WO2023181699A1 - Electroacoustic transducer - Google Patents

Electroacoustic transducer Download PDF

Info

Publication number
WO2023181699A1
WO2023181699A1 PCT/JP2023/004729 JP2023004729W WO2023181699A1 WO 2023181699 A1 WO2023181699 A1 WO 2023181699A1 JP 2023004729 W JP2023004729 W JP 2023004729W WO 2023181699 A1 WO2023181699 A1 WO 2023181699A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
diaphragm
electrode layer
film
Prior art date
Application number
PCT/JP2023/004729
Other languages
French (fr)
Japanese (ja)
Inventor
崇裕 岩本
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023181699A1 publication Critical patent/WO2023181699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms

Definitions

  • the present invention relates to an electroacoustic transducer.
  • Piezoelectric elements can be used as diaphragms to vibrate the diaphragm and produce sound by attaching it to the diaphragm in contact with the diaphragm. It's being used. For example, by attaching an exciter to an image display panel, screen, etc., and causing these to vibrate, it is possible to produce sound instead of a speaker.
  • Patent Document 1 discloses an electroacoustic transducer including an exciter on one main surface of a diaphragm, in which the loss tangent at a frequency of 1 Hz measured by dynamic viscoelasticity of the exciter is determined at a temperature of 0 to 50°C.
  • the maximum value is within the range, the maximum value is 0.08 or more, and the product of the exciter thickness and the storage modulus at a frequency of 1 Hz and 25°C measured by dynamic viscoelasticity is the same as that of the diaphragm.
  • Electroacoustic transducers are described that have a thickness that is less than or equal to three times the product of Young's modulus.
  • An object of the present invention is to solve the problems of the prior art, and to provide an electroacoustic transducer that can obtain high sound pressure in which a piezoelectric element is attached to a diaphragm. It is about providing.
  • the present invention has the following configuration.
  • An electroacoustic transducer including a flexible diaphragm and a flexible piezoelectric element attached to the diaphragm via an adhesive layer,
  • the spring constant of the deflection of the diaphragm is K 1 (N/mm)
  • the Young's modulus of the adhesive layer is E 2 (N/mm 2 )
  • the thickness is h 2 (mm)
  • An electroacoustic transducer that satisfies -E 2 ⁇ h 2
  • the piezoelectric element includes a piezoelectric film having a piezoelectric layer made of a polymer composite piezoelectric material containing piezoelectric particles in a matrix containing a polymer material, and electrode layers provided on both sides of the piezoelectric layer. , [1] or [2].
  • an electroacoustic transducer in which a piezoelectric element is attached to a diaphragm, which can obtain high sound pressure.
  • FIG. 1 is a diagram schematically showing an example of an electroacoustic transducer of the present invention.
  • FIG. 2 is a partially enlarged view of the electroacoustic transducer shown in FIG. 1.
  • FIG. 2 It is a figure which shows typically another example of the piezoelectric element used for the electroacoustic transducer of this invention.
  • FIG. 2 is a diagram schematically showing an example of a piezoelectric film included in the electroacoustic transducer of the present invention.
  • FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film.
  • FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film.
  • FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film. It is a graph showing the relationship between the difference and the average sound pressure.
  • the electroacoustic transducer of the present invention includes: An electroacoustic transducer comprising a flexible diaphragm and a flexible piezoelectric element attached to the diaphragm via an adhesive layer,
  • the spring constant of the deflection of the diaphragm is K 1 (N/mm)
  • the Young's modulus of the adhesive layer is E 2 (N/mm 2 )
  • the thickness is h 2 (mm)
  • FIG. 1 shows a diagram schematically representing an example of the electroacoustic transducer of the present invention.
  • FIG. 2 shows a partially enlarged view of the electroacoustic transducer of FIG. 1.
  • the electroacoustic transducer 100 shown in FIG. 1 includes a piezoelectric element 50, a diaphragm 102, and an adhesive layer 104 disposed between the piezoelectric element 50 and the diaphragm 102.
  • the piezoelectric element 50 and the diaphragm 102 are adhered to each other with an adhesive layer 104.
  • the diaphragm 102 is flexible.
  • having flexibility is synonymous with having flexibility in a general interpretation, and indicates that it is possible to bend and bend. , indicating that it can be bent and stretched without breaking or damage.
  • the diaphragm 102 is not particularly limited as long as it is preferably flexible, and various sheet-like materials (plate-like materials, films) can be used.
  • sheet-like materials plate-like materials, films
  • Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films made of polyethylene naphthalate (PEN), triacetyl cellulose (TAC) and cyclic olefin resins, foamed polystyrene, foamed plastics made of foamed styrene and foamed polyethylene, etc., veneer boards, cork boards, leather such as cowhide, Carbon sheets, various paperboards such as Japanese paper, various corrugated cardboard materials made by pasting other paperboards on one or both sides of corrugated paperboard, various metals
  • an organic electroluminescent (OLED (Organic Light Emitting Diode)) display may be used as long as the diaphragm 102 has flexibility.
  • OLED Organic Light Emitting Diode
  • liquid crystal display a liquid crystal display
  • micro LED Light Emitting Diode
  • inorganic electroluminescent display may be used.
  • Display devices such as displays, projector screens, and the like can also be suitably used.
  • the piezoelectric element 50 is used as a so-called exciter that exhibits piezoelectricity in response to an applied voltage and causes the diaphragm 102 to vibrate.
  • the piezoelectric element 50 is made by laminating three layers of piezoelectric films 10 by folding one long rectangular piezoelectric film 10 twice in one direction.
  • the piezoelectric film 10 includes a piezoelectric layer 20, a first electrode layer 24 and a second electrode layer 26 (hereinafter collectively referred to as electrode layers) provided on both sides of the piezoelectric layer 20, and a protection layer provided on the electrode layer. (first protective layer 28 and second protective layer 30). Note that in FIG. 2, illustration of the protective layer is omitted in order to clearly show the configuration of the piezoelectric element 50.
  • the piezoelectric film 10 will be described in detail later.
  • a power source is connected to the first electrode layer 24 and the second electrode layer 26 of the piezoelectric film 10 that constitute the piezoelectric element 50.
  • the piezoelectric element 50 (piezoelectric film 10) is driven as a piezoelectric body by applying a voltage to the first electrode layer 24 and the second electrode layer 26, so that the piezoelectric layer 20 expands and contracts.
  • the piezoelectric element 50 expands and contracts in the plane direction, bends the diaphragm 102 to which the piezoelectric element 50 is attached, and as a result vibrates the diaphragm 102 in the thickness direction to produce sound. generate.
  • the diaphragm 102 vibrates according to the magnitude of the driving voltage applied to the piezoelectric element 50, and the electroacoustic transducer 100 generates sound according to the applied driving voltage. That is, the electroacoustic transducer 100 has a configuration in which the piezoelectric element 50 (laminated piezoelectric film 10) is used as an exciter.
  • the adhesion layer 104 is for adhering the diaphragm 102 and the piezoelectric element 50.
  • the gain is determined by the relationship between the hardness of the adhesive layer and the hardness of the diaphragm. It was found that the sound pressure generated changes. In other words, it has been found that unless the hardness of the adhesive layer is set appropriately relative to the hardness of the diaphragm, there is a problem in that the resulting sound pressure decreases.
  • the spring constant of the deflection of the diaphragm 102 is K 1 (N/mm)
  • the Young's modulus of the adhesive layer 104 is E 2 (N/mm 2 )
  • the thickness is
  • h 2 (mm) is expressed as h 2 (mm)
  • ⁇ 2.5 is satisfied.
  • the adhesive layer 104 may cause the diaphragm 102 to bend. It is considered that sufficient sound pressure cannot be obtained because the diaphragm 102 is restrained and becomes difficult to vibrate.
  • the spring constant K 2 of the adhesive layer 104 is too small with respect to the spring constant K 1 of the deflection of the diaphragm 102 and the difference D exceeds 2.5, the expansion and contraction of the piezoelectric element 50 may be It is considered that sufficient sound pressure cannot be obtained because the adhering layer 104 absorbs the sound and it becomes difficult to transmit it to the diaphragm 102.
  • the difference D is set to 2.5 or less, the adhesive layer 104 can hardly restrain the diaphragm 102 and the diaphragm 102 can easily vibrate. It is considered that a high sound pressure can be obtained because the expansion and contraction are more easily transmitted to the diaphragm 102 via the adhesive layer 104.
  • the difference D is preferably 2 or less, more preferably 1.5 or less, and most preferably 0.
  • the spring constant K 1 of the deflection of the diaphragm 102 can be measured as follows. A sample with a length of 30 mm and a width of 10 mm is cut out from the diaphragm 102, and its viscoelasticity is examined in the viscoelasticity measurement mode of a dynamic viscoelasticity measuring device (DMA) in the temperature range of 0°C to 100°C, and when converted into frequency. The storage modulus at 1 kHz and 25° C. is taken as the value of Young's modulus E 1 of the diaphragm.
  • DMA dynamic viscoelasticity measuring device
  • a dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (SII Nanotechnology Co., Ltd.) or the like can be used.
  • the measurement conditions were a temperature increase rate of 2° C./min (in a nitrogen atmosphere).
  • the measurement frequencies were 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz.
  • the measurement mode was tensile measurement. Furthermore, the distance between the chucks was 20 mm.
  • W Load (N)
  • Deflection (mm)
  • E 1 Young's modulus (N/mm 2 )
  • b Width of the diaphragm (mm)
  • h 1 Thickness of the diaphragm (mm)
  • L length (mm) of the diaphragm.
  • the Young's modulus E 2 of the adhesive layer 104 can be measured as follows. After peeling off the piezoelectric element 50 and the diaphragm 102, the adhesive layer 104 is peeled off, and in the same way as the diaphragm 102, the viscoelasticity is examined in the temperature range of 0°C to 100°C in the viscoelastic measurement mode of the DMA, and the frequency The converted value of Young's modulus E 2 at 1 kHz and 25° C. is calculated.
  • the thickness h 2 of the adhesive layer 104 is measured by peeling off the piezoelectric element 50 and the diaphragm 102, and then peeling off the adhesive layer 104.
  • the thickness of the adhesive layer 104 is not limited as long as the difference D satisfies 2.5 or less, and sufficient adhesive force (adhesive force, adhesive force) can be obtained depending on the material of the adhesive layer 104.
  • the thickness may be set appropriately.
  • the thickness of the adhesive layer 104 after attachment is preferably 0.1 ⁇ m to 50 ⁇ m, more preferably 0.1 ⁇ m to 30 ⁇ m, and even more preferably 0.1 ⁇ m to 10 ⁇ m.
  • the adhesive layer 104 can be used as the adhesive layer 104 as long as it can adhere the diaphragm 102 and the piezoelectric element 50 and satisfies the difference D of 2.5 or less. Therefore, even though the adhesive layer 104 is a layer made of an adhesive that has fluidity when pasted together and then becomes solid, it remains a gel-like (rubber-like) soft solid when pasted together, and it remains a gel-like (rubber-like) solid when pasted together. It may be a layer made of an adhesive whose shape does not change, or a layer made of a material that has characteristics of both an adhesive and a pressure-sensitive adhesive. Further, the adhesive (pressure-sensitive adhesive) may be any of a moisture-curable adhesive, a thermoplastic adhesive, and a thermosetting adhesive. Further, as the adhesive layer 104, double-sided tape, adhesive sheet, etc. may be used.
  • an adhesive sheet NCF-D692 (manufactured by Lintec Corporation), a film hot melt adhesive: Elfan UH203, Elfan NT120 (manufactured by Nippon Matai Corporation), etc. can be used.
  • the difference D from the spring constant K 2 ) of the adhesive layer 104 is determined by the material of the diaphragm 102 (Young's modulus E 1 ), the width b, the thickness h 1 , the length L, and the material of the adhesive layer 104 (Young's modulus E 2 ), the thickness h2, etc. may be appropriately adjusted to 2.5 or less.
  • the spring constant K 1 of the deflection of the diaphragm 102 is preferably lower than 0.1 N/m, more preferably 0.05 N/m or less, More preferably, it is .01 N/m or less.
  • the piezoelectric element 50 shown in FIGS. 1 and 2 is made by folding and laminating three layers of piezoelectric films 10, the present invention is not limited to this. That is, the piezoelectric element may have one layer (one sheet) of the piezoelectric film 10, or may have a plurality of layers laminated. When a plurality of piezoelectric films 10 are laminated, the number of piezoelectric films 10 laminated may be two or four or more. Regarding this point, the piezoelectric element shown in FIG. 3, which will be described later, is also similar.
  • the piezoelectric element 50 has a piezoelectric film laminated in multiple layers by folding the long piezoelectric film 10 one or more times, but the piezoelectric element 50 is not limited to this.
  • the piezoelectric element may have a structure in which a plurality of sheet-like (cut sheet-like) piezoelectric films 10 are laminated.
  • the piezoelectric film 10 is polarized in the thickness direction, and the polarization directions of adjacent piezoelectric films 10 are opposite to each other. Therefore, in the adjacent piezoelectric films 10, the first electrode layers 24 and the second electrode layers 26 face each other. Therefore, whether the power source is an AC power source or a DC power source, power of the same polarity is always supplied to the facing electrodes. Therefore, in the piezoelectric element shown in FIG. 3, even if the electrodes of adjacent piezoelectric films 10 come into contact with each other, there is no risk of short-circuiting.
  • the polarization direction of the piezoelectric film 10 may be detected using a d33 meter or the like. Alternatively, the polarization direction of the piezoelectric film 10 may be determined from the polarization processing conditions described below.
  • the polarization directions of the adjacent piezoelectric films 10 are opposite to each other, but the polarization directions of the adjacent piezoelectric films 10 may be the same.
  • a piezoelectric element made by folding and laminating long piezoelectric films has the following advantages. That is, when a plurality of cut sheet-shaped piezoelectric films 10 are laminated, it is necessary to connect the first electrode layer 24 and the second electrode layer 26 for each piezoelectric film to a driving power source. On the other hand, in a structure in which long piezoelectric films 10 are folded and laminated, the laminate can be constructed from only one long piezoelectric film 10. Further, in the structure in which long piezoelectric films 10 are folded and laminated, only one power source is required for applying the driving voltage, and furthermore, the electrodes need only be drawn out from the piezoelectric film 10 at one location. Furthermore, in the structure in which long piezoelectric films 10 are folded and laminated, the polarization directions of adjacent piezoelectric films are necessarily opposite to each other.
  • FIG. 4 shows a part of the piezoelectric film 10 in an enlarged manner.
  • the piezoelectric film 10 shown in FIG. A first protective layer 28 that is laminated on the surface opposite to the body layer 20, a second electrode layer 26 that is laminated on the other surface of the piezoelectric layer 20, and a layer that is opposite to the piezoelectric layer 20 of the second electrode layer 26.
  • a second protective layer 30 is laminated on the side surface. That is, the piezoelectric film 10 has a structure in which the piezoelectric layer 20 is sandwiched between electrode layers, and a protective layer is laminated on the surface of the electrode layer that is not in contact with the piezoelectric layer.
  • the piezoelectric layer 20 is preferably a polymeric composite piezoelectric material containing piezoelectric particles 36 in a matrix 34 containing a polymeric material, as conceptually shown in FIG.
  • the material for the matrix 34 (matrix and binder) of the polymer composite piezoelectric material constituting the piezoelectric layer 20 it is preferable to use a polymer material that has viscoelasticity at room temperature.
  • "normal temperature” refers to a temperature range of about 0 to 50°C.
  • the polymer composite piezoelectric material preferably satisfies the following requirements.
  • Flexibility For example, when holding a newspaper or magazine in a loosely bent state like a document for portable use, it is constantly subjected to relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress will be generated, and cracks will occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, a polymer composite piezoelectric material is required to have appropriate softness. Moreover, if strain energy can be diffused to the outside as heat, stress can be alleviated. Therefore, the loss tangent of the polymer composite piezoelectric material is required to be appropriately large.
  • a flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz, and to behave softly against vibrations of several Hz or less. Further, the loss tangent of the polymer composite piezoelectric material is required to be appropriately large for vibrations of all frequencies below 20 kHz. Furthermore, it is preferable that the spring constant can be easily adjusted by laminating layers according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to which the adhesive layer 104 is attached. The thinner it is, the more energy efficient it can be.
  • polymer solids have a viscoelastic relaxation mechanism, and as the temperature increases or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage modulus (Young's modulus) or a maximum in the loss modulus (absorption). It is observed as Among these, the relaxation caused by micro-Brownian motion of molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this main dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • Tg glass transition point
  • the polymer composite piezoelectric material (piezoelectric layer 20), by using a polymer material whose glass transition point is at room temperature, in other words, a polymer material that has viscoelasticity at room temperature, for the matrix, it can withstand vibrations of 20Hz to 20kHz. This results in a polymer composite piezoelectric material that is hard and behaves softly when subjected to slow vibrations of several Hz or less. In particular, in order to suitably exhibit this behavior, it is preferable to use a polymer material whose glass transition point at a frequency of 1 Hz is at room temperature, that is, 0 to 50° C., for the matrix of the polymer composite piezoelectric material.
  • Various known polymer materials can be used as the polymer material having viscoelasticity at room temperature.
  • a polymer material having a maximum value of loss tangent Tan ⁇ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature, ie, 0 to 50° C. is used.
  • the polymer composite piezoelectric material is slowly bent by an external force, stress concentration at the interface between the polymer matrix and the piezoelectric particles at the maximum bending moment portion is alleviated, and high flexibility can be expected.
  • the polymer material having viscoelasticity at room temperature preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
  • E' storage modulus
  • the polymer material having viscoelasticity at room temperature has a dielectric constant of 10 or more at 25°C.
  • a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
  • the polymer material in consideration of securing good moisture resistance, etc., it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
  • polymeric materials that have viscoelasticity at room temperature that meet these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinyl polyisoprene block copolymer, and polyvinyl methyl.
  • cyanoethylated polyvinyl alcohol cyanoethylated PVA
  • polyvinyl acetate polyvinylidene chloride core acrylonitrile
  • polystyrene-vinyl polyisoprene block copolymer examples include ketones and polybutyl methacrylate.
  • commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymeric materials.
  • the polymer material it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use
  • the polymeric material having viscoelasticity at room temperature it is preferable to use a polymeric material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. That is, in the present invention, it is preferable for the piezoelectric layer 20 to use a polymeric material having a cyanoethyl group as the matrix 34, and it is particularly preferable to use cyanoethylated PVA.
  • the above-mentioned polymeric materials represented by cyanoethylated PVA are also collectively referred to as "polymeric materials having viscoelasticity at room temperature.”
  • polymeric materials having viscoelasticity at room temperature may be used alone or in combination (mixture) of multiple types.
  • the matrix 34 using such a polymeric material having viscoelasticity at room temperature may be made of a plurality of polymeric materials in combination, if necessary. That is, in addition to the viscoelastic material such as cyanoethylated PVA, other dielectric polymeric materials may be added to the matrix 34 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
  • dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
  • fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysucrose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl Cyano groups such as hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycido
  • the matrix 34 also includes thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene, for the purpose of adjusting the glass transition point Tg, and Thermosetting resins such as phenol resins, urea resins, melamine resins, alkyd resins, and mica may also be added. Furthermore, for the purpose of improving tackiness, tackifiers such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added.
  • thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene
  • Thermosetting resins such as phenol resins, urea resins, melamine resins, alkyd resins, and mica may also be added.
  • tackifiers such as rosin ester, rosin, terpene, terpene
  • the proportion in the matrix 34 is 30% by mass or less. It is preferable that This allows the properties of the added polymer material to be expressed without impairing the viscoelastic relaxation mechanism in the matrix 34, resulting in higher dielectric constant, improved heat resistance, improved adhesion between the piezoelectric particles 36 and the electrode layer, etc. Favorable results can be obtained in this respect.
  • the piezoelectric layer 20 is a layer made of a polymer composite piezoelectric material that includes such a matrix 34 and piezoelectric particles 36. Piezoelectric particles 36 are dispersed in matrix 34 . Preferably, the piezoelectric particles 36 are uniformly (substantially uniformly) dispersed in the matrix 34.
  • the piezoelectric particles 36 are made of ceramic particles having a perovskite or wurtzite crystal structure.
  • the ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead lanthanate zirconate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and
  • PZT lead zirconate titanate
  • PLAT lead lanthanate zirconate titanate
  • BaTiO 3 barium titanate
  • ZnO zinc oxide
  • An example is a solid solution of barium titanate and bismuth ferrite (BiFe 3 ) (BFBT).
  • the particle size of the piezoelectric particles 36 there is no limit to the particle size of the piezoelectric particles 36, and it may be selected as appropriate depending on the size of the piezoelectric film 10, the use of the piezoelectric element 50, and the like.
  • the particle size of the piezoelectric particles 36 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 36 within this range, favorable results can be obtained in that the piezoelectric film 10 can have both high piezoelectric properties and flexibility.
  • the piezoelectric particles 36 in the piezoelectric layer 20 may be uniformly and regularly dispersed in the matrix 34, or if they are uniformly dispersed, they may be irregularly dispersed in the matrix 34. may have been done.
  • the ratio of the matrix 34 to the piezoelectric particles 36 in the piezoelectric layer 20 there is no limit to the ratio of the matrix 34 to the piezoelectric particles 36 in the piezoelectric layer 20, and it is subject to the size and thickness of the piezoelectric film 10 in the plane direction, the use of the piezoelectric film 10, and It may be set as appropriate depending on the characteristics required of the piezoelectric film 10.
  • the volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30 to 80%, more preferably 50% or more, and therefore even more preferably 50 to 80%.
  • the thickness of the piezoelectric layer 20 is not particularly limited, and may be determined as appropriate depending on the use of the piezoelectric film 10, the number of laminated piezoelectric films in the piezoelectric element 50, the characteristics required of the piezoelectric film 10, etc. , just set it.
  • the thickness of the piezoelectric layer 20 is preferably 10 to 300 ⁇ m, more preferably 20 to 200 ⁇ m, and even more preferably 30 to 150 ⁇ m.
  • the piezoelectric layer 20 is preferably polarized (poled) in the thickness direction.
  • the piezoelectric layer 20 is made of a polymer composite piezoelectric material including piezoelectric particles 36 in a matrix 34 made of a polymeric material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above.
  • a polymeric material having viscoelasticity at room temperature such as cyanoethylated PVA
  • a matrix containing a dielectric polymer material such as polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above, and a matrix containing similar piezoelectric particles 36 may be used.
  • Molecular composite piezoelectric materials, piezoelectric layers made of polyvinylidene fluoride, piezoelectric layers made of fluororesin other than polyvinylidene fluoride, piezoelectric layers laminated with films made of poly-L-lactic acid and films made of poly-D-lactic acid, etc. is also available.
  • a polymer composite piezoelectric material including piezoelectric particles 36 is suitably used in the matrix 34 made of a polymeric material having viscoelasticity at room temperature, such as the above-mentioned cyanoethylated PVA.
  • the piezoelectric film 10 has a first electrode layer 24 on one side of the piezoelectric layer 20, a first protective layer 28 thereon, and a first electrode layer 24 on one side of the piezoelectric layer 20. It has a structure in which it has a second electrode layer 26 on its surface and a second protective layer 30 thereon.
  • the first electrode layer 24 and the second electrode layer 26 form an electrode pair.
  • both surfaces of the piezoelectric layer 20 are sandwiched between an electrode pair, that is, a first electrode layer 24 and a second electrode layer 26, and this laminate is sandwiched between a first protective layer 28 and a second protective layer 30. It has a structure in which it is sandwiched between. In this way, in the piezoelectric film 10, the region sandwiched between the first electrode layer 24 and the second electrode layer 26 expands and contracts depending on the applied voltage.
  • the first electrode layer 24 and the first protective layer 28, as well as the second electrode layer 26 and the second protective layer 30 are added for convenience in order to explain the piezoelectric film 10. Therefore, the first and second aspects of the present invention have no technical meaning and are unrelated to actual usage conditions.
  • the piezoelectric film 10 includes, in addition to these layers, an adhesive layer for pasting the electrode layer and the piezoelectric layer 20, and a pasting layer for pasting the electrode layer and the protective layer. It may have an attached layer.
  • the adhesive may be an adhesive or a pressure-sensitive adhesive.
  • a polymeric material obtained by removing the piezoelectric particles 36 from the piezoelectric layer 20, that is, the same material as the matrix 34 can also be suitably used.
  • the adhesive layer may be provided on both the first electrode layer 24 side and the second electrode layer 26 side, or may be provided only on one of the first electrode layer 24 side and the second electrode layer 26 side. good.
  • the first protective layer 28 and the second protective layer 30 cover the first electrode layer 24 and the second electrode layer 26, and also serve to impart appropriate rigidity and mechanical strength to the piezoelectric layer 20.
  • the piezoelectric layer 20 consisting of the matrix 34 and the piezoelectric particles 36 exhibits excellent flexibility against slow bending deformation, but depending on the application, it may have low rigidity. or mechanical strength may be insufficient.
  • the piezoelectric film 10 is provided with a first protective layer 28 and a second protective layer 30 to compensate for this.
  • the first protective layer 28 and the second protective layer 30 have the same structure, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 28 and the second protective layer 30, both members are collectively referred to as protective layers.
  • first protective layer 28 and the second protective layer 30 there are no restrictions on the first protective layer 28 and the second protective layer 30, and various sheet-like materials can be used, and various resin films are suitably exemplified as an example.
  • various resin films are suitably exemplified as an example.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PEI polyetherimide
  • PI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • cyclic olefin resin and the like are suitably used.
  • the thickness of the first protective layer 28 and the second protective layer 30 there is also no limit to the thickness of the first protective layer 28 and the second protective layer 30. Further, the thicknesses of the first protective layer 328 and the second protective layer 30 are basically the same, but may be different. Here, if the rigidity of the first protective layer 28 and the second protective layer 30 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, but also the flexibility will be impaired. Therefore, it is advantageous for the first protective layer 28 and the second protective layer 30 to be thinner, unless mechanical strength or good handling properties as a sheet-like material are required.
  • the thickness of the first protective layer 28 and the second protective layer 30 is twice or less the thickness of the piezoelectric layer 20, it is possible to achieve both rigidity and appropriate flexibility.
  • the thickness of the first protective layer 28 and the second protective layer 30 is preferably 100 ⁇ m or less, The thickness is more preferably 50 ⁇ m or less, and even more preferably 25 ⁇ m or less.
  • a first electrode layer 24 is provided between the piezoelectric layer 20 and the first protective layer 28, and a second electrode layer 26 is provided between the piezoelectric layer 20 and the second protective layer 30. It is formed.
  • the first electrode layer 24 and the second electrode layer 26 are provided to apply voltage to the piezoelectric layer 20 (piezoelectric film 10).
  • the first electrode layer 24 and the second electrode layer 26 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 24 and the second electrode layer 26, both members are collectively referred to as electrode layers.
  • the materials for forming the first electrode layer 24 and the second electrode layer 26 there are no restrictions on the materials for forming the first electrode layer 24 and the second electrode layer 26, and various conductors can be used.
  • metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium, and molybdenum, alloys thereof, laminates and composites of these metals and alloys, Further, indium tin oxide and the like are exemplified.
  • conductive polymers such as PEDOT/PPS (polyethylenedioxythiophene-polystyrene sulfonic acid) are also exemplified.
  • copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the first electrode layer 24 and the second electrode layer 26.
  • copper is more preferable from the viewpoints of conductivity, cost, flexibility, and the like.
  • the method of forming the first electrode layer 24 and the second electrode layer 26 may be formed using a vapor deposition method (vacuum film forming method) such as vacuum evaporation and sputtering, plating, or using the above-mentioned materials.
  • a vapor deposition method vacuum film forming method
  • Various known methods can be used, such as a method of pasting a foil that has been prepared.
  • thin films of copper, aluminum, etc. formed by vacuum deposition are particularly preferably used as the first electrode layer 24 and the second electrode layer 26 because they can ensure the flexibility of the piezoelectric film 10.
  • Ru a copper thin film formed by vacuum evaporation is particularly preferably used.
  • the thickness of the first electrode layer 24 and the second electrode layer 26 there is no limit to the thickness of the first electrode layer 24 and the second electrode layer 26. Further, the thicknesses of the first electrode layer 24 and the second electrode layer 26 are basically the same, but may be different.
  • the rigidity of the first electrode layer 24 and the second electrode layer 26 is too high, it not only restricts the expansion and contraction of the piezoelectric layer 20, but also Flexibility is also impaired. Therefore, it is advantageous for the first electrode layer 24 and the second electrode layer 26 to be thinner, as long as the electrical resistance does not become too high.
  • the product of the thickness of the first electrode layer 24 and the second electrode layer 26 and Young's modulus is less than the product of the thickness of the first protective layer 28 and the second protective layer 30 and Young's modulus, then , is suitable because it does not significantly impair flexibility.
  • the first protective layer 28 and the second protective layer 30 are made of PET (Young's modulus: about 6.2 GPa) and the first electrode layer 24 and the second electrode layer 26 are made of copper (Young's modulus: about 130 GPa) is used.
  • the thickness of the first protective layer 28 and the second protective layer 30 is 25 ⁇ m
  • the thickness of the first electrode layer 24 and the second electrode layer 26 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less. Among them, it is preferably 0.1 ⁇ m or less.
  • the piezoelectric film 10 has a piezoelectric layer 20 formed by dispersing piezoelectric particles 36 in a matrix 34 containing a polymeric material, sandwiched between the first electrode layer 24 and the second electrode layer 26, and further includes:
  • This laminate has a structure in which a first protective layer 28 and a second protective layer 30 are sandwiched between them.
  • the maximum value of the loss tangent (Tan ⁇ ) at a frequency of 1 Hz as measured by dynamic viscoelasticity exists at room temperature, and it is preferable that the maximum value of 0.1 or more exists at room temperature. More preferred.
  • the piezoelectric film 10 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat, so that the polymer matrix and piezoelectric particles are This can prevent cracks from forming at the interface.
  • the piezoelectric film 10 preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Note that this condition also applies to the piezoelectric layer 20. This allows the piezoelectric film 10 to have a large frequency dispersion in storage modulus (E') at room temperature. That is, it is hard against vibrations of 20 Hz to 20 kHz, and can behave soft against vibrations of several Hz or less.
  • E' storage modulus
  • the piezoelectric film 10 has a product of thickness and storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 N/m at 0°C. , 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N/m at 50°C. Note that this condition also applies to the piezoelectric layer 20. Thereby, the piezoelectric film 10 can have appropriate rigidity and mechanical strength without impairing its flexibility and acoustic properties.
  • E' thickness and storage modulus
  • the piezoelectric film 10 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. Regarding this condition, the piezoelectric layer 20 is also the same. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the amount of change in sound quality when the lowest resonance frequency f 0 changes due to a change in the curvature of the speaker can also be reduced.
  • Tan ⁇ loss tangent
  • the storage modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 20, etc. may be measured by a known method.
  • the measurement may be performed using a dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology.
  • the measurement frequency is 0.1Hz to 20Hz (0.1Hz, 0.2Hz, 0.5Hz, 1Hz, 2Hz, 5Hz, 10Hz and 20Hz)
  • the measurement temperature is -50 to 150°C. Examples include a temperature increase rate of 2° C./min (in a nitrogen atmosphere), a sample size of 40 mm ⁇ 10 mm (including the clamp area), and a distance between chucks of 20 mm.
  • a power source is connected to the first electrode layer 24 and the second electrode layer 26 of each piezoelectric film 10, which applies a driving voltage to expand and contract the piezoelectric film 10, that is, supplies driving power.
  • the power source is not limited and may be either a direct current power source or an alternating current power source.
  • the drive voltage may be appropriately set to a drive voltage that can appropriately drive the piezoelectric film 10, depending on the thickness and forming material of the piezoelectric layer 20 of the piezoelectric film 10.
  • the method of drawing out the electrodes from the first electrode layer 24 and the second electrode layer 26 there is no limit to the method of drawing out the electrodes from the first electrode layer 24 and the second electrode layer 26, and various known methods can be used.
  • a method of connecting a conductive material such as copper foil to the first electrode layer 24 and the second electrode layer 26 and drawing out the electrodes to the outside and a method of penetrating the first protective layer 28 and the second protective layer 30 with a laser or the like are available.
  • Examples include a method of forming a hole, filling the through hole with a conductive material, and drawing out an electrode to the outside.
  • suitable electrode extraction methods include the method described in JP-A No. 2014-209724 and the method described in JP-A No. 2016-015354.
  • a connecting portion for connecting the first electrode layer 24 and the second electrode layer 26 to a power source be formed in the protruding portion. Note that there is no restriction on the method of connecting the electrode layer and the wiring in the protrusion, and various known methods can be used.
  • the piezoelectric layer 20 includes piezoelectric particles 36 in the matrix 34. Further, a first electrode layer 24 and a second electrode layer 26 are provided so as to sandwich the piezoelectric layer 20 in the thickness direction.
  • a voltage is applied to the first electrode layer 24 and the second electrode layer 26 of the piezoelectric film 10 having such a piezoelectric layer 20
  • the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage.
  • the piezoelectric film 10 contracts in the thickness direction.
  • the piezoelectric film 10 also expands and contracts in the in-plane direction due to Poisson's ratio. This expansion/contraction is approximately 0.01 to 0.1%.
  • the thickness of the piezoelectric layer 20 is preferably about 10 to 300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is very small, about 0.3 ⁇ m at most.
  • the piezoelectric film 10, that is, the piezoelectric layer 20 has a size much larger than its thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by a maximum of about 0.2 mm in the plane direction by applying a voltage.
  • the diaphragm 102 is attached to the piezoelectric film 10 (piezoelectric element 50) with an adhesive layer. Therefore, the diaphragm 102 is bent by the expansion and contraction of the piezoelectric film 10, and as a result, the diaphragm 102 vibrates in the thickness direction. Due to this vibration in the thickness direction, the diaphragm 102 generates sound. That is, the diaphragm 102 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10.
  • the sound pressure level can be improved by adjusting the mass of the piezoelectric film 10 (piezoelectric element 50) according to the spring constant of the diaphragm 102. If the mass of the piezoelectric element 50 is large, the diaphragm 102 will bend, which may suppress the vibration of the diaphragm 102 during driving. On the other hand, when the mass of the piezoelectric element 50 is small, the resonance frequency becomes high, and vibration of the diaphragm 102 at low frequencies may be suppressed. Considering these points, it is preferable that the mass of the piezoelectric element 50 is appropriately adjusted according to the spring constant of the diaphragm 102.
  • the piezoelectric films 10 are adhered to each other by an adhesive layer 19.
  • an adhesive layer 19 for adhering the piezoelectric films 10 to each other various known ones can be used as long as they are capable of adhering adjacent piezoelectric films 10 to each other.
  • the same material as the adhesive layer 104 to be adhered can be used.
  • a sheet-like material 11a shown in FIG. 5 in which the first electrode layer 24 is formed on the surface of the first protective layer 28 is prepared. Furthermore, a sheet-like material 11c, conceptually shown in FIG. 7, in which a second electrode layer 26 is formed on the surface of a second protective layer 30 is prepared.
  • the sheet-like material 11a may be produced by forming a copper thin film or the like as the first electrode layer 24 on the surface of the first protective layer 28 by vacuum evaporation, sputtering, plating, or the like.
  • the sheet-like material 11c may be produced by forming a copper thin film or the like as the second electrode layer 26 on the surface of the second protective layer 30 by vacuum evaporation, sputtering, plating, or the like.
  • a commercially available sheet material in which a copper thin film or the like is formed on a protective layer may be used as the sheet material 11a and/or the sheet material 11c.
  • the sheet-like material 11a and the sheet-like material 11c may be the same or different.
  • a protective layer with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used as the separator.
  • the separator may be removed after thermocompression bonding of the electrode layer and the protective layer.
  • a paint (coating composition) that will become the piezoelectric layer 20 is applied onto the first electrode layer 24 of the sheet-like material 11a, and then cured to form the piezoelectric layer 20.
  • a laminate 11b in which the sheet-like material 11a and the piezoelectric layer 20 are laminated is produced.
  • a polymer material such as the above-mentioned cyanoethylated PVA is dissolved in an organic solvent, and then piezoelectric particles 36 such as PZT particles are added and stirred to prepare a paint.
  • organic solvent there are no restrictions on the organic solvent, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone (MEK), and cyclohexanone can be used.
  • DMF dimethylformamide
  • MEK methyl ethyl ketone
  • cyclohexanone can be used.
  • the paint is cast (coated) on the sheet-like material 11a, and the organic solvent is evaporated and dried.
  • a laminate 11b having the first electrode layer 24 on the first protective layer 28 and the piezoelectric layer 20 stacked on the first electrode layer 24 is produced. .
  • coating method there are no restrictions on the coating method, and all known methods (coating devices) such as a bar coater, slide coater, and doctor knife can be used.
  • coating devices such as a bar coater, slide coater, and doctor knife can be used.
  • the polymeric material can be heated and melted, the polymeric material is heated and melted, the piezoelectric particles 36 are added thereto to produce a melted material, and the sheet shown in FIG. 5 is formed by extrusion molding or the like.
  • a laminate 11b as shown in FIG. 6 may be produced by extruding it into a sheet shape onto the shaped material 11a and cooling it.
  • the matrix 34 may contain a polymeric piezoelectric material such as PVDF (Polyvinylidene DiFluoride) in addition to the polymeric material that has viscoelasticity at room temperature.
  • PVDF Polyvinylidene DiFluoride
  • the polymer piezoelectric materials to be added to the paint may be dissolved.
  • the polymeric piezoelectric material to be added may be added to a polymeric material that is heated and melted and has viscoelasticity at room temperature, and then heated and melted.
  • calendaring may be performed if necessary. Calendar processing may be performed once or multiple times.
  • calendering is a process in which a surface to be treated is heated and pressed using a heated press, a heated roller, etc. to flatten the surface.
  • the piezoelectric layer 20 of the laminate 11b having the first electrode layer 24 on the first protective layer 28 and the piezoelectric layer 20 formed on the first electrode layer 24 is subjected to polarization treatment (poling). )I do.
  • polarization treatment of the piezoelectric layer 20 may be performed before the calender treatment, it is preferably performed after the calender treatment.
  • any known method can be used. For example, electric field poling is exemplified, in which a DC electric field is directly applied to an object to be polarized.
  • the second electrode layer 26 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 24 and the second electrode layer 26. . Furthermore, in the piezoelectric film 10 of the present invention, it is preferable that the polarization treatment is performed not in the plane direction of the piezoelectric layer 20 but in the thickness direction.
  • the previously prepared sheet material 11c is laminated on the piezoelectric layer 20 side of the polarized stack 11b with the second electrode layer 26 facing the piezoelectric layer 20. . Further, this laminate is thermocompressed using a hot press device, a heated roller, etc., with the first protective layer 28 and the second protective layer 30 sandwiched therebetween, thereby bonding the laminate 11b and the sheet-like material 11c.
  • the piezoelectric film 10 as shown in FIG. 4 is produced by bonding them together.
  • the piezoelectric film 10 may be produced by bonding the laminate 11b and the sheet-like material 11c together using an adhesive, and preferably further press-bonding them. As the adhesive at this time, the same material as the matrix of the piezoelectric layer 20 can be used.
  • this piezoelectric film 10 may be manufactured using a cut sheet-like sheet material 11a, a sheet-like material 11c, etc., or may be manufactured using a roll-to-roll method. Good too.
  • the produced piezoelectric film may be cut into desired shapes according to various uses.
  • the piezoelectric film 10 produced in this manner is polarized not in the plane direction but in the thickness direction, and has great piezoelectric properties even without stretching after polarization. Therefore, the piezoelectric film 10 has no in-plane anisotropy in its piezoelectric properties, and when a driving voltage is applied, it expands and contracts isotropically in all directions in the plane.
  • Example 1 [Preparation of piezoelectric film] A piezoelectric film as shown in FIG. 4 was produced by the method shown in FIGS. 5 to 7 described above. First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the composition ratio shown below. Thereafter, PZT particles as piezoelectric particles were added to this solution in the composition ratio shown below, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
  • cyanoethylated PVA CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.
  • DMF dimethylformamide
  • ⁇ PZT particles ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ 30 parts by mass ⁇ DMF ⁇ 70 parts by mass
  • the PZT particles used were obtained by sintering commercially available PZT raw material powder at 1000 to 1200° C., and then crushing and classifying it to an average particle size of 5 ⁇ m.
  • a sheet-like product was prepared by vacuum-depositing a 0.3 ⁇ m thick copper thin film onto a 4 ⁇ m thick PET film. That is, in this example, the first electrode layer and the second electrode layer are copper vapor deposited thin films with a thickness of 0.3 ⁇ m, and the first protective layer and the second protective layer are PET films with a thickness of 4 ⁇ m.
  • the previously prepared paint for forming the piezoelectric layer was applied onto the first electrode layer (copper deposited thin film) of the sheet using a slide coater. The coating material was applied so that the thickness of the coating film after drying was 50 ⁇ m.
  • the sheet material coated with the paint was heated and dried on a hot plate at 120° C. to evaporate the DMF.
  • a laminate was produced that had a first electrode layer made of copper on a first protective layer made of PET, and a piezoelectric layer (polymer composite piezoelectric layer) with a thickness of 50 ⁇ m thereon. .
  • the produced piezoelectric layer was polarized in the thickness direction.
  • a sheet-like material in which the same thin film was deposited on a PET film was laminated with the second electrode layer (copper thin film side) facing the piezoelectric layer.
  • the laminate of the piezoelectric laminate and the sheet-like material is thermocompression bonded at a temperature of 120° C. using a laminator to adhere and bond the piezoelectric layer and the second electrode layer.
  • a piezoelectric film as shown in 4 was produced.
  • the piezoelectric film was cut into a rectangle with a planar shape of 170 mm x 150 mm.
  • the cut piezoelectric film was folded back four times in the longitudinal direction (in the direction of the 170 mm side) to produce a piezoelectric element in which five layers of piezoelectric films were laminated.
  • the planar shape of the laminated portion is 30 mm x 150 mm.
  • the piezoelectric films to be laminated were attached with an adhesive layer (acrylic adhesive).
  • An electrode extension portion was formed in a region protruding from the laminated portion.
  • the produced piezoelectric element was attached to a diaphragm.
  • a PET board with a thickness of 0.3 mm, a width of 400 mm and a length of 500 mm was used.
  • the longitudinal direction of the diaphragm was aligned with the longitudinal direction of the piezoelectric element, and the piezoelectric element was attached so that the center of the laminated portion of the piezoelectric element was aligned with the center of the diaphragm.
  • the piezoelectric element and the diaphragm were attached using an adhesive sheet: NCF-D692 (manufactured by Lintec Corporation, thickness 50 ⁇ m).
  • the Young's modulus E 1 of the diaphragm was measured using the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) using the method described above, and found to be 2.1 GPa.
  • the spring constant of deflection K 1 was 0.0007 N/mm.
  • the Young's modulus E 2 of the adhesive layer was measured by DMA using the above-mentioned method after peeling off the piezoelectric element and the diaphragm, and found to be 1.0E+05 Pa. Further, the thickness h 2 of the adhesive layer was measured by the method described above and was found to be 50 ⁇ m.
  • Examples 2 to 8, Comparative Examples 1 to 12 Electrical conduction was carried out in the same manner as in Example 1, except that the material of the diaphragm (Young's modulus E 1 ), the thickness h 1 , the type of adhesive layer (Young's modulus E 2 ), and the thickness h 2 were changed as shown in Table 1.
  • D692 represents the adhesive sheet NCF-D692 manufactured by Lintec Co., Ltd.
  • UH203 represents the film-like hot melt adhesive: Elfan UH203 manufactured by Nippon Matai Co., Ltd.
  • NT120 represents Elfan NT120 (thickness: 50 ⁇ m), a film-like hot melt adhesive manufactured by Nippon Matai Co., Ltd.
  • Lio Elm represents Lio Elm TSU41SI-25DL (thickness: 25 ⁇ m) manufactured by Toyochem Co., Ltd.
  • No. 5603 is double-sided tape No. manufactured by Nitto Denko Corporation. 5603.
  • ⁇ Sound pressure> One longitudinal end of the diaphragm was supported, a sine sweep signal with a frequency of 100 Hz to 5 kHz and an applied voltage of 50 Vrms was input to the piezoelectric element, and the sound pressure was measured with a microphone placed 1 m away from the center of the diaphragm. It was measured. The average value of the sound pressure in the frequency range of 100 Hz to 5 kHz was calculated, and the difference with respect to the average sound pressure of Comparative Example 2 was evaluated using the average sound pressure of Comparative Example 2 as a reference. For the average value of the sound pressure, the maximum value was extracted in the frequency range of 100 Hz to 5 kHz, and the average value was taken as the average value. The results are shown in Table 1. Further, FIG. 8 shows a graph in which the difference D and the difference in average sound pressure of Examples 1 to 8 and Comparative Examples 1 to 11 are plotted. In FIG. 8, black circles are examples, and black triangles are comparative examples.
  • Electroacoustic transducer 102 Diaphragm

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

Provided is an electroacoustic transducer that can obtain a high sound pressure when the electroacoustic transducer is configured by affixing a piezoelectric element to a diaphragm. This electroacoustic transducer comprises: a diaphragm that has a flexibility; and a piezoelectric element that is affixed to the diaphragm via an adhesive layer and that has a flexibility. When the spring constant of the deflection of the diaphragm is K1 (N/mm), the Young's modulus of the adhesive layer is E2 (N/mm2) and the thickness is h2 (mm), |50 * K1 − E2 * h2| ≤ 2.5 is satisfied.

Description

電気音響変換器electroacoustic transducer
 本発明は、電気音響変換器に関する。 The present invention relates to an electroacoustic transducer.
 圧電素子は、各種の物品を振動板として、物品(振動板)に接触して取り付けることで、物品(振動板)を振動させて音を出す、いわゆるエキサイター(励起子)として、各種の用途に利用されている。例えば、画像表示パネル、スクリーン等にエキサイターを取り付けて、これらを振動させることで、スピーカーの代わりに音を出すことができる。 Piezoelectric elements can be used as diaphragms to vibrate the diaphragm and produce sound by attaching it to the diaphragm in contact with the diaphragm. It's being used. For example, by attaching an exciter to an image display panel, screen, etc., and causing these to vibrate, it is possible to produce sound instead of a speaker.
 例えば、特許文献1には、振動板の一方の主面に、エキサイターを備える電気音響変換器であって、エキサイターの動的粘弾性測定による周波数1Hzでの損失正接が、0~50℃の温度範囲内に極大値を有し、極大値が0.08以上であり、さらに、エキサイターの厚さと、動的粘弾性測定による周波数1Hz、25℃での貯蔵弾性率との積が、振動板の厚さと、ヤング率との積の、3倍以下である、電気音響変換器が記載されている。 For example, Patent Document 1 discloses an electroacoustic transducer including an exciter on one main surface of a diaphragm, in which the loss tangent at a frequency of 1 Hz measured by dynamic viscoelasticity of the exciter is determined at a temperature of 0 to 50°C. The maximum value is within the range, the maximum value is 0.08 or more, and the product of the exciter thickness and the storage modulus at a frequency of 1 Hz and 25°C measured by dynamic viscoelasticity is the same as that of the diaphragm. Electroacoustic transducers are described that have a thickness that is less than or equal to three times the product of Young's modulus.
国際公開第2020/179353号International Publication No. 2020/179353
 本発明者の検討によれば、圧電素子を振動板に貼り付けて電気音響変換器とした場合に、十分な音圧が得られない場合があることがわかった。この点について、本発明者がさらに検討したところ、圧電素子と振動板とを貼着する貼着層の硬さと振動板の硬さとの関係によって、得られる音圧が変化することがわかった。特許文献1に記載されるように、振動板の硬さと圧電素子の硬さの関係については検討されていたが、貼着層の硬さと振動板の硬さとの関係については、十分に検討されていなかった。 According to studies by the present inventors, it has been found that when a piezoelectric element is attached to a diaphragm to form an electroacoustic transducer, sufficient sound pressure may not be obtained. The inventor further investigated this point and found that the obtained sound pressure changes depending on the relationship between the hardness of the adhesive layer that adheres the piezoelectric element and the diaphragm and the hardness of the diaphragm. As described in Patent Document 1, the relationship between the hardness of the diaphragm and the piezoelectric element has been studied, but the relationship between the hardness of the adhesive layer and the hardness of the diaphragm has not been sufficiently studied. It wasn't.
 本発明の課題は、このような従来技術の問題点を解決することにあり、圧電素子を振動板に貼り付けてなる電気音響変換器において、高い音圧を得ることができる電気音響変換器を提供することにある。 An object of the present invention is to solve the problems of the prior art, and to provide an electroacoustic transducer that can obtain high sound pressure in which a piezoelectric element is attached to a diaphragm. It is about providing.
 上述した課題を解決するために、本発明は、以下の構成を有する。
 [1] 可撓性を有する振動板と、振動板に貼着層を介して貼り付けられた、可撓性を有する圧電素子と、を有する電気音響変換器であって、
 振動板のたわみのバネ定数をK1(N/mm)とし、貼着層のヤング率をE2(N/mm2)、厚みをh2(mm)とした際に、|50×K1-E2×h2|≦2.5を満たす、電気音響変換器。
 [2] 振動板のたわみのバネ定数K1は、0.1N/mより低い、[1]に記載の電気音響変換器。
 [3] 圧電素子は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる圧電体層と、圧電体層の両面に設けられる電極層と、を有する圧電フィルムを含む、[1]または[2]に記載の電気音響変換器。
 [4] 圧電素子は、圧電フィルムを複数層、積層してなる、[3]に記載の電気音響変換器。
In order to solve the above-mentioned problems, the present invention has the following configuration.
[1] An electroacoustic transducer including a flexible diaphragm and a flexible piezoelectric element attached to the diaphragm via an adhesive layer,
When the spring constant of the deflection of the diaphragm is K 1 (N/mm), the Young's modulus of the adhesive layer is E 2 (N/mm 2 ), and the thickness is h 2 (mm), |50×K 1 An electroacoustic transducer that satisfies -E 2 ×h 2 |≦2.5.
[2] The electroacoustic transducer according to [1], wherein a spring constant K 1 of the deflection of the diaphragm is lower than 0.1 N/m.
[3] The piezoelectric element includes a piezoelectric film having a piezoelectric layer made of a polymer composite piezoelectric material containing piezoelectric particles in a matrix containing a polymer material, and electrode layers provided on both sides of the piezoelectric layer. , [1] or [2].
[4] The electroacoustic transducer according to [3], wherein the piezoelectric element is formed by laminating multiple layers of piezoelectric films.
 本発明によれば、圧電素子を振動板に貼り付けてなる電気音響変換器において、高い音圧を得ることができる電気音響変換器を提供することができる。 According to the present invention, it is possible to provide an electroacoustic transducer in which a piezoelectric element is attached to a diaphragm, which can obtain high sound pressure.
本発明の電気音響変換器の一例を模式的に示す図である。FIG. 1 is a diagram schematically showing an example of an electroacoustic transducer of the present invention. 図1に示す電気音響変換器の部分拡大図である。FIG. 2 is a partially enlarged view of the electroacoustic transducer shown in FIG. 1. FIG. 本発明の電気音響変換器に用いられる圧電素子の他の一例を模式的に示す図である。It is a figure which shows typically another example of the piezoelectric element used for the electroacoustic transducer of this invention. 本発明の電気音響変換器が有する圧電フィルムの一例を模式的に示す図である。FIG. 2 is a diagram schematically showing an example of a piezoelectric film included in the electroacoustic transducer of the present invention. 圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。FIG. 2 is a conceptual diagram for explaining an example of a method for manufacturing a piezoelectric film. 差分と平均音圧との関係を表すグラフである。It is a graph showing the relationship between the difference and the average sound pressure.
 以下、本発明の電気音響変換器について、添付の図面に示される好適実施形態を基に、詳細に説明する。 Hereinafter, the electroacoustic transducer of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
Note that in this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower limit and upper limit.
[電気音響変換器]
 本発明の電気音響変換器は、
 可撓性を有する振動板と、振動板に貼着層を介して貼り付けられた、可撓性を有する圧電素子と、を有する電気音響変換器であって、
 振動板のたわみのバネ定数をK1(N/mm)とし、貼着層のヤング率をE2(N/mm2)、厚みをh2(mm)とした際に、|50×K1-E2×h2|≦2.5を満たす、電気音響変換器である。
[Electroacoustic transducer]
The electroacoustic transducer of the present invention includes:
An electroacoustic transducer comprising a flexible diaphragm and a flexible piezoelectric element attached to the diaphragm via an adhesive layer,
When the spring constant of the deflection of the diaphragm is K 1 (N/mm), the Young's modulus of the adhesive layer is E 2 (N/mm 2 ), and the thickness is h 2 (mm), |50×K 1 It is an electroacoustic transducer that satisfies -E 2 ×h 2 |≦2.5.
 図1に、本発明の電気音響変換器の一例を模式的に表す図を示す。図2に、図1の電気音響変換器の部分拡大図を示す。 FIG. 1 shows a diagram schematically representing an example of the electroacoustic transducer of the present invention. FIG. 2 shows a partially enlarged view of the electroacoustic transducer of FIG. 1.
 図1に示す電気音響変換器100は、圧電素子50と、振動板102と、圧電素子50と振動板102との間に配置される貼着層104と、を有する。圧電素子50と振動板102とは貼着層104で貼着されている。 The electroacoustic transducer 100 shown in FIG. 1 includes a piezoelectric element 50, a diaphragm 102, and an adhesive layer 104 disposed between the piezoelectric element 50 and the diaphragm 102. The piezoelectric element 50 and the diaphragm 102 are adhered to each other with an adhesive layer 104.
 振動板102は、可撓性を有するものである。なお、本発明において、可撓性を有するとは、一般的な解釈における可撓性を有すると同義であり、曲げること、および、撓めることが可能であることを示し、具体的には、破壊および損傷を生じることなく、曲げ伸ばしができることを示す。 The diaphragm 102 is flexible. In addition, in the present invention, having flexibility is synonymous with having flexibility in a general interpretation, and indicates that it is possible to bend and bend. , indicating that it can be bent and stretched without breaking or damage.
 振動板102は、好ましくは可撓性を有するものであれば、制限はなく、各種のシート状物(板状物、フィルム)が利用可能である。
 一例として、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)および環状オレフィン系樹脂等からなる樹脂フィルム、発泡ポリスチレン、発泡スチレンおよび発泡ポリエチレン等からなる発泡プラスチック、べニア板、コルクボード、牛革などの皮革類、カーボンシート、和紙などの各種板紙、波状にした板紙の片面または両面に他の板紙をはりつけてなる各種の段ボール材、ステンレス、アルミニウム、銅およびニッケルなどの各種の金属、ならびに、各種の合金などからなる薄膜金属等が例示される。また、振動板102は、これらの材料からなるフィルム状物を貼り合わせた複合材料であってもよい。
The diaphragm 102 is not particularly limited as long as it is preferably flexible, and various sheet-like materials (plate-like materials, films) can be used.
Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films made of polyethylene naphthalate (PEN), triacetyl cellulose (TAC) and cyclic olefin resins, foamed polystyrene, foamed plastics made of foamed styrene and foamed polyethylene, etc., veneer boards, cork boards, leather such as cowhide, Carbon sheets, various paperboards such as Japanese paper, various corrugated cardboard materials made by pasting other paperboards on one or both sides of corrugated paperboard, various metals such as stainless steel, aluminum, copper and nickel, and various alloys. Examples include thin film metals. Further, the diaphragm 102 may be made of a composite material in which film-like materials made of these materials are bonded together.
 また、可撓性を有するものであれば、振動板102として、有機エレクトロルミネセンス(OLED(Organic Light Emitting Diode))ディスプレイ、液晶ディスプレイ、マイクロLED(Light Emitting Diode)ディスプレイ、および、無機エレクトロルミネセンスディスプレイなどの表示デバイス、および、プロジェクター用スクリーン等も好適に利用可能である。 In addition, as long as the diaphragm 102 has flexibility, an organic electroluminescent (OLED (Organic Light Emitting Diode)) display, a liquid crystal display, a micro LED (Light Emitting Diode) display, and an inorganic electroluminescent display may be used. Display devices such as displays, projector screens, and the like can also be suitably used.
 圧電素子50は、印加された電圧に応じて圧電性を発現して、振動板102を振動させる、いわゆるエキサイター(励起子)として用いられるものである。 The piezoelectric element 50 is used as a so-called exciter that exhibits piezoelectricity in response to an applied voltage and causes the diaphragm 102 to vibrate.
 図2に示す例では、圧電素子50は、矩形状の長尺な1枚の圧電フィルム10を、一方向に2回、折り返すことにより、3層の圧電フィルム10を積層したものである。圧電フィルム10は、圧電体層20と、圧電体層20の両面に設けられる第1電極層24および第2電極層26(以下、まとめて電極層ともいう)と、電極層上に設けられる保護層(第1保護層28および第2保護層30)とを有する。なお、図2では、圧電素子50の構成を明瞭に示すため、保護層の図示は省略している。圧電フィルム10については後に詳述する。 In the example shown in FIG. 2, the piezoelectric element 50 is made by laminating three layers of piezoelectric films 10 by folding one long rectangular piezoelectric film 10 twice in one direction. The piezoelectric film 10 includes a piezoelectric layer 20, a first electrode layer 24 and a second electrode layer 26 (hereinafter collectively referred to as electrode layers) provided on both sides of the piezoelectric layer 20, and a protection layer provided on the electrode layer. (first protective layer 28 and second protective layer 30). Note that in FIG. 2, illustration of the protective layer is omitted in order to clearly show the configuration of the piezoelectric element 50. The piezoelectric film 10 will be described in detail later.
 図2に示すように、圧電素子50を構成する圧電フィルム10の第1電極層24および第2電極層26には電源が接続されている。圧電素子50(圧電フィルム10)は、第1電極層24および第2電極層26に電圧を印加されることで、圧電体層20が伸縮して圧電体として駆動する。圧電素子50が駆動されると、圧電素子50が面方向に伸縮し、圧電素子50が貼着された振動板102を撓ませて、結果として振動板102を厚さ方向に振動させて音を発生させる。振動板102は、圧電素子50に印加した駆動電圧の大きさに応じて振動して、電気音響変換器100は、印加した駆動電圧に応じた音を発生する。
 すなわち、電気音響変換器100は、圧電素子50(積層された圧電フィルム10)を、エキサイターとして用いる構成である。
As shown in FIG. 2, a power source is connected to the first electrode layer 24 and the second electrode layer 26 of the piezoelectric film 10 that constitute the piezoelectric element 50. The piezoelectric element 50 (piezoelectric film 10) is driven as a piezoelectric body by applying a voltage to the first electrode layer 24 and the second electrode layer 26, so that the piezoelectric layer 20 expands and contracts. When the piezoelectric element 50 is driven, the piezoelectric element 50 expands and contracts in the plane direction, bends the diaphragm 102 to which the piezoelectric element 50 is attached, and as a result vibrates the diaphragm 102 in the thickness direction to produce sound. generate. The diaphragm 102 vibrates according to the magnitude of the driving voltage applied to the piezoelectric element 50, and the electroacoustic transducer 100 generates sound according to the applied driving voltage.
That is, the electroacoustic transducer 100 has a configuration in which the piezoelectric element 50 (laminated piezoelectric film 10) is used as an exciter.
 貼着層104は、振動板102と圧電素子50とを貼着するものである。 The adhesion layer 104 is for adhering the diaphragm 102 and the piezoelectric element 50.
 ここで、前述のとおり、本発明者の検討によれば、圧電素子を振動板に貼り付けて電気音響変換器とした場合に、貼着層の硬さと振動板の硬さとの関係によって、得られる音圧が変化することがわかった。すなわち、振動板の硬さに対して、貼着層の硬さを適切に設定しないと、得られる音圧が低下してしまうという問題があることがわかった。 As mentioned above, according to the inventor's study, when a piezoelectric element is attached to a diaphragm to form an electroacoustic transducer, the gain is determined by the relationship between the hardness of the adhesive layer and the hardness of the diaphragm. It was found that the sound pressure generated changes. In other words, it has been found that unless the hardness of the adhesive layer is set appropriately relative to the hardness of the diaphragm, there is a problem in that the resulting sound pressure decreases.
 これに対して、本発明の電気音響変換器は、振動板102のたわみのバネ定数をK1(N/mm)とし、貼着層104のヤング率をE2(N/mm2)、厚みをh2(mm)とした際に、|50×K1-E2×h2|≦2.5を満たす、ものである。 On the other hand, in the electroacoustic transducer of the present invention, the spring constant of the deflection of the diaphragm 102 is K 1 (N/mm), the Young's modulus of the adhesive layer 104 is E 2 (N/mm 2 ), and the thickness is When h 2 (mm) is expressed as h 2 (mm), |50×K 1 −E 2 ×h 2 |≦2.5 is satisfied.
 本発明の電気音響変換器は、振動板102のたわみのバネ定数K1(N/mm)を50倍した値と、貼着層104のヤング率E2(N/mm2)および厚みh2(mm)を乗算した値、すなわち、貼着層104のバネ定数K2(=E2×h2)との差分の絶対値(以下、差分Dともいう)を、2.5以下とすることによって、得られる音圧を向上することができる。 The electroacoustic transducer of the present invention has a value obtained by multiplying the deflection spring constant K 1 (N/mm) of the diaphragm 102 by 50, the Young's modulus E 2 (N/mm 2 ) of the adhesive layer 104, and the thickness h 2 (mm), that is, the absolute value of the difference (hereinafter also referred to as difference D) from the spring constant K 2 (=E 2 ×h 2 ) of the adhesive layer 104, shall be 2.5 or less. Therefore, the obtained sound pressure can be improved.
 振動板102のたわみのバネ定数K1に対して、貼着層104のバネ定数K2が大きすぎて、差分Dが2.5超となる場合には、貼着層104が振動板102を拘束してしまい、振動板102が振動しにくくなってしまうため、十分な音圧が得られないものと考えられる。一方、振動板102のたわみのバネ定数K1に対して、貼着層104のバネ定数K2が小さすぎて、差分Dが2.5超となる場合には、圧電素子50の伸縮を貼着層104が吸収してしまい、振動板102に伝わりにくくなってしまうため、十分な音圧が得られないものと考えられる。これに対して、差分Dを2.5以下とすることによって、貼着層104が振動板102を拘束しにくく、振動板102を振動しやすい状態にすることができ、かつ、圧電素子50の伸縮が貼着層104を介して振動板102に伝達されやすくなるため、高い音圧を得ることができると考えられる。 If the spring constant K 2 of the adhesive layer 104 is too large with respect to the spring constant K 1 of the deflection of the diaphragm 102 and the difference D exceeds 2.5, the adhesive layer 104 may cause the diaphragm 102 to bend. It is considered that sufficient sound pressure cannot be obtained because the diaphragm 102 is restrained and becomes difficult to vibrate. On the other hand, if the spring constant K 2 of the adhesive layer 104 is too small with respect to the spring constant K 1 of the deflection of the diaphragm 102 and the difference D exceeds 2.5, the expansion and contraction of the piezoelectric element 50 may be It is considered that sufficient sound pressure cannot be obtained because the adhering layer 104 absorbs the sound and it becomes difficult to transmit it to the diaphragm 102. On the other hand, by setting the difference D to 2.5 or less, the adhesive layer 104 can hardly restrain the diaphragm 102 and the diaphragm 102 can easily vibrate. It is considered that a high sound pressure can be obtained because the expansion and contraction are more easily transmitted to the diaphragm 102 via the adhesive layer 104.
 音圧向上の観点から、差分Dは、2以下が好ましく、1.5以下がより好ましく、0が最も好ましい。 From the viewpoint of improving sound pressure, the difference D is preferably 2 or less, more preferably 1.5 or less, and most preferably 0.
 なお、振動板102のたわみのバネ定数K1は以下のようにして測定できる。
 振動板102から長さ30mm、幅10mmのサンプルを切り出し、動的粘弾性測定装置(DMA)の粘弾性測定モードにて温度0℃~100℃の領域で粘弾性を調べ、周波数換算した時の1kHz、25℃における貯蔵弾性率を、振動板のヤング率E1の値とする。DMAとしては、エスアイアイ・ナノテクノロジー社製(SIIナノテクノロジー社製)の動的粘弾性測定装置DMS6100等を用いることができる。
 測定条件は、昇温速度は2℃/分(窒素雰囲気中)とした。測定周波数は0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hzとした。測定モードは引っ張り測定とした。さらに、チャック間距離は20mmとした。
Note that the spring constant K 1 of the deflection of the diaphragm 102 can be measured as follows.
A sample with a length of 30 mm and a width of 10 mm is cut out from the diaphragm 102, and its viscoelasticity is examined in the viscoelasticity measurement mode of a dynamic viscoelasticity measuring device (DMA) in the temperature range of 0°C to 100°C, and when converted into frequency. The storage modulus at 1 kHz and 25° C. is taken as the value of Young's modulus E 1 of the diaphragm. As the DMA, a dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (SII Nanotechnology Co., Ltd.) or the like can be used.
The measurement conditions were a temperature increase rate of 2° C./min (in a nitrogen atmosphere). The measurement frequencies were 0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz. The measurement mode was tensile measurement. Furthermore, the distance between the chucks was 20 mm.
 その後、以下の式から、振動板102のたわみのバネ定数K1は算出される。
  K1=W/δ(N/mm)=48×E1×b×h1 3/(12×L3
 ここで、W:荷重(N)、δ:たわみ量(mm)、E1:ヤング率(N/mm2)、b:振動板の幅(mm)、h1:振動板の厚み(mm)、L:振動板の長さ(mm)である。
Thereafter, the spring constant K 1 of the deflection of the diaphragm 102 is calculated from the following equation.
K 1 = W/δ (N/mm) = 48 x E 1 x b x h 1 3 / (12 x L 3 )
Here, W: Load (N), δ: Deflection (mm), E 1 : Young's modulus (N/mm 2 ), b: Width of the diaphragm (mm), h 1 : Thickness of the diaphragm (mm) , L: length (mm) of the diaphragm.
 また、貼着層104のヤング率E2は、以下のようにして測定できる。
 圧電素子50と振動板102を剥がしたのち、貼着層104を剥がして、振動板102と同様に、DMAの粘弾性測定モードにて温度0℃~100℃の領域で粘弾性を調べ、周波数換算した時の1kHz、25℃のヤング率E2の値を算出する。
Further, the Young's modulus E 2 of the adhesive layer 104 can be measured as follows.
After peeling off the piezoelectric element 50 and the diaphragm 102, the adhesive layer 104 is peeled off, and in the same way as the diaphragm 102, the viscoelasticity is examined in the temperature range of 0°C to 100°C in the viscoelastic measurement mode of the DMA, and the frequency The converted value of Young's modulus E 2 at 1 kHz and 25° C. is calculated.
 また、貼着層104の厚みh2は、圧電素子50と振動板102を剥がしたのち、貼着層104を剥がして測定する。 Further, the thickness h 2 of the adhesive layer 104 is measured by peeling off the piezoelectric element 50 and the diaphragm 102, and then peeling off the adhesive layer 104.
 貼着層104の厚さは、差分Dが2.5以下を満たすことができれば、制限はなく、貼着層104の材料に応じて、十分な貼着力(接着力、粘着力)が得られる厚さを、適宜、設定すればよい。
 具体的には、貼着層104の厚さは、貼着後の厚さで0.1μm~50μmが好ましく、0.1μm~30μmがより好ましく、0.1μm~10μmがさらに好ましい。
The thickness of the adhesive layer 104 is not limited as long as the difference D satisfies 2.5 or less, and sufficient adhesive force (adhesive force, adhesive force) can be obtained depending on the material of the adhesive layer 104. The thickness may be set appropriately.
Specifically, the thickness of the adhesive layer 104 after attachment is preferably 0.1 μm to 50 μm, more preferably 0.1 μm to 30 μm, and even more preferably 0.1 μm to 10 μm.
 貼着層104は、振動板102と圧電素子50とを貼着可能で、差分Dが2.5以下を満たすものであれば、公知のものが、各種、利用可能である。
 従って、貼着層104は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。また、接着剤(粘着剤)は、湿気硬化型接着剤、熱可塑性接着剤および熱硬化性接着剤のいずれであってもよい。また、貼着層104として、両面テープ、粘着シート等を用いてもよい。
Various known adhesive layers can be used as the adhesive layer 104 as long as it can adhere the diaphragm 102 and the piezoelectric element 50 and satisfies the difference D of 2.5 or less.
Therefore, even though the adhesive layer 104 is a layer made of an adhesive that has fluidity when pasted together and then becomes solid, it remains a gel-like (rubber-like) soft solid when pasted together, and it remains a gel-like (rubber-like) solid when pasted together. It may be a layer made of an adhesive whose shape does not change, or a layer made of a material that has characteristics of both an adhesive and a pressure-sensitive adhesive. Further, the adhesive (pressure-sensitive adhesive) may be any of a moisture-curable adhesive, a thermoplastic adhesive, and a thermosetting adhesive. Further, as the adhesive layer 104, double-sided tape, adhesive sheet, etc. may be used.
 貼着層104としては、例えば、粘着シート:NCF-D692(リンテック株式会社製)、フィルム状ホットメルト接着剤:エルファンUH203、エルファンNT120(日本マタイ株式会社製)等を用いることができる。 As the adhesive layer 104, for example, an adhesive sheet: NCF-D692 (manufactured by Lintec Corporation), a film hot melt adhesive: Elfan UH203, Elfan NT120 (manufactured by Nippon Matai Corporation), etc. can be used.
 振動板102のたわみのバネ定数K1(N/mm)を50倍した値と、貼着層104のヤング率E2(N/mm2)および厚みh2(mm)を乗算した値(貼着層104のバネ定数K2)との差分Dは、振動板102の材質(ヤング率E1)、幅b、厚みh1、長さL、ならびに、貼着層104の材質(ヤング率E2)、厚みh2等を適宜調整して、2.5以下とすればよい。 The value obtained by multiplying the spring constant K 1 (N/mm) of the deflection of the diaphragm 102 by 50 times the Young's modulus E 2 (N/mm 2 ) and the thickness h 2 (mm) of the adhesive layer 104 (the adhesive The difference D from the spring constant K 2 ) of the adhesive layer 104 is determined by the material of the diaphragm 102 (Young's modulus E 1 ), the width b, the thickness h 1 , the length L, and the material of the adhesive layer 104 (Young's modulus E 2 ), the thickness h2, etc. may be appropriately adjusted to 2.5 or less.
 ここで、電気音響変換器100の可撓性の観点から、振動板102のたわみのバネ定数K1は、0.1N/mより低いことが好ましく、0.05N/m以下がより好ましく、0.01N/m以下がさらに好ましい。 Here, from the viewpoint of flexibility of the electroacoustic transducer 100, the spring constant K 1 of the deflection of the diaphragm 102 is preferably lower than 0.1 N/m, more preferably 0.05 N/m or less, More preferably, it is .01 N/m or less.
 ここで、図1および図2に示す圧電素子50は、圧電フィルム10を、折り返して3層、積層したものであるが、本発明は、これに制限はされない。すなわち、圧電素子は、圧電フィルム10を、1層(1枚)有するものであってもよく、あるいは、複数層、積層したものであってもよい。圧電フィルム10を複数層、積層する場合は、圧電フィルム10の積層数は、2層でもよく、あるいは、4層以上であってもよい。この点に関しては、後述する図3に示す圧電素子も、同様である。 Here, although the piezoelectric element 50 shown in FIGS. 1 and 2 is made by folding and laminating three layers of piezoelectric films 10, the present invention is not limited to this. That is, the piezoelectric element may have one layer (one sheet) of the piezoelectric film 10, or may have a plurality of layers laminated. When a plurality of piezoelectric films 10 are laminated, the number of piezoelectric films 10 laminated may be two or four or more. Regarding this point, the piezoelectric element shown in FIG. 3, which will be described later, is also similar.
 また、図1に示す例では、圧電素子50は、長尺な圧電フィルム10を1回以上折り返すことで、複数層積層された圧電フィルムを有するものとしたが、これに限定はされない。図3に示すように、圧電素子は、枚葉状(カットシート状)の圧電フィルム10が複数枚、積層された構成を有するものとしてもよい。 Further, in the example shown in FIG. 1, the piezoelectric element 50 has a piezoelectric film laminated in multiple layers by folding the long piezoelectric film 10 one or more times, but the piezoelectric element 50 is not limited to this. As shown in FIG. 3, the piezoelectric element may have a structure in which a plurality of sheet-like (cut sheet-like) piezoelectric films 10 are laminated.
 図3に示す圧電素子は、3枚の圧電フィルム10が貼着層19を介して積層されている。3枚の圧電フィルムはそれぞれ電源に接続されている。 In the piezoelectric element shown in FIG. 3, three piezoelectric films 10 are laminated with an adhesive layer 19 in between. Each of the three piezoelectric films is connected to a power source.
 図3に示す圧電素子は、好ましい態様として、圧電フィルム10が厚さ方向に分極されており、隣接する圧電フィルム10の分極方向が互いに逆である。そのため、隣接する圧電フィルム10では、第1電極層24同士および第2電極層26同士が対面する。従って、電源は、交流電源でも直流電源でも、対面する電極には、常に同じ極性の電力を供給する。従って、図3に示す圧電素子では、隣接する圧電フィルム10の電極同士が接触しても、ショート(短絡)する恐れがない。 In a preferred embodiment of the piezoelectric element shown in FIG. 3, the piezoelectric film 10 is polarized in the thickness direction, and the polarization directions of adjacent piezoelectric films 10 are opposite to each other. Therefore, in the adjacent piezoelectric films 10, the first electrode layers 24 and the second electrode layers 26 face each other. Therefore, whether the power source is an AC power source or a DC power source, power of the same polarity is always supplied to the facing electrodes. Therefore, in the piezoelectric element shown in FIG. 3, even if the electrodes of adjacent piezoelectric films 10 come into contact with each other, there is no risk of short-circuiting.
 なお、圧電フィルム10の分極方向は、d33メーター等で検出すれば良い。または、後述する分極の処理条件から、圧電フィルム10の分極方向を知見してもよい。 Note that the polarization direction of the piezoelectric film 10 may be detected using a d33 meter or the like. Alternatively, the polarization direction of the piezoelectric film 10 may be determined from the polarization processing conditions described below.
 また、図3に示す例では、隣接する圧電フィルム10の分極方向は互いに逆としたが、これに限定はされず、隣接する圧電フィルム10の分極方向は同じであってもよい。 Further, in the example shown in FIG. 3, the polarization directions of the adjacent piezoelectric films 10 are opposite to each other, but the polarization directions of the adjacent piezoelectric films 10 may be the same.
 長尺な圧電フィルムを折り返して積層した圧電素子は、以下のような利点を有する。
 すなわち、カットシート状の圧電フィルム10を、複数枚、積層した場合には、1枚の圧電フィルム毎に、第1電極層24および第2電極層26を、駆動電源に接続する必要がある。これに対して、長尺な圧電フィルム10を折り返して積層した構成では、一枚の長尺な圧電フィルム10のみで積層体を構成できる。また、長尺な圧電フィルム10を折り返して積層した構成では、駆動電圧を印加するための電源が1個で済み、さらに、圧電フィルム10からの電極の引き出しも、1か所でよい。
 さらに、長尺な圧電フィルム10を折り返して積層した構成では、必然的に、隣接する圧電フィルム同士で、分極方向が互いに逆になる。
A piezoelectric element made by folding and laminating long piezoelectric films has the following advantages.
That is, when a plurality of cut sheet-shaped piezoelectric films 10 are laminated, it is necessary to connect the first electrode layer 24 and the second electrode layer 26 for each piezoelectric film to a driving power source. On the other hand, in a structure in which long piezoelectric films 10 are folded and laminated, the laminate can be constructed from only one long piezoelectric film 10. Further, in the structure in which long piezoelectric films 10 are folded and laminated, only one power source is required for applying the driving voltage, and furthermore, the electrodes need only be drawn out from the piezoelectric film 10 at one location.
Furthermore, in the structure in which long piezoelectric films 10 are folded and laminated, the polarization directions of adjacent piezoelectric films are necessarily opposite to each other.
 以下、本発明の電気音響変換器の圧電素子に用いられる圧電フィルムについて説明する。 Hereinafter, the piezoelectric film used in the piezoelectric element of the electroacoustic transducer of the present invention will be explained.
 図4に、圧電フィルム10の一部を拡大して示す。
 図4に示す圧電フィルム10は、圧電性を有するシート状物である圧電体層20と、圧電体層20の一方の面に積層される第1電極層24と、第1電極層24の圧電体層20と反対側の面に積層される第1保護層28と、圧電体層20の他方の面に積層される第2電極層26と、第2電極層26の圧電体層20と反対側の面に積層される第2保護層30と、を有する。すなわち、圧電フィルム10は、圧電体層20を電極層で挟持し、電極層の圧電体層が接触していない面に保護層が積層された構成を有する。
FIG. 4 shows a part of the piezoelectric film 10 in an enlarged manner.
The piezoelectric film 10 shown in FIG. A first protective layer 28 that is laminated on the surface opposite to the body layer 20, a second electrode layer 26 that is laminated on the other surface of the piezoelectric layer 20, and a layer that is opposite to the piezoelectric layer 20 of the second electrode layer 26. A second protective layer 30 is laminated on the side surface. That is, the piezoelectric film 10 has a structure in which the piezoelectric layer 20 is sandwiched between electrode layers, and a protective layer is laminated on the surface of the electrode layer that is not in contact with the piezoelectric layer.
 本発明において、圧電体層20は、公知の圧電体層が、各種、利用可能である。
 本発明において、圧電体層20は、図4に概念的に示すように、高分子材料を含むマトリックス34中に、圧電体粒子36を含む、高分子複合圧電体であるのが好ましい。
In the present invention, various known piezoelectric layers can be used as the piezoelectric layer 20.
In the present invention, the piezoelectric layer 20 is preferably a polymeric composite piezoelectric material containing piezoelectric particles 36 in a matrix 34 containing a polymeric material, as conceptually shown in FIG.
 圧電体層20を構成する高分子複合圧電体のマトリックス34(マトリックス兼バインダ)の材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。なお、本明細書において、「常温」とは、0~50℃程度の温度域を指す。 As the material for the matrix 34 (matrix and binder) of the polymer composite piezoelectric material constituting the piezoelectric layer 20, it is preferable to use a polymer material that has viscoelasticity at room temperature. Note that in this specification, "normal temperature" refers to a temperature range of about 0 to 50°C.
 ここで、高分子複合圧電体(圧電体層20)は、次の用件を具備したものであるのが好ましい。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
Here, the polymer composite piezoelectric material (piezoelectric layer 20) preferably satisfies the following requirements.
(i) Flexibility For example, when holding a newspaper or magazine in a loosely bent state like a document for portable use, it is constantly subjected to relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress will be generated, and cracks will occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, a polymer composite piezoelectric material is required to have appropriate softness. Moreover, if strain energy can be diffused to the outside as heat, stress can be alleviated. Therefore, the loss tangent of the polymer composite piezoelectric material is required to be appropriately large.
 以上をまとめると、エキサイターとして用いるフレキシブルな高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
 さらに、貼り付ける相手材(振動板)の剛性(硬さ、コシ、バネ定数)に合わせて、積層することで、簡便にバネ定数を調節できるのが好ましく、その際、貼着層104は薄ければ薄いほど、エネルギー効率を高めることができる。
To summarize the above, a flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz, and to behave softly against vibrations of several Hz or less. Further, the loss tangent of the polymer composite piezoelectric material is required to be appropriately large for vibrations of all frequencies below 20 kHz.
Furthermore, it is preferable that the spring constant can be easily adjusted by laminating layers according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to which the adhesive layer 104 is attached. The thinner it is, the more energy efficient it can be.
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層20)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
In general, polymer solids have a viscoelastic relaxation mechanism, and as the temperature increases or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage modulus (Young's modulus) or a maximum in the loss modulus (absorption). It is observed as Among these, the relaxation caused by micro-Brownian motion of molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this main dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
In the polymer composite piezoelectric material (piezoelectric layer 20), by using a polymer material whose glass transition point is at room temperature, in other words, a polymer material that has viscoelasticity at room temperature, for the matrix, it can withstand vibrations of 20Hz to 20kHz. This results in a polymer composite piezoelectric material that is hard and behaves softly when subjected to slow vibrations of several Hz or less. In particular, in order to suitably exhibit this behavior, it is preferable to use a polymer material whose glass transition point at a frequency of 1 Hz is at room temperature, that is, 0 to 50° C., for the matrix of the polymer composite piezoelectric material.
 常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0~50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックスと圧電体粒子との界面の応力集中が緩和され、高い可撓性が期待できる。
Various known polymer materials can be used as the polymer material having viscoelasticity at room temperature. Preferably, a polymer material having a maximum value of loss tangent Tan δ of 0.5 or more at a frequency of 1 Hz in a dynamic viscoelasticity test at room temperature, ie, 0 to 50° C., is used.
As a result, when the polymer composite piezoelectric material is slowly bent by an external force, stress concentration at the interface between the polymer matrix and the piezoelectric particles at the maximum bending moment portion is alleviated, and high flexibility can be expected.
 また、常温で粘弾性を有する高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
Further, the polymer material having viscoelasticity at room temperature preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
As a result, the bending moment that occurs when the polymer composite piezoelectric material is slowly bent by an external force can be reduced, and at the same time, it can behave stiffly against acoustic vibrations of 20 Hz to 20 kHz.
 また、常温で粘弾性を有する高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
Further, it is more preferable that the polymer material having viscoelasticity at room temperature has a dielectric constant of 10 or more at 25°C. As a result, when a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
However, on the other hand, in consideration of securing good moisture resistance, etc., it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
 このような条件を満たす常温で粘弾性を有する高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、高分子材料としては,シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。 Examples of polymeric materials that have viscoelasticity at room temperature that meet these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinyl polyisoprene block copolymer, and polyvinyl methyl. Examples include ketones and polybutyl methacrylate. Furthermore, commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymeric materials. Among these, as the polymer material, it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
 常温で粘弾性を有する高分子材料としては、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。すなわち、本発明において、圧電体層20は、マトリックス34として、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 以下の説明では、シアノエチル化PVAを代表とする上述の高分子材料を、まとめて『常温で粘弾性を有する高分子材料』とも言う。
As the polymeric material having viscoelasticity at room temperature, it is preferable to use a polymeric material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. That is, in the present invention, it is preferable for the piezoelectric layer 20 to use a polymeric material having a cyanoethyl group as the matrix 34, and it is particularly preferable to use cyanoethylated PVA.
In the following explanation, the above-mentioned polymeric materials represented by cyanoethylated PVA are also collectively referred to as "polymeric materials having viscoelasticity at room temperature."
 なお、これらの常温で粘弾性を有する高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 Note that these polymeric materials having viscoelasticity at room temperature may be used alone or in combination (mixture) of multiple types.
 このような常温で粘弾性を有する高分子材料を用いるマトリックス34は、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、マトリックス34には、誘電特性や機械特性の調節等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
The matrix 34 using such a polymeric material having viscoelasticity at room temperature may be made of a plurality of polymeric materials in combination, if necessary.
That is, in addition to the viscoelastic material such as cyanoethylated PVA, other dielectric polymeric materials may be added to the matrix 34 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層20のマトリックス34において、これらの誘電性高分子材料は、1種に限定はされず、複数種を添加してもよい。
Examples of dielectric polymer materials that can be added include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer. and fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysucrose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethyl methacrylate, cyanoethyl acrylate, cyanoethyl Cyano groups such as hydroxyethyl cellulose, cyanoethyl amylose, cyanoethyl hydroxypropyl cellulose, cyanoethyl dihydroxypropyl cellulose, cyanoethyl hydroxypropyl amylose, cyanoethyl polyacrylamide, cyanoethyl polyacrylate, cyanoethyl pullulan, cyanoethyl polyhydroxymethylene, cyanoethyl glycidol pullulan, cyanoethyl saccharose and cyanoethyl sorbitol Examples include polymers having a cyanoethyl group, and synthetic rubbers such as nitrile rubber and chloroprene rubber.
Among them, polymeric materials having cyanoethyl groups are preferably used.
Further, in the matrix 34 of the piezoelectric layer 20, the number of these dielectric polymer materials is not limited to one type, and a plurality of types may be added.
 また、マトリックス34には、誘電性高分子材料以外にも、ガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、および、イソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、および、マイカ等の熱硬化性樹脂を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
In addition to the dielectric polymer material, the matrix 34 also includes thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene, for the purpose of adjusting the glass transition point Tg, and Thermosetting resins such as phenol resins, urea resins, melamine resins, alkyd resins, and mica may also be added.
Furthermore, for the purpose of improving tackiness, tackifiers such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added.
 圧電体層20のマトリックス34において、シアノエチル化PVA等の粘弾性を有する高分子材料以外の材料を添加する際の添加量には、特に限定は無いが、マトリックス34に占める割合で30質量%以下とするのが好ましい。
 これにより、マトリックス34における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子36および電極層との密着性向上等の点で好ましい結果を得ることができる。
In the matrix 34 of the piezoelectric layer 20, when adding a material other than a viscoelastic polymeric material such as cyanoethylated PVA, there is no particular limitation on the amount added, but the proportion in the matrix 34 is 30% by mass or less. It is preferable that
This allows the properties of the added polymer material to be expressed without impairing the viscoelastic relaxation mechanism in the matrix 34, resulting in higher dielectric constant, improved heat resistance, improved adhesion between the piezoelectric particles 36 and the electrode layer, etc. Favorable results can be obtained in this respect.
 圧電体層20は、このようなマトリックス34に、圧電体粒子36を含む、高分子複合圧電体からなる層である。圧電体粒子36は、マトリックス34に分散されている。好ましくは、圧電体粒子36は、マトリックス34に均一(略均一)に分散される。 The piezoelectric layer 20 is a layer made of a polymer composite piezoelectric material that includes such a matrix 34 and piezoelectric particles 36. Piezoelectric particles 36 are dispersed in matrix 34 . Preferably, the piezoelectric particles 36 are uniformly (substantially uniformly) dispersed in the matrix 34.
 圧電体粒子36は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子36を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
The piezoelectric particles 36 are made of ceramic particles having a perovskite or wurtzite crystal structure.
Examples of the ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead lanthanate zirconate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and An example is a solid solution of barium titanate and bismuth ferrite (BiFe 3 ) (BFBT).
 このような圧電体粒子36の粒径には制限はなく、圧電フィルム10のサイズ、および、圧電素子50の用途等に応じて、適宜、選択すれば良い。圧電体粒子36の粒径は、1~10μmが好ましい。
 圧電体粒子36の粒径をこの範囲とすることにより、圧電フィルム10が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
There is no limit to the particle size of the piezoelectric particles 36, and it may be selected as appropriate depending on the size of the piezoelectric film 10, the use of the piezoelectric element 50, and the like. The particle size of the piezoelectric particles 36 is preferably 1 to 10 μm.
By setting the particle size of the piezoelectric particles 36 within this range, favorable results can be obtained in that the piezoelectric film 10 can have both high piezoelectric properties and flexibility.
 なお、圧電体層20中の圧電体粒子36は、マトリックス34中に、均一かつ規則性を持って分散されていてもよいし、均一に分散されていれば、マトリックス34中に不規則に分散されていてもよい。 Note that the piezoelectric particles 36 in the piezoelectric layer 20 may be uniformly and regularly dispersed in the matrix 34, or if they are uniformly dispersed, they may be irregularly dispersed in the matrix 34. may have been done.
 圧電フィルム10において、圧電体層20中におけるマトリックス34と圧電体粒子36との量比には、制限はなく、圧電フィルム10の面方向の大きさおよび厚さ、圧電フィルム10の用途、ならびに、圧電フィルム10に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20中における圧電体粒子36の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。
 マトリックス34と圧電体粒子36との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
In the piezoelectric film 10, there is no limit to the ratio of the matrix 34 to the piezoelectric particles 36 in the piezoelectric layer 20, and it is subject to the size and thickness of the piezoelectric film 10 in the plane direction, the use of the piezoelectric film 10, and It may be set as appropriate depending on the characteristics required of the piezoelectric film 10.
The volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30 to 80%, more preferably 50% or more, and therefore even more preferably 50 to 80%.
By setting the quantity ratio of the matrix 34 to the piezoelectric particles 36 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric properties and flexibility.
 圧電フィルム10において、圧電体層20の厚さには、特に限定はなく、圧電フィルム10の用途、圧電素子50における圧電フィルムの積層数、圧電フィルム10に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層20が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電フィルム10を伸縮させるために必要な電圧(電位差)は大きくなる。
 圧電体層20の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。
 圧電体層20の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
In the piezoelectric film 10, the thickness of the piezoelectric layer 20 is not particularly limited, and may be determined as appropriate depending on the use of the piezoelectric film 10, the number of laminated piezoelectric films in the piezoelectric element 50, the characteristics required of the piezoelectric film 10, etc. , just set it.
The thicker the piezoelectric layer 20 is, the more advantageous it is in terms of rigidity such as the stiffness of the so-called sheet-like material, but the voltage (potential difference) required to expand and contract the piezoelectric film 10 by the same amount increases.
The thickness of the piezoelectric layer 20 is preferably 10 to 300 μm, more preferably 20 to 200 μm, and even more preferably 30 to 150 μm.
By setting the thickness of the piezoelectric layer 20 within the above range, favorable results can be obtained in terms of ensuring both rigidity and appropriate flexibility.
 また、圧電体層20は、厚さ方向に分極処理(ポーリング)されているのが好ましい。 Furthermore, the piezoelectric layer 20 is preferably polarized (poled) in the thickness direction.
 なお、本発明において、圧電体層20は、上述したような、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなるマトリックス34に、圧電体粒子36を含む高分子複合圧電体に制限はされない。
 すなわち、本発明の圧電フィルム10において、圧電体層は、公知の圧電体層が、各種、利用可能である。
In the present invention, the piezoelectric layer 20 is made of a polymer composite piezoelectric material including piezoelectric particles 36 in a matrix 34 made of a polymeric material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. There are no restrictions.
That is, in the piezoelectric film 10 of the present invention, various known piezoelectric layers can be used as the piezoelectric layer.
 一例として、上述したポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体およびフッ化ビニリデン-トリフルオロエチレン共重合体等の誘電性高分子材料を含むマトリックスに同様の圧電体粒子36を含む高分子複合圧電体、ポリフッ化ビニリデンからなる圧電体層、ポリフッ化ビニリデン以外のフッ素樹脂からなる圧電体層、および、ポリL乳酸からなるフィルムとポリD乳酸からなるフィルムとを積層した圧電体層等も利用可能である。
 しかしながら、上述のように、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞うことができ、優れた音響特性が得られる、可撓性に優れる等の点で、上述したシアノエチル化PVAのような常温で粘弾性を有する高分子材料からなるマトリックス34に、圧電体粒子36を含む高分子複合圧電体が、好適に利用される。
As an example, a matrix containing a dielectric polymer material such as polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above, and a matrix containing similar piezoelectric particles 36 may be used. Molecular composite piezoelectric materials, piezoelectric layers made of polyvinylidene fluoride, piezoelectric layers made of fluororesin other than polyvinylidene fluoride, piezoelectric layers laminated with films made of poly-L-lactic acid and films made of poly-D-lactic acid, etc. is also available.
However, as mentioned above, it is hard against vibrations of 20 Hz to 20 kHz, can behave softly against slow vibrations of several Hz or less, provides excellent acoustic characteristics, and has excellent flexibility. A polymer composite piezoelectric material including piezoelectric particles 36 is suitably used in the matrix 34 made of a polymeric material having viscoelasticity at room temperature, such as the above-mentioned cyanoethylated PVA.
 図4に示すように、圧電フィルム10は、このような圧電体層20の一面に、第1電極層24を有し、その上に第1保護層28を有し、圧電体層20の他方の面に、第2電極層26を有し、その上に第2保護層30を有してなる構成を有する。ここで、第1電極層24と第2電極層26とが電極対を形成する。 As shown in FIG. 4, the piezoelectric film 10 has a first electrode layer 24 on one side of the piezoelectric layer 20, a first protective layer 28 thereon, and a first electrode layer 24 on one side of the piezoelectric layer 20. It has a structure in which it has a second electrode layer 26 on its surface and a second protective layer 30 thereon. Here, the first electrode layer 24 and the second electrode layer 26 form an electrode pair.
 すなわち、圧電フィルム10は、圧電体層20の両面を電極対、すなわち、第1電極層24および第2電極層26で挟持し、この積層体を、第1保護層28および第2保護層30で挟持してなる構成を有する。
 このように、圧電フィルム10において、第1電極層24および第2電極層26で挾持された領域は、印加された電圧に応じて伸縮される。
 なお、第1電極層24および第1保護層28、ならびに、第2電極層26および第2保護層30は、圧電フィルム10を説明するために、便宜的に付しているものである。従って、本発明における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
That is, in the piezoelectric film 10, both surfaces of the piezoelectric layer 20 are sandwiched between an electrode pair, that is, a first electrode layer 24 and a second electrode layer 26, and this laminate is sandwiched between a first protective layer 28 and a second protective layer 30. It has a structure in which it is sandwiched between.
In this way, in the piezoelectric film 10, the region sandwiched between the first electrode layer 24 and the second electrode layer 26 expands and contracts depending on the applied voltage.
Note that the first electrode layer 24 and the first protective layer 28, as well as the second electrode layer 26 and the second protective layer 30 are added for convenience in order to explain the piezoelectric film 10. Therefore, the first and second aspects of the present invention have no technical meaning and are unrelated to actual usage conditions.
 本発明において圧電フィルム10は、これらの層に加えて、例えば、電極層と圧電体層20とを貼着するための貼着層、および、電極層と保護層とを貼着するための貼着層を有してもよい。
 貼着剤は、接着剤でも粘着剤でもよい。また、貼着剤は、圧電体層20から圧電体粒子36を除いた高分子材料すなわちマトリックス34と同じ材料も、好適に利用可能である。なお、貼着層は、第1電極層24側および第2電極層26側の両方に有してもよく、第1電極層24側および第2電極層26側の一方のみに有してもよい。
In the present invention, the piezoelectric film 10 includes, in addition to these layers, an adhesive layer for pasting the electrode layer and the piezoelectric layer 20, and a pasting layer for pasting the electrode layer and the protective layer. It may have an attached layer.
The adhesive may be an adhesive or a pressure-sensitive adhesive. Further, as the adhesive, a polymeric material obtained by removing the piezoelectric particles 36 from the piezoelectric layer 20, that is, the same material as the matrix 34, can also be suitably used. Note that the adhesive layer may be provided on both the first electrode layer 24 side and the second electrode layer 26 side, or may be provided only on one of the first electrode layer 24 side and the second electrode layer 26 side. good.
 圧電フィルム10において、第1保護層28および第2保護層30は、第1電極層24および第2電極層26を被覆すると共に、圧電体層20に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム10において、マトリックス34と圧電体粒子36とからなる圧電体層20は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム10は、それを補うために第1保護層28および第2保護層30が設けられる。
 第1保護層28と第2保護層30とは、配置位置が異なるのみで、構成は同じである。従って、以下の説明においては、第1保護層28および第2保護層30を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
In the piezoelectric film 10, the first protective layer 28 and the second protective layer 30 cover the first electrode layer 24 and the second electrode layer 26, and also serve to impart appropriate rigidity and mechanical strength to the piezoelectric layer 20. is in charge of That is, in the piezoelectric film 10, the piezoelectric layer 20 consisting of the matrix 34 and the piezoelectric particles 36 exhibits excellent flexibility against slow bending deformation, but depending on the application, it may have low rigidity. or mechanical strength may be insufficient. The piezoelectric film 10 is provided with a first protective layer 28 and a second protective layer 30 to compensate for this.
The first protective layer 28 and the second protective layer 30 have the same structure, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 28 and the second protective layer 30, both members are collectively referred to as protective layers.
 第1保護層28および第2保護層30には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。
 中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
There are no restrictions on the first protective layer 28 and the second protective layer 30, and various sheet-like materials can be used, and various resin films are suitably exemplified as an example.
Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), and polymethyl methacrylate (PMMA) are used because of their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resin, and the like are suitably used.
 第1保護層28および第2保護層30の厚さにも、制限はない。また、第1保護層328および第2保護層30の厚さは、基本的に同じであるが、異なってもよい。
 ここで、第1保護層28および第2保護層30の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、第1保護層28および第2保護層30は、薄いほど有利である。
There is also no limit to the thickness of the first protective layer 28 and the second protective layer 30. Further, the thicknesses of the first protective layer 328 and the second protective layer 30 are basically the same, but may be different.
Here, if the rigidity of the first protective layer 28 and the second protective layer 30 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, but also the flexibility will be impaired. Therefore, it is advantageous for the first protective layer 28 and the second protective layer 30 to be thinner, unless mechanical strength or good handling properties as a sheet-like material are required.
 圧電フィルム10においては、第1保護層28および第2保護層30の厚さが、圧電体層20の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 例えば、圧電体層20の厚さが50μmで第1保護層28および第2保護層30がPETからなる場合、第1保護層28および第2保護層30の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
In the piezoelectric film 10, if the thickness of the first protective layer 28 and the second protective layer 30 is twice or less the thickness of the piezoelectric layer 20, it is possible to achieve both rigidity and appropriate flexibility. Favorable results can be obtained in this respect.
For example, when the thickness of the piezoelectric layer 20 is 50 μm and the first protective layer 28 and the second protective layer 30 are made of PET, the thickness of the first protective layer 28 and the second protective layer 30 is preferably 100 μm or less, The thickness is more preferably 50 μm or less, and even more preferably 25 μm or less.
 圧電フィルム10において、圧電体層20と第1保護層28との間には第1電極層24が、圧電体層20と第2保護層30との間には第2電極層26が、それぞれ形成される。 第1電極層24および第2電極層26は、圧電体層20(圧電フィルム10)に電圧を印加するために設けられる。 In the piezoelectric film 10, a first electrode layer 24 is provided between the piezoelectric layer 20 and the first protective layer 28, and a second electrode layer 26 is provided between the piezoelectric layer 20 and the second protective layer 30. It is formed. The first electrode layer 24 and the second electrode layer 26 are provided to apply voltage to the piezoelectric layer 20 (piezoelectric film 10).
 第1電極層24および第2電極層26は、位置が異なる以外は、基本的に同じものである。従って、以下の説明においては、第1電極層24および第2電極層26を区別する必要がない場合には、両部材をまとめて、電極層ともいう。 The first electrode layer 24 and the second electrode layer 26 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 24 and the second electrode layer 26, both members are collectively referred to as electrode layers.
 本発明において、第1電極層24および第2電極層26の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、チタン、クロムおよびモリブデン等の金属、これらの合金、これらの金属および合金の積層体および複合体、ならびに、酸化インジウムスズ等が例示される。あるいは、PEDOT/PPS(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸)などの導電性高分子も例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、第1電極層24および第2電極層26として好適に例示される。その中でも、導電性、コストおよび可撓性等の観点から銅がより好ましい。 In the present invention, there are no restrictions on the materials for forming the first electrode layer 24 and the second electrode layer 26, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium, and molybdenum, alloys thereof, laminates and composites of these metals and alloys, Further, indium tin oxide and the like are exemplified. Alternatively, conductive polymers such as PEDOT/PPS (polyethylenedioxythiophene-polystyrene sulfonic acid) are also exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the first electrode layer 24 and the second electrode layer 26. Among these, copper is more preferable from the viewpoints of conductivity, cost, flexibility, and the like.
 また、第1電極層24および第2電極層26の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)、めっきによる成膜、ならびに、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。 Furthermore, there is no restriction on the method of forming the first electrode layer 24 and the second electrode layer 26, and they may be formed using a vapor deposition method (vacuum film forming method) such as vacuum evaporation and sputtering, plating, or using the above-mentioned materials. Various known methods can be used, such as a method of pasting a foil that has been prepared.
 中でも特に、圧電フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅およびアルミニウム等の薄膜は、第1電極層24および第2電極層26として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。 Among these, thin films of copper, aluminum, etc. formed by vacuum deposition are particularly preferably used as the first electrode layer 24 and the second electrode layer 26 because they can ensure the flexibility of the piezoelectric film 10. Ru. Among these, a copper thin film formed by vacuum evaporation is particularly preferably used.
 第1電極層24および第2電極層26の厚さには、制限はない。また、第1電極層24および第2電極層26の厚さは、基本的に同じであるが、異なってもよい。
 ここで、前述の第1保護層28および第2保護層30と同様に、第1電極層24および第2電極層26の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、第1電極層24および第2電極層26は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
There is no limit to the thickness of the first electrode layer 24 and the second electrode layer 26. Further, the thicknesses of the first electrode layer 24 and the second electrode layer 26 are basically the same, but may be different.
Here, similarly to the first protective layer 28 and the second protective layer 30 described above, if the rigidity of the first electrode layer 24 and the second electrode layer 26 is too high, it not only restricts the expansion and contraction of the piezoelectric layer 20, but also Flexibility is also impaired. Therefore, it is advantageous for the first electrode layer 24 and the second electrode layer 26 to be thinner, as long as the electrical resistance does not become too high.
 圧電フィルム10においては、第1電極層24および第2電極層26の厚さと、ヤング率との積が、第1保護層28および第2保護層30の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 例えば、第1保護層28および第2保護層30がPET(ヤング率:約6.2GPa)で、第1電極層24および第2電極層26が銅(ヤング率:約130GPa)からなる組み合わせの場合、第1保護層28および第2保護層30の厚さが25μmだとすると、第1電極層24および第2電極層26の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
In the piezoelectric film 10, if the product of the thickness of the first electrode layer 24 and the second electrode layer 26 and Young's modulus is less than the product of the thickness of the first protective layer 28 and the second protective layer 30 and Young's modulus, then , is suitable because it does not significantly impair flexibility.
For example, a combination in which the first protective layer 28 and the second protective layer 30 are made of PET (Young's modulus: about 6.2 GPa) and the first electrode layer 24 and the second electrode layer 26 are made of copper (Young's modulus: about 130 GPa) is used. In this case, if the thickness of the first protective layer 28 and the second protective layer 30 is 25 μm, the thickness of the first electrode layer 24 and the second electrode layer 26 is preferably 1.2 μm or less, more preferably 0.3 μm or less. Among them, it is preferably 0.1 μm or less.
 上述したように、圧電フィルム10は、高分子材料を含むマトリックス34に圧電体粒子36を分散してなる圧電体層20を、第1電極層24および第2電極層26で挟持し、さらに、この積層体を、第1保護層28および第2保護層30を挟持してなる構成を有する。
 このような圧電フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。
 これにより、圧電フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
As described above, the piezoelectric film 10 has a piezoelectric layer 20 formed by dispersing piezoelectric particles 36 in a matrix 34 containing a polymeric material, sandwiched between the first electrode layer 24 and the second electrode layer 26, and further includes: This laminate has a structure in which a first protective layer 28 and a second protective layer 30 are sandwiched between them.
In such a piezoelectric film 10, it is preferable that the maximum value of the loss tangent (Tan δ) at a frequency of 1 Hz as measured by dynamic viscoelasticity exists at room temperature, and it is preferable that the maximum value of 0.1 or more exists at room temperature. More preferred.
As a result, even if the piezoelectric film 10 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat, so that the polymer matrix and piezoelectric particles are This can prevent cracks from forming at the interface.
 圧電フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPa、50℃において1~10GPaであるのが好ましい。なお、この条件に関しては、圧電体層20も同様である。
 これにより、常温で圧電フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
The piezoelectric film 10 preferably has a storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Note that this condition also applies to the piezoelectric layer 20.
This allows the piezoelectric film 10 to have a large frequency dispersion in storage modulus (E') at room temperature. That is, it is hard against vibrations of 20 Hz to 20 kHz, and can behave soft against vibrations of several Hz or less.
 また、圧電フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×105~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。なお、この条件に関しては、圧電体層20も同様である。
 これにより、圧電フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
Furthermore, the piezoelectric film 10 has a product of thickness and storage modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 1.0×10 5 to 2.0×10 6 N/m at 0°C. , 1.0×10 5 to 1.0×10 6 N/m at 50°C. Note that this condition also applies to the piezoelectric layer 20.
Thereby, the piezoelectric film 10 can have appropriate rigidity and mechanical strength without impairing its flexibility and acoustic properties.
 さらに、圧電フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。この条件に関しては、圧電体層20も同様である。
 これにより、圧電フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
Furthermore, the piezoelectric film 10 preferably has a loss tangent (Tan δ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. Regarding this condition, the piezoelectric layer 20 is also the same.
As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the amount of change in sound quality when the lowest resonance frequency f 0 changes due to a change in the curvature of the speaker can also be reduced.
 なお、本発明において、圧電フィルム10および圧電体層20等の貯蔵弾性率(ヤング率)および損失正接は、公知の方法で測定すればよい。一例として、エスアイアイ・ナノテクノロジー社製(SIIナノテクノロジー社製)の動的粘弾性測定装置DMS6100を用いて測定すればよい。
 測定条件としては、一例として、測定周波数は0.1Hz~20Hz(0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hz)が、測定温度は-50~150℃が、昇温速度は2℃/分(窒素雰囲気中)が、サンプルサイズは40mm×10mm(クランプ領域込み)が、チャック間距離は20mmが、それぞれ、例示される。
In the present invention, the storage modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 20, etc. may be measured by a known method. As an example, the measurement may be performed using a dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology.
As an example of the measurement conditions, the measurement frequency is 0.1Hz to 20Hz (0.1Hz, 0.2Hz, 0.5Hz, 1Hz, 2Hz, 5Hz, 10Hz and 20Hz), and the measurement temperature is -50 to 150℃. Examples include a temperature increase rate of 2° C./min (in a nitrogen atmosphere), a sample size of 40 mm×10 mm (including the clamp area), and a distance between chucks of 20 mm.
 圧電素子50において、各圧電フィルム10の第1電極層24および第2電極層26には、圧電フィルム10を伸縮させる駆動電圧を印加すなわち駆動電力を供給する、電源が接続される。
 電源には、制限はなく、直流電源でも交流電源でもよい。また、駆動電圧も、圧電フィルム10の圧電体層20の厚さおよび形成材料等に応じて、圧電フィルム10を適正に駆動できる駆動電圧を、適宜、設定すればよい。
In the piezoelectric element 50, a power source is connected to the first electrode layer 24 and the second electrode layer 26 of each piezoelectric film 10, which applies a driving voltage to expand and contract the piezoelectric film 10, that is, supplies driving power.
The power source is not limited and may be either a direct current power source or an alternating current power source. Furthermore, the drive voltage may be appropriately set to a drive voltage that can appropriately drive the piezoelectric film 10, depending on the thickness and forming material of the piezoelectric layer 20 of the piezoelectric film 10.
 第1電極層24および第2電極層26から電極の引き出し方法には、制限はなく、公知の各種の方法が利用可能である。
 一例として、第1電極層24および第2電極層26に銅箔等の導電体を接続して外部に電極を引き出す方法、および、レーザ等によって第1保護層28および第2保護層30に貫通孔を形成して、この貫通孔に導電性材料を充填して外部に電極を引き出す方法、等が例示される。
 好適な電極の引き出し方法として、特開2014-209724号公報に記載される方法、および、特開2016-015354号公報に記載される方法等が例示される。
There is no limit to the method of drawing out the electrodes from the first electrode layer 24 and the second electrode layer 26, and various known methods can be used.
As an example, a method of connecting a conductive material such as copper foil to the first electrode layer 24 and the second electrode layer 26 and drawing out the electrodes to the outside, and a method of penetrating the first protective layer 28 and the second protective layer 30 with a laser or the like are available. Examples include a method of forming a hole, filling the through hole with a conductive material, and drawing out an electrode to the outside.
Examples of suitable electrode extraction methods include the method described in JP-A No. 2014-209724 and the method described in JP-A No. 2016-015354.
 また、図1に示すように圧電素子が、圧電フィルムを折り返して積層した構成の場合には、最表層の圧電フィルムが、圧電フィルムを積層した積層部から面方向の外側に突出する突出部を有する構成とし、突出部に第1電極層24および第2電極層26と電源とを接続するための接続部が形成されることが好ましい。なお、突出部における電極層と配線との接続方法には、制限はなく、公知の各種の方法が利用可能である。 In addition, when the piezoelectric element has a configuration in which piezoelectric films are folded and laminated as shown in FIG. It is preferable that a connecting portion for connecting the first electrode layer 24 and the second electrode layer 26 to a power source be formed in the protruding portion. Note that there is no restriction on the method of connecting the electrode layer and the wiring in the protrusion, and various known methods can be used.
 ここで、上述したように、圧電体層20は、マトリックス34に圧電体粒子36を含むものである。また、圧電体層20を厚さ方向で挟むように、第1電極層24および第2電極層26が設けられる。
 このような圧電体層20を有する圧電フィルム10の第1電極層24および第2電極層26に電圧を印加すると、印加した電圧に応じて圧電体粒子36が分極方向に伸縮する。その結果、圧電フィルム10(圧電体層20)が厚さ方向に収縮する。同時に、ポアソン比の関係で、圧電フィルム10は、面内方向にも伸縮する。この伸縮は、0.01~0.1%程度である。
Here, as described above, the piezoelectric layer 20 includes piezoelectric particles 36 in the matrix 34. Further, a first electrode layer 24 and a second electrode layer 26 are provided so as to sandwich the piezoelectric layer 20 in the thickness direction.
When a voltage is applied to the first electrode layer 24 and the second electrode layer 26 of the piezoelectric film 10 having such a piezoelectric layer 20, the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage. As a result, the piezoelectric film 10 (piezoelectric layer 20) contracts in the thickness direction. At the same time, the piezoelectric film 10 also expands and contracts in the in-plane direction due to Poisson's ratio. This expansion/contraction is approximately 0.01 to 0.1%.
 上述したように、圧電体層20の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電フィルム10すなわち圧電体層20は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム10の長さが20cmであれば、電圧の印加によって、面方向に最大で0.2mm程度、圧電フィルム10は伸縮する。
As mentioned above, the thickness of the piezoelectric layer 20 is preferably about 10 to 300 μm. Therefore, the expansion and contraction in the thickness direction is very small, about 0.3 μm at most.
On the other hand, the piezoelectric film 10, that is, the piezoelectric layer 20, has a size much larger than its thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by a maximum of about 0.2 mm in the plane direction by applying a voltage.
 振動板102は、貼着層によって圧電フィルム10(圧電素子50)に貼着されている。従って、圧電フィルム10の伸縮によって、振動板102は撓み、その結果、振動板102は、厚さ方向に振動する。
 この厚さ方向の振動によって、振動板102は、音を発生する。すなわち、振動板102は、圧電フィルム10に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。
The diaphragm 102 is attached to the piezoelectric film 10 (piezoelectric element 50) with an adhesive layer. Therefore, the diaphragm 102 is bent by the expansion and contraction of the piezoelectric film 10, and as a result, the diaphragm 102 vibrates in the thickness direction.
Due to this vibration in the thickness direction, the diaphragm 102 generates sound. That is, the diaphragm 102 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10.
 また、振動板102のばね定数に応じて、圧電フィルム10(圧電素子50)の質量を調整することで、音圧レベルを向上させることができる。圧電素子50の質量が大きいと、振動板102が撓んでしまうため、駆動時の振動板102の振動を抑制する可能性がある。一方、圧電素子50の質量が小さいと、共振周波数が高くなり、低周波数における振動板102の振動を抑制する可能性がある。これらの点を考慮すると、圧電素子50の質量は、振動板102のばね定数に応じて、適切に調整することが好ましい。 Furthermore, the sound pressure level can be improved by adjusting the mass of the piezoelectric film 10 (piezoelectric element 50) according to the spring constant of the diaphragm 102. If the mass of the piezoelectric element 50 is large, the diaphragm 102 will bend, which may suppress the vibration of the diaphragm 102 during driving. On the other hand, when the mass of the piezoelectric element 50 is small, the resonance frequency becomes high, and vibration of the diaphragm 102 at low frequencies may be suppressed. Considering these points, it is preferable that the mass of the piezoelectric element 50 is appropriately adjusted according to the spring constant of the diaphragm 102.
 また、図2および図3に示すように、圧電素子50において、複数の圧電フィルム10を積層した構成の場合に、圧電フィルム10同士は貼着層19によって貼着される。
 圧電フィルム10同士を貼着する貼着層19は、隣接する圧電フィルム10を貼着可能であれば、公知のものが、各種、利用可能であり、上述した振動板102と圧電素子50とを貼着する貼着層104と同様の材料を用いることができる。
Further, as shown in FIGS. 2 and 3, when the piezoelectric element 50 has a structure in which a plurality of piezoelectric films 10 are laminated, the piezoelectric films 10 are adhered to each other by an adhesive layer 19.
As the adhesion layer 19 for adhering the piezoelectric films 10 to each other, various known ones can be used as long as they are capable of adhering adjacent piezoelectric films 10 to each other. The same material as the adhesive layer 104 to be adhered can be used.
 以下、図5~図7を参照して、圧電フィルム10の製造方法の一例を説明する。 Hereinafter, an example of a method for manufacturing the piezoelectric film 10 will be described with reference to FIGS. 5 to 7.
 まず、図5に示す、第1保護層28の表面に第1電極層24が形成されたシート状物11aを準備する。さらに、図7に概念的に示す、第2保護層30の表面に第2電極層26が形成されたシート状物11cを準備する。 First, a sheet-like material 11a shown in FIG. 5 in which the first electrode layer 24 is formed on the surface of the first protective layer 28 is prepared. Furthermore, a sheet-like material 11c, conceptually shown in FIG. 7, in which a second electrode layer 26 is formed on the surface of a second protective layer 30 is prepared.
 シート状物11aは、第1保護層28の表面に、真空蒸着、スパッタリング、めっき等によって第1電極層24として銅薄膜等を形成して、作製すればよい。同様に、シート状物11cは、第2保護層30の表面に、真空蒸着、スパッタリング、めっき等によって第2電極層26として銅薄膜等を形成して、作製すればよい。
 あるいは、保護層の上に銅薄膜等が形成された市販品をシート状物を、シート状物11aおよび/またはシート状物11cとして利用してもよい。
 シート状物11aおよびシート状物11cは、同じものでもよく、異なるものでもよい。
The sheet-like material 11a may be produced by forming a copper thin film or the like as the first electrode layer 24 on the surface of the first protective layer 28 by vacuum evaporation, sputtering, plating, or the like. Similarly, the sheet-like material 11c may be produced by forming a copper thin film or the like as the second electrode layer 26 on the surface of the second protective layer 30 by vacuum evaporation, sputtering, plating, or the like.
Alternatively, a commercially available sheet material in which a copper thin film or the like is formed on a protective layer may be used as the sheet material 11a and/or the sheet material 11c.
The sheet-like material 11a and the sheet-like material 11c may be the same or different.
 なお、保護層が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層を用いても良い。なお、セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、電極層および保護層の熱圧着後、取り除けばよい。 Note that if the protective layer is very thin and has poor handling properties, a protective layer with a separator (temporary support) may be used as necessary. Note that as the separator, PET or the like having a thickness of 25 to 100 μm can be used. The separator may be removed after thermocompression bonding of the electrode layer and the protective layer.
 次いで、図6に示すように、シート状物11aの第1電極層24上に、圧電体層20となる塗料(塗布組成物)を塗布した後、硬化して圧電体層20を形成する。これにより、シート状物11aと圧電体層20とを積層した積層体11bを作製する。 Next, as shown in FIG. 6, a paint (coating composition) that will become the piezoelectric layer 20 is applied onto the first electrode layer 24 of the sheet-like material 11a, and then cured to form the piezoelectric layer 20. As a result, a laminate 11b in which the sheet-like material 11a and the piezoelectric layer 20 are laminated is produced.
 圧電体層20の形成は、圧電体層20を形成する材料に応じて、各種の方法が利用可能である。
 一例として、まず、有機溶媒に、上述したシアノエチル化PVA等の高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子36を添加し、攪拌して塗料を調製する。
 有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)、および、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 シート状物11aを準備し、かつ、塗料を調製したら、この塗料をシート状物11aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図6に示すように、第1保護層28の上に第1電極層24を有し、第1電極層24の上に圧電体層20を積層してなる積層体11bを作製する。
Various methods can be used to form the piezoelectric layer 20 depending on the material used to form the piezoelectric layer 20.
As an example, first, a polymer material such as the above-mentioned cyanoethylated PVA is dissolved in an organic solvent, and then piezoelectric particles 36 such as PZT particles are added and stirred to prepare a paint.
There are no restrictions on the organic solvent, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone (MEK), and cyclohexanone can be used.
After the sheet-like material 11a is prepared and the paint is prepared, the paint is cast (coated) on the sheet-like material 11a, and the organic solvent is evaporated and dried. As a result, as shown in FIG. 6, a laminate 11b having the first electrode layer 24 on the first protective layer 28 and the piezoelectric layer 20 stacked on the first electrode layer 24 is produced. .
 塗料のキャスティング方法には制限はなく、バーコーター、スライドコーターおよびドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
 あるいは高分子材料が加熱溶融可能な物であれば、高分子材料を加熱溶融して、これに圧電体粒子36を添加してなる溶融物を作製し、押し出し成形等によって、図5に示すシート状物11aの上にシート状に押し出し、冷却することにより、図6に示すような、積層体11bを作製してもよい。
There are no restrictions on the coating method, and all known methods (coating devices) such as a bar coater, slide coater, and doctor knife can be used.
Alternatively, if the polymeric material can be heated and melted, the polymeric material is heated and melted, the piezoelectric particles 36 are added thereto to produce a melted material, and the sheet shown in FIG. 5 is formed by extrusion molding or the like. A laminate 11b as shown in FIG. 6 may be produced by extruding it into a sheet shape onto the shaped material 11a and cooling it.
 なお、上述のように、圧電体層20において、マトリックス34には、常温で粘弾性を有する高分子材料以外にも、PVDF(PolyVinylidene DiFluoride)等の高分子圧電材料を添加しても良い。
 マトリックス34に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、加熱溶融した常温で粘弾性を有する高分子材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
Note that, as described above, in the piezoelectric layer 20, the matrix 34 may contain a polymeric piezoelectric material such as PVDF (Polyvinylidene DiFluoride) in addition to the polymeric material that has viscoelasticity at room temperature.
When adding these polymer piezoelectric materials to the matrix 34, the polymer piezoelectric materials to be added to the paint may be dissolved. Alternatively, the polymeric piezoelectric material to be added may be added to a polymeric material that is heated and melted and has viscoelasticity at room temperature, and then heated and melted.
 圧電体層20を形成したら、必要に応じて、カレンダ処理を行ってもよい。カレンダ処理は、1回でもよく、複数回、行ってもよい。
 周知のように、カレンダ処理とは、加熱プレスや加熱ローラ等によって、被処理面を加熱しつつ押圧して、平坦化等を施す処理である。
Once the piezoelectric layer 20 is formed, calendaring may be performed if necessary. Calendar processing may be performed once or multiple times.
As is well known, calendering is a process in which a surface to be treated is heated and pressed using a heated press, a heated roller, etc. to flatten the surface.
 次いで、第1保護層28の上に第1電極層24を有し、第1電極層24の上に圧電体層20を形成してなる積層体11bの圧電体層20に、分極処理(ポーリング)を行う。圧電体層20の分極処理は、カレンダ処理の前に行ってもよいが、カレンダ処理を行った後に行うのが好ましい。
 圧電体層20の分極処理の方法には制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第2電極層26を形成して、第1電極層24および第2電極層26を利用して、電界ポーリング処理を行ってもよい。
 また、本発明の圧電フィルム10においては、分極処理は、圧電体層20の面方向ではなく、厚さ方向に分極を行うのが好ましい。
Next, the piezoelectric layer 20 of the laminate 11b having the first electrode layer 24 on the first protective layer 28 and the piezoelectric layer 20 formed on the first electrode layer 24 is subjected to polarization treatment (poling). )I do. Although the polarization treatment of the piezoelectric layer 20 may be performed before the calender treatment, it is preferably performed after the calender treatment.
There are no restrictions on the method for polarizing the piezoelectric layer 20, and any known method can be used. For example, electric field poling is exemplified, in which a DC electric field is directly applied to an object to be polarized. Note that when performing electric field poling, the second electrode layer 26 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 24 and the second electrode layer 26. .
Furthermore, in the piezoelectric film 10 of the present invention, it is preferable that the polarization treatment is performed not in the plane direction of the piezoelectric layer 20 but in the thickness direction.
 次いで、図7に示すように、分極処理を行った積層体11bの圧電体層20側に、先に準備したシート状物11cを、第2電極層26を圧電体層20に向けて積層する。
 さらに、この積層体を、第1保護層28および第2保護層30を挟持するようにして、加熱プレス装置および加熱ローラ等を用いて熱圧着して、積層体11bとシート状物11cとを貼り合わせ、図4に示すような、圧電フィルム10を作製する。
 あるいは、積層体11bとシート状物11cとを、接着剤を用いて貼り合わせて、好ましくは、さらに圧着して、圧電フィルム10を作製してもよい。この際の接着剤としては、圧電体層20のマトリックスと同様の材料を用いることができる。
Next, as shown in FIG. 7, the previously prepared sheet material 11c is laminated on the piezoelectric layer 20 side of the polarized stack 11b with the second electrode layer 26 facing the piezoelectric layer 20. .
Further, this laminate is thermocompressed using a hot press device, a heated roller, etc., with the first protective layer 28 and the second protective layer 30 sandwiched therebetween, thereby bonding the laminate 11b and the sheet-like material 11c. The piezoelectric film 10 as shown in FIG. 4 is produced by bonding them together.
Alternatively, the piezoelectric film 10 may be produced by bonding the laminate 11b and the sheet-like material 11c together using an adhesive, and preferably further press-bonding them. As the adhesive at this time, the same material as the matrix of the piezoelectric layer 20 can be used.
 なお、この圧電フィルム10は、カットシート状のシート状物11aおよびシート状物11c等を用いて製造してもよく、あるいは、ロール・トゥ・ロール(Roll to Roll)を利用して製造してもよい。 Note that this piezoelectric film 10 may be manufactured using a cut sheet-like sheet material 11a, a sheet-like material 11c, etc., or may be manufactured using a roll-to-roll method. Good too.
 作製された圧電フィルムは、各種用途に合わせて、所望の形状に裁断されてもよい。
 このようにして作製される圧電フィルム10は、面方向ではなく厚さ方向に分極されており、かつ、分極処理後に延伸処理をしなくても大きな圧電特性が得られる。そのため、圧電フィルム10は、圧電特性に面内異方性がなく、駆動電圧を印加すると、面方向では全方向に等方的に伸縮する。
The produced piezoelectric film may be cut into desired shapes according to various uses.
The piezoelectric film 10 produced in this manner is polarized not in the plane direction but in the thickness direction, and has great piezoelectric properties even without stretching after polarization. Therefore, the piezoelectric film 10 has no in-plane anisotropy in its piezoelectric properties, and when a driving voltage is applied, it expands and contracts isotropically in all directions in the plane.
 以上、本発明の電気音響変換器について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the electroacoustic transducer of the present invention has been described in detail above, the present invention is not limited to the above-mentioned examples, and various improvements and changes may be made without departing from the gist of the present invention. , of course.
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に限定されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be explained in more detail by giving specific examples of the present invention. It should be noted that the present invention is not limited to this example, and the materials, usage amounts, ratios, processing contents, processing procedures, etc. shown in the following examples may be changed as appropriate without departing from the spirit of the present invention. can.
[実施例1]
 [圧電フィルムの作製]
 上述した図5~図7に示す方法によって、図4に示すような圧電フィルムを作製した。
 まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、圧電体粒子としてPZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で攪拌して、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
 なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
[Example 1]
[Preparation of piezoelectric film]
A piezoelectric film as shown in FIG. 4 was produced by the method shown in FIGS. 5 to 7 described above.
First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the composition ratio shown below. Thereafter, PZT particles as piezoelectric particles were added to this solution in the composition ratio shown below, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
・PZT particles・・・・・・・・・300 parts by mass ・Cyanoethylated PVA・・・・・・30 parts by mass ・DMF・・・・・・・・・70 parts by mass The PZT particles used were obtained by sintering commercially available PZT raw material powder at 1000 to 1200° C., and then crushing and classifying it to an average particle size of 5 μm.
 一方、厚さ4μmのPETフィルムに、厚さ0.3μmの銅薄膜を真空蒸着してなるシート状物を用意した。すなわち、本例においては、第1電極層および第2電極層は、厚さ0.3μmの銅蒸着薄膜であり、第1保護層および第2保護層は、厚さ4μmのPETフィルムとなる。
 シート状物の第1電極層(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が50μmになるように、塗布した。
 次いで、シート状物に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の第1保護層の上に銅製の第1電極層を有し、その上に、厚さが50μmの圧電体層(高分子複合圧電体層)を有する積層体を作製した。
On the other hand, a sheet-like product was prepared by vacuum-depositing a 0.3 μm thick copper thin film onto a 4 μm thick PET film. That is, in this example, the first electrode layer and the second electrode layer are copper vapor deposited thin films with a thickness of 0.3 μm, and the first protective layer and the second protective layer are PET films with a thickness of 4 μm.
The previously prepared paint for forming the piezoelectric layer was applied onto the first electrode layer (copper deposited thin film) of the sheet using a slide coater. The coating material was applied so that the thickness of the coating film after drying was 50 μm.
Next, the sheet material coated with the paint was heated and dried on a hot plate at 120° C. to evaporate the DMF. As a result, a laminate was produced that had a first electrode layer made of copper on a first protective layer made of PET, and a piezoelectric layer (polymer composite piezoelectric layer) with a thickness of 50 μm thereon. .
 作製した圧電体層を、厚さ方向に分極処理した。 The produced piezoelectric layer was polarized in the thickness direction.
 分極処理を行った圧電積層体の上に、第2電極層(銅薄膜側)を圧電体層に向けて、PETフィルムに同薄膜を蒸着したシート状物を積層した。
 次いで、圧電積層体とシート状物との積層体を、ラミネータ装置を用いて、温度120℃で熱圧着することで、圧電体層と第2電極層とを貼着して接着して、図4に示すような圧電フィルムを作製した。
On top of the polarized piezoelectric laminate, a sheet-like material in which the same thin film was deposited on a PET film was laminated with the second electrode layer (copper thin film side) facing the piezoelectric layer.
Next, the laminate of the piezoelectric laminate and the sheet-like material is thermocompression bonded at a temperature of 120° C. using a laminator to adhere and bond the piezoelectric layer and the second electrode layer. A piezoelectric film as shown in 4 was produced.
<圧電素子の作製>
 圧電フィルムを、平面形状が170mm×150mmの長方形に切り出した。切り出した圧電フィルムを長手方向(170mmの辺の方向)に4回折り返して5層の圧電フィルムを積層した圧電素子を作製した。積層部の平面形状は30mm×150mmである。積層する圧電フィルム間は貼着層(アクリル系粘着剤)で貼着した。積層部から突出した領域に電極引き出し部を形成した。
<Production of piezoelectric element>
The piezoelectric film was cut into a rectangle with a planar shape of 170 mm x 150 mm. The cut piezoelectric film was folded back four times in the longitudinal direction (in the direction of the 170 mm side) to produce a piezoelectric element in which five layers of piezoelectric films were laminated. The planar shape of the laminated portion is 30 mm x 150 mm. The piezoelectric films to be laminated were attached with an adhesive layer (acrylic adhesive). An electrode extension portion was formed in a region protruding from the laminated portion.
<電気音響変換器の作製>
 作製した圧電素子を振動板に貼着した。振動板としては、厚さ0.3mm、幅400mm×長さ500mmのPET板を用いた。振動板の長さ方向と圧電素子の長手方向を一致させて、振動板の中央に圧電素子の積層部中心を合わせて貼着した。圧電素子と振動板とは、粘着シート:NCF-D692(リンテック株式会社製、厚み50μm)を用いて貼着した。
<Production of electroacoustic transducer>
The produced piezoelectric element was attached to a diaphragm. As the diaphragm, a PET board with a thickness of 0.3 mm, a width of 400 mm and a length of 500 mm was used. The longitudinal direction of the diaphragm was aligned with the longitudinal direction of the piezoelectric element, and the piezoelectric element was attached so that the center of the laminated portion of the piezoelectric element was aligned with the center of the diaphragm. The piezoelectric element and the diaphragm were attached using an adhesive sheet: NCF-D692 (manufactured by Lintec Corporation, thickness 50 μm).
 振動板のヤング率E1を、エスアイアイ・ナノテクノロジー社製(SIIナノテクノロジー社製)の動的粘弾性測定装置DMS6100を用いて、上述の方法で測定したところ、2.1GPaであった。振動板のヤング率E1、幅b=450mm、長さL=500mm、厚みh1=0.3mmから、振動板102のたわみのバネ定数K1を算出した。たわみのバネ定数K1は、0.0007N/mmであった。 The Young's modulus E 1 of the diaphragm was measured using the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) using the method described above, and found to be 2.1 GPa. The spring constant K 1 of the deflection of the diaphragm 102 was calculated from the Young's modulus E 1 of the diaphragm, width b = 450 mm, length L = 500 mm, and thickness h 1 = 0.3 mm. The spring constant of deflection K 1 was 0.0007 N/mm.
 また、貼着層のヤング率E2を、圧電素子と振動板を剥がしたのち、貼着層を剥がして、DMAにて上述の方法で測定したところ、1.0E+05Paであった。また、貼着層の厚みh2を上述の方法で測定したところ、50μmであった。 Further, the Young's modulus E 2 of the adhesive layer was measured by DMA using the above-mentioned method after peeling off the piezoelectric element and the diaphragm, and found to be 1.0E+05 Pa. Further, the thickness h 2 of the adhesive layer was measured by the method described above and was found to be 50 μm.
 振動板のたわみのバネ定数K1(N/mm)を50倍した値と、貼着層のヤング率E2(N/mm2)および厚みh2(mm)を乗算した値(バネ定数K2)との差分Dは、0.03であった。 The value ( spring constant K The difference D from 2 ) was 0.03.
 [実施例2~8、比較例1~12]
 振動板の材質(ヤング率E1)、厚みh1、貼着層の種類(ヤング率E2)、厚みh2を表1に示すように変更した以外は、実施例1と同様にして電気音響変換器を作製した。
 なお、表1中、貼着層の種類の欄の、D692は、リンテック株式会社製の粘着シートNCF-D692を表し、UH203は、日本マタイ株式会社製のフィルム状ホットメルト接着剤:エルファンUH203(厚み50μm)を表し、NT120は、日本マタイ株式会社製のフィルム状ホットメルト接着剤:エルファンNT120(厚み50μm)を表し、リオエルムは、トーヨーケム社製のリオエルムTSU41SI-25DL(厚み25μm)を表し、No5603は、日東電工社製の両面テープNo.5603を表す。
[Examples 2 to 8, Comparative Examples 1 to 12]
Electrical conduction was carried out in the same manner as in Example 1, except that the material of the diaphragm (Young's modulus E 1 ), the thickness h 1 , the type of adhesive layer (Young's modulus E 2 ), and the thickness h 2 were changed as shown in Table 1. We created an acoustic transducer.
In Table 1, in the adhesive layer type column, D692 represents the adhesive sheet NCF-D692 manufactured by Lintec Co., Ltd., and UH203 represents the film-like hot melt adhesive: Elfan UH203 manufactured by Nippon Matai Co., Ltd. (thickness: 50 μm), NT120 represents Elfan NT120 (thickness: 50 μm), a film-like hot melt adhesive manufactured by Nippon Matai Co., Ltd., and Lio Elm represents Lio Elm TSU41SI-25DL (thickness: 25 μm) manufactured by Toyochem Co., Ltd. , No. 5603 is double-sided tape No. manufactured by Nitto Denko Corporation. 5603.
[評価]
 作製した各実施例および比較例の電気音響変換器について、音圧を評価した。
[evaluation]
The sound pressure of the produced electroacoustic transducers of each Example and Comparative Example was evaluated.
<音圧>
 振動板の長手方向の一端を支持し、圧電素子に対し、周波数100Hz~5kHz、印加電圧50Vrmsのサインスイープ信号を入力し、振動板の中心から1m離れた距離に置かれたマイクロフォンで音圧を測定した。周波数100Hz~5kHzの範囲の音圧の平均値を算出し、比較例2の平均音圧を基準として、比較例2の平均音圧に対する差を評価した。音圧の平均値は、周波数100Hz~5kHzの範囲において、極大値を抽出し、その平均値とした。
 結果を表1に示す。また、図8に、実施例1~8および比較例1~11の差分Dと平均音圧の差とをプロットしたグラフを示す。図8中、黒丸が実施例であり、黒三角が比較例である。
<Sound pressure>
One longitudinal end of the diaphragm was supported, a sine sweep signal with a frequency of 100 Hz to 5 kHz and an applied voltage of 50 Vrms was input to the piezoelectric element, and the sound pressure was measured with a microphone placed 1 m away from the center of the diaphragm. It was measured. The average value of the sound pressure in the frequency range of 100 Hz to 5 kHz was calculated, and the difference with respect to the average sound pressure of Comparative Example 2 was evaluated using the average sound pressure of Comparative Example 2 as a reference. For the average value of the sound pressure, the maximum value was extracted in the frequency range of 100 Hz to 5 kHz, and the average value was taken as the average value.
The results are shown in Table 1. Further, FIG. 8 shows a graph in which the difference D and the difference in average sound pressure of Examples 1 to 8 and Comparative Examples 1 to 11 are plotted. In FIG. 8, black circles are examples, and black triangles are comparative examples.
 表1および図8から、本発明の実施例は比較例に比べて音圧が高いことがわかる。また、図8から、差分Dが小さいほど平均音圧が高くなることがわかる。また、振動板のたわみのバネ定数K1の大きさに関わらず、貼着層のバネ定数K2を適切に選択して、差分Dを小さくすることで、音圧を高くすることができることがわかる。
 以上から本発明の効果は明らかである。
From Table 1 and FIG. 8, it can be seen that the sound pressure of the example of the present invention is higher than that of the comparative example. Furthermore, from FIG. 8, it can be seen that the smaller the difference D, the higher the average sound pressure. Furthermore, regardless of the magnitude of the spring constant K 1 of the deflection of the diaphragm, it is possible to increase the sound pressure by appropriately selecting the spring constant K 2 of the adhesive layer and reducing the difference D. Recognize.
From the above, the effects of the present invention are clear.
 10 圧電フィルム
 11a、11c シート状物
 11b 積層体
 19、104 貼着層
 20 圧電体層
 24 第1電極層
 26 第2電極層
 28 第1保護層
 30 第2保護層
 34 マトリックス
 36 圧電体粒子
 50 圧電素子
 58 芯棒
 100 電気音響変換器
 102 振動板
 
10 piezoelectric film 11a, 11c sheet-like material 11b laminate 19, 104 adhesive layer 20 piezoelectric layer 24 first electrode layer 26 second electrode layer 28 first protective layer 30 second protective layer 34 matrix 36 piezoelectric particles 50 piezoelectric Element 58 Core rod 100 Electroacoustic transducer 102 Diaphragm

Claims (4)

  1.  可撓性を有する振動板と、前記振動板に貼着層を介して貼り付けられた、可撓性を有する圧電素子と、を有する電気音響変換器であって、
     前記振動板のたわみのバネ定数をK1(N/mm)とし、前記貼着層のヤング率をE2(N/mm2)、厚みをh2(mm)とした際に、|50×K1-E2×h2|≦2.5を満たす、電気音響変換器。
    An electroacoustic transducer comprising a flexible diaphragm and a flexible piezoelectric element attached to the diaphragm via an adhesive layer,
    When the spring constant of the deflection of the diaphragm is K 1 (N/mm), the Young's modulus of the adhesive layer is E 2 (N/mm 2 ), and the thickness is h 2 (mm), |50× An electroacoustic transducer that satisfies K 1 −E 2 ×h 2 |≦2.5.
  2.  前記振動板のたわみのバネ定数K1は、0.1N/mより低い、請求項1に記載の電気音響変換器。 The electroacoustic transducer according to claim 1 , wherein the spring constant K1 of the deflection of the diaphragm is lower than 0.1 N/m.
  3.  前記圧電素子は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる圧電体層と、前記圧電体層の両面に設けられる電極層と、を有する圧電フィルムを含む、請求項1または2に記載の電気音響変換器。 The piezoelectric element includes a piezoelectric film having a piezoelectric layer made of a polymer composite piezoelectric material containing piezoelectric particles in a matrix containing a polymer material, and electrode layers provided on both sides of the piezoelectric layer. The electroacoustic transducer according to claim 1 or 2.
  4.  前記圧電素子は、前記圧電フィルムを複数層、積層してなる、請求項3に記載の電気音響変換器。
     
    The electroacoustic transducer according to claim 3, wherein the piezoelectric element is formed by laminating a plurality of layers of the piezoelectric film.
PCT/JP2023/004729 2022-03-24 2023-02-13 Electroacoustic transducer WO2023181699A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048243 2022-03-24
JP2022048243 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023181699A1 true WO2023181699A1 (en) 2023-09-28

Family

ID=88101143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004729 WO2023181699A1 (en) 2022-03-24 2023-02-13 Electroacoustic transducer

Country Status (1)

Country Link
WO (1) WO2023181699A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187086A1 (en) * 2020-03-19 2021-09-23 富士フイルム株式会社 Layered piezoelectric element and electroacoustic transducer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021187086A1 (en) * 2020-03-19 2021-09-23 富士フイルム株式会社 Layered piezoelectric element and electroacoustic transducer

Similar Documents

Publication Publication Date Title
KR102599704B1 (en) Piezoelectric films, laminated piezoelectric elements and electroacoustic transducers
JP7265625B2 (en) Electroacoustic conversion film and electroacoustic transducer
KR102633884B1 (en) electroacoustic transducer
TW202143515A (en) Piezoelectric element and piezoelectric speaker
KR102600731B1 (en) Piezoelectric films, laminated piezoelectric elements and electroacoustic transducers
JP7457807B2 (en) Piezoelectric element
WO2023047958A1 (en) Multilayer piezoelectric element and electroacoustic transducer
JP7331143B2 (en) Polymer composite piezoelectric film
WO2023181699A1 (en) Electroacoustic transducer
WO2023188966A1 (en) Piezoelectric film, piezoelectric element, and electroacoustic transducer
WO2023166892A1 (en) Electroacoustic transducer
WO2023188929A1 (en) Piezoelectric film, piezoelectric element, and electroacoustic transducer
WO2023053750A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023053751A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023248696A1 (en) Piezoelectric film, piezoelectric element, electroacoustic transducer, and method for manufacturing piezoelectric film
WO2022196202A1 (en) Piezoelectric element
WO2023153126A1 (en) Piezoelectric element and electroacoustic transducer
WO2024062863A1 (en) Piezoelectric film
WO2023286544A1 (en) Piezoelectric film
WO2023053758A1 (en) Piezoelectric film and laminated piezoelectric element
WO2023157532A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023048022A1 (en) Piezoelectric element and piezoelectric speaker
JP7394873B2 (en) piezoelectric film
WO2023042542A1 (en) Piezoelectric element and electroacoustic transducer
WO2023054019A1 (en) Piezoelectric film and laminated piezoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774298

Country of ref document: EP

Kind code of ref document: A1