WO2022190804A1 - Projection screen - Google Patents

Projection screen Download PDF

Info

Publication number
WO2022190804A1
WO2022190804A1 PCT/JP2022/006316 JP2022006316W WO2022190804A1 WO 2022190804 A1 WO2022190804 A1 WO 2022190804A1 JP 2022006316 W JP2022006316 W JP 2022006316W WO 2022190804 A1 WO2022190804 A1 WO 2022190804A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
screen
support member
acoustic film
layer
Prior art date
Application number
PCT/JP2022/006316
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 香川
輝男 芦川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2023505251A priority Critical patent/JPWO2022190804A1/ja
Publication of WO2022190804A1 publication Critical patent/WO2022190804A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/02Spatial or constructional arrangements of loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present invention relates to a projection screen for projecting images.
  • Image projection systems that project and interfere images on a screen are used for conferences, home theaters, and the like.
  • audio as important as video is provided, for example, by speakers located behind and/or to the sides of the screen onto which the image is projected.
  • these systems required a space for installing speakers.
  • Patent Document 1 discloses a screen surface that displays image information, a piezoelectric layer formed on the back surface of the screen surface, an electrode that supplies power to the piezoelectric layer, and a modulator that modulates the supplied power according to an acoustic signal.
  • a screen having a circuit is described.
  • Patent Document 2 discloses a projection screen in which a speaker made of a piezoelectric acoustic film (piezoelectric film) having electrode films laminated on both sides is attached to either the back or front surface of a sheet-like screen body. Have been described.
  • a screen provided with a piezoelectric acoustic film on the back surface of a projection surface vibrates the entire surface of the screen by driving the piezoelectric acoustic film, and the vibration of the screen outputs sound. Therefore, a screen having such a piezoelectric acoustic film is in a state as if sound is being output from an image, and a high sense of realism can be obtained.
  • the sound is output only on the projection surface side of the image.
  • the entire surface of the screen vibrates, so that sound is output from the rear surface as well.
  • the sound output on the rear surface side wraps around to the projection surface side and is also output from the projection surface side.
  • the sound output from the back side is the sound of the phase opposite to that of the projection surface side. Therefore, when the sound output on the rear side reaches the projection surface side, the sound output on the projection surface side and the sound output on the projection surface side partially cancel each other, and when the image is observed on the projection surface side, the sound output decreases. be in a state like
  • An object of the present invention is to solve the problems of the prior art. To provide a projection screen capable of preventing a turnaround and a decrease in sound output on the projection surface side.
  • the present invention has the following configurations.
  • a screen body for projecting images a piezoelectric acoustic film attached to the surface of the screen body opposite to the image projection surface;
  • a projection screen comprising: a sound insulation sheet provided to cover a surface of a screen body opposite to a projection surface.
  • the projection screen according to [1] having a space between the screen body and the piezoelectric acoustic film and the sound insulating sheet.
  • a projection screen having a piezoelectric acoustic film attached to the surface side it is possible to prevent sound output from the rear side from reaching the projection surface side, so that when an image is observed on the projection surface side, , it is possible to prevent the voice output from being lowered.
  • FIG. 1 is a diagram conceptually showing an example of the projection screen of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG.
  • FIG. 3 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG. 1.
  • FIG. 4 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG.
  • FIG. 5 is a conceptual diagram for explaining the operation of the projection screen shown in FIG. 1.
  • FIG. FIG. 6 is a conceptual diagram for explaining the action of the projection screen shown in FIG.
  • FIG. 7 is a conceptual diagram for explaining the action of the projection screen shown in FIG.
  • FIG. 8 is a diagram conceptually showing an example of a piezoelectric acoustic film forming a piezoelectric element.
  • FIG. 1 is a diagram conceptually showing an example of a piezoelectric acoustic film forming a piezoelectric element.
  • FIG. 9 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film.
  • FIG. 10 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film.
  • FIG. 11 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film.
  • FIG. 12 is a conceptual diagram for explaining the projection screen shown in FIG.
  • FIG. 1 conceptually shows an example of the projection screen of the present invention.
  • the left drawing is a view of the projection screen of the present invention as seen from the rear side
  • the right drawing is a cross section taken along the line AA of the left drawing.
  • the back side indicates the surface side of the screen main body on which the image is projected, which is opposite to the projection surface of the image.
  • a projection screen 10 shown in FIG. 2 support members 54 , a tensioning mechanism 56 , a sound insulating sheet 59 and leg members 78 .
  • the rear view on the left side omits the sound insulation sheet 59 in order to clearly show the configuration of the projection screen 10.
  • a sound insulation sheet 59 is provided so as to cover the entire rear surface side of the screen body 50 (see FIG. 12). Also, in the cross-sectional view on the right side, hatching is omitted in order to clearly show the configuration of the projection screen 10 .
  • first and second in the first support member 52, the second support member 54, etc. are used for the sake of convenience in order to distinguish each member and to explain the projection screen 10 of the present invention. It is what we are doing. Therefore, the first and second parts of the supporting member or the like have no technical meaning, and are irrelevant to the position, usage condition, and the like.
  • the screen main body 50 is a known projection screen onto which images are projected.
  • the screen body 50 has a rectangular shape, one long side of which is supported by the first supporting member 52 and the other long side of which is supported by the second supporting member 54 .
  • the first support member 52 and the second support member 54 are detachably supported by a lifting mechanism 56 that brings the first support member 52 and the second support member 54 closer to each other and separates them from each other.
  • the tensioning mechanism 56 has a cylindrical first frame member 58 and a second frame member 60 . Both ends of the first frame member 58 and the second frame member 60 are engaged with bendable hinge members 62 .
  • the first support member 52 is engaged with the first frame member 58 and the second support member 54 is engaged with the second frame member 60, so that the first support member 52 and the second support member 54 It is detachably supported by the lifting mechanism 56 .
  • the first frame member 58 or first support member 52 and the second frame member 60 or second support member 54 are brought closer together (see FIG. 5), and as shown in FIG. Extending member 62 separates first frame member 58 or first support member 52 and second frame member 60 or second support member 54 .
  • a state in which the hinge member 62 is linearly extended and the first support member 52 and the second support member 54 are separated is a state in which the screen main body 50 is stretched.
  • Hinge member 62 is detachably supported by leg member 78 by engaging both ends of first frame member 58 and second frame member 60 with leg member 78 .
  • the leg members 78 are for supporting the screen main body 50 in an upright state during image projection. The above configuration will be described in detail later.
  • the screen body 50 is a known projection screen used for projecting images. Therefore, the screen main body 50 is formed of various materials such as resin such as vinyl chloride, paper such as Japanese paper, and cloth such as canvas, as long as it can project an image. Various sheet materials are available.
  • the screen body 50 is flexible and is wound around the first support member 52 and/or the second support member 54 when not in use.
  • the screen body 50 may be light transmissive or light blocking.
  • the screen main body 50 is light-shielding in that the projected image can be suitably displayed and the piezoelectric acoustic film 24 attached to the back surface can be prevented from being visually recognized by the viewer of the image. is preferred.
  • the screen body 50 has one long side supported by the first support member 52 and the other long side supported by the second support member 54 .
  • the first support member 52 is composed of a cylindrical main body 52a and a C-shaped cover 52b covering the main body 52a with the exception of a portion.
  • One long side of the screen main body 50 is supported by the first support member 52 by being sandwiched between the main body 52a and the C-shaped cover 52b.
  • the second support member 54 is similarly composed of a cylindrical main body 54a and a C-shaped cover 54b covering the main body except for a part (see FIG. 4).
  • the long side of the screen body 50 opposite to the side of the first support member 52 is similarly supported by the second support member 54 by being sandwiched between the main body 54a and the C-shaped cover 54b.
  • the first support member 52 and the second support member 54 are detachably supported by a lifting mechanism 56 that brings the first support member 52 and the second support member 54 closer to each other and separates them from each other.
  • the tensioning mechanism 56 has cylindrical first and second frame members 58 and 60 and two hinge members 62 .
  • the hinge member 62 has a plate-like first arm 62a and a plate-like second arm 62b.
  • the first arm 62a and the second arm 62b are rotatably connected by connecting one end thereof with a rotating shaft 62c.
  • the tensioning mechanism 56 engages one hinge member 62 near one end of the first frame member 58 and the second frame member 60, and one hinge member 62 near the other end of the first frame member 58 and the second frame member 60. By engaging another hinge member 62 to the , it becomes a square frame shape.
  • the first frame member 58 engages the first arms 62a of the hinge member 62 near both ends. Specifically, as conceptually shown in FIG. 3, the first frame member 58 has engaging members 58a near both ends. The engaging member 58a and the end of the first arm 62a of the hinge member 62 are engaged by the rotating shaft 62d, so that the first frame member 58 and the first arm 62a, that is, the hinge member 62 are rotated. movably engaged.
  • the second frame member 60 engages the second arms 62b of the hinge member 62 near both ends. Specifically, as conceptually shown in FIG. 4, the second frame member 60 has engaging members 60a near both ends.
  • the engaging member 60a and the end of the second arm 62b of the hinge member 62 are engaged by the rotation shaft 60f, so that the second frame member 60 and the second arm 62b, that is, the hinge member 62 are rotated.
  • movably engaged. 3 and 4 the first support member 52, the second support member 54, the first frame member 58, and the second frame member 60 are shown in cross section, but hatching is omitted for the sake of simplicity. ing.
  • the hinge member 62 can be fixed and released in a linearly extended state or a slightly bent state by a known method such as fitting of a concave portion and a convex portion, or a fixing member that moves in the longitudinal direction. It's becoming
  • the first frame member 58 is provided with fixing pins 58b at predetermined intervals in the longitudinal direction. Further, the main body 52a of the first support member 52 is provided with through holes 52c corresponding to the fixing pins 58b. By inserting the fixing pin 58 b of the first frame member 58 into the through hole 52 c of the first support member 52 , the first support member 52 is detachably supported by the first frame member 58 , that is, the lifting mechanism 56 .
  • the second frame member 60 is also provided with fixing pins 60b at predetermined intervals in the longitudinal direction. Further, the main body 54a of the second support member 54 is provided with through holes 54c corresponding to the fixing pins 60b. By inserting the fixing pin 60 b of the second frame member 60 into the through hole 54 c of the second support member 54 , the second support member 54 is detachably supported by the second frame member 60 , that is, the lifting mechanism 56 .
  • the first frame member 58 of the lifting mechanism 56 has a first support member 52 and a second support by adjusting the distance between the first support member 52 and the first frame member 58 .
  • a fine adjustment mechanism 80 is provided to adjust the tension of the screen body 50 by adjusting the distance to the member 54 .
  • the fine adjustment mechanism 80 will be detailed later.
  • the tensioning mechanism 56 that supports the first support member 52 and the second support member 54 is detachably supported by two leg members 78 at both ends of the first frame member 58 and the second frame member 60 .
  • the leg member 78 is a rod-shaped member erected at the installation position of the projection screen 10, and serves to support the screen main body 50 in an upright state during image projection.
  • a leg portion 78c is provided at the lower end of the leg member 78 in order to maintain the upright state when the lifting mechanism 56, that is, the screen body 50 is supported.
  • An upper support member 78a and a lower support member 78b are secured to the leg member 78 . Both the upper support member 78a and the lower support member 78b are bar-shaped.
  • the upper support member 78 a is inserted into the first frame member 58 of the hoisting mechanism 56 .
  • the lower support member 78b is inserted into the second frame member 60 of the hoisting mechanism 56. As shown in FIG.
  • the foot members 78 thereby support the tensioning mechanism 56 .
  • the upper support member 78a is fixed.
  • the lower support member 78b is detachably fixed by changing the height, that is, the position of the leg member 78 in the longitudinal direction.
  • FIG. 5 A method for raising the screen body 50 in the projection screen 10 will be described below with reference to the conceptual diagrams of FIGS. 5 to 7, the sound insulating sheet 59 is omitted in order to clearly show the configuration of the projection screen 10.
  • FIG. 5 A method for raising the screen body 50 in the projection screen 10 will be described below with reference to the conceptual diagrams of FIGS. 5 to 7, the sound insulating sheet 59 is omitted in order to clearly show the configuration of the projection screen 10.
  • the upper support members 78a of the leg members 78 are inserted into both ends of the first frame member 58 of the lifting mechanism 56, and the lifting mechanism 56 is supported by the standing leg members 78.
  • the screen body 50 is supported on one longitudinal side by the first supporting member 52 and on the other longitudinal side by the second supporting member 54, and is wound around the first supporting member 52 and/or the second supporting member 54. It is written. Spread the screen body 50 wound around the first support member 52 and/or the second support member 54, and insert the fixing pin 58b of the first frame member 58 into the through hole 52c of the first support member 52 (main body 52a). (see Figure 3). Further, the fixing pin 60b of the second frame member 60 is inserted into the through hole 54c of the second support member 54 (main body 54a) (see FIG. 4). Thereby, the first support member 52 and the second support member 54 , that is, the screen body 50 are supported by the lifting mechanism 56 .
  • the hinge member 62 of the lifting mechanism 56 is bent as shown in FIG.
  • the hinge member 62 is extended linearly.
  • the first frame member 58 and the second frame member 60 that is, the first support member 52 and the second support member 54 are separated, and the screen main body 50 is stretched.
  • the lower support member 78b is inserted into the second frame member 60, and the lower support member 78b is fixed to the leg member 78, thereby fixing the screen main body 50 in a stretched state.
  • the distance between the first support member 52 and the second support member 54 is adjusted by adjusting the distance between the first support member 52 and the first frame member 58.
  • a fine adjustment mechanism 80 is provided that adjusts to adjust the tension of the screen body 50 .
  • four fine adjustment mechanisms 80 are provided at equal intervals in the longitudinal direction.
  • the fine adjustment mechanism 80 is not limited, and any known method for adjusting the interval between two rod-shaped members arranged side by side in a direction orthogonal to the longitudinal direction can be used.
  • a method of using an adjustment screw 80a that is idle in the first frame member 58 and screwed into the first support member 52 (main body 52a) and a cam mechanism are used.
  • a method to be used is exemplified.
  • fine adjustment mechanisms 80 are provided as an example.
  • the present invention is not limited to this, and as long as the distance between the first support member 52 and the first frame member 58 can be uniformly adjusted in the longitudinal direction, the number of fine adjustment mechanisms 80 may be three or less, or five. It can be more than that.
  • the foot member 78, the lifting mechanism 56, the screen main body 50, the first support member 52 and the second support member 54 can be dismantled. Then, the screen body 50 can be wound around the first support member 52 and/or the second support member 54 . Further, in the first supporting member 52, the C-shaped cover 52b is removed from the main body 52a, and in the second supporting member 54, the C-shaped cover 54b is removed from the main body 54a. It can be removed from the support member 54 .
  • the lifting mechanism for the screen main body 50 is not limited to the illustrated example, and various known lifting mechanisms for the screen on which images are projected can be used. That is, the projection screen of the present invention is known as long as it has the screen main body 50, the piezoelectric acoustic film 24 attached to the back surface of the screen main body 50, and the sound insulation sheet 59 covering the back side of the screen main body. Various tensioning mechanisms are available for projection screens.
  • the piezoelectric acoustic film 24 is attached to the back surface of the screen body 50, that is, the surface opposite to the image projection surface.
  • two piezoelectric acoustic films 24 are attached to the screen main body 50 while being separated from each other in the longitudinal direction in order to reproduce sound in stereo.
  • the number of piezoelectric acoustic films 24 is not limited, and the number of piezoelectric acoustic films 24 may be one or three or more such as four.
  • the position where the piezoelectric acoustic film is attached to the screen main body 50 is also appropriately determined according to the size of the screen main body 50, the size of the piezoelectric acoustic film 24 in the surface direction of the screen main body 50, the number of the piezoelectric acoustic films 24, and the like. , should be set.
  • the piezoelectric acoustic film 24 vibrates the screen body 50 to output sound.
  • the piezoelectric acoustic film 24 is not limited, and is a known piezoelectric acoustic film that can be attached to the back side of the screen on which an image is projected and can vibrate the screen body 50 to output sound. 24 are available in a variety.
  • FIG. 8 conceptually shows an example of the piezoelectric acoustic film 24 in a sectional view.
  • hatching is omitted in order to simplify the drawing and clearly show the configuration.
  • cross section indicates a cross section in the thickness direction of the piezoelectric acoustic film.
  • the thickness direction of the piezoelectric acoustic film is the stacking direction of each layer.
  • the piezoelectric acoustic film 24 shown in FIG. 8 includes a piezoelectric layer 26, a first electrode layer 28 laminated on one side of the piezoelectric layer 26, and a first protective layer 32 laminated on the first electrode layer 28. , a second electrode layer 30 laminated on the other surface of the piezoelectric layer 26 , and a second protective layer 34 laminated on the second electrode layer 30 .
  • the piezoelectric layer 26 is not limited, and various known piezoelectric layers used for various piezoelectric acoustic films (piezoelectric films) can be used.
  • the piezoelectric layer 26 is preferably a polymer composite piezoelectric material as conceptually shown in FIG. 8, containing piezoelectric particles 40 in a polymer matrix 38 containing a polymer material. .
  • the polymer composite piezoelectric body (piezoelectric layer 26) preferably satisfies the following requirements.
  • normal temperature is 0 to 50°C.
  • Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness.
  • the speaker vibrates piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire diaphragm (polymer composite piezoelectric body) to vibrate as one, thereby reproducing sound. be. Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. Also, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency f 0 changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
  • the lowest resonance frequency f 0 of the speaker diaphragm is given by the following equation.
  • s is the stiffness of the vibration system and m is the mass.
  • the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
  • polymer solids have a viscoelastic relaxation mechanism, and as temperature rises or frequency falls, large-scale molecular motion causes a decrease (relaxation) in storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed.
  • the temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • the polymer composite piezoelectric body (piezoelectric layer 26), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is suppressed.
  • a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less.
  • the polymer material that forms the polymer matrix 38 preferably has a maximum loss tangent Tan ⁇ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature.
  • the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of the polymer material forming the polymer matrix 38 is 100 MPa or more at 0°C and 10 MPa or less at 50°C.
  • the polymer material that forms the polymer matrix 38 has a dielectric constant of 10 or more at 25°C.
  • a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so a large amount of deformation can be expected.
  • the polymer material in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
  • Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are preferably exemplified. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials.
  • Hybler 5127 manufactured by Kuraray Co., Ltd.
  • the piezoelectric layer 26 preferably uses a polymer material having a cyanoethyl group as the polymer matrix 38, and particularly preferably uses cyanoethylated PVA.
  • the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature".
  • These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
  • the polymer matrix 38 of the piezoelectric layer 26 may be made of a plurality of polymer materials, if necessary. That is, for the polymer matrix 38 constituting the polymer composite piezoelectric body, in addition to the above-described polymer material having viscoelasticity at room temperature, other materials may be used as necessary for the purpose of adjusting dielectric properties and mechanical properties. dielectric polymer material may be added.
  • dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
  • fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullul
  • polymers having cyanoethyl groups and synthetic rubbers such as nitrile rubbers and chloroprene rubbers are exemplified.
  • polymer materials having cyanoethyl groups are preferably used.
  • these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
  • thermoplastic resins such as vinyl chloride resins, polyethylene, polystyrene, methacrylic resins, polybutene and isobutylene, and phenolic resins are used for the purpose of adjusting the glass transition point Tg of the polymer matrix 38.
  • thermosetting resins such as urea resins, melamine resins, alkyd resins and mica may be added.
  • a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
  • the addition amount of the polymer material other than the polymer material having viscoelasticity at room temperature is not limited, but the proportion of the polymer matrix 38 is 30% by mass. It is preferable to: As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the polymer matrix 38, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 40 and the electrode layer can be improved. Favorable results can be obtained in terms of improvement and the like.
  • the polymer composite piezoelectric material that forms the piezoelectric layer 26 contains piezoelectric particles 40 in such a polymer matrix.
  • the piezoelectric particles 40 are dispersed in a polymer matrix, preferably uniformly (substantially uniformly).
  • the piezoelectric particles 40 are preferably ceramic particles having a perovskite or wurtzite crystal structure. Examples of ceramic particles constituting the piezoelectric particles 40 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
  • the particle size of the piezoelectric particles 40 may be appropriately selected according to the size and application of the piezoelectric acoustic film 24 .
  • the particle size of the piezoelectric particles 40 is preferably 1 to 10 ⁇ m.
  • the quantitative ratio of the polymer matrix 38 and the piezoelectric particles 40 in the piezoelectric layer 26 depends on the size and thickness of the piezoelectric acoustic film 24 in the plane direction, the application of the piezoelectric acoustic film 24, and the piezoelectric acoustic film. 24 may be appropriately set in accordance with the characteristics required for 24 .
  • the volume fraction of the piezoelectric particles 40 in the piezoelectric layer 26 is preferably 30-80%, more preferably 50-80%.
  • the thickness of the piezoelectric layer 26 is not limited, and may be appropriately adjusted according to the size of the piezoelectric acoustic film 24, the application of the piezoelectric acoustic film 24, the properties required of the piezoelectric acoustic film 24, and the like. , should be set.
  • the thickness of the piezoelectric layer 26 is preferably 8-300 ⁇ m, more preferably 8-200 ⁇ m, still more preferably 10-150 ⁇ m, particularly preferably 15-100 ⁇ m.
  • the piezoelectric layer 26 is preferably polarized (poled) in the thickness direction.
  • the polarization treatment will be detailed later.
  • the piezoelectric layer 26 is a polymer containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. It is not limited to composite piezoelectrics. That is, in the piezoelectric acoustic film 24, various known piezoelectric layers used for piezoelectric films can be used for the piezoelectric layer 26. FIG.
  • a high-performance dielectric material containing similar piezoelectric particles 40 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used.
  • Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, and piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
  • the screen main body 50 is hard against vibrations of 20 Hz to 20 kHz and behaves softly against slow vibrations of several Hz or less, and has excellent flexibility, which provides excellent acoustic characteristics.
  • a piezoelectric acoustic film 24 that suitably follows winding, a polymer containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, is used.
  • a composite piezoelectric is preferably used as the piezoelectric layer 26 .
  • the piezoelectric acoustic film 24 shown in FIG. 8 has the second electrode layer 30 on one surface of the piezoelectric layer 26 and the second protective layer 34 on the surface of the second electrode layer 30 . Also, the piezoelectric layer 26 has a first electrode layer 28 on the other surface thereof, and a first protective layer 32 on the surface of the first electrode layer 28 . In the piezoelectric acoustic film 24, the first electrode layer 28 and the second electrode layer 30 form an electrode pair.
  • both surfaces of the piezoelectric layer 26 are sandwiched between electrode pairs, that is, the first electrode layer 28 and the second electrode layer 30, and the first protective layer 32 and the second electrode layer 30 are sandwiched between the electrode pairs. It has a structure sandwiched between two protective layers 34 . Thus, the regions sandwiched by the first electrode layer 28 and the second electrode layer 30 are driven according to the applied voltage.
  • first and second in the first electrode layer 28 and the second electrode layer 30 are used for the sake of convenience in describing the piezoelectric acoustic film 24. As shown in FIG. Therefore, the first and second parts of the piezoelectric acoustic film 24 have no technical significance and are irrelevant to the actual usage conditions.
  • the piezoelectric acoustic film 24 has an adhesive layer for attaching the electrode layer and the piezoelectric layer 26 and an adhesive layer for attaching the electrode layer and the protective layer.
  • the adhesive may be an adhesive or an adhesive.
  • a polymer material obtained by removing the piezoelectric particles 40 from the piezoelectric layer 26, ie, the same material as the polymer matrix 38, can be suitably used.
  • the adhesive layer may be provided on both the first electrode layer 28 side and the second electrode layer 30 side, or may be provided on only one of the first electrode layer 28 side and the second electrode layer 30 side. good.
  • the first protective layer 32 and the second protective layer 34 cover the first electrode layer 28 and the second electrode layer 30, and impart appropriate rigidity and mechanical strength to the piezoelectric layer 26. playing a role. That is, in the piezoelectric acoustic film 24, the piezoelectric layer 26 containing the polymer matrix 38 and the piezoelectric particles 40 exhibits excellent flexibility against slow bending deformation, but may may lack rigidity and mechanical strength.
  • the piezoelectric acoustic film 24 is provided with a first protective layer 32 and a second protective layer 34 to compensate for this.
  • the first protective layer 32 and the second protective layer 34 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 32 and the second protective layer 34, both members are collectively referred to as protective layers.
  • various sheet materials can be used.
  • various resin films are preferably exemplified.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyetherimide
  • PI polyimide
  • PA polyamide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • resin films made of cyclic olefin resins are preferably used.
  • the thickness of the protective layer is also not limited. Also, the thicknesses of the first protective layer 32 and the second protective layer 34 are basically the same, but may be different. If the rigidity of the protective layer is too high, it not only restricts expansion and contraction of the piezoelectric layer 26, but also impairs its flexibility. Therefore, the thinner the protective layer, the better, except when mechanical strength and good handling properties as a sheet are required.
  • the thickness of each of the first protective layer 32 and the second protective layer 34 is not more than twice the thickness of the piezoelectric layer 26, favorable results can be achieved in terms of ensuring both rigidity and appropriate flexibility. is obtained.
  • the thickness of the piezoelectric layer 26 is 50 ⁇ m and the first protective layer 32 and the second protective layer 34 are made of PET, the thicknesses of the first protective layer 32 and the second protective layer 34 are each preferably 100 ⁇ m or less. , 50 ⁇ m or less, and more preferably 25 ⁇ m or less.
  • the first protective layer 32 and the second protective layer 34 are provided as a preferred embodiment, and are not essential constituents. That is, in the electroacoustic transducer of the present invention, the piezoelectric acoustic film 24 may have only the first protective layer 32 or only the second protective layer 34. It may be an object that does not have However, considering the strength, handleability, protection of the electrode layer, etc. of the piezoelectric acoustic film 24, the piezoelectric acoustic film preferably has both the first protective layer 32 and the second protective layer 34 as shown in the figure.
  • the first electrode layer 28 is provided between the piezoelectric layer 26 and the first protective layer 32
  • the second electrode layer 30 is provided between the piezoelectric layer 26 and the second protective layer 34, formed respectively.
  • the first electrode layer 28 and the second electrode layer 30 are provided for applying an electric field to the piezoelectric acoustic film 24 (piezoelectric layer 26).
  • the first electrode layer 28 and the second electrode layer 30 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 28 and the second electrode layer 30, both members are collectively referred to as electrode layers.
  • the material for forming the electrode layer is not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, molybdenum, alloys thereof, indium tin oxide, and PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfone Acid) and other conductive polymers are exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferred. Among them, copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
  • the method of forming the electrode layer is not limited, and a vapor phase deposition method (vacuum film formation method) such as vacuum deposition and sputtering, a method of forming a film by plating, a method of attaching a foil formed of the above materials, a coating method, or the like.
  • a vapor phase deposition method vacuum film formation method
  • a method of forming a film by plating a method of attaching a foil formed of the above materials, a coating method, or the like.
  • a thin film of copper or aluminum formed by vacuum deposition is preferably used as the electrode layer because the flexibility of the piezoelectric acoustic film 24 can be ensured.
  • a copper thin film formed by vacuum deposition is particularly preferably used.
  • the thicknesses of the first electrode layer 28 and the second electrode layer 30 are not limited. Also, the thicknesses of the first electrode layer 28 and the second electrode layer 30 are basically the same, but may be different.
  • the protective layer described above if the rigidity of the electrode layer is too high, not only will the expansion and contraction of the piezoelectric layer 26 be restricted, but also the flexibility will be impaired. Therefore, the thinner the electrode layer, the better, as long as the electrical resistance does not become too high.
  • the thickness of the electrode layer and the Young's modulus is less than the product of the thickness of the protective layer and the Young's modulus, the flexibility is not greatly impaired, which is preferable.
  • the protective layer is PET (Young's modulus: about 6.2 GPa) and the electrode layer is made of copper (Young's modulus: about 130 GPa)
  • the thickness of the protective layer is 25 ⁇ m
  • the thickness of the electrode layer is 1.2 ⁇ m or less is preferable, 0.3 ⁇ m or less is more preferable, and 0.1 ⁇ m or less is particularly preferable.
  • the piezoelectric layer 26 is sandwiched between the first electrode layer 28 and the second electrode layer 30, and in a preferred embodiment, this laminate is sandwiched between the first protective layer 32 and the second protective layer 34.
  • the loss tangent (Tan[delta]) at a frequency of 1 Hz by dynamic viscoelasticity measurement has a maximum value of 0.1 or more at room temperature.
  • the piezoelectric acoustic film 24 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Accordingly, the piezoelectric acoustic film 24 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
  • E' storage elastic modulus
  • the piezoelectric acoustic film 24 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz measured by dynamic viscoelasticity measurement at 0° C. of 1.0 ⁇ 10 6 to 2.0 ⁇ 10 6 N/. It is preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N/m at 50° C. m.
  • E′ thickness and storage elastic modulus
  • the piezoelectric acoustic film 24 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25°C and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement.
  • FIG. 9 An example of a method for manufacturing the piezoelectric acoustic film 24 will be described below with reference to FIGS. 9 to 11.
  • FIG. 9 a laminated body 42b conceptually shown in FIG. 9 is prepared in which the second electrode layer 30 is formed on the surface of the second protective layer 34 . Furthermore, a laminated body 42a conceptually shown in FIG. 11 is prepared in which the first electrode layer 28 is formed on the surface of the first protective layer 32. Next, as shown in FIG.
  • the laminate 42b may be produced by forming a copper thin film or the like as the second electrode layer 30 on the surface of the second protective layer 34 by vacuum deposition, sputtering, plating, or the like.
  • the laminate 42a may be produced by forming a copper thin film or the like as the first electrode layer 28 on the surface of the first protective layer 32 by vacuum deposition, sputtering, plating, or the like.
  • a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the laminated body 42b and/or the laminated body 42a.
  • the laminate 42b and the laminate 42a may be the same or different.
  • a protective layer with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used as the separator.
  • the separator may be removed after the electrode layer and protective layer are thermocompression bonded.
  • the piezoelectric layer 26 is formed on the second electrode layer 30 of the laminate 42b, and the piezoelectric laminate 46 is formed by laminating the laminate 42b and the piezoelectric layer 26. make.
  • the piezoelectric layer 26 may be formed by a known method suitable for the piezoelectric layer 26 .
  • a piezoelectric layer (polymer composite piezoelectric layer) in which piezoelectric particles 40 are dispersed in a polymer matrix 38 shown in FIG. 8 is manufactured as follows. First, a polymer material such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 40 such as PZT particles are added and stirred to prepare a paint.
  • Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone, and cyclohexanone can be used.
  • a piezoelectric laminate 46 as shown in FIG. 9 may be produced by extruding a sheet onto the body 42b and cooling.
  • the polymer matrix 38 may be added with a polymer piezoelectric material such as PVDF in addition to the polymer material having viscoelasticity at room temperature.
  • a polymer piezoelectric material such as PVDF
  • the polymeric piezoelectric materials to be added to the paint may be dissolved.
  • the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
  • the piezoelectric layer 26 may be calendered, if desired. Calendering may be performed once or multiple times. As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
  • the piezoelectric layer 26 of the piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 formed on the second electrode layer 30 is subjected to a polarization treatment ( polling).
  • the method of polarization treatment of the piezoelectric layer 26 is not limited, and known methods can be used.
  • electric field poling in which a DC electric field is directly applied to an object to be polarized, is exemplified.
  • the first electrode layer 28 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 28 and the second electrode layer 30.
  • the piezoelectric acoustic film 24 is manufactured, the polarization treatment is performed not in the surface direction of the piezoelectric layer 26 but in the thickness direction.
  • the previously prepared laminate 42 a is laminated on the piezoelectric layer 26 side of the piezoelectric laminate 46 with the first electrode layer 28 facing the piezoelectric layer 26 . Further, this laminate is thermocompression bonded using a heat press device, a heating roller, etc., with the first protective layer 32 and the second protective layer 34 sandwiched between them, thereby forming the piezoelectric laminate 46 and the laminate 42a. to paste together.
  • the piezoelectric layer 26, the first electrode layer 28 and the second electrode layer 30 provided on both surfaces of the piezoelectric layer 26, and the first protective layer 32 and the second protective layer 34 formed on the surface of the electrode layer A piezoelectric acoustic film 24 is produced.
  • the piezoelectric acoustic film 24 produced by performing such a production process is polarized in the thickness direction rather than in the surface direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric acoustic film 24 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a driving voltage is applied.
  • the electrode layer of the piezoelectric acoustic film 24 is connected to a lead electrode for electrical connection with an external device such as a power supply, and the lead wire is connected to a connection wire 64 having a speaker amplifier connection portion 64a. be.
  • the method of connecting the electrode layers and the extraction electrodes there are no restrictions on the method of connecting the electrode layers and the extraction electrodes, and various methods can be used.
  • a method of inserting a sheet-like lead electrode between the electrode layer and the piezoelectric layer and connecting the connection wiring 64 to the lead electrode is exemplified.
  • the extraction electrode may be inserted between the electrode layer and the protective layer.
  • the connection wiring 64 may be inserted directly between the electrode layer and the piezoelectric layer or between the electrode layer and the protective layer.
  • Another method is to form a through hole in the protective layer, provide an electrode connection member formed of a metal paste such as silver paste so as to fill the through hole, and provide a lead electrode in this electrode connection member.
  • a method is exemplified in which a part of the protective layer and the electrode layer protrudes from the piezoelectric layer in the plane direction, and the lead electrode is connected to the protruded electrode layer.
  • the connection between the extraction electrode and the electrode layer may be performed by a known method such as a method using a metal paste such as silver paste, a method using solder, or a method using a conductive adhesive.
  • suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
  • Such a piezoelectric acoustic film 24 is attached to the screen main body 50 with an adhesive (not shown).
  • various known adhesive materials can be used as long as they can adhere the screen main body 50 and the piezoelectric acoustic film 24 together. Therefore, even a layer made of an adhesive (adhesive), which has fluidity when pasted together and then becomes a solid, is a gel-like (rubber-like) soft solid when pasted together.
  • a layer made of an adhesive (adhesive material) that does not change its gel state after that, or a layer made of a material having the characteristics of both an adhesive and an adhesive may be used.
  • the adhesive material may be formed by applying an adhesive agent having fluidity such as a liquid, or may be formed using a sheet-like adhesive agent.
  • the piezoelectric acoustic film 24 is obtained by sandwiching the piezoelectric layer 26 between the first electrode layer 28 and the second electrode layer 30 .
  • Piezoelectric layer 26 preferably has piezoelectric particles 40 in a polymer matrix 38 .
  • piezoelectric layer 26 comprises piezoelectric particles 40 dispersed in polymer matrix 38 .
  • the piezoelectric particles 40 are generated according to the applied voltage. Expands and contracts in the direction of polarization. As a result, the piezoelectric acoustic film 24 (piezoelectric layer 26) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric acoustic film 24 also expands and contracts in the plane direction. This expansion and contraction is about 0.01 to 0.1%. As described above, the thickness of the piezoelectric layer 26 is preferably about 10-300 ⁇ m.
  • the expansion and contraction in the thickness direction is as small as about 0.3 ⁇ m at maximum.
  • the piezoelectric acoustic film 24, that is, the piezoelectric layer 26, has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric acoustic film 24 is 20 cm, the piezoelectric acoustic film 24 expands and contracts by a maximum of about 0.2 mm due to voltage application.
  • the expansion and contraction of the piezoelectric acoustic film 24 bends the screen body 50, and as a result, the screen body 50 vibrates in the thickness direction.
  • the thickness direction is, in other words, a direction perpendicular to the surface direction of the screen body 50 .
  • the vibration in the thickness direction causes the screen body 50 to output sound. That is, the screen body 50 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric acoustic film 24 and outputs sound according to the driving voltage applied to the piezoelectric acoustic film 24 .
  • the preferable thickness of the piezoelectric layer 26 is at most about 300 ⁇ m.
  • the piezoelectric acoustic film 24 using the piezoelectric layer 26, which is a polymeric composite piezoelectric material has very good flexibility. Therefore, the piezoelectric acoustic film 24 is very thin and has good flexibility. Therefore, by using such a piezoelectric acoustic film 24, the piezoelectric acoustic film 24 suitably follows the winding of the screen body 50 when the screen body 50 is wound. As a result, the screen body 50 to which the piezoelectric acoustic film 24 is adhered can be suitably wound.
  • the piezoelectric acoustic film is not limited to a single layer as in the illustrated example, and may be a laminate of a plurality of piezoelectric acoustic films 24 .
  • a plurality of piezoelectric acoustic films 24 are laminated, a plurality of cut sheet-shaped piezoelectric acoustic films 24 may be laminated, or as described in, for example, International Publication No. 2020/095812.
  • a plurality of layers may be laminated by folding one piezoelectric acoustic film 24 one or more times.
  • the piezoelectric acoustic film 24 is very thin and has good flexibility. Therefore, even a laminate obtained by laminating a plurality of layers has good flexibility and can be suitably wound.
  • the piezoelectric acoustic films 24 adjacent to each other by lamination are adhered with an adhesive.
  • the adhesive has fluidity when it is pasted together, and then becomes solid. It may be an adhesive that does not change its state, or it may be made of a material that has the characteristics of both an adhesive and an adhesive. However, it is preferable to use an adhesive that finally becomes a solid as the sticking agent in that the expansion and contraction of the laminated piezoelectric acoustic film 24 can be transmitted appropriately without loss.
  • the projection screen 10 of the present invention is provided with the sound insulating sheet 59 covering the rear side of the screen body 50 as conceptually shown in the sectional view (right side) of FIG. 1 and FIG. Since the projection screen 10 of the present invention has such a sound insulation sheet 59, the reverse phase sound from the back side of the screen main body 50 wraps around to the projection surface side, and part of the sound output from the projection surface side to prevent it from canceling out with
  • the screen provided with the piezoelectric acoustic film on the back surface of the projection surface vibrates the entire surface of the screen due to the piezoelectric acoustic film, and the vibration of the screen outputs sound. Therefore, the screen is in a state in which sound is output from the screen, and sound with a high degree of realism can be output.
  • the sound of the opposite phase is also output from the back side and wraps around to the projection surface side. Since this anti-phase sound partially cancels out the sound output on the projection surface side, the sound output decreases when the image is observed on the projection surface side.
  • the projection screen 10 of the present invention is provided with a sound insulating sheet 59 covering the rear side of the screen main body 50 .
  • the sound insulation sheet 59 is attached to the first support member 52 and the second support member 54 with Velcro, and covers the entire surface of the screen body 50 .
  • the projection screen 10 of the present invention has such a sound insulation sheet 59, the sound insulation sheet 59 insulates the sound of the opposite phase output from the back side of the screen main body 50, and the sound of the reverse phase output from the back side is blocked. To prevent phase sound from going around to the projection surface side.
  • the projection screen 10 of the present invention when viewed from the projection side of the projection screen 10, sound pressure reduction due to cancellation of sound is suppressed, and images with appropriate output audio can be viewed. be able to.
  • the sound insulating sheet 59 is not limited, and various known sheet-like materials can be used.
  • various sheet-like materials used as the screen main body 50 made of resin such as vinyl chloride, paper such as Japanese paper, and cloth such as canvas cloth are exemplified.
  • the screen body 50 and the sound insulation sheet 59 may be the same or different.
  • a sheet-like material made of a porous material such as rubber or urethane foam, or a non-woven fabric such as felt can be used as the sound insulation sheet 59.
  • the screen body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59 do not come into contact with each other.
  • the screen body 50 and/or the piezoelectric acoustic film 24 and the sound insulation sheet 59 are in contact with each other, the sound insulation sheet 59 will also vibrate. As a result, it is not possible to prevent the opposite phase sound generated on the back side of the screen main body 50 from going around to the projection surface side, and part of the sound output on the projection surface side is canceled. On the other hand, since the screen main body 50 and the piezoelectric acoustic film 24 are separated from the sound insulation sheet 59, the sound insulation sheet 59 is prevented from vibrating, and the opposite phase sound is prevented from reaching the projection surface side. can be more suitably prevented.
  • the size of the gap between the screen body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59 is not limited. and the sound insulation sheet 59 are kept apart. Therefore, the distance between the screen main body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59 is determined according to the device configuration and the like, while the screen main body 50 vibrates and outputs sound. 24 and the sound insulation sheet 59 may be set appropriately.
  • the sound insulation sheet 59 may be stretched up with a certain amount of tension, or may be fixed in a loosened state where no tension is applied. .
  • the sound insulation sheet 59 is preferably detachable. That is, the projection screen 10 preferably has a mechanism for attaching and detaching the sound insulation sheet. In the illustrated example, the sound insulation sheet 59 is detachably fixed to the first support member 52 and the second support member 54 with Velcro, as described above.
  • the screen body 50 is removed from the lifting mechanism 56 together with the first support member 52 and the second support member 54, and the first support member 52 and/or the second support member 54 are removed. It is wound on member 54 .
  • the screen body 50 and the sound insulation sheet 59 must be wound together. It is difficult to wind the screen body 50 and the sound insulation sheet 59 together. Moreover, depending on the winding method, the screen body 50 may be wrinkled, folded, or torn. On the other hand, by making the sound insulation sheet 59 detachable, the screen body 50 and the sound insulation sheet 59 can be separately wound up, making it easier to wind them up and preventing wrinkles in the screen body 50. It is possible to suitably prevent inconvenience such as entering.
  • the method of making the sound insulating sheet 59 detachable is not limited to the method using Velcro, and various known methods of making the sheet-like material detachable can be used. is. Examples include a method using a hook (hook-shaped member) and a ring (hole) for hooking the hook, a method using a magnet, and a method using meshing of unevenness provided on a sheet.
  • the sound insulation sheet 59 is provided so as to cover the entire rear surface of the screen body 50 .
  • the present invention is not limited to this, and the sound insulation sheet 59 may cover a portion of the back surface of the screen body 50 .
  • the sound insulation sheet 59 preferably covers the entire back surface of the screen body 50 in order to suitably prevent the opposite phase sound generated on the back side of the screen body 50 from reaching the projection surface.
  • a piezoelectric acoustic film was produced by the method shown in FIGS. First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
  • DMF dimethylformamide
  • ⁇ PZT particles ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ 30 parts by mass ⁇ DMF ⁇ 70 parts by mass
  • Mixed powder obtained by wet-mixing in a ball mill was fired at 800° C. for 5 hours and then pulverized.
  • a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.1 ⁇ m on a PET film with a thickness of 4 ⁇ m. That is, in this example, the first electrode layer and the second electrode layer are 0.1 m-thick copper-evaporated thin films, and the first protective layer and the second protective layer are 4 ⁇ m-thick PET films. Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. The paint was applied so that the thickness of the coating film after drying was 40 ⁇ m. Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C.
  • the produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
  • a sheet-like product obtained by vapor-depositing the same thin film on a PET film was laminated with the first electrode layer (copper thin film side) facing the piezoelectric layer on the laminate in which the piezoelectric layer had been subjected to the polarization treatment.
  • the laminate of the laminate and the sheet-like material is thermocompressed at a temperature of 120° C. using a laminator device to adhere and bond the composite piezoelectric body and the first electrode layer, as shown in FIG.
  • a piezoelectric acoustic film as shown in was produced.
  • Example 1 A vinyl chloride screen body of 1200 ⁇ 1600 mm was prepared. Also, the produced piezoelectric acoustic film was cut into squares of 120 ⁇ 120 mm. This screen body was divided into two parts in the longitudinal direction, and a piezoelectric acoustic film was adhered to the center of each area. The piezoelectric acoustic film was attached using a double-sided adhesive tape. A projection screen as shown in FIGS. 1 and 12 was produced using the screen main body to which the piezoelectric acoustic film was adhered. The same sound insulating sheet as used for the screen main body was used, and was fixed to the first supporting member and the second supporting member with Velcro to cover the entire rear surface of the screen main body.
  • this projection screen has an attachment/detachment mechanism for attaching/detaching the sound insulating sheet. Further, a space was provided between the piezoelectric acoustic film and the screen main body and the sound insulating sheet so that the two do not come into contact with each other.
  • Example 2 A projection screen was produced in the same manner as in Example 1, except that the screen body was divided into four equal parts in the lateral direction and the longitudinal direction, and the same piezoelectric acoustic film was adhered to each region.
  • Example 3 A projection screen was produced in the same manner as in Example 1, except that Japanese paper was used as the screen body and the sound insulation sheet.
  • Example 4 A projection screen was produced in the same manner as in Example 1, except that canvas was used as the screen body and the sound insulation sheet.
  • Example 5 The same procedure as in Example 1 was performed, except that the positions where the sound insulation sheets were attached to the first support member and the second support member were changed so that no space was provided between the piezoelectric acoustic film and the sound insulation sheet, and the two were brought into contact with each other. A projection screen was made.
  • Example 6 A projection screen was produced in the same manner as in Example 1, except that an adhesive was used to prevent the sound insulation sheet from being removed from the first support member and the second support member.
  • Example 1 A projection screen was produced in the same manner as in Example 1, except that the sound insulating sheet was not provided.
  • the produced projection screen was dismantled into the leg members, the tensioning mechanism, the screen main body, the first supporting member and the second supporting member as described above. Furthermore, in the case where the sound insulation sheet is detachable, the sound insulation sheet is removed from the first support member and the second support member. After that, the screen body was wound around the first supporting member. In addition, the winding was performed manually, and was wound so as not to generate a gap to the extent that winding misalignment did not occur easily. After the screen body was wound up, it was allowed to stand still for one day. After that, the wound screen body was unfolded and the presence or absence of wrinkles and folds was evaluated. A when no wrinkles or folds were found on the screen body, B when wrinkles and folds are found on the screen body, and evaluated. Results are shown in the table below.
  • the noise is higher than that of Comparative Example 1, which is the conventional projection screen without the sound insulation sheet.
  • pressure can be obtained.
  • a higher sound pressure can be obtained by providing a space between the screen body and the piezoelectric acoustic film and the sound insulating sheet.
  • the sound insulation sheet since the sound insulation sheet has a mechanism for attaching and detaching the sound insulation sheet, the sound insulation sheet can be removed and the screen can be wound up when the screen is not in use. It is possible to prevent wrinkles or the like from entering the screen. From the above results, the effect of the present invention is clear.
  • It can be suitably used for projecting video with audio output.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

The present invention addresses the problem of preventing, in a projection screen in which a piezoelectric acoustic film is adhered to the rear surface-side, audio output at the rear surface-side from wrapping around to the projection surface-side. The problem is solved by having a screen body, a piezoelectric acoustic film adhered to the surface on the reverse side of the video projection surface of the screen body, and a sound-insulating sheet that is provided so as to cover the surface on the reverse side of the projection surface of the screen body.

Description

投影用スクリーンprojection screen
 本発明は、映像を投影するための投影用スクリーンに関する。 The present invention relates to a projection screen for projecting images.
 スクリーンに映像を投影して干渉する画像投影システムが、会議およびホームシアターなどに利用されている。
 このような画像投影システムにおいて、映像と同様に重要な音声は、例えば、画像が投影されるスクリーンの裏側、および/または、スクリーンの横に配置されたスピーカーによって提供される。
 しかしながら、これらのシステムでは、スピーカーを設置するためのスペースが必要であった。
2. Description of the Related Art Image projection systems that project and interfere images on a screen are used for conferences, home theaters, and the like.
In such image projection systems, audio as important as video is provided, for example, by speakers located behind and/or to the sides of the screen onto which the image is projected.
However, these systems required a space for installing speakers.
 これに対して、映像を投影されるスクリーンの背面に圧電音響フィルムを貼着し、この圧電音響フィルムによってスクリーンを振動させることにより、スクリーンから音声を出力する方法も知られている。 On the other hand, a method is also known in which sound is output from the screen by attaching a piezoelectric acoustic film to the back of the screen on which the image is projected and vibrating the screen with the piezoelectric acoustic film.
 例えば、特許文献1には、画像情報を表示するスクリーン面と、スクリーン面の背面に形成された圧電層と、圧電層に電力を供給する電極と、供給する電力を音響信号にしたがって変調する変調回路とを有するスクリーンが記載されている。
 特許文献2には、両面に電極膜が積層された圧電音響フィルム(圧電性フィルム)からなるスピーカーが、シート状のスクリーン本体の背面または前面のいずれかに貼着されている、映写用スクリーンが記載されている。
For example, Patent Document 1 discloses a screen surface that displays image information, a piezoelectric layer formed on the back surface of the screen surface, an electrode that supplies power to the piezoelectric layer, and a modulator that modulates the supplied power according to an acoustic signal. A screen having a circuit is described.
Patent Document 2 discloses a projection screen in which a speaker made of a piezoelectric acoustic film (piezoelectric film) having electrode films laminated on both sides is attached to either the back or front surface of a sheet-like screen body. Have been described.
特開2006-339954号公報JP 2006-339954 A 特開2007-187976号公報JP 2007-187976 A
 投影面の背面に圧電音響フィルムを設けたスクリーンは、圧電音響フィルムを駆動することで、スクリーン全面が振動し、このスクリーンの振動により、音声を出力する。
 そのため、このような圧電音響フィルムを有するスクリーンでは、あたかも画像から音声が出力されているような状態となり、高い臨場感が得られる。
A screen provided with a piezoelectric acoustic film on the back surface of a projection surface vibrates the entire surface of the screen by driving the piezoelectric acoustic film, and the vibration of the screen outputs sound.
Therefore, a screen having such a piezoelectric acoustic film is in a state as if sound is being output from an image, and a high sense of realism can be obtained.
 ここで、実際に映像を鑑賞する際には、音声は、映像の投影面側のみに出力されるのが好ましい。ところが、本発明者らの検討によれば、スクリーンの裏面に圧電音響フィルムを貼着した構成では、スクリーン全面が振動するので、背面側からも音声が出力される。
 背面側で出力された音声は、投影面側に回り込んで、投影面側からも出力される。
Here, when actually viewing an image, it is preferable that the sound is output only on the projection surface side of the image. However, according to the study of the present inventors, in the configuration in which the piezoelectric acoustic film is attached to the rear surface of the screen, the entire surface of the screen vibrates, so that sound is output from the rear surface as well.
The sound output on the rear surface side wraps around to the projection surface side and is also output from the projection surface side.
 背面側から出力される音声は、投影面側とは逆位相の音声である。
 従って、背面側で出力された音声が投影面側に回り込むと、投影面側で出力する音声と一部が打ち消し合って、投影面側において映像を観察した際に、音声の出力が下がってしまうような状態になる。
The sound output from the back side is the sound of the phase opposite to that of the projection surface side.
Therefore, when the sound output on the rear side reaches the projection surface side, the sound output on the projection surface side and the sound output on the projection surface side partially cancel each other, and when the image is observed on the projection surface side, the sound output decreases. be in a state like
 本発明の目的は、このような従来技術の問題点を解決することにあり、スクリーンの背面側に圧電音響フィルムを貼着した投影用スクリーンにおいて、背面側で出力される音声が投影面側に回り込むことを防止し、投影面側における音声の出力が低下することを防止できる投影用スクリーンを提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art. To provide a projection screen capable of preventing a turnaround and a decrease in sound output on the projection surface side.
 このような目的を達成するために、本発明は、以下の構成を有する。
 [1] 映像を投影するためのスクリーン本体と、
 スクリーン本体の映像の投影面と逆側の面に貼着される圧電音響フィルムと、
 スクリーン本体の投影面と逆側の面を覆って設けられる、遮音シートとを有することを特徴とする投影用スクリーン。
 [2] スクリーン本体および圧電音響フィルムと、遮音シートとの間に、空間を有する、[1]に記載の投影用スクリーン。
 [3] 遮音シートが着脱可能である、[1]または[2]に記載の投影用スクリーン。
 [4] 圧電音響フィルムが可撓性を有する、[1]~[3]のいずれかに記載の投影用スクリーン。
 [5] スクリーン本体の1つの辺を支持する第1支持部材、および、スクリーン本体の第1支持部材が支持する辺と対向する辺を支持する第2支持部材と、
 第1支持部材と第2支持部材とを近接および離間する張上げ機構とを有する、[1]~[4]のいずれかに記載の投影用スクリーン。
 [6] 張上げ機構によって第1支持部材と第2支持部材とを離間した状態で、第1支持部材と第2支持部材との距離を調節する微調節機構を有する、[5]に記載の投影用スクリーン。
 [7] 圧電音響フィルムが、圧電体層と、圧電体層の両面に設けられた電極層とを有する、[1]~[6]のいずれかに記載の投影用スクリーン。
 [8] 圧電体層が、高分子材料中に圧電体粒子を有する高分子複合圧電体である、[7]に記載の投影用スクリーン。
 [9] 高分子複合圧電体の高分子材料が、シアノエチル化ポリビニルアルコールである、[8]に記載の投影用スクリーン。
In order to achieve such an object, the present invention has the following configurations.
[1] A screen body for projecting images;
a piezoelectric acoustic film attached to the surface of the screen body opposite to the image projection surface;
A projection screen, comprising: a sound insulation sheet provided to cover a surface of a screen body opposite to a projection surface.
[2] The projection screen according to [1], having a space between the screen body and the piezoelectric acoustic film and the sound insulating sheet.
[3] The projection screen according to [1] or [2], wherein the sound insulation sheet is detachable.
[4] The projection screen according to any one of [1] to [3], wherein the piezoelectric acoustic film is flexible.
[5] a first supporting member that supports one side of the screen body, and a second supporting member that supports a side of the screen body opposite to the side supported by the first supporting member;
The projection screen according to any one of [1] to [4], which has a tensioning mechanism that brings the first support member and the second support member closer to each other and separates them from each other.
[6] The projection according to [5], which has a fine adjustment mechanism for adjusting the distance between the first support member and the second support member while the first support member and the second support member are separated by the lifting mechanism. screen for.
[7] The projection screen according to any one of [1] to [6], wherein the piezoelectric acoustic film has a piezoelectric layer and electrode layers provided on both sides of the piezoelectric layer.
[8] The projection screen of [7], wherein the piezoelectric layer is a polymeric composite piezoelectric body having piezoelectric particles in a polymeric material.
[9] The projection screen of [8], wherein the polymer material of the polymer composite piezoelectric body is cyanoethylated polyvinyl alcohol.
 本発明によれば、面側に圧電音響フィルムを貼着した投影用のスクリーンにおいて、背面側で出力される音声が投影面側に回り込むことを防止し、投影面側において映像を観察した際に、音声の出力が低下することを防止できる。 According to the present invention, in a projection screen having a piezoelectric acoustic film attached to the surface side, it is possible to prevent sound output from the rear side from reaching the projection surface side, so that when an image is observed on the projection surface side, , it is possible to prevent the voice output from being lowered.
図1は、本発明の投影用スクリーンの一例を概念的に示す図である。FIG. 1 is a diagram conceptually showing an example of the projection screen of the present invention. 図2は、図1に示す投影用スクリーンの構成を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG. 図3は、図1に示す投影用スクリーンの構成を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG. 1. FIG. 図4は、図1に示す投影用スクリーンの構成を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining the configuration of the projection screen shown in FIG. 図5は、図1に示す投影用スクリーンの作用を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining the operation of the projection screen shown in FIG. 1. FIG. 図6は、図1に示す投影用スクリーンの作用を説明するための概念図である。FIG. 6 is a conceptual diagram for explaining the action of the projection screen shown in FIG. 図7は、図1に示す投影用スクリーンの作用を説明するための概念図である。FIG. 7 is a conceptual diagram for explaining the action of the projection screen shown in FIG. 図8は、圧電素子を構成する圧電音響フィルムの一例を概念的に示す図である。FIG. 8 is a diagram conceptually showing an example of a piezoelectric acoustic film forming a piezoelectric element. 図9は、圧電音響フィルムの作製方法の一例を説明するための概念図である。FIG. 9 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film. 図10は、圧電音響フィルムの作製方法の一例を説明するための概念図である。FIG. 10 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film. 図11は、圧電音響フィルムの作製方法の一例を説明するための概念図である。FIG. 11 is a conceptual diagram for explaining an example of a method for producing a piezoelectric acoustic film. 図12は、図1に示す投影用スクリーンを説明するための概念図である。FIG. 12 is a conceptual diagram for explaining the projection screen shown in FIG.
 以下、本発明の投影用スクリーンについて、添付の図面に示される好適実施態様を基に、詳細に説明する。 The projection screen of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 また、以下に示す図は、本発明の投影用スクリーンを説明するための概念的な図であって、各部材の大きさ、厚さ、形状、および、位置関係等は、実際の物とは異なる。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
Also, the drawings shown below are conceptual diagrams for explaining the projection screen of the present invention, and the size, thickness, shape, positional relationship, etc. of each member may differ from the actual one. different.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
 図1に、本発明の投影用スクリーンの一例を概念的に示す。なお、図1において、左側の図は本発明の投影用スクリーンを背面側から見た図、右側は、左側の図のA-A線断面である。
 なお、背面側とは、映像を投影されるスクリーン本体における、映像の投影面とは逆側の面側を示す。
FIG. 1 conceptually shows an example of the projection screen of the present invention. In FIG. 1, the left drawing is a view of the projection screen of the present invention as seen from the rear side, and the right drawing is a cross section taken along the line AA of the left drawing.
In addition, the back side indicates the surface side of the screen main body on which the image is projected, which is opposite to the projection surface of the image.
 図1に示す投影用スクリーン10は、映像が投影されるスクリーン本体50と、スクリーン本体50の背面側に貼着される圧電音響フィルム24と、スクリーン本体50を支持する第1支持部材52および第2支持部材54と、張上げ機構56と、遮音シート59と、足部材78とを有する。
 なお、図1において、左側の背面図では、投影用スクリーン10の構成を明確に示すために遮音シート59を省略しているが、投影用スクリーン10においては、右側の断面図に示すように、スクリーン本体50の背面側の全面を覆うように、遮音シート59が設けられる(図12参照)。
 また、右側の断面図では、投影用スクリーン10の構成を明確に示すために、ハッチングは省略している。
A projection screen 10 shown in FIG. 2 support members 54 , a tensioning mechanism 56 , a sound insulating sheet 59 and leg members 78 .
In FIG. 1, the rear view on the left side omits the sound insulation sheet 59 in order to clearly show the configuration of the projection screen 10. However, in the projection screen 10, as shown in the cross-sectional view on the right side, A sound insulation sheet 59 is provided so as to cover the entire rear surface side of the screen body 50 (see FIG. 12).
Also, in the cross-sectional view on the right side, hatching is omitted in order to clearly show the configuration of the projection screen 10 .
 なお、本発明において、第1支持部材52および第2支持部材54等おける第1および第2とは、各部材を区別し、本発明の投影用スクリーン10を説明するために、便宜的に付しているものである。
 従って、支持部材等における第1および第2には、技術的な意味は無く、また、位置および使用状態等とは無関係である。
In the present invention, the terms "first" and "second" in the first support member 52, the second support member 54, etc. are used for the sake of convenience in order to distinguish each member and to explain the projection screen 10 of the present invention. It is what we are doing.
Therefore, the first and second parts of the supporting member or the like have no technical meaning, and are irrelevant to the position, usage condition, and the like.
 図示例において、スクリーン本体50は、映像を投影される公知の投影用のスクリーンである。図示例において、スクリーン本体50は、長方形で、一方の長辺が第1支持部材52に支持され、他方の長辺が第2支持部材54によって支持される。
 第1支持部材52および第2支持部材54は、第1支持部材52と第2支持部材54とを近接および離間する張上げ機構56に、着脱自在に支持される。
 張上げ機構56は、円筒状の第1フレーム部材58および第2フレーム部材60を有する。第1フレーム部材58および第2フレーム部材60の両端部には、折り曲げ自在なヒンジ部材62が係合している。後述するが、第1支持部材52が第1フレーム部材58に係合し、第2支持部材54が第2フレーム部材60に係合することで、第1支持部材52および第2支持部材54が張上げ機構56に着脱自在に支持される。
 ヒンジ部材62を折り曲げることにより、第1フレーム部材58すなわち第1支持部材52と、第2フレーム部材60すなわち第2支持部材54とが近接し(図5参照)、図1に示すように、ヒンジ部材62を伸ばすことにより、第1フレーム部材58すなわち第1支持部材52と、第2フレーム部材60すなわち第2支持部材54とが離間する。ヒンジ部材62を直線状に伸ばして、第1支持部材52と第2支持部材54とを離間した状態が、スクリーン本体50を張り上げた状態である。
 ヒンジ部材62は、第1フレーム部材58および第2フレーム部材60の両端部が足部材78に係合することにより、足部材78に着脱自在に支持される。足部材78は、映像の投影時に、スクリーン本体50を立設した状態で支持するためのものである。
 以上の構成については、後に詳述する。
In the illustrated example, the screen main body 50 is a known projection screen onto which images are projected. In the illustrated example, the screen body 50 has a rectangular shape, one long side of which is supported by the first supporting member 52 and the other long side of which is supported by the second supporting member 54 .
The first support member 52 and the second support member 54 are detachably supported by a lifting mechanism 56 that brings the first support member 52 and the second support member 54 closer to each other and separates them from each other.
The tensioning mechanism 56 has a cylindrical first frame member 58 and a second frame member 60 . Both ends of the first frame member 58 and the second frame member 60 are engaged with bendable hinge members 62 . As will be described later, the first support member 52 is engaged with the first frame member 58 and the second support member 54 is engaged with the second frame member 60, so that the first support member 52 and the second support member 54 It is detachably supported by the lifting mechanism 56 .
By bending the hinge member 62, the first frame member 58 or first support member 52 and the second frame member 60 or second support member 54 are brought closer together (see FIG. 5), and as shown in FIG. Extending member 62 separates first frame member 58 or first support member 52 and second frame member 60 or second support member 54 . A state in which the hinge member 62 is linearly extended and the first support member 52 and the second support member 54 are separated is a state in which the screen main body 50 is stretched.
Hinge member 62 is detachably supported by leg member 78 by engaging both ends of first frame member 58 and second frame member 60 with leg member 78 . The leg members 78 are for supporting the screen main body 50 in an upright state during image projection.
The above configuration will be described in detail later.
 上述のように、スクリーン本体50は、映像の投影に用いられる、公知の投影用のスクリーンである。
 従って、スクリーン本体50は、映像を投影できるものであれば、塩化ビニルなどの樹脂、和紙などの紙、および、帆布(キャンパス)などの布等の、各種の材料で形成される、映像の投影が可能なシート状物が、各種、利用可能である。
As described above, the screen body 50 is a known projection screen used for projecting images.
Therefore, the screen main body 50 is formed of various materials such as resin such as vinyl chloride, paper such as Japanese paper, and cloth such as canvas, as long as it can project an image. Various sheet materials are available.
 また、通常の投影用のスクリーンと同様に、スクリーン本体50は可撓性を有し、非使用時には第1支持部材52および/または第2支持部材54に巻き取られる。 Also, like a normal projection screen, the screen body 50 is flexible and is wound around the first support member 52 and/or the second support member 54 when not in use.
 スクリーン本体50は、光透過性でも、遮光性でもよい。
 しかしながら、投影された映像を好適に表示し、また、背面に貼着される圧電音響フィルム24が映像の観察者に視認されることを防止できる点で、スクリーン本体50は、遮光性であるのが好ましい。
The screen body 50 may be light transmissive or light blocking.
However, the screen main body 50 is light-shielding in that the projected image can be suitably displayed and the piezoelectric acoustic film 24 attached to the back surface can be prevented from being visually recognized by the viewer of the image. is preferred.
 上述のように、投影用スクリーン10において、スクリーン本体50は、一方の長辺が第1支持部材52に支持され、他方の長辺が第2支持部材54によって支持される。
 図2に概念的に示すように、第1支持部材52は、円筒状の本体52aと、一部を除いて本体52aを被篏するC型カバー52bとで構成される。スクリーン本体50の一方の長辺側は、この本体52aとC型カバー52bとの間に挟持されることで、第1支持部材52によって支持される。
 第2支持部材54も、同様に、円筒状の本体54aと、一部を除いて本体を被篏するC型カバー54bとで構成される(図4参照)。スクリーン本体50の第1支持部材52側とは逆の長辺側も、同様に、この本体54aとC型カバー54bとの間に挟持されることで、第2支持部材54によって支持される。
As described above, in the projection screen 10 , the screen body 50 has one long side supported by the first support member 52 and the other long side supported by the second support member 54 .
As conceptually shown in FIG. 2, the first support member 52 is composed of a cylindrical main body 52a and a C-shaped cover 52b covering the main body 52a with the exception of a portion. One long side of the screen main body 50 is supported by the first support member 52 by being sandwiched between the main body 52a and the C-shaped cover 52b.
The second support member 54 is similarly composed of a cylindrical main body 54a and a C-shaped cover 54b covering the main body except for a part (see FIG. 4). The long side of the screen body 50 opposite to the side of the first support member 52 is similarly supported by the second support member 54 by being sandwiched between the main body 54a and the C-shaped cover 54b.
 第1支持部材52および第2支持部材54は、第1支持部材52と第2支持部材54とを近接および離間する張上げ機構56に、着脱自在に支持される。
 張上げ機構56は、円筒状の第1フレーム部材58および第2フレーム部材60と、2つのヒンジ部材62とを有する。
The first support member 52 and the second support member 54 are detachably supported by a lifting mechanism 56 that brings the first support member 52 and the second support member 54 closer to each other and separates them from each other.
The tensioning mechanism 56 has cylindrical first and second frame members 58 and 60 and two hinge members 62 .
 ヒンジ部材62は板状の第1アーム62aおよび第2アーム62bを有する。第1アーム62aと第2アーム62bとは、一方の端部が回転軸62cで連結されることで、回動自在に連結されている。
 張上げ機構56は、第1フレーム部材58および第2フレーム部材60の一方の端部近傍に1つのヒンジ部材62を係合し、第1フレーム部材58および第2フレーム部材60の他方の端部近傍にもう1つのヒンジ部材62を係合することで、四角の枠状となる。
The hinge member 62 has a plate-like first arm 62a and a plate-like second arm 62b. The first arm 62a and the second arm 62b are rotatably connected by connecting one end thereof with a rotating shaft 62c.
The tensioning mechanism 56 engages one hinge member 62 near one end of the first frame member 58 and the second frame member 60, and one hinge member 62 near the other end of the first frame member 58 and the second frame member 60. By engaging another hinge member 62 to the , it becomes a square frame shape.
 第1フレーム部材58は、両端部近傍において、ヒンジ部材62の第1アーム62aに係合する。具体的には、図3に概念的に示すように、第1フレーム部材58は、両端部近傍に係合部材58aを有する。この係合部材58aと、ヒンジ部材62の第1アーム62aの端部とが、回転軸62dによって係合されることにより、第1フレーム部材58と第1アーム62aすなわちヒンジ部材62とが、回動自在に係合される。
 他方、第2フレーム部材60は、両端部近傍において、ヒンジ部材62の第2アーム62bに係合する。具体的には、図4に概念的に示すように、第2フレーム部材60は、両端部近傍に係合部材60aを有する。この係合部材60aと、ヒンジ部材62の第2アーム62bの端部とが、回転軸60fによって係合されることにより、第2フレーム部材60と第2アーム62bすなわちヒンジ部材62とが、回動自在に係合される。
 なお、図3および図4において、第1支持部材52、第2支持部材54、第1フレーム部材58および第2フレーム部材60は、断面であるが、図面を簡潔にするためにハッチングは省略している。
The first frame member 58 engages the first arms 62a of the hinge member 62 near both ends. Specifically, as conceptually shown in FIG. 3, the first frame member 58 has engaging members 58a near both ends. The engaging member 58a and the end of the first arm 62a of the hinge member 62 are engaged by the rotating shaft 62d, so that the first frame member 58 and the first arm 62a, that is, the hinge member 62 are rotated. movably engaged.
On the other hand, the second frame member 60 engages the second arms 62b of the hinge member 62 near both ends. Specifically, as conceptually shown in FIG. 4, the second frame member 60 has engaging members 60a near both ends. The engaging member 60a and the end of the second arm 62b of the hinge member 62 are engaged by the rotation shaft 60f, so that the second frame member 60 and the second arm 62b, that is, the hinge member 62 are rotated. movably engaged.
3 and 4, the first support member 52, the second support member 54, the first frame member 58, and the second frame member 60 are shown in cross section, but hatching is omitted for the sake of simplicity. ing.
 従って、ヒンジ部材62を屈曲することで、第1フレーム部材58と第2フレーム部材60とを近接し、ヒンジ部材62を屈曲状態から直線状に伸ばすことにより、第1フレーム部材58と第2フレーム部材60とを離間できる。
 上述のように、第1フレーム部材58には第1支持部材52が、第2フレーム部材60には第2支持部材54が、それぞれ、支持される。従って、ヒンジ部材62の曲げ伸ばしによって、第1支持部材52と第2支持部材54とを近接および離間できる。
 なお、ヒンジ部材62は、凹部と凸部との篏合、長手方向に移動する固定部材など、公知の方法で、直線状に伸ばした状態、または、若干曲がった状態を固定および解除できるようになっている。
Therefore, by bending the hinge member 62, the first frame member 58 and the second frame member 60 are brought closer to each other, and by linearly extending the hinge member 62 from the bent state, the first frame member 58 and the second frame member are moved. The member 60 can be separated.
As described above, the first support member 52 is supported by the first frame member 58, and the second support member 54 is supported by the second frame member 60, respectively. Therefore, by bending and stretching the hinge member 62, the first support member 52 and the second support member 54 can be brought closer to each other and separated from each other.
The hinge member 62 can be fixed and released in a linearly extended state or a slightly bent state by a known method such as fitting of a concave portion and a convex portion, or a fixing member that moves in the longitudinal direction. It's becoming
 図3に示すように、第1フレーム部材58には、長手方向に所定の間隔で、固定ピン58bが設けられている。また、第1支持部材52の本体52aには、固定ピン58bに対応して、貫通孔52cが設けられている。第1フレーム部材58の固定ピン58bを、第1支持部材52の貫通孔52cに差し込むことで、第1支持部材52が第1フレーム部材58すなわち張上げ機構56に、着脱自在に支持される。
 図4に示すように、第2フレーム部材60にも、長手方向に所定の間隔で、固定ピン60bが設けられている。また、第2支持部材54の本体54aには、固定ピン60bに対応して、貫通孔54cが設けられている。第2フレーム部材60の固定ピン60bを、第2支持部材54の貫通孔54cに差し込むことで、第2支持部材54が第2フレーム部材60すなわち張上げ機構56に、着脱自在に支持される。
As shown in FIG. 3, the first frame member 58 is provided with fixing pins 58b at predetermined intervals in the longitudinal direction. Further, the main body 52a of the first support member 52 is provided with through holes 52c corresponding to the fixing pins 58b. By inserting the fixing pin 58 b of the first frame member 58 into the through hole 52 c of the first support member 52 , the first support member 52 is detachably supported by the first frame member 58 , that is, the lifting mechanism 56 .
As shown in FIG. 4, the second frame member 60 is also provided with fixing pins 60b at predetermined intervals in the longitudinal direction. Further, the main body 54a of the second support member 54 is provided with through holes 54c corresponding to the fixing pins 60b. By inserting the fixing pin 60 b of the second frame member 60 into the through hole 54 c of the second support member 54 , the second support member 54 is detachably supported by the second frame member 60 , that is, the lifting mechanism 56 .
 なお、図1に示すように、張上げ機構56の第1フレーム部材58には、第1支持部材52と第1フレーム部材58との間隔を調節することで、第1支持部材52と第2支持部材54との間隔を調節して、スクリーン本体50の張りを調節する、微調節機構80が設けられる。
 この微調節機構80に関しては、後に詳述する。
As shown in FIG. 1, the first frame member 58 of the lifting mechanism 56 has a first support member 52 and a second support by adjusting the distance between the first support member 52 and the first frame member 58 . A fine adjustment mechanism 80 is provided to adjust the tension of the screen body 50 by adjusting the distance to the member 54 .
The fine adjustment mechanism 80 will be detailed later.
 第1支持部材52および第2支持部材54を支持する張上げ機構56は、第1フレーム部材58および第2フレーム部材60の両端において、2つの足部材78に着脱自在に支持される。
 足部材78は、投影用スクリーン10の設置位置に立設される棒状の部材で、映像の投影時に、スクリーン本体50を立設した状態で支持するためのものである。足部材78の下端部には、張上げ機構56すなわちスクリーン本体50を支持した際に、立設状態を保つために、足部78cが設けられる。
The tensioning mechanism 56 that supports the first support member 52 and the second support member 54 is detachably supported by two leg members 78 at both ends of the first frame member 58 and the second frame member 60 .
The leg member 78 is a rod-shaped member erected at the installation position of the projection screen 10, and serves to support the screen main body 50 in an upright state during image projection. A leg portion 78c is provided at the lower end of the leg member 78 in order to maintain the upright state when the lifting mechanism 56, that is, the screen body 50 is supported.
 足部材78には、上部支持部材78aおよび下部支持部材78bが固定される。
 上部支持部材78aおよび下部支持部材78bは、共に棒状のものである。上部支持部材78aは、張上げ機構56の第1フレーム部材58に挿入される。他方、下部支持部材78bは、張上げ機構56の第2フレーム部材60に挿入される。足部材78は、これにより、張上げ機構56を支持する。
 なお、足部材78において、上部支持部材78aは固定されている。これに対して、下部支持部材78bは、高さ、すなわち、足部材78の長手方向の位置を変えて、着脱自在に固定される。
An upper support member 78a and a lower support member 78b are secured to the leg member 78 .
Both the upper support member 78a and the lower support member 78b are bar-shaped. The upper support member 78 a is inserted into the first frame member 58 of the hoisting mechanism 56 . On the other hand, the lower support member 78b is inserted into the second frame member 60 of the hoisting mechanism 56. As shown in FIG. The foot members 78 thereby support the tensioning mechanism 56 .
In addition, in the leg member 78, the upper support member 78a is fixed. On the other hand, the lower support member 78b is detachably fixed by changing the height, that is, the position of the leg member 78 in the longitudinal direction.
 以下、図5~図7の概念図を参照して、投影用スクリーン10におけるスクリーン本体50の張り上げ方法を説明する。なお、図5~図7においても、投影用スクリーン10の構成を明確に示すために、遮音シート59は省略している。 A method for raising the screen body 50 in the projection screen 10 will be described below with reference to the conceptual diagrams of FIGS. 5 to 7, the sound insulating sheet 59 is omitted in order to clearly show the configuration of the projection screen 10. FIG.
 まず、図5に示すように、足部材78の上部支持部材78aを張上げ機構56の第1フレーム部材58の両端に挿入し、張上げ機構56を、立設した足部材78で支持する。 First, as shown in FIG. 5, the upper support members 78a of the leg members 78 are inserted into both ends of the first frame member 58 of the lifting mechanism 56, and the lifting mechanism 56 is supported by the standing leg members 78.
 上述のように、スクリーン本体50は、長手方向の一辺を第1支持部材52に、他方の一辺を第2支持部材54に支持され、第1支持部材52および/または第2支持部材54に巻かれている。
 第1支持部材52および/または第2支持部材54に巻かれているスクリーン本体50を広げ、第1フレーム部材58の固定ピン58bを、第1支持部材52(本体52a)の貫通孔52cに挿入する(図3参照)。
 さらに、第2フレーム部材60の固定ピン60bを、第2支持部材54(本体54a)の貫通孔54cに挿入する(図4参照)。
 これにより、第1支持部材52および第2支持部材54、すなわち、スクリーン本体50が、張上げ機構56に支持される。
As described above, the screen body 50 is supported on one longitudinal side by the first supporting member 52 and on the other longitudinal side by the second supporting member 54, and is wound around the first supporting member 52 and/or the second supporting member 54. It is written.
Spread the screen body 50 wound around the first support member 52 and/or the second support member 54, and insert the fixing pin 58b of the first frame member 58 into the through hole 52c of the first support member 52 (main body 52a). (see Figure 3).
Further, the fixing pin 60b of the second frame member 60 is inserted into the through hole 54c of the second support member 54 (main body 54a) (see FIG. 4).
Thereby, the first support member 52 and the second support member 54 , that is, the screen body 50 are supported by the lifting mechanism 56 .
 この時点では、図5に示すように張上げ機構56のヒンジ部材62は屈曲している。
 次いで、図6に示すように、ヒンジ部材62を直線状に伸ばす。これにより、第1フレーム部材58と第2フレーム部材60、すなわち、第1支持部材52と第2支持部材54とが離間して、スクリーン本体50が、張上げられる。
At this point, the hinge member 62 of the lifting mechanism 56 is bent as shown in FIG.
Next, as shown in FIG. 6, the hinge member 62 is extended linearly. As a result, the first frame member 58 and the second frame member 60, that is, the first support member 52 and the second support member 54 are separated, and the screen main body 50 is stretched.
 さらに、図7に示すように、第2フレーム部材60に下部支持部材78bを挿入して、下部支持部材78bを足部材78に固定することで、スクリーン本体50を張り上げた状態で、固定する。 Further, as shown in FIG. 7, the lower support member 78b is inserted into the second frame member 60, and the lower support member 78b is fixed to the leg member 78, thereby fixing the screen main body 50 in a stretched state.
 ここで、張上げ機構56の第1フレーム部材58には、第1支持部材52と第1フレーム部材58との距離を調節することで、第1支持部材52と第2支持部材54との間隔を調節して、スクリーン本体50の張りを調節する、微調節機構80が設けられる。図示例においては、一例として、長手方向に等間隔で、4つの微調節機構80が設けられる。
 第2フレーム部材60に下部支持部材78bを挿入して固定した時点で、スクリーン本体50の張りが足りない場合には、微調節機構80によって第1フレーム部材58と第1支持部材52との間隔を広くして、より強くスクリーン本体50を張る。
 逆に、第2フレーム部材60に下部支持部材78bを挿入して固定した時点で、スクリーン本体50の張りが強すぎる場合には、微調節機構80によって第1フレーム部材58と第1支持部材52との間隔を狭くして、スクリーン本体50の張りを弱くする。
Here, in the first frame member 58 of the lifting mechanism 56, the distance between the first support member 52 and the second support member 54 is adjusted by adjusting the distance between the first support member 52 and the first frame member 58. A fine adjustment mechanism 80 is provided that adjusts to adjust the tension of the screen body 50 . In the illustrated example, as an example, four fine adjustment mechanisms 80 are provided at equal intervals in the longitudinal direction.
When the lower support member 78b is inserted into the second frame member 60 and fixed, if the tension of the screen body 50 is insufficient, the fine adjustment mechanism 80 adjusts the gap between the first frame member 58 and the first support member 52. is widened to stretch the screen body 50 more strongly.
Conversely, when the lower support member 78b is inserted into the second frame member 60 and fixed, if the tension of the screen body 50 is too strong, the first frame member 58 and the first support member 52 are separated by the fine adjustment mechanism 80. The tension of the screen body 50 is weakened by narrowing the interval between and.
 微調節機構80には、制限はなく、並んで設けられる2本の棒状部材の間隔を、長手方向と直交する方向に調節する公知の方法が利用可能である。
 一例として、図2に概念的に示すように、第1フレーム部材58では空回りし、第1支持部材52(本体52a)には螺合される調節螺子80aを利用する方法、および、カム機構を用いる方法等が例示される。
The fine adjustment mechanism 80 is not limited, and any known method for adjusting the interval between two rod-shaped members arranged side by side in a direction orthogonal to the longitudinal direction can be used.
As an example, as conceptually shown in FIG. 2, a method of using an adjustment screw 80a that is idle in the first frame member 58 and screwed into the first support member 52 (main body 52a) and a cam mechanism are used. A method to be used is exemplified.
 図示例においては、一例として、4つの微調節機構80が設けられる。
 しかしながら、本発明は、これに制限はされず、長手方向に均等に第1支持部材52と第1フレーム部材58との距離を調節できれば、微調節機構80の数は3つ以下でも、5つ以上でもよい。
In the illustrated example, four fine adjustment mechanisms 80 are provided as an example.
However, the present invention is not limited to this, and as long as the distance between the first support member 52 and the first frame member 58 can be uniformly adjusted in the longitudinal direction, the number of fine adjustment mechanisms 80 may be three or less, or five. It can be more than that.
 また、図5~図7で説明した手順とは逆の手順を行うことで、足部材78と、張上げ機構56と、スクリーン本体50、第1支持部材52および第2支持部材54とを、解体して、スクリーン本体50を第1支持部材52および/または第2支持部材54に巻き取ることができる。
 さらに、第1支持部材52において、本体52aからC型カバー52bを取り外し、第2支持部材54において、本体54aからC型カバー54bを取り外すことにより、スクリーン本体50を第1支持部材52および第2支持部材54から外すことができる。
5 to 7, the foot member 78, the lifting mechanism 56, the screen main body 50, the first support member 52 and the second support member 54 can be dismantled. Then, the screen body 50 can be wound around the first support member 52 and/or the second support member 54 .
Further, in the first supporting member 52, the C-shaped cover 52b is removed from the main body 52a, and in the second supporting member 54, the C-shaped cover 54b is removed from the main body 54a. It can be removed from the support member 54 .
 なお、本発明の投影用スクリーンにおいて、スクリーン本体50の張上げ機構は、図示例に制限はされず、公知の映像を投影されるスクリーンの張上げ機構が、各種、利用可能である。
 すなわち、本発明の投影用スクリーンは、スクリーン本体50と、スクリーン本体50の背面に貼着される圧電音響フィルム24と、スクリーン本体の背面側を覆う遮音シート59とを有するものであれば、公知の投影用のスクリーンにおける各種の張上げ機構が利用可能である。
In the projection screen of the present invention, the lifting mechanism for the screen main body 50 is not limited to the illustrated example, and various known lifting mechanisms for the screen on which images are projected can be used.
That is, the projection screen of the present invention is known as long as it has the screen main body 50, the piezoelectric acoustic film 24 attached to the back surface of the screen main body 50, and the sound insulation sheet 59 covering the back side of the screen main body. Various tensioning mechanisms are available for projection screens.
 このようなスクリーン本体50の張上げ機構を有する投影用スクリーン10において、スクリーン本体50の背面すなわち映像の投影面とは逆側の面には、圧電音響フィルム24が貼着される。 In the projection screen 10 having such a screen body 50 tensioning mechanism, the piezoelectric acoustic film 24 is attached to the back surface of the screen body 50, that is, the surface opposite to the image projection surface.
 図示例では、音声のステレオ再生を行うために、圧電音響フィルム24は、スクリーン本体50の長手方向に離間して、2つが貼着される。しかしながら、本発明において、圧電音響フィルム24の数には制限はなく、圧電音響フィルム24は、1個でも、4個などの3個以上であってもよい。
 また、スクリーン本体50への圧電音響フィルムの貼着位置も、スクリーン本体50のサイズ、圧電音響フィルム24のスクリーン本体50の面方向のサイズ、および、圧電音響フィルム24の数等に応じて、適宜、設定すればよい。
In the illustrated example, two piezoelectric acoustic films 24 are attached to the screen main body 50 while being separated from each other in the longitudinal direction in order to reproduce sound in stereo. However, in the present invention, the number of piezoelectric acoustic films 24 is not limited, and the number of piezoelectric acoustic films 24 may be one or three or more such as four.
In addition, the position where the piezoelectric acoustic film is attached to the screen main body 50 is also appropriately determined according to the size of the screen main body 50, the size of the piezoelectric acoustic film 24 in the surface direction of the screen main body 50, the number of the piezoelectric acoustic films 24, and the like. , should be set.
 投影用スクリーン10において、圧電音響フィルム24は、スクリーン本体50を振動させて音声を出力させるものである。
 本発明において、圧電音響フィルム24には、制限はなく、映像を投影されるスクリーンの背面側に貼着されて、スクリーン本体50を振動して音声を出力させることができる、公知の圧電音響フィルム24が、各種、利用可能である。
In the projection screen 10, the piezoelectric acoustic film 24 vibrates the screen body 50 to output sound.
In the present invention, the piezoelectric acoustic film 24 is not limited, and is a known piezoelectric acoustic film that can be attached to the back side of the screen on which an image is projected and can vibrate the screen body 50 to output sound. 24 are available in a variety.
 図8に、圧電音響フィルム24の一例を断面図で概念的に示す。図8等においては、図面を簡略化して構成を明確に示すために、ハッチングは省略する。
 なお、以下の説明では、特に断りが無い場合には、『断面』とは、圧電音響フィルムの厚さ方向の断面を示す。圧電音響フィルムの厚さ方向とは、各層の積層方向である。
FIG. 8 conceptually shows an example of the piezoelectric acoustic film 24 in a sectional view. In FIG. 8 and the like, hatching is omitted in order to simplify the drawing and clearly show the configuration.
In the following description, unless otherwise specified, "cross section" indicates a cross section in the thickness direction of the piezoelectric acoustic film. The thickness direction of the piezoelectric acoustic film is the stacking direction of each layer.
 図8に示す圧電音響フィルム24は、圧電体層26と、圧電体層26の一方の面に積層される第1電極層28と、第1電極層28に積層される第1保護層32と、圧電体層26の他方の面に積層される第2電極層30と、第2電極層30に積層される第2保護層34と、を有する。 The piezoelectric acoustic film 24 shown in FIG. 8 includes a piezoelectric layer 26, a first electrode layer 28 laminated on one side of the piezoelectric layer 26, and a first protective layer 32 laminated on the first electrode layer 28. , a second electrode layer 30 laminated on the other surface of the piezoelectric layer 26 , and a second protective layer 34 laminated on the second electrode layer 30 .
 圧電音響フィルム24において、圧電体層26には制限はなく、各種の圧電音響フィルム(圧電フィルム)に用いられる公知の圧電体層が、各種、利用可能である。
 圧電音響フィルム24において、圧電体層26は、高分子材料を含む高分子マトリックス38中に、圧電体粒子40を含む、図8に概念的に示すような高分子複合圧電体であるのが好ましい。
In the piezoelectric acoustic film 24, the piezoelectric layer 26 is not limited, and various known piezoelectric layers used for various piezoelectric acoustic films (piezoelectric films) can be used.
In the piezoelectric acoustic film 24, the piezoelectric layer 26 is preferably a polymer composite piezoelectric material as conceptually shown in FIG. 8, containing piezoelectric particles 40 in a polymer matrix 38 containing a polymer material. .
 ここで、高分子複合圧電体(圧電体層26)は、次の用件を具備したものであるのが好ましい。なお、本発明において、常温とは、0~50℃である。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
 (ii) 音質
 スピーカーは、20Hz~20kHzのオーディオ帯域の周波数で圧電体粒子を振動させ、その振動エネルギーによって振動板(高分子複合圧電体)全体が一体となって振動することで音声が再生される。従って、振動エネルギーの伝達効率を高めるために高分子複合圧電体には適度な硬さが求められる。また、スピーカーの周波数特性が平滑であれば、曲率の変化に伴い最低共振周波数f0が変化した際の音質の変化量も小さくなる。従って、高分子複合圧電体の損失正接は適度に大きいことが求められる。
Here, the polymer composite piezoelectric body (piezoelectric layer 26) preferably satisfies the following requirements. In the present invention, normal temperature is 0 to 50°C.
(i) Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
(ii) Sound quality The speaker vibrates piezoelectric particles at frequencies in the audio band of 20 Hz to 20 kHz, and the vibration energy causes the entire diaphragm (polymer composite piezoelectric body) to vibrate as one, thereby reproducing sound. be. Therefore, the polymer composite piezoelectric body is required to have appropriate hardness in order to increase the transmission efficiency of vibration energy. Also, if the frequency characteristics of the speaker are smooth, the amount of change in sound quality when the lowest resonance frequency f 0 changes as the curvature changes becomes small. Therefore, the loss tangent of the polymer composite piezoelectric body is required to be moderately large.
 スピーカー用振動板の最低共振周波数f0は、下記式で与えられるのは周知である。ここで、sは振動系のスチフネス、mは質量である。
Figure JPOXMLDOC01-appb-M000001

 このとき、圧電音響フィルムの湾曲程度すなわち湾曲部の曲率半径が大きくなるほど機械的なスチフネスsが下がるため、最低共振周波数f0は小さくなる。すなわち、圧電音響フィルムの曲率半径によってスピーカーの音質(音量、周波数特性)が変わることになる。
It is well known that the lowest resonance frequency f 0 of the speaker diaphragm is given by the following equation. where s is the stiffness of the vibration system and m is the mass.
Figure JPOXMLDOC01-appb-M000001

At this time, as the degree of curvature of the piezoelectric acoustic film, that is, the radius of curvature of the curved portion increases, the mechanical stiffness s decreases, so the lowest resonance frequency f 0 decreases. That is, the sound quality (volume and frequency characteristics) of the speaker changes depending on the radius of curvature of the piezoelectric acoustic film.
 以上をまとめると、高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。 In summary, the polymer composite piezoelectric body is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下と共に大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層26)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点Tgが常温にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
In general, polymer solids have a viscoelastic relaxation mechanism, and as temperature rises or frequency falls, large-scale molecular motion causes a decrease (relaxation) in storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
In the polymer composite piezoelectric body (piezoelectric layer 26), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature, as a matrix, vibration of 20 Hz to 20 kHz is suppressed. This realizes a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less. In particular, it is preferable to use a polymer material whose glass transition point Tg at a frequency of 1 Hz is at normal temperature for the matrix of the polymer composite piezoelectric material, because this behavior is preferably exhibited.
 高分子マトリックス38となる高分子材料は、常温において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックス/圧電体粒子界面の応力集中が緩和され、高い可撓性が期待できる。
The polymer material that forms the polymer matrix 38 preferably has a maximum loss tangent Tan δ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature.
As a result, when the polymer composite piezoelectric body is slowly bent by an external force, stress concentration at the polymer matrix/piezoelectric particle interface at the maximum bending moment portion is alleviated, and high flexibility can be expected.
 また、高分子マトリックス38となる高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
In addition, it is preferable that the storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of the polymer material forming the polymer matrix 38 is 100 MPa or more at 0°C and 10 MPa or less at 50°C.
As a result, the bending moment generated when the polymeric composite piezoelectric body is slowly bent by an external force can be reduced, and at the same time, it can behave rigidly against acoustic vibrations of 20 Hz to 20 kHz.
 また、高分子マトリックス38となる高分子材料は、比誘電率が25℃において10以上で有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、高分子マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
Further, it is more preferable that the polymer material that forms the polymer matrix 38 has a dielectric constant of 10 or more at 25°C. As a result, when a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the polymer matrix, so a large amount of deformation can be expected.
On the other hand, however, in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
 このような条件を満たす高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が好適に例示される。
 また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。
Polymer materials that satisfy these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, polyvinylmethylketone, and polybutyl. Methacrylate and the like are preferably exemplified.
Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials.
 高分子マトリックス38を構成する高分子材料としては、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。すなわち、圧電音響フィルム24において、圧電体層26は、高分子マトリックス38として、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 以下の説明では、シアノエチル化PVAを代表とする上述の高分子材料を、まとめて『常温で粘弾性を有する高分子材料』とも言う。
As the polymer material constituting the polymer matrix 38, it is preferable to use a polymer material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. That is, in the piezoelectric acoustic film 24, the piezoelectric layer 26 preferably uses a polymer material having a cyanoethyl group as the polymer matrix 38, and particularly preferably uses cyanoethylated PVA.
In the following description, the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature".
 なお、これらの常温で粘弾性を有する高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
 圧電音響フィルム24において、圧電体層26の高分子マトリックス38には、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、高分子複合圧電体を構成する高分子マトリックス38には、誘電特性や機械的特性の調節等を目的として、上述した常温で粘弾性を有する高分子材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
In the piezoelectric acoustic film 24, the polymer matrix 38 of the piezoelectric layer 26 may be made of a plurality of polymer materials, if necessary.
That is, for the polymer matrix 38 constituting the polymer composite piezoelectric body, in addition to the above-described polymer material having viscoelasticity at room temperature, other materials may be used as necessary for the purpose of adjusting dielectric properties and mechanical properties. dielectric polymer material may be added.
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムおよびクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層26の高分子マトリックス38において、これらの誘電性高分子材料は、1種に制限はされず、複数種を添加してもよい。
Examples of dielectric polymer materials that can be added include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer. and fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullulan, cyanoethylsaccharose and cyanoethylsorbitol. Alternatively, polymers having cyanoethyl groups, and synthetic rubbers such as nitrile rubbers and chloroprene rubbers are exemplified.
Among them, polymer materials having cyanoethyl groups are preferably used.
Moreover, in the polymer matrix 38 of the piezoelectric layer 26, these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
 また、誘電性高分子材料以外にも、高分子マトリックス38のガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテンおよびイソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂およびマイカ等の熱硬化性樹脂等を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
In addition to dielectric polymer materials, thermoplastic resins such as vinyl chloride resins, polyethylene, polystyrene, methacrylic resins, polybutene and isobutylene, and phenolic resins are used for the purpose of adjusting the glass transition point Tg of the polymer matrix 38. , thermosetting resins such as urea resins, melamine resins, alkyd resins and mica may be added.
Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
 圧電体層26の高分子マトリックス38において、常温で粘弾性を有する高分子材料以外の高分子材料を添加する際の添加量には制限はないが、高分子マトリックス38に占める割合で30質量%以下とするのが好ましい。
 これにより、高分子マトリックス38における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子40および電極層との密着性向上等の点で好ましい結果を得ることができる。
In the polymer matrix 38 of the piezoelectric layer 26, the addition amount of the polymer material other than the polymer material having viscoelasticity at room temperature is not limited, but the proportion of the polymer matrix 38 is 30% by mass. It is preferable to:
As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the polymer matrix 38, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 40 and the electrode layer can be improved. Favorable results can be obtained in terms of improvement and the like.
 圧電体層26となる高分子複合圧電体は、このような高分子マトリックスに、圧電体粒子40を含むものである。圧電体粒子40は、高分子マトリックスに分散されており、好ましくは、均一(略均一)に分散される。
 圧電体粒子40は、好ましくは、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子40を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
The polymer composite piezoelectric material that forms the piezoelectric layer 26 contains piezoelectric particles 40 in such a polymer matrix. The piezoelectric particles 40 are dispersed in a polymer matrix, preferably uniformly (substantially uniformly).
The piezoelectric particles 40 are preferably ceramic particles having a perovskite or wurtzite crystal structure.
Examples of ceramic particles constituting the piezoelectric particles 40 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
 圧電体粒子40の粒径は、圧電音響フィルム24のサイズや用途に応じて、適宜、選択すれば良い。圧電体粒子40の粒径は、1~10μmが好ましい。
 圧電体粒子40の粒径を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
The particle size of the piezoelectric particles 40 may be appropriately selected according to the size and application of the piezoelectric acoustic film 24 . The particle size of the piezoelectric particles 40 is preferably 1 to 10 μm.
By setting the particle size of the piezoelectric particles 40 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric characteristics and flexibility.
 圧電音響フィルム24において、圧電体層26中における高分子マトリックス38と圧電体粒子40との量比は、圧電音響フィルム24の面方向の大きさや厚さ、圧電音響フィルム24の用途、圧電音響フィルム24に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層26中における圧電体粒子40の体積分率は、30~80%が好ましく、50~80%がより好ましい。
 高分子マトリックス38と圧電体粒子40との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
In the piezoelectric acoustic film 24, the quantitative ratio of the polymer matrix 38 and the piezoelectric particles 40 in the piezoelectric layer 26 depends on the size and thickness of the piezoelectric acoustic film 24 in the plane direction, the application of the piezoelectric acoustic film 24, and the piezoelectric acoustic film. 24 may be appropriately set in accordance with the characteristics required for 24 .
The volume fraction of the piezoelectric particles 40 in the piezoelectric layer 26 is preferably 30-80%, more preferably 50-80%.
By setting the amount ratio between the polymer matrix 38 and the piezoelectric particles 40 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric characteristics and flexibility.
 また、圧電音響フィルム24において、圧電体層26の厚さには制限はなく、圧電音響フィルム24のサイズ、圧電音響フィルム24の用途、圧電音響フィルム24に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層26の厚さは、8~300μmが好ましく、8~200μmがより好ましく、10~150μmがさらに好ましく、特に15~100μmが好ましい。
 圧電体層26の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
In addition, in the piezoelectric acoustic film 24, the thickness of the piezoelectric layer 26 is not limited, and may be appropriately adjusted according to the size of the piezoelectric acoustic film 24, the application of the piezoelectric acoustic film 24, the properties required of the piezoelectric acoustic film 24, and the like. , should be set.
The thickness of the piezoelectric layer 26 is preferably 8-300 μm, more preferably 8-200 μm, still more preferably 10-150 μm, particularly preferably 15-100 μm.
By setting the thickness of the piezoelectric layer 26 within the above range, favorable results can be obtained in terms of ensuring both rigidity and appropriate flexibility.
 圧電体層26は、厚さ方向に分極処理(ポーリング)されているのが好ましい。分極処理に関しては、後に詳述する。 The piezoelectric layer 26 is preferably polarized (poled) in the thickness direction. The polarization treatment will be detailed later.
 なお、圧電音響フィルム24において、圧電体層26は、上述したような、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなる高分子マトリックス38に、圧電体粒子40を含む高分子複合圧電体に制限はされない。
 すなわち、圧電音響フィルム24において、圧電体層26は、圧電フィルムに用いられる公知の圧電体層が、各種、利用可能である。
In the piezoelectric acoustic film 24, the piezoelectric layer 26 is a polymer containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. It is not limited to composite piezoelectrics.
That is, in the piezoelectric acoustic film 24, various known piezoelectric layers used for piezoelectric films can be used for the piezoelectric layer 26. FIG.
 一例として、上述したポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体およびフッ化ビニリデン-トリフルオロエチレン共重合体等の誘電性高分子材料を含むマトリックスに同様の圧電体粒子40を含む高分子複合圧電体、ポリフッ化ビニリデンからなる圧電体層、ポリフッ化ビニリデン以外のフッ素樹脂からなる圧電体層、ならびに、ポリL乳酸からなるフィルムとポリD乳酸からなるフィルムとを積層した圧電体層等も利用可能である。
 しかしながら、上述のように、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞うことができ優れた音響特性が得られる、可撓性に優れスクリーン本体50の巻取りに好適に追従する圧電音響フィルム24が得られる等の点で、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなる高分子マトリックス38に、圧電体粒子40を含む高分子複合圧電体が、圧電体層26として好適に利用される。
As an example, a high-performance dielectric material containing similar piezoelectric particles 40 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used. Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, and piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
However, as described above, the screen main body 50 is hard against vibrations of 20 Hz to 20 kHz and behaves softly against slow vibrations of several Hz or less, and has excellent flexibility, which provides excellent acoustic characteristics. In order to obtain a piezoelectric acoustic film 24 that suitably follows winding, a polymer containing piezoelectric particles 40 in a polymer matrix 38 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, is used. A composite piezoelectric is preferably used as the piezoelectric layer 26 .
 図8に示す圧電音響フィルム24は、このような圧電体層26の一面に、第2電極層30を有し、第2電極層30の表面に第2保護層34を有する。また、圧電体層26の他方の面に、第1電極層28を有し、第1電極層28の表面に第1保護層32を有する。圧電音響フィルム24では、第1電極層28と第2電極層30とが電極対を形成する。
 言い換えれば、圧電音響フィルム24を構成する積層フィルムは、圧電体層26の両面を電極対、すなわち、第1電極層28および第2電極層30で挟持し、さらに、第1保護層32および第2保護層34で挟持してなる構成を有する。
 このように、第1電極層28および第2電極層30で挾持された領域は、印加された電圧に応じて駆動される。
The piezoelectric acoustic film 24 shown in FIG. 8 has the second electrode layer 30 on one surface of the piezoelectric layer 26 and the second protective layer 34 on the surface of the second electrode layer 30 . Also, the piezoelectric layer 26 has a first electrode layer 28 on the other surface thereof, and a first protective layer 32 on the surface of the first electrode layer 28 . In the piezoelectric acoustic film 24, the first electrode layer 28 and the second electrode layer 30 form an electrode pair.
In other words, in the laminated film that constitutes the piezoelectric acoustic film 24, both surfaces of the piezoelectric layer 26 are sandwiched between electrode pairs, that is, the first electrode layer 28 and the second electrode layer 30, and the first protective layer 32 and the second electrode layer 30 are sandwiched between the electrode pairs. It has a structure sandwiched between two protective layers 34 .
Thus, the regions sandwiched by the first electrode layer 28 and the second electrode layer 30 are driven according to the applied voltage.
 なお、本発明において、第1電極層28および第2電極層30等おける第1および第2とは、圧電音響フィルム24を説明するために、便宜的に付しているものである。
 従って、圧電音響フィルム24における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
In the present invention, the terms "first" and "second" in the first electrode layer 28 and the second electrode layer 30 are used for the sake of convenience in describing the piezoelectric acoustic film 24. As shown in FIG.
Therefore, the first and second parts of the piezoelectric acoustic film 24 have no technical significance and are irrelevant to the actual usage conditions.
 圧電音響フィルム24は、これらの層に加えて、電極層と圧電体層26とを貼着するための貼着層、および、電極層と保護層とを貼着するための貼着層を有してもよい。
 貼着剤は、接着剤でも粘着剤でもよい。また、貼着剤は、圧電体層26から圧電体粒子40を除いた高分子材料すなわち高分子マトリックス38と同じ材料も、好適に利用可能である。なお、貼着層は、第1電極層28側および第2電極層30側の両方に有してもよく、第1電極層28側および第2電極層30側の一方のみに有してもよい。
In addition to these layers, the piezoelectric acoustic film 24 has an adhesive layer for attaching the electrode layer and the piezoelectric layer 26 and an adhesive layer for attaching the electrode layer and the protective layer. You may
The adhesive may be an adhesive or an adhesive. Also, as the adhesive, a polymer material obtained by removing the piezoelectric particles 40 from the piezoelectric layer 26, ie, the same material as the polymer matrix 38, can be suitably used. The adhesive layer may be provided on both the first electrode layer 28 side and the second electrode layer 30 side, or may be provided on only one of the first electrode layer 28 side and the second electrode layer 30 side. good.
 圧電音響フィルム24において、第1保護層32および第2保護層34は、第1電極層28および第2電極層30を被覆すると共に、圧電体層26に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電音響フィルム24において、高分子マトリックス38と圧電体粒子40とを含む圧電体層26は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電音響フィルム24は、それを補うために第1保護層32および第2保護層34が設けられる。
 第1保護層32と第2保護層34とは、配置位置が異なるのみで、構成は同じである。従って、以下の説明においては、第1保護層32および第2保護層34を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
In the piezoelectric acoustic film 24, the first protective layer 32 and the second protective layer 34 cover the first electrode layer 28 and the second electrode layer 30, and impart appropriate rigidity and mechanical strength to the piezoelectric layer 26. playing a role. That is, in the piezoelectric acoustic film 24, the piezoelectric layer 26 containing the polymer matrix 38 and the piezoelectric particles 40 exhibits excellent flexibility against slow bending deformation, but may may lack rigidity and mechanical strength. The piezoelectric acoustic film 24 is provided with a first protective layer 32 and a second protective layer 34 to compensate for this.
The first protective layer 32 and the second protective layer 34 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 32 and the second protective layer 34, both members are collectively referred to as protective layers.
 保護層には、制限はなく、各種のシート状物が利用可能である。一例として、各種の樹脂フィルムが好適に例示される。中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリアミド(PA)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが好適に利用される。 There are no restrictions on the protective layer, and various sheet materials can be used. As an example, various resin films are preferably exemplified. Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), due to their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyamide (PA), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), and resin films made of cyclic olefin resins are preferably used. .
 保護層の厚さにも、制限は無い。また、第1保護層32および第2保護層34の厚さは、基本的に同じであるが、異なってもよい。
 保護層の剛性が高過ぎると、圧電体層26の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、保護層は、薄いほど有利である。
The thickness of the protective layer is also not limited. Also, the thicknesses of the first protective layer 32 and the second protective layer 34 are basically the same, but may be different.
If the rigidity of the protective layer is too high, it not only restricts expansion and contraction of the piezoelectric layer 26, but also impairs its flexibility. Therefore, the thinner the protective layer, the better, except when mechanical strength and good handling properties as a sheet are required.
 第1保護層32および第2保護層34の厚さが、それぞれ、圧電体層26の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得られる。
 例えば、圧電体層26の厚さが50μmで第1保護層32および第2保護層34がPETからなる場合、第1保護層32および第2保護層34の厚さはそれぞれ、100μm以下が好ましく、50μm以下がより好ましく、中でも25μm以下とするのが好ましい。
If the thickness of each of the first protective layer 32 and the second protective layer 34 is not more than twice the thickness of the piezoelectric layer 26, favorable results can be achieved in terms of ensuring both rigidity and appropriate flexibility. is obtained.
For example, when the thickness of the piezoelectric layer 26 is 50 μm and the first protective layer 32 and the second protective layer 34 are made of PET, the thicknesses of the first protective layer 32 and the second protective layer 34 are each preferably 100 μm or less. , 50 μm or less, and more preferably 25 μm or less.
 なお、圧電音響フィルム24において、第1保護層32および第2保護層34は、好ましい態様として設けられるものであり、必須の構成要件ではない。すなわち、本発明の電気音響変換器において、圧電音響フィルム24は、第1保護層32のみを有するものでも、第2保護層34のみを有するものでも、第1保護層32および第2保護層34を有さない物でもよい。
 しかしながら、圧電音響フィルム24の強度、ハンドリング性および電極層の保護等を考慮すると、圧電音響フィルムは、図示例のように第1保護層32および第2保護層34の両方を有するのが好ましい。
In the piezoelectric acoustic film 24, the first protective layer 32 and the second protective layer 34 are provided as a preferred embodiment, and are not essential constituents. That is, in the electroacoustic transducer of the present invention, the piezoelectric acoustic film 24 may have only the first protective layer 32 or only the second protective layer 34. It may be an object that does not have
However, considering the strength, handleability, protection of the electrode layer, etc. of the piezoelectric acoustic film 24, the piezoelectric acoustic film preferably has both the first protective layer 32 and the second protective layer 34 as shown in the figure.
 圧電音響フィルム24において、圧電体層26と第1保護層32との間には第1電極層28が、圧電体層26と第2保護層34との間には第2電極層30が、それぞれ形成される。第1電極層28および第2電極層30は、圧電音響フィルム24(圧電体層26)に電界を印加するために設けられる。 In the piezoelectric acoustic film 24, the first electrode layer 28 is provided between the piezoelectric layer 26 and the first protective layer 32, the second electrode layer 30 is provided between the piezoelectric layer 26 and the second protective layer 34, formed respectively. The first electrode layer 28 and the second electrode layer 30 are provided for applying an electric field to the piezoelectric acoustic film 24 (piezoelectric layer 26).
 第1電極層28および第2電極層30は、位置が異なる以外は、基本的に同じものである。従って、以下の説明においては、第1電極層28と第2電極層30とを区別する必要がない場合には、両部材をまとめて、電極層ともいう。 The first electrode layer 28 and the second electrode layer 30 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 28 and the second electrode layer 30, both members are collectively referred to as electrode layers.
 圧電音響フィルムにおいて、電極層の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、クロム、モリブデン、これらの合金、酸化インジウムスズ、および、PEDOT/PPS(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸)などの導電性高分子等が例示される。
 中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、好適に例示される。その中でも、導電性、コストおよび可撓性等の観点から銅がより好ましい。
In the piezoelectric acoustic film, the material for forming the electrode layer is not limited, and various conductors can be used. Specifically, carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, molybdenum, alloys thereof, indium tin oxide, and PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfone Acid) and other conductive polymers are exemplified.
Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferred. Among them, copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
 また、電極層の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)やめっきによる成膜や、上記材料で形成された箔を貼着する方法、塗布する方法等、公知の方法が、各種、利用可能である。
 中でも特に、圧電音響フィルム24の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅やアルミニウムの薄膜は、電極層として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。
In addition, the method of forming the electrode layer is not limited, and a vapor phase deposition method (vacuum film formation method) such as vacuum deposition and sputtering, a method of forming a film by plating, a method of attaching a foil formed of the above materials, a coating method, or the like. Various known methods such as the method of
Among them, a thin film of copper or aluminum formed by vacuum deposition is preferably used as the electrode layer because the flexibility of the piezoelectric acoustic film 24 can be ensured. Among them, a copper thin film formed by vacuum deposition is particularly preferably used.
 第1電極層28および第2電極層30の厚さには、制限はない。また、第1電極層28および第2電極層30の厚さは、基本的に同じであるが、異なってもよい。
 ここで、上述した保護層と同様に、電極層の剛性が高過ぎると、圧電体層26の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、電極層は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
The thicknesses of the first electrode layer 28 and the second electrode layer 30 are not limited. Also, the thicknesses of the first electrode layer 28 and the second electrode layer 30 are basically the same, but may be different.
Here, as with the protective layer described above, if the rigidity of the electrode layer is too high, not only will the expansion and contraction of the piezoelectric layer 26 be restricted, but also the flexibility will be impaired. Therefore, the thinner the electrode layer, the better, as long as the electrical resistance does not become too high.
 圧電音響フィルム24では、電極層の厚さとヤング率との積が、保護層の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 例えば、保護層がPET(ヤング率:約6.2GPa)で、電極層が銅(ヤング率:約130GPa)からなる組み合わせの場合、保護層の厚さが25μmだとすると、電極層の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、0.1μm以下が特に好ましい。
In the piezoelectric acoustic film 24, if the product of the thickness of the electrode layer and the Young's modulus is less than the product of the thickness of the protective layer and the Young's modulus, the flexibility is not greatly impaired, which is preferable.
For example, when the protective layer is PET (Young's modulus: about 6.2 GPa) and the electrode layer is made of copper (Young's modulus: about 130 GPa), and the thickness of the protective layer is 25 μm, the thickness of the electrode layer is 1.2 μm or less is preferable, 0.3 μm or less is more preferable, and 0.1 μm or less is particularly preferable.
 圧電音響フィルム24は、圧電体層26を第1電極層28および第2電極層30で挟持し、さらに、好ましい態様として、この積層体を、第1保護層32および第2保護層34で挟持した構成を有する。
 このような圧電音響フィルム24は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)が0.1以上となる極大値が常温に存在するのが好ましい。
 これにより、圧電音響フィルム24が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
In the piezoelectric acoustic film 24, the piezoelectric layer 26 is sandwiched between the first electrode layer 28 and the second electrode layer 30, and in a preferred embodiment, this laminate is sandwiched between the first protective layer 32 and the second protective layer 34. It has a configuration that
In such a piezoelectric acoustic film 24, it is preferable that the loss tangent (Tan[delta]) at a frequency of 1 Hz by dynamic viscoelasticity measurement has a maximum value of 0.1 or more at room temperature.
As a result, even if the piezoelectric acoustic film 24 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface with
 圧電音響フィルム24は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPaであり、50℃において1~10GPaであるのが好ましい。
 これにより、常温で圧電音響フィルム24が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
The piezoelectric acoustic film 24 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C.
Accordingly, the piezoelectric acoustic film 24 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
 また、圧電音響フィルム24は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×106~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。
 これにより、圧電音響フィルム24が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
In addition, the piezoelectric acoustic film 24 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz measured by dynamic viscoelasticity measurement at 0° C. of 1.0×10 6 to 2.0×10 6 N/. It is preferably 1.0×10 5 to 1.0×10 6 N/m at 50° C. m.
As a result, the piezoelectric acoustic film 24 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
 さらに、圧電音響フィルム24は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。 Furthermore, the piezoelectric acoustic film 24 preferably has a loss tangent (Tan δ) of 0.05 or more at 25°C and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement.
 以下、図9~図11を参照して、圧電音響フィルム24の製造方法の一例を説明する。
 まず、図9に概念的に示す、第2保護層34の表面に第2電極層30が形成された積層体42bを準備する。さらに、図11に概念的に示す、第1保護層32の表面に第1電極層28が形成された積層体42aを準備する。
An example of a method for manufacturing the piezoelectric acoustic film 24 will be described below with reference to FIGS. 9 to 11. FIG.
First, a laminated body 42b conceptually shown in FIG. 9 is prepared in which the second electrode layer 30 is formed on the surface of the second protective layer 34 . Furthermore, a laminated body 42a conceptually shown in FIG. 11 is prepared in which the first electrode layer 28 is formed on the surface of the first protective layer 32. Next, as shown in FIG.
 積層体42bは、第2保護層34の表面に、真空蒸着、スパッタリング、めっき等によって第2電極層30として銅薄膜等を形成して、作製すればよい。同様に、積層体42aは、第1保護層32の表面に、真空蒸着、スパッタリング、めっき等によって第1電極層28として銅薄膜等を形成して、作製すればよい。
 あるいは、保護層の上に銅薄膜等が形成された市販品をシート状物を、積層体42bおよび/または積層体42aとして利用してもよい。
 積層体42bおよび積層体42aは、同じものでもよく、異なるものでもよい。
The laminate 42b may be produced by forming a copper thin film or the like as the second electrode layer 30 on the surface of the second protective layer 34 by vacuum deposition, sputtering, plating, or the like. Similarly, the laminate 42a may be produced by forming a copper thin film or the like as the first electrode layer 28 on the surface of the first protective layer 32 by vacuum deposition, sputtering, plating, or the like.
Alternatively, a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the laminated body 42b and/or the laminated body 42a.
The laminate 42b and the laminate 42a may be the same or different.
 なお、保護層が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層を用いても良い。なお、セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、電極層および保護層の熱圧着後、取り除けばよい。 In addition, when the protective layer is very thin and the handling property is poor, a protective layer with a separator (temporary support) may be used as necessary. As the separator, PET or the like having a thickness of 25 to 100 μm can be used. The separator may be removed after the electrode layer and protective layer are thermocompression bonded.
 次いで、図10に概念的に示すように、積層体42bの第2電極層30上に、圧電体層26を形成して、積層体42bと圧電体層26とを積層した圧電積層体46を作製する。 Next, as conceptually shown in FIG. 10, the piezoelectric layer 26 is formed on the second electrode layer 30 of the laminate 42b, and the piezoelectric laminate 46 is formed by laminating the laminate 42b and the piezoelectric layer 26. make.
 圧電体層26は、圧電体層26に応じた公知の方法で形成すればよい。
 例えば、図8に示す、高分子マトリックス38に圧電体粒子40を分散してなる圧電体層(高分子複合圧電体層)であれば、一例として、以下のように作製する。
 まず、有機溶媒に、上述したシアノエチル化PVA等の高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子40を添加し、攪拌して塗料を調製する。有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン、および、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 積層体42bを準備し、かつ、塗料を調製したら、この塗料を積層体42bにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図10に示すように、第2保護層34の上に第2電極層30を有し、第2電極層30の上に圧電体層26を積層してなる圧電積層体46を作製する。
The piezoelectric layer 26 may be formed by a known method suitable for the piezoelectric layer 26 .
For example, a piezoelectric layer (polymer composite piezoelectric layer) in which piezoelectric particles 40 are dispersed in a polymer matrix 38 shown in FIG. 8 is manufactured as follows.
First, a polymer material such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 40 such as PZT particles are added and stirred to prepare a paint. Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone, and cyclohexanone can be used.
After the laminate 42b is prepared and the paint is prepared, the paint is cast (applied) to the laminate 42b and dried by evaporating the organic solvent. As a result, as shown in FIG. 10, a piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 laminated on the second electrode layer 30 is produced. do.
 塗料のキャスティング方法には制限はなく、バーコータ、スライドコーターおよびドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
 あるいは高分子材料が加熱溶融可能な物であれば、高分子材料を加熱溶融して、これに圧電体粒子40を添加してなる溶融物を作製し、押し出し成形等によって、図3に示す積層体42bの上にシート状に押し出し、冷却することにより、図9に示すような、圧電積層体46を作製してもよい。
There are no restrictions on the method of casting the coating material, and known methods (coating equipment) such as bar coaters, slide coaters and doctor knives can all be used.
Alternatively, if the polymer material can be melted by heating, the polymer material is heated and melted, and the piezoelectric particles 40 are added to the melted material, which is then extruded or otherwise laminated as shown in FIG. A piezoelectric laminate 46 as shown in FIG. 9 may be produced by extruding a sheet onto the body 42b and cooling.
 なお、上述のように、圧電音響フィルム24において、高分子マトリックス38には、常温で粘弾性を有する高分子材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
 高分子マトリックス38に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、加熱溶融した常温で粘弾性を有する高分子材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
As described above, in the piezoelectric acoustic film 24, the polymer matrix 38 may be added with a polymer piezoelectric material such as PVDF in addition to the polymer material having viscoelasticity at room temperature.
When these polymeric piezoelectric materials are added to the polymeric matrix 38, the polymeric piezoelectric materials to be added to the paint may be dissolved. Alternatively, the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
 圧電体層26を形成したら、必要に応じて、カレンダ処理を行ってもよい。カレンダ処理は、1回でもよく、複数回、行ってもよい。
 周知のように、カレンダ処理とは、加熱プレスや加熱ローラ等によって、被処理面を加熱しつつ押圧して、平坦化等を施す処理である。
After the piezoelectric layer 26 is formed, it may be calendered, if desired. Calendering may be performed once or multiple times.
As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
 また、第2保護層34の上に第2電極層30を有し、第2電極層30の上に圧電体層26を形成してなる圧電積層体46の圧電体層26に、分極処理(ポーリング)を行う。
 圧電体層26の分極処理の方法には制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第1電極層28を形成して、第1電極層28および第2電極層30を利用して、電界ポーリング処理を行ってもよい。
 また、圧電音響フィルム24を製造する際には、分極処理は、圧電体層26の面方向ではなく、厚さ方向に分極を行う。
Further, the piezoelectric layer 26 of the piezoelectric laminate 46 having the second electrode layer 30 on the second protective layer 34 and the piezoelectric layer 26 formed on the second electrode layer 30 is subjected to a polarization treatment ( polling).
The method of polarization treatment of the piezoelectric layer 26 is not limited, and known methods can be used. For example, electric field poling, in which a DC electric field is directly applied to an object to be polarized, is exemplified. When electric field poling is performed, the first electrode layer 28 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 28 and the second electrode layer 30. .
Further, when the piezoelectric acoustic film 24 is manufactured, the polarization treatment is performed not in the surface direction of the piezoelectric layer 26 but in the thickness direction.
 次いで、図11に概念的に示すように、圧電積層体46の圧電体層26側に、先に準備した積層体42aを、第1電極層28を圧電体層26に向けて積層する。
 さらに、この積層体を、第1保護層32および第2保護層34を挟持するようにして、加熱プレス装置および加熱ローラ等を用いて熱圧着して、圧電積層体46と積層体42aとを貼り合わせる。
 これにより、圧電体層26、圧電体層26の両面に設けられる第1電極層28および第2電極層30、ならびに、電極層の表面に形成される第1保護層32および第2保護層34からなる圧電音響フィルム24を作製する。
Next, as conceptually shown in FIG. 11, the previously prepared laminate 42 a is laminated on the piezoelectric layer 26 side of the piezoelectric laminate 46 with the first electrode layer 28 facing the piezoelectric layer 26 .
Further, this laminate is thermocompression bonded using a heat press device, a heating roller, etc., with the first protective layer 32 and the second protective layer 34 sandwiched between them, thereby forming the piezoelectric laminate 46 and the laminate 42a. to paste together.
As a result, the piezoelectric layer 26, the first electrode layer 28 and the second electrode layer 30 provided on both surfaces of the piezoelectric layer 26, and the first protective layer 32 and the second protective layer 34 formed on the surface of the electrode layer A piezoelectric acoustic film 24 is produced.
 このような作製工程を行って作製される圧電音響フィルム24は、面方向ではなく厚さ方向に分極されており、かつ、分極処理後に延伸処理をしなくても大きな圧電特性が得られる。そのため、圧電音響フィルム24は、圧電特性に面内異方性がなく、駆動電圧を印加すると、面方向では全方向に等方的に伸縮する。 The piezoelectric acoustic film 24 produced by performing such a production process is polarized in the thickness direction rather than in the surface direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric acoustic film 24 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a driving voltage is applied.
 圧電音響フィルム24の電極層には、電源装置等の外部の装置と電気的に接続するための引出し電極が接続され、この引出し配線には、スピーカーアンプ接続部64aを有する接続配線64が接続される。 The electrode layer of the piezoelectric acoustic film 24 is connected to a lead electrode for electrical connection with an external device such as a power supply, and the lead wire is connected to a connection wire 64 having a speaker amplifier connection portion 64a. be.
 本発明の投影用スクリーン10において、電極層と引出し電極との接続方法には制限はなく、各種の方法が利用可能である。
 一例として、電極層と圧電体層との間に、シート状の引出し電極を挿入し、この引出し電極に接続配線64を接続する方法が例示される。なお、引出し電極は、電極層と保護層との間に挿入してもよい。あるいは、接続配線64を、直接、電極層と圧電体層との間、または、電極層と保護層との間に挿入してもよい。
 別の方法として、保護層に貫通孔を形成し、貫通孔を埋めるように銀ペースト等の金属ペーストで形成した電極接続部材を設け、この電極接続部材に引出し電極を設ける方法が例示される。
 別の方法として、保護層および電極層の一部を面方向に圧電体層から突出させ、突出した電極層に、引出し電極を接続する方法が例示される。なお、引出し電極と電極層との接続は、銀ペースト等の金属ペーストを用いる方法、半田を用いる方法、導電性の接着剤を用いる方法等の公知の方法で行えばよい。
 好適な電極の引き出し方法として、特開2014-209724号公報に記載される方法、および、特開2016-015354号公報に記載される方法等が例示される。
In the projection screen 10 of the present invention, there are no restrictions on the method of connecting the electrode layers and the extraction electrodes, and various methods can be used.
As an example, a method of inserting a sheet-like lead electrode between the electrode layer and the piezoelectric layer and connecting the connection wiring 64 to the lead electrode is exemplified. Note that the extraction electrode may be inserted between the electrode layer and the protective layer. Alternatively, the connection wiring 64 may be inserted directly between the electrode layer and the piezoelectric layer or between the electrode layer and the protective layer.
Another method is to form a through hole in the protective layer, provide an electrode connection member formed of a metal paste such as silver paste so as to fill the through hole, and provide a lead electrode in this electrode connection member.
As another method, a method is exemplified in which a part of the protective layer and the electrode layer protrudes from the piezoelectric layer in the plane direction, and the lead electrode is connected to the protruded electrode layer. The connection between the extraction electrode and the electrode layer may be performed by a known method such as a method using a metal paste such as silver paste, a method using solder, or a method using a conductive adhesive.
Examples of suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
 このような圧電音響フィルム24は、貼着材(図示省略)によってスクリーン本体50に貼着される。
 本発明において、貼着材は、スクリーン本体50と圧電音響フィルム24とを貼着可能であれば、公知のものが、各種、利用可能である。従って、貼着材は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤(接着材)からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤(粘着材)からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。また、貼着材は、液体等の流動性を有する貼着剤を塗布して形成するものでも、シート状の貼着剤を用いて形成するものでもよい。
Such a piezoelectric acoustic film 24 is attached to the screen main body 50 with an adhesive (not shown).
In the present invention, various known adhesive materials can be used as long as they can adhere the screen main body 50 and the piezoelectric acoustic film 24 together. Therefore, even a layer made of an adhesive (adhesive), which has fluidity when pasted together and then becomes a solid, is a gel-like (rubber-like) soft solid when pasted together. A layer made of an adhesive (adhesive material) that does not change its gel state after that, or a layer made of a material having the characteristics of both an adhesive and an adhesive may be used. The adhesive material may be formed by applying an adhesive agent having fluidity such as a liquid, or may be formed using a sheet-like adhesive agent.
 投影用スクリーン10において、圧電音響フィルム24は、圧電体層26を第1電極層28および第2電極層30で挟持したものである。
 圧電体層26は、好ましくは、高分子マトリックス38中に、圧電体粒子40を有するものである。好ましくは、圧電体層26は、高分子マトリックス38中に、圧電体粒子40を分散したものである。
In the projection screen 10 , the piezoelectric acoustic film 24 is obtained by sandwiching the piezoelectric layer 26 between the first electrode layer 28 and the second electrode layer 30 .
Piezoelectric layer 26 preferably has piezoelectric particles 40 in a polymer matrix 38 . Preferably, piezoelectric layer 26 comprises piezoelectric particles 40 dispersed in polymer matrix 38 .
 このような圧電体層26を有する圧電音響フィルム24の第2電極層30および第1電極層28に音声信号(音響信号)に応じた電圧を印加すると、印加した電圧に応じて圧電体粒子40が分極方向に伸縮する。その結果、圧電音響フィルム24(圧電体層26)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電音響フィルム24は、面方向にも伸縮する。
 この伸縮は、0.01~0.1%程度である。
 上述したように、圧電体層26の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電音響フィルム24すなわち圧電体層26は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電音響フィルム24の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電音響フィルム24は伸縮する。
When a voltage corresponding to an audio signal (acoustic signal) is applied to the second electrode layer 30 and the first electrode layer 28 of the piezoelectric acoustic film 24 having such a piezoelectric layer 26, the piezoelectric particles 40 are generated according to the applied voltage. expands and contracts in the direction of polarization. As a result, the piezoelectric acoustic film 24 (piezoelectric layer 26) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric acoustic film 24 also expands and contracts in the plane direction.
This expansion and contraction is about 0.01 to 0.1%.
As described above, the thickness of the piezoelectric layer 26 is preferably about 10-300 μm. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 μm at maximum.
On the other hand, the piezoelectric acoustic film 24, that is, the piezoelectric layer 26, has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric acoustic film 24 is 20 cm, the piezoelectric acoustic film 24 expands and contracts by a maximum of about 0.2 mm due to voltage application.
 この圧電音響フィルム24の伸縮によって、スクリーン本体50は撓み、その結果、スクリーン本体50は、全面的に厚さ方向に振動する。厚さ方向とは、言い換えれば、スクリーン本体50の面方向と直交する方向である。
 この厚さ方向の振動によって、スクリーン本体50が、音声を出力する。すなわち、スクリーン本体50は、圧電音響フィルム24に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電音響フィルム24に印加した駆動電圧に応じた音声を出力する。
The expansion and contraction of the piezoelectric acoustic film 24 bends the screen body 50, and as a result, the screen body 50 vibrates in the thickness direction. The thickness direction is, in other words, a direction perpendicular to the surface direction of the screen body 50 .
The vibration in the thickness direction causes the screen body 50 to output sound. That is, the screen body 50 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric acoustic film 24 and outputs sound according to the driving voltage applied to the piezoelectric acoustic film 24 .
 また、上述のように、圧電音響フィルム24において、好ましい圧電体層26の厚さは、最大でも300μm程度である。しかも、高分子複合圧電体である圧電体層26を用いた圧電音響フィルム24は、非常に良好な可撓性を有する。
 そのため、圧電音響フィルム24は、非常に薄く、かつ、良好な可撓性を有する。従って、このような圧電音響フィルム24を用いることにより、スクリーン本体50を巻き取った際に、圧電音響フィルム24がスクリーン本体50の巻取りに好適に追従する。その結果、圧電音響フィルム24を貼着したスクリーン本体50は、巻取りを好適に行うことができる。
Moreover, as described above, in the piezoelectric acoustic film 24, the preferable thickness of the piezoelectric layer 26 is at most about 300 μm. Moreover, the piezoelectric acoustic film 24 using the piezoelectric layer 26, which is a polymeric composite piezoelectric material, has very good flexibility.
Therefore, the piezoelectric acoustic film 24 is very thin and has good flexibility. Therefore, by using such a piezoelectric acoustic film 24, the piezoelectric acoustic film 24 suitably follows the winding of the screen body 50 when the screen body 50 is wound. As a result, the screen body 50 to which the piezoelectric acoustic film 24 is adhered can be suitably wound.
 なお、本発明の投影用スクリーン10において、圧電音響フィルムは、図示例のような単層に制限はされず、複数の圧電音響フィルム24を積層したものであってもよい。この点に関しては、圧電音響フィルム24以外にも、上述した各種の圧電音響フィルムも同様である。
 複数の圧電音響フィルム24を積層する際には、カットシート状の圧電音響フィルム24を、複数枚、積層したものであってもよく、あるいは、例えば国際公開第2020/095812号等に記載されるように、1枚の圧電音響フィルム24を、1回以上、折り返すことによって、複数層を積層してもよい。
 上述のように、圧電音響フィルム24は、非常に薄く、かつ、良好な可撓性を有する。そのため、複数層を積層した積層体であっても、良好な可撓性を有し、また、巻取りを好適に行うことができる。
In addition, in the projection screen 10 of the present invention, the piezoelectric acoustic film is not limited to a single layer as in the illustrated example, and may be a laminate of a plurality of piezoelectric acoustic films 24 . In this regard, the same applies to the various piezoelectric acoustic films described above, in addition to the piezoelectric acoustic film 24 .
When a plurality of piezoelectric acoustic films 24 are laminated, a plurality of cut sheet-shaped piezoelectric acoustic films 24 may be laminated, or as described in, for example, International Publication No. 2020/095812. Thus, a plurality of layers may be laminated by folding one piezoelectric acoustic film 24 one or more times.
As mentioned above, the piezoelectric acoustic film 24 is very thin and has good flexibility. Therefore, even a laminate obtained by laminating a plurality of layers has good flexibility and can be suitably wound.
 なお、本発明において、複数の圧電音響フィルム24を積層とする場合には、積層によって隣接する圧電音響フィルム24同士を、貼着剤で貼着するのが好ましい。
 貼着剤(貼着層)は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤でも、接着剤と粘着剤との両方の特徴を持った材料からなるものでもよい。しかしながら、積層した圧電音響フィルム24の伸縮を、ロスすることなく、好適に伝達できる点で、貼着剤は、最終的に固体になる接着剤を用いるのが好ましい。
In the present invention, when a plurality of piezoelectric acoustic films 24 are laminated, it is preferable that the piezoelectric acoustic films 24 adjacent to each other by lamination are adhered with an adhesive.
The adhesive (adhesive layer) has fluidity when it is pasted together, and then becomes solid. It may be an adhesive that does not change its state, or it may be made of a material that has the characteristics of both an adhesive and an adhesive. However, it is preferable to use an adhesive that finally becomes a solid as the sticking agent in that the expansion and contraction of the laminated piezoelectric acoustic film 24 can be transmitted appropriately without loss.
 上述のように、本発明の投影用スクリーン10は、図1の断面図(右側)および図12に概念的に示すように、スクリーン本体50の背面側を覆って、遮音シート59が設けられる。
 本発明の投影用スクリーン10は、このような遮音シート59を有することにより、スクリーン本体50の背面側からの逆位相の音声が投影面側に回り込み、投影面側から出力される音声の一部と打ち消し合うことを防止する。
As described above, the projection screen 10 of the present invention is provided with the sound insulating sheet 59 covering the rear side of the screen body 50 as conceptually shown in the sectional view (right side) of FIG. 1 and FIG.
Since the projection screen 10 of the present invention has such a sound insulation sheet 59, the reverse phase sound from the back side of the screen main body 50 wraps around to the projection surface side, and part of the sound output from the projection surface side to prevent it from canceling out with
 上述のように、投影面の背面に圧電音響フィルムを設けたスクリーンは、圧電音響フィルムによってスクリーン全面が振動し、このスクリーンの振動により、音声を出力する。そのため、このスクリーンは、画面から音声が出力されているような状態となり、臨場感の高い音声を出力することができる。
 しかしながら、このスクリーンでは、スクリーン全面が振動するので、背面側からも逆位相の音声が出力され、投影面側に回り込む。この逆位相の音声は、投影面側で出力する音声と、一部が打ち消し合うので、投影面側において映像を観察した際に、音声の出力が下がってしまう。
As described above, the screen provided with the piezoelectric acoustic film on the back surface of the projection surface vibrates the entire surface of the screen due to the piezoelectric acoustic film, and the vibration of the screen outputs sound. Therefore, the screen is in a state in which sound is output from the screen, and sound with a high degree of realism can be output.
However, in this screen, since the entire screen vibrates, the sound of the opposite phase is also output from the back side and wraps around to the projection surface side. Since this anti-phase sound partially cancels out the sound output on the projection surface side, the sound output decreases when the image is observed on the projection surface side.
 これに対して、本発明の投影用スクリーン10は、スクリーン本体50の背面側を覆って、遮音シート59が設けられる。
 図示例においては、遮音シート59は、マジックテープによって第1支持部材52および第2支持部材54に装着され、スクリーン本体50の全面を覆っている。
On the other hand, the projection screen 10 of the present invention is provided with a sound insulating sheet 59 covering the rear side of the screen main body 50 .
In the illustrated example, the sound insulation sheet 59 is attached to the first support member 52 and the second support member 54 with Velcro, and covers the entire surface of the screen body 50 .
 本発明の投影用スクリーン10は、このような遮音シート59を有することにより、スクリーン本体50の背面側から出力された逆位相の音声を遮音シート59で遮音して、背面側で出力された逆位相の音声が、投影面側に回り込むことを防止する。
 その結果、本発明の投影用スクリーン10によれば、投影用スクリーン10の投影側から鑑賞した際に、音の打ち消し合いに音圧低下を抑止して、適正な出力の音声の映像を視聴することができる。
Since the projection screen 10 of the present invention has such a sound insulation sheet 59, the sound insulation sheet 59 insulates the sound of the opposite phase output from the back side of the screen main body 50, and the sound of the reverse phase output from the back side is blocked. To prevent phase sound from going around to the projection surface side.
As a result, according to the projection screen 10 of the present invention, when viewed from the projection side of the projection screen 10, sound pressure reduction due to cancellation of sound is suppressed, and images with appropriate output audio can be viewed. be able to.
 本発明の投影用スクリーン10において、遮音シート59には制限はなく、公知の各種のシート状物が利用可能である。
 一例として、上述した塩化ビニルなどの樹脂、和紙などの紙、キャンパス布などの布等からなるスクリーン本体50として利用される各種のシート状物が例示される。なお、スクリーン本体50として利用されるものを遮音シート59に用いる場合には、スクリーン本体50と遮音シート59とは、同じものであっても、異なる物であってもよい。
 それ以外にも、遮音シート59としては、ゴム、ウレタンフォームなどの多孔質体、および、フェルトなどの不織布等からなるシート状物も利用可能である。
In the projection screen 10 of the present invention, the sound insulating sheet 59 is not limited, and various known sheet-like materials can be used.
As an example, various sheet-like materials used as the screen main body 50 made of resin such as vinyl chloride, paper such as Japanese paper, and cloth such as canvas cloth are exemplified. When the sound insulation sheet 59 is used as the screen body 50, the screen body 50 and the sound insulation sheet 59 may be the same or different.
In addition, as the sound insulation sheet 59, a sheet-like material made of a porous material such as rubber or urethane foam, or a non-woven fabric such as felt can be used.
 本発明の投影用スクリーン10においては、図1の断面図に示すように、スクリーン本体50および圧電音響フィルム24と、遮音シート59との間には、空間が存在するのが好ましい。
 言い換えれば、本発明の投影用スクリーン10においては、スクリーン本体50および圧電音響フィルム24と、遮音シート59とが、接触しないのが好ましい。
In the projection screen 10 of the present invention, it is preferable that a space exists between the screen body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59, as shown in the cross-sectional view of FIG.
In other words, in the projection screen 10 of the present invention, it is preferable that the screen body 50 and the piezoelectric acoustic film 24 and the sound insulation sheet 59 do not come into contact with each other.
 スクリーン本体50および/または圧電音響フィルム24と、遮音シート59とが、接触していると、遮音シート59も一緒に振動してしまう。その結果、スクリーン本体50の背面側で発生した逆位相の音声が、投影面側に回り込むのを防ぐことができず、投影面側で出力する音声の一部を打ち消してしまう。
 これに対して、スクリーン本体50および圧電音響フィルム24と、遮音シート59とが離間していることにより、遮音シート59が振動することを防止して、逆位相の音声が投影面側に回り込むのを防ぐことを、より好適に防止できる。
If the screen body 50 and/or the piezoelectric acoustic film 24 and the sound insulation sheet 59 are in contact with each other, the sound insulation sheet 59 will also vibrate. As a result, it is not possible to prevent the opposite phase sound generated on the back side of the screen main body 50 from going around to the projection surface side, and part of the sound output on the projection surface side is canceled.
On the other hand, since the screen main body 50 and the piezoelectric acoustic film 24 are separated from the sound insulation sheet 59, the sound insulation sheet 59 is prevented from vibrating, and the opposite phase sound is prevented from reaching the projection surface side. can be more suitably prevented.
 スクリーン本体50および圧電音響フィルム24と、遮音シート59との間隔の大きさには、制限はなく、スクリーン本体50が振動して音声を出力している状態で、スクリーン本体50および圧電音響フィルム24と、遮音シート59とが離間しいている状態を保てればよい。
 従って、スクリーン本体50および圧電音響フィルム24と、遮音シート59との間隔は、装置構成等に応じて、スクリーン本体50が振動して音声を出力している状態で、スクリーン本体50および圧電音響フィルム24と、遮音シート59とが接触しない間隔を、適宜、設定すればよい。
The size of the gap between the screen body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59 is not limited. and the sound insulation sheet 59 are kept apart.
Therefore, the distance between the screen main body 50 and the piezoelectric acoustic film 24 and the sound insulating sheet 59 is determined according to the device configuration and the like, while the screen main body 50 vibrates and outputs sound. 24 and the sound insulation sheet 59 may be set appropriately.
 また、スクリーン本体50および圧電音響フィルム24と、遮音シート59とが接触しなければ、遮音シート59は、ある程度の張力を掛けて張上げても、張力が掛からない弛んだ状態で固定してもよい。 If the screen body 50 and the piezoelectric acoustic film 24 and the sound insulation sheet 59 do not come into contact with each other, the sound insulation sheet 59 may be stretched up with a certain amount of tension, or may be fixed in a loosened state where no tension is applied. .
 遮音シート59は、着脱可能であるのが好ましい。すなわち、投影用スクリーン10は、遮音シートの着脱機構を有するのが好ましい。
 図示例においては、上述のように、遮音シート59は、マジックテープによって、第1支持部材52および第2支持部材54に、着脱自在に固定される。
The sound insulation sheet 59 is preferably detachable. That is, the projection screen 10 preferably has a mechanism for attaching and detaching the sound insulation sheet.
In the illustrated example, the sound insulation sheet 59 is detachably fixed to the first support member 52 and the second support member 54 with Velcro, as described above.
 上述したように、投影用スクリーン10において、非使用時には、スクリーン本体50は、第1支持部材52および第2支持部材54と共に張上げ機構56から取り外され、第1支持部材52および/または第2支持部材54に巻き取られる。 As described above, when the projection screen 10 is not in use, the screen body 50 is removed from the lifting mechanism 56 together with the first support member 52 and the second support member 54, and the first support member 52 and/or the second support member 54 are removed. It is wound on member 54 .
 この巻取りの際に、遮音シート59が取り外せない場合には、スクリーン本体50と遮音シート59とを、一緒に巻き取る必要がある。スクリーン本体50と遮音シート59とを一緒に巻き取るのは、巻取りがし難い。そればかりか、巻取り方によっては、スクリーン本体50にシワが入ってしまう、折れが発生してしまう、破れてしまう等の不都合が生じる可能性がある。
 これに対して、遮音シート59を着脱自在にすることにより、スクリーン本体50と遮音シート59とを、別々に巻き取ることができ、両者の巻取りを容易にし、また、スクリーン本体50にシワが入る等の不都合が生じることを、好適に防止できる。
If the sound insulation sheet 59 cannot be removed during this winding, the screen body 50 and the sound insulation sheet 59 must be wound together. It is difficult to wind the screen body 50 and the sound insulation sheet 59 together. Moreover, depending on the winding method, the screen body 50 may be wrinkled, folded, or torn.
On the other hand, by making the sound insulation sheet 59 detachable, the screen body 50 and the sound insulation sheet 59 can be separately wound up, making it easier to wind them up and preventing wrinkles in the screen body 50. It is possible to suitably prevent inconvenience such as entering.
 投影用スクリーン10において、遮音シート59を着脱自在にする方法、すなわち、着脱機構は、マジックテープを用いる方法に制限はされず、シート状物を着脱自在にする公知の方法が、各種、利用可能である。
 一例として、フック(鉤状の部材)とフックを掛けるリング(孔部)とを用いる方法、マグネットを用いる方法、および、シート状に設けた凹凸のかみ合わせによる方法等が例示される。
In the projection screen 10, the method of making the sound insulating sheet 59 detachable, that is, the detachable mechanism, is not limited to the method using Velcro, and various known methods of making the sheet-like material detachable can be used. is.
Examples include a method using a hook (hook-shaped member) and a ring (hole) for hooking the hook, a method using a magnet, and a method using meshing of unevenness provided on a sheet.
 図示例の投影用スクリーン10において、遮音シート59は、スクリーン本体50の背面全面を覆うように設けられる。
 しかしながら、本発明は、これに制限はされず、遮音シート59は、スクリーン本体50の背面の一部を覆うものでもよい。しかしながら、スクリーン本体50の背面側で発生する逆位相の音声が投影面に回り込むことを、好適に防止できる点で、遮音シート59は、スクリーン本体50の背面全面を覆うのが好ましい。
In the illustrated projection screen 10 , the sound insulation sheet 59 is provided so as to cover the entire rear surface of the screen body 50 .
However, the present invention is not limited to this, and the sound insulation sheet 59 may cover a portion of the back surface of the screen body 50 . However, the sound insulation sheet 59 preferably covers the entire back surface of the screen body 50 in order to suitably prevent the opposite phase sound generated on the back side of the screen body 50 from reaching the projection surface.
 以上、本発明の投影用スクリーンについて詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the projection screen of the present invention has been described in detail above, the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course.
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に制限されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention. The present invention is not limited to this example, and the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. can.
 [圧電音響フィルムの作製]
 図9~図11に示す方法で、圧電音響フィルムを作製した。
 まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、圧電体粒子としてPZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で攪拌して、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
 なお、PZT粒子は、主成分となるPb酸化物、Zr酸化物およびTi酸化物の粉末を、Pb=1モルに対し、Zr=0.52モル、Ti=0.48モルとなるように、ボールミルで湿式混合してなる混合粉を、800℃で5時間、焼成した後、解砕処理したものを用いた。
[Preparation of Piezoelectric Acoustic Film]
A piezoelectric acoustic film was produced by the method shown in FIGS.
First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
・PZT particles・・・・・・・・・・300 parts by mass ・Cyanoethylated PVA・・・・・・・・30 parts by mass ・DMF・・・・・・・・・・・・70 parts by mass The PZT particles are composed of powders of Pb oxide, Zr oxide and Ti oxide, which are the main components, so that Zr = 0.52 mol and Ti = 0.48 mol with respect to Pb = 1 mol. Mixed powder obtained by wet-mixing in a ball mill was fired at 800° C. for 5 hours and then pulverized.
 一方、厚さ4μmのPETフィルムに、厚さ0.1μmの銅薄膜を真空蒸着してなるシート状物を用意した。すなわち、本例においては、第1電極層および第2電極層は、厚さ0.1mの銅蒸着薄膜であり、第1保護層および第2保護層は、厚さ4μmのPETフィルムとなる。
 シート状物の第2電極層(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が40μmになるように、塗布した。
 次いで、シート状物に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の第2保護層の上に銅製の第2電極層を有し、その上に、厚さが30μmの圧電体層(高分子複合圧電体層)を有する積層体を作製した。
On the other hand, a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.1 μm on a PET film with a thickness of 4 μm. That is, in this example, the first electrode layer and the second electrode layer are 0.1 m-thick copper-evaporated thin films, and the first protective layer and the second protective layer are 4 μm-thick PET films.
Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. The paint was applied so that the thickness of the coating film after drying was 40 μm.
Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C. to evaporate the DMF. As a result, a laminate having a second electrode layer made of copper on a second protective layer made of PET and a piezoelectric layer (polymer composite piezoelectric layer) having a thickness of 30 μm thereon was produced. .
 作製した圧電体層を、厚さ方向に分極処理した。 The produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
 圧電体層の分極処理を行った積層体の上に、第1電極層(銅薄膜側)を圧電体層に向けて、PETフィルムに同薄膜を蒸着したシート状物を積層した。
 次いで、積層体とシート状物との積層体を、ラミネータ装置を用いて、温度120℃で熱圧着することで、複合圧電体と第1電極層とを貼着して接着して、図8に示すような圧電音響フィルムを作製した。
A sheet-like product obtained by vapor-depositing the same thin film on a PET film was laminated with the first electrode layer (copper thin film side) facing the piezoelectric layer on the laminate in which the piezoelectric layer had been subjected to the polarization treatment.
Next, the laminate of the laminate and the sheet-like material is thermocompressed at a temperature of 120° C. using a laminator device to adhere and bond the composite piezoelectric body and the first electrode layer, as shown in FIG. A piezoelectric acoustic film as shown in was produced.
 [実施例1]
 1200×1600mmの塩化ビニル製のスクリーン本体を用意した。また、作製した圧電音響フィルムを、120×120mmの正方形に切断した。
 このスクリーン本体を長手方向に二分割して、各領域の中央に圧電音響フィルムを貼着した。圧電音響フィルムの貼着は、両面粘着テープによって行った。
 この圧電音響フィルムを貼着したスクリーン本体を用いて、図1および図12に示すような投影用スクリーンを作製した。
 遮音シートは、スクリーン本体と同じものを用い、マジックテープによって、第1支持部材および第2支持部材に固定することで、スクリーン本体の背面全面を覆った。従って、この投影用スクリーンは、遮音シートを着脱可能にする着脱機構を有する。
 また、圧電音響フィルムおよびスクリーン本体と、遮音シートとの間には、両者が接触しないように空間を設けた。
[Example 1]
A vinyl chloride screen body of 1200×1600 mm was prepared. Also, the produced piezoelectric acoustic film was cut into squares of 120×120 mm.
This screen body was divided into two parts in the longitudinal direction, and a piezoelectric acoustic film was adhered to the center of each area. The piezoelectric acoustic film was attached using a double-sided adhesive tape.
A projection screen as shown in FIGS. 1 and 12 was produced using the screen main body to which the piezoelectric acoustic film was adhered.
The same sound insulating sheet as used for the screen main body was used, and was fixed to the first supporting member and the second supporting member with Velcro to cover the entire rear surface of the screen main body. Therefore, this projection screen has an attachment/detachment mechanism for attaching/detaching the sound insulating sheet.
Further, a space was provided between the piezoelectric acoustic film and the screen main body and the sound insulating sheet so that the two do not come into contact with each other.
 [実施例2]
 スクリーン本体を、短手方向および長手方向に二分割して4等分し、各領域に同じ圧電音響フィルムを貼着した以外は、実施例1と同様に投影用スクリーンを作製した。
[Example 2]
A projection screen was produced in the same manner as in Example 1, except that the screen body was divided into four equal parts in the lateral direction and the longitudinal direction, and the same piezoelectric acoustic film was adhered to each region.
 [実施例3]
 スクリーン本体および遮音シートとして、和紙を用いた以外は、実施例1と同様に投影用スクリーンを作製した。
 [実施例4]
 スクリーン本体および遮音シートとして、帆布を用いた以外は、実施例1と同様に投影用スクリーンを作製した。
[Example 3]
A projection screen was produced in the same manner as in Example 1, except that Japanese paper was used as the screen body and the sound insulation sheet.
[Example 4]
A projection screen was produced in the same manner as in Example 1, except that canvas was used as the screen body and the sound insulation sheet.
 [実施例5]
 第1支持部材および第2支持部材への遮音シートの取り付け位置を変更して、圧電音響フィルムと遮音シートとの間に空間を設けず、両者を接触させた以外は、実施例1と同様に投影用スクリーンを作製した。
[Example 5]
The same procedure as in Example 1 was performed, except that the positions where the sound insulation sheets were attached to the first support member and the second support member were changed so that no space was provided between the piezoelectric acoustic film and the sound insulation sheet, and the two were brought into contact with each other. A projection screen was made.
 [実施例6]
 接着剤を用い、遮音シートを第1支持部材および第2支持部材から取り外せないようにした以外は、実施例1と同様に投影用スクリーンを作製した。
[Example 6]
A projection screen was produced in the same manner as in Example 1, except that an adhesive was used to prevent the sound insulation sheet from being removed from the first support member and the second support member.
 [比較例1]
 遮音シートを設けない以外は、実施例1と同様に投影用スクリーンを作製した。
[Comparative Example 1]
A projection screen was produced in the same manner as in Example 1, except that the sound insulating sheet was not provided.
 作製した投影用スクリーンを用いて、以下の評価を行った。
 なお、プロジェクターを用いて、スクリーン本体に静止画および動画を投影したところ、いずれも投影像を良好に鑑賞することができた。
The following evaluation was performed using the produced projection screen.
When a still image and a moving image were projected onto the main screen using a projector, the projected images could be viewed satisfactorily.
 [音圧]
 スクリーン本体から1m離れ、かつ、長手および短手方向は中心位置で、騒音計を用いて、音圧の測定を行った。
 音圧の測定にあたっては、定電流アンプにて500~20kHzのピンクノイズを入力した。電圧は、1kHzで20Vrms入力となるよう調節した。実施例2の音圧レベルを5段階評価の5とし、音圧が1dB下がる毎に、評価を1、低くした。
[Sound pressure]
The sound pressure was measured using a sound level meter at a distance of 1 m from the screen main body and at the central position in the longitudinal and lateral directions.
In measuring the sound pressure, pink noise of 500 to 20 kHz was input by a constant current amplifier. The voltage was adjusted to give a 20 Vrms input at 1 kHz. The sound pressure level of Example 2 was evaluated as 5 out of 5, and the evaluation was lowered by 1 each time the sound pressure decreased by 1 dB.
 [巻取り性]
 作製した投影用スクリーンを、上述のように、足部材と、張上げ機構と、スクリーン本体、第1支持部材および第2支持部材とに、解体した。さらに、遮音シートが着脱可能なものは、遮音シートを第1支持部材および第2支持部材から外した。
 その後、スクリーン本体を第1支持部材に巻き取った。なお、巻取りは手作業で行い、容易に巻きズレが発生しない程度に隙間が発生しないよう巻き取った。
 スクリーン本体を巻取った後、1日静置した。その後、巻き取ったスクリーン本体を広げて、シワおよび折れの有無を評価した。
 スクリーン本体にシワおよび折れが認められなかった場合をA、
 スクリーン本体にシワおよび折れが認められた場合をB、
と評価した。
 結果を下記の表に示す。
[Windability]
The produced projection screen was dismantled into the leg members, the tensioning mechanism, the screen main body, the first supporting member and the second supporting member as described above. Furthermore, in the case where the sound insulation sheet is detachable, the sound insulation sheet is removed from the first support member and the second support member.
After that, the screen body was wound around the first supporting member. In addition, the winding was performed manually, and was wound so as not to generate a gap to the extent that winding misalignment did not occur easily.
After the screen body was wound up, it was allowed to stand still for one day. After that, the wound screen body was unfolded and the presence or absence of wrinkles and folds was evaluated.
A when no wrinkles or folds were found on the screen body,
B when wrinkles and folds are found on the screen body,
and evaluated.
Results are shown in the table below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記表に示すように、スクリーン本体の背面側に遮音シートを有する本発明の投影用スクリーンによれば、遮音シートを有さない従来の投影用スクリーンである比較例1に比して、高い音圧を得ることができる。
 実施例1および実施例6に示されるように、スクリーン本体および圧電音響フィルムと、遮音シートとの間に空間を設けることにより、より高い音圧が得られる。また、実施例1および実施例6に示されるように、遮音シートの着脱機構を有することにより、非使用時に遮音シートを取り外してスクリーンを巻き取ることができるので、スクリーン本体を巻き取っても、スクリーンにシワ等が入ることを防止できる。
 以上の結果より、本発明の効果は明らかである。
As shown in the above table, according to the projection screen of the present invention having the sound insulation sheet on the back side of the screen body, the noise is higher than that of Comparative Example 1, which is the conventional projection screen without the sound insulation sheet. pressure can be obtained.
As shown in Examples 1 and 6, a higher sound pressure can be obtained by providing a space between the screen body and the piezoelectric acoustic film and the sound insulating sheet. In addition, as shown in Examples 1 and 6, since the sound insulation sheet has a mechanism for attaching and detaching the sound insulation sheet, the sound insulation sheet can be removed and the screen can be wound up when the screen is not in use. It is possible to prevent wrinkles or the like from entering the screen.
From the above results, the effect of the present invention is clear.
 音声出力を有する映像の投影に好適に利用可能である。 It can be suitably used for projecting video with audio output.
 10 投影用スクリーン
 24 圧電音響フィルム
 26 圧電体層
 28 第1電極層
 30 第2電極層
 32 第1保護層
 34 第2保護層
 38 高分子マトリックス
 40 圧電体粒子
 42a,42b 積層体
 46 圧電積層体
 50 スクリーン本体
 52 第1支持部材
 52a 本体
 52b C型カバー
 52c 貫通孔
 54 第2支持部材
 54a 本体
 54b C型カバー
 54c 貫通孔
 56 張上げ機構
 58 第1フレーム部材
 58a 係合部材
 58b 固定ピン
 60 第2フレーム部材
 60a 係合部材
 60b 固定ピン
 62 ヒンジ部材
 62a 第1アーム
 62b 第2アーム
 62c,62d,62f 回転軸
 64 接続配線
 64a スピーカーアンプ接続部
 78 足部材
 78a 上部支持部材
 78b 下部支持部材
 78c 足部
 80 微調節機構
 80a 調節螺子
Reference Signs List 10 projection screen 24 piezoelectric acoustic film 26 piezoelectric layer 28 first electrode layer 30 second electrode layer 32 first protective layer 34 second protective layer 38 polymer matrix 40 piezoelectric particles 42a, 42b laminate 46 piezoelectric laminate 50 Screen main body 52 First supporting member 52a Main body 52b C-shaped cover 52c Through hole 54 Second supporting member 54a Main body 54b C-shaped cover 54c Through hole 56 Lifting mechanism 58 First frame member 58a Engaging member 58b Fixing pin 60 Second frame member 60a engaging member 60b fixing pin 62 hinge member 62a first arm 62b second arm 62c, 62d, 62f rotating shaft 64 connection wiring 64a speaker amplifier connecting portion 78 foot member 78a upper supporting member 78b lower supporting member 78c foot 80 fine adjustment Mechanism 80a Adjusting screw

Claims (9)

  1.  映像を投影するためのスクリーン本体と、
     前記スクリーン本体の映像の投影面と逆側の面に貼着される圧電音響フィルムと、
     前記スクリーン本体の投影面と逆側の面を覆って設けられる、遮音シートとを有することを特徴とする投影用スクリーン。
    A screen body for projecting images,
    a piezoelectric acoustic film attached to the surface of the screen body opposite to the image projection surface;
    A projection screen, comprising: a sound insulation sheet provided to cover a surface of the screen body opposite to the projection surface.
  2.  前記スクリーン本体および前記圧電音響フィルムと、前記遮音シートとの間に、空間を有する、請求項1に記載の投影用スクリーン。 The projection screen according to claim 1, wherein a space is provided between the screen body and the piezoelectric acoustic film, and the sound insulation sheet.
  3.  前記遮音シートが着脱可能である、請求項1または2に記載の投影用スクリーン。 The projection screen according to claim 1 or 2, wherein the sound insulation sheet is detachable.
  4.  前記圧電音響フィルムが可撓性を有する、請求項1~3のいずれか1項に記載の投影用スクリーン。 The projection screen according to any one of claims 1 to 3, wherein the piezoelectric acoustic film is flexible.
  5.  前記スクリーン本体の1つの辺を支持する第1支持部材、および、前記スクリーン本体の前記第1支持部材が支持する辺と対向する辺を支持する第2支持部材と、
     前記第1支持部材と前記第2支持部材とを近接および離間する張上げ機構とを有する、請求項1~4のいずれか1項に記載の投影用スクリーン。
    a first supporting member that supports one side of the screen body, and a second supporting member that supports a side of the screen body opposite to the side supported by the first supporting member;
    5. The projection screen according to any one of claims 1 to 4, further comprising a tensioning mechanism that brings the first support member and the second support member closer to each other and separates them from each other.
  6.  前記張上げ機構によって前記第1支持部材と前記第2支持部材とを離間した状態で、前記第1支持部材と前記第2支持部材との距離を調節する微調節機構を有する、請求項5に記載の投影用スクリーン。 6. The apparatus according to claim 5, further comprising a fine adjustment mechanism for adjusting the distance between the first support member and the second support member while the first support member and the second support member are separated by the lifting mechanism. projection screen.
  7.  前記圧電音響フィルムが、圧電体層と、圧電体層の両面に設けられた電極層とを有する、請求項1~6のいずれか1項に記載の投影用スクリーン。 The projection screen according to any one of claims 1 to 6, wherein the piezoelectric acoustic film has a piezoelectric layer and electrode layers provided on both sides of the piezoelectric layer.
  8.  前記圧電体層が、高分子材料中に圧電体粒子を有する高分子複合圧電体である、請求項7に記載の投影用スクリーン。 The projection screen according to claim 7, wherein the piezoelectric layer is a polymeric composite piezoelectric body having piezoelectric particles in a polymeric material.
  9.  前記高分子複合圧電体の前記高分子材料が、シアノエチル化ポリビニルアルコールである、請求項8に記載の投影用スクリーン。 The projection screen according to claim 8, wherein the polymer material of the polymer composite piezoelectric body is cyanoethylated polyvinyl alcohol.
PCT/JP2022/006316 2021-03-11 2022-02-17 Projection screen WO2022190804A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505251A JPWO2022190804A1 (en) 2021-03-11 2022-02-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-039053 2021-03-11
JP2021039053 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022190804A1 true WO2022190804A1 (en) 2022-09-15

Family

ID=83227597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006316 WO2022190804A1 (en) 2021-03-11 2022-02-17 Projection screen

Country Status (3)

Country Link
JP (1) JPWO2022190804A1 (en)
TW (1) TW202301019A (en)
WO (1) WO2022190804A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295282A (en) * 2006-04-25 2007-11-08 Kenwood Corp Screen speaker system
WO2014157351A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Electroacoustic conversion film, electroacoustic converter, flexible display, and projector screen
JP2019040095A (en) * 2017-08-25 2019-03-14 株式会社Jvcケンウッド Display device and planetarium device
CN110850671A (en) * 2019-11-20 2020-02-28 四川长虹电器股份有限公司 Self-sounding laser projection display screen and wall-mounted tone quality improvement method thereof
CN211506161U (en) * 2020-03-31 2020-09-15 南京钛克铼斯国际贸易有限公司 Electric floor-pulling curtain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295282A (en) * 2006-04-25 2007-11-08 Kenwood Corp Screen speaker system
WO2014157351A1 (en) * 2013-03-28 2014-10-02 富士フイルム株式会社 Electroacoustic conversion film, electroacoustic converter, flexible display, and projector screen
JP2019040095A (en) * 2017-08-25 2019-03-14 株式会社Jvcケンウッド Display device and planetarium device
CN110850671A (en) * 2019-11-20 2020-02-28 四川长虹电器股份有限公司 Self-sounding laser projection display screen and wall-mounted tone quality improvement method thereof
CN211506161U (en) * 2020-03-31 2020-09-15 南京钛克铼斯国际贸易有限公司 Electric floor-pulling curtain

Also Published As

Publication number Publication date
TW202301019A (en) 2023-01-01
JPWO2022190804A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2020095812A1 (en) Laminated piezoelectric element and electro-acoustic transducer
KR101777491B1 (en) Electroacoustic transduction film
KR102599704B1 (en) Piezoelectric films, laminated piezoelectric elements and electroacoustic transducers
JP6261820B2 (en) Electroacoustic conversion film raw material, electroacoustic conversion film, and manufacturing method thereof
JP7390390B2 (en) Piezoelectric film and piezoelectric film manufacturing method
TWI836088B (en) Piezoelectric film
JP7470765B2 (en) Electroacoustic Transducer
JP7457790B2 (en) Multilayer piezoelectric element and electroacoustic transducer
KR102600731B1 (en) Piezoelectric films, laminated piezoelectric elements and electroacoustic transducers
TW202136034A (en) Piezoelectric film
TW202205705A (en) Piezoelectric element
JP7288508B2 (en) piezoelectric film
WO2023047958A1 (en) Multilayer piezoelectric element and electroacoustic transducer
WO2022190804A1 (en) Projection screen
WO2022196353A1 (en) Electroacoustic converter
WO2023053931A1 (en) Piezoelectric element and piezoelectric speaker
JP7506773B2 (en) Multilayer piezoelectric element and electroacoustic transducer
WO2024009774A1 (en) Image display device
WO2023026726A1 (en) Piezoelectric film and piezoelectric element
EP4306225A1 (en) Multilayer piezoelectric element
WO2023248696A1 (en) Piezoelectric film, piezoelectric element, electroacoustic transducer, and method for manufacturing piezoelectric film
WO2023188929A1 (en) Piezoelectric film, piezoelectric element, and electroacoustic transducer
WO2023149073A1 (en) Piezoelectric device
TW202218441A (en) Rewindable electroacoustic transducer and rewindable image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766768

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023505251

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766768

Country of ref document: EP

Kind code of ref document: A1