing damage and suppressing expansion and contraction of a panel in the surface direction.
  • the present invention has the following configurations.
  • the flat wiring includes metal foil, and Flat wiring with a length of 50% or more of the length of the panel in the direction orthogonal to the winding shaft is within 30% of the length of the panel in the axial direction of the winding shaft from the axial end of the winding shaft an electroacoustic transducer affixed to the area of [2]
  • the acoustic film has a laminate obtained by laminating a plurality of piezoelectric films each having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers covering the electrode layers, [1 ] The electroacoustic transducer according to any one of [7].
  • the electroacoustic transducer according to [8], wherein the piezoelectric layer of the piezoelectric film is a polymeric composite piezoelectric body having piezoelectric particles in a polymeric material.
  • the electroacoustic transducer according to [9] wherein the polymer material of the polymer composite piezoelectric body is cyanoethylated polyvinyl alcohol.
  • an electroacoustic transducer in which an acoustic film is adhered to a windable panel, damage to the panel due to wiring for driving the acoustic film is prevented, and expansion and contraction of the panel in the plane direction is prevented. can be suppressed to output sound with high sound pressure.
  • FIG. 1 is a diagram conceptually showing an example of the electroacoustic transducer of the present invention.
  • FIG. 2 is a diagram conceptually showing a side view of the acoustic film.
  • FIG. 3 is a schematic perspective view of an acoustic film.
  • FIG. 4 is a diagram conceptually showing an example of a piezoelectric film that constitutes an acoustic film.
  • FIG. 5 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 6 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 7 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film.
  • FIG. 1 is a diagram conceptually showing an example of the electroacoustic transducer of the present invention.
  • FIG. 2 is a diagram conceptually showing a side view of the acoustic film.
  • FIG. 3 is a schematic perspective view
  • FIG. 8 is a conceptual diagram for explaining the electroacoustic transducer of the present invention.
  • FIG. 9 is a diagram conceptually showing another example of the electroacoustic transducer of the present invention.
  • FIG. 10 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 11 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 12 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 13 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 14 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 14 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 15 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 16 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 17 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 18 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention.
  • FIG. 19 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention.
  • FIG. 20 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention.
  • FIG. 21 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention.
  • FIG. 1 conceptually shows an example of the electroacoustic transducer of the present invention.
  • the electroacoustic transducer 10 shown in FIG. 1 includes a panel 12, two acoustic films 14, a winding shaft 16, a fixed shaft 18, and a plate for electrically connecting the acoustic films 14 and an external device. and a flat plate wiring.
  • FIG. 1 is a diagram of the electroacoustic transducer 10 viewed from the rear side, that is, the side opposite to the side from which audio is listened to.
  • the acoustic film 14 is adhered to one main surface of the panel 12 .
  • the main surface is the maximum surface of the sheet (film, plate, layer), and is usually both sides in the thickness direction.
  • the acoustic film 14 acts as a so-called exciter that vibrates the panel 12 to output sound. That is, the electroacoustic transducer 10 applies a drive voltage to the acoustic film 14 (piezoelectric film 24 to be described later), so that the acoustic film 14 expands and contracts in the planar direction. The expansion and contraction of the acoustic film 14 in the plane direction bends the panel 12, and as a result, the panel 12 vibrates in the thickness direction. The vibration in the thickness direction causes the panel 12 to output sound.
  • FIG. 1 is a rear view of the electroacoustic transducer. Therefore, listening to the sound output by the electroacoustic transducer 10 is basically performed on the main surface side of the panel 12 where the acoustic film 14 and the like are not arranged.
  • two acoustic films 14 are provided spaced apart in the longitudinal direction of the panel 12 . This corresponds to stereo reproduction of sound, one acoustic film 14 for the right channel and the other acoustic film 14 for the left channel, respectively.
  • the number of acoustic films 14 is not limited to two, and may be one, or may have three or more acoustic films 14 .
  • the acoustic film 14 on the right side of the drawing is connected to two flat-plate wirings 20 a and 20 b leading to the inside of a cylindrical fixed shaft 18 .
  • Various methods such as conductive adhesive tape, conductive paint, solder, caulking, and connector connection can be used for connection. In this case, it is preferable to use a connecting portion having flexibility.
  • the flat-plate wiring 20 a is connected to the conductor inside the fixed shaft 18 . This lead wire is connected to a flat plate wiring 20c attached to the upper end of the panel 12 in the drawing.
  • the flat-plate wiring 20c reaches the inside of the cylindrical winding shaft 16 and is connected inside the winding shaft 16 to a conductor in a collective cable 21 for connecting to an external device such as an amplifier.
  • the flat-plate wiring 20b is connected to the conductor inside the fixed shaft 18 .
  • This conductor wire is connected to a flat plate wiring 20d attached to the lower end of the panel 12 in the figure.
  • the flat-plate wiring 20 d reaches the inside of the cylindrical winding shaft 16 and is connected to the conducting wire in the collective cable 21 inside the winding shaft 16 .
  • the acoustic film 14 on the left side of the drawing is connected to the flat wiring 20e and the flat wiring 20f leading to the inside of the take-up shaft 16.
  • the flat-plate wiring 20 e is connected to conductors in the cable assembly 21 inside the winding shaft 16 .
  • the flat-plate wiring 20 f is also connected to conductors in the assembly cable 21 inside the winding shaft 16 .
  • the flat wiring includes metal foil.
  • the flat wiring having a length of 50% or more of the length of the panel 12 in the direction orthogonal to the winding shaft 16 is wound from the end of the panel 12 in the axial direction of the winding shaft 16. Affixed to an area within 30% of the length of panel 12 in the axial direction of shaft 16 .
  • the flat wiring 20c and the flat wiring 20d correspond to this flat wiring.
  • the panel 12 is a sheet-like material, and can be rolled up so that it can be repeatedly rolled up from the flat plate shape and returned to the flat plate shape from the rolled state. It is a sheet-like material having a high degree of flexibility.
  • the panel 12 is not limited, and various sheet-like materials can be used as long as they can be rolled up and can output sound when vibrated by a known exciter. .
  • Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films made of polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, etc., expanded polystyrene, expanded plastics made of expanded styrene, expanded polyethylene, etc.
  • corrugated paperboard on one or both sides of corrugated paperboard
  • wood such as plywood, leather materials, photographic printing paper, metal materials such as aluminum, brass and stainless steel, various heat dissipating members, and laminates of these multiple members pasted together A board etc. are illustrated.
  • organic electroluminescence (OLED (Organic Light Emitting Diode) display electronic paper, liquid crystal display, micro LED (Light Emitting Diode) display, inorganic electroluminescent display, etc.
  • a display element display device, display panel
  • a screen for projection on which an image is projected from a projector (movie projector) such as a projector to display the image is also suitable as the panel 12.
  • the surface opposite to the acoustic film 14 serves as an image display surface (projection surface).
  • the electroacoustic transducer of the present invention can be obtained by attaching the above-described rollable display element, projection screen, etc. to the rollable panel 12 made of resin film or the like as described above. good.
  • the shape of the panel 12 is basically rectangular, such as rectangular and square.
  • the shape of the panel 12 is not limited to being rectangular, and various shapes such as circular, elliptical, and non-rectangular polygonal shapes are available.
  • the acoustic film 14 is a so-called exciter that causes the panel 12 to output sound by vibrating the panel 12 .
  • exciter that causes the panel 12 to output sound by vibrating the panel 12 .
  • the electroacoustic transducer 10 of the present invention is an electroacoustic transducer using rollable panels 12 . Therefore, it is preferable that the acoustic film 14 attached to the panel 12 also has sufficient flexibility to follow the winding of the panel 12 .
  • the acoustic film 14 is preferably composed of a piezoelectric film having electrode layers provided on both sides of the piezoelectric layer. More preferably, the piezoelectric film further has a protective film that covers the electrode layer and protects the electrode layer and the like. Further, the acoustic film 14 may have only one layer of piezoelectric film. However, it is preferable to laminate a plurality of layers of piezoelectric films in order to exhibit a sufficient stretching force and bend the panel 12 with a sufficient force to vibrate it.
  • FIGS. 2 and 3 conceptually show an example of an acoustic film 14 in which such piezoelectric films are laminated.
  • This acoustic film 14 uses a piezoelectric film 24 having a first electrode layer 28 on one side of a piezoelectric layer 26 and a second electrode layer 30 on the other side.
  • the piezoelectric film 24 has a first protective layer 32 covering the first electrode layer 28 and a second protective layer 34 covering the second electrode layer 30 .
  • the illustrated acoustic film 14 is obtained by laminating five layers of the piezoelectric film 24 by folding the piezoelectric film 24 four times. Adjacent laminated piezoelectric films 24 are attached to each other by an adhesive layer 27 .
  • FIG. 2 is a side view of the acoustic film 14 of the illustrated example, and is a view of the acoustic film 14 viewed from above (or below) in FIG. That is, FIG. 1 is a view of the acoustic film 14 viewed from above in FIG. Accordingly, in the left-hand view of FIG. 1, the acoustic film 14 folds the piezoelectric film 24 in the lateral direction in the drawing. On the other hand, in the drawing on the right side of FIG. 1, the acoustic film 14 is formed by folding the piezoelectric film 24 vertically in the drawing.
  • FIG. 3 is a schematic perspective view of the acoustic film 14. FIG. In FIG. 3, the piezoelectric film 24 is shown as one layer for simplification of the drawing.
  • the acoustic film 14 in which the piezoelectric films 24 are laminated is not limited to five layers of the piezoelectric films 24 laminated. That is, in the electroacoustic transducer 10 of the present invention, the acoustic film 14 may be formed by laminating the piezoelectric film 24 three times or less, or by folding the piezoelectric film 24 into four or less layers, or by folding the piezoelectric film 24 five times or more. , a laminated structure of six or more layers of piezoelectric films 24 which are folded.
  • the electrode can be drawn out in one place, and the configuration of the electroacoustic transducer 10 can be simplified.
  • FIG. 4 conceptually shows an example of the piezoelectric film 24 in a sectional view.
  • hatching is omitted in order to simplify the drawing and clearly show the configuration.
  • cross section refers to a cross section in the thickness direction of the piezoelectric film.
  • the thickness direction of the piezoelectric film is the stacking direction of each layer.
  • the piezoelectric film 24 shown in FIG. 4 includes a piezoelectric layer 26, a first electrode layer 28 laminated on one surface of the piezoelectric layer 26, a first protective layer 32 laminated on the first electrode layer 28, It has a second electrode layer 30 laminated on the other surface of the piezoelectric layer 26 and a second protective layer 34 laminated on the second electrode layer 30 .
  • the piezoelectric layer 26 is not limited, and various known piezoelectric layers such as a layer made of polyvinylidene fluoride (PVDF) can be used.
  • the piezoelectric layer 26 is preferably a polymer composite piezoelectric body containing piezoelectric particles 40 in a polymer matrix 38 containing a polymer material, as conceptually shown in FIG. .
  • the polymer composite piezoelectric body (piezoelectric layer 26) preferably satisfies the following requirements.
  • normal temperature is 0 to 50°C.
  • Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness.
  • the speaker vibrates piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire panel (polymer composite piezoelectric body) to vibrate as one, thereby reproducing sound. . Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. Also, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency f 0 changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
  • the lowest resonance frequency f 0 of the speaker panel is given by the following formula. where s is the stiffness of the vibration system and m is the mass. At this time, as the degree of curvature of the piezoelectric film, that is, the radius of curvature of the curved portion increases, the mechanical stiffness s decreases, so the minimum resonance frequency f 0 decreases. That is, the sound quality (volume and frequency characteristics) of the speaker changes depending on the radius of curvature of the piezoelectric film.
  • the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
  • polymer solids have a viscoelastic relaxation mechanism, and as temperature rises or frequency falls, large-scale molecular motion causes a decrease (relaxation) in storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed.
  • the temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • the polymer composite piezoelectric body (piezoelectric layer 26), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is suppressed.
  • a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less.
  • the polymer material that forms the polymer matrix 38 preferably has a maximum loss tangent Tan ⁇ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature.
  • the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of the polymer material forming the polymer matrix 38 is 100 MPa or more at 0°C and 10 MPa or less at 50°C.
  • the polymer material that forms the polymer matrix 38 has a dielectric constant of 10 or more at 25°C.
  • a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so a large amount of deformation can be expected.
  • the polymer material in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
  • Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are preferably exemplified. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials.
  • Hybler 5127 manufactured by Kuraray Co., Ltd.
  • the piezoelectric layer 26 preferably uses a polymer material having a cyanoethyl group as the polymer matrix 38, and more preferably uses cyanoethylated PVA.
  • the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature".
  • These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
  • the polymer matrix 38 of the piezoelectric layer 26 may be made of a plurality of polymer materials, if necessary. That is, for the polymer matrix 38 constituting the polymer composite piezoelectric body, in addition to the above-described polymer material having viscoelasticity at room temperature, other materials may be used as necessary for the purpose of adjusting dielectric properties and mechanical properties. dielectric polymer material may be added.
  • dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
  • fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullul
  • polymers having cyanoethyl groups and synthetic rubbers such as nitrile rubbers and chloroprene rubbers are exemplified.
  • polymer materials having cyanoethyl groups are preferably used.
  • these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
  • thermoplastic resins such as vinyl chloride resins, polyethylene, polystyrene, methacrylic resins, polybutene and isobutylene, and phenolic resins are used for the purpose of adjusting the glass transition point Tg of the polymer matrix 38.
  • thermosetting resins such as urea resins, melamine resins, alkyd resins and mica may be added.
  • a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
  • the addition amount of the polymer material other than the polymer material having viscoelasticity at room temperature is not limited, but the proportion of the polymer matrix 38 is 30% by mass. It is preferable to: As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the polymer matrix 38, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 40 and the electrode layer can be improved. Favorable results can be obtained in terms of improvement and the like.
  • the polymer composite piezoelectric material that forms the piezoelectric layer 26 contains piezoelectric particles 40 in such a polymer matrix.
  • the piezoelectric particles 40 are dispersed in a polymer matrix, preferably uniformly (substantially uniformly).
  • the piezoelectric particles 40 are preferably ceramic particles having a perovskite or wurtzite crystal structure. Examples of ceramic particles constituting the piezoelectric particles 40 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
  • the particle size of the piezoelectric particles 40 may be appropriately selected according to the size and application of the piezoelectric film 24 .
  • the particle size of the piezoelectric particles 40 is preferably 1 to 10 ⁇ m.
  • the quantitative ratio of the polymer matrix 38 and the piezoelectric particles 40 in the piezoelectric layer 26 is required for the size and thickness of the piezoelectric film 24 in the plane direction, the application of the piezoelectric film 24, and the piezoelectric film 24. It may be set as appropriate according to the characteristics of the device.
  • the volume fraction of the piezoelectric particles 40 in the piezoelectric layer 26 is preferably 30-80%, more preferably 50-80%.
  • the thickness of the piezoelectric layer 26 is not limited, and can be appropriately set according to the size of the piezoelectric film 24, the application of the piezoelectric film 24, the properties required of the piezoelectric film 24, and the like. good.
  • the thickness of the piezoelectric layer 26 is preferably 8-300 ⁇ m, more preferably 8-200 ⁇ m, still more preferably 10-150 ⁇ m, particularly preferably 15-100 ⁇ m.
  • the piezoelectric layer 26 is preferably polarized (poled) in the thickness direction.
  • the polarization treatment will be detailed later.
  • the piezoelectric layer 26 is a polymer composite including piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above.
  • piezoelectric bodies there is no limitation to piezoelectric bodies. That is, in the piezoelectric film 24 , various known piezoelectric layers can be used for the piezoelectric layer 26 .
  • a high-performance dielectric material containing similar piezoelectric particles 40 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used.
  • Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
  • the panel 12 is hard against vibrations of 20 Hz to 20 kHz and behaves softly against slow vibrations of several Hz or less.
  • a polymer composite piezoelectric material containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, is used.
  • a body is suitably used as the piezoelectric layer 26 .
  • the piezoelectric film 24 shown in FIG. 4 has the second electrode layer 30 on one surface of the piezoelectric layer 26, the second protective layer 34 on the surface of the second electrode layer 30, and the piezoelectric layer 26 has a first electrode layer 28 on the other surface thereof, and has a first protective layer 32 on the surface of the first electrode layer 28 .
  • the first electrode layer 28 and the second electrode layer 30 form an electrode pair.
  • both surfaces of the piezoelectric layer 26 are sandwiched between electrode pairs, that is, the first electrode layer 28 and the second electrode layer 30, and the first protective layer 32 and the second electrode layer 30 are sandwiched between the electrode pairs. It has a configuration sandwiched between protective layers 34 .
  • the regions sandwiched by the first electrode layer 28 and the second electrode layer 30 are driven according to the applied voltage.
  • first and second in the first electrode layer 28 and the second electrode layer 30 are used for the sake of convenience in describing the piezoelectric film 24 . Therefore, the first and second in the piezoelectric film 24 have no technical significance and are irrelevant to the actual usage conditions.
  • the piezoelectric film 24 includes, for example, an adhesive layer for attaching the electrode layer and the piezoelectric layer 26 and an adhesive layer for attaching the electrode layer and the protective layer. may have.
  • the adhesive may be an adhesive or an adhesive.
  • a polymer material obtained by removing the piezoelectric particles 40 from the piezoelectric layer 26, ie, the same material as the polymer matrix 38, can be suitably used.
  • the adhesive layer may be provided on both the first electrode layer 28 side and the second electrode layer 30 side, or may be provided on only one of the first electrode layer 28 side and the second electrode layer 30 side. good.
  • the first protective layer 32 and the second protective layer 34 cover the first electrode layer 28 and the second electrode layer 30, and provide the piezoelectric layer 26 with appropriate rigidity and mechanical strength. is responsible for That is, in the piezoelectric film 24, the piezoelectric layer 26 containing the polymer matrix 38 and the piezoelectric particles 40 exhibits excellent flexibility against slow bending deformation. , rigidity and mechanical strength may be insufficient.
  • the piezoelectric film 24 is provided with a first protective layer 32 and a second protective layer 34 to compensate.
  • the first protective layer 32 and the second protective layer 34 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 32 and the second protective layer 34, both members are collectively referred to as protective layers.
  • the protective layer there are no restrictions on the protective layer, and various sheet-like materials can be used, and various resin films are suitable examples. Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), due to their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyamide (PA), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), and resin films made of cyclic olefin resins are preferably used. .
  • the thickness of the protective layer is also not limited. Also, the thicknesses of the first protective layer 32 and the second protective layer 34 are basically the same, but may be different. If the rigidity of the protective layer is too high, it not only restricts expansion and contraction of the piezoelectric layer 26, but also impairs its flexibility. Therefore, the thinner the protective layer, the better, except when mechanical strength and good handling properties as a sheet are required.
  • the thickness of each of the first protective layer 32 and the second protective layer 34 is not more than twice the thickness of the piezoelectric layer 26, favorable results can be achieved in terms of ensuring both rigidity and appropriate flexibility. is obtained.
  • the thickness of the piezoelectric layer 26 is 50 ⁇ m and the first protective layer 32 and the second protective layer 34 are made of PET, the thicknesses of the first protective layer 32 and the second protective layer 34 are each preferably 100 ⁇ m or less. , 50 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the 1st protective layer 32 and the 2nd protective layer 34 are provided as a preferable aspect, and are not essential components. That is, in the electroacoustic transducer of the present invention, the piezoelectric film may have only the first protective layer 32 or only the second protective layer 34. It can be something you don't. However, considering the strength of the piezoelectric film 24, handleability, protection of the electrode layer, etc., the piezoelectric film preferably has both the first protective layer 32 and the second protective layer 34 as shown in the figure.
  • a first electrode layer 28 is provided between the piezoelectric layer 26 and the first protective layer 32, and a second electrode layer 30 is provided between the piezoelectric layer 26 and the second protective layer 34. It is formed.
  • the first electrode layer 28 and the second electrode layer 30 are provided for applying an electric field to the piezoelectric film 24 (piezoelectric layer 26).
  • the first electrode layer 28 and the second electrode layer 30 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 28 and the second electrode layer 30, both members are collectively referred to as electrode layers.
  • the material for forming the electrode layer is not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, molybdenum, alloys thereof, indium tin oxide, and PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfone Acid) and other conductive polymers are exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferred. Among them, copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
  • the method of forming the electrode layer is not limited, and a vapor phase deposition method (vacuum film formation method) such as vacuum deposition and sputtering, a method of forming a film by plating, a method of attaching a foil formed of the above materials, a coating method, or the like.
  • a vapor phase deposition method vacuum film formation method
  • a method of forming a film by plating a method of attaching a foil formed of the above materials, a coating method, or the like.
  • a thin film of copper or aluminum formed by vacuum deposition is particularly preferably used as the electrode layer because the flexibility of the piezoelectric film 24 can be ensured.
  • a copper thin film formed by vacuum deposition is particularly preferably used.
  • the thicknesses of the first electrode layer 28 and the second electrode layer 30 are not limited. Also, the thicknesses of the first electrode layer 28 and the second electrode layer 30 are basically the same, but may be different.
  • the protective layer described above if the rigidity of the electrode layer is too high, not only will the expansion and contraction of the piezoelectric layer 26 be restricted, but also the flexibility will be impaired. Therefore, the thinner the electrode layer, the better, as long as the electrical resistance does not become too high.
  • the thickness of the electrode layer is PET and the electrode layer is copper will be described.
  • PET has a Young's modulus of about 6.2 GPa
  • copper has a Young's modulus of about 130 GPa. Therefore, in this case, if the thickness of the protective layer is 25 ⁇ m, the thickness of the electrode layer is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
  • the piezoelectric film 24 has a structure in which a piezoelectric layer 26 is sandwiched between a first electrode layer 28 and a second electrode layer 30, and this laminated body is sandwiched between a first protective layer 32 and a second protective layer .
  • Such a piezoelectric film 24 preferably has a maximum value of 0.1 or more in the loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement at room temperature. As a result, even if the piezoelectric film 24 receives a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface of
  • the piezoelectric film 24 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. This allows the piezoelectric film 24 to have a large frequency dispersion in the storage modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
  • E' storage elastic modulus
  • the piezoelectric film 24 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 1.0 ⁇ 10 6 to 2.0 ⁇ 10 6 N/m at 0° C. , 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N/m at 50°C.
  • E′ thickness and storage elastic modulus
  • the piezoelectric film 24 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement.
  • FIG. 5 a laminate 42b conceptually shown in FIG. 5 is prepared in which the second electrode layer 30 is formed on the surface of the second protective layer 34 . Furthermore, a laminated body 42a conceptually shown in FIG. 7 is prepared in which the first electrode layer 28 is formed on the surface of the first protective layer 32. Next, as shown in FIG.
  • the laminate 42b may be produced by forming a copper thin film or the like as the second electrode layer 30 on the surface of the second protective layer 34 by vacuum deposition, sputtering, plating, or the like.
  • the laminate 42a may be produced by forming a copper thin film or the like as the first electrode layer 28 on the surface of the first protective layer 32 by vacuum deposition, sputtering, plating, or the like.
  • a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the laminated body 42b and/or the laminated body 42a.
  • the laminate 42b and the laminate 42a may be the same or different.
  • a protective layer with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used as the separator.
  • the separator may be removed after the electrode layer and protective layer are thermocompression bonded.
  • the piezoelectric layer 26 is formed on the second electrode layer 30 of the laminate 42b, and the piezoelectric laminate 46 is formed by laminating the laminate 42b and the piezoelectric layer 26. make.
  • the piezoelectric layer 26 may be formed by a known method suitable for the piezoelectric layer 26 .
  • a piezoelectric layer (polymer composite piezoelectric layer) in which piezoelectric particles 40 are dispersed in a polymer matrix 38 shown in FIG. 4 is manufactured as follows. First, a polymer material such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 40 such as PZT particles are added and stirred to prepare a paint.
  • Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone, and cyclohexanone can be used.
  • a piezoelectric laminate 46 as shown in FIG. 7 may be produced by extruding a sheet onto the body 42b and cooling.
  • the polymer matrix 38 may be added with a polymer piezoelectric material such as PVDF, in addition to the polymer material having viscoelasticity at room temperature.
  • a polymer piezoelectric material such as PVDF
  • the polymeric piezoelectric materials to be added to the paint may be dissolved.
  • the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
  • the piezoelectric layer 26 may be calendered, if desired. Calendering may be performed once or multiple times. As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
  • the piezoelectric layer 26 of the piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 formed on the second electrode layer 30 is subjected to a polarization treatment ( polling).
  • the method of polarization treatment of the piezoelectric layer 26 is not limited, and known methods can be used.
  • electric field poling in which a DC electric field is directly applied to an object to be polarized, is exemplified.
  • the first electrode layer 28 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 28 and the second electrode layer 30.
  • the piezoelectric film 24 is manufactured, the polarization treatment is performed not in the surface direction of the piezoelectric layer 26 but in the thickness direction.
  • the previously prepared laminate 42 a is laminated on the piezoelectric layer 26 side of the piezoelectric laminate 46 with the first electrode layer 28 facing the piezoelectric layer 26 . Further, this laminate is thermocompression bonded using a heat press device, a heating roller, etc., with the first protective layer 32 and the second protective layer 34 sandwiched between them, thereby forming the piezoelectric laminate 46 and the laminate 42a. to paste together.
  • the piezoelectric layer 26, the first electrode layer 28 and the second electrode layer 30 provided on both surfaces of the piezoelectric layer 26, and the first protective layer 32 and the second protective layer 34 formed on the surface of the electrode layer
  • the piezoelectric film 24 produced by such a production process is polarized not in the plane direction but in the thickness direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric film 24 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a drive voltage is applied.
  • the illustrated acoustic film 14 is obtained by laminating five layers of piezoelectric films by folding the piezoelectric film 24 four times.
  • the piezoelectric films 24 that are laminated and adjacent to each other are adhered to each other by an adhesion layer 27 as a preferred embodiment.
  • the sticking layer 27 may be a layer made of an adhesive (adhesive material), a layer made of an adhesive (adhesive material), or a layer made of a material having characteristics of both an adhesive and an adhesive.
  • the adhesive layer 27 may be formed by applying an adhesive having fluidity such as a liquid, or may be formed using a sheet-like adhesive such as a double-sided tape. Note that the adhesive is a sticking agent that has fluidity at the time of bonding and then becomes solid.
  • the pressure-sensitive adhesive is a gel-like (rubber-like) soft solid that is adhered to each other and does not change its gel-like state afterward.
  • the acoustic film 14 is an exciter, and the acoustic film 14 is expanded and contracted by expanding and contracting a plurality of laminated piezoelectric films 24, for example, vibrating the panel 12 as described later to output sound. . Therefore, in the acoustic film 14, it is preferable that the expansion and contraction of each piezoelectric film 24 is directly transmitted.
  • the sticking layer 27 is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer 27 rather than a sticky layer made of an adhesive.
  • a more preferable adhesive layer 27 is an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive. Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
  • the thickness of the adhesive layer 27 is not limited, and a thickness capable of exhibiting sufficient adhesive force may be appropriately set according to the material forming the adhesive layer 27.
  • the adhesive layer 27 is thick and rigid, it may restrict the expansion and contraction of the piezoelectric film 24 .
  • the adhesive layer 27 is preferably thinner than the piezoelectric layer 26 . That is, in the acoustic film 14, the adhesive layer 27 is preferably hard and thin.
  • the thickness of the adhesion layer 27 after adhesion is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, even more preferably 0.1 to 10 ⁇ m.
  • the adhesive layer 27 is provided as a preferred embodiment and is not an essential component. However, if the adhesive layer 27 is not provided, the piezoelectric films 24 may bend in opposite directions to form voids, which may reduce the driving efficiency of the acoustic film. In consideration of this point, when the piezoelectric element constituting the electroacoustic transducer of the present invention is configured by laminating a plurality of piezoelectric films 24, adjacent piezoelectric films 24 are arranged like the acoustic film 14 in the illustrated example. It is preferable to have an adhesive layer 27 that sticks them together.
  • the acoustic film is not limited to one in which a plurality of layers of the piezoelectric film 24 are laminated by folding the piezoelectric film 24 .
  • the acoustic film may be obtained by laminating a plurality of cut sheet-like piezoelectric films 24 and preferably adhering adjacent piezoelectric films with an adhesive layer 27 .
  • the number of layers to be laminated is not limited, as in the case of the acoustic film 14 in which the piezoelectric films 24 are laminated by folding.
  • the piezoelectric film 24 having a protective layer and the piezoelectric film 24 having no protective layer are laminated.
  • the acoustic film may be configured by laminating different piezoelectric films such as.
  • the acoustic film may be composed of one piezoelectric film 24 as long as the elastic force sufficient for vibrating the panel 12 can be obtained.
  • the piezoelectric film 24 of the acoustic film 14 is connected with a first extraction electrode 24a and a second extraction electrode 24b for electrical connection with an external device such as a power supply.
  • a flat wiring 20a for connection with an external device is connected to the first extraction electrode 24a
  • a flat wiring 20b for connection with an external device is connected to the second extraction electrode 24b.
  • the first extraction electrode 24 a is an electrode electrically extracted from the first electrode layer 28
  • the second extraction electrode 24 b is an electrode electrically extracted from the second electrode layer 30 .
  • extraction electrodes when there is no need to distinguish between the first extraction electrode 24a and the second extraction electrode 24b, they will simply be referred to as extraction electrodes. In the example shown in FIG.
  • the flat wiring 20a is connected to the first extraction electrode 24a
  • the flat wiring 20b is connected to the second extraction electrode 24b
  • the flat wiring 20e is connected to the first extraction electrode 24a
  • the flat wiring 20f is connected to the second extraction electrode 24b.
  • the electroacoustic transducer 10 of the present invention there are no restrictions on the method of connecting the electrode layer of the acoustic film 14 (piezoelectric film 24) and the extraction electrodes, and various methods can be used.
  • a sheet-like extraction electrode is inserted between the electrode layer and the piezoelectric layer, and wiring is connected to this extraction electrode.
  • the extraction electrode may be inserted between the electrode layer and the protective layer.
  • Another method is to form a through hole in the protective layer, provide an electrode connection member formed of a metal paste such as silver paste so as to fill the through hole, and provide a lead electrode in this electrode connection member.
  • wiring may be inserted directly between the electrode layer and the piezoelectric layer or between the electrode layer and the protective layer to connect the extraction electrode to the electrode layer.
  • a method is exemplified in which a part of the protective layer and the electrode layer is protruded from the piezoelectric layer in the plane direction, and the lead electrode is connected to the protruded electrode layer.
  • the extraction electrode and the electrode layer may be connected by a known method such as a method using a metal paste such as silver paste, a method using solder, or a method using a conductive adhesive. Examples of suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
  • the acoustic film 14 is attached to the panel 12 by an adhesive layer (not shown).
  • an adhesive layer may be a layer made of an adhesive, a layer made of a pressure-sensitive adhesive, or a layer made of a material having the characteristics of both an adhesive and a pressure-sensitive adhesive.
  • the adhesive layer may be formed by applying an adhesive having fluidity such as a liquid, or may be formed using a sheet-like adhesive such as a double-sided tape.
  • the acoustic film 14 is expanded and contracted by expanding and contracting a plurality of laminated piezoelectric films 24, and the expansion and contraction of the acoustic film 14 bends and vibrates the panel 12, output sound. Therefore, in the electroacoustic transducer 10 of the present invention, it is preferable that the expansion and contraction of the acoustic film 14 be directly transmitted to the panel 12 . If there is a viscous substance that reduces vibrations between the panel 12 and the acoustic film 14, the efficiency of transmission of the expansion and contraction energy of the acoustic film 14 to the panel 12 will be low. drive efficiency is reduced.
  • the sticking layer is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer rather than a sticking layer made of an adhesive.
  • More preferred adhesive layers are specifically exemplified by adhesive layers made of thermoplastic adhesives such as polyester adhesives and styrene-butadiene rubber (SBR) adhesives. Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
  • the thickness of the adhesion layer that adheres the panel 12 and the acoustic film 14 there is no limitation on the thickness of the adhesion layer that adheres the panel 12 and the acoustic film 14, and sufficient adhesion strength is exhibited according to the material forming the adhesion layer 27.
  • a possible thickness may be set as appropriate.
  • the thinner the adhesive layer the higher the effect of transmitting the stretching energy (vibrational energy) of the piezoelectric layer 26, and the higher the energy efficiency.
  • the adhesive layer is thick and rigid, it may restrict expansion and contraction of the acoustic film 14 .
  • the adhesive layer is thin.
  • the thickness of the adhesive layer that adheres the panel 12 and the acoustic film 14 is preferably 10 to 1000 ⁇ m, more preferably 30 to 500 ⁇ m, even more preferably 50 to 300 ⁇ m after adhesion. .
  • the piezoelectric film 24 is formed by sandwiching the piezoelectric layer 26 between the first electrode layer 28 and the second electrode layer 30 .
  • Piezoelectric layer 26 preferably has piezoelectric particles 40 in a polymer matrix 38 .
  • piezoelectric layer 26 comprises piezoelectric particles 40 dispersed in polymer matrix 38 .
  • the piezoelectric particles 40 expand and contract in the polarization direction according to the applied voltage.
  • the piezoelectric film 24 shrinks in the thickness direction.
  • the piezoelectric film 24 expands and contracts in the plane direction as well. This expansion and contraction is about 0.01 to 0.1%.
  • the thickness of the piezoelectric layer 26 is preferably about 10-300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 ⁇ m at maximum.
  • the piezoelectric film 24, that is, the piezoelectric layer 26, has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric film 24 is 20 cm, the piezoelectric film 24 expands and contracts by about 0.2 mm at the maximum due to the application of voltage.
  • the acoustic film 14 is formed by laminating five layers of the piezoelectric film 24 by folding. An acoustic film 14 is attached to the panel 12 by an adhesive layer. As the piezoelectric film 24 expands and contracts, the acoustic film 14 expands and contracts in the same direction. The expansion and contraction of the acoustic film 14 bends the panel 12, and as a result, the panel 12 vibrates in the thickness direction. The vibration in the thickness direction causes the panel 12 to output sound. That is, the panel 12 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 24 and outputs sound according to the driving voltage applied to the piezoelectric film 24 .
  • driving voltage driving voltage
  • the illustrated acoustic film 14 is obtained by laminating five such piezoelectric films 24 .
  • the adjacent piezoelectric films 24 are adhered to each other with the adhesion layer 27 . Therefore, even if the rigidity of each piezoelectric film 24 is low and the expansion/contraction force is small, the lamination of the piezoelectric films 24 increases the rigidity and the expansion/contraction force of the acoustic film 14 . As a result, even if the panel 12 has a certain degree of rigidity, the acoustic film 14 can sufficiently flex the panel 12 with a large force and sufficiently vibrate the panel 12 in the thickness direction. Audio can be output.
  • the preferable thickness of the piezoelectric layer 26 is about 300 ⁇ m at maximum.
  • the piezoelectric film 24 using the piezoelectric layer 26, which is a composite piezoelectric polymer has very good flexibility. Therefore, the acoustic film 14 is very thin and has good flexibility even if it is made by laminating a plurality of layers (five layers in the illustrated example) of the piezoelectric films 24 . Therefore, by using the acoustic film 14 made of such a piezoelectric film 24, the acoustic film 14 suitably follows the winding of the panel 12 when the panel 12 is wound. As a result, the electroacoustic transducer 10 provided with the acoustic film 14 made of the piezoelectric film 24 can be suitably wound.
  • the panel 12 is flexible and rollable.
  • a winding shaft 16 is fixed to one side (right side in the drawing) of the panel 12 in the longitudinal direction.
  • the panel 12 (electroacoustic transducer 10) is wound around the winding shaft 16 when not in use.
  • the winding shaft 16 is not limited, and various rod-shaped objects such as resin rods and metal rods can be used as long as the panel 12 can be wound.
  • the winding shaft 16 is preferably cylindrical or columnar.
  • the winding shaft 16 has a cylindrical shape, and includes a conductor wire for connecting the flat wiring 20c and the assembly cable 21, a conductor wire for connecting the flat wiring 20d and the assembly cable 21, and a flat wiring 20e and the assembly cable. 21, a conductor wire for connecting the flat wiring 20f and the collective cable 21, and the like are accommodated as appropriate.
  • Various known conductors can be used as the conductors connected to the flat-plate wirings of the present invention such as the flat-plate wirings 20c and 20d.
  • a flat wiring similar to the flat wiring 20c or the like may be used as the conducting wire.
  • the winding shaft 16 is attached to the panel 12 so as to fix the entire length of one side. That is, one side of the panel 12 is fixed and restrained to the winding shaft 16 .
  • the panel 12 may be detachably fixed to the winding shaft 16, or may be fixed in a non-detachable manner.
  • the method for fixing the edge of the panel 12 to the take-up shaft 16 is not limited, and various known methods for fixing the sheet-like material to the rod-like material can be used. Examples include a method using an adhesive, a method using Velcro (registered trademark), a method using clasps such as hooks and snaps, a method by clamping using a flat plate and a screw, and a hollow round bar with a split. Various known methods such as a sandwiching method can be used.
  • a fixed shaft 18 is provided as a preferred embodiment on the side of the panel 12 facing the winding shaft 16 side.
  • the fixed shaft 18 is also not limited, and various rod-shaped objects such as resin rods and metal rods can be used. Since the fixed shaft 18 does not take up the panel 12, it can be preferably used in the form of a rectangular cylinder or prism.
  • the fixed shaft 18 has a cylindrical shape, and accommodates a conductor wire for connecting the flat-plate wiring 20a and the flat-plate wiring 20c and a conductor wire for connecting the flat-plate wiring 20b and the flat-plate wiring 20d. be done.
  • the fixed shaft 18 is preferably attached to the panel 12 so as to fix the entire length of one side. That is, the side of the panel 12 facing the take-up shaft 16 side is fixed and constrained by the fixed shaft 18 . Therefore, the short sides of the panel 12 are fixed by the winding shaft 16 and the fixed shaft 18, and expansion and contraction are restrained.
  • the method for fixing the edge of the panel 12 to the fixing shaft 18 is not limited, and various known methods for fixing the sheet-like object to the rod-like object can be used. As an example, the method mentioned above for the winding shaft 16 is exemplified.
  • the electroacoustic transducer 10 of the present invention has flat wiring containing metal foil as wiring for connecting the acoustic film 14 and an external device.
  • the acoustic film 14 on the right side of the figure has a first lead-out electrode 24a connected to the flat wiring 20a leading to the inside of the fixed shaft 18, and a second lead-out electrode 24b connected to the inside of the fixed shaft 18. are connected to the flat-plate wirings 20b.
  • the flat-plate wiring 20 a is connected to the conductor inside the fixed shaft 18 .
  • This lead wire is connected to a flat plate wiring 20c attached to the upper end of the panel 12 in the drawing.
  • the flat-plate wiring 20c reaches the inside of the cylindrical winding shaft 16 and is connected inside the winding shaft 16 to a conductor in a collective cable 21 for connecting to an external device such as an amplifier.
  • the flat-plate wiring 20b is connected to the conductor inside the fixed shaft 18 .
  • This conductor wire is connected to a flat plate wiring 20d attached to the lower end of the panel 12 in the drawing.
  • the flat-plate wiring 20 d reaches the inside of the cylindrical winding shaft 16 and is connected to the conducting wire in the collective cable 21 inside the winding shaft 16 .
  • the flat-plate wiring and the wiring of the assembly cable 21 may be connected via a conducting wire, if necessary. In this regard, the same applies to the acoustic film 14 on the left side of the drawing shown below.
  • the first extraction electrode 24 is connected to the flat wiring 20e leading to the inside of the winding shaft 16, and the second extraction electrode 24b is connected to the flat wiring 20f leading to the inside of the winding shaft 16.
  • the flat-plate wiring 20 e is connected to conductors in the cable assembly 21 inside the winding shaft 16 .
  • the flat-plate wiring 20 f is also connected to conductors in the assembly cable 21 inside the winding shaft 16 .
  • the conductors (wirings) not inserted into the winding shaft 16 and the fixed shaft 18, that is, the wirings in contact with the wound surface of the panel 12 are all flat wirings.
  • the flat-plate wiring that is not inserted into the winding shaft 16 and the fixed shaft 18 is basically adhered to the panel 12 .
  • the metal foil is a plate-shaped metal object having a thickness of 100 ⁇ m or less.
  • the thickness may be any thickness that provides sufficient conductivity depending on the material forming the metal foil.
  • the thickness of the metal foil is preferably 10 ⁇ m or more in consideration of the conductivity and ability of the flat wiring to constrain the panel 12, which will be described later.
  • the flat wiring having a length of 50% or more of the length of the panel 12 in the direction orthogonal to the winding shaft 16 is wound from the end of the winding shaft 16 in the axial direction.
  • the area within 30% of the length of the panel 12 in the axial direction of the mandrel 16 is adhered.
  • the flat wiring having a length of 50% or more of the length of the panel 12 in the winding direction is extended from the end in the direction perpendicular to the winding direction to the panel in the direction perpendicular to the winding direction.
  • An area within 30% of the length of 12 is applied. Specifically, as conceptually shown in FIG.
  • the electroacoustic transducer 10 of the present invention having such a configuration, in the electroacoustic transducer in which the acoustic film 14 is adhered to the panel 12 that can be wound, the wiring for driving the acoustic film 14 can be used to drive the panel. 12 is prevented from being damaged and expansion and contraction of the panel 12 in the plane direction is suppressed, thereby enabling output of sound with high sound pressure.
  • the direction perpendicular to the winding shaft 16, that is, the direction of the length La in FIG. 8 is also referred to as the "winding direction” for convenience.
  • the axial direction of the winding shaft 16, that is, the direction of the length Lb in FIG. 8 is also referred to as the "axial direction” for convenience.
  • the length of the panel 12 in the winding direction, that is, the length La in FIG. 8 is also simply referred to as "the length in the winding direction”.
  • the length of the panel 12 in the axial direction that is, the length Lb in FIG. 8 is also simply referred to as the "axial length”.
  • a windable image display device, a projection screen, or a windable panel 12 such as a flexible resin film is adhered to the acoustic film 14 having a piezoelectric body, thereby forming a panel. 12 can be vibrated to output sound. Sound output at this time is performed by vibrating the panel 12 in the thickness direction by expanding and contracting the acoustic film 14 in the plane direction to bend the panel 12 as described above.
  • Sound output from the panel 12 using the acoustic film 14 is performed by vibrating the panel 12 by bending the panel 12 due to expansion and contraction of the acoustic film 14 . Therefore, in order to vibrate the panel 12 efficiently, it is necessary to suppress the expansion and contraction (deformation) of the panel 12 in the plane direction so that the expansion and contraction of the acoustic film 14 does not cause the panel 12 to expand and contract together.
  • the conventional electroacoustic transducer in which the panel 12 can be wound one side of the panel 12 in the axial direction is fixed by the winding shaft 16 to suppress expansion and contraction, but the winding direction is not fixed. not Therefore, the winding direction of the panel 12 expands and contracts together with the acoustic film 14 when the acoustic film 14 expands and contracts. As a result, the panel 12 cannot be entirely vibrated, resulting in a low sound pressure.
  • the flat wiring whose length is 50% or more of the length in the winding direction extends from the end in the axial direction to the length in the axial direction. is attached to an area within 30% of the A flat-plate wiring is a wiring containing metal foil, that is, a strip-shaped wiring. Therefore, even if the panel 12 is wound, a strong linear pressure is not applied to the panel 12 unlike a normal cord-like conductor. Therefore, the electroacoustic transducer 10 of the present invention can prevent damage to the panel 12 such as the shape of the flat wiring being transferred to the surface even when the panel 12 is wound.
  • the electroacoustic transducer 10 of the present invention has a length of 50% or more of the length in the winding direction (length La) in the vicinity of the end portion in the axial direction of the panel 12 .
  • flat wiring is wiring containing metal foil. Therefore, the expansion and contraction of the panel 12 in the axial direction can be prevented by the winding shaft 16, and the expansion and contraction of the panel 12 in the winding direction can be suppressed by the flat wiring, which is wiring including metal foil. In the example shown in FIG. 1, expansion and contraction of the panel 12 in the winding direction can be suppressed by the flat wiring 20c and the flat wiring 20d.
  • expansion and contraction of the panel 12 can be prevented in both the winding direction and the axial direction.
  • the expansion and contraction of the acoustic film 14 allows the entire panel 12 to vibrate in the thickness direction, that is, the acoustic film 14 efficiently vibrates the entire surface of the panel 12 to output sound with high sound pressure. .
  • the side of the panel 12 facing the take-up shaft 16 is fixed by the fixed shaft 18 as a preferred embodiment. Therefore, expansion and contraction of the panel 12 in the axial direction can be prevented at both ends in the winding direction by the winding shaft 16 and the fixed shaft 18, and the entire surface of the panel 12 can be vibrated with higher efficiency.
  • the flat wiring of 50% or more of the length in the winding direction should be attached to the area within 30% of the length in the axial direction from the end in the axial direction. Just do it.
  • the length of the flat wiring attached to this region is preferably 60% or more, more preferably 80% or more, of the length in the winding direction (the length of the panel 12). As in the illustrated example, it is more preferable that the flat wiring is adhered over the entire area (substantially the entire area) in the winding direction.
  • over the entire winding direction means not only covering the entire winding direction of the panel 12, but also until it abuts on the winding shaft 16 or further the fixed shaft 18, and as in the illustrated example. Including up to the interior of the shaft 16 or even the fixed shaft 18 .
  • the area where the flat wiring is attached that is 50% or more of the length in the winding direction is within 30% of the length in the axial direction (the length of the panel 12) from the end in the axial direction. Just do it. However, the closer the flat-plate wiring is to the end in the axial direction, the more preferably the expansion and contraction of the panel 12 can be suppressed. Considering this point, it is preferable to attach the flat-plate wiring having a length of 50% or more of the length in the winding direction, preferably within 20% of the length in the axial direction, more preferably within 10%. More preferably, it is attached to the axial ends, as shown.
  • the acoustic film 14 has a first electrode layer 28 and a second electrode layer 30 .
  • two flat wirings can be provided so as to be connected to each electrode layer.
  • two flat plate electrodes having a length of 50% or more of the length in the winding direction may be attached to a region within 30% of the length in the axial direction from one end in the axial direction. .
  • it is more preferable to prevent expansion and contraction of the panel 12 in the winding direction. is preferably applied to the area of
  • the flat wiring of 50% or more of the length in the winding direction, which is attached to the region within 30% of the length in the axial direction from the end in the axial direction, is shown in FIG. is not restricted to being parallel to the edge of the panel 12, as shown in FIG. That is, as shown in an embodiment described later, the flat wiring attached to the region within 30% of the length in the axial direction from the end in the axial direction may be inclined with respect to the edge of the panel. Moreover, in a region within 30% of the length in the axial direction from the end in the axial direction, the flat wiring parallel to the edge of the panel 12 and the flat wiring inclined with respect to the edge of the panel 12 are mixed.
  • the flat-plate wiring attached to the area within 30% of the length in the axial direction from the end in the axial direction may have a curved portion, but the shape is straight or a combination of straight lines. is preferred. Furthermore, it is preferable that the flat wiring attached to the area within 30% of the length in the axial direction from the end in the axial direction has a linear portion of 50% or more of the length in the winding direction.
  • flat wiring includes metal foil.
  • metal foil There are no restrictions on the metal foil, and various known metal foils can be used as long as they are made of conductive metal.
  • an alloy is included in the metal used as metal foil. Examples include aluminum foil, copper foil, nickel foil, gold foil, silver foil, and tin foil.
  • flat wiring can be used as long as they contain metal foil.
  • metal foil examples thereof include a metal foil, a metal tape obtained by providing an adhesive layer on a metal foil, an FPC (Flexible printed circuits) wiring board (FPC substrate, FPC wiring), and the like.
  • FPC Flexible printed circuits
  • the method of adhering the flat wiring to the panel 12 is also not limited, and various known methods can be used. Examples include a method using an adhesive, a method using an adhesive tape such as a polyimide tape, a method using a double-sided tape, a method using a hot-melt sheet or the like to heat and press, and direct vacuum deposition of copper or the like onto the panel. and the like are exemplified.
  • the longitudinal direction of the rectangular panel 12 is the winding direction, that is, the direction perpendicular to the winding shaft 16, and the lateral direction is the axial direction of the winding shaft 16.
  • the transverse direction of a rectangular panel 12 is the winding direction, i.e., the direction orthogonal to the winding axis 16, and the longitudinal direction is the winding axis. 16 axial directions.
  • the flat wiring 20g and the flat wiring 20h of 50% or more of the length in the winding direction, that is, the short side, are arranged in the axial direction corresponding to both ends of the panel 12 in the longitudinal direction, that is, the short side.
  • the area within 30% of the length in the axial or longitudinal direction from the ends is adhered.
  • a piezoelectric film was produced by the method shown in FIGS. First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
  • DMF dimethylformamide
  • ⁇ PZT particles ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ 30 parts by mass ⁇ DMF ⁇ 70 parts by mass
  • Mixed powder obtained by wet-mixing in a ball mill was fired at 800° C. for 5 hours and then pulverized.
  • a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.1 ⁇ m on a PET film with a thickness of 4 ⁇ m. That is, in this example, the first electrode layer and the second electrode layer are 0.1 m-thick copper-evaporated thin films, and the first protective layer and the second protective layer are 4 ⁇ m-thick PET films. Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. The paint was applied so that the thickness of the coating film after drying was 40 ⁇ m. Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C.
  • the produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
  • a sheet-like product obtained by vapor-depositing the same thin film on a PET film was laminated with the first electrode layer (copper thin film side) facing the piezoelectric layer on the laminate in which the piezoelectric layer had been subjected to the polarization treatment.
  • the laminate of the laminate and the sheet-like material is thermocompressed at a temperature of 120° C. using a laminator device to adhere and adhere the composite piezoelectric body and the first electrode layer, as shown in FIG.
  • a piezoelectric film as shown in was produced.
  • This piezoelectric film was cut into strips with a width of 180 mm, and folded four times so that the length in the folding direction was 70 mm. Therefore, this acoustic film has a planar shape of 180 ⁇ 70 mm when viewed from the stacking direction.
  • the piezoelectric films adjacent to each other in the stacking direction were attached using an adhesive (TSU0041SI, manufactured by Toyochem Co., Ltd.).
  • the produced acoustic film was fixed by inserting the first extraction electrode between the first protective layer and the first electrode layer at one end in the longitudinal direction of the piezoelectric film.
  • the second extraction electrode was inserted and fixed between the second protective layer and the second electrode layer.
  • a copper foil having a thickness of 35 ⁇ m, a length of 25 mm, and a width of 15 mm was used as the extraction electrode.
  • Example 1 As a panel, a polypropylene flat plate having a thickness of 0.2 mm and a size of 700 ⁇ 500 mm was prepared. This panel can be easily rolled up by a person. Two sheets of the produced acoustic film were adhered to one surface of the panel. As conceptually shown in FIG. 10, the acoustic film has the longitudinal direction (direction of 180 mm) aligned with the width direction (direction of 500 mm) of the panel, the center of the width direction of the panel, and the width of the panel. In the vicinity of the ends in the longitudinal direction, the extraction electrodes were attached facing outward. A double-sided tape was used to attach the acoustic film to the panel.
  • a metal tape having a width of 15 mm and a metal foil (copper foil) thickness of 25 ⁇ m was attached to both ends of the panel in the longitudinal direction over the entire length.
  • the metal tape is indicated by a thick line.
  • a short metal tape was connected to the first lead-out electrode of the acoustic film on the right side of the figure, and this metal tape was connected to the right end of the metal tape on the upper side of the figure with a string-like conductive wire.
  • a short metal tape was connected to the second lead-out electrode of the acoustic film on the right side of the figure, and this metal tape and the right end of the metal tape on the bottom side of the figure were connected with a string-like conductive wire.
  • the end of the metal tape on the left side in the drawing was connected to the lead wire of the collective cable for connecting to the external power source.
  • the metal tape is flat wiring in the present invention.
  • a short metal tape was connected to the first lead-out electrode of the acoustic film on the left side of the figure, and this metal tape was connected to a conductor wire of an assembly cable for connecting to an external power source.
  • a short metal tape was connected to the second lead-out electrode of the acoustic film on the left side of the drawing, and this metal tape was connected to a conductor wire of an assembly cable for connecting to an external power supply.
  • FIG. 10 to 21 omit the illustration of the winding shaft and the fixed shaft. Thus, an electroacoustic transducer as shown in FIG. 1 was produced.
  • Example 2 As conceptually shown in FIG. 11, the right half (350 mm) of the metal tape at both ends in the width direction of the panel was positioned 160 mm from the end in the width direction. An electroacoustic transducer was similarly produced.
  • Example 3 As conceptually shown in FIG. 12, an electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tapes at both ends in the lateral direction of the panel were positioned 150 mm from the ends in the lateral direction. .
  • Example 4 As conceptually shown in FIG.
  • Example 5 As conceptually shown in FIG. 14, the metal tapes are placed on both ends of the panel in the transverse direction so that the ends on the right side in the figure are positioned 150 mm from the ends of the panel in the transverse direction. An electroacoustic transducer was produced in the same manner as in Example 1, except that the long side of the panel was oblique.
  • Example 6 As conceptually shown in FIG. 15, the metal tapes are placed on both ends of the panel in the widthwise direction so that the ends on the left side of the drawing are positioned 150 mm from the widthwise end of the panel. An electroacoustic transducer was produced in the same manner as in Example 1, except that the long side of the panel was oblique.
  • Example 7 As conceptually shown in FIG. 16, the right half of the metal tapes at both ends in the panel width direction are positioned 160 mm from the panel width direction ends.
  • An electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tape was slanted with respect to the long side of the panel so as to connect the left corner of the panel to the corner of the panel.
  • Example 8 As conceptually shown in FIG.
  • the metal tapes at both ends in the widthwise direction of the panel are placed at a position 160 mm from the widthwise end of the panel, and the metal tape ends
  • An electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tape was slanted with respect to the long side of the panel so as to connect the edge and the right corner of the panel in the figure.
  • Example 9 As conceptually shown in FIG. 18, an electroacoustic transducer was produced in the same manner as in Example 1, except that four acoustic films were attached near the corners of the panel.
  • Example 10 An electroacoustic transducer was produced in the same manner as in Example 1, except that a metal foil having a thickness of 25 ⁇ m was adhered to the panel with a polyimide tape instead of the metal tape.
  • Example 11 An electroacoustic transducer was produced in the same manner as in Example 1, except that FPC wiring having a metal foil with a thickness of 25 ⁇ m was adhered to the panel with a polyimide tape instead of the metal tape.
  • Example 1 As conceptually shown in FIG. 19, an electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tapes at both ends in the lateral direction of the panel were positioned 160 mm from the ends in the lateral direction. .
  • Example 2 As conceptually shown in FIG. 20, 400 mm on the right side of the metal tape at both ends of the panel in the transverse direction was positioned 160 mm from the ends in the transverse direction, in the same manner as in Example 1. An electroacoustic transducer was fabricated.
  • Example 3 As conceptually shown in FIG. 21, the electroacoustic transducer was performed in the same manner as in Example 1, except that the extraction electrode of the acoustic film on the right side of the figure was directed inward, and the metal tape was positioned at the center of the panel in the lateral direction. I made a vessel.
  • Example 4 An electroacoustic transducer was produced in the same manner as in Example 1, except that a flat cable with a wire diameter of 1 mm was used instead of the metal tape and adhered to the panel with a polyimide tape.
  • Example 5 An electroacoustic transducer was produced in the same manner as in Example 1, except that a VCT (Vinyl Cab Tire) cable with a wire diameter of 3 mm was used instead of the metal tape, and the cable was attached to the panel with a polyimide tape.
  • VCT Vinyl Cab Tire
  • Example 6 An electroacoustic transducer was fabricated in the same manner as in Example 1, except that FPC wiring having a metal foil with a thickness of 25 ⁇ m was used instead of the metal tape, and the FPC wiring was not adhered to the panel.
  • the produced electroacoustic transducers were evaluated as follows. ⁇ Sound pressure> The sound pressure was measured using a sound level meter at a distance of 1 m from the panel and at the central position in the longitudinal and lateral directions. In measuring the sound pressure, pink noise of 500 to 20 kHz was input by a constant current amplifier. The voltage was adjusted to give a 20 Vrms input at 1 kHz. The sound pressure level of Example 9 was evaluated as 5 out of 5, and the evaluation was lowered by 1 for each 1 dB decrease in sound pressure.
  • ⁇ Windability> The panel was wound up on a winding shaft and left for one day. After that, the panel was unfolded and the presence or absence of wrinkles and folds was visually confirmed. A when no wrinkles and folds can be confirmed, A case where wrinkles and folds could be confirmed was evaluated as B.
  • ⁇ Image> The panel was wound up on a winding shaft and left for one day. After that, the panel was spread out, and the presence or absence of wiring reflection was visually evaluated. If the wiring image cannot be confirmed, A, A case in which the image of the wiring could be confirmed was evaluated as B. Results are shown in the table below.
  • the size of the panel is 700 ⁇ 500 mm, in this example the winding direction is 700 mm and the axial direction is 500 mm.
  • Table 1 flat wiring using metal foil is used, and flat wiring of 50% or more (350 mm or more) of the length in the winding direction of the panel is extended from the end in the axial direction of the panel.
  • All of the electroacoustic transducers of the present invention attached to a region within 30% (within 150 mm) of the length in the axial direction have high sound pressure, good windability of the panel, and can be easily attached to the panel. There is no picture of wiring.
  • Example 2 the longer the flat wiring attached within 30% of the axial length of the panel from the axial end of the panel, the longer the axial end.
  • the closer to the higher the sound pressure.
  • Example 1 a higher sound pressure can be obtained by providing flat-plate wiring over the entire length in the winding direction at the ends in the axial direction.
  • the flat wiring of 50% or more of the length in the winding direction of the panel is not attached to the area within 30% of the length in the axial direction of the panel from the end of the panel in the axial direction.
  • the electroacoustic transducers of Comparative Examples 1 to 3 and the electroacoustic transducer of Comparative Example 6 in which the flat wiring was not adhered to the panel had low sound pressure.
  • Comparative Example 4 using a flat cable instead of the flat wiring the wiring is reflected on the panel.
  • Comparative Example 5 in which a VCT cable was used instead of the flat wiring, wrinkles occurred, resulting in poor windability, and the wiring also appeared on the panel. From the above results, the effect of the present invention is clear.
  • Electroacoustic transducer 12 Panel 14 Acoustic film 16 Winding shaft 18 Fixed shaft 20a, 20b, 20c, 20d, 20e, 20f, 20g, 20h Flat wiring 21
  • Collective cable 24 Piezoelectric film 24a First extraction electrode 24b Second extraction electrode 26 piezoelectric layer 28 first electrode layer 30 second electrode layer 32 first protective layer 34 second protective layer 38 polymer matrix 40 piezoelectric particles 42a, 42b laminate 46 piezoelectric laminate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)

Abstract

The present invention addresses the problem of providing an electroacoustic converter in which an acoustic film is affixed to a rollable panel, the electroacoustic converter making it possible to prevent the panel from being scratched by wiring and to output sound having a high sound pressure. The aforementioned problem is solved by having a rollable panel, an acoustic film that causes the panel to vibrate, a rolling shaft for rolling the panel, and flat-plate wiring for connecting the acoustic film and an external device, the flat-plate wiring including a metal foil, and the invention being such that flat-plate wiring having a length of at least 50% of the length of the panel in a direction orthogonal to the rolling shaft is affixed to a region that is no more than 30% of the length of the panel in the axial direction of the rolling shaft from the axial-direction end section of the rolling shaft.

Description

電気音響変換器electroacoustic transducer
 本発明は、巻取りが可能な電気音響変換器に関する。 The present invention relates to a windable electroacoustic transducer.
 ポスターおよびスクリーンなどの巻取りが可能なパネルに、圧電体を有する音響フィルムを貼着することで、音響フィルムによってパネルを振動させて、音声を出力する技術が知られている。 A technique is known in which sound is output by attaching an acoustic film having a piezoelectric material to a windable panel such as a poster or screen, vibrating the panel with the acoustic film.
 例えば、画像の投影システムでは、映像を投影されるスクリーンの背面に圧電体を有する音響フィルムを貼着し、この音響フィルムによってスクリーンを振動させることにより、スクリーンから音声を出力する方法も知られている。 For example, in an image projection system, a method is known in which an acoustic film having a piezoelectric material is adhered to the back of a screen on which an image is projected, and sound is output from the screen by vibrating the screen with this acoustic film. there is
 一例として、特許文献1には、画像を表示するスクリーン面と、スクリーンの背面に形成された音響フィルム(圧電層)と、音響フィルムに電力を供給する電極と、供給する電力を音響信号にしたがって変調する変調回路とを有するスクリーンが記載されている。
 特許文献2には、両面に電極膜が積層された音響フィルム(圧電性フィルム)からなるスピーカーが、シート状のスクリーン本体の背面または前面のいずれかに貼着されている、映写用スクリーンが記載されている。
As an example, Patent Document 1 discloses a screen surface for displaying an image, an acoustic film (piezoelectric layer) formed on the back surface of the screen, an electrode for supplying power to the acoustic film, and power to be supplied according to an acoustic signal. A screen with a modulating circuit is described.
Patent Document 2 describes a projection screen in which a speaker made of an acoustic film (piezoelectric film) with electrode films laminated on both sides is attached to either the back or front of a sheet-like screen body. It is
特開2006-339954号公報JP 2006-339954 A 特開2007-187976号公報JP 2007-187976 A
 このような音響フィルムを投影用のスクリーン等のパネルの裏面に貼着することにより、スピーカーを内蔵した状態で、巻取り可能で、かつ音声を出力できる、各種の装置を実現できる。
 また、投影面の背面に音響フィルムを設けたスクリーンは、音響フィルムを伸縮することでスクリーンが振動し、このスクリーンの振動により、音声を出力する。そのため、このような音響フィルムを有するスクリーンでは、あたかも画像から音声が出力されているような状態となり、高い臨場感が得られる。
By attaching such an acoustic film to the back surface of a panel such as a screen for projection, it is possible to realize various devices that can be wound up and that can output sound with built-in speakers.
A screen having an acoustic film on the back of the projection surface vibrates when the acoustic film expands and contracts, and the vibration of the screen outputs sound. Therefore, on the screen having such an acoustic film, it is as if the sound is being output from the image, and a high sense of realism can be obtained.
 ここで、スクリーンなど、巻取り可能なパネルに音響フィルムを貼着し、パネルを振動させることで音声を出力するスピーカーにおいては、音響フィルムを駆動するために、音響フィルムに駆動電力を供給ための配線が必要になる。
 しかしながら、通常の配線では、パネルを巻取った際に、配線の線圧が掛かってしまい、パネルの表面に線の形状が転写されてしまうなど、パネルを損傷してしまう可能性がある。
Here, in a speaker that outputs sound by attaching an acoustic film to a windable panel such as a screen and vibrating the panel, in order to drive the acoustic film, a driving power is supplied to the acoustic film. Wiring is required.
However, with normal wiring, when the panel is wound, the line pressure of the wiring is applied, and there is a possibility that the panel will be damaged, for example, the shape of the line will be transferred to the surface of the panel.
 また、巻取り可能なパネルを音響フィルムによって振動させて、音声を出力する際に、十分な音声を出力するためには、パネル全体を振動させるのが好ましい。そのためには、パネルを十分に支持して、パネルの面方向(面内方向)には、できるだけパネルを伸縮しないようにする必要がある。
 しかしながら、従来の音響フィルムを貼着したパネルは、面方向の伸縮を十分に抑制することができず、音圧低下の要因になっている。
Further, when outputting sound by vibrating the windable panel with the acoustic film, it is preferable to vibrate the entire panel in order to output sufficient sound. For this purpose, it is necessary to sufficiently support the panel and prevent expansion and contraction of the panel in the plane direction (in-plane direction) of the panel as much as possible.
However, the panel to which the conventional acoustic film is adhered cannot sufficiently suppress expansion and contraction in the surface direction, which causes a decrease in sound pressure.
 本発明の目的は、このような従来技術の問題点を解決することにあり、巻取り可能なパネルに音響フィルムを貼着した電気音響変換器において、音響フィルムを駆動するための配線によってパネルが損傷することを防止し、かつ、面方向のパネルの伸縮を抑制して、高い音圧の音声を出力可能な電気音響変換器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art. To provide an electroacoustic transducer capable of outputting sound of high sound pressure by preventing damage and suppressing expansion and contraction of a panel in the surface direction.
 このような目的を達成するために、本発明は、以下の構成を有する。
 [1] 巻取りが可能なパネルと、
 パネルを振動させる音響フィルムと、
 パネルを巻取るための巻取軸と、
 音響フィルムと外部装置とを接続するための平板配線とを有し、
 平板配線は、金属箔を含むものであり、かつ、
 巻取軸と直交する方向のパネルの長さの50%以上の長さの平板配線が、巻取軸の軸方向の端部から、巻取軸の軸方向のパネルの長さの30%以内の領域に貼着されている、電気音響変換器。
 [2] 平板配線が、巻取軸と直交する方向のパネルの全域に貼着される、[1]に記載の電気音響変換器。
 [3] 平板配線が、巻取軸の軸方向のパネルの端部に貼着される、[1]または[2]に記載の電気音響変換器。
 [4] 平板配線と電気的に接続される導線が、巻取軸の内部に収容される、[1]~[3]のいずれかに記載の電気音響変換器。
 [5] 巻取軸と直交する方向に離間して、複数の音響フィルムを有する、[1]~[4]のいずれかに記載の電気音響変換器。
 [6] パネルの巻取軸と対向する辺に固定される固定軸を有する、[1]~[5]のいずれかに記載の電気音響変換器。
 [7] 平板配線と電気的に接続される導線が、固定軸の内部に収容される、[6]に記載の電気音響変換器。
 [8] 音響フィルムが、圧電体層と、圧電体層の両面に設けられた電極層と、電極層を覆う保護層とを有する圧電フィルムを、複数層、積層した積層体を有する、[1]~[7]のいずれかに記載の電気音響変換器。
 [9] 圧電フィルムの圧電体層が、高分子材料中に圧電体粒子を有する高分子複合圧電体である、[8]に記載の電気音響変換器。
 [10] 高分子複合圧電体の高分子材料が、シアノエチル化ポリビニルアルコールである、[9]に記載の電気音響変換器。
In order to achieve such an object, the present invention has the following configurations.
[1] A windable panel;
an acoustic film that vibrates the panel;
a winding shaft for winding the panel;
It has flat wiring for connecting the acoustic film and an external device,
The flat wiring includes metal foil, and
Flat wiring with a length of 50% or more of the length of the panel in the direction orthogonal to the winding shaft is within 30% of the length of the panel in the axial direction of the winding shaft from the axial end of the winding shaft an electroacoustic transducer affixed to the area of
[2] The electroacoustic transducer according to [1], wherein the flat wiring is attached to the entire area of the panel in a direction perpendicular to the winding axis.
[3] The electroacoustic transducer according to [1] or [2], wherein the flat wiring is attached to the end of the panel in the axial direction of the winding shaft.
[4] The electroacoustic transducer according to any one of [1] to [3], wherein the lead wire electrically connected to the flat wiring is housed inside the winding shaft.
[5] The electroacoustic transducer according to any one of [1] to [4], having a plurality of acoustic films spaced apart in a direction orthogonal to the winding axis.
[6] The electroacoustic transducer according to any one of [1] to [5], having a fixed shaft fixed to the side of the panel facing the winding shaft.
[7] The electroacoustic transducer according to [6], wherein the lead wire electrically connected to the flat plate wiring is housed inside the fixed shaft.
[8] The acoustic film has a laminate obtained by laminating a plurality of piezoelectric films each having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers covering the electrode layers, [1 ] The electroacoustic transducer according to any one of [7].
[9] The electroacoustic transducer according to [8], wherein the piezoelectric layer of the piezoelectric film is a polymeric composite piezoelectric body having piezoelectric particles in a polymeric material.
[10] The electroacoustic transducer according to [9], wherein the polymer material of the polymer composite piezoelectric body is cyanoethylated polyvinyl alcohol.
 本発明によれば、巻取り可能なパネルに音響フィルムを貼着した電気音響変換器において、音響フィルムを駆動するための配線によってパネルが損傷することを防止し、かつ、面方向のパネルの伸縮を抑制して、高い音圧の音声を出力できる。 According to the present invention, in an electroacoustic transducer in which an acoustic film is adhered to a windable panel, damage to the panel due to wiring for driving the acoustic film is prevented, and expansion and contraction of the panel in the plane direction is prevented. can be suppressed to output sound with high sound pressure.
図1は、本発明の電気音響変換器の一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example of the electroacoustic transducer of the present invention. 図2は、音響フィルムの側面を概念的に示す図である。FIG. 2 is a diagram conceptually showing a side view of the acoustic film. 図3は、音響フィルムの概略斜視図である。FIG. 3 is a schematic perspective view of an acoustic film. 図4は、音響フィルムを構成する圧電フィルムの一例を概念的に示す図である。FIG. 4 is a diagram conceptually showing an example of a piezoelectric film that constitutes an acoustic film. 図5は、圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film. 図6は、圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film. 図7は、圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining an example of a method for producing a piezoelectric film. 図8は、本発明の電気音響変換器を説明するための概念図である。FIG. 8 is a conceptual diagram for explaining the electroacoustic transducer of the present invention. 図9は、本発明の電気音響変換器の別の例を概念的に示す図である。FIG. 9 is a diagram conceptually showing another example of the electroacoustic transducer of the present invention. 図10は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 10 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図11は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 11 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図12は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 12 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図13は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 13 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図14は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 14 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図15は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 15 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図16は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 16 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図17は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 17 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図18は、本発明の電気音響変換器の実施例を説明するための概念図である。FIG. 18 is a conceptual diagram for explaining an embodiment of the electroacoustic transducer of the invention. 図19は、本発明の電気音響変換器の比較例を説明するための概念図である。FIG. 19 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention. 図20は、本発明の電気音響変換器の比較例を説明するための概念図である。FIG. 20 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention. 図21は、本発明の電気音響変換器の比較例を説明するための概念図である。FIG. 21 is a conceptual diagram for explaining a comparative example of the electroacoustic transducer of the invention.
 以下、本発明の電気音響変換器について、添付の図面に示される好適実施態様を基に、詳細に説明する。 The electroacoustic transducer of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 また、以下に示す図は、本発明の電気音響変換器を説明するための概念的な図であって、各部材の大きさ、厚さ、形状、および、位置関係等は、実際の物とは異なる。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
Also, the drawings shown below are conceptual diagrams for explaining the electroacoustic transducer of the present invention, and the size, thickness, shape, positional relationship, etc. of each member are different from those of the actual product. is different.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
 図1に、本発明の電気音響変換器の一例を概念的に示す。
 図1に示す電気音響変換器10は、パネル12と、2枚の音響フィルム14と、巻取軸16と、固定軸18と、音響フィルム14と外部の装置とを電気的に接続するための平板配線と、を有する。
 図1は、電気音響変換器10を背面側、すなわち、音声を鑑賞する側とは、逆側の面から見た図である。
FIG. 1 conceptually shows an example of the electroacoustic transducer of the present invention.
The electroacoustic transducer 10 shown in FIG. 1 includes a panel 12, two acoustic films 14, a winding shaft 16, a fixed shaft 18, and a plate for electrically connecting the acoustic films 14 and an external device. and a flat plate wiring.
FIG. 1 is a diagram of the electroacoustic transducer 10 viewed from the rear side, that is, the side opposite to the side from which audio is listened to.
 図示例の電気音響変換器10において、音響フィルム14は、パネル12の一方の主面に貼着される。なお、主面とは、シート状物(フィルム、板状物、層)の最大面であり、通常、厚さ方向の両面である。 In the illustrated electroacoustic transducer 10 , the acoustic film 14 is adhered to one main surface of the panel 12 . The main surface is the maximum surface of the sheet (film, plate, layer), and is usually both sides in the thickness direction.
 後に詳述するが、電気音響変換器10において、音響フィルム14は、パネル12を振動させて音声を出力させる、いわゆるエキサイタとして作用するものである。
 すなわち、電気音響変換器10は、音響フィルム14(後述する圧電フィルム24)に駆動電圧を印加することで、音響フィルム14が面方向に伸縮する。この音響フィルム14の面方向の伸縮によって、パネル12が撓み、その結果、パネル12が、厚さ方向に振動する。この厚さ方向の振動によって、パネル12は、音声を出力する。すなわち、パネル12は、音響フィルム14に印加した電圧(駆動電圧)の大きさに応じて振動して、音響フィルム14に印加した駆動電圧に応じた音声を出力する。
 上述のように、図1は電気音響変換器を背面側から見た図である。従って、電気音響変換器10が出力する音声の鑑賞は、基本的に、パネル12の音響フィルム14等が配置されていない主面側で行う。
As will be described in detail later, in the electroacoustic transducer 10, the acoustic film 14 acts as a so-called exciter that vibrates the panel 12 to output sound.
That is, the electroacoustic transducer 10 applies a drive voltage to the acoustic film 14 (piezoelectric film 24 to be described later), so that the acoustic film 14 expands and contracts in the planar direction. The expansion and contraction of the acoustic film 14 in the plane direction bends the panel 12, and as a result, the panel 12 vibrates in the thickness direction. The vibration in the thickness direction causes the panel 12 to output sound. That is, the panel 12 vibrates according to the magnitude of the voltage (driving voltage) applied to the acoustic film 14 and outputs sound according to the driving voltage applied to the acoustic film 14 .
As described above, FIG. 1 is a rear view of the electroacoustic transducer. Therefore, listening to the sound output by the electroacoustic transducer 10 is basically performed on the main surface side of the panel 12 where the acoustic film 14 and the like are not arranged.
 図1に示す例では、パネル12の長手方向に離間して、2つの音響フィルム14を設けている。これは、音声のステレオ再生に対応するものであり、一方の音響フィルム14が右チャンネルに、他方の音響フィルム14が左チャンネルに、それぞれ、対応する。
 なお、本発明の電気音響変換器10において、音響フィルム14の数は、2つに制限はされず、1つでもよく、あるいは、3つ以上の音響フィルム14を有してもよい。
In the example shown in FIG. 1, two acoustic films 14 are provided spaced apart in the longitudinal direction of the panel 12 . This corresponds to stereo reproduction of sound, one acoustic film 14 for the right channel and the other acoustic film 14 for the left channel, respectively.
In addition, in the electroacoustic transducer 10 of the present invention, the number of acoustic films 14 is not limited to two, and may be one, or may have three or more acoustic films 14 .
 図示例の電気音響変換器10において、図中右側の音響フィルム14は、円筒状の固定軸18の内部に至る2本の平板配線20aおよび20bに接続される。接続には、導電性粘着テープ、導電性塗料、ハンダ、カシメ、および、コネクタ接続など、種々の方法が利用可能である。この際において、接続部は可撓性を持つものが好ましく用いられる。
 平板配線20aは、固定軸18の内部で、導線に接続される。この導線は、パネル12の図中上方の端部に貼着される平板配線20cに接続される。この平板配線20cは、円筒状の巻取軸16の内部に至り、巻取軸16の内部で、アンプ等の外部装置と接続するための集合ケーブル21内の導線に接続される。
 他方、平板配線20bは、固定軸18の内部で、導線に接続される。この導線は、パネル12の図中下方の端部に貼着される平板配線20dに接続される。この平板配線20dは、円筒状の巻取軸16の内部に至り、巻取軸16の内部で、集合ケーブル21内の導線に接続される。
 他方、図中左側の音響フィルム14は、巻取軸16の内部に至る平板配線20eおよび平板配線20fに接続される。
 平板配線20eは、巻取軸16の内部で、集合ケーブル21内の導線に接続される。平板配線20fも、巻取軸16の内部で、集合ケーブル21内の導線に接続される。
In the illustrated electroacoustic transducer 10 , the acoustic film 14 on the right side of the drawing is connected to two flat- plate wirings 20 a and 20 b leading to the inside of a cylindrical fixed shaft 18 . Various methods such as conductive adhesive tape, conductive paint, solder, caulking, and connector connection can be used for connection. In this case, it is preferable to use a connecting portion having flexibility.
The flat-plate wiring 20 a is connected to the conductor inside the fixed shaft 18 . This lead wire is connected to a flat plate wiring 20c attached to the upper end of the panel 12 in the drawing. The flat-plate wiring 20c reaches the inside of the cylindrical winding shaft 16 and is connected inside the winding shaft 16 to a conductor in a collective cable 21 for connecting to an external device such as an amplifier.
On the other hand, the flat-plate wiring 20b is connected to the conductor inside the fixed shaft 18 . This conductor wire is connected to a flat plate wiring 20d attached to the lower end of the panel 12 in the figure. The flat-plate wiring 20 d reaches the inside of the cylindrical winding shaft 16 and is connected to the conducting wire in the collective cable 21 inside the winding shaft 16 .
On the other hand, the acoustic film 14 on the left side of the drawing is connected to the flat wiring 20e and the flat wiring 20f leading to the inside of the take-up shaft 16. As shown in FIG.
The flat-plate wiring 20 e is connected to conductors in the cable assembly 21 inside the winding shaft 16 . The flat-plate wiring 20 f is also connected to conductors in the assembly cable 21 inside the winding shaft 16 .
 ここで、本発明において、平板配線は、金属箔を含むものである。
 また、本発明においては、巻取軸16と直交する方向のパネル12の長さの50%以上の長さの平板配線が、巻取軸16の軸方向のパネル12の端部から、巻取軸16の軸方向のパネル12の長さの30%以内の領域に貼着される。図示例では、平板配線20cおよび平板配線20dが、この平板配線に相当する。
 本発明の電気音響変換器10は、このような構成を有することにより、音響フィルム14を駆動するための配線の線圧等よってパネルが損傷することを防止し、かつ、面方向のパネル12の伸縮を抑制して、高音圧の音声出力を可能にしている。この点に関しては、後に詳述する。
Here, in the present invention, the flat wiring includes metal foil.
Further, in the present invention, the flat wiring having a length of 50% or more of the length of the panel 12 in the direction orthogonal to the winding shaft 16 is wound from the end of the panel 12 in the axial direction of the winding shaft 16. Affixed to an area within 30% of the length of panel 12 in the axial direction of shaft 16 . In the illustrated example, the flat wiring 20c and the flat wiring 20d correspond to this flat wiring.
By having such a configuration, the electroacoustic transducer 10 of the present invention prevents the panel from being damaged by the line pressure of the wiring for driving the acoustic film 14, and prevents the panel 12 from being damaged in the surface direction. It suppresses expansion and contraction and enables sound output of high sound pressure. This point will be described in detail later.
 本発明の電気音響変換器10において、パネル12はシート状物であって、平板状からの巻取り、および、巻取り状態から平板状に戻すことを、繰り返し行うことができる、巻取りが可能な可撓性を有するシート状物である。
 本発明において、パネル12には制限はなく、巻取りが可能で、かつ、公知のエキサイタよって振動されることで音声を出力できるシート状物であれば、各種のシート状物が利用可能である。
 一例として、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)および環状オレフィン系樹脂等からなる樹脂フィルム、発泡ポリスチレン、発泡スチレンおよび発泡ポリエチレン等からなる発泡プラスチック、波状にした板紙の片面または両面に他の板紙をはりつけてなる各種の段ボール材、べニア板などの木材、皮革材、写真印画紙、アルミニウム、真鍮およびステンレスなどの金属材、各種の放熱部材、ならびに、これらの複数の部材を貼り合わせた積層板等が例示される。
In the electroacoustic transducer 10 of the present invention, the panel 12 is a sheet-like material, and can be rolled up so that it can be repeatedly rolled up from the flat plate shape and returned to the flat plate shape from the rolled state. It is a sheet-like material having a high degree of flexibility.
In the present invention, the panel 12 is not limited, and various sheet-like materials can be used as long as they can be rolled up and can output sound when vibrated by a known exciter. .
Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films made of polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, etc., expanded polystyrene, expanded plastics made of expanded styrene, expanded polyethylene, etc. Other paperboard on one or both sides of corrugated paperboard Various corrugated board materials, wood such as plywood, leather materials, photographic printing paper, metal materials such as aluminum, brass and stainless steel, various heat dissipating members, and laminates of these multiple members pasted together A board etc. are illustrated.
 また、本発明の電気音響変換器10では、巻取りが可能であれば、有機エレクトロルミネッセンス(OLED(Organic Light Emitting Diode)ディスプレイ、電子ペーパ、液晶ディスプレイ、マイクロLED(Light Emitting Diode)ディスプレイ,無機エレクトロルミネッセンスディスプレイ、および、ミニLEDディスプレイ等の表示素子(表示デバイス、ディスプレパネル)も、パネル12として好適に利用可能である。
 さらに、本発明の電気音響変換器10は、巻取りが可能であれば、プロジェクタ等の投影機(映写機)から画像を投影されて、画像を表示する、投影用のスクリーンも、パネル12として好適に利用可能である。
 パネル12として、画像表示装置等を用いる場合には、音響フィルム14と逆側の面が、画像表示面(投影面)となる。
In addition, in the electroacoustic transducer 10 of the present invention, as long as it can be wound, organic electroluminescence (OLED (Organic Light Emitting Diode) display, electronic paper, liquid crystal display, micro LED (Light Emitting Diode) display, inorganic electroluminescent display, etc. A display element (display device, display panel) such as a luminescence display and a mini LED display can also be suitably used as the panel 12 .
Furthermore, if the electroacoustic transducer 10 of the present invention can be wound, a screen for projection on which an image is projected from a projector (movie projector) such as a projector to display the image is also suitable as the panel 12. available for
When an image display device or the like is used as the panel 12, the surface opposite to the acoustic film 14 serves as an image display surface (projection surface).
 なお、本発明の電気音響変換器は、上述したような樹脂フィルム等からなる巻取り可能なパネル12に、上述した巻取り可能な表示素子および投影用のスクリーン等を取り付けたものであってもよい。
 また、本発明の電気音響変換器10において、パネル12の形状は、基本的に、長方形および正方形等の矩形である。しかしながら、パネル12の形状は、矩形に制限はされず、円形、楕円形、および、四角形以外の多角形など、各種の形状が利用可能である。
The electroacoustic transducer of the present invention can be obtained by attaching the above-described rollable display element, projection screen, etc. to the rollable panel 12 made of resin film or the like as described above. good.
Also, in the electroacoustic transducer 10 of the present invention, the shape of the panel 12 is basically rectangular, such as rectangular and square. However, the shape of the panel 12 is not limited to being rectangular, and various shapes such as circular, elliptical, and non-rectangular polygonal shapes are available.
 上述のように、パネル12には、音響フィルム14が貼着される。音響フィルム14は、パネル12を振動させることで、パネル12に音声を出力させる、いわゆるエキサイタである。
 音響フィルム14には、制限はなく、パネル12を振動させて音声を出力させる、エキサイタ(オーディオエキサイタ)として作用するものが、各種、利用可能である。
As described above, the panel 12 is adhered with the acoustic film 14 . The acoustic film 14 is a so-called exciter that causes the panel 12 to output sound by vibrating the panel 12 .
There are no restrictions on the acoustic film 14, and various types of films that act as exciters (audio exciters) that vibrate the panel 12 to output sound can be used.
 ここで、本発明の電気音響変換器10は、巻取り可能なパネル12を用いる、電気音響変換器である。従って、パネル12に貼着される音響フィルム14も、パネル12の巻取りに追従する、十分な可撓性を有するものであるのが好ましい。
 この点を考慮すると、音響フィルム14は、圧電体層の両面に電極層を設けた、圧電フィルムによって構成するのが好ましい。また、圧電フィルムは、さらに、電極層を覆って、電極層等を保護する保護フィルムを有するものであるのが、より好ましい。
 さらに、音響フィルム14は、圧電フィルムを、1層のみ、有するものでもよい。しかしながら、十分な伸縮力を発現して、パネル12を十分な力で撓ませて振動させるために、複数層の圧電フィルムを積層したものであるのが好ましい。
Here, the electroacoustic transducer 10 of the present invention is an electroacoustic transducer using rollable panels 12 . Therefore, it is preferable that the acoustic film 14 attached to the panel 12 also has sufficient flexibility to follow the winding of the panel 12 .
Considering this point, the acoustic film 14 is preferably composed of a piezoelectric film having electrode layers provided on both sides of the piezoelectric layer. More preferably, the piezoelectric film further has a protective film that covers the electrode layer and protects the electrode layer and the like.
Further, the acoustic film 14 may have only one layer of piezoelectric film. However, it is preferable to laminate a plurality of layers of piezoelectric films in order to exhibit a sufficient stretching force and bend the panel 12 with a sufficient force to vibrate it.
 図2および図3に、このような圧電フィルムを積層した音響フィルム14の一例を概念的に示す。
 この音響フィルム14は、圧電体層26の一方の面に第1電極層28を有し、他方の面に第2電極層30を有する、圧電フィルム24を用いるものである。また、好ましい態様として、圧電フィルム24は、第1電極層28を覆って第1保護層32を有し、第2電極層30を覆って第2保護層34を有する。
 図示例の音響フィルム14は、圧電フィルム24を、4回、折り返すことにより、5層の圧電フィルム24を積層したものである。また、積層されて隣接する圧電フィルム24同士は、貼着層27によって貼着されている。
2 and 3 conceptually show an example of an acoustic film 14 in which such piezoelectric films are laminated.
This acoustic film 14 uses a piezoelectric film 24 having a first electrode layer 28 on one side of a piezoelectric layer 26 and a second electrode layer 30 on the other side. In a preferred embodiment, the piezoelectric film 24 has a first protective layer 32 covering the first electrode layer 28 and a second protective layer 34 covering the second electrode layer 30 .
The illustrated acoustic film 14 is obtained by laminating five layers of the piezoelectric film 24 by folding the piezoelectric film 24 four times. Adjacent laminated piezoelectric films 24 are attached to each other by an adhesive layer 27 .
 図2は、図示例の音響フィルム14の側面図であって、音響フィルム14を、図1の図中上方(または下方)から見た図である。すなわち、図1は、音響フィルム14を図2の図中上方から見た図である。従って、図1の左側の図においては、音響フィルム14は、圧電フィルム24を、図中、横方向に折り返している。他方、図1の右側の図においては、音響フィルム14は、圧電フィルム24を、図中、上下方向に折り返している。
 図3は、音響フィルム14の概略斜視図である。図3においては、図面を簡略化するために、圧電フィルム24を1層で示している。
FIG. 2 is a side view of the acoustic film 14 of the illustrated example, and is a view of the acoustic film 14 viewed from above (or below) in FIG. That is, FIG. 1 is a view of the acoustic film 14 viewed from above in FIG. Accordingly, in the left-hand view of FIG. 1, the acoustic film 14 folds the piezoelectric film 24 in the lateral direction in the drawing. On the other hand, in the drawing on the right side of FIG. 1, the acoustic film 14 is formed by folding the piezoelectric film 24 vertically in the drawing.
FIG. 3 is a schematic perspective view of the acoustic film 14. FIG. In FIG. 3, the piezoelectric film 24 is shown as one layer for simplification of the drawing.
 なお、本発明の電気音響変換器10において、圧電フィルム24を積層した音響フィルム14は、圧電フィルム24を5層積層したものに制限はされない。すなわち、本発明の電気音響変換器10において、音響フィルム14は、圧電フィルム24を3回以下、折り返した4層以下の圧電フィルム24を積層したものでもよく、あるいは、圧電フィルム24を5回以上、折り返した、6層以上の圧電フィルム24を積層したものでもよい。
 後述するが、このように、複数の圧電フィルム24を積層することにより、1枚の圧電フィルム24を用いた場合に比して、大きな力でパネルを撓ませることが可能になる。また、1枚の圧電フィルム24を折り返して積層することにより、電極の引き出しを1か所にすることができ、電気音響変換器10の構成を簡略化できる。
In the electroacoustic transducer 10 of the present invention, the acoustic film 14 in which the piezoelectric films 24 are laminated is not limited to five layers of the piezoelectric films 24 laminated. That is, in the electroacoustic transducer 10 of the present invention, the acoustic film 14 may be formed by laminating the piezoelectric film 24 three times or less, or by folding the piezoelectric film 24 into four or less layers, or by folding the piezoelectric film 24 five times or more. , a laminated structure of six or more layers of piezoelectric films 24 which are folded.
As will be described later, by stacking a plurality of piezoelectric films 24 in this way, it is possible to bend the panel with a greater force than when using one piezoelectric film 24 . In addition, by folding and laminating one piezoelectric film 24, the electrode can be drawn out in one place, and the configuration of the electroacoustic transducer 10 can be simplified.
 図4に、圧電フィルム24の一例を断面図で概念的に示す。図4等においては、図面を簡略化して構成を明確に示すために、ハッチングは省略する。
 なお、以下の説明では、特に断りが無い場合には、『断面』とは、圧電フィルムの厚さ方向の断面を示す。圧電フィルムの厚さ方向とは、各層の積層方向である。
FIG. 4 conceptually shows an example of the piezoelectric film 24 in a sectional view. In FIG. 4 and the like, hatching is omitted in order to simplify the drawing and clearly show the configuration.
In the following description, unless otherwise specified, "cross section" refers to a cross section in the thickness direction of the piezoelectric film. The thickness direction of the piezoelectric film is the stacking direction of each layer.
 図4に示す圧電フィルム24は、圧電体層26と、圧電体層26の一方の面に積層される第1電極層28と、第1電極層28に積層される第1保護層32と、圧電体層26の他方の面に積層される第2電極層30と、第2電極層30に積層される第2保護層34と、を有する。 The piezoelectric film 24 shown in FIG. 4 includes a piezoelectric layer 26, a first electrode layer 28 laminated on one surface of the piezoelectric layer 26, a first protective layer 32 laminated on the first electrode layer 28, It has a second electrode layer 30 laminated on the other surface of the piezoelectric layer 26 and a second protective layer 34 laminated on the second electrode layer 30 .
 圧電フィルム24において、圧電体層26には制限はなく、ポリフッ化ビニリデン(PVDF)からなる層など、公知の圧電体層が、各種、利用可能である。
 圧電フィルム24において、圧電体層26は、図4に概念的に示すように、高分子材料を含む高分子マトリックス38中に、圧電体粒子40を含む、高分子複合圧電体であるのが好ましい。
In the piezoelectric film 24, the piezoelectric layer 26 is not limited, and various known piezoelectric layers such as a layer made of polyvinylidene fluoride (PVDF) can be used.
In the piezoelectric film 24, the piezoelectric layer 26 is preferably a polymer composite piezoelectric body containing piezoelectric particles 40 in a polymer matrix 38 containing a polymer material, as conceptually shown in FIG. .
 ここで、高分子複合圧電体(圧電体層26)は、次の用件を具備したものであるのが好ましい。なお、本発明において、常温とは、0~50℃である。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
 (ii) 音質
 スピーカーは、20Hz~20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによってパネル(高分子複合圧電体)全体が一体となって振動することで音声が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカーの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数f0が変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
Here, the polymer composite piezoelectric body (piezoelectric layer 26) preferably satisfies the following requirements. In the present invention, normal temperature is 0 to 50°C.
(i) Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
(ii) Sound quality The speaker vibrates piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire panel (polymer composite piezoelectric body) to vibrate as one, thereby reproducing sound. . Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. Also, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency f 0 changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
 スピーカー用パネルの最低共振周波数f0は、下記式で与えられるのは周知である。ここで、sは振動系のスチフネス、mは質量である。
Figure JPOXMLDOC01-appb-M000001

 このとき、圧電フィルムの湾曲程度すなわち湾曲部の曲率半径が大きくなるほど機械的なスチフネスsが下がるため、最低共振周波数f0は小さくなる。すなわち、圧電フィルムの曲率半径によってスピーカーの音質(音量、周波数特性)が変わることになる。
It is well known that the lowest resonance frequency f 0 of the speaker panel is given by the following formula. where s is the stiffness of the vibration system and m is the mass.
Figure JPOXMLDOC01-appb-M000001

At this time, as the degree of curvature of the piezoelectric film, that is, the radius of curvature of the curved portion increases, the mechanical stiffness s decreases, so the minimum resonance frequency f 0 decreases. That is, the sound quality (volume and frequency characteristics) of the speaker changes depending on the radius of curvature of the piezoelectric film.
 以上を纏めると、高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。 In summary, the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下と共に大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層26)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点Tgが常温にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
In general, polymer solids have a viscoelastic relaxation mechanism, and as temperature rises or frequency falls, large-scale molecular motion causes a decrease (relaxation) in storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
In the polymer composite piezoelectric body (piezoelectric layer 26), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is suppressed. This realizes a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less. In particular, it is preferable to use a polymer material whose glass transition point Tg at a frequency of 1 Hz is at normal temperature for the matrix of the polymer composite piezoelectric material, because this behavior is preferably exhibited.
 高分子マトリックス38となる高分子材料は、常温において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックス/圧電体粒子界面の応力集中が緩和され、高い可撓性が期待できる。
The polymer material that forms the polymer matrix 38 preferably has a maximum loss tangent Tan δ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature.
As a result, when the polymer composite piezoelectric body is slowly bent by an external force, stress concentration at the polymer matrix/piezoelectric particle interface at the maximum bending moment portion is alleviated, and high flexibility can be expected.
 また、高分子マトリックス38となる高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
In addition, it is preferable that the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of the polymer material forming the polymer matrix 38 is 100 MPa or more at 0°C and 10 MPa or less at 50°C.
As a result, the bending moment generated when the polymeric composite piezoelectric body is slowly bent by an external force can be reduced, and at the same time, it can behave rigidly against acoustic vibrations of 20 Hz to 20 kHz.
 また、高分子マトリックス38となる高分子材料は、比誘電率が25℃において10以上で有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
Further, it is more preferable that the polymer material that forms the polymer matrix 38 has a dielectric constant of 10 or more at 25°C. As a result, when a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so a large amount of deformation can be expected.
On the other hand, however, in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
 このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が好適に例示される。
 また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。
Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are preferably exemplified.
Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials.
 高分子マトリックス38を構成する高分子材料としては、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。すなわち、圧電フィルム24において、圧電体層26は、高分子マトリックス38として、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 以下の説明では、シアノエチル化PVAを代表とする上述の高分子材料を、まとめて『常温で粘弾性を有する高分子材料』とも言う。
As the polymer material constituting the polymer matrix 38, it is preferable to use a polymer material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. That is, in the piezoelectric film 24, the piezoelectric layer 26 preferably uses a polymer material having a cyanoethyl group as the polymer matrix 38, and more preferably uses cyanoethylated PVA.
In the following description, the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature".
 なお、これらの常温で粘弾性を有する高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
 圧電フィルム24において、圧電体層26の高分子マトリックス38には、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、高分子複合圧電体を構成する高分子マトリックス38には、誘電特性や機械的特性の調節等を目的として、上述した常温で粘弾性を有する高分子材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
In the piezoelectric film 24, the polymer matrix 38 of the piezoelectric layer 26 may be made of a plurality of polymer materials, if necessary.
That is, for the polymer matrix 38 constituting the polymer composite piezoelectric body, in addition to the above-described polymer material having viscoelasticity at room temperature, other materials may be used as necessary for the purpose of adjusting dielectric properties and mechanical properties. dielectric polymer material may be added.
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムおよびクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層26の高分子マトリックス38において、これらの誘電性高分子材料は、1種に制限はされず、複数種を添加してもよい。
Examples of dielectric polymer materials that can be added include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer. and fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullulan, cyanoethylsaccharose and cyanoethylsorbitol. Alternatively, polymers having cyanoethyl groups, and synthetic rubbers such as nitrile rubbers and chloroprene rubbers are exemplified.
Among them, polymer materials having cyanoethyl groups are preferably used.
Moreover, in the polymer matrix 38 of the piezoelectric layer 26, these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
 また、誘電性高分子材料以外にも、高分子マトリックス38のガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテンおよびイソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂およびマイカ等の熱硬化性樹脂等を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
In addition to dielectric polymer materials, thermoplastic resins such as vinyl chloride resins, polyethylene, polystyrene, methacrylic resins, polybutene and isobutylene, and phenolic resins are used for the purpose of adjusting the glass transition point Tg of the polymer matrix 38. , thermosetting resins such as urea resins, melamine resins, alkyd resins and mica may be added.
Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
 圧電体層26の高分子マトリックス38において、常温で粘弾性を有する高分子材料以外の高分子材料を添加する際の添加量には制限はないが、高分子マトリックス38に占める割合で30質量%以下とするのが好ましい。
 これにより、高分子マトリックス38における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子40および電極層との密着性向上等の点で好ましい結果を得ることができる。
In the polymer matrix 38 of the piezoelectric layer 26, the addition amount of the polymer material other than the polymer material having viscoelasticity at room temperature is not limited, but the proportion of the polymer matrix 38 is 30% by mass. It is preferable to:
As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the polymer matrix 38, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 40 and the electrode layer can be improved. Favorable results can be obtained in terms of improvement and the like.
 圧電体層26となる高分子複合圧電体は、このような高分子マトリックスに、圧電体粒子40を含むものである。圧電体粒子40は、高分子マトリックスに分散されており、好ましくは、均一(略均一)に分散される。
 圧電体粒子40は、好ましくは、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子40を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe)との固溶体(BFBT)等が例示される。
The polymer composite piezoelectric material that forms the piezoelectric layer 26 contains piezoelectric particles 40 in such a polymer matrix. The piezoelectric particles 40 are dispersed in a polymer matrix, preferably uniformly (substantially uniformly).
The piezoelectric particles 40 are preferably ceramic particles having a perovskite or wurtzite crystal structure.
Examples of ceramic particles constituting the piezoelectric particles 40 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
 圧電体粒子40の粒径は、圧電フィルム24のサイズや用途に応じて、適宜、選択すれば良い。圧電体粒子40の粒径は、1~10μmが好ましい。
 圧電体粒子40の粒径を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
The particle size of the piezoelectric particles 40 may be appropriately selected according to the size and application of the piezoelectric film 24 . The particle size of the piezoelectric particles 40 is preferably 1 to 10 μm.
By setting the particle size of the piezoelectric particles 40 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric characteristics and flexibility.
 圧電フィルム24において、圧電体層26中における高分子マトリックス38と圧電体粒子40との量比は、圧電フィルム24の面方向の大きさや厚さ、圧電フィルム24の用途、圧電フィルム24に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層26中における圧電体粒子40の体積分率は、30~80%が好ましく、50~80%がより好ましい。
 高分子マトリックス38と圧電体粒子40との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
In the piezoelectric film 24, the quantitative ratio of the polymer matrix 38 and the piezoelectric particles 40 in the piezoelectric layer 26 is required for the size and thickness of the piezoelectric film 24 in the plane direction, the application of the piezoelectric film 24, and the piezoelectric film 24. It may be set as appropriate according to the characteristics of the device.
The volume fraction of the piezoelectric particles 40 in the piezoelectric layer 26 is preferably 30-80%, more preferably 50-80%.
By setting the amount ratio between the polymer matrix 38 and the piezoelectric particles 40 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric characteristics and flexibility.
 また、圧電フィルム24において、圧電体層26の厚さには制限はなく、圧電フィルム24のサイズ、圧電フィルム24の用途、圧電フィルム24に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層26の厚さは、8~300μmが好ましく、8~200μmがより好ましく、10~150μmがさらに好ましく、特に15~100μmが好ましい。
 圧電体層26の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
In the piezoelectric film 24, the thickness of the piezoelectric layer 26 is not limited, and can be appropriately set according to the size of the piezoelectric film 24, the application of the piezoelectric film 24, the properties required of the piezoelectric film 24, and the like. good.
The thickness of the piezoelectric layer 26 is preferably 8-300 μm, more preferably 8-200 μm, still more preferably 10-150 μm, particularly preferably 15-100 μm.
By setting the thickness of the piezoelectric layer 26 within the above range, favorable results can be obtained in terms of ensuring both rigidity and appropriate flexibility.
 圧電体層26は、厚さ方向に分極処理(ポーリング)されているのが好ましい。分極処理に関しては、後に詳述する。 The piezoelectric layer 26 is preferably polarized (poled) in the thickness direction. The polarization treatment will be detailed later.
 なお、圧電フィルム24において、圧電体層26は、上述したような、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなる高分子マトリックス38に、圧電体粒子40を含む高分子複合圧電体に制限はされない。
 すなわち、圧電フィルム24において、圧電体層26は、公知の圧電体層が、各種、利用可能である。
In the piezoelectric film 24, the piezoelectric layer 26 is a polymer composite including piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. There is no limitation to piezoelectric bodies.
That is, in the piezoelectric film 24 , various known piezoelectric layers can be used for the piezoelectric layer 26 .
 一例として、上述したポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体およびフッ化ビニリデン-トリフルオロエチレン共重合体等の誘電性高分子材料を含むマトリックスに同様の圧電体粒子40を含む高分子複合圧電体、ポリフッ化ビニリデンからなる圧電体層、ポリフッ化ビニリデン以外のフッ素樹脂からなる圧電体層、および、ポリL乳酸からなるフィルムとポリD乳酸からなるフィルムとを積層した圧電体層等も利用可能である。
 しかしながら、上述のように、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞うことができ優れた音響特性が得られる、可撓性に優れパネル12の巻取りに好適に追従する音響フィルム14が得られる等の点で、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなる高分子マトリックス38に、圧電体粒子40を含む高分子複合圧電体が、圧電体層26として好適に利用される。
As an example, a high-performance dielectric material containing similar piezoelectric particles 40 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used. Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
However, as described above, the panel 12 is hard against vibrations of 20 Hz to 20 kHz and behaves softly against slow vibrations of several Hz or less. In terms of obtaining an acoustic film 14 that suitably follows the sound, a polymer composite piezoelectric material containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, is used. A body is suitably used as the piezoelectric layer 26 .
 図4に示す圧電フィルム24は、このような圧電体層26の一面に、第2電極層30を有し、第2電極層30の表面に第2保護層34を有し、圧電体層26の他方の面に、第1電極層28を有し、第1電極層28の表面に第1保護層32を有してなる構成を有する。圧電フィルム24では、第1電極層28と第2電極層30とが電極対を形成する。
 言い換えれば、圧電フィルム24を構成する積層フィルムは、圧電体層26の両面を電極対、すなわち、第1電極層28および第2電極層30で挟持し、さらに、第1保護層32および第2保護層34で挟持してなる構成を有する。
 このように、第1電極層28および第2電極層30で挾持された領域は、印加された電圧に応じて駆動される。
The piezoelectric film 24 shown in FIG. 4 has the second electrode layer 30 on one surface of the piezoelectric layer 26, the second protective layer 34 on the surface of the second electrode layer 30, and the piezoelectric layer 26 has a first electrode layer 28 on the other surface thereof, and has a first protective layer 32 on the surface of the first electrode layer 28 . In the piezoelectric film 24, the first electrode layer 28 and the second electrode layer 30 form an electrode pair.
In other words, in the laminated film that constitutes the piezoelectric film 24, both surfaces of the piezoelectric layer 26 are sandwiched between electrode pairs, that is, the first electrode layer 28 and the second electrode layer 30, and the first protective layer 32 and the second electrode layer 30 are sandwiched between the electrode pairs. It has a configuration sandwiched between protective layers 34 .
Thus, the regions sandwiched by the first electrode layer 28 and the second electrode layer 30 are driven according to the applied voltage.
 なお、本発明において、第1電極層28および第2電極層30等おける第1および第2とは、圧電フィルム24を説明するために、便宜的に付しているものである。
 従って、圧電フィルム24における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
In addition, in the present invention, the terms “first” and “second” in the first electrode layer 28 and the second electrode layer 30 are used for the sake of convenience in describing the piezoelectric film 24 .
Therefore, the first and second in the piezoelectric film 24 have no technical significance and are irrelevant to the actual usage conditions.
 圧電フィルム24は、これらの層に加えて、例えば、電極層と圧電体層26とを貼着するための貼着層、および、電極層と保護層とを貼着するための貼着層を有してもよい。
 貼着剤は、接着剤でも粘着剤でもよい。また、貼着剤は、圧電体層26から圧電体粒子40を除いた高分子材料すなわち高分子マトリックス38と同じ材料も、好適に利用可能である。なお、貼着層は、第1電極層28側および第2電極層30側の両方に有してもよく、第1電極層28側および第2電極層30側の一方のみに有してもよい。
In addition to these layers, the piezoelectric film 24 includes, for example, an adhesive layer for attaching the electrode layer and the piezoelectric layer 26 and an adhesive layer for attaching the electrode layer and the protective layer. may have.
The adhesive may be an adhesive or an adhesive. Also, as the adhesive, a polymer material obtained by removing the piezoelectric particles 40 from the piezoelectric layer 26, ie, the same material as the polymer matrix 38, can be suitably used. The adhesive layer may be provided on both the first electrode layer 28 side and the second electrode layer 30 side, or may be provided on only one of the first electrode layer 28 side and the second electrode layer 30 side. good.
 圧電フィルム24において、第1保護層32および第2保護層34は、第1電極層28および第2電極層30を被覆すると共に、圧電体層26に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム24において、高分子マトリックス38と圧電体粒子40とを含む圧電体層26は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム24は、それを補うために第1保護層32および第2保護層34が設けられる。
 第1保護層32と第2保護層34とは、配置位置が異なるのみで、構成は同じである。従って、以下の説明においては、第1保護層32および第2保護層34を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
In the piezoelectric film 24, the first protective layer 32 and the second protective layer 34 cover the first electrode layer 28 and the second electrode layer 30, and provide the piezoelectric layer 26 with appropriate rigidity and mechanical strength. is responsible for That is, in the piezoelectric film 24, the piezoelectric layer 26 containing the polymer matrix 38 and the piezoelectric particles 40 exhibits excellent flexibility against slow bending deformation. , rigidity and mechanical strength may be insufficient. The piezoelectric film 24 is provided with a first protective layer 32 and a second protective layer 34 to compensate.
The first protective layer 32 and the second protective layer 34 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 32 and the second protective layer 34, both members are collectively referred to as protective layers.
 保護層には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが好適に利用される。 There are no restrictions on the protective layer, and various sheet-like materials can be used, and various resin films are suitable examples. Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), due to their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyamide (PA), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), and resin films made of cyclic olefin resins are preferably used. .
 保護層の厚さにも、制限は無い。また、第1保護層32および第2保護層34の厚さは、基本的に同じであるが、異なってもよい。
 保護層の剛性が高過ぎると、圧電体層26の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、保護層は、薄いほど有利である。
The thickness of the protective layer is also not limited. Also, the thicknesses of the first protective layer 32 and the second protective layer 34 are basically the same, but may be different.
If the rigidity of the protective layer is too high, it not only restricts expansion and contraction of the piezoelectric layer 26, but also impairs its flexibility. Therefore, the thinner the protective layer, the better, except when mechanical strength and good handling properties as a sheet are required.
 第1保護層32および第2保護層34の厚さが、それぞれ、圧電体層26の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得られる。
 例えば、圧電体層26の厚さが50μmで第1保護層32および第2保護層34がPETからなる場合、第1保護層32および第2保護層34の厚さはそれぞれ、100μm以下が好ましく、50μm以下がより好ましく、中でも25μm以下が好ましい。
If the thickness of each of the first protective layer 32 and the second protective layer 34 is not more than twice the thickness of the piezoelectric layer 26, favorable results can be achieved in terms of ensuring both rigidity and appropriate flexibility. is obtained.
For example, when the thickness of the piezoelectric layer 26 is 50 μm and the first protective layer 32 and the second protective layer 34 are made of PET, the thicknesses of the first protective layer 32 and the second protective layer 34 are each preferably 100 μm or less. , 50 μm or less, and particularly preferably 25 μm or less.
 なお、本発明において、第1保護層32および第2保護層34は、好ましい態様として設けられるものであり、必須の構成要件ではない。すなわち、本発明の電気音響変換器において、圧電フィルムは、第1保護層32のみを有するものでも、第2保護層34のみを有するものでも、第1保護層32および第2保護層34を有さない物でもよい。
 しかしながら、圧電フィルム24の強度、ハンドリング性および電極層の保護等を考慮すると、圧電フィルムは、図示例のように第1保護層32および第2保護層34の両方を有するのが好ましい。
In addition, in this invention, the 1st protective layer 32 and the 2nd protective layer 34 are provided as a preferable aspect, and are not essential components. That is, in the electroacoustic transducer of the present invention, the piezoelectric film may have only the first protective layer 32 or only the second protective layer 34. It can be something you don't.
However, considering the strength of the piezoelectric film 24, handleability, protection of the electrode layer, etc., the piezoelectric film preferably has both the first protective layer 32 and the second protective layer 34 as shown in the figure.
 圧電フィルム24において、圧電体層26と第1保護層32との間には第1電極層28が、圧電体層26と第2保護層34との間には第2電極層30が、それぞれ形成される。第1電極層28および第2電極層30は、圧電フィルム24(圧電体層26)に電界を印加するために設けられる。 In the piezoelectric film 24, a first electrode layer 28 is provided between the piezoelectric layer 26 and the first protective layer 32, and a second electrode layer 30 is provided between the piezoelectric layer 26 and the second protective layer 34. It is formed. The first electrode layer 28 and the second electrode layer 30 are provided for applying an electric field to the piezoelectric film 24 (piezoelectric layer 26).
 第1電極層28および第2電極層30は、位置が異なる以外は、基本的に同じものである。従って、以下の説明においては、第1電極層28と第2電極層30とを区別する必要がない場合には、両部材をまとめて、電極層ともいう。 The first electrode layer 28 and the second electrode layer 30 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 28 and the second electrode layer 30, both members are collectively referred to as electrode layers.
 圧電フィルムにおいて、電極層の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、クロム、モリブデン、これらの合金、酸化インジウムスズ、および、PEDOT/PPS(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸)などの導電性高分子等が例示される。
 中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、好適に例示される。その中でも、導電性、コストおよび可撓性等の観点から銅がより好ましい。
In the piezoelectric film, the material for forming the electrode layer is not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, molybdenum, alloys thereof, indium tin oxide, and PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfone Acid) and other conductive polymers are exemplified.
Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferred. Among them, copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
 また、電極層の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法、塗布する方法等、公知の方法が、各種、利用可能である。
 中でも特に、圧電フィルム24の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅やアルミニウムの薄膜は、電極層として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
In addition, the method of forming the electrode layer is not limited, and a vapor phase deposition method (vacuum film formation method) such as vacuum deposition and sputtering, a method of forming a film by plating, a method of attaching a foil formed of the above materials, a coating method, or the like. Various known methods such as the method of
Among them, a thin film of copper or aluminum formed by vacuum deposition is particularly preferably used as the electrode layer because the flexibility of the piezoelectric film 24 can be ensured. Among them, a copper thin film formed by vacuum deposition is particularly preferably used.
 第1電極層28および第2電極層30の厚さには、制限はない。また、第1電極層28および第2電極層30の厚さは、基本的に同じであるが、異なってもよい。
 ここで、上述した保護層と同様に、電極層の剛性が高過ぎると、圧電体層26の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、電極層は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
The thicknesses of the first electrode layer 28 and the second electrode layer 30 are not limited. Also, the thicknesses of the first electrode layer 28 and the second electrode layer 30 are basically the same, but may be different.
Here, as with the protective layer described above, if the rigidity of the electrode layer is too high, not only will the expansion and contraction of the piezoelectric layer 26 be restricted, but also the flexibility will be impaired. Therefore, the thinner the electrode layer, the better, as long as the electrical resistance does not become too high.
 圧電フィルム24では、電極層の厚さとヤング率との積が、保護層の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 一例として、保護層がPETで、電極層が銅である場合を説明する。この場合、PETのヤング率は約6.2GPaで、銅のヤング率は約130GPaである。従って、この場合には、保護層の厚さが25μmだとすると、電極層の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下がさらに好ましい。
In the piezoelectric film 24, if the product of the thickness of the electrode layer and the Young's modulus is less than the product of the thickness of the protective layer and the Young's modulus, the flexibility is not greatly impaired, which is preferable.
As an example, the case where the protective layer is PET and the electrode layer is copper will be described. In this case, PET has a Young's modulus of about 6.2 GPa and copper has a Young's modulus of about 130 GPa. Therefore, in this case, if the thickness of the protective layer is 25 μm, the thickness of the electrode layer is preferably 1.2 μm or less, more preferably 0.3 μm or less, and even more preferably 0.1 μm or less.
 圧電フィルム24は、圧電体層26を第1電極層28および第2電極層30で挟持し、さらに、この積層体を第1保護層32および第2保護層34で挟持した構成を有する。
 このような圧電フィルム24は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)が0.1以上となる極大値が常温に存在するのが好ましい。
 これにより、圧電フィルム24が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
The piezoelectric film 24 has a structure in which a piezoelectric layer 26 is sandwiched between a first electrode layer 28 and a second electrode layer 30, and this laminated body is sandwiched between a first protective layer 32 and a second protective layer .
Such a piezoelectric film 24 preferably has a maximum value of 0.1 or more in the loss tangent (Tan δ) at a frequency of 1 Hz by dynamic viscoelasticity measurement at room temperature.
As a result, even if the piezoelectric film 24 receives a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface of
 圧電フィルム24は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPa、50℃において1~10GPaであるのが好ましい。
 これにより、常温で圧電フィルム24が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
The piezoelectric film 24 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C.
This allows the piezoelectric film 24 to have a large frequency dispersion in the storage modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
 また、圧電フィルム24は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。
 これにより、圧電フィルム24が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
In addition, the piezoelectric film 24 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 1.0×10 6 to 2.0×10 6 N/m at 0° C. , 1.0×10 5 to 1.0×10 6 N/m at 50°C.
As a result, the piezoelectric film 24 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
 さらに、圧電フィルム24は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。 Furthermore, the piezoelectric film 24 preferably has a loss tangent (Tan δ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement.
 以下、図5~図7を参照して、圧電フィルム24の製造方法の一例を説明する。
 まず、図5に概念的に示す、第2保護層34の表面に第2電極層30が形成された積層体42bを準備する。さらに、図7に概念的に示す、第1保護層32の表面に第1電極層28が形成された積層体42aを準備する。
An example of a method for manufacturing the piezoelectric film 24 will be described below with reference to FIGS. 5 to 7. FIG.
First, a laminate 42b conceptually shown in FIG. 5 is prepared in which the second electrode layer 30 is formed on the surface of the second protective layer 34 . Furthermore, a laminated body 42a conceptually shown in FIG. 7 is prepared in which the first electrode layer 28 is formed on the surface of the first protective layer 32. Next, as shown in FIG.
 積層体42bは、第2保護層34の表面に、真空蒸着、スパッタリング、めっき等によって第2電極層30として銅薄膜等を形成して、作製すればよい。同様に、積層体42aは、第1保護層32の表面に、真空蒸着、スパッタリング、めっき等によって第1電極層28として銅薄膜等を形成して、作製すればよい。
 あるいは、保護層の上に銅薄膜等が形成された市販品をシート状物を、積層体42bおよび/または積層体42aとして利用してもよい。
 積層体42bおよび積層体42aは、同じものでもよく、異なるものでもよい。
The laminate 42b may be produced by forming a copper thin film or the like as the second electrode layer 30 on the surface of the second protective layer 34 by vacuum deposition, sputtering, plating, or the like. Similarly, the laminate 42a may be produced by forming a copper thin film or the like as the first electrode layer 28 on the surface of the first protective layer 32 by vacuum deposition, sputtering, plating, or the like.
Alternatively, a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the laminated body 42b and/or the laminated body 42a.
The laminate 42b and the laminate 42a may be the same or different.
 なお、保護層が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層を用いても良い。なお、セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、電極層および保護層の熱圧着後、取り除けばよい。 In addition, when the protective layer is very thin and the handling property is poor, a protective layer with a separator (temporary support) may be used as necessary. As the separator, PET or the like having a thickness of 25 to 100 μm can be used. The separator may be removed after the electrode layer and protective layer are thermocompression bonded.
 次いで、図6に概念的に示すように、積層体42bの第2電極層30上に、圧電体層26を形成して、積層体42bと圧電体層26とを積層した圧電積層体46を作製する。 Next, as conceptually shown in FIG. 6, the piezoelectric layer 26 is formed on the second electrode layer 30 of the laminate 42b, and the piezoelectric laminate 46 is formed by laminating the laminate 42b and the piezoelectric layer 26. make.
 圧電体層26は、圧電体層26に応じた公知の方法で形成すればよい。
 例えば、図4に示す、高分子マトリックス38に圧電体粒子40を分散してなる圧電体層(高分子複合圧電体層)であれば、一例として、以下のように作製する。
 まず、有機溶媒に、上述したシアノエチル化PVA等の高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子40を添加し、攪拌して塗料を調製する。有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、および、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 積層体42bを準備し、かつ、塗料を調製したら、この塗料を積層体42bにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図6に示すように、第2保護層34の上に第2電極層30を有し、第2電極層30の上に圧電体層26を積層してなる圧電積層体46を作製する。
The piezoelectric layer 26 may be formed by a known method suitable for the piezoelectric layer 26 .
For example, a piezoelectric layer (polymer composite piezoelectric layer) in which piezoelectric particles 40 are dispersed in a polymer matrix 38 shown in FIG. 4 is manufactured as follows.
First, a polymer material such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 40 such as PZT particles are added and stirred to prepare a paint. Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone, and cyclohexanone can be used.
After the laminate 42b is prepared and the paint is prepared, the paint is cast (applied) to the laminate 42b and dried by evaporating the organic solvent. As a result, as shown in FIG. 6, a piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 laminated on the second electrode layer 30 is produced. do.
 塗料のキャスティング方法には制限はなく、バーコーター、スライドコーターおよびドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
 あるいは高分子材料が加熱溶融可能な物であれば、高分子材料を加熱溶融して、これに圧電体粒子40を添加してなる溶融物を作製し、押し出し成形等によって、図5に示す積層体42bの上にシート状に押し出し、冷却することにより、図7に示すような、圧電積層体46を作製してもよい。
There are no restrictions on the method of casting the coating material, and known methods (coating equipment) such as bar coaters, slide coaters and doctor knives can all be used.
Alternatively, if the polymer material is heat-meltable, the polymer material is heat-melted and the piezoelectric particles 40 are added to prepare a melted material, which is then extruded or otherwise laminated as shown in FIG. A piezoelectric laminate 46 as shown in FIG. 7 may be produced by extruding a sheet onto the body 42b and cooling.
 なお、上述のように、圧電フィルム24において、高分子マトリックス38には、常温で粘弾性を有する高分子材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
 高分子マトリックス38に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、加熱溶融した常温で粘弾性を有する高分子材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
As described above, in the piezoelectric film 24, the polymer matrix 38 may be added with a polymer piezoelectric material such as PVDF, in addition to the polymer material having viscoelasticity at room temperature.
When these polymeric piezoelectric materials are added to the polymeric matrix 38, the polymeric piezoelectric materials to be added to the paint may be dissolved. Alternatively, the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
 圧電体層26を形成したら、必要に応じて、カレンダ処理を行ってもよい。カレンダ処理は、1回でもよく、複数回、行ってもよい。
 周知のように、カレンダ処理とは、加熱プレスや加熱ローラ等によって、被処理面を加熱しつつ押圧して、平坦化等を施す処理である。
After the piezoelectric layer 26 is formed, it may be calendered, if desired. Calendering may be performed once or multiple times.
As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
 また、第2保護層34の上に第2電極層30を有し、第2電極層30の上に圧電体層26を形成してなる圧電積層体46の圧電体層26に、分極処理(ポーリング)を行う。
 圧電体層26の分極処理の方法には制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第1電極層28を形成して、第1電極層28および第2電極層30を利用して、電界ポーリング処理を行ってもよい。
 また、圧電フィルム24を製造する際には、分極処理は、圧電体層26の面方向ではなく、厚さ方向に分極を行う。
Further, the piezoelectric layer 26 of the piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 formed on the second electrode layer 30 is subjected to a polarization treatment ( polling).
The method of polarization treatment of the piezoelectric layer 26 is not limited, and known methods can be used. For example, electric field poling, in which a DC electric field is directly applied to an object to be polarized, is exemplified. When electric field poling is performed, the first electrode layer 28 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 28 and the second electrode layer 30. .
Further, when the piezoelectric film 24 is manufactured, the polarization treatment is performed not in the surface direction of the piezoelectric layer 26 but in the thickness direction.
 次いで、図7に概念的に示すように、圧電積層体46の圧電体層26側に、先に準備した積層体42aを、第1電極層28を圧電体層26に向けて積層する。
 さらに、この積層体を、第1保護層32および第2保護層34を挟持するようにして、加熱プレス装置および加熱ローラ等を用いて熱圧着して、圧電積層体46と積層体42aとを貼り合わせる。
 これにより、圧電体層26、圧電体層26の両面に設けられる第1電極層28および第2電極層30、ならびに、電極層の表面に形成される第1保護層32および第2保護層34からなる圧電フィルム24を作製する。
Next, as conceptually shown in FIG. 7, the previously prepared laminate 42 a is laminated on the piezoelectric layer 26 side of the piezoelectric laminate 46 with the first electrode layer 28 facing the piezoelectric layer 26 .
Further, this laminate is thermocompression bonded using a heat press device, a heating roller, etc., with the first protective layer 32 and the second protective layer 34 sandwiched between them, thereby forming the piezoelectric laminate 46 and the laminate 42a. to paste together.
As a result, the piezoelectric layer 26, the first electrode layer 28 and the second electrode layer 30 provided on both surfaces of the piezoelectric layer 26, and the first protective layer 32 and the second protective layer 34 formed on the surface of the electrode layer A piezoelectric film 24 made of
 このような作製工程を行って作製される圧電フィルム24は、面方向ではなく厚さ方向に分極されており、かつ、分極処理後に延伸処理をしなくても大きな圧電特性が得られる。そのため、圧電フィルム24は、圧電特性に面内異方性がなく、駆動電圧を印加すると、面方向では全方向に等方的に伸縮する。 The piezoelectric film 24 produced by such a production process is polarized not in the plane direction but in the thickness direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric film 24 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a drive voltage is applied.
 上述のように、図示例の音響フィルム14は、圧電フィルム24を、4回、折り返すことにより、5層の圧電フィルムを積層したものである。また、積層されて隣接する圧電フィルム24同士は、好ましい態様として、貼着層27によって貼着されている。 As described above, the illustrated acoustic film 14 is obtained by laminating five layers of piezoelectric films by folding the piezoelectric film 24 four times. In addition, the piezoelectric films 24 that are laminated and adjacent to each other are adhered to each other by an adhesion layer 27 as a preferred embodiment.
 本発明において、貼着層27は、隣接する圧電フィルム24を貼着可能であれば、公知の貼着剤(貼着材)が、各種、利用可能である。
 従って、貼着層27は、接着剤(接着材)からなる層でも、粘着剤(粘着材)からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。また、貼着層27は、液体等の流動性を有する貼着剤を塗布して形成するものでも、両面テープのようなシート状の貼着剤を用いて形成するものでもよい。なお、接着剤とは、貼り合わせる際には流動性を有し、その後、固体になる貼着剤である。また、粘着剤とは、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない貼着剤である。
 ここで、音響フィルム14は、エキサイタであり、積層した複数枚の圧電フィルム24を伸縮させることで音響フィルム14を伸縮させて、例えば、後述するようにパネル12を振動させて、音声を出力させる。従って、音響フィルム14では、各圧電フィルム24の伸縮が、直接的に伝達されるのが好ましい。圧電フィルム24の間に、振動を緩和するような粘性を有する物質が存在すると、圧電フィルム24の伸縮のエネルギーの伝達効率が低くなってしまい、音響フィルム14の駆動効率が低下してしまう。
 この点を考慮すると、貼着層27は、粘着剤からなる粘着剤層よりも、固体で硬い貼着層27が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい貼着層27としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が好適に例示される。
 接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
In the present invention, as the adhesive layer 27, various known adhesive agents (adhesive materials) can be used as long as the adjacent piezoelectric films 24 can be attached.
Therefore, the sticking layer 27 may be a layer made of an adhesive (adhesive material), a layer made of an adhesive (adhesive material), or a layer made of a material having characteristics of both an adhesive and an adhesive. The adhesive layer 27 may be formed by applying an adhesive having fluidity such as a liquid, or may be formed using a sheet-like adhesive such as a double-sided tape. Note that the adhesive is a sticking agent that has fluidity at the time of bonding and then becomes solid. The pressure-sensitive adhesive is a gel-like (rubber-like) soft solid that is adhered to each other and does not change its gel-like state afterward.
Here, the acoustic film 14 is an exciter, and the acoustic film 14 is expanded and contracted by expanding and contracting a plurality of laminated piezoelectric films 24, for example, vibrating the panel 12 as described later to output sound. . Therefore, in the acoustic film 14, it is preferable that the expansion and contraction of each piezoelectric film 24 is directly transmitted. If a viscous substance that relaxes vibration exists between the piezoelectric films 24, the transmission efficiency of the expansion/contraction energy of the piezoelectric films 24 is lowered, and the driving efficiency of the acoustic film 14 is lowered.
Considering this point, the sticking layer 27 is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer 27 rather than a sticky layer made of an adhesive. Specifically, a more preferable adhesive layer 27 is an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive.
Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
 音響フィルム14において、貼着層27の厚さには制限はなく、貼着層27の形成材料に応じて、十分な貼着力を発現できる厚さを、適宜、設定すればよい。
 ここで、音響フィルム14は、貼着層27が薄い方が、圧電体層26の伸縮エネルギー(振動エネルギー)の伝達効果を高くして、エネルギー効率を高くできる。また、貼着層27が厚く剛性が高いと、圧電フィルム24の伸縮を拘束する可能性もある。
 この点を考慮すると、貼着層27は、圧電体層26よりも薄いのが好ましい。すなわち、音響フィルム14において、貼着層27は、硬く、薄いのが好ましい。具体的には、貼着層27の厚さは、貼着後の厚さで0.1~50μmが好ましく、0.1~30μmがより好ましく、0.1~10μmがさらに好ましい。
In the acoustic film 14, the thickness of the adhesive layer 27 is not limited, and a thickness capable of exhibiting sufficient adhesive force may be appropriately set according to the material forming the adhesive layer 27.
Here, the thinner the adhesive layer 27 of the acoustic film 14 is, the higher the effect of transmitting the expansion/contraction energy (vibration energy) of the piezoelectric layer 26 can be and the higher the energy efficiency can be. Also, if the adhesive layer 27 is thick and rigid, it may restrict the expansion and contraction of the piezoelectric film 24 .
Considering this point, the adhesive layer 27 is preferably thinner than the piezoelectric layer 26 . That is, in the acoustic film 14, the adhesive layer 27 is preferably hard and thin. Specifically, the thickness of the adhesion layer 27 after adhesion is preferably 0.1 to 50 μm, more preferably 0.1 to 30 μm, even more preferably 0.1 to 10 μm.
 なお、本発明の電気音響変換器10を構成する音響フィルム14において、貼着層27は、好ましい態様として設けられるものであり、必須の構成要素ではない。
 しかしながら、貼着層27を有さない場合には、各圧電フィルム24が逆方向に撓んで空隙ができてしまい、音響フィルムとしての駆動効率が低下する可能性がある。
 この点を考慮すると、本発明の電気音響変換器を構成する圧電素子を、複数の圧電フィルム24を積層して構成する場合には、図示例の音響フィルム14のように、隣接する圧電フィルム24同士を貼着する貼着層27を有するのが好ましい。
In addition, in the acoustic film 14 constituting the electroacoustic transducer 10 of the present invention, the adhesive layer 27 is provided as a preferred embodiment and is not an essential component.
However, if the adhesive layer 27 is not provided, the piezoelectric films 24 may bend in opposite directions to form voids, which may reduce the driving efficiency of the acoustic film.
In consideration of this point, when the piezoelectric element constituting the electroacoustic transducer of the present invention is configured by laminating a plurality of piezoelectric films 24, adjacent piezoelectric films 24 are arranged like the acoustic film 14 in the illustrated example. It is preferable to have an adhesive layer 27 that sticks them together.
 なお、本発明の電気音響変換器において、音響フィルムは、圧電フィルム24を折り返すことによって、複数層の圧電フィルム24を積層したものに制限はされない。
 例えば、音響フィルムは、カットシート状の圧電フィルム24を、複数枚、積層して、好ましくは隣接する圧電フィルム同士を貼着層27で貼着したものであってもよい。この際において、積層数に制限はないのは、折り返しによって圧電フィルム24を積層した音響フィルム14と同様である。また、カットシート状の圧電フィルム24を、複数枚、積層して、音響フィルムとする場合には、例えば、保護層を有する圧電フィルム24と、保護層を有さない圧電フィルムとを積層する構成など、異なる圧電フィルムを積層して、音響フィルムを構成してもよい。
 または、音響フィルムは、パネル12の振動に十分な伸縮力を得られるものであれば、1枚の圧電フィルム24で構成される物であってもよい。
In addition, in the electroacoustic transducer of the present invention, the acoustic film is not limited to one in which a plurality of layers of the piezoelectric film 24 are laminated by folding the piezoelectric film 24 .
For example, the acoustic film may be obtained by laminating a plurality of cut sheet-like piezoelectric films 24 and preferably adhering adjacent piezoelectric films with an adhesive layer 27 . In this case, the number of layers to be laminated is not limited, as in the case of the acoustic film 14 in which the piezoelectric films 24 are laminated by folding. When a plurality of cut sheet-like piezoelectric films 24 are laminated to form an acoustic film, for example, the piezoelectric film 24 having a protective layer and the piezoelectric film 24 having no protective layer are laminated. The acoustic film may be configured by laminating different piezoelectric films such as.
Alternatively, the acoustic film may be composed of one piezoelectric film 24 as long as the elastic force sufficient for vibrating the panel 12 can be obtained.
 音響フィルム14の圧電フィルム24には、電源装置等の外部の装置と電気的に接続するための第1引出電極24aおよび第2引出電極24bが接続される。第1引出電極24aには、外部装置と接続するための平板配線20aが接続され、第2引出電極24bには、外部装置と接続するための平板配線20bが接続される。
 第1引出電極24aは、第1電極層28から電気的に引き出される電極であり、第2引出電極24bは、第2電極層30から電気的に引き出される電極である。以下の説明では、第1引出電極24aと第2引出電極24bとを区別する必要が無い場合には、単に引出電極とも言う。
 図1に示す例においては、図中右側の音響フィルム14では、第1引出電極24aに平板配線20aが接続され、第2引出電極24bに平板配線20bが接続されている。また、図中左側の音響フィルム14では、第1引出電極24aに平板配線20eが接続され、第2引出電極24bに平板配線20fが接続されている。
The piezoelectric film 24 of the acoustic film 14 is connected with a first extraction electrode 24a and a second extraction electrode 24b for electrical connection with an external device such as a power supply. A flat wiring 20a for connection with an external device is connected to the first extraction electrode 24a, and a flat wiring 20b for connection with an external device is connected to the second extraction electrode 24b.
The first extraction electrode 24 a is an electrode electrically extracted from the first electrode layer 28 , and the second extraction electrode 24 b is an electrode electrically extracted from the second electrode layer 30 . In the following description, when there is no need to distinguish between the first extraction electrode 24a and the second extraction electrode 24b, they will simply be referred to as extraction electrodes.
In the example shown in FIG. 1, in the acoustic film 14 on the right side of the drawing, the flat wiring 20a is connected to the first extraction electrode 24a, and the flat wiring 20b is connected to the second extraction electrode 24b. In the acoustic film 14 on the left side of the drawing, the flat wiring 20e is connected to the first extraction electrode 24a, and the flat wiring 20f is connected to the second extraction electrode 24b.
 本発明の電気音響変換器10において、音響フィルム14(圧電フィルム24)の電極層と引出電極との接続方法には制限はなく、各種の方法が利用可能である。
 図示例においては、一例として、電極層と圧電体層との間に、シート状の引出電極を挿入し、この引出電極に配線を接続している。なお、引出電極は、電極層と保護層との間に挿入してもよい。
 別の方法として、保護層に貫通孔を形成し、貫通孔を埋めるように銀ペースト等の金属ペーストで形成した電極接続部材を設け、この電極接続部材に引出電極を設ける方法が例示される。あるいは、配線を、直接、電極層と圧電体層との間、または、電極層と保護層との間に挿入して、引出電極を電極層に接続してもよい。別の方法として、保護層および電極層の一部を面方向に圧電体層から突出させ、突出した電極層に、引出電極を接続する方法が例示される。なお、引出電極と電極層との接続は、銀ペースト等の金属ペーストを用いる方法、半田を用いる方法、導電性の接着剤を用いる方法等の公知の方法で行えばよい。
 好適な電極の引き出し方法として、特開2014-209724号公報に記載される方法、および、特開2016-015354号公報に記載される方法等が例示される。
In the electroacoustic transducer 10 of the present invention, there are no restrictions on the method of connecting the electrode layer of the acoustic film 14 (piezoelectric film 24) and the extraction electrodes, and various methods can be used.
In the illustrated example, as an example, a sheet-like extraction electrode is inserted between the electrode layer and the piezoelectric layer, and wiring is connected to this extraction electrode. Note that the extraction electrode may be inserted between the electrode layer and the protective layer.
Another method is to form a through hole in the protective layer, provide an electrode connection member formed of a metal paste such as silver paste so as to fill the through hole, and provide a lead electrode in this electrode connection member. Alternatively, wiring may be inserted directly between the electrode layer and the piezoelectric layer or between the electrode layer and the protective layer to connect the extraction electrode to the electrode layer. As another method, a method is exemplified in which a part of the protective layer and the electrode layer is protruded from the piezoelectric layer in the plane direction, and the lead electrode is connected to the protruded electrode layer. The extraction electrode and the electrode layer may be connected by a known method such as a method using a metal paste such as silver paste, a method using solder, or a method using a conductive adhesive.
Examples of suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
 音響フィルム14は、貼着層(図示省略)によってパネル12に貼着される。
 本発明において、貼着層は、パネル12と音響フィルム14(圧電フィルム24)とを貼着可能であれば、公知のものが、各種、利用可能である。
 従って、貼着層は、上述した、接着剤からなる層でも、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。また、貼着層は、液体等の流動性を有する貼着剤を塗布して形成するものでも、両面テープなどのシート状の貼着剤を用いて形成するものでもよい。
 ここで、本発明の電気音響変換器10は、積層した複数枚の圧電フィルム24を伸縮させることで音響フィルム14を伸縮させ、この音響フィルム14の伸縮によって、パネル12を撓ませ振動させて、音声を出力させる。従って、本発明の電気音響変換器10では、音響フィルム14の伸縮が、直接的にパネル12に伝達されるのが好ましい。パネル12と音響フィルム14との間に、振動を緩和するような粘性を有する物質が存在すると、パネル12への音響フィルム14の伸縮のエネルギーの伝達効率が低くなってしまい、電気音響変換器10の駆動効率が低下してしまう。
 この点を考慮すると、貼着層は、粘着剤からなる粘着剤層よりも、固体で硬い貼着層が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい貼着層としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が好適に例示される。
 接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
The acoustic film 14 is attached to the panel 12 by an adhesive layer (not shown).
In the present invention, various known adhesive layers can be used as long as they can adhere the panel 12 and the acoustic film 14 (piezoelectric film 24) together.
Therefore, the adhesive layer may be a layer made of an adhesive, a layer made of a pressure-sensitive adhesive, or a layer made of a material having the characteristics of both an adhesive and a pressure-sensitive adhesive. The adhesive layer may be formed by applying an adhesive having fluidity such as a liquid, or may be formed using a sheet-like adhesive such as a double-sided tape.
Here, in the electroacoustic transducer 10 of the present invention, the acoustic film 14 is expanded and contracted by expanding and contracting a plurality of laminated piezoelectric films 24, and the expansion and contraction of the acoustic film 14 bends and vibrates the panel 12, output sound. Therefore, in the electroacoustic transducer 10 of the present invention, it is preferable that the expansion and contraction of the acoustic film 14 be directly transmitted to the panel 12 . If there is a viscous substance that reduces vibrations between the panel 12 and the acoustic film 14, the efficiency of transmission of the expansion and contraction energy of the acoustic film 14 to the panel 12 will be low. drive efficiency is reduced.
Considering this point, the sticking layer is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer rather than a sticking layer made of an adhesive. More preferred adhesive layers are specifically exemplified by adhesive layers made of thermoplastic adhesives such as polyester adhesives and styrene-butadiene rubber (SBR) adhesives.
Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
 本発明の電気音響変換器10において、パネル12と音響フィルム14とを貼着する貼着層の厚さには制限はなく、貼着層27の形成材料に応じて、十分な貼着力を発現できる厚さを、適宜、設定すればよい。
 ここで、図示例の電気音響変換器10では、貼着層が薄い方が、圧電体層26の伸縮エネルギー(振動エネルギー)の伝達効果を高くして、エネルギー効率を高くできる。また、貼着層が厚く剛性が高いと、音響フィルム14の伸縮を拘束する可能性もある。
 この点を考慮すると、貼着層は、薄い方が好ましい。
 具体的には、パネル12と音響フィルム14とを貼着する貼着層の厚さは、貼着後の厚さで10~1000μmが好ましく、30~500μmがより好ましく、50~300μmがさらに好ましい。
In the electroacoustic transducer 10 of the present invention, there is no limitation on the thickness of the adhesion layer that adheres the panel 12 and the acoustic film 14, and sufficient adhesion strength is exhibited according to the material forming the adhesion layer 27. A possible thickness may be set as appropriate.
Here, in the electroacoustic transducer 10 of the illustrated example, the thinner the adhesive layer, the higher the effect of transmitting the stretching energy (vibrational energy) of the piezoelectric layer 26, and the higher the energy efficiency. Also, if the adhesive layer is thick and rigid, it may restrict expansion and contraction of the acoustic film 14 .
Considering this point, it is preferable that the adhesive layer is thin.
Specifically, the thickness of the adhesive layer that adheres the panel 12 and the acoustic film 14 is preferably 10 to 1000 μm, more preferably 30 to 500 μm, even more preferably 50 to 300 μm after adhesion. .
 図示例の電気音響変換器10において、圧電フィルム24は、圧電体層26を第1電極層28および第2電極層30で挟持したものである。
 圧電体層26は、好ましくは、高分子マトリックス38中に、圧電体粒子40を有するものである。好ましくは、圧電体層26は、高分子マトリックス38中に、圧電体粒子40を分散したものである。
In the illustrated electroacoustic transducer 10 , the piezoelectric film 24 is formed by sandwiching the piezoelectric layer 26 between the first electrode layer 28 and the second electrode layer 30 .
Piezoelectric layer 26 preferably has piezoelectric particles 40 in a polymer matrix 38 . Preferably, piezoelectric layer 26 comprises piezoelectric particles 40 dispersed in polymer matrix 38 .
 このような圧電体層26を有する圧電フィルム24の第2電極層30および第1電極層28に電圧を印加すると、印加した電圧に応じて圧電体粒子40が分極方向に伸縮する。その結果、圧電フィルム24(圧電体層26)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルム24は、面方向にも伸縮する。
 この伸縮は、0.01~0.1%程度である。
 上述したように、圧電体層26の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電フィルム24すなわち圧電体層26は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム24の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルム24は伸縮する。
When a voltage is applied to the second electrode layer 30 and the first electrode layer 28 of the piezoelectric film 24 having such a piezoelectric layer 26, the piezoelectric particles 40 expand and contract in the polarization direction according to the applied voltage. As a result, the piezoelectric film 24 (piezoelectric layer 26) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric film 24 expands and contracts in the plane direction as well.
This expansion and contraction is about 0.01 to 0.1%.
As described above, the thickness of the piezoelectric layer 26 is preferably about 10-300 μm. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 μm at maximum.
On the other hand, the piezoelectric film 24, that is, the piezoelectric layer 26, has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric film 24 is 20 cm, the piezoelectric film 24 expands and contracts by about 0.2 mm at the maximum due to the application of voltage.
 上述のように、音響フィルム14は、折り返すことで、圧電フィルム24を、5層、積層したものである。また、パネル12には、貼着層によって音響フィルム14が貼着される。
 圧電フィルム24の伸縮によって、音響フィルム14も同方向に伸縮する。この音響フィルム14の伸縮によって、パネル12は撓み、その結果、パネル12は厚さ方向に振動する。
 この厚さ方向の振動によって、パネル12は、音声を出力する。すなわち、パネル12は、圧電フィルム24に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルム24に印加した駆動電圧に応じた音声を出力する。
As described above, the acoustic film 14 is formed by laminating five layers of the piezoelectric film 24 by folding. An acoustic film 14 is attached to the panel 12 by an adhesive layer.
As the piezoelectric film 24 expands and contracts, the acoustic film 14 expands and contracts in the same direction. The expansion and contraction of the acoustic film 14 bends the panel 12, and as a result, the panel 12 vibrates in the thickness direction.
The vibration in the thickness direction causes the panel 12 to output sound. That is, the panel 12 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 24 and outputs sound according to the driving voltage applied to the piezoelectric film 24 .
 上述したように、図示例の音響フィルム14は、このような圧電フィルム24を、5層、積層したものである。図示例の音響フィルム14は、好ましい態様として、さらに、隣接する圧電フィルム24同士を、貼着層27で貼着している。
 そのため、1枚毎の圧電フィルム24の剛性が低く、伸縮力は小さくても、圧電フィルム24を積層することにより、剛性が高くなり、音響フィルム14としての伸縮力は大きくなる。その結果、音響フィルム14は、パネル12がある程度の剛性を有するものであっても、大きな力でパネル12を十分に撓ませて、厚さ方向にパネル12を十分に振動させて、パネル12に音声を出力させることができる。
As described above, the illustrated acoustic film 14 is obtained by laminating five such piezoelectric films 24 . In the illustrated acoustic film 14 , as a preferred embodiment, the adjacent piezoelectric films 24 are adhered to each other with the adhesion layer 27 .
Therefore, even if the rigidity of each piezoelectric film 24 is low and the expansion/contraction force is small, the lamination of the piezoelectric films 24 increases the rigidity and the expansion/contraction force of the acoustic film 14 . As a result, even if the panel 12 has a certain degree of rigidity, the acoustic film 14 can sufficiently flex the panel 12 with a large force and sufficiently vibrate the panel 12 in the thickness direction. Audio can be output.
 しかも、上述したように、音響フィルム14を構成する圧電フィルム24において、好ましい圧電体層26の厚さは、最大でも300μm程度である。しかも、高分子複合圧電体である圧電体層26を用いた圧電フィルム24は、非常に良好な可撓性を有する。
 そのため、音響フィルム14は、複数層(図示例では5層)の圧電フィルム24を積層したものであっても、非常に薄く、かつ、良好な可撓性を有する。従って、このような圧電フィルム24による音響フィルム14を用いることにより、パネル12を巻取った際に、音響フィルム14がパネル12の巻取りに好適に追従する。その結果、圧電フィルム24による音響フィルム14を設けた電気音響変換器10は、巻取りを好適に行うことができる。
Moreover, as described above, in the piezoelectric film 24 constituting the acoustic film 14, the preferable thickness of the piezoelectric layer 26 is about 300 μm at maximum. Moreover, the piezoelectric film 24 using the piezoelectric layer 26, which is a composite piezoelectric polymer, has very good flexibility.
Therefore, the acoustic film 14 is very thin and has good flexibility even if it is made by laminating a plurality of layers (five layers in the illustrated example) of the piezoelectric films 24 . Therefore, by using the acoustic film 14 made of such a piezoelectric film 24, the acoustic film 14 suitably follows the winding of the panel 12 when the panel 12 is wound. As a result, the electroacoustic transducer 10 provided with the acoustic film 14 made of the piezoelectric film 24 can be suitably wound.
 上述のように、本発明の電気音響変換器10において、パネル12は、可撓性を有する巻取り可能なものである。
 図1に示す例において、パネル12の長手方向の一方(図中右側)の辺には、巻取軸16が固定される。パネル12(電気音響変換器10)は、非使用時には、この巻取軸16に巻取られる。
As described above, in the electroacoustic transducer 10 of the present invention, the panel 12 is flexible and rollable.
In the example shown in FIG. 1, a winding shaft 16 is fixed to one side (right side in the drawing) of the panel 12 in the longitudinal direction. The panel 12 (electroacoustic transducer 10) is wound around the winding shaft 16 when not in use.
 巻取軸16には、制限はなく、パネル12を巻回可能であれば、樹脂製の棒および金属製の棒など、各種の棒状物が利用可能である。また、パネル12の巻取りを円滑に行うために、巻取軸16は、円柱状または円筒状であるのが好ましい。
 図示例において、巻取軸16は、円筒状で、平板配線20cと集合ケーブル21とを接続するための導線、平板配線20dと集合ケーブル21とを接続するための導線、平板配線20eと集合ケーブル21とを接続するための導線、および、平板配線20fと集合ケーブル21とを接続するための導線等が、適宜、収容される。
 なお、平板配線20cおよび平板配線20d等の本発明における平板配線に接続される導線は、公知の各種の導線(リード線、電線、配線)が利用可能である。あるいは、導線として、平板配線20c等と同様の平板配線を用いてもよい。
The winding shaft 16 is not limited, and various rod-shaped objects such as resin rods and metal rods can be used as long as the panel 12 can be wound. In order to smoothly wind the panel 12, the winding shaft 16 is preferably cylindrical or columnar.
In the illustrated example, the winding shaft 16 has a cylindrical shape, and includes a conductor wire for connecting the flat wiring 20c and the assembly cable 21, a conductor wire for connecting the flat wiring 20d and the assembly cable 21, and a flat wiring 20e and the assembly cable. 21, a conductor wire for connecting the flat wiring 20f and the collective cable 21, and the like are accommodated as appropriate.
Various known conductors (lead wires, electric wires, wires) can be used as the conductors connected to the flat-plate wirings of the present invention such as the flat- plate wirings 20c and 20d. Alternatively, a flat wiring similar to the flat wiring 20c or the like may be used as the conducting wire.
 また、巻取軸16は、好ましい態様として、一辺の全域を固定するようにパネル12に取り付けられる。すなわち、パネル12の1辺は、巻取軸16に固定されて拘束される。なお、パネル12は、巻取軸16に着脱可能に固定されてもよく、着脱ができない状態で固定されてもよい。
 巻取軸16にパネル12の端辺を固定する方法には、制限はなく、シート状物を棒状物に固定する公知の方法が、各種、利用可能である。一例として、貼着剤を用いる方法、マジックテープ(登録商標)を用いる方法、ホックおよびスナップなどの留め金を用いる方法、平板と螺子を用いる挟み込みによる方法、および、割りを設けた中空丸棒に挟み込む方法等、公知の方法が、各種、利用可能である。
Moreover, as a preferred embodiment, the winding shaft 16 is attached to the panel 12 so as to fix the entire length of one side. That is, one side of the panel 12 is fixed and restrained to the winding shaft 16 . The panel 12 may be detachably fixed to the winding shaft 16, or may be fixed in a non-detachable manner.
The method for fixing the edge of the panel 12 to the take-up shaft 16 is not limited, and various known methods for fixing the sheet-like material to the rod-like material can be used. Examples include a method using an adhesive, a method using Velcro (registered trademark), a method using clasps such as hooks and snaps, a method by clamping using a flat plate and a screw, and a hollow round bar with a split. Various known methods such as a sandwiching method can be used.
 図1に示す例において、パネル12の巻取軸16側の辺と対向する辺には、好ましい態様として、固定軸18が設けられる。
 固定軸18にも制限はなく、樹脂製の棒および金属製の棒など、各種の棒状物が利用可能である。なお、固定軸18は、パネル12を巻取らないので、角筒または角柱状のものも、好適に利用可能である。
 図示例において、固定軸18は、筒状で、平板配線20aと平板配線20cとを接続するための導線、および、平板配線20bと平板配線20dとを接続するための導線等が、適宜、収容される。
In the example shown in FIG. 1, a fixed shaft 18 is provided as a preferred embodiment on the side of the panel 12 facing the winding shaft 16 side.
The fixed shaft 18 is also not limited, and various rod-shaped objects such as resin rods and metal rods can be used. Since the fixed shaft 18 does not take up the panel 12, it can be preferably used in the form of a rectangular cylinder or prism.
In the illustrated example, the fixed shaft 18 has a cylindrical shape, and accommodates a conductor wire for connecting the flat-plate wiring 20a and the flat-plate wiring 20c and a conductor wire for connecting the flat-plate wiring 20b and the flat-plate wiring 20d. be done.
 また、固定軸18は、好ましい態様として、一辺の全域を固定するようにパネル12に取り付けられる。すなわち、パネル12の巻取軸16側と対向する辺は、固定軸18に固定され拘束される。従って、パネル12は、短辺が、巻取軸16および固定軸18によって固定され、伸縮を拘束される。
 固定軸18にパネル12の端辺を固定する方法には、制限はなく、シート状物を棒状物に固定する公知の方法が、各種、利用可能である。一例として、上述した巻取軸16で挙げた方法が例示される。
In addition, the fixed shaft 18 is preferably attached to the panel 12 so as to fix the entire length of one side. That is, the side of the panel 12 facing the take-up shaft 16 side is fixed and constrained by the fixed shaft 18 . Therefore, the short sides of the panel 12 are fixed by the winding shaft 16 and the fixed shaft 18, and expansion and contraction are restrained.
The method for fixing the edge of the panel 12 to the fixing shaft 18 is not limited, and various known methods for fixing the sheet-like object to the rod-like object can be used. As an example, the method mentioned above for the winding shaft 16 is exemplified.
 本発明の電気音響変換器10は、音響フィルム14と外部の装置とを接続するための配線として、金属箔を含む平板配線を有する。 The electroacoustic transducer 10 of the present invention has flat wiring containing metal foil as wiring for connecting the acoustic film 14 and an external device.
 図示例の電気音響変換器10において、図中右側の音響フィルム14は、第1引出電極24aが固定軸18の内部に至る平板配線20aに、第2引出電極24bが、固定軸18の内部に至る平板配線20bに、それぞれ、接続される。
 平板配線20aは、固定軸18の内部で、導線に接続される。この導線は、パネル12の図中上方の端部に貼着される平板配線20cに接続される。この平板配線20cは、円筒状の巻取軸16の内部に至り、巻取軸16の内部で、アンプ等の外部装置と接続するための集合ケーブル21内の導線に接続される。
In the electroacoustic transducer 10 of the illustrated example, the acoustic film 14 on the right side of the figure has a first lead-out electrode 24a connected to the flat wiring 20a leading to the inside of the fixed shaft 18, and a second lead-out electrode 24b connected to the inside of the fixed shaft 18. are connected to the flat-plate wirings 20b.
The flat-plate wiring 20 a is connected to the conductor inside the fixed shaft 18 . This lead wire is connected to a flat plate wiring 20c attached to the upper end of the panel 12 in the drawing. The flat-plate wiring 20c reaches the inside of the cylindrical winding shaft 16 and is connected inside the winding shaft 16 to a conductor in a collective cable 21 for connecting to an external device such as an amplifier.
 他方、平板配線20bは、固定軸18の内部で、導線に接続される。この導線は、パネル12の図中下方の端部に貼着される平板配線20dに接続される。この平板配線20dは、円筒状の巻取軸16の内部に至り、巻取軸16の内部で、集合ケーブル21内の導線に接続される。
 なお、固定軸18の内部において、平板配線と集合ケーブル21の配線とは、必要に応じて、導線を介して接続されてもよい。この点に関しては、以下に示す図中左側の音響フィルム14も同様である。
On the other hand, the flat-plate wiring 20b is connected to the conductor inside the fixed shaft 18 . This conductor wire is connected to a flat plate wiring 20d attached to the lower end of the panel 12 in the drawing. The flat-plate wiring 20 d reaches the inside of the cylindrical winding shaft 16 and is connected to the conducting wire in the collective cable 21 inside the winding shaft 16 .
In addition, inside the fixed shaft 18, the flat-plate wiring and the wiring of the assembly cable 21 may be connected via a conducting wire, if necessary. In this regard, the same applies to the acoustic film 14 on the left side of the drawing shown below.
 図中左側の音響フィルム14は、第1引出電極24が、巻取軸16の内部に至る平板配線20eに、第2引出電極24bが巻取軸16の内部に至る平板配線20fに、それぞれ、接続される。
 平板配線20eは、巻取軸16の内部で、集合ケーブル21内の導線に接続される。平板配線20fも、巻取軸16の内部で、集合ケーブル21内の導線に接続される。
In the acoustic film 14 on the left side of the figure, the first extraction electrode 24 is connected to the flat wiring 20e leading to the inside of the winding shaft 16, and the second extraction electrode 24b is connected to the flat wiring 20f leading to the inside of the winding shaft 16. Connected.
The flat-plate wiring 20 e is connected to conductors in the cable assembly 21 inside the winding shaft 16 . The flat-plate wiring 20 f is also connected to conductors in the assembly cable 21 inside the winding shaft 16 .
 なお、本発明の電気音響変換器10においては、巻取軸16および固定軸18に挿入されていない導線(配線)、すなわち、パネル12の巻取られる面に接触する配線は、全て、平板配線である。
 また、巻取軸16および固定軸18に挿入されていない平板配線は、基本的に、パネル12に貼着される。
In the electroacoustic transducer 10 of the present invention, the conductors (wirings) not inserted into the winding shaft 16 and the fixed shaft 18, that is, the wirings in contact with the wound surface of the panel 12 are all flat wirings. is.
Further, the flat-plate wiring that is not inserted into the winding shaft 16 and the fixed shaft 18 is basically adhered to the panel 12 .
 上述のように、平板配線は、金属箔を含むものである。
 本発明において、金属箔とは、厚さが100μm以下の金属製の板状物である。
 金属箔の厚さの下限には、制限はなく、金属箔の形成材料に応じて、十分な導電性を得られる厚さであればよい。導電性、および、平板配線による後述するパネル12の拘束能力を考慮すると、金属箔の厚さは、10μm以上が好ましい。
As described above, flat wiring includes metal foil.
In the present invention, the metal foil is a plate-shaped metal object having a thickness of 100 μm or less.
There is no lower limit to the thickness of the metal foil, and the thickness may be any thickness that provides sufficient conductivity depending on the material forming the metal foil. The thickness of the metal foil is preferably 10 μm or more in consideration of the conductivity and ability of the flat wiring to constrain the panel 12, which will be described later.
 本発明の電気音響変換器10においては、巻取軸16と直交する方向のパネル12の長さの50%以上の長さの平板配線が、巻取軸16の軸方向の端部から、巻取軸16の軸方向のパネル12の長さの30%以内の領域に、貼着される。言い換えれば、本発明においては、巻取り方向のパネル12の長さの50%以上の長さの平板配線が、巻取り方向と直交する方向の端部から、巻取り方向と直交する方向のパネル12の長さの30%以内の領域に、貼着される。
 具体的には、図8に概念的に示すように、巻取軸16と直交する方向のパネル12の長さLaの50%以上の長さの平板配線が、巻取軸16の軸方向の端部から、巻取軸16の軸方向のパネル12の長さLbの30%以内の、斜線で示す幅[Lb×(3/10)]の領域に貼着される。
 本発明の電気音響変換器10は、このような構成を有することにより、巻取り可能なパネル12に音響フィルム14を貼着した電気音響変換器において、音響フィルム14を駆動するための配線によってパネル12が損傷することを防止し、かつ、面方向のパネル12の伸縮を抑制して、高い音圧の音声の出力を可能にしている。
In the electroacoustic transducer 10 of the present invention, the flat wiring having a length of 50% or more of the length of the panel 12 in the direction orthogonal to the winding shaft 16 is wound from the end of the winding shaft 16 in the axial direction. The area within 30% of the length of the panel 12 in the axial direction of the mandrel 16 is adhered. In other words, in the present invention, the flat wiring having a length of 50% or more of the length of the panel 12 in the winding direction is extended from the end in the direction perpendicular to the winding direction to the panel in the direction perpendicular to the winding direction. An area within 30% of the length of 12 is applied.
Specifically, as conceptually shown in FIG. It is adhered to a hatched width [Lb×(3/10)] area within 30% of the length Lb of the panel 12 in the axial direction of the winding shaft 16 from the end.
In the electroacoustic transducer 10 of the present invention having such a configuration, in the electroacoustic transducer in which the acoustic film 14 is adhered to the panel 12 that can be wound, the wiring for driving the acoustic film 14 can be used to drive the panel. 12 is prevented from being damaged and expansion and contraction of the panel 12 in the plane direction is suppressed, thereby enabling output of sound with high sound pressure.
 以下の説明では、巻取軸16と直交する方向、すなわち、図8における長さLaの方向を、便宜的に、『巻取方向』ともいう。また、巻取軸16の軸方向、すなわち、図8における長さLbの方向を、便宜的に、『軸方向』ともいう。
 また、以下の説明では、巻取方向のパネル12の長さ、すなわち、図8における長さLaを、単に『巻取方向の長さ』ともいう。また、軸方向のパネル12の長さ、すなわち、図8における長さLbを、単に『軸方向の長さ』ともいう。
In the following description, the direction perpendicular to the winding shaft 16, that is, the direction of the length La in FIG. 8 is also referred to as the "winding direction" for convenience. Further, the axial direction of the winding shaft 16, that is, the direction of the length Lb in FIG. 8 is also referred to as the "axial direction" for convenience.
Further, in the following description, the length of the panel 12 in the winding direction, that is, the length La in FIG. 8 is also simply referred to as "the length in the winding direction". Further, the length of the panel 12 in the axial direction, that is, the length Lb in FIG. 8 is also simply referred to as the "axial length".
 上述のように、例えば巻取り可能な画像表示装置、投影用スクリーンおよび可撓性を有する樹脂フィルム等の巻取り可能なパネル12に、圧電体を有する音響フィルム14を貼着することによって、パネル12を振動させて音声を出力することができる。
 この際における音声出力は、上述のように、音響フィルム14を面方向に伸縮してパネル12を撓ませることで、パネル12を厚さ方向に振動することで行う。
As described above, for example, a windable image display device, a projection screen, or a windable panel 12 such as a flexible resin film is adhered to the acoustic film 14 having a piezoelectric body, thereby forming a panel. 12 can be vibrated to output sound.
Sound output at this time is performed by vibrating the panel 12 in the thickness direction by expanding and contracting the acoustic film 14 in the plane direction to bend the panel 12 as described above.
 ここで、音響フィルム14を駆動するためには、音響フィルム14に駆動用の電力を供給するための導線を接続する必要がある。
 ところが、従来の電気音響変換器では、パネル12を巻取ると、パネル12に紐状の導線の線圧が掛かってしまう。その結果、表面に導線の形状が転写されてしまうなど、パネル12を損傷してしまう可能性がある。
Here, in order to drive the acoustic film 14, it is necessary to connect a lead wire for supplying driving power to the acoustic film 14. FIG.
However, in the conventional electroacoustic transducer, when the panel 12 is rolled up, the panel 12 is subjected to the line pressure of the string-like conducting wire. As a result, the panel 12 may be damaged, for example, the shape of the conductor may be transferred to the surface.
 また、音響フィルム14を用いたパネル12からの音声出力は、音響フィルム14の伸縮によってパネル12を撓ませることで、パネル12を振動させることで行われる。従って、パネル12を効率良く振動させるためには、音響フィルム14の伸縮によって、パネル12が一緒に伸縮しないように、パネル12の面方向の伸縮(変形)を抑制する必要がある。
 ところが、従来のパネル12が巻取り可能な電気音響変換器では、パネル12の軸方向の一辺は、巻取軸16によって固定され伸縮を抑制されているが、巻取方向は、何も固定されていない。そのため、パネル12の巻取方向は、音響フィルム14が伸縮すると、音響フィルム14と一緒に伸縮してしまう。その結果、パネル12を全面的に振動させることができず、音圧が低くなってしまう。
Sound output from the panel 12 using the acoustic film 14 is performed by vibrating the panel 12 by bending the panel 12 due to expansion and contraction of the acoustic film 14 . Therefore, in order to vibrate the panel 12 efficiently, it is necessary to suppress the expansion and contraction (deformation) of the panel 12 in the plane direction so that the expansion and contraction of the acoustic film 14 does not cause the panel 12 to expand and contract together.
However, in the conventional electroacoustic transducer in which the panel 12 can be wound, one side of the panel 12 in the axial direction is fixed by the winding shaft 16 to suppress expansion and contraction, but the winding direction is not fixed. not Therefore, the winding direction of the panel 12 expands and contracts together with the acoustic film 14 when the acoustic film 14 expands and contracts. As a result, the panel 12 cannot be entirely vibrated, resulting in a low sound pressure.
 これに対して、本発明の電気音響変換器10は、上述のように、巻取方向の長さの50%以上の長さの平板配線が、軸方向の端部から、軸方向の長さの30%以内の領域に、貼着される。
 平板配線は、金属箔を含む配線であり、すなわち帯状の配線である。従って、パネル12を巻取っても、通常の紐状の導線のように、パネル12には強い線圧はかからない。そのため、本発明の電気音響変換器10は、パネル12を巻取っても、表面に平板配線の形状が転写されてしまう等のパネル12の損傷を防止できる。
On the other hand, in the electroacoustic transducer 10 of the present invention, as described above, the flat wiring whose length is 50% or more of the length in the winding direction extends from the end in the axial direction to the length in the axial direction. is attached to an area within 30% of the
A flat-plate wiring is a wiring containing metal foil, that is, a strip-shaped wiring. Therefore, even if the panel 12 is wound, a strong linear pressure is not applied to the panel 12 unlike a normal cord-like conductor. Therefore, the electroacoustic transducer 10 of the present invention can prevent damage to the panel 12 such as the shape of the flat wiring being transferred to the surface even when the panel 12 is wound.
 また、本発明の電気音響変換器10は、パネル12の軸方向の端部近傍に、巻取方向の長さ(長さLa)の50%以上の長さを有する。ここで、平板配線は、金属箔を含む配線である。
 従って、巻取軸16によって軸方向へのパネル12の伸縮を防止すると共に、巻取方向のパネル12の伸縮を、金属箔を含む配線である平板配線によって抑制できる。図1に示す例であれば、平板配線20cおよび平板配線20dによって、巻取方向のパネル12の伸縮を、抑制できる。
 そのため、本発明の電気音響変換器10によれば、巻取方向および軸方向の両方向でパネル12の伸縮を防止できる。その結果、音響フィルム14の伸縮によって、パネル12全体を厚さ方向に振動させることができ、すなわち、音響フィルム14によって、パネル12の全面を効率良く振動させて、高い音圧の音声を出力できる。
Further, the electroacoustic transducer 10 of the present invention has a length of 50% or more of the length in the winding direction (length La) in the vicinity of the end portion in the axial direction of the panel 12 . Here, flat wiring is wiring containing metal foil.
Therefore, the expansion and contraction of the panel 12 in the axial direction can be prevented by the winding shaft 16, and the expansion and contraction of the panel 12 in the winding direction can be suppressed by the flat wiring, which is wiring including metal foil. In the example shown in FIG. 1, expansion and contraction of the panel 12 in the winding direction can be suppressed by the flat wiring 20c and the flat wiring 20d.
Therefore, according to the electroacoustic transducer 10 of the present invention, expansion and contraction of the panel 12 can be prevented in both the winding direction and the axial direction. As a result, the expansion and contraction of the acoustic film 14 allows the entire panel 12 to vibrate in the thickness direction, that is, the acoustic film 14 efficiently vibrates the entire surface of the panel 12 to output sound with high sound pressure. .
 しかも、図示例の電気音響変換器10は、好ましい態様として、パネル12の巻取軸16と対向する辺を、固定軸18によって固定している。
 そのため、軸方向へのパネル12の伸縮を、巻取軸16および固定軸18によって、巻取方向の両端部で防止でき、より高い効率で、パネル12の全面を振動させることができる。
Moreover, in the illustrated electroacoustic transducer 10, the side of the panel 12 facing the take-up shaft 16 is fixed by the fixed shaft 18 as a preferred embodiment.
Therefore, expansion and contraction of the panel 12 in the axial direction can be prevented at both ends in the winding direction by the winding shaft 16 and the fixed shaft 18, and the entire surface of the panel 12 can be vibrated with higher efficiency.
 本発明の電気音響変換器10においては、巻取方向の長さの50%以上の平板配線が、軸方向の端部から、軸方向の長さの30%以内の領域に貼着されていればよい。言い換えれば、本発明の電気音響変換器10においては、図8における0.5La以上の平板配線が、軸方向の端部からLb×(3/10)以内の、図8に斜線で示す領域に貼着されていればよい。
 この領域に貼着される平板配線の長さは、巻取方向の長さ(パネル12の長さ)の60%以上が好ましく、80%以上がより好ましく、図1に示す平板配線20cおよび20dのように、図示例のように、巻取方向の全域(略全域)にわたって平板配線が貼着されるのが、さらに好ましい。なお、『巻取方向の全域にわたって』とは、パネル12の巻取り方向の全域にわたる場合のみならず、巻取軸16あるいはさらに固定軸18に当接するまで、および、図示例のように巻取軸16あるいはさらに固定軸18の内部に至るまでを含む。
In the electroacoustic transducer 10 of the present invention, the flat wiring of 50% or more of the length in the winding direction should be attached to the area within 30% of the length in the axial direction from the end in the axial direction. Just do it. In other words, in the electroacoustic transducer 10 of the present invention, the flat wiring of 0.5 La or more in FIG. It is sufficient if it is attached.
The length of the flat wiring attached to this region is preferably 60% or more, more preferably 80% or more, of the length in the winding direction (the length of the panel 12). As in the illustrated example, it is more preferable that the flat wiring is adhered over the entire area (substantially the entire area) in the winding direction. It should be noted that "over the entire winding direction" means not only covering the entire winding direction of the panel 12, but also until it abuts on the winding shaft 16 or further the fixed shaft 18, and as in the illustrated example. Including up to the interior of the shaft 16 or even the fixed shaft 18 .
 また、巻取方向の長さの50%以上の平板配線が貼着される領域は、軸方向の端部から、軸方向の長さ(パネル12の長さ)の30%以内の領域であればよい。しかしながら、平板配線は、軸方向の端部に近いほど、パネル12の伸縮を好適に抑制できる。この点を考慮すると、巻取方向の長さの50%以上の平板配線を貼着するのは、軸方向の長さの20%以内の領域が好ましく、10%以内の領域がより好ましく、図示例のように、軸方向の端部に貼着されるのが、さらに好ましい。
 ここで、音響フィルム14は、第1電極層28および第2電極層30を有する。従って、それぞれの電極層に接続されるように、2本の平板配線を設けることができる。本発明においては、巻取方向の長さの50%以上の2本の平板電極を、軸方向の一方の端部から、軸方向の長さの30%以内の領域に貼着してもよい。しかしながら、より好適に、巻取方向のパネル12の伸縮を防止できる点で、巻取方向の長さの50%以上の平板配線は、軸方向の両端部から軸方向の長さの30%以内の領域に貼着するのが好ましい。
Also, the area where the flat wiring is attached that is 50% or more of the length in the winding direction is within 30% of the length in the axial direction (the length of the panel 12) from the end in the axial direction. Just do it. However, the closer the flat-plate wiring is to the end in the axial direction, the more preferably the expansion and contraction of the panel 12 can be suppressed. Considering this point, it is preferable to attach the flat-plate wiring having a length of 50% or more of the length in the winding direction, preferably within 20% of the length in the axial direction, more preferably within 10%. More preferably, it is attached to the axial ends, as shown.
Here, the acoustic film 14 has a first electrode layer 28 and a second electrode layer 30 . Therefore, two flat wirings can be provided so as to be connected to each electrode layer. In the present invention, two flat plate electrodes having a length of 50% or more of the length in the winding direction may be attached to a region within 30% of the length in the axial direction from one end in the axial direction. . However, it is more preferable to prevent expansion and contraction of the panel 12 in the winding direction. is preferably applied to the area of
 本発明の電気音響変換器10において、軸方向の端部から軸方向の長さの30%以内の領域に貼着される、巻取方向の長さの50%以上の平板配線は、図1に示すように、パネル12の端辺に平行であるのに制限はされない。
 すなわち、後述する実施例に示すように、軸方向の端部から軸方向の長さの30%以内の領域に貼着される平板配線は、パネルの端辺に対して傾斜してもよい。また、軸方向の端部から軸方向の長さの30%以内の領域に、パネル12の端辺に平行な平板配線と、パネル12の端辺に対して傾斜する平板配線とが、混在してもよい。
 なお、軸方向の端部から軸方向の長さの30%以内の領域に貼着される平板配線は、曲線部を有してもよいが、直線状、または、直線を組み合わせた形状であるのが好ましい。さらに、軸方向の端部から軸方向の長さの30%以内の領域に貼着される平板配線は、巻取方向の長さの50%以上の直線部を有するのが好ましい。
In the electroacoustic transducer 10 of the present invention, the flat wiring of 50% or more of the length in the winding direction, which is attached to the region within 30% of the length in the axial direction from the end in the axial direction, is shown in FIG. is not restricted to being parallel to the edge of the panel 12, as shown in FIG.
That is, as shown in an embodiment described later, the flat wiring attached to the region within 30% of the length in the axial direction from the end in the axial direction may be inclined with respect to the edge of the panel. Moreover, in a region within 30% of the length in the axial direction from the end in the axial direction, the flat wiring parallel to the edge of the panel 12 and the flat wiring inclined with respect to the edge of the panel 12 are mixed. may
The flat-plate wiring attached to the area within 30% of the length in the axial direction from the end in the axial direction may have a curved portion, but the shape is straight or a combination of straight lines. is preferred. Furthermore, it is preferable that the flat wiring attached to the area within 30% of the length in the axial direction from the end in the axial direction has a linear portion of 50% or more of the length in the winding direction.
 上述のように、平板配線は、金属箔を含むものである。
 金属箔には、制限はなく、導電性を有する金属からなる物であれば、公知の各種の金属箔が利用可能である。なお、金属箔となる金属には、合金を含む。
 一例として、アルミニウム箔、銅箔、ニッケル箔、金箔、銀箔、および、錫箔等が例示される。
As described above, flat wiring includes metal foil.
There are no restrictions on the metal foil, and various known metal foils can be used as long as they are made of conductive metal. In addition, an alloy is included in the metal used as metal foil.
Examples include aluminum foil, copper foil, nickel foil, gold foil, silver foil, and tin foil.
 平板配線は、金属箔を含むものであれば、各種のものが利用可能である。
 一例として、金属箔、金属箔に貼着層を設けた金属テープ、および、FPC(Flexible printed circuits)配線板(FPC基板、FPC配線)等が例示される。
 これらの平板配線は、市販品も、好適に利用可能である。
Various types of flat wiring can be used as long as they contain metal foil.
Examples thereof include a metal foil, a metal tape obtained by providing an adhesive layer on a metal foil, an FPC (Flexible printed circuits) wiring board (FPC substrate, FPC wiring), and the like.
Commercially available products of these flat-plate wirings are also suitable for use.
 平板配線をパネル12に貼着する方法にも、制限はなく、公知の方法が、各種、利用可能である。
 一例として、貼着剤を用いる方法、ポリイミドテープ等の貼着テープを用いる方法、両面テープを用いる方法、ホットメルトシートなどを用いて加熱圧着する方法、および、パネル上に銅などを直接真空蒸着する方法等が例示される。
The method of adhering the flat wiring to the panel 12 is also not limited, and various known methods can be used.
Examples include a method using an adhesive, a method using an adhesive tape such as a polyimide tape, a method using a double-sided tape, a method using a hot-melt sheet or the like to heat and press, and direct vacuum deposition of copper or the like onto the panel. and the like are exemplified.
 図1に示す例は、長方形のパネル12の長手方向が巻取方向すなわち巻取軸16と直交する方向で、短手方向が巻取軸16の軸方向であったが、本発明は、これに制限はされない。
 すなわち、本発明の電気音響変換器は、図9に概念的に示すように、長方形のパネル12の短手方向を巻取方向すなわち巻取軸16と直交する方法とし、長手方向を巻取軸16の軸方向としてもよい。従って、この場合には、パネル12の長手方向の両端部すなわち短辺に対応して、巻取方向すなわち短手方向の長さの50%以上の平板配線20gおよび平板配線20hを、軸方向の端部から軸方向すなわち長手方向の長さの30%以内の領域に貼着する。
In the example shown in FIG. 1, the longitudinal direction of the rectangular panel 12 is the winding direction, that is, the direction perpendicular to the winding shaft 16, and the lateral direction is the axial direction of the winding shaft 16. is not restricted to
That is, in the electroacoustic transducer of the present invention, as conceptually shown in FIG. 9, the transverse direction of a rectangular panel 12 is the winding direction, i.e., the direction orthogonal to the winding axis 16, and the longitudinal direction is the winding axis. 16 axial directions. Therefore, in this case, the flat wiring 20g and the flat wiring 20h of 50% or more of the length in the winding direction, that is, the short side, are arranged in the axial direction corresponding to both ends of the panel 12 in the longitudinal direction, that is, the short side. The area within 30% of the length in the axial or longitudinal direction from the ends is adhered.
 以上、本発明の電気音響変換器について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the electroacoustic transducer of the present invention has been described in detail above, the present invention is not limited to the above examples, and various improvements and changes may be made without departing from the gist of the present invention. , of course.
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に制限されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention. The present invention is not limited to this example, and the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. can.
 [圧電フィルムの作製]
 図5~図7に示す方法で、圧電フィルムを作製した。
 まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、圧電体粒子としてPZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で攪拌して、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
 なお、PZT粒子は、主成分となるPb酸化物、Zr酸化物およびTi酸化物の粉末を、Pb=1モルに対し、Zr=0.52モル、Ti=0.48モルとなるように、ボールミルで湿式混合してなる混合粉を、800℃で5時間、焼成した後、解砕処理したものを用いた。
[Preparation of piezoelectric film]
A piezoelectric film was produced by the method shown in FIGS.
First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
・PZT particles・・・・・・・・・・300 parts by mass ・Cyanoethylated PVA・・・・・・・・30 parts by mass ・DMF・・・・・・・・・・・・70 parts by mass The PZT particles are composed of powders of Pb oxide, Zr oxide and Ti oxide, which are the main components, so that Zr = 0.52 mol and Ti = 0.48 mol with respect to Pb = 1 mol. Mixed powder obtained by wet-mixing in a ball mill was fired at 800° C. for 5 hours and then pulverized.
 一方、厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなるシート状物を用意した。すなわち、本例においては、第1電極層および第2電極層は、厚さ0.1mの銅蒸着薄膜であり、第1保護層および第2保護層は、厚さ4μmのPETフィルムとなる。
 シート状物の第2電極層(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が40μmになるように、塗布した。
 次いで、シート状物に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の第2保護層の上に銅製の第2電極層を有し、その上に、厚さが30μmの圧電体層(高分子複合圧電体層)を有する積層体を作製した。
On the other hand, a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.1 μm on a PET film with a thickness of 4 μm. That is, in this example, the first electrode layer and the second electrode layer are 0.1 m-thick copper-evaporated thin films, and the first protective layer and the second protective layer are 4 μm-thick PET films.
Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. The paint was applied so that the thickness of the coating film after drying was 40 μm.
Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C. to evaporate the DMF. As a result, a laminate having a second electrode layer made of copper on a second protective layer made of PET and a piezoelectric layer (polymer composite piezoelectric layer) having a thickness of 30 μm thereon was produced. .
 作製した圧電体層を、厚さ方向に分極処理した。 The produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
 圧電体層の分極処理を行った積層体の上に、第1電極層(銅薄膜側)を圧電体層に向けて、PETフィルムに同薄膜を蒸着したシート状物を積層した。
 次いで、積層体とシート状物との積層体を、ラミネータ装置を用いて、温度120℃で熱圧着することで、複合圧電体と第1電極層とを貼着して接着して、図4に示すような圧電フィルムを作製した。
A sheet-like product obtained by vapor-depositing the same thin film on a PET film was laminated with the first electrode layer (copper thin film side) facing the piezoelectric layer on the laminate in which the piezoelectric layer had been subjected to the polarization treatment.
Next, the laminate of the laminate and the sheet-like material is thermocompressed at a temperature of 120° C. using a laminator device to adhere and adhere the composite piezoelectric body and the first electrode layer, as shown in FIG. A piezoelectric film as shown in was produced.
 この圧電フィルムを幅180mmの帯状に切り出し、折り返し方向の長さが70mmになるように、4回、折り返して、図2に示すような、圧電フィルムを5層積層した、音響フィルムを作製した。従って、この音響フィルムは、積層方向から見た際に、180×70mmの平面形状を有するものである。
 なお、積層方向に隣接する圧電フィルムは、接着剤(トーヨーケム社製、TSU0041SI)を用いて貼着した。
 図2および図3に示すように、作製した音響フィルムは、圧電フィルム の長手方向の一方の端部において、第1保護層と第1電極層との間に第1引出電極を挿入して固定し、さらに、第2保護層と第2電極層との間に第2引出電極を挿入して固定した。引出電極は、厚さ35μm、長さ25mm、幅15mmの銅箔を用いた。
This piezoelectric film was cut into strips with a width of 180 mm, and folded four times so that the length in the folding direction was 70 mm. Therefore, this acoustic film has a planar shape of 180×70 mm when viewed from the stacking direction.
The piezoelectric films adjacent to each other in the stacking direction were attached using an adhesive (TSU0041SI, manufactured by Toyochem Co., Ltd.).
As shown in FIGS. 2 and 3, the produced acoustic film was fixed by inserting the first extraction electrode between the first protective layer and the first electrode layer at one end in the longitudinal direction of the piezoelectric film. Furthermore, the second extraction electrode was inserted and fixed between the second protective layer and the second electrode layer. A copper foil having a thickness of 35 μm, a length of 25 mm, and a width of 15 mm was used as the extraction electrode.
 [実施例1]
 パネルとして、厚さ0.2mm、700×500mmのポリプロピレン製の平板を用意した。このパネルは、人が容易に巻取れるものである。
 パネルの1面に、作製した音響フィルムを、2枚、貼着した。音響フィルムは、図10に概念的に示すように、長手方向(180mmの方向)をパネルの短手方向(500mmの方向)と一致して、パネルの短手方向の中央部、かつ、パネルの長手方向の端部近傍に、引出電極を外側に向けて貼着した。
 パネルへの音響フィルムの貼着は、両面テープを用いて行った。
[Example 1]
As a panel, a polypropylene flat plate having a thickness of 0.2 mm and a size of 700×500 mm was prepared. This panel can be easily rolled up by a person.
Two sheets of the produced acoustic film were adhered to one surface of the panel. As conceptually shown in FIG. 10, the acoustic film has the longitudinal direction (direction of 180 mm) aligned with the width direction (direction of 500 mm) of the panel, the center of the width direction of the panel, and the width of the panel. In the vicinity of the ends in the longitudinal direction, the extraction electrodes were attached facing outward.
A double-sided tape was used to attach the acoustic film to the panel.
 図10に概念的に示すように、このパネルの短手方向の両端部に、長手方向の全域にわたって、幅15mm、金属箔(銅箔)の厚さが25μmの金属テープを貼着した。図10において、金属テープは、太線で示す。
 図中右側の音響フィルムの第1引出電極に、短い金属テープを接続し、この金属テープと図中上方の金属テープの図中右側の端部とを、紐状の導線で接続した。同様に、図中右側の音響フィルムの第2引出電極に、短い金属テープを接続し、この金属テープと図中下方の金属テープの右側の端部とを、紐状の導線で接続した。
 また、金属テープの図中左側の端部と、外部電源と接続するための集合ケーブルの導線とを接続した。
 金属テープは、本発明における平板配線である。
As conceptually shown in FIG. 10, a metal tape having a width of 15 mm and a metal foil (copper foil) thickness of 25 μm was attached to both ends of the panel in the longitudinal direction over the entire length. In FIG. 10, the metal tape is indicated by a thick line.
A short metal tape was connected to the first lead-out electrode of the acoustic film on the right side of the figure, and this metal tape was connected to the right end of the metal tape on the upper side of the figure with a string-like conductive wire. Similarly, a short metal tape was connected to the second lead-out electrode of the acoustic film on the right side of the figure, and this metal tape and the right end of the metal tape on the bottom side of the figure were connected with a string-like conductive wire.
In addition, the end of the metal tape on the left side in the drawing was connected to the lead wire of the collective cable for connecting to the external power source.
The metal tape is flat wiring in the present invention.
 図中左側の音響フィルムの第1引出電極に、短い金属テープを接続し、この金属テープと外部電源と接続するための集合ケーブルの導線とを接続した。
 同様に、図中左側の音響フィルムの第2引出電極に、短い金属テープを接続し、この金属テープと外部電源と接続するための集合ケーブルの導線とを接続した。
A short metal tape was connected to the first lead-out electrode of the acoustic film on the left side of the figure, and this metal tape was connected to a conductor wire of an assembly cable for connecting to an external power source.
Similarly, a short metal tape was connected to the second lead-out electrode of the acoustic film on the left side of the drawing, and this metal tape was connected to a conductor wire of an assembly cable for connecting to an external power supply.
 なお、図10~図21では、図を簡潔にして構成を分かり易くするために、便宜的に、集合ケーブル、同じ領域を通る金属テープ(平板配線)、および、同じ領域を通る紐状の導線(導線)等を、1本の線で示している。
 しかしながら、個々の引出電極に接続される各平板配線および導線は、互いに独立しており、かつ、互いに絶縁されているのは、言うまでもない。
10 to 21, in order to simplify the drawings and make the configuration easier to understand, for the sake of convenience, an assembly cable, a metal tape (flat wiring) passing through the same area, and a cord-like conductor wire passing through the same area (lead wire), etc. are indicated by a single line.
However, it goes without saying that each of the flat-plate wirings and conductors connected to the individual extraction electrodes are independent of each other and insulated from each other.
 巻取軸として、直径40mmのジュラコン製の筒(円筒)を用意した。この巻取軸に、パネルの図中左側の短辺の全域を固定した。集合ケーブルは、巻取軸の内部に収容した(図1参照)。
 また、固定軸として、直径40mmのジュラコン製の筒(円筒)を用意した。この固定軸に、パネルの図中右側の短辺の全域を固定した。紐状の導線は、固定軸の内部に収容した。
 なお、電気音響変換器の構成を明確に示すために、図10~図21では、巻取軸および固定軸は、図示を省略している。
 このようにして、図1に示すような電気音響変換器を作製した。
A cylinder (cylinder) made of Duracon with a diameter of 40 mm was prepared as a winding shaft. The entire short side of the panel on the left side in the figure was fixed to this winding shaft. The collective cable was housed inside the winding shaft (see FIG. 1).
As a fixed shaft, a cylinder (cylinder) made of Duracon and having a diameter of 40 mm was prepared. The entire short side of the panel on the right side in the drawing was fixed to this fixed shaft. A string-like conductor was accommodated inside the fixed shaft.
In order to clearly show the configuration of the electroacoustic transducer, FIGS. 10 to 21 omit the illustration of the winding shaft and the fixed shaft.
Thus, an electroacoustic transducer as shown in FIG. 1 was produced.
 [実施例2]
 図11に概念的に示すように、パネル短手方向の両端部の金属テープの図中右側の半分(350mm)を、短手方向の端部から160mmの位置にした以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例3]
 図12に概念的に示すように、パネル短手方向の両端部の金属テープを、短手方向の端部から150mmの位置にした以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例4]
 図13に概念的に示すように、パネル短手方向の両端部の金属テープの、図中右側の半分(350mm)を、短手方向の端部から160mmの位置にし、図中左側の半分を、短手方向の端部から150mmの位置にした以外は、実施例1と同様に電気音響変換器を作製した。
[Example 2]
As conceptually shown in FIG. 11, the right half (350 mm) of the metal tape at both ends in the width direction of the panel was positioned 160 mm from the end in the width direction. An electroacoustic transducer was similarly produced.
[Example 3]
As conceptually shown in FIG. 12, an electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tapes at both ends in the lateral direction of the panel were positioned 150 mm from the ends in the lateral direction. .
[Example 4]
As conceptually shown in FIG. 13, the right half (350 mm) of the metal tape at both ends in the panel width direction is positioned 160 mm from the width direction end, and the left half in the diagram is , an electroacoustic transducer was produced in the same manner as in Example 1, except that the position was 150 mm from the end in the lateral direction.
 [実施例5]
 図14に概念的に示すように、パネル短手方向の両端部の金属テープの、図中右側の端部が、パネルの短手方向の端部から150mmの位置となるように、金属テープをパネルの長辺に対して斜めにした以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例6]
 図15に概念的に示すように、パネル短手方向の両端部の金属テープの、図中左側の端部が、パネルの短手方向の端部から150mmの位置となるように、金属テープをパネルの長辺に対して斜めにした以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例7]
 図16に概念的に示すように、パネル短手方向の両端部の金属テープの、図中右側の半分弱をパネルの短手方向の端部から160mmの位置とし、さらに、この金属テープの端部と、パネルの図中左側の角部とを接続するように、金属テープをパネルの長辺に対して斜めにした以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例8]
 図17に概念的に示すように、パネル短手方向の両端部の金属テープの、図中左側の半分弱をパネルの短手方向の端部から160mmの位置とし、さらに、この金属テープの端部と、パネルの図中右側の角部とを接続するように、金属テープをパネルの長辺に対して斜めにした以外は、実施例1と同様に電気音響変換器を作製した。
[Example 5]
As conceptually shown in FIG. 14, the metal tapes are placed on both ends of the panel in the transverse direction so that the ends on the right side in the figure are positioned 150 mm from the ends of the panel in the transverse direction. An electroacoustic transducer was produced in the same manner as in Example 1, except that the long side of the panel was oblique.
[Example 6]
As conceptually shown in FIG. 15, the metal tapes are placed on both ends of the panel in the widthwise direction so that the ends on the left side of the drawing are positioned 150 mm from the widthwise end of the panel. An electroacoustic transducer was produced in the same manner as in Example 1, except that the long side of the panel was oblique.
[Example 7]
As conceptually shown in FIG. 16, the right half of the metal tapes at both ends in the panel width direction are positioned 160 mm from the panel width direction ends. An electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tape was slanted with respect to the long side of the panel so as to connect the left corner of the panel to the corner of the panel.
[Example 8]
As conceptually shown in FIG. 17, the metal tapes at both ends in the widthwise direction of the panel are placed at a position 160 mm from the widthwise end of the panel, and the metal tape ends An electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tape was slanted with respect to the long side of the panel so as to connect the edge and the right corner of the panel in the figure.
 [実施例9]
 図18に概念的に示すように、4枚の音響フィルムを、パネルの角部近傍に貼着した以外は、実施例1と同様に電気音響変換器を作製した。
[Example 9]
As conceptually shown in FIG. 18, an electroacoustic transducer was produced in the same manner as in Example 1, except that four acoustic films were attached near the corners of the panel.
 [実施例10]
 金属テープに替えて、厚さ25μmの金属箔を、ポリイミドテープによってパネルに貼着した以外は、実施例1と同様に電気音響変換器を作製した。
 [実施例11]
 金属テープに替えて、厚さ25μmの金属箔を有するFPC配線を、ポリイミドテープによってパネルに貼着した以外は、実施例1と同様に電気音響変換器を作製した。
[Example 10]
An electroacoustic transducer was produced in the same manner as in Example 1, except that a metal foil having a thickness of 25 μm was adhered to the panel with a polyimide tape instead of the metal tape.
[Example 11]
An electroacoustic transducer was produced in the same manner as in Example 1, except that FPC wiring having a metal foil with a thickness of 25 μm was adhered to the panel with a polyimide tape instead of the metal tape.
 [比較例1]
 図19に概念的に示すように、パネル短手方向の両端部の金属テープを、短手方向の端部から160mmの位置にした以外は、実施例1と同様に電気音響変換器を作製した。
 [比較例2]
 図20に概念的に示すように、パネルの短手方向の両端部の金属テープの図中右側の400mmを、短手方向の端部から160mmの位置にした以外は、実施例1と同様に電気音響変換器を作製した。
[Comparative Example 1]
As conceptually shown in FIG. 19, an electroacoustic transducer was produced in the same manner as in Example 1, except that the metal tapes at both ends in the lateral direction of the panel were positioned 160 mm from the ends in the lateral direction. .
[Comparative Example 2]
As conceptually shown in FIG. 20, 400 mm on the right side of the metal tape at both ends of the panel in the transverse direction was positioned 160 mm from the ends in the transverse direction, in the same manner as in Example 1. An electroacoustic transducer was fabricated.
 [比較例3]
 図21に概念的に示すように、図中右側の音響フィルムの引出電極を内側に向け、金属テープの位置をパネルの短手方向の中心にした以外は、実施例1と同様に電気音響変換器を作製した。
[Comparative Example 3]
As conceptually shown in FIG. 21, the electroacoustic transducer was performed in the same manner as in Example 1, except that the extraction electrode of the acoustic film on the right side of the figure was directed inward, and the metal tape was positioned at the center of the panel in the lateral direction. I made a vessel.
 [比較例4]
 金属テープに替えて、線径(直径)が1mmのフラットケーブルを用い、ポリイミドテープでパネルに貼着した以外は、実施例1と同様に電気音響変換器を作製した。
 [比較例5]
 金属テープに替えて、線径(直径)が3mmのVCT(Vinyl Cab Tire)ケーブルを用い、ポリイミドテープでパネルに貼着した以外は、実施例1と同様に電気音響変換器を作製した。
[Comparative Example 4]
An electroacoustic transducer was produced in the same manner as in Example 1, except that a flat cable with a wire diameter of 1 mm was used instead of the metal tape and adhered to the panel with a polyimide tape.
[Comparative Example 5]
An electroacoustic transducer was produced in the same manner as in Example 1, except that a VCT (Vinyl Cab Tire) cable with a wire diameter of 3 mm was used instead of the metal tape, and the cable was attached to the panel with a polyimide tape.
 [比較例6]
 金属テープに替えて、厚さ25μmの金属箔を有するFPC配線を用い、かつ、パネルに貼着しなかった以外は、実施例1と同様に電気音響変換器を作製した。
[Comparative Example 6]
An electroacoustic transducer was fabricated in the same manner as in Example 1, except that FPC wiring having a metal foil with a thickness of 25 μm was used instead of the metal tape, and the FPC wiring was not adhered to the panel.
 [評価]
 作製した電気音響変換器について、以下の評価を行った。
 <音圧>
 パネルから1m離れ、かつ、長手および短手方向は中心位置で、騒音計を用いて、音圧の測定を行った。
 音圧の測定にあたっては、定電流アンプにて500~20kHzのピンクノイズを入力した。電圧は、1kHzで20Vrms入力となるよう調節した。実施例9の音圧レベルを5段階評価の5とし、音圧が1dB下がる毎に、評価を1、低くした。
[evaluation]
The produced electroacoustic transducers were evaluated as follows.
<Sound pressure>
The sound pressure was measured using a sound level meter at a distance of 1 m from the panel and at the central position in the longitudinal and lateral directions.
In measuring the sound pressure, pink noise of 500 to 20 kHz was input by a constant current amplifier. The voltage was adjusted to give a 20 Vrms input at 1 kHz. The sound pressure level of Example 9 was evaluated as 5 out of 5, and the evaluation was lowered by 1 for each 1 dB decrease in sound pressure.
 <巻取性>
 パネルを巻取軸に巻取って、1日、放置した。その後、パネルを広げ、シワおよび折れの有無を目視で確認した。
 シワおよび折れが確認できなかった場合をA、
 シワおよび折れが確認できた場合をB、と評価した。
 <写り>
 パネルを巻取軸に巻取って、1日、放置した。その後、パネルを広げ、配線の写りの有無を目視で評価した。
 配線の写りが確認できなかった場合をA、
 配線の写りが確認できた場合をB、と評価した。
 結果を下記の表に示す。
<Windability>
The panel was wound up on a winding shaft and left for one day. After that, the panel was unfolded and the presence or absence of wrinkles and folds was visually confirmed.
A when no wrinkles and folds can be confirmed,
A case where wrinkles and folds could be confirmed was evaluated as B.
<Image>
The panel was wound up on a winding shaft and left for one day. After that, the panel was spread out, and the presence or absence of wiring reflection was visually evaluated.
If the wiring image cannot be confirmed, A,
A case in which the image of the wiring could be confirmed was evaluated as B.
Results are shown in the table below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上述のように、パネルのサイズは700×500mmであり、本例においては、巻取方向が700mmで、軸方向が500mmである。
 表1に示すように、金属箔を用いる平板配線を用い、かつ、パネルの巻取方向の長さの50%以上(350mm以上)の平板配線を、パネルの軸方向の端部から、パネルの軸方向の長さの30%以内(150mm以内)の領域に貼着した本発明の電気音響変換器は、いずれも、音圧が高く、かつ、パネルの巻取性が良好で、パネルへの配線の写りも無い。
 実施例2~3に示されるように、パネルの軸方向の端部からパネルの軸方向の長さの30%以内に貼着される平板配線を、長くするほど、また、軸方向の端部に近づけるほど、高い音圧が得られる。特に実施例1に示されるように、平板配線を、軸方向の端部において、巻取方向の全域に設けることで、より高い音圧が得られる。
As mentioned above, the size of the panel is 700×500 mm, in this example the winding direction is 700 mm and the axial direction is 500 mm.
As shown in Table 1, flat wiring using metal foil is used, and flat wiring of 50% or more (350 mm or more) of the length in the winding direction of the panel is extended from the end in the axial direction of the panel. All of the electroacoustic transducers of the present invention attached to a region within 30% (within 150 mm) of the length in the axial direction have high sound pressure, good windability of the panel, and can be easily attached to the panel. There is no picture of wiring.
As shown in Examples 2 and 3, the longer the flat wiring attached within 30% of the axial length of the panel from the axial end of the panel, the longer the axial end. The closer to , the higher the sound pressure. In particular, as shown in Example 1, a higher sound pressure can be obtained by providing flat-plate wiring over the entire length in the winding direction at the ends in the axial direction.
 これに対して、パネルの巻取方向の長さの50%以上の平板配線が、パネルの軸方向の端部から、パネルの軸方向の長さの30%以内の領域に貼着されていない比較例1~3の電気音響変換器、および、平板配線をパネルに貼着しなかった比較例6の電気音響変換器は、音圧が低い。
 また、平板配線に替えて、フラットケーブルを用いた比較例4は、パネルへの配線の写りが生じている。さらに、平板配線に替えて、VCTケーブルを用いた比較例5は、シワ等が発生して巻取性が悪く、かつ、パネルへの配線の写りも生じている。
 以上の結果より、本発明の効果は明らかである。
On the other hand, the flat wiring of 50% or more of the length in the winding direction of the panel is not attached to the area within 30% of the length in the axial direction of the panel from the end of the panel in the axial direction. The electroacoustic transducers of Comparative Examples 1 to 3 and the electroacoustic transducer of Comparative Example 6 in which the flat wiring was not adhered to the panel had low sound pressure.
In addition, in Comparative Example 4 using a flat cable instead of the flat wiring, the wiring is reflected on the panel. Furthermore, in Comparative Example 5, in which a VCT cable was used instead of the flat wiring, wrinkles occurred, resulting in poor windability, and the wiring also appeared on the panel.
From the above results, the effect of the present invention is clear.
 巻取可能な画像表示装置等として、各種の用途に好適に利用可能である。 It can be suitably used for various purposes as a rollable image display device.
 10 電気音響変換器
 12 パネル
 14 音響フィルム
 16 巻取軸
 18 固定軸
 20a,20b,20c,20d,20e,20f,20g,20h 平板配線
 21 集合ケーブル
 24 圧電フィルム
 24a 第1引出電極
 24b 第2引出電極
 26 圧電体層
 28 第1電極層
 30 第2電極層
 32 第1保護層
 34 第2保護層
 38 高分子マトリックス
 40 圧電体粒子
 42a,42b 積層体
 46 圧電積層体
REFERENCE SIGNS LIST 10 Electroacoustic transducer 12 Panel 14 Acoustic film 16 Winding shaft 18 Fixed shaft 20a, 20b, 20c, 20d, 20e, 20f, 20g, 20h Flat wiring 21 Collective cable 24 Piezoelectric film 24a First extraction electrode 24b Second extraction electrode 26 piezoelectric layer 28 first electrode layer 30 second electrode layer 32 first protective layer 34 second protective layer 38 polymer matrix 40 piezoelectric particles 42a, 42b laminate 46 piezoelectric laminate

Claims (10)

  1.  巻取りが可能なパネルと、
     前記パネルを振動させる音響フィルムと、
     前記パネルを巻取るための巻取軸と、
     前記音響フィルムと外部装置とを接続するための平板配線とを有し、
     前記平板配線は、金属箔を含むものであり、かつ、
     前記巻取軸と直交する方向の前記パネルの長さの50%以上の長さの前記平板配線が、前記巻取軸の軸方向の端部から、前記巻取軸の軸方向の前記パネルの長さの30%以内の領域に貼着されている、電気音響変換器。
    a rollable panel,
    an acoustic film for vibrating the panel;
    a winding shaft for winding the panel;
    A flat wiring for connecting the acoustic film and an external device,
    The flat wiring includes a metal foil, and
    The flat wiring having a length of 50% or more of the length of the panel in the direction orthogonal to the winding shaft extends from the end in the axial direction of the winding shaft to the length of the panel in the axial direction of the winding shaft. An electroacoustic transducer that is attached to an area within 30% of its length.
  2.  前記平板配線が、前記巻取軸と直交する方向の前記パネルの全域に貼着される、請求項1に記載の電気音響変換器。 The electroacoustic transducer according to claim 1, wherein the flat wiring is attached to the entire area of the panel in a direction orthogonal to the winding axis.
  3.  前記平板配線が、前記巻取軸の軸方向の前記パネルの端部に貼着される、請求項1または2に記載の電気音響変換器。 The electroacoustic transducer according to claim 1 or 2, wherein the flat wiring is attached to the end of the panel in the axial direction of the winding shaft.
  4.  前記平板配線と電気的に接続される導線が、前記巻取軸の内部に収容される、請求項1~3のいずれか1項に記載の電気音響変換器。 The electroacoustic transducer according to any one of claims 1 to 3, wherein a conductor electrically connected to said flat wiring is accommodated inside said winding shaft.
  5.  前記巻取軸と直交する方向に離間して、複数の前記音響フィルムを有する、請求項1~4のいずれか1項に記載の電気音響変換器。 The electroacoustic transducer according to any one of claims 1 to 4, having a plurality of said acoustic films spaced apart in a direction orthogonal to said winding axis.
  6.  前記パネルの前記巻取軸と対向する辺に固定される固定軸を有する、請求項1~5のいずれか1項に記載の電気音響変換器。 The electroacoustic transducer according to any one of claims 1 to 5, having a fixed shaft fixed to a side of the panel facing the winding shaft.
  7.  前記平板配線と電気的に接続される導線が、前記固定軸の内部に収容される、請求項6に記載の電気音響変換器。 The electroacoustic transducer according to claim 6, wherein a conductor electrically connected to said flat wiring is accommodated inside said fixed shaft.
  8.  前記音響フィルムが、圧電体層と、圧電体層の両面に設けられた電極層と、前記電極層を覆う保護層とを有する圧電フィルムを、複数層、積層した積層体を有する、請求項1~7のいずれか1項に記載の電気音響変換器。 2. The acoustic film has a laminated body in which a plurality of piezoelectric films each having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers covering the electrode layers are laminated. 8. The electroacoustic transducer according to any one of 1 to 7.
  9.  前記圧電フィルムの前記圧電体層が、高分子材料中に圧電体粒子を有する高分子複合圧電体である、請求項8に記載の電気音響変換器。 The electroacoustic transducer according to claim 8, wherein the piezoelectric layer of the piezoelectric film is a polymeric composite piezoelectric body having piezoelectric particles in a polymeric material.
  10.  前記高分子複合圧電体の前記高分子材料が、シアノエチル化ポリビニルアルコールである、請求項9に記載の電気音響変換器。
     
     
     
    10. The electroacoustic transducer of claim 9, wherein the polymer material of the polymer composite piezoelectric body is cyanoethylated polyvinyl alcohol.


PCT/JP2022/008702 2021-03-19 2022-03-02 Electroacoustic converter WO2022196353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506950A JPWO2022196353A1 (en) 2021-03-19 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021046276 2021-03-19
JP2021-046276 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022196353A1 true WO2022196353A1 (en) 2022-09-22

Family

ID=83321466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008702 WO2022196353A1 (en) 2021-03-19 2022-03-02 Electroacoustic converter

Country Status (3)

Country Link
JP (1) JPWO2022196353A1 (en)
TW (1) TW202241146A (en)
WO (1) WO2022196353A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015518A1 (en) * 2005-08-02 2007-02-08 Teijin Fibers Limited Speaker formed with screen as a unitary block
US20200314552A1 (en) * 2019-03-29 2020-10-01 Lg Display Co. Ltd. Display apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015518A1 (en) * 2005-08-02 2007-02-08 Teijin Fibers Limited Speaker formed with screen as a unitary block
US20200314552A1 (en) * 2019-03-29 2020-10-01 Lg Display Co. Ltd. Display apparatus

Also Published As

Publication number Publication date
JPWO2022196353A1 (en) 2022-09-22
TW202241146A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
JP7506773B2 (en) Multilayer piezoelectric element and electroacoustic transducer
JP7137690B2 (en) Piezoelectric Films, Laminated Piezoelectric Elements and Electroacoustic Transducers
JP7265625B2 (en) Electroacoustic conversion film and electroacoustic transducer
JP7166428B2 (en) Electroacoustic transducer
JP7386324B2 (en) Laminated piezoelectric elements and electroacoustic transducers
JP7137689B2 (en) Piezoelectric Films, Laminated Piezoelectric Elements and Electroacoustic Transducers
WO2023047958A1 (en) Multilayer piezoelectric element and electroacoustic transducer
WO2022196353A1 (en) Electroacoustic converter
JP7286790B2 (en) Piezoelectric element
WO2023053931A1 (en) Piezoelectric element and piezoelectric speaker
JP7333410B2 (en) Laminated piezoelectric element
WO2022190804A1 (en) Projection screen
WO2023048022A1 (en) Piezoelectric element and piezoelectric speaker
WO2023053750A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023026726A1 (en) Piezoelectric film and piezoelectric element
WO2023153126A1 (en) Piezoelectric element and electroacoustic transducer
WO2022190729A1 (en) Multilayer piezoelectric element
WO2023053751A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023181699A1 (en) Electroacoustic transducer
WO2023149073A1 (en) Piezoelectric device
WO2023153280A1 (en) Piezoelectric film and laminated piezoelectric element
WO2024009774A1 (en) Image display device
WO2023021944A1 (en) Piezoelectric element and piezoelectric speaker
WO2023166892A1 (en) Electroacoustic transducer
WO2022064953A1 (en) Electroacoustic converter and image display device which can be rolled up

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506950

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771107

Country of ref document: EP

Kind code of ref document: A1