WO2023042542A1 - Piezoelectric element and electroacoustic transducer - Google Patents

Piezoelectric element and electroacoustic transducer Download PDF

Info

Publication number
WO2023042542A1
WO2023042542A1 PCT/JP2022/028181 JP2022028181W WO2023042542A1 WO 2023042542 A1 WO2023042542 A1 WO 2023042542A1 JP 2022028181 W JP2022028181 W JP 2022028181W WO 2023042542 A1 WO2023042542 A1 WO 2023042542A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
layer
piezoelectric element
film
piezoelectric film
Prior art date
Application number
PCT/JP2022/028181
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 香川
栄貴 小沢
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023042542A1 publication Critical patent/WO2023042542A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers

Definitions

  • the present invention relates to piezoelectric elements and electroacoustic transducers.
  • Piezoelectric elements are used for various purposes as so-called exciters, which vibrate and produce sound by attaching them to various items. For example, by attaching an exciter to an image display panel, a screen, or the like and vibrating them, sound can be produced instead of a speaker.
  • a piezoelectric element As a piezoelectric element, it has been proposed to use a piezoelectric film in which a piezoelectric layer is sandwiched between electrode layers and protective layers. It is also proposed to laminate a plurality of piezoelectric films and use them as a piezoelectric element. For example, in Patent Document 1, a plurality of piezoelectric films in which a piezoelectric layer is sandwiched between two thin film electrodes are laminated, and the piezoelectric films are polarized in the thickness direction and are adjacent to each other. Laminated piezoelectric elements are described in which the polarization directions of the piezoelectric films are opposite.
  • a piezoelectric film in which a piezoelectric layer is sandwiched between electrode layers and protective layers generates heat when driven at high voltage and/or high current, and in the worst case, it may not be possible to continuously drive it.
  • As means for suppressing heat generation it is conceivable to reduce the size of the piezoelectric film, lower the drive voltage, or reduce the number of layers in the case of a structure in which piezoelectric films are laminated to reduce the capacitance. , the sound pressure (output) decreases at the same time.
  • An object of the present invention is to solve the problems of the prior art.
  • a piezoelectric element having a piezoelectric film generates heat without lowering its output even when driven at high voltage and/or high current.
  • An object of the present invention is to provide a piezoelectric element and an electroacoustic transducer that can be suppressed.
  • a piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers; a heat conductive member attached to at least one protective layer side via an adhesive layer, The thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is 0.3 W/mK or more,
  • the adhesive layer is a piezoelectric element containing a resin having a glass transition temperature of 0° C. or less.
  • One layer of the laminated piezoelectric films has an overhanging portion that overhangs the other piezoelectric films in the plane direction, The piezoelectric element according to [6], wherein the heat-conducting member is attached to the projecting portion.
  • the piezoelectric layer is a polymeric composite piezoelectric body containing piezoelectric particles in a matrix containing a polymeric material.
  • An electroacoustic transducer comprising the piezoelectric element according to any one of [1] to [8] attached to a diaphragm.
  • a heat-conducting member is provided on a part of the surface of the piezoelectric element that is attached to the diaphragm,
  • the electroacoustic transducer according to [9] or [10] which has an adhesive layer for attaching the piezoelectric element and the diaphragm in a region other than the surface to which the heat conducting member is attached.
  • a piezoelectric element having a piezoelectric film and an electroacoustic transducer capable of suppressing heat generation without reducing output even when driven at high voltage and/or high current.
  • FIG. 1 is a diagram schematically showing an electroacoustic transducer of the present invention having an example of a piezoelectric element of the present invention
  • FIG. FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention
  • FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention
  • FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention
  • FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention
  • FIG. 4 is a diagram schematically showing another example of the piezoelectric film included in the piezoelectric element of the present invention
  • 1 is a cross-sectional view conceptually showing an example of a piezoelectric film included in a piezoelectric element of the present invention
  • FIG. It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film.
  • 1 is a side view conceptually showing a cutting device used in Examples.
  • a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
  • the piezoelectric element of the present invention is A piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers; a heat conductive member attached to at least one protective layer side via an adhesive layer, The thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is 0.3 W/mK or more,
  • the adhesive layer is a piezoelectric element containing a resin having a glass transition temperature of 0° C. or lower.
  • the electroacoustic transducer of the present invention is It is an electroacoustic transducer in which the piezoelectric element is attached to a diaphragm.
  • FIG. 1 shows a diagram schematically showing the electroacoustic transducer of the present invention having an example of the piezoelectric element of the present invention.
  • An electroacoustic transducer 100a shown in FIG. 1 has a piezoelectric element 50a, a diaphragm 102, and an adhesive layer 104 for bonding the piezoelectric element 50a to the diaphragm 102.
  • the piezoelectric element 50 a has three piezoelectric films 10 , a thermally conductive member 52 , and an adhesive layer 54 for adhering the thermally conductive member 52 and the piezoelectric film 10 .
  • the piezoelectric element 50a is formed by stacking three piezoelectric films 10, and a thermally conductive member 52 is adhered to one outermost surface side via an adhesive layer 54.
  • a vibrating plate 102 is attached via an adhesive layer 104 to the outermost surface of the piezoelectric element 50a on the side opposite to the heat conducting member 52 .
  • the heat conducting member 52 has a larger size in the surface direction than the piezoelectric film 10, covers the piezoelectric film 10, and contacts the diaphragm 102 at its end.
  • the piezoelectric film 10 has a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers. Therefore, the heat conducting member 52 and the diaphragm 102 are attached to the protective layer of the piezoelectric film 10 respectively.
  • the piezoelectric film 10 will be detailed later. Although illustration is omitted, adjacent piezoelectric films 10 are attached to each other by an adhesive layer. A power supply for applying a driving voltage is connected to each piezoelectric film 10 .
  • the piezoelectric element 50a shown in FIG. 1 is obtained by laminating three layers of the piezoelectric film 10, the present invention is not limited to this. That is, the piezoelectric element may have one layer (one sheet) of the piezoelectric film 10, or may have a plurality of laminated layers. When a plurality of piezoelectric films 10 are laminated, the number of laminated piezoelectric films 10 may be two, or four or more. In this regard, the same applies to the piezoelectric elements shown in FIGS. 2 to 4, which will be described later.
  • the polarization directions of adjacent piezoelectric films 10 are opposite to each other. Therefore, in adjacent piezoelectric films 10, the first electrode layers 14 face each other and the second electrode layers 16 face each other. Therefore, the power supply, whether it is an AC power supply or a DC power supply, always supplies power of the same polarity to the facing electrodes. Therefore, in the piezoelectric element 50a, even if the electrodes of the piezoelectric films 10 adjacent to each other come into contact with each other, there is no risk of short-circuiting.
  • the polarization direction of the piezoelectric film 10 can be detected with a d33 meter or the like.
  • the polarization direction of the piezoelectric film 10 may be known from the polarization processing conditions described later.
  • the thermal conductivity in the thickness direction of the laminate of the heat conducting member 52 and the adhesive layer 54 is 0.3 W/mK or more, and the adhesive layer 54 has a glass transition temperature of contains resins below 0°C.
  • the piezoelectric film sandwiching the piezoelectric layer between the electrode layer and the protective layer generates heat when driven at high voltage and/or high current. have a nature.
  • the heat conductive member 52 is laminated on the piezoelectric film 10, so that the heat generated by the piezoelectric film 10 is transferred to the heat conductive member 52 and radiated, so that the piezoelectric film It is possible to suppress the temperature of 10 from rising.
  • the piezoelectric film 10 and the heat-conducting member 52 need to be adhered with an adhesive layer or the like. Therefore, in the present invention, by setting the thermal conductivity in the thickness direction of the laminate of the heat-conducting member 52 and the adhesive layer 54 to 0.3 W/mK or more, the heat generated by the piezoelectric film 10 is transferred to the heat-conducting member 52 . heat can be transferred to and dissipated.
  • the piezoelectric film 10 is there is a risk that the vibration of the piezoelectric film 10 will be hindered due to restraint. That is, the output is lowered, and for example, the sound pressure when using the electroacoustic transducer as a speaker is lowered.
  • the adhesive layer 54 contains a resin having a glass transition temperature of 0° C. or less, so that the adhesive layer becomes flexible at the general operating temperature of the piezoelectric element 50a. , the vibration of the piezoelectric film 10 can be suppressed from being hindered by the heat conducting member 52 . As a result, it is possible to suppress a decrease in output such as sound pressure.
  • the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is preferably 0.5 W/mK or more.
  • a method for measuring the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is as follows.
  • Thermal conductivity (W/(mK)) can be determined as thermal diffusivity (m 2 /s) x specific heat (J/(gK)) x density (g/cm 3 ). Perform the following measurements using
  • the thermal diffusivity of the thermally conductive member removed from the piezoelectric element is measured.
  • ai-phase 1u manufactured by iPhase can be used.
  • the holding load is 50 g.
  • ⁇ Specific heat> A few mg of the heat-conducting member can be cut out and specific heat can be measured using DSC Q2000 manufactured by TA Instruments.
  • the measurement pan is aluminum, the standard sample is sapphire, and the heating rate is 1°C/min.
  • a pycnometer ULTRAPYC 1200e manufactured by Qauntachrome instruments can be used to measure the density of the heat conductive member.
  • the adhesive layer preferably contains a resin with a glass transition temperature of 0°C or lower, and more preferably contains a resin with a glass transition temperature of -20°C or lower.
  • the method for measuring the glass transition temperature of the resin contained in the adhesive layer is as follows. Using a DMA (dynamic viscoelasticity measuring device, such as Seiko Instruments DMS6100), the loss coefficient Tan ⁇ at each temperature is obtained at a measurement temperature range of -50 to 120 ° C and a measurement frequency of 2 Hz, and the temperature at which Tan ⁇ peaks. Define Tg. The measurement is repeated three times and the average is taken as the final Tg. A rotational rheometer or the like can also be used for the measurement.
  • DMA dynamic viscoelasticity measuring device, such as Seiko Instruments DMS6100
  • the heat conducting member 52 has a size larger than that of the piezoelectric film 10 in the surface direction, covers the piezoelectric film 10, and is in contact with the diaphragm 102 at its end. It has a configuration, but is not limited to this.
  • the heat-conducting member 52 may be laminated on the piezoelectric film 10 so that the size in the surface direction is equal to or smaller than the size of the piezoelectric film 10 . Since the heat conducting member 52 is in contact with the diaphragm 102 , the piezoelectric film 10 generates heat, and the heat transferred to the heat conducting member 52 can be transferred to the diaphragm 102 and radiated over a wider area. temperature rise can be more suitably suppressed.
  • the heat conducting member 52 and the diaphragm 102 are configured to be in direct contact with each other, but the present invention is not limited to this.
  • the adhesive layer for adhering the thermally conductive member 52 and the vibration plate 102 is not particularly limited, but it is preferable to use the same adhesive layer as the adhesive layer 54 for adhering the piezoelectric element 50a and the thermally conductive member 52 .
  • the piezoelectric element 50a is attached to the diaphragm 102 via the adhesive layer 104.
  • the present invention is not limited to this. It may be configured to be connected to the diaphragm 102 .
  • the heat conducting member 52 may be connected to a sheet-like object covering the piezoelectric element 50a.
  • the piezoelectric element 50a may be attached to the diaphragm 102 via the adhesive layer 104, and the piezoelectric element 50a may be covered with a sheet-like material.
  • the heat conducting member 52 is configured to be adhered to one of the outermost surfaces of the laminated piezoelectric films 10, but is not limited to this. From the viewpoint of heat dissipation, it is preferable that the ratio of the area to which the thermally conductive member 52 is adhered to the total area of the outermost surface of the piezoelectric film 10 is large. On the other hand, from the viewpoint of suppressing the vibration of the piezoelectric film 10 from being hindered by the heat conducting member 52, it is preferable that the ratio of the area to which the heat conducting member 52 is adhered to the total area of the outermost surface of the piezoelectric film 10 is small. .
  • the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are adhered is preferably 10% or more of the area of the outermost surface of the piezoelectric film, and is preferably 20% or more and 50% or less. is more preferable, and 30% or more and 40% or less is even more preferable. Since the piezoelectric film 10 is very thin, the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are attached to the total area of both main surfaces of the piezoelectric film 10 should be within the above range.
  • FIG. 2 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention.
  • An electroacoustic transducer 100b shown in FIG. 2 has a piezoelectric element 50b, a diaphragm 102, and an adhesive layer 104 for attaching the piezoelectric element 50b to the diaphragm 102.
  • the piezoelectric element 50b has three piezoelectric films 10, three thermally conductive members 52a to 52c, and an adhesive layer 54 for adhering the thermally conductive members 52a to 52c and the piezoelectric film 10 together.
  • the piezoelectric element 50b is formed by stacking three piezoelectric films 10, and is attached to the diaphragm 102 via an adhesive layer 104 on one outermost surface side. Heat conducting members 52a to 52c are adhered via an adhesive layer 54 to the outermost surface of the piezoelectric element 50b opposite to the vibration plate 102. As shown in FIG. Specifically, the example shown in FIG. 2 has three thermally conductive members 52a to 52c, and the three thermally conductive members 52a to 52c are spaced apart by a predetermined distance in the planar direction of the main surface of the piezoelectric film 10. are placed. Moreover, as a preferred embodiment, each of the heat conducting members 52a and 52c is in contact with the diaphragm 102 at its end.
  • the heat conducting member 52a is arranged so that one end is in contact with the diaphragm 102 and the other end is adhered to the end of the outermost surface of the piezoelectric element 50b on the side opposite to the diaphragm 102. It is One end of the heat conducting member 52c is the outermost surface of the piezoelectric element 50b on the side opposite to the vibration plate 102 and the end opposite to the end to which the heat conducting member 52a is adhered. , and the other end is in contact with the diaphragm 102 .
  • the thermally conductive member 52b is attached between the thermally conductive member 52a and the thermally conductive member 52c on the outermost surface of the piezoelectric element 50b on the side opposite to the vibration plate 102 .
  • the thermally conductive member is divided into a plurality of pieces and adhered to the piezoelectric film 10 .
  • the area where the thermally conductive members are adhered is increased to suppress temperature rise.
  • the vibration of the piezoelectric film 10 can be more suitably suppressed from being hindered by the heat-conducting member.
  • the configuration is such that the three heat conduction members are spaced apart, but the present invention is not limited to this.
  • a configuration in which two or more thermally conductive members are spaced apart from each other may also be used. The smaller the size of one thermally conductive member, the less likely it is that the vibration of the piezoelectric film will be disturbed.
  • the distance between the heat-conducting members is not particularly limited, but is preferably 0.1 mm to 5 mm, more preferably 0.5 mm to 2 mm.
  • the larger the ratio of the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are adhered to the area of the outermost surface of the piezoelectric film the higher the heat dissipation, and the smaller the ratio, the more inhibited the vibration. From these points of view, the distance between the heat-conducting members may be appropriately adjusted so that the area ratio of the portion where the heat-conducting member 52 and the piezoelectric film 10 are adhered is within a suitable range.
  • the adhesive layer 54 is divided according to the heat conducting members 52a to 52c. However, it is not limited to this, and the adhesive layer 54 may be a single layer that adheres a plurality of heat conducting members to the piezoelectric film 10 .
  • FIG. 3 shows a diagram schematically showing the electroacoustic transducer of the present invention having another example of the piezoelectric element of the present invention.
  • An electroacoustic transducer 100c shown in FIG. 3 has a piezoelectric element 50c, a diaphragm 102, and an adhesive layer 104 for attaching the piezoelectric element 50c to the diaphragm 102.
  • the piezoelectric element 50 c has three piezoelectric films 10 , a thermally conductive member 52 , and an adhesive layer 54 for adhering the thermally conductive member 52 and the piezoelectric film 10 .
  • the piezoelectric film 10 arranged at the farthest position from the vibration plate 102 has a larger planar dimension than the other piezoelectric films 10. It has a projecting portion 11 that is large and projects in the surface direction.
  • the heat-conducting member 52 is adhered to the surface of the projecting portion 11 facing the diaphragm 102 via an adhesive layer 54 . Also, the end of the heat conducting member 52 on the side opposite to the piezoelectric film 10 is in contact with the diaphragm 102 .
  • the thickness of the piezoelectric element can be reduced by providing a projecting portion on one piezoelectric film and adhering the thermally conductive member to the projecting portion. can be thinned.
  • the area of the projecting portion 11 when viewed from the direction perpendicular to the main surface of the piezoelectric film 10 is preferably 10% to 100%, more preferably 20% to 70%, of the area of the laminated portion of the piezoelectric film 10. preferable.
  • the piezoelectric element has a heat-conducting member on the side opposite to the side attached to the diaphragm, but the present invention is not limited to this.
  • a heat conductive member is provided on a part of the surface of the piezoelectric element to be adhered to the diaphragm, and an adhesive layer that adheres the piezoelectric element and the diaphragm to a region other than the surface to which the heat conductive member is adhered. It is good also as a structure which has.
  • FIG. 4 shows a diagram schematically showing the electroacoustic transducer of the present invention having another example of the piezoelectric element of the present invention.
  • An electroacoustic transducer 100d shown in FIG. 4 has a piezoelectric element 50d, a diaphragm 102, and an adhesive layer 104 for bonding the piezoelectric element 50c to the diaphragm 102.
  • the piezoelectric element 50d has three piezoelectric films 10, a heat conducting member 52d, and an adhesive layer 54d for adhering the heat conducting member 52d and the piezoelectric film 10 together.
  • the heat-conducting member 52d is attached to the end of the surface (attachment surface) of the laminated piezoelectric film 10 on the diaphragm 102 side via the adhesive layer 54d.
  • the heat-conducting member 52d is a frame-shaped member whose outer circumference has substantially the same size and shape as the piezoelectric film 10 .
  • the adhesive layer 54d is also formed in a frame shape corresponding to the heat conducting member 52d.
  • the surface of the heat conducting member 52 d opposite to the piezoelectric film 10 is in contact with the diaphragm 102 .
  • a bonding layer 104 for bonding the piezoelectric element 50d and the vibration plate 102 is filled in the space surrounded by the frame-shaped heat-conducting member 52d. That is, the heat conducting member 52d and the adhesive layer 104 are arranged at substantially the same position in the thickness direction.
  • the heat conducting member 52d is provided at the end of the adhered surface of the piezoelectric element 50d to the diaphragm 102, and the piezoelectric element 50d and the diaphragm 102 are adhered inside the heat conducting member 52d.
  • the adhesive layer 104 By forming the adhesive layer 104, the heat conducting member 52d and the adhesive layer 104 are arranged at substantially the same position in the thickness direction, so the thickness of the electroacoustic transducer 100d can be reduced.
  • the area of the heat conducting member 52d when viewed from the direction perpendicular to the main surface of the piezoelectric film 10 is preferably 20% to 50%, more preferably 30% to 40%, of the area of the piezoelectric film 10. preferable.
  • the heat-conducting member 52d is a frame-shaped member, and is arranged over the entire edge (peripheral portion) of the adhered surface of the piezoelectric film 10.
  • the present invention is limited to this. It is sufficient that the heat-conducting member is disposed on a portion of the adhered surface of the piezoelectric film 10 .
  • the piezoelectric element has a configuration in which a plurality of piezoelectric films are laminated.
  • the piezoelectric film may be laminated in multiple layers.
  • the configuration in which the long piezoelectric film 10L is folded and laminated has the following advantages. That is, when a plurality of cut sheet-shaped piezoelectric films 10 are laminated, the first electrode layer 14 and the second electrode layer 16 must be connected to the drive power source for each piezoelectric film.
  • the laminated body can be configured with only one long piezoelectric film 10L.
  • only one power source is required for applying the drive voltage, and the electrodes from the piezoelectric film 10L need only be drawn out at one point.
  • the polarization directions of adjacent piezoelectric films are inevitably opposite to each other.
  • the piezoelectric elements 50a to 50d are collectively referred to as the piezoelectric element 50 when there is no need to distinguish them.
  • electroacoustic transducers 100a-100d are also referred to as electroacoustic transducer 100.
  • FIG. the heat conducting members 52, 52a to 52d are collectively referred to as the heat conducting member 52.
  • FIG. 6 shows an enlarged view of a part of the piezoelectric film 10.
  • Piezoelectric film 10 shown in FIG. A second protective layer 20 laminated on the surface opposite to the body layer 12, a first electrode layer 14 laminated on the other surface of the piezoelectric layer 12, and the first electrode layer 14 opposite to the piezoelectric layer 12. and a first protective layer 18 laminated on the side surface. That is, the piezoelectric film 10 has a configuration in which the piezoelectric layer 12 is sandwiched between electrode layers, and a protective layer is laminated on the surface of the electrode layer that is not in contact with the piezoelectric layer.
  • the piezoelectric layer 12 is preferably a polymeric composite piezoelectric body containing piezoelectric particles 26 in a matrix 24 containing a polymeric material, as conceptually shown in FIG.
  • the material of the polymer composite piezoelectric matrix 24 (matrix and binder) that constitutes the piezoelectric layer 12 it is preferable to use a polymer material that has viscoelasticity at room temperature.
  • "ordinary temperature” refers to a temperature range of about 0 to 50.degree.
  • the polymer composite piezoelectric body preferably satisfies the following requirements.
  • Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
  • the flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less.
  • the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
  • the spring constant can be easily adjusted by laminating according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to which the adhesive layer 104 is attached. The thinner it is, the more energy efficient it can be.
  • polymer solids have a viscoelastic relaxation mechanism, and as the temperature rises or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed.
  • the temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
  • the polymer composite piezoelectric body (piezoelectric layer 12), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature as a matrix, it is possible to suppress vibrations of 20 Hz to 20 kHz. This realizes a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less.
  • a polymer material having a glass transition point at room temperature ie, 0 to 50° C. at a frequency of 1 Hz, for the matrix of the polymer composite piezoelectric material, because this behavior is favorably expressed.
  • the polymer material having viscoelasticity at room temperature Preferably, a polymer material having a maximum value of 0.5 or more in loss tangent Tan ⁇ at a frequency of 1 Hz in a dynamic viscoelasticity test at normal temperature, ie, 0 to 50° C., is used.
  • a polymer material having a maximum value of 0.5 or more in loss tangent Tan ⁇ at a frequency of 1 Hz in a dynamic viscoelasticity test at normal temperature, ie, 0 to 50° C. is used.
  • the polymer material having viscoelasticity at room temperature preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
  • E' storage elastic modulus
  • the polymer material having viscoelasticity at room temperature has a dielectric constant of 10 or more at 25°C.
  • a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
  • the polymer material in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
  • polymeric materials having viscoelasticity at room temperature examples include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, and polyvinylmethyl. Examples include ketones and polybutyl methacrylate. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials. Among them, as the polymer material, it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
  • the piezoelectric layer 12 preferably uses a polymer material having a cyanoethyl group as the matrix 24, and particularly preferably uses cyanoethylated PVA.
  • the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature”.
  • These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
  • the matrix 24 using such a polymer material having viscoelasticity at room temperature may use a plurality of polymer materials together, if necessary. That is, in addition to viscoelastic materials such as cyanoethylated PVA, other dielectric polymer materials may be added to the matrix 24 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
  • viscoelastic materials such as cyanoethylated PVA
  • other dielectric polymer materials may be added to the matrix 24 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
  • dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
  • fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullul
  • polymers having cyanoethyl groups and synthetic rubbers such as nitrile rubber and chloroprene rubber are exemplified.
  • polymer materials having cyanoethyl groups are preferably used.
  • these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
  • the matrix 24 also includes thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg, and Thermosetting resins such as phenolic resins, urea resins, melamine resins, alkyd resins, and mica may be added. Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
  • thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg
  • Thermosetting resins such as phenolic resins, urea resins, melamine resins, alkyd resins, and mica may be added.
  • a tackifier such as rosin ester, rosin
  • the addition amount is not particularly limited, but the ratio of the material to the matrix 24 is 30% by mass or less. is preferable.
  • the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the matrix 24, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 26 and the electrode layer can be improved. favorable results can be obtained in terms of
  • the piezoelectric layer 12 is a layer made of a polymeric composite piezoelectric material containing piezoelectric particles 26 in such a matrix 24 .
  • Piezoelectric particles 26 are dispersed in the matrix 24 .
  • the piezoelectric particles 26 are uniformly (substantially uniformly) dispersed in the matrix 24 .
  • the piezoelectric particles 26 are made of ceramic particles having a perovskite or wurtzite crystal structure.
  • Ceramic particles forming the piezoelectric particles 26 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
  • PZT lead zirconate titanate
  • PLAT lead zirconate lanthanate titanate
  • BaTiO 3 barium titanate
  • ZnO zinc oxide
  • BFBT solid solution
  • the particle size of the piezoelectric particles 26 is not limited, and may be appropriately selected according to the size of the piezoelectric film 10, the application of the piezoelectric element 50, and the like.
  • the particle size of the piezoelectric particles 26 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 26 within this range, favorable results can be obtained in that the piezoelectric film 10 can achieve both high piezoelectric characteristics and flexibility.
  • the piezoelectric particles 26 in the piezoelectric layer 12 may be uniformly and regularly dispersed in the matrix 24, or if they are uniformly dispersed, they will be dispersed irregularly in the matrix 24. may have been
  • the quantitative ratio of the matrix 24 and the piezoelectric particles 26 in the piezoelectric layer 12 is not limited, and the size and thickness of the piezoelectric film 10 in the plane direction, the application of the piezoelectric element 50, and It may be appropriately set according to the characteristics required for the piezoelectric element 50 .
  • the volume fraction of the piezoelectric particles 26 in the piezoelectric layer 12 is preferably 30% to 80%, more preferably 50% or more, and therefore more preferably 50% to 80%.
  • the thickness of the piezoelectric layer 12 is not particularly limited, and may be appropriately determined according to the application of the piezoelectric element 50 , the number of layers of the piezoelectric film in the piezoelectric element 50 , the properties required of the piezoelectric film 10 , and the like. , should be set.
  • the thickness of the piezoelectric layer 12 is preferably 10-300 ⁇ m, more preferably 20-200 ⁇ m, and even more preferably 30-150 ⁇ m.
  • the piezoelectric layer 12 is preferably polarized (poled) in the thickness direction.
  • the piezoelectric layer 12 is a polymeric composite piezoelectric body containing piezoelectric particles 26 in a matrix 24 made of a polymeric material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. No restrictions. That is, in the piezoelectric film 10 of the present invention, various known piezoelectric layers can be used as the piezoelectric layer.
  • a high-performance dielectric material containing similar piezoelectric particles 26 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used.
  • Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
  • the piezoelectric film 10 has a second electrode layer 16 on one surface of the piezoelectric layer 12, and a second protective layer 20 thereon. has a first electrode layer 14 on the surface thereof, and a first protective layer 18 thereon.
  • the first electrode layer 14 and the second electrode layer 16 form an electrode pair.
  • both surfaces of the piezoelectric layer 12 are sandwiched between electrode pairs, that is, the second electrode layer 16 and the first electrode layer 14, and this laminate is formed into the second protective layer 20 and the first protective layer 18. It has a configuration sandwiched between.
  • the region sandwiched between the second electrode layer 16 and the first electrode layer 14 expands and contracts according to the applied voltage.
  • the second electrode layer 16 and the second protective layer 20 as well as the first electrode layer 14 and the first protective layer 18 are attached for the sake of convenience in describing the piezoelectric film 10 . Therefore, the first and second aspects of the present invention have no technical significance and are irrelevant to the actual usage conditions.
  • the piezoelectric film 10 includes, in addition to these layers, an adhesive layer for attaching the electrode layer and the piezoelectric layer 12 and an adhesive layer for attaching the electrode layer and the protective layer. It may have a layer.
  • the adhesive may be an adhesive or an adhesive. Also, the same material as the matrix 24, that is, the polymer material obtained by removing the piezoelectric particles 26 from the piezoelectric layer 12, can be suitably used as the adhesive.
  • the adhesive layer may be provided on both the first electrode layer 14 side and the second electrode layer 16 side, or may be provided on only one of the first electrode layer 14 side and the second electrode layer 16 side. good.
  • the second protective layer 20 and the first protective layer 18 cover the first electrode layer 14 and the second electrode layer 16, and provide the piezoelectric layer 12 with appropriate rigidity and mechanical strength. is responsible for That is, in the piezoelectric film 10, the piezoelectric layer 12 made up of the matrix 24 and the piezoelectric particles 26 exhibits excellent flexibility against slow bending deformation, but depending on the application, the rigidity may increase. and mechanical strength may be insufficient.
  • the piezoelectric film 10 is provided with a second protective layer 20 and a first protective layer 18 to compensate.
  • the first protective layer 18 and the second protective layer 20 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 18 and the second protective layer 20, both members are collectively referred to as protective layers.
  • Various sheet materials can be used for the second protective layer 20 and the first protective layer 18 without limitation, and various resin films are preferably exemplified as examples.
  • various resin films are preferably exemplified as examples.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PET polypropylene
  • PS polystyrene
  • PC polycarbonate
  • PPS polyphenylene sulfite
  • PMMA polymethyl methacrylate
  • PET polyethylene terephthalate
  • PEI polyetherimide
  • PI polyimide
  • PEN polyethylene naphthalate
  • TAC triacetyl cellulose
  • cyclic olefin resins and the like are preferably used.
  • the thicknesses of the second protective layer 20 and the first protective layer 18 are also not limited. Also, the thicknesses of the second protective layer 20 and the first protective layer 18 are basically the same, but may be different. Here, if the rigidity of the second protective layer 20 and the first protective layer 18 is too high, not only will the expansion and contraction of the piezoelectric layer 12 be constrained, but also the flexibility will be impaired. Therefore, the thinner the second protective layer 20 and the first protective layer 18, the better, except for the case where mechanical strength and good handling property as a sheet-like article are required.
  • the thickness of the second protective layer 20 and the first protective layer 18 is not more than twice the thickness of the piezoelectric layer 12, it is possible to ensure both rigidity and appropriate flexibility. favorable results can be obtained.
  • the thickness of the piezoelectric layer 12 is 50 ⁇ m and the second protective layer 20 and the first protective layer 18 are made of PET, the thickness of the second protective layer 20 and the first protective layer 18 is preferably 100 ⁇ m or less. 50 ⁇ m or less is more preferable, and 25 ⁇ m or less is even more preferable.
  • the second electrode layer 16 is provided between the piezoelectric layer 12 and the second protective layer 20 and the first electrode layer 14 is provided between the piezoelectric layer 12 and the first protective layer 18. It is formed.
  • the second electrode layer 16 and the first electrode layer 14 are provided for applying voltage to the piezoelectric layer 12 (piezoelectric film 10).
  • the first electrode layer 14 and the second electrode layer 16 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 14 and the second electrode layer 16, both members are collectively referred to as electrode layers.
  • the materials for forming the second electrode layer 16 and the first electrode layer 14 are not limited, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, alloys thereof, laminates and composites of these metals and alloys, Also, indium tin oxide and the like are exemplified. Alternatively, conductive polymers such as PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfonic acid) are also exemplified.
  • PEDOT/PPS polyethylenedioxythiophene-polystyrenesulfonic acid
  • copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the second electrode layer 16 and the first electrode layer 14 .
  • copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
  • the method of forming the second electrode layer 16 and the first electrode layer 14 is not limited, and may be a vapor phase deposition method (vacuum film formation method) such as vacuum deposition or sputtering, a film formation by plating, or the formation of the above materials.
  • a vapor phase deposition method vacuum film formation method
  • sputtering a film formation by plating
  • a variety of known methods are available, such as affixing the foils.
  • thin films of copper, aluminum, etc., formed by vacuum deposition are preferably used as the second electrode layer 16 and the first electrode layer 14 because the flexibility of the piezoelectric film 10 can be ensured.
  • a copper thin film formed by vacuum deposition is particularly preferably used.
  • the thicknesses of the second electrode layer 16 and the first electrode layer 14 are not limited. Moreover, although the thicknesses of the second electrode layer 16 and the first electrode layer 14 are basically the same, they may be different. Here, similarly to the second protective layer 20 and the first protective layer 18 described above, if the rigidity of the second electrode layer 16 and the first electrode layer 14 is too high, not only will the expansion and contraction of the piezoelectric layer 12 be restricted, Flexibility is also impaired. Therefore, the thinner the second electrode layer 16 and the first electrode layer 14, the better, as long as the electrical resistance does not become too high.
  • the product of the thickness of the second electrode layer 16 and the first electrode layer 14 and the Young's modulus is less than the product of the thickness of the second protective layer 20 and the first protective layer 18 and the Young's modulus , is preferred because it does not significantly impair flexibility.
  • the second protective layer 20 and the first protective layer 18 are made of PET (Young's modulus: about 6.2 GPa), and the second electrode layer 16 and the first electrode layer 14 are made of copper (Young's modulus: about 130 GPa).
  • the thickness of the second protective layer 20 and the first protective layer 18 is 25 ⁇ m
  • the thickness of the second electrode layer 16 and the first electrode layer 14 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less. , it is preferably 0.1 ⁇ m or less.
  • the piezoelectric layer 12 which is formed by dispersing the piezoelectric particles 26 in the matrix 24 containing a polymer material, is sandwiched between the second electrode layer 16 and the first electrode layer 14, and further,
  • This laminate has a structure in which the second protective layer 20 and the first protective layer 18 are sandwiched.
  • the maximum value of the loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement preferably exists at room temperature, and the maximum value of 0.1 or more exists at room temperature. more preferred.
  • the piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Note that this condition applies to the piezoelectric layer 12 as well. Accordingly, the piezoelectric film 10 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
  • E' storage elastic modulus
  • the piezoelectric film 10 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz determined by dynamic viscoelasticity measurement of 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 N/m at 0° C. , 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N/m at 50°C. Note that this condition applies to the piezoelectric layer 12 as well. As a result, the piezoelectric film 10 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
  • E′ thickness and storage elastic modulus
  • the piezoelectric film 10 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. This condition applies to the piezoelectric layer 12 as well. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the amount of change in sound quality when the lowest resonance frequency f0 changes as the curvature of the speaker changes can be reduced.
  • Tan ⁇ loss tangent
  • the storage elastic modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 12, etc. may be measured by known methods.
  • the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. manufactured by SII Nanotechnology Co., Ltd.
  • the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz)
  • the measurement temperature is -50 to 150 ° C.
  • a heating rate of 2° C./min in a nitrogen atmosphere
  • a sample size of 40 mm ⁇ 10 mm including the clamping area
  • a distance between chucks of 20 mm may be measured by known methods.
  • the measurement frequency is 0.1 Hz to 20
  • a power source is connected to the second electrode layer 16 and the first electrode layer 14 of each piezoelectric film 10 to apply a drive voltage for expanding and contracting the piezoelectric film 10 , that is, to supply drive power.
  • the power source may be a DC power source or an AC power source.
  • the driving voltage may be appropriately set according to the thickness of the piezoelectric layer 12 of the piezoelectric film 10, the material used for forming the piezoelectric film 10, and the like, so that the piezoelectric film 10 can be properly driven.
  • the method of extracting electrodes from the second electrode layer 16 and the first electrode layer 14 there are no restrictions on the method of extracting electrodes from the second electrode layer 16 and the first electrode layer 14, and various known methods can be used.
  • a method of connecting a conductor such as a copper foil to the second electrode layer 16 and the first electrode layer 14 to lead the electrodes to the outside and a method of penetrating the second protective layer 20 and the first protective layer 18 by a laser or the like.
  • Examples include a method of forming a hole, filling the through hole with a conductive material, and leading an electrode to the outside.
  • suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
  • the heat-conducting member 52 is a member that conducts and radiates heat generated by the piezoelectric film 10 .
  • a member containing a metal material such as stainless steel, a copper alloy, and aluminum, graphite, and an inorganic material with high thermal conductivity such as ceramic is used.
  • the thermally conductive member 52 may have a structure in which a resin film such as PET, polyester, or polypropylene is laminated on the layer made of the above inorganic material.
  • the heat conducting member 52 may have a structure in which a resin film is laminated on one surface of a metal foil, or may have a structure in which resin films are laminated on both surfaces of the metal foil.
  • the thickness of the heat-conducting member 52 is preferably thinner from the standpoint of preventing the vibration of the piezoelectric film from being hindered. Moreover, the thinner one is preferable also from a heat dissipation viewpoint. From these points of view, the thickness of the heat conducting member 52 is preferably 0.1 ⁇ m to 1000 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, even more preferably 1 ⁇ m to 50 ⁇ m.
  • the adhesive layer 54 adheres the protective layer of the piezoelectric film 10 and the heat conducting member 52 together. Accordingly, the adhesive layer 54 is made of an adhesive material that allows the protective layer of the piezoelectric film 10 and the thermally conductive member 52 to be adhered together.
  • the adhesive layer 54 contains a resin having a glass transition temperature of 0° C. or lower. By including a resin with a glass transition temperature of 0° C. or lower, the adhesive layer 54 becomes a gel-like (rubber-like) soft state at 0° C. or higher, preventing the heat-conducting member 52 from binding the piezoelectric film 10 . It is possible to prevent the expansion and contraction of the piezoelectric film 10 from being inhibited.
  • adhesive resins with a glass transition temperature of 0°C or lower examples include acrylic resins such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and isononyl acrylate, silicone, and urethane rubber. be done.
  • the thermal conductivity in the thickness direction of the laminate of the thermally conductive member 52 and the adhesive layer 54 is 0.3 W/mK or more.
  • the adhesive layer 54 may contain a filler made of a material with high thermal conductivity such as metal.
  • the thickness of the adhesive layer 54 is preferably thicker from the viewpoint of preventing vibration of the piezoelectric film, but is preferably thinner from the viewpoint of heat dissipation. From these points of view, the thickness of the adhesive layer 54 is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, even more preferably 10 ⁇ m to 200 ⁇ m.
  • the diaphragm 102 preferably has flexibility.
  • having flexibility is synonymous with having flexibility in general interpretation, and indicates that it is possible to bend and bend, specifically , indicating that it can be bent and stretched without fracture and damage.
  • Diaphragm 102 is not limited as long as it preferably has flexibility, and various sheet-like materials (plate-like material, film) can be used.
  • Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films composed of polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, etc.; expanded polystyrene, expanded plastics composed of expanded styrene, expanded polyethylene, etc.; Examples include various corrugated cardboard materials made by pasting paperboards of the above.
  • the diaphragm 102 may be an organic electroluminescence (OLED (Organic Light Emitting Diode)) display, a liquid crystal display, or a micro LED (Light Emitting Diode) display as long as it has flexibility. , and display devices such as inorganic electroluminescence displays can also be suitably used.
  • OLED Organic Light Emitting Diode
  • liquid crystal display or a micro LED (Light Emitting Diode) display as long as it has flexibility.
  • micro LED Light Emitting Diode
  • display devices such as inorganic electroluminescence displays can also be suitably used.
  • the diaphragm 102 and the piezoelectric element 50 are adhered by the adhesion layer 104 .
  • the adhesive layer 104 has fluidity at the time of bonding and then becomes a solid. Even a layer made of an adhesive, which is a gel-like (rubber-like) soft solid at the time of bonding, remains gel-like after that. It may be a layer made of an adhesive that does not change its shape, or a layer made of a material that has the characteristics of both an adhesive and an adhesive.
  • the diaphragm 102 is bent and vibrated to generate sound. Therefore, in the electroacoustic transducer 100 , it is preferable that the expansion and contraction of the piezoelectric element 50 is directly transmitted to the diaphragm 102 . If a substance having a viscosity that reduces vibration is present between the diaphragm 102 and the piezoelectric element 50, the efficiency of transmission of the expansion and contraction energy of the piezoelectric element 50 to the diaphragm 102 is lowered, resulting in electroacoustic conversion. The driving efficiency of the device 100 is lowered.
  • the sticking layer 104 is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer 104 rather than a sticky layer made of an adhesive.
  • an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive is exemplified. Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
  • the thickness of the adhesive layer 104 is not limited, and the thickness that provides sufficient adhesive strength (adhesive strength, cohesive strength) may be appropriately set according to the material of the adhesive layer 104 .
  • the thinner the adhesive layer 104 the higher the effect of transmitting the stretching energy (vibrational energy) of the piezoelectric element 50 to the diaphragm 102, and the higher the energy efficiency.
  • the adhesive layer 104 is thick and rigid, it may restrict expansion and contraction of the piezoelectric element 50 .
  • the adhesive layer 104 is preferably thinner.
  • the thickness of the adhesive layer 104 is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, and even more preferably 0.1 to 10 ⁇ m after being attached.
  • the adhesive layer 104 is provided as a preferred embodiment and is not an essential component. Therefore, the electroacoustic transducer 100 does not have the adhesive layer 104, and the diaphragm 102 and the piezoelectric element 50 may be fixed using known crimping means, fastening means, fixing means, or the like.
  • the shape of the piezoelectric element 50 is rectangular in plan view, the four corners may be fastened with members such as bolts and nuts to form an electroacoustic transducer, or the four corners and the central portion may be bolted together.
  • the electroacoustic transducer may be configured by fastening with a member such as a nut.
  • the piezoelectric element 50 expands and contracts independently of the diaphragm 102 when a drive voltage is applied from the power supply. is not transmitted to the diaphragm 102. In this way, when the piezoelectric element 50 expands and contracts independently of the diaphragm 102, the efficiency of vibration of the diaphragm 102 by the piezoelectric element 50 decreases. There is a possibility that the diaphragm 102 cannot be sufficiently vibrated. Considering this point, it is preferable that the vibration plate 102 and the piezoelectric element 50 are adhered with an adhesion layer 104 as shown in FIG.
  • the piezoelectric layer 12 contains the piezoelectric particles 26 in the matrix 24 .
  • a second electrode layer 16 and a first electrode layer 14 are provided so as to sandwich the piezoelectric layer 12 in the thickness direction.
  • the piezoelectric particles 26 expand and contract in the polarization direction according to the applied voltage.
  • the piezoelectric film 10 shrinks in the thickness direction.
  • the piezoelectric film 10 also expands and contracts in the in-plane direction. This expansion and contraction is about 0.01 to 0.1%.
  • the thickness of the piezoelectric layer 12 is preferably about 10-300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 ⁇ m at maximum.
  • the piezoelectric film 10, that is, the piezoelectric layer 12 has a size much larger than its thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by about 0.2 mm at maximum due to voltage application.
  • the diaphragm 102 is attached to the piezoelectric film 10 with an adhesive layer 104 . Therefore, the expansion and contraction of the piezoelectric film 10 bends the diaphragm 102, and as a result, the diaphragm 102 vibrates in the thickness direction. Due to this vibration in the thickness direction, the diaphragm 102 generates sound. That is, the diaphragm 102 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 .
  • the sound pressure level can be improved. If the mass of the piezoelectric film 10 is large, the diaphragm 102 will be bent, which may suppress vibration of the diaphragm 102 during driving. On the other hand, if the mass of the piezoelectric film 10 is small, the resonance frequency will be high, possibly suppressing the vibration of the diaphragm 102 at low frequencies. Considering these points, it is preferable to appropriately adjust the mass of the piezoelectric film 10 according to the spring constant of the diaphragm 102 .
  • the piezoelectric films are attached to each other by an adhesive layer.
  • an adhesive layer for attaching the piezoelectric films to each other as long as the adjacent piezoelectric films 10 can be attached, various known adhesive layers can be used. Materials similar to the deposition layer 104 can be used.
  • FIG. 1 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 7 to 10.
  • FIG. 1 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 7 to 10.
  • a sheet-like object 42 having the second electrode layer 16 formed on the surface of the second protective layer 20 shown in FIG. 7 is prepared. Further, a sheet 40 having the first electrode layer 14 formed on the surface of the first protective layer 18 conceptually shown in FIG. 9 is prepared.
  • the sheet 42 may be produced by forming a copper thin film or the like as the second electrode layer 16 on the surface of the second protective layer 20 by vacuum deposition, sputtering, plating, or the like.
  • the sheet 40 may be produced by forming a copper thin film or the like as the first electrode layer 14 on the surface of the first protective layer 18 by vacuum deposition, sputtering, plating, or the like.
  • a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the sheet 42 and/or the sheet 40 .
  • the sheet-like material 42 and the sheet-like material 40 may be the same or different.
  • a protective layer with a separator temporary support
  • PET or the like having a thickness of 25 to 100 ⁇ m can be used as the separator.
  • the separator may be removed after the electrode layer and protective layer are thermocompression bonded.
  • a paint (coating composition) that will form the piezoelectric layer 12 is applied onto the second electrode layer 16 of the sheet 42 and cured to form the piezoelectric layer 12 .
  • a piezoelectric laminate 46 in which the sheet-like material 42 and the piezoelectric layer 12 are laminated is produced.
  • Various methods can be used to form the piezoelectric layer 12 depending on the material forming the piezoelectric layer 12 .
  • the polymer material such as cyanoethylated PVA described above is dissolved in an organic solvent, and then piezoelectric particles 26 such as PZT particles are added and stirred to prepare a paint.
  • Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone (MEK), and cyclohexanone can be used.
  • the paint is cast (applied) onto the sheet 42 and dried by evaporating the organic solvent.
  • a piezoelectric laminate 46 having the second electrode layer 16 on the second protective layer 20 and the piezoelectric layer 12 laminated on the second electrode layer 16 is produced. do.
  • the coating material there are no restrictions on the method of casting the coating material, and known methods (coating equipment) such as bar coaters, slide coaters and doctor knives can all be used.
  • coating equipment such as bar coaters, slide coaters and doctor knives can all be used.
  • the polymer material is heat-meltable, the polymer material is heat-melted and the piezoelectric particles 26 are added to prepare a melt, which is then extruded or otherwise molded into the sheet shown in FIG.
  • a piezoelectric laminate 46 such as that shown in FIG.
  • the matrix 24 may be added with a polymeric piezoelectric material such as PVDF, in addition to the polymeric material having viscoelasticity at room temperature.
  • a polymeric piezoelectric material such as PVDF
  • the polymeric piezoelectric materials to be added to the paint may be dissolved.
  • the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
  • the piezoelectric layer 12 After the piezoelectric layer 12 is formed, it may be calendered, if desired. Calendering may be performed once or multiple times. As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
  • the piezoelectric layer 12 of the piezoelectric laminate 46 having the second electrode layer 16 on the second protective layer 20 and the piezoelectric layer 12 formed on the second electrode layer 16 is subjected to a polarization treatment ( polling).
  • the polarization treatment of the piezoelectric layer 12 may be performed before calendering, but is preferably performed after calendering.
  • the method of polarization treatment of the piezoelectric layer 12 is not limited, and known methods can be used. For example, electric field poling, in which a DC electric field is directly applied to an object to be polarized, is exemplified.
  • the first electrode layer 14 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 14 and the second electrode layer 16. Moreover, in the piezoelectric film 10 of the present invention, it is preferable that the polarization treatment is performed not in the surface direction of the piezoelectric layer 12 but in the thickness direction.
  • the previously prepared sheet 40 is laminated on the piezoelectric layer 12 side of the piezoelectric laminate 46 that has been subjected to the polarization treatment, with the first electrode layer 14 facing the piezoelectric layer 12 . do. Furthermore, this laminated body is thermocompression bonded using a hot press device, a heating roller, etc., with the first protective layer 18 and the second protective layer 20 sandwiched between them, to form the piezoelectric laminated body 46 and the sheet-like material 40. are bonded together to produce a piezoelectric film 10 as shown in FIG. Alternatively, the piezoelectric film 10 may be produced by bonding the piezoelectric laminate 46 and the sheet-like material 40 together using an adhesive and preferably further pressing them together.
  • the piezoelectric film 10 may be manufactured using the cut sheet-like sheet 42 and the sheet 40, or may be manufactured using roll to roll. good too.
  • the produced piezoelectric film may be cut into a desired shape according to various uses.
  • the piezoelectric film 10 produced in this manner is polarized in the thickness direction rather than in the plane direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric film 10 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a driving voltage is applied.
  • a piezoelectric film as shown in FIG. 6 was produced by the method shown in FIGS. 7 to 10 described above.
  • cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio.
  • PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
  • ⁇ PZT particles ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ 30 parts by mass ⁇ DMF ⁇ 70 parts by mass
  • the PZT particles used were obtained by sintering a commercially available PZT raw material powder at 1000 to 1200° C. and then pulverizing and classifying the sintered particles to an average particle size of 5 ⁇ m.
  • a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.3 ⁇ m on a PET film with a thickness of 4 ⁇ m. That is, in this example, the first electrode layer and the second electrode layer are 0.3 ⁇ m thick copper-deposited thin films, and the first protective layer and the second protective layer are 4 ⁇ m thick PET films. Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. In addition, the paint was applied so that the thickness of the coating film after drying was 50 ⁇ m. Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C.
  • a piezoelectric laminate having a second electrode layer made of copper on a second protective layer made of PET and a piezoelectric layer (polymer composite piezoelectric layer) having a thickness of 50 ⁇ m thereon is produced. bottom.
  • the produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
  • a sheet-like material obtained by vapor-depositing the same thin film on a PET film was laminated on the piezoelectric laminate that had been subjected to the polarization treatment, with the first electrode layer (copper thin film side) facing the piezoelectric layer.
  • the laminate of the piezoelectric laminate and the sheet-like material is thermocompression bonded at a temperature of 120° C. using a laminator device, so that the piezoelectric layer and the first electrode layer are adhered and adhered.
  • a piezoelectric film as shown in 10 was produced.
  • this piezoelectric film was cut into a rectangle with a planar shape of 20 cm x 5 cm.
  • Example 1 Five piezoelectric films cut out were laminated via an adhesive layer (acrylic adhesive). Next, a heat conductive tape (9876-10 manufactured by 3M Co., Ltd.) cut into a rectangle of 20 cm ⁇ 5 cm was adhered to one outermost surface of the laminated piezoelectric film to fabricate a piezoelectric element.
  • This heat conductive tape has a metal foil coated with a polymer film and an acrylic adhesive layer. That is, this thermally conductive tape is a laminate of a thermally conductive member and an adhesive layer, and has a structure in which the thermally conductive member is a laminate of a metal foil and a resin film.
  • the thermal conductivity in the thickness direction of this thermal conductive tape is 0.8 W/mK.
  • the surface of the produced piezoelectric element opposite to the heat-conducting member was attached to a diaphragm to produce an electroacoustic transducer.
  • a diaphragm a plate-shaped member having a size of 500 mm ⁇ 450 mm, a thickness of 0.8 mm, and a material of aluminum was used.
  • An acrylic pressure-sensitive adhesive was used as a bonding layer for bonding the piezoelectric element and the diaphragm. Note that the heat conducting member and the diaphragm are not in direct contact.
  • Example 2 A piezoelectric element was produced in the same manner as in Example 1 except that a heat conductive tape (9876B-08 manufactured by 3M) was used instead of the heat conductive tape (9876-10 manufactured by 3M), and an electroacoustic transducer was manufactured. made.
  • This heat conductive tape has a metal foil coated with a polymer film and an acrylic adhesive layer. That is, this thermally conductive tape is a laminate of a thermally conductive member and an adhesive layer, and has a structure in which the thermally conductive member is a laminate of a metal foil and a resin film.
  • the thermal conductivity in the thickness direction of this thermal conductive tape (laminate of thermal conductive member and adhesive layer) is 1.4 W/mK.
  • Example 3 A piezoelectric element was produced in the same manner as in Example 1 except that a thermal conductive tape (TR-5310EX manufactured by Nitto Denko Corporation) was used instead of the thermal conductive tape (9876-10 manufactured by 3M), and electroacoustic conversion was performed. I made a vessel. This heat conductive tape has a polyester film and an acrylic adhesive layer. The thermal conductivity in the thickness direction of this thermal conductive tape (laminate of thermal conductive member and adhesive layer) is 0.4 W/mK.
  • Example 4 The same as in Example 1, except that a heat conductive tape was cut into a rectangular shape of 20 cm x 10 cm, adhered to one of the outermost surfaces of the laminated piezoelectric films, and both ends of the heat conductive tape were placed in contact with the diaphragm. Then, a piezoelectric element was produced, and an electroacoustic transducer was produced.
  • Example 5 Two 20 cm x 5 cm rectangles of heat conductive tape were cut out and attached to one of the outermost surfaces of the laminated piezoelectric film with a gap of 5 mm, and the end of each heat conductive tape was placed in contact with the diaphragm.
  • a piezoelectric element was produced in the same manner as in Example 1 except for the above, and an electroacoustic transducer was produced.
  • the ratio of the area of the portion to which the heat conductive tape is attached is 45% of the area of the outermost surface of the piezoelectric film (90% of the area of one surface).
  • Example 6 A heat-conducting tape was cut into a 5 cm x 5 cm rectangle, and was attached to one of the outermost surfaces of the laminated piezoelectric film so that the area of the attached portion was 5% of the area of the outermost surface of the piezoelectric film.
  • a piezoelectric element and an electroacoustic transducer were fabricated in the same manner as in Example 1, except that the ends of the conductive tape were placed in contact with the diaphragm.
  • Example 1 A piezoelectric element was produced in the same manner as in Example 1, except that the heat conductive tape was not adhered, and an electroacoustic transducer was produced.
  • Example 2 A piezoelectric element was produced in the same manner as in Example 1 except that Kapton tape (registered trademark) manufactured by DuPont Toray Co., Ltd. was used instead of the thermal conductive tape (9876-10 manufactured by 3M), and an electroacoustic transducer was obtained. was made.
  • the thermal conductivity in the thickness direction of this Kapton tape is 0.16 W/mK.
  • Example 3 A piezoelectric element was fabricated in the same manner as in Example 1, except that a heat-conducting member composed of a PET film and a copper foil, which did not have an adhesive layer, was attached to the piezoelectric film using Aron Alpha (registered trademark) manufactured by Toagosei Co., Ltd. was produced, and an electroacoustic transducer was produced.
  • Aron Alpha has a glass transition temperature of 50° C. or higher.
  • the diaphragm was erected by supporting the short sides of the diaphragm.
  • a microphone was installed at a position of 1 m in the normal direction (perpendicular to the PET film) from the center of the piezoelectric element, the piezoelectric element was driven, and the sound pressure at a frequency of 1 kHz was measured.
  • the input signal to the piezoelectric element was a 20-20 kHz sweep sine wave (50 Vrms).
  • the produced electroacoustic transducer was connected to a continuous driving test (50 Vrms), and the temperature reached by the piezoelectric element after continuous driving for 30 minutes was measured by thermography (U5855A manufactured by Keysight Technologies). The ambient temperature for measurement was 23°C.
  • An SN2 signal was used as an input signal.
  • the SN2 signal is a noise signal standard defined by JEITA, and is a noise signal obtained by cutting high frequency components and low frequency components of a white noise signal.
  • the frequency of the applied voltage was in the range of 20 Hz to 20 kHz.
  • the temperature of the piezoelectric element was measured at an arbitrary position where the highest temperature was reached. Table 1 shows the results.
  • the item "Attached area” indicates the ratio of the area of the portion to which the thermal conductive tape (thermal conductive member) is attached to the area of the outermost surface of the laminated piezoelectric film. Further, the item of continuity is an item representing whether the heat conducting member is composed of one sheet or divided into two or more pieces.
  • Comparative Example 1 does not have a heat-conducting member, it can be seen that the temperature reached is high. It can be seen that in Comparative Example 2, the temperature reached is high because the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is low. In Comparative Example 3, since the glass transition temperature of the adhesive layer is high, the vibration of the piezoelectric film is inhibited and the sound pressure is lowered.
  • the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is preferably high.
  • Example 1 and Example 4 it can be seen that it is preferable that the heat-conducting member and the diaphragm are in contact with each other.
  • Example 4 and Example 5 it can be seen that by dividing the heat conducting member into a plurality of pieces, it is possible to more preferably reduce the inhibition of the vibration of the piezoelectric film, which is preferable. From the above, the effect of the present invention is clear.
  • the piezoelectric element of the present invention can be used, for example, in various sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially for infrastructure inspection such as crack detection and manufacturing site inspection such as foreign matter contamination detection). useful), acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots, etc.), artificial vocal cords, buzzers for preventing insects and vermin from entering , furniture, wallpaper, photographs, helmets, goggles, headrests, signage, robots, etc.), automobiles, smartphones, smart watches, haptics used for games, etc.
  • sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially for infrastructure inspection such as crack detection and manufacturing site inspection such as foreign matter contamination detection).
  • acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots,

Abstract

Provided are: a piezoelectric element having a piezoelectric film, wherein heat generation can be suppressed without lowering output even when the piezoelectric element is driven at a high voltage and/or a high current; and an electroacoustic transducer. The piezoelectric element comprises: a piezoelectric film having a piezoelectric layer, an electrode layer provided on both surfaces of the piezoelectric layer, and a protective layer provided on the electrode layer; and a heat conductive member bonded to at least one protective layer side via an adhesive layer, wherein a laminate composed of the heat conductive member and the adhesive layer has a heat conductivity of 0.3 W/mK or more in the thickness direction, and the adhesive layer includes a resin having a glass transition temperature of 0 °C or less.

Description

圧電素子および電気音響変換器Piezoelectric elements and electroacoustic transducers
 本発明は、圧電素子および電気音響変換器に関する。 The present invention relates to piezoelectric elements and electroacoustic transducers.
 圧電素子は、各種の物品に接触して取り付けることで、物品を振動させて音を出す、いわゆるエキサイター(励起子)として、各種の用途に利用されている。例えば、画像表示パネル、スクリーン等にエキサイターを取り付けて、これらを振動させることで、スピーカーの代わりに音を出すことができる。 Piezoelectric elements are used for various purposes as so-called exciters, which vibrate and produce sound by attaching them to various items. For example, by attaching an exciter to an image display panel, a screen, or the like and vibrating them, sound can be produced instead of a speaker.
 圧電素子として、圧電体層を電極層および保護層で挟持した圧電フィルムを用いることが提案されている。また、圧電フィルムを複数層積層して圧電素子として用いることも提案されている。
 例えば、特許文献1には、2つの薄膜電極で圧電体層を挟持した圧電フィルムを、複数層、積層してなり、圧電フィルムは、厚さ方向に分極されたものであり、かつ、隣接する圧電フィルムの分極方向が逆である積層圧電素子が記載されている。
As a piezoelectric element, it has been proposed to use a piezoelectric film in which a piezoelectric layer is sandwiched between electrode layers and protective layers. It is also proposed to laminate a plurality of piezoelectric films and use them as a piezoelectric element.
For example, in Patent Document 1, a plurality of piezoelectric films in which a piezoelectric layer is sandwiched between two thin film electrodes are laminated, and the piezoelectric films are polarized in the thickness direction and are adjacent to each other. Laminated piezoelectric elements are described in which the polarization directions of the piezoelectric films are opposite.
国際公開第2020/095812号WO2020/095812
 圧電体層を電極層および保護層で挟持した圧電フィルムは、高電圧および/または高電流で駆動させると発熱し、最悪の場合連続駆動できなくなる可能性がある。発熱を抑制する手段としては、圧電フィルムのサイズを小さくする、駆動電圧を下げる、圧電フィルムを積層した構成であれば積層数を少なくすることで静電容量を小さくする等の手段が考えられるが、音圧(出力)が同時に下がってしまうという問題が生じる。 A piezoelectric film in which a piezoelectric layer is sandwiched between electrode layers and protective layers generates heat when driven at high voltage and/or high current, and in the worst case, it may not be possible to continuously drive it. As means for suppressing heat generation, it is conceivable to reduce the size of the piezoelectric film, lower the drive voltage, or reduce the number of layers in the case of a structure in which piezoelectric films are laminated to reduce the capacitance. , the sound pressure (output) decreases at the same time.
 本発明の課題は、このような従来技術の問題点を解決することにあり、圧電フィルムを有する圧電素子において、高電圧および/または高電流で駆動しても、出力が低下することなく発熱を抑制できる圧電素子および電気音響変換器を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art. A piezoelectric element having a piezoelectric film generates heat without lowering its output even when driven at high voltage and/or high current. An object of the present invention is to provide a piezoelectric element and an electroacoustic transducer that can be suppressed.
 上述した課題を解決するために、本発明は、以下の構成を有する。
 [1] 圧電体層と、圧電体層の両面に設けられる電極層と、電極層上に設けられる保護層と、を有する圧電フィルム、および、
 少なくとも一方の保護層側に粘着層を介して貼着される熱伝導部材、を有し、
 熱伝導部材と粘着層との積層体の厚み方向における熱伝導率が0.3W/mK以上であり、
 粘着層は、ガラス転移温度が0℃以下の樹脂を含む、圧電素子。
 [2] 粘着層は、アクリル系樹脂を含む、[1]に記載の圧電素子。
 [3] 熱伝導部材と圧電フィルムとを貼着した部位の面積は、圧電フィルムの最外面の面積の10%以上である、[1]または[2]に記載の圧電素子。
 [4] 圧電フィルムの面方向に、複数の熱伝導部材が離間して貼着されている、[1]~[3]のいずれかに記載の圧電素子。
 [5] 熱伝導部材が、無機材料と樹脂フィルムとの積層体である、[1]~[4]のいずれかに記載の圧電素子。
 [6] 圧電フィルムを複数層有する、[1]~[5]のいずれかに記載の圧電素子。
 [7] 積層された圧電フィルムのうち1層が、他の圧電フィルムよりも面方向に張り出した張り出し部を有し、
 熱伝導部材が、張り出し部に貼着されている、[6]に記載の圧電素子。
 [8] 圧電体層が、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体である、[1]~[7]のいずれかに記載の圧電素子。
 [9] [1]~[8]のいずれかに記載の圧電素子を、振動板に貼り付けてなる、電気音響変換器。
 [10] 熱伝導部材が振動板に接している、[9]に記載の電気音響変換器。
 [11] 圧電素子の振動板との貼着面の一部に、熱伝導部材が設けられ、
 熱伝導部材が貼着される面以外の領域に圧電素子と振動板とを貼着する貼着層を有する、[9]または[10]に記載の電気音響変換器。
In order to solve the problems described above, the present invention has the following configurations.
[1] A piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers;
a heat conductive member attached to at least one protective layer side via an adhesive layer,
The thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is 0.3 W/mK or more,
The adhesive layer is a piezoelectric element containing a resin having a glass transition temperature of 0° C. or less.
[2] The piezoelectric element according to [1], wherein the adhesive layer contains an acrylic resin.
[3] The piezoelectric element according to [1] or [2], wherein the area of the portion where the heat conducting member and the piezoelectric film are adhered is 10% or more of the area of the outermost surface of the piezoelectric film.
[4] The piezoelectric element according to any one of [1] to [3], wherein a plurality of heat-conducting members are affixed in a plane direction of the piezoelectric film with a space therebetween.
[5] The piezoelectric element according to any one of [1] to [4], wherein the thermally conductive member is a laminate of an inorganic material and a resin film.
[6] The piezoelectric element according to any one of [1] to [5], which has a plurality of piezoelectric films.
[7] One layer of the laminated piezoelectric films has an overhanging portion that overhangs the other piezoelectric films in the plane direction,
The piezoelectric element according to [6], wherein the heat-conducting member is attached to the projecting portion.
[8] The piezoelectric element according to any one of [1] to [7], wherein the piezoelectric layer is a polymeric composite piezoelectric body containing piezoelectric particles in a matrix containing a polymeric material.
[9] An electroacoustic transducer comprising the piezoelectric element according to any one of [1] to [8] attached to a diaphragm.
[10] The electroacoustic transducer according to [9], wherein the heat-conducting member is in contact with the diaphragm.
[11] A heat-conducting member is provided on a part of the surface of the piezoelectric element that is attached to the diaphragm,
The electroacoustic transducer according to [9] or [10], which has an adhesive layer for attaching the piezoelectric element and the diaphragm in a region other than the surface to which the heat conducting member is attached.
 本発明によれば、圧電フィルムを有する圧電素子において、高電圧および/または高電流で駆動しても出力が低下することなく発熱を抑制できる圧電素子および電気音響変換器を提供することができる。 According to the present invention, it is possible to provide a piezoelectric element having a piezoelectric film and an electroacoustic transducer capable of suppressing heat generation without reducing output even when driven at high voltage and/or high current.
本発明の圧電素子の一例を有する本発明の電気音響変換器を模式的に示す図である。1 is a diagram schematically showing an electroacoustic transducer of the present invention having an example of a piezoelectric element of the present invention; FIG. 本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に示す図である。FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention; 本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に示す図である。FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention; 本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に示す図である。FIG. 4 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention; 本発明の圧電素子が有する圧電フィルムの他の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing another example of the piezoelectric film included in the piezoelectric element of the present invention; 本発明の圧電素子が有する圧電フィルムの一例を概念的に示す断面図である。1 is a cross-sectional view conceptually showing an example of a piezoelectric film included in a piezoelectric element of the present invention; FIG. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 圧電フィルムの作製方法の一例を説明するための概念図である。It is a conceptual diagram for explaining an example of a method of manufacturing a piezoelectric film. 実施例で用いた裁断装置を概念的に示す側面図である。1 is a side view conceptually showing a cutting device used in Examples. FIG.
 以下、本発明の圧電素子および電気音響変換器について、添付の図面に示される好適実施例を基に、詳細に説明する。 The piezoelectric element and electroacoustic transducer of the present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
[圧電素子および電気音響変換器]
 本発明の圧電素子は、
 圧電体層と、圧電体層の両面に設けられる電極層と、電極層上に設けられる保護層と、を有する圧電フィルム、および、
 少なくとも一方の保護層側に粘着層を介して貼着される熱伝導部材、を有し、
 熱伝導部材と粘着層との積層体の厚み方向における熱伝導率が0.3W/mK以上であり、
 粘着層は、ガラス転移温度が0℃以下の樹脂を含む、圧電素子である。
[Piezoelectric element and electroacoustic transducer]
The piezoelectric element of the present invention is
A piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers;
a heat conductive member attached to at least one protective layer side via an adhesive layer,
The thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is 0.3 W/mK or more,
The adhesive layer is a piezoelectric element containing a resin having a glass transition temperature of 0° C. or lower.
 また、本発明の電気音響変換器は、
 上記圧電素子を振動板に貼り付けてなる電気音響変換器である。
Further, the electroacoustic transducer of the present invention is
It is an electroacoustic transducer in which the piezoelectric element is attached to a diaphragm.
 図1に、本発明の圧電素子の一例を有する本発明の電気音響変換器を模式的に表す図を示す。 FIG. 1 shows a diagram schematically showing the electroacoustic transducer of the present invention having an example of the piezoelectric element of the present invention.
 図1に示す電気音響変換器100aは、圧電素子50aと、振動板102と、圧電素子50aを振動板102に貼り付ける貼着層104と、を有する。
 圧電素子50aは、3枚の圧電フィルム10と、熱伝導部材52と、熱伝導部材52と圧電フィルム10とを貼着する粘着層54と、を有する。
An electroacoustic transducer 100a shown in FIG. 1 has a piezoelectric element 50a, a diaphragm 102, and an adhesive layer 104 for bonding the piezoelectric element 50a to the diaphragm 102. As shown in FIG.
The piezoelectric element 50 a has three piezoelectric films 10 , a thermally conductive member 52 , and an adhesive layer 54 for adhering the thermally conductive member 52 and the piezoelectric film 10 .
 圧電素子50aは、3枚の圧電フィルム10が積層されており、一方の最表面側に粘着層54を介して熱伝導部材52が貼着されている。圧電素子50aの、熱伝導部材52とは反対側の最表面には、貼着層104を介して振動板102と貼着されている。また、図1に示す例では、好ましい態様として、熱伝導部材52は、面方向の大きさが圧電フィルム10よりも大きく、圧電フィルム10を覆って、端部が振動板102と接している。 The piezoelectric element 50a is formed by stacking three piezoelectric films 10, and a thermally conductive member 52 is adhered to one outermost surface side via an adhesive layer 54. A vibrating plate 102 is attached via an adhesive layer 104 to the outermost surface of the piezoelectric element 50a on the side opposite to the heat conducting member 52 . Moreover, in the example shown in FIG. 1, as a preferred mode, the heat conducting member 52 has a larger size in the surface direction than the piezoelectric film 10, covers the piezoelectric film 10, and contacts the diaphragm 102 at its end.
 圧電フィルム10は、圧電体層と、圧電体層の両面に設けられる電極層と、電極層上に設けられる保護層と、を有する。従って、熱伝導部材52および振動板102はそれぞれ圧電フィルム10の保護層に貼着されている。圧電フィルム10については後に詳述する。
 なお、図示は省略するが、隣接する圧電フィルム10同士は、貼着層によって貼着されている。また、各圧電フィルム10には駆動電圧を印加するための電源が接続される。
The piezoelectric film 10 has a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers. Therefore, the heat conducting member 52 and the diaphragm 102 are attached to the protective layer of the piezoelectric film 10 respectively. The piezoelectric film 10 will be detailed later.
Although illustration is omitted, adjacent piezoelectric films 10 are attached to each other by an adhesive layer. A power supply for applying a driving voltage is connected to each piezoelectric film 10 .
 このような電気音響変換器100aは、圧電素子50aの圧電フィルム10に駆動電圧を印加することで、圧電フィルム10が面方向に伸縮し、この圧電フィルム10の伸縮によって、圧電素子50aが面方向に伸縮する。
 この圧電素子50aの面方向の伸縮によって、振動板102が撓み、その結果、振動板102が、厚さ方向に振動する。この厚さ方向の振動によって、振動板102は、音を発生する。振動板102は、圧電フィルム10に印加した駆動電圧の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。
 すなわち、この電気音響変換器100aは、圧電素子50をエキサイターとして用いるスピーカーとして用いることができる。
In such an electroacoustic transducer 100a, when a drive voltage is applied to the piezoelectric film 10 of the piezoelectric element 50a, the piezoelectric film 10 expands and contracts in the plane direction. stretches to
Due to the expansion and contraction of the piezoelectric element 50a in the plane direction, the diaphragm 102 bends, and as a result, the diaphragm 102 vibrates in the thickness direction. Due to this vibration in the thickness direction, the diaphragm 102 generates sound. The diaphragm 102 vibrates according to the magnitude of the driving voltage applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 .
That is, this electroacoustic transducer 100a can be used as a speaker using the piezoelectric element 50 as an exciter.
 なお、図1に示す圧電素子50aは、圧電フィルム10を、3層、積層したものであるが、本発明は、これに制限はされない。すなわち、圧電素子は、圧電フィルム10を、1層(1枚)有するものであってもよく、あるいは、複数層、積層したものであってもよい。圧電フィルム10を複数層、積層する場合は、圧電フィルム10の積層数は、2層でもよく、あるいは、4層以上であってもよい。この点に関しては、後述する図2~4に示す圧電素子も、同様である。 Although the piezoelectric element 50a shown in FIG. 1 is obtained by laminating three layers of the piezoelectric film 10, the present invention is not limited to this. That is, the piezoelectric element may have one layer (one sheet) of the piezoelectric film 10, or may have a plurality of laminated layers. When a plurality of piezoelectric films 10 are laminated, the number of laminated piezoelectric films 10 may be two, or four or more. In this regard, the same applies to the piezoelectric elements shown in FIGS. 2 to 4, which will be described later.
 図1に示す圧電素子50aは、好ましい態様として、隣接する圧電フィルム10の分極方向が互いに逆である。そのため、隣接する圧電フィルム10では、第1電極層14同士および第2電極層16同士が対面する。従って、電源は、交流電源でも直流電源でも、対面する電極には、常に同じ極性の電力を供給する。従って、圧電素子50aでは、隣接する圧電フィルム10の電極同士が接触しても、ショート(短絡)する恐れがない。 In the piezoelectric element 50a shown in FIG. 1, as a preferred embodiment, the polarization directions of adjacent piezoelectric films 10 are opposite to each other. Therefore, in adjacent piezoelectric films 10, the first electrode layers 14 face each other and the second electrode layers 16 face each other. Therefore, the power supply, whether it is an AC power supply or a DC power supply, always supplies power of the same polarity to the facing electrodes. Therefore, in the piezoelectric element 50a, even if the electrodes of the piezoelectric films 10 adjacent to each other come into contact with each other, there is no risk of short-circuiting.
 なお、圧電素子50aにおいて、圧電フィルム10の分極方向は、d33メーター等で検出すれば良い。または、後述する分極の処理条件から、圧電フィルム10の分極方向を知見してもよい。 In the piezoelectric element 50a, the polarization direction of the piezoelectric film 10 can be detected with a d33 meter or the like. Alternatively, the polarization direction of the piezoelectric film 10 may be known from the polarization processing conditions described later.
 ここで、本発明の圧電素子50aにおいて、熱伝導部材52と粘着層54との積層体の厚み方向における熱伝導率は0.3W/mK以上であり、また、粘着層54は、ガラス転移温度が0℃以下の樹脂を含むものである。 Here, in the piezoelectric element 50a of the present invention, the thermal conductivity in the thickness direction of the laminate of the heat conducting member 52 and the adhesive layer 54 is 0.3 W/mK or more, and the adhesive layer 54 has a glass transition temperature of contains resins below 0°C.
 前述のとおり、圧電体層を電極層および保護層で挟持した圧電フィルムは、高電圧および/または高電流で駆動させると発熱し、圧電フィルムの温度が高くなると、最悪の場合連続駆動できなくなる可能性がある。発熱を抑制する手段としては、圧電フィルムのサイズを小さくする、駆動電圧を下げる、圧電フィルムを積層した構成であれば積層数を少なくすることで静電容量を小さくする等の手段が考えられるが、音圧が同時に下がってしまうという問題が生じる。 As mentioned above, the piezoelectric film sandwiching the piezoelectric layer between the electrode layer and the protective layer generates heat when driven at high voltage and/or high current. have a nature. As means for suppressing heat generation, it is conceivable to reduce the size of the piezoelectric film, lower the drive voltage, or reduce the number of layers in the case of a structure in which piezoelectric films are laminated to reduce the capacitance. , the sound pressure decreases at the same time.
 これに対して、本発明の圧電素子50aは、圧電フィルム10に熱伝導部材52を積層することで、圧電フィルム10が発生した熱を熱伝導部材52に伝熱して放熱することで、圧電フィルム10の温度が高くなることを抑制できる。ここで、圧電フィルム10と熱伝導部材52とは粘着層等で貼着する必要があるが、粘着層の熱伝導性が低いと熱伝導部材52に好適に伝熱することができない。そこで、本発明においては、熱伝導部材52と粘着層54との積層体の厚み方向における熱伝導率を0.3W/mK以上とすることで、圧電フィルム10が発生した熱を熱伝導部材52に伝熱して放熱することができる。 On the other hand, in the piezoelectric element 50a of the present invention, the heat conductive member 52 is laminated on the piezoelectric film 10, so that the heat generated by the piezoelectric film 10 is transferred to the heat conductive member 52 and radiated, so that the piezoelectric film It is possible to suppress the temperature of 10 from rising. Here, the piezoelectric film 10 and the heat-conducting member 52 need to be adhered with an adhesive layer or the like. Therefore, in the present invention, by setting the thermal conductivity in the thickness direction of the laminate of the heat-conducting member 52 and the adhesive layer 54 to 0.3 W/mK or more, the heat generated by the piezoelectric film 10 is transferred to the heat-conducting member 52 . heat can be transferred to and dissipated.
 ここで、熱伝導部材52の材料として用いられる熱伝導性の高い金属等の材料は、一般に高ヤング率であるため、圧電フィルム10に熱伝導部材52が貼着されると、圧電フィルム10を拘束して圧電フィルム10の振動を阻害するおそれがある。すなわち、出力が低下してしまい、例えば、電気音響変換器をスピーカーとして用いる場合の音圧が低下してしまう。これに対して、本発明においては、粘着層54として、ガラス転移温度が0℃以下の樹脂を含むものを用いることで、圧電素子50aの一般的な使用温度において、粘着層が柔軟な層となり、圧電フィルム10の振動が熱伝導部材52によって阻害されることを抑制することができる。これにより、音圧等の出力が低下することを抑制することができる。 Here, since a material such as a metal with high thermal conductivity used as a material of the thermally conductive member 52 generally has a high Young's modulus, when the thermally conductive member 52 is adhered to the piezoelectric film 10, the piezoelectric film 10 is There is a risk that the vibration of the piezoelectric film 10 will be hindered due to restraint. That is, the output is lowered, and for example, the sound pressure when using the electroacoustic transducer as a speaker is lowered. On the other hand, in the present invention, the adhesive layer 54 contains a resin having a glass transition temperature of 0° C. or less, so that the adhesive layer becomes flexible at the general operating temperature of the piezoelectric element 50a. , the vibration of the piezoelectric film 10 can be suppressed from being hindered by the heat conducting member 52 . As a result, it is possible to suppress a decrease in output such as sound pressure.
 なお、放熱性の観点から、熱伝導部材と粘着層との積層体の厚み方向における熱伝導率は、0.5W/mK以上が好ましい。 From the viewpoint of heat dissipation, the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is preferably 0.5 W/mK or more.
 熱伝導部材と粘着層との積層体の厚み方向における熱伝導率の測定方法は以下のとおりである。
 熱伝導率(W/(m・K))は、熱拡散率(m2/s)×比熱(J/(g・K))×密度(g/cm3)として求めることができるため、サンプルを用いて下記測定を行う。
A method for measuring the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is as follows.
Thermal conductivity (W/(mK)) can be determined as thermal diffusivity (m 2 /s) x specific heat (J/(gK)) x density (g/cm 3 ). Perform the following measurements using
<熱伝導率>
 圧電素子より取り外した熱伝導部材の熱拡散率の測定を行う。測定に当たってはアイフェイズ社製ai~phase 1uなどを用いることができる。この際、保持荷重は50gにて行う。
<Thermal conductivity>
The thermal diffusivity of the thermally conductive member removed from the piezoelectric element is measured. For the measurement, ai-phase 1u manufactured by iPhase can be used. At this time, the holding load is 50 g.
<比熱>
 熱伝導部材を数mg切り出し、比熱測定を行はTA Instruments社製DSC Q2000などを用いることができる。測定パンはアルミニウム、標準試料はサファイア、昇温速度は1℃/分にて行う。
<Specific heat>
A few mg of the heat-conducting member can be cut out and specific heat can be measured using DSC Q2000 manufactured by TA Instruments. The measurement pan is aluminum, the standard sample is sapphire, and the heating rate is 1°C/min.
<密度>
 熱伝導部材の密度測定はQauntachrome instruments社製ピクノメーター ULTRAPYC 1200eなどを用いることができる。
<Density>
A pycnometer ULTRAPYC 1200e manufactured by Qauntachrome instruments can be used to measure the density of the heat conductive member.
 また、出力の低下を抑制する観点から、粘着層は、ガラス転移温度が0℃以下の樹脂を含むことが好ましく、ガラス転移温度が-20℃以下の樹脂を含むことがより好ましい。 In addition, from the viewpoint of suppressing a decrease in output, the adhesive layer preferably contains a resin with a glass transition temperature of 0°C or lower, and more preferably contains a resin with a glass transition temperature of -20°C or lower.
 粘着層に含まれる樹脂のガラス転移温度の測定方法は以下のとおりである。
 DMA(動的粘弾性測定装置、例えばセイコーインスツルメンツ製DMS6100)を用いて、測定温度範囲-50~120℃、測定周波数2Hzにて各温度の損失係数Tanδを取得し、Tanδがピークとなる温度をTgと規定する。測定は3回繰り返し、その平均を最終的なTgとする。また、測定にあたっては、回転型レオメータなども使用することができる。
The method for measuring the glass transition temperature of the resin contained in the adhesive layer is as follows.
Using a DMA (dynamic viscoelasticity measuring device, such as Seiko Instruments DMS6100), the loss coefficient Tan δ at each temperature is obtained at a measurement temperature range of -50 to 120 ° C and a measurement frequency of 2 Hz, and the temperature at which Tan δ peaks. Define Tg. The measurement is repeated three times and the average is taken as the final Tg. A rotational rheometer or the like can also be used for the measurement.
 ここで、図1に示す例では、好ましい態様として、熱伝導部材52は、面方向の大きさが圧電フィルム10よりも大きく、圧電フィルム10を覆って、端部が振動板102と接している構成を有するが、これに限定はされない。熱伝導部材52は、面方向の大きさが圧電フィルム10の大きさ以下で圧電フィルム10の上に積層される構成であってもよい。熱伝導部材52が振動板102と接することで、圧電フィルム10が発熱し、熱伝導部材52に伝達した熱を振動板102に伝熱してより広い面積で放熱することができるため、圧電フィルム10の温度が上昇することをより好適に抑制することができる。 Here, in the example shown in FIG. 1, as a preferred mode, the heat conducting member 52 has a size larger than that of the piezoelectric film 10 in the surface direction, covers the piezoelectric film 10, and is in contact with the diaphragm 102 at its end. It has a configuration, but is not limited to this. The heat-conducting member 52 may be laminated on the piezoelectric film 10 so that the size in the surface direction is equal to or smaller than the size of the piezoelectric film 10 . Since the heat conducting member 52 is in contact with the diaphragm 102 , the piezoelectric film 10 generates heat, and the heat transferred to the heat conducting member 52 can be transferred to the diaphragm 102 and radiated over a wider area. temperature rise can be more suitably suppressed.
 なお、図1に示す例では、熱伝導部材52と振動板102とは直接、接する構成としたがこれに限定はされず、熱伝導部材52と振動板102とは粘着層等によって貼着されてもよい。熱伝導部材52と振動板102とを貼着する粘着層としては特に制限はないが、圧電素子50aと熱伝導部材52とを貼着する粘着層54と同じ粘着層を用いることが好ましい。 In the example shown in FIG. 1, the heat conducting member 52 and the diaphragm 102 are configured to be in direct contact with each other, but the present invention is not limited to this. may The adhesive layer for adhering the thermally conductive member 52 and the vibration plate 102 is not particularly limited, but it is preferable to use the same adhesive layer as the adhesive layer 54 for adhering the piezoelectric element 50a and the thermally conductive member 52 .
 また、図1に示す例では、圧電素子50aは、貼着層104を介して振動板102と貼着される構成としたが、これに限定はされず、圧電素子50aを覆うシート状物によって振動板102と接続する構成としてもよい。また、熱伝導部材52が圧電素子50aを覆うシート状物に接続されていてもよい。また、圧電素子50aが貼着層104を介して振動板102に貼着され、かつ、圧電素子50aがシート状物によって覆われていてもよい。 In the example shown in FIG. 1, the piezoelectric element 50a is attached to the diaphragm 102 via the adhesive layer 104. However, the present invention is not limited to this. It may be configured to be connected to the diaphragm 102 . Also, the heat conducting member 52 may be connected to a sheet-like object covering the piezoelectric element 50a. Alternatively, the piezoelectric element 50a may be attached to the diaphragm 102 via the adhesive layer 104, and the piezoelectric element 50a may be covered with a sheet-like material.
 また、図1に示す例では、熱伝導部材52は、積層された圧電フィルム10の最外面の一方の全面に貼着される構成としたがこれに限定はされない。放熱性の観点からは、圧電フィルム10の最外面の合計面積に対する熱伝導部材52が貼着される面積の割合は大きいほうが好ましい。一方、圧電フィルム10の振動が熱伝導部材52によって阻害されることを抑制する観点からは、圧電フィルム10の最表面の合計面積に対する熱伝導部材52が貼着される面積の割合は小さいほうが好ましい。これらの観点から、熱伝導部材52と圧電フィルム10とを貼着した部位の面積は、圧電フィルムの最外面の面積の10%以上であるのが好ましく、20%以上~50%以下であるのがより好ましく、30%以上~40%以下であるのがさらに好ましい。なお、圧電フィルム10は非常に薄いため、圧電フィルム10の両主面の合計面積に対して、熱伝導部材52と圧電フィルム10とを貼着した部位の面積が上記範囲となればよい。 Also, in the example shown in FIG. 1, the heat conducting member 52 is configured to be adhered to one of the outermost surfaces of the laminated piezoelectric films 10, but is not limited to this. From the viewpoint of heat dissipation, it is preferable that the ratio of the area to which the thermally conductive member 52 is adhered to the total area of the outermost surface of the piezoelectric film 10 is large. On the other hand, from the viewpoint of suppressing the vibration of the piezoelectric film 10 from being hindered by the heat conducting member 52, it is preferable that the ratio of the area to which the heat conducting member 52 is adhered to the total area of the outermost surface of the piezoelectric film 10 is small. . From these points of view, the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are adhered is preferably 10% or more of the area of the outermost surface of the piezoelectric film, and is preferably 20% or more and 50% or less. is more preferable, and 30% or more and 40% or less is even more preferable. Since the piezoelectric film 10 is very thin, the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are attached to the total area of both main surfaces of the piezoelectric film 10 should be within the above range.
 また、図1に示す例では、1枚の熱伝導部材52を有する構成としたがこれに限定はされない。圧電フィルムの面方向に、複数の熱伝導部材が離間して貼着されている構成としてもよい。
 図2は、本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に表す図である。
Also, in the example shown in FIG. 1, the configuration is such that one thermally conductive member 52 is provided, but the configuration is not limited to this. A configuration in which a plurality of thermally conductive members are affixed in a spaced-apart manner in the plane direction of the piezoelectric film may be employed.
FIG. 2 is a diagram schematically showing an electroacoustic transducer of the invention having another example of the piezoelectric element of the invention.
 図2に示す電気音響変換器100bは、圧電素子50bと、振動板102と、圧電素子50bを振動板102に貼り付ける貼着層104と、を有する。
 圧電素子50bは、3枚の圧電フィルム10と、3つの熱伝導部材52a~52cと、熱伝導部材52a~52cと圧電フィルム10とを貼着する粘着層54と、を有する。
An electroacoustic transducer 100b shown in FIG. 2 has a piezoelectric element 50b, a diaphragm 102, and an adhesive layer 104 for attaching the piezoelectric element 50b to the diaphragm 102. As shown in FIG.
The piezoelectric element 50b has three piezoelectric films 10, three thermally conductive members 52a to 52c, and an adhesive layer 54 for adhering the thermally conductive members 52a to 52c and the piezoelectric film 10 together.
 圧電素子50bは、3枚の圧電フィルム10が積層されており、一方の最表面側に貼着層104を介して振動板102と貼着されている。また、圧電素子50bの、振動板102とは反対側の最表面側には、粘着層54を介して熱伝導部材52a~52cが貼着されている。具体的には、図2に示す例では、3つの熱伝導部材52a~52cを有し、圧電フィルム10の主面の面方向に、3つの熱伝導部材52a~52cが所定の距離離間して配置されている。また、好ましい態様として、熱伝導部材52aおよび52cはそれぞれ、端部が振動板102と接している。すなわち、熱伝導部材52aは一方の端部が振動板102と接して、他方の端部が圧電素子50bの、振動板102とは反対側の最表面の端部に貼着されるように配置されている。また、熱伝導部材52cは、一方の端部が、圧電素子50bの、振動板102とは反対側の最表面であって熱伝導部材52aが貼着される端部とは反対側の端部に貼着され、他方の端部が、振動板102と接している。また、熱伝導部材52bは、圧電素子50bの、振動板102とは反対側の最表面の、熱伝導部材52aと熱伝導部材52cとの間に貼着されている。言い換えると、圧電素子50bにおいて、熱伝導部材は、複数に分割されて圧電フィルム10に貼着されている。 The piezoelectric element 50b is formed by stacking three piezoelectric films 10, and is attached to the diaphragm 102 via an adhesive layer 104 on one outermost surface side. Heat conducting members 52a to 52c are adhered via an adhesive layer 54 to the outermost surface of the piezoelectric element 50b opposite to the vibration plate 102. As shown in FIG. Specifically, the example shown in FIG. 2 has three thermally conductive members 52a to 52c, and the three thermally conductive members 52a to 52c are spaced apart by a predetermined distance in the planar direction of the main surface of the piezoelectric film 10. are placed. Moreover, as a preferred embodiment, each of the heat conducting members 52a and 52c is in contact with the diaphragm 102 at its end. That is, the heat conducting member 52a is arranged so that one end is in contact with the diaphragm 102 and the other end is adhered to the end of the outermost surface of the piezoelectric element 50b on the side opposite to the diaphragm 102. It is One end of the heat conducting member 52c is the outermost surface of the piezoelectric element 50b on the side opposite to the vibration plate 102 and the end opposite to the end to which the heat conducting member 52a is adhered. , and the other end is in contact with the diaphragm 102 . Moreover, the thermally conductive member 52b is attached between the thermally conductive member 52a and the thermally conductive member 52c on the outermost surface of the piezoelectric element 50b on the side opposite to the vibration plate 102 . In other words, in the piezoelectric element 50 b , the thermally conductive member is divided into a plurality of pieces and adhered to the piezoelectric film 10 .
 このように、圧電フィルムの面方向に、複数の熱伝導部材が離間して貼着されている構成とすることで、熱伝導部材と貼着される面積を大きくして温度上昇を抑制しつつ、圧電フィルム10の振動が熱伝導部材によって阻害されることをより好適に抑制することができる。 In this way, by adopting a structure in which a plurality of thermally conductive members are adhered to each other in the plane direction of the piezoelectric film, the area where the thermally conductive members are adhered is increased to suppress temperature rise. , the vibration of the piezoelectric film 10 can be more suitably suppressed from being hindered by the heat-conducting member.
 なお、図2に示す例では、3つの熱伝導部材を離間して配置する構成としたがこれに限定はされず、2つの熱伝導部材を離間して配置する構成であってもよく、4つ以上の熱伝導部材を離間して配置する構成であってもよい。1つの熱伝導部材の大きさが小さいほど圧電フィルムの振動を阻害することを抑制できる。 In the example shown in FIG. 2, the configuration is such that the three heat conduction members are spaced apart, but the present invention is not limited to this. A configuration in which two or more thermally conductive members are spaced apart from each other may also be used. The smaller the size of one thermally conductive member, the less likely it is that the vibration of the piezoelectric film will be disturbed.
 また、熱伝導部材間の距離には特に制限はないが、0.1mm~5mmが好ましく、0.5mm~2mmがより好ましい。前述のとおり、圧電フィルムの最外面の面積に対する、熱伝導部材52と圧電フィルム10とを貼着した部位の面積の割合は、大きいほど放熱性が高くなり、小さいほど振動の阻害を抑制できる。これらの観点から、熱伝導部材52と圧電フィルム10とを貼着した部位の面積の割合が好適範囲となるように熱伝導部材間の距離を適宜調整してもよい。 Also, the distance between the heat-conducting members is not particularly limited, but is preferably 0.1 mm to 5 mm, more preferably 0.5 mm to 2 mm. As described above, the larger the ratio of the area of the portion where the heat conducting member 52 and the piezoelectric film 10 are adhered to the area of the outermost surface of the piezoelectric film, the higher the heat dissipation, and the smaller the ratio, the more inhibited the vibration. From these points of view, the distance between the heat-conducting members may be appropriately adjusted so that the area ratio of the portion where the heat-conducting member 52 and the piezoelectric film 10 are adhered is within a suitable range.
 また、図2に示す例では、粘着層54は、熱伝導部材52a~52cに合わせて分割されている。しかしながら、これに限定はされず、粘着層54は複数の熱伝導部材を圧電フィルム10と貼着する1枚の層であってもよい。 Also, in the example shown in FIG. 2, the adhesive layer 54 is divided according to the heat conducting members 52a to 52c. However, it is not limited to this, and the adhesive layer 54 may be a single layer that adheres a plurality of heat conducting members to the piezoelectric film 10 .
 また、圧電素子が複数の圧電フィルムを有する構成の場合には、積層された圧電フィルムのうち1層が、他の圧電フィルムよりも面方向に張り出した張り出し部を有し、熱伝導部材が、張り出し部に貼着される構成としてもよい。
 図3に、本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に表す図を示す。
Further, in the case where the piezoelectric element has a plurality of piezoelectric films, one layer of the laminated piezoelectric films has a projecting portion that projects in the plane direction more than the other piezoelectric films, and the heat conducting member It is good also as a structure stuck on an overhang part.
FIG. 3 shows a diagram schematically showing the electroacoustic transducer of the present invention having another example of the piezoelectric element of the present invention.
 図3に示す電気音響変換器100cは、圧電素子50cと、振動板102と、圧電素子50cを振動板102に貼り付ける貼着層104と、を有する。
 圧電素子50cは、3枚の圧電フィルム10と、熱伝導部材52と、熱伝導部材52と圧電フィルム10とを貼着する粘着層54と、を有する。
An electroacoustic transducer 100c shown in FIG. 3 has a piezoelectric element 50c, a diaphragm 102, and an adhesive layer 104 for attaching the piezoelectric element 50c to the diaphragm 102. As shown in FIG.
The piezoelectric element 50 c has three piezoelectric films 10 , a thermally conductive member 52 , and an adhesive layer 54 for adhering the thermally conductive member 52 and the piezoelectric film 10 .
 図3に示すように、圧電素子50cにおいて、3枚の圧電フィルム10のうち、振動板102から最も遠い位置に配置される圧電フィルム10は、他の圧電フィルム10よりも面方向の大きさが大きく、面方向に張り出した張り出し部11を有する。熱伝導部材52は、この張り出し部11の、振動板102と対面する面に粘着層54を介して貼着されている。また、熱伝導部材52の、圧電フィルム10とは反対側の端部は、振動板102に接している。 As shown in FIG. 3, among the three piezoelectric films 10 in the piezoelectric element 50c, the piezoelectric film 10 arranged at the farthest position from the vibration plate 102 has a larger planar dimension than the other piezoelectric films 10. It has a projecting portion 11 that is large and projects in the surface direction. The heat-conducting member 52 is adhered to the surface of the projecting portion 11 facing the diaphragm 102 via an adhesive layer 54 . Also, the end of the heat conducting member 52 on the side opposite to the piezoelectric film 10 is in contact with the diaphragm 102 .
 このように、圧電素子が複数の圧電フィルムを有する構成において、1つの圧電フィルムに張り出し部を設けて、この張り出し部に熱伝導部材を貼着する構成とすることで、圧電素子の厚さを薄くすることができる。 Thus, in the configuration in which the piezoelectric element has a plurality of piezoelectric films, the thickness of the piezoelectric element can be reduced by providing a projecting portion on one piezoelectric film and adhering the thermally conductive member to the projecting portion. can be thinned.
 圧電フィルム10の主面に垂直な方向から見た際の、張り出し部11の面積は、圧電フィルム10の積層部分の面積に対して、10%~100%が好ましく、20%~70%がより好ましい。 The area of the projecting portion 11 when viewed from the direction perpendicular to the main surface of the piezoelectric film 10 is preferably 10% to 100%, more preferably 20% to 70%, of the area of the laminated portion of the piezoelectric film 10. preferable.
 また、図1に示す例では、圧電素子の、振動板と貼着される面とは反対側の面に熱伝導部材を有する構成としたがこれに限定はされない。例えば、圧電素子の振動板との貼着面の一部に、熱伝導部材が設けられ、熱伝導部材が貼着される面以外の領域に圧電素子と振動板とを貼着する貼着層を有する構成としてもよい。
 図4に、本発明の圧電素子の他の一例を有する本発明の電気音響変換器を模式的に表す図を示す。
In addition, in the example shown in FIG. 1, the piezoelectric element has a heat-conducting member on the side opposite to the side attached to the diaphragm, but the present invention is not limited to this. For example, a heat conductive member is provided on a part of the surface of the piezoelectric element to be adhered to the diaphragm, and an adhesive layer that adheres the piezoelectric element and the diaphragm to a region other than the surface to which the heat conductive member is adhered. It is good also as a structure which has.
FIG. 4 shows a diagram schematically showing the electroacoustic transducer of the present invention having another example of the piezoelectric element of the present invention.
 図4に示す電気音響変換器100dは、圧電素子50dと、振動板102と、圧電素子50cを振動板102に貼り付ける貼着層104と、を有する。
 圧電素子50dは、3枚の圧電フィルム10と、熱伝導部材52dと、熱伝導部材52dと圧電フィルム10とを貼着する粘着層54dと、を有する。
An electroacoustic transducer 100d shown in FIG. 4 has a piezoelectric element 50d, a diaphragm 102, and an adhesive layer 104 for bonding the piezoelectric element 50c to the diaphragm 102. As shown in FIG.
The piezoelectric element 50d has three piezoelectric films 10, a heat conducting member 52d, and an adhesive layer 54d for adhering the heat conducting member 52d and the piezoelectric film 10 together.
 図4に示すように、熱伝導部材52dは、積層された圧電フィルム10の、振動板102側の面(貼着面)の端部に粘着層54dを介して貼着されている。図示例では、熱伝導部材52dは、外周の大きさおよび形状が圧電フィルム10と略同じ枠状の部材である。また、粘着層54dも熱伝導部材52dに対応して枠状に形成されている。熱伝導部材52dの圧電フィルム10とは反対側の面は振動板102に接している。 As shown in FIG. 4, the heat-conducting member 52d is attached to the end of the surface (attachment surface) of the laminated piezoelectric film 10 on the diaphragm 102 side via the adhesive layer 54d. In the illustrated example, the heat-conducting member 52d is a frame-shaped member whose outer circumference has substantially the same size and shape as the piezoelectric film 10 . The adhesive layer 54d is also formed in a frame shape corresponding to the heat conducting member 52d. The surface of the heat conducting member 52 d opposite to the piezoelectric film 10 is in contact with the diaphragm 102 .
 枠状の熱伝導部材52dに囲まれた空間には圧電素子50dと振動板102とを貼着する貼着層104が充填されている。すなわち、熱伝導部材52dと貼着層104とは、厚さ方向の略同じ位置に配置される。 A bonding layer 104 for bonding the piezoelectric element 50d and the vibration plate 102 is filled in the space surrounded by the frame-shaped heat-conducting member 52d. That is, the heat conducting member 52d and the adhesive layer 104 are arranged at substantially the same position in the thickness direction.
 このように、圧電素子50dの、振動板102との貼着面の端部に、熱伝導部材52dを設けて、熱伝導部材52dよりも内側に圧電素子50dと振動板102とを貼着する貼着層104を形成することで、熱伝導部材52dと貼着層104とが、厚さ方向の略同じ位置に配置されるため、電気音響変換器100dの厚さを薄くすることができる。 Thus, the heat conducting member 52d is provided at the end of the adhered surface of the piezoelectric element 50d to the diaphragm 102, and the piezoelectric element 50d and the diaphragm 102 are adhered inside the heat conducting member 52d. By forming the adhesive layer 104, the heat conducting member 52d and the adhesive layer 104 are arranged at substantially the same position in the thickness direction, so the thickness of the electroacoustic transducer 100d can be reduced.
 なお、圧電フィルム10の主面に垂直な方向から見た際の、熱伝導部材52dの面積は、圧電フィルム10の面積に対して、20%~50%が好ましく、30%~40%がより好ましい。 The area of the heat conducting member 52d when viewed from the direction perpendicular to the main surface of the piezoelectric film 10 is preferably 20% to 50%, more preferably 30% to 40%, of the area of the piezoelectric film 10. preferable.
 また、図4に示す例では、熱伝導部材52dは、枠状の部材とし、圧電フィルム10の貼着面の端部(辺縁部)の全域に配置される構成としたが、これに限定はされず、熱伝導部材は、圧電フィルム10の貼着面の一部に配置される構成であればよい。 In addition, in the example shown in FIG. 4, the heat-conducting member 52d is a frame-shaped member, and is arranged over the entire edge (peripheral portion) of the adhered surface of the piezoelectric film 10. However, the present invention is limited to this. It is sufficient that the heat-conducting member is disposed on a portion of the adhered surface of the piezoelectric film 10 .
 また、図1等に示す例では、圧電素子は、複数枚の圧電フィルムが積層された構成を有するものとしたが、これに限定はされず、圧電素子は、図5に示すように、長尺な圧電フィルム10Lを1回以上折り返すことで、複数層積層された圧電フィルムを有するものとしてもよい。 In addition, in the example shown in FIG. 1 and the like, the piezoelectric element has a configuration in which a plurality of piezoelectric films are laminated. By folding the long piezoelectric film 10L one or more times, the piezoelectric film may be laminated in multiple layers.
 長尺な圧電フィルム10Lを折り返して積層した構成は、以下のような利点を有する。
 すなわち、カットシート状の圧電フィルム10を、複数枚、積層した場合には、1枚の圧電フィルム毎に、第1電極層14および第2電極層16を、駆動電源に接続する必要がある。これに対して、長尺な圧電フィルム10Lを折り返して積層した構成では、一枚の長尺な圧電フィルム10Lのみで積層体を構成できる。また、長尺な圧電フィルム10Lを折り返して積層した構成では、駆動電圧を印加するための電源が1個で済み、さらに、圧電フィルム10Lからの電極の引き出しも、1か所でよい。
 さらに、長尺な圧電フィルム10Lを折り返して積層した構成では、必然的に、隣接する圧電フィルム同士で、分極方向が互いに逆になる。
The configuration in which the long piezoelectric film 10L is folded and laminated has the following advantages.
That is, when a plurality of cut sheet-shaped piezoelectric films 10 are laminated, the first electrode layer 14 and the second electrode layer 16 must be connected to the drive power source for each piezoelectric film. On the other hand, in the configuration in which the long piezoelectric film 10L is folded and laminated, the laminated body can be configured with only one long piezoelectric film 10L. In addition, in the configuration in which the long piezoelectric film 10L is folded and laminated, only one power source is required for applying the drive voltage, and the electrodes from the piezoelectric film 10L need only be drawn out at one point.
Furthermore, in the structure in which the long piezoelectric films 10L are folded and laminated, the polarization directions of adjacent piezoelectric films are inevitably opposite to each other.
 以下、本発明の圧電素子および電気音響変換器の構成要素について説明する。なお、以下の説明において、区別する必要がない場合には、圧電素子50a~50dをまとめて圧電素子50ともいう。同様に、電気音響変換器100a~100dを電気音響変換器100ともいう。また、熱伝導部材52、52a~52dをまとめて、熱伝導部材52ともいう。 The constituent elements of the piezoelectric element and electroacoustic transducer of the present invention will be described below. In the following description, the piezoelectric elements 50a to 50d are collectively referred to as the piezoelectric element 50 when there is no need to distinguish them. Similarly, electroacoustic transducers 100a-100d are also referred to as electroacoustic transducer 100. FIG. Also, the heat conducting members 52, 52a to 52d are collectively referred to as the heat conducting member 52.
 図6に、圧電フィルム10の一部を拡大して示す。
 図6に示す圧電フィルム10は、圧電性を有するシート状物である圧電体層12と、圧電体層12の一方の面に積層される第2電極層16と、第2電極層16の圧電体層12と反対側の面に積層される第2保護層20と、圧電体層12の他方の面に積層される第1電極層14と、第1電極層14の圧電体層12と反対側の面に積層される第1保護層18と、を有する。すなわち、圧電フィルム10は、圧電体層12を電極層で挟持し、電極層の圧電体層が接触していない面に保護層が積層された構成を有する。
FIG. 6 shows an enlarged view of a part of the piezoelectric film 10. As shown in FIG.
Piezoelectric film 10 shown in FIG. A second protective layer 20 laminated on the surface opposite to the body layer 12, a first electrode layer 14 laminated on the other surface of the piezoelectric layer 12, and the first electrode layer 14 opposite to the piezoelectric layer 12. and a first protective layer 18 laminated on the side surface. That is, the piezoelectric film 10 has a configuration in which the piezoelectric layer 12 is sandwiched between electrode layers, and a protective layer is laminated on the surface of the electrode layer that is not in contact with the piezoelectric layer.
 本発明において、圧電体層12は、公知の圧電体層が、各種、利用可能である。
 本発明において、圧電体層12は、図6に概念的に示すように、高分子材料を含むマトリックス24中に、圧電体粒子26を含む、高分子複合圧電体であるのが好ましい。
In the present invention, various known piezoelectric layers can be used for the piezoelectric layer 12 .
In the present invention, the piezoelectric layer 12 is preferably a polymeric composite piezoelectric body containing piezoelectric particles 26 in a matrix 24 containing a polymeric material, as conceptually shown in FIG.
 圧電体層12を構成する高分子複合圧電体のマトリックス24(マトリックス兼バインダ)の材料として、常温で粘弾性を有する高分子材料を用いるのが好ましい。なお、本明細書において、「常温」とは、0~50℃程度の温度域を指す。 As the material of the polymer composite piezoelectric matrix 24 (matrix and binder) that constitutes the piezoelectric layer 12, it is preferable to use a polymer material that has viscoelasticity at room temperature. In this specification, "ordinary temperature" refers to a temperature range of about 0 to 50.degree.
 ここで、高分子複合圧電体(圧電体層12)は、次の用件を具備したものであるのが好ましい。
 (i) 可撓性
 例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
Here, the polymer composite piezoelectric body (piezoelectric layer 12) preferably satisfies the following requirements.
(i) Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
 以上をまとめると、エキサイターとして用いるフレキシブルな高分子複合圧電体は、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことが求められる。また、高分子複合圧電体の損失正接は、20kHz以下の全ての周波数の振動に対して、適度に大きいことが求められる。
 さらに、貼り付ける相手材(振動板)の剛性(硬さ、コシ、バネ定数)に合わせて、積層することで、簡便にバネ定数を調節できるのが好ましく、その際、貼着層104は薄ければ薄いほど、エネルギー効率を高めることができる。
In summary, the flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less. Also, the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
Furthermore, it is preferable that the spring constant can be easily adjusted by laminating according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to which the adhesive layer 104 is attached. The thinner it is, the more energy efficient it can be.
 一般に、高分子固体は粘弾性緩和機構を有しており、温度上昇あるいは周波数の低下とともに大きなスケールの分子運動が貯蔵弾性率(ヤング率)の低下(緩和)あるいは損失弾性率の極大(吸収)として観測される。その中でも、非晶質領域の分子鎖のミクロブラウン運動によって引き起こされる緩和は、主分散と呼ばれ、非常に大きな緩和現象が見られる。この主分散が起きる温度がガラス転移点(Tg)であり、最も粘弾性緩和機構が顕著に現れる。
 高分子複合圧電体(圧電体層12)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
In general, polymer solids have a viscoelastic relaxation mechanism, and as the temperature rises or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed. The temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
In the polymer composite piezoelectric body (piezoelectric layer 12), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature as a matrix, it is possible to suppress vibrations of 20 Hz to 20 kHz. This realizes a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less. In particular, it is preferable to use a polymer material having a glass transition point at room temperature, ie, 0 to 50° C. at a frequency of 1 Hz, for the matrix of the polymer composite piezoelectric material, because this behavior is favorably expressed.
 常温で粘弾性を有する高分子材料としては、公知の各種のものが利用可能である。好ましくは、常温、すなわち0~50℃において、動的粘弾性試験による周波数1Hzにおける損失正接Tanδの極大値が、0.5以上有る高分子材料を用いる。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックスと圧電体粒子との界面の応力集中が緩和され、高い可撓性が期待できる。
Various known materials can be used as the polymer material having viscoelasticity at room temperature. Preferably, a polymer material having a maximum value of 0.5 or more in loss tangent Tan δ at a frequency of 1 Hz in a dynamic viscoelasticity test at normal temperature, ie, 0 to 50° C., is used.
As a result, when the polymer composite piezoelectric body is slowly bent by an external force, the stress concentration at the interface between the polymer matrix and the piezoelectric particles at the maximum bending moment is relaxed, and high flexibility can be expected.
 また、常温で粘弾性を有する高分子材料は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において100MPa以上、50℃において10MPa以下、であるのが好ましい。
 これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
The polymer material having viscoelasticity at room temperature preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
As a result, the bending moment generated when the polymeric composite piezoelectric body is slowly bent by an external force can be reduced, and at the same time, it can behave rigidly against acoustic vibrations of 20 Hz to 20 kHz.
 また、常温で粘弾性を有する高分子材料は、比誘電率が25℃において10以上有ると、より好適である。これにより、高分子複合圧電体に電圧を印加した際に、マトリックス中の圧電体粒子にはより高い電界が掛かるため、大きな変形量が期待できる。
 しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
Further, it is more preferable that the polymer material having viscoelasticity at room temperature has a dielectric constant of 10 or more at 25°C. As a result, when a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
On the other hand, however, in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
 このような条件を満たす常温で粘弾性を有する高分子材料としては、シアノエチル化ポリビニルアルコール(シアノエチル化PVA)、ポリ酢酸ビニル、ポリビニリデンクロライドコアクリロニトリル、ポリスチレン-ビニルポリイソプレンブロック共重合体、ポリビニルメチルケトン、および、ポリブチルメタクリレート等が例示される。また、これらの高分子材料としては、ハイブラー5127(クラレ社製)などの市販品も、好適に利用可能である。なかでも、高分子材料としては,シアノエチル基を有する材料を用いることが好ましく、シアノエチル化PVAを用いるのが特に好ましい。 Examples of polymeric materials having viscoelasticity at room temperature that meet these conditions include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, and polyvinylmethyl. Examples include ketones and polybutyl methacrylate. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials. Among them, as the polymer material, it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
 常温で粘弾性を有する高分子材料としては、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。すなわち、本発明において、圧電体層12は、マトリックス24として、シアノエチル基を有する高分子材料を用いるのが好ましく、シアノエチル化PVAを用いるのが特に好ましい。
 以下の説明では、シアノエチル化PVAを代表とする上述の高分子材料を、まとめて『常温で粘弾性を有する高分子材料』とも言う。
As the polymer material having viscoelasticity at room temperature, it is preferable to use a polymer material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA. That is, in the present invention, the piezoelectric layer 12 preferably uses a polymer material having a cyanoethyl group as the matrix 24, and particularly preferably uses cyanoethylated PVA.
In the following description, the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature".
 なお、これらの常温で粘弾性を有する高分子材料は、1種のみを用いてもよく、複数種を併用(混合)して用いてもよい。 These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
 このような常温で粘弾性を有する高分子材料を用いるマトリックス24は、必要に応じて、複数の高分子材料を併用してもよい。
 すなわち、マトリックス24には、誘電特性や機械特性の調節等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
The matrix 24 using such a polymer material having viscoelasticity at room temperature may use a plurality of polymer materials together, if necessary.
That is, in addition to viscoelastic materials such as cyanoethylated PVA, other dielectric polymer materials may be added to the matrix 24 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
 添加可能な誘電性高分子材料としては、一例として、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、ポリフッ化ビニリデン-トリフルオロエチレン共重合体およびポリフッ化ビニリデン-テトラフルオロエチレン共重合体等のフッ素系高分子、シアン化ビニリデン-酢酸ビニル共重合体、シアノエチルセルロース、シアノエチルヒドロキシサッカロース、シアノエチルヒドロキシセルロース、シアノエチルヒドロキシプルラン、シアノエチルメタクリレート、シアノエチルアクリレート、シアノエチルヒドロキシエチルセルロース、シアノエチルアミロース、シアノエチルヒドロキシプロピルセルロース、シアノエチルジヒドロキシプロピルセルロース、シアノエチルヒドロキシプロピルアミロース、シアノエチルポリアクリルアミド、シアノエチルポリアクリレート、シアノエチルプルラン、シアノエチルポリヒドロキシメチレン、シアノエチルグリシドールプルラン、シアノエチルサッカロースおよびシアノエチルソルビトール等のシアノ基またはシアノエチル基を有するポリマー、ならびに、ニトリルゴムやクロロプレンゴム等の合成ゴム等が例示される。
 中でも、シアノエチル基を有する高分子材料は、好適に利用される。
 また、圧電体層12のマトリックス24において、これらの誘電性高分子材料は、1種に限定はされず、複数種を添加してもよい。
Examples of dielectric polymer materials that can be added include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer. and fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullulan, cyanoethylsaccharose and cyanoethylsorbitol. Alternatively, polymers having cyanoethyl groups, and synthetic rubbers such as nitrile rubber and chloroprene rubber are exemplified.
Among them, polymer materials having cyanoethyl groups are preferably used.
Moreover, in the matrix 24 of the piezoelectric layer 12, these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
 また、マトリックス24には、誘電性高分子材料以外にも、ガラス転移点Tgを調節する目的で、塩化ビニル樹脂、ポリエチレン、ポリスチレン、メタクリル樹脂、ポリブテン、および、イソブチレン等の熱可塑性樹脂、ならびに、フェノール樹脂、尿素樹脂、メラミン樹脂、アルキド樹脂、および、マイカ等の熱硬化性樹脂を添加しても良い。
 さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
In addition to the dielectric polymer material, the matrix 24 also includes thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg, and Thermosetting resins such as phenolic resins, urea resins, melamine resins, alkyd resins, and mica may be added.
Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
 圧電体層12のマトリックス24において、シアノエチル化PVA等の粘弾性を有する高分子材料以外の材料を添加する際の添加量には、特に限定は無いが、マトリックス24に占める割合で30質量%以下とするのが好ましい。
 これにより、マトリックス24における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子26および電極層との密着性向上等の点で好ましい結果を得ることができる。
When adding a material other than a polymer material having viscoelasticity, such as cyanoethylated PVA, to the matrix 24 of the piezoelectric layer 12, the addition amount is not particularly limited, but the ratio of the material to the matrix 24 is 30% by mass or less. is preferable.
As a result, the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the matrix 24, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 26 and the electrode layer can be improved. favorable results can be obtained in terms of
 圧電体層12は、このようなマトリックス24に、圧電体粒子26を含む、高分子複合圧電体からなる層である。圧電体粒子26は、マトリックス24に分散されている。好ましくは、圧電体粒子26は、マトリックス24に均一(略均一)に分散される。
 圧電体粒子26は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
 圧電体粒子26を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
The piezoelectric layer 12 is a layer made of a polymeric composite piezoelectric material containing piezoelectric particles 26 in such a matrix 24 . Piezoelectric particles 26 are dispersed in the matrix 24 . Preferably, the piezoelectric particles 26 are uniformly (substantially uniformly) dispersed in the matrix 24 .
The piezoelectric particles 26 are made of ceramic particles having a perovskite or wurtzite crystal structure.
Examples of ceramic particles forming the piezoelectric particles 26 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
 このような圧電体粒子26の粒径には制限はなく、圧電フィルム10のサイズ、および、圧電素子50の用途等に応じて、適宜、選択すれば良い。圧電体粒子26の粒径は、1~10μmが好ましい。
 圧電体粒子26の粒径をこの範囲とすることにより、圧電フィルム10が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
The particle size of the piezoelectric particles 26 is not limited, and may be appropriately selected according to the size of the piezoelectric film 10, the application of the piezoelectric element 50, and the like. The particle size of the piezoelectric particles 26 is preferably 1 to 10 μm.
By setting the particle size of the piezoelectric particles 26 within this range, favorable results can be obtained in that the piezoelectric film 10 can achieve both high piezoelectric characteristics and flexibility.
 なお、圧電体層12中の圧電体粒子26は、マトリックス24中に、均一かつ規則性を持って分散されていてもよいし、均一に分散されていれば、マトリックス24中に不規則に分散されていてもよい。 The piezoelectric particles 26 in the piezoelectric layer 12 may be uniformly and regularly dispersed in the matrix 24, or if they are uniformly dispersed, they will be dispersed irregularly in the matrix 24. may have been
 圧電フィルム10において、圧電体層12中におけるマトリックス24と圧電体粒子26との量比には、制限はなく、圧電フィルム10の面方向の大きさおよび厚さ、圧電素子50の用途、ならびに、圧電素子50に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層12中における圧電体粒子26の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。
 マトリックス24と圧電体粒子26との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
In the piezoelectric film 10, the quantitative ratio of the matrix 24 and the piezoelectric particles 26 in the piezoelectric layer 12 is not limited, and the size and thickness of the piezoelectric film 10 in the plane direction, the application of the piezoelectric element 50, and It may be appropriately set according to the characteristics required for the piezoelectric element 50 .
The volume fraction of the piezoelectric particles 26 in the piezoelectric layer 12 is preferably 30% to 80%, more preferably 50% or more, and therefore more preferably 50% to 80%.
By setting the amount ratio between the matrix 24 and the piezoelectric particles 26 within the above range, favorable results can be obtained in terms of achieving both high piezoelectric characteristics and flexibility.
 圧電フィルム10において、圧電体層12の厚さには、特に限定はなく、圧電素子50の用途、圧電素子50における圧電フィルムの積層数、圧電フィルム10に要求される特性等に応じて、適宜、設定すればよい。
 圧電体層12が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電フィルム10を伸縮させるために必要な電圧(電位差)は大きくなる。
 圧電体層12の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。
 圧電体層12の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
In the piezoelectric film 10 , the thickness of the piezoelectric layer 12 is not particularly limited, and may be appropriately determined according to the application of the piezoelectric element 50 , the number of layers of the piezoelectric film in the piezoelectric element 50 , the properties required of the piezoelectric film 10 , and the like. , should be set.
The thicker the piezoelectric layer 12 is, the more advantageous it is in terms of rigidity such as stiffness of the so-called sheet-like material, but the voltage (potential difference) required to expand and contract the piezoelectric film 10 by the same amount is increased.
The thickness of the piezoelectric layer 12 is preferably 10-300 μm, more preferably 20-200 μm, and even more preferably 30-150 μm.
By setting the thickness of the piezoelectric layer 12 within the above range, favorable results can be obtained in terms of ensuring both rigidity and appropriate flexibility.
 また、圧電体層12は、厚さ方向に分極処理(ポーリング)されているのが好ましい。 Also, the piezoelectric layer 12 is preferably polarized (poled) in the thickness direction.
 なお、本発明において、圧電体層12は、上述したような、シアノエチル化PVAのような常温で粘弾性を有する高分子材料からなるマトリックス24に、圧電体粒子26を含む高分子複合圧電体に制限はされない。
 すなわち、本発明の圧電フィルム10において、圧電体層は、公知の圧電体層が、各種、利用可能である。
In the present invention, the piezoelectric layer 12 is a polymeric composite piezoelectric body containing piezoelectric particles 26 in a matrix 24 made of a polymeric material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. No restrictions.
That is, in the piezoelectric film 10 of the present invention, various known piezoelectric layers can be used as the piezoelectric layer.
 一例として、上述したポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン共重合体およびフッ化ビニリデン-トリフルオロエチレン共重合体等の誘電性高分子材料を含むマトリックスに同様の圧電体粒子26を含む高分子複合圧電体、ポリフッ化ビニリデンからなる圧電体層、ポリフッ化ビニリデン以外のフッ素樹脂からなる圧電体層、および、ポリL乳酸からなるフィルムとポリD乳酸からなるフィルムとを積層した圧電体層等も利用可能である。
 しかしながら、上述のように、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞うことができ、優れた音響特性が得られる、可撓性に優れる等の点で、上述したシアノエチル化PVAのような常温で粘弾性を有する高分子材料からなるマトリックス24に、圧電体粒子26を含む高分子複合圧電体が、好適に利用される。
As an example, a high-performance dielectric material containing similar piezoelectric particles 26 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used. Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
However, as described above, it is hard against vibrations of 20 Hz to 20 kHz, and can behave softly against slow vibrations of several Hz or less, and has excellent acoustic characteristics and excellent flexibility. Therefore, a polymer composite piezoelectric body containing piezoelectric particles 26 in a matrix 24 made of a polymer material having viscoelasticity at room temperature, such as the cyanoethylated PVA described above, is preferably used.
 図6に示すように、圧電フィルム10は、このような圧電体層12の一面に、第2電極層16を有し、その上に第2保護層20を有し、圧電体層12の他方の面に、第1電極層14を有し、その上に第1保護層18を有してなる構成を有する。ここで、第1電極層14と第2電極層16とが電極対を形成する。 As shown in FIG. 6, the piezoelectric film 10 has a second electrode layer 16 on one surface of the piezoelectric layer 12, and a second protective layer 20 thereon. has a first electrode layer 14 on the surface thereof, and a first protective layer 18 thereon. Here, the first electrode layer 14 and the second electrode layer 16 form an electrode pair.
 すなわち、圧電フィルム10は、圧電体層12の両面を電極対、すなわち、第2電極層16および第1電極層14で挟持し、この積層体を、第2保護層20および第1保護層18で挟持してなる構成を有する。
 このように、圧電フィルム10において、第2電極層16および第1電極層14で挾持された領域は、印加された電圧に応じて伸縮される。
 なお、第2電極層16および第2保護層20、ならびに、第1電極層14および第1保護層18は、圧電フィルム10を説明するために、便宜的に付しているものである。従って、本発明における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
That is, in the piezoelectric film 10, both surfaces of the piezoelectric layer 12 are sandwiched between electrode pairs, that is, the second electrode layer 16 and the first electrode layer 14, and this laminate is formed into the second protective layer 20 and the first protective layer 18. It has a configuration sandwiched between.
Thus, in the piezoelectric film 10, the region sandwiched between the second electrode layer 16 and the first electrode layer 14 expands and contracts according to the applied voltage.
The second electrode layer 16 and the second protective layer 20 as well as the first electrode layer 14 and the first protective layer 18 are attached for the sake of convenience in describing the piezoelectric film 10 . Therefore, the first and second aspects of the present invention have no technical significance and are irrelevant to the actual usage conditions.
 本発明において圧電フィルム10は、これらの層に加えて、例えば、電極層と圧電体層12とを貼着するための貼着層、および、電極層と保護層とを貼着するための貼着層を有してもよい。
 貼着剤は、接着剤でも粘着剤でもよい。また、貼着剤は、圧電体層12から圧電体粒子26を除いた高分子材料すなわちマトリックス24と同じ材料も、好適に利用可能である。なお、貼着層は、第1電極層14側および第2電極層16側の両方に有してもよく、第1電極層14側および第2電極層16側の一方のみに有してもよい。
In the present invention, the piezoelectric film 10 includes, in addition to these layers, an adhesive layer for attaching the electrode layer and the piezoelectric layer 12 and an adhesive layer for attaching the electrode layer and the protective layer. It may have a layer.
The adhesive may be an adhesive or an adhesive. Also, the same material as the matrix 24, that is, the polymer material obtained by removing the piezoelectric particles 26 from the piezoelectric layer 12, can be suitably used as the adhesive. The adhesive layer may be provided on both the first electrode layer 14 side and the second electrode layer 16 side, or may be provided on only one of the first electrode layer 14 side and the second electrode layer 16 side. good.
 圧電フィルム10において、第2保護層20および第1保護層18は、第1電極層14および第2電極層16を被覆すると共に、圧電体層12に適度な剛性と機械的強度を付与する役目を担っている。すなわち、圧電フィルム10において、マトリックス24と圧電体粒子26とからなる圧電体層12は、ゆっくりとした曲げ変形に対しては、非常に優れた可撓性を示す一方で、用途によっては、剛性や機械的強度が不足する場合がある。圧電フィルム10は、それを補うために第2保護層20および第1保護層18が設けられる。
 第1保護層18と第2保護層20とは、配置位置が異なるのみで、構成は同じである。従って、以下の説明においては、第1保護層18および第2保護層20を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
In the piezoelectric film 10, the second protective layer 20 and the first protective layer 18 cover the first electrode layer 14 and the second electrode layer 16, and provide the piezoelectric layer 12 with appropriate rigidity and mechanical strength. is responsible for That is, in the piezoelectric film 10, the piezoelectric layer 12 made up of the matrix 24 and the piezoelectric particles 26 exhibits excellent flexibility against slow bending deformation, but depending on the application, the rigidity may increase. and mechanical strength may be insufficient. The piezoelectric film 10 is provided with a second protective layer 20 and a first protective layer 18 to compensate.
The first protective layer 18 and the second protective layer 20 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 18 and the second protective layer 20, both members are collectively referred to as protective layers.
 第2保護層20および第1保護層18には、制限はなく、各種のシート状物が利用可能であり、一例として、各種の樹脂フィルムが好適に例示される。
 中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
Various sheet materials can be used for the second protective layer 20 and the first protective layer 18 without limitation, and various resin films are preferably exemplified as examples.
Among them, polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), due to their excellent mechanical properties and heat resistance. ), polyetherimide (PEI), polyimide (PI), polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, and the like are preferably used.
 第2保護層20および第1保護層18の厚さにも、制限はない。また、第2保護層20および第1保護層18の厚さは、基本的に同じであるが、異なってもよい。
 ここで、第2保護層20および第1保護層18の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、第2保護層20および第1保護層18は、薄いほど有利である。
The thicknesses of the second protective layer 20 and the first protective layer 18 are also not limited. Also, the thicknesses of the second protective layer 20 and the first protective layer 18 are basically the same, but may be different.
Here, if the rigidity of the second protective layer 20 and the first protective layer 18 is too high, not only will the expansion and contraction of the piezoelectric layer 12 be constrained, but also the flexibility will be impaired. Therefore, the thinner the second protective layer 20 and the first protective layer 18, the better, except for the case where mechanical strength and good handling property as a sheet-like article are required.
 圧電フィルム10においては、第2保護層20および第1保護層18の厚さが、圧電体層12の厚さの2倍以下であれば、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
 例えば、圧電体層12の厚さが50μmで第2保護層20および第1保護層18がPETからなる場合、第2保護層20および第1保護層18の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
In the piezoelectric film 10, if the thickness of the second protective layer 20 and the first protective layer 18 is not more than twice the thickness of the piezoelectric layer 12, it is possible to ensure both rigidity and appropriate flexibility. favorable results can be obtained.
For example, when the thickness of the piezoelectric layer 12 is 50 μm and the second protective layer 20 and the first protective layer 18 are made of PET, the thickness of the second protective layer 20 and the first protective layer 18 is preferably 100 μm or less. 50 μm or less is more preferable, and 25 μm or less is even more preferable.
 圧電フィルム10において、圧電体層12と第2保護層20との間には第2電極層16が、圧電体層12と第1保護層18との間には第1電極層14が、それぞれ形成される。 第2電極層16および第1電極層14は、圧電体層12(圧電フィルム10)に電圧を印加するために設けられる。 In the piezoelectric film 10, the second electrode layer 16 is provided between the piezoelectric layer 12 and the second protective layer 20, and the first electrode layer 14 is provided between the piezoelectric layer 12 and the first protective layer 18. It is formed. The second electrode layer 16 and the first electrode layer 14 are provided for applying voltage to the piezoelectric layer 12 (piezoelectric film 10).
 第1電極層14および第2電極層16は、位置が異なる以外は、基本的に同じものである。従って、以下の説明においては、第1電極層14および第2電極層16を区別する必要がない場合には、両部材をまとめて、電極層ともいう。 The first electrode layer 14 and the second electrode layer 16 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 14 and the second electrode layer 16, both members are collectively referred to as electrode layers.
 本発明において、第2電極層16および第1電極層14の形成材料には制限はなく、各種の導電体が利用可能である。具体的には、炭素、パラジウム、鉄、錫、アルミニウム、ニッケル、白金、金、銀、銅、チタン、クロムおよびモリブデン等の金属、これらの合金、これらの金属および合金の積層体および複合体、ならびに、酸化インジウムスズ等が例示される。あるいは、PEDOT/PPS(ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸)などの導電性高分子も例示される。中でも、銅、アルミニウム、金、銀、白金、および、酸化インジウムスズは、第2電極層16および第1電極層14として好適に例示される。その中でも、導電性、コストおよび可撓性等の観点から銅がより好ましい。 In the present invention, the materials for forming the second electrode layer 16 and the first electrode layer 14 are not limited, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, alloys thereof, laminates and composites of these metals and alloys, Also, indium tin oxide and the like are exemplified. Alternatively, conductive polymers such as PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfonic acid) are also exemplified. Among them, copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the second electrode layer 16 and the first electrode layer 14 . Among them, copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
 また、第2電極層16および第1電極層14の形成方法にも制限はなく、真空蒸着およびスパッタリング等の気相堆積法(真空成膜法)、めっきによる成膜、ならびに、上記材料で形成された箔を貼着する方法等、公知の方法が、各種、利用可能である。 In addition, the method of forming the second electrode layer 16 and the first electrode layer 14 is not limited, and may be a vapor phase deposition method (vacuum film formation method) such as vacuum deposition or sputtering, a film formation by plating, or the formation of the above materials. A variety of known methods are available, such as affixing the foils.
 中でも特に、圧電フィルム10の可撓性が確保できる等の理由で、真空蒸着によって成膜された銅およびアルミニウム等の薄膜は、第2電極層16および第1電極層14として、好適に利用される。その中でも特に、真空蒸着による銅の薄膜は、好適に利用される。 In particular, thin films of copper, aluminum, etc., formed by vacuum deposition are preferably used as the second electrode layer 16 and the first electrode layer 14 because the flexibility of the piezoelectric film 10 can be ensured. be. Among them, a copper thin film formed by vacuum deposition is particularly preferably used.
 第2電極層16および第1電極層14の厚さには、制限はない。また、第2電極層16および第1電極層14の厚さは、基本的に同じであるが、異なってもよい。
 ここで、前述の第2保護層20および第1保護層18と同様に、第2電極層16および第1電極層14の剛性が高過ぎると、圧電体層12の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、第2電極層16および第1電極層14は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
The thicknesses of the second electrode layer 16 and the first electrode layer 14 are not limited. Moreover, although the thicknesses of the second electrode layer 16 and the first electrode layer 14 are basically the same, they may be different.
Here, similarly to the second protective layer 20 and the first protective layer 18 described above, if the rigidity of the second electrode layer 16 and the first electrode layer 14 is too high, not only will the expansion and contraction of the piezoelectric layer 12 be restricted, Flexibility is also impaired. Therefore, the thinner the second electrode layer 16 and the first electrode layer 14, the better, as long as the electrical resistance does not become too high.
 圧電フィルム10においては、第2電極層16および第1電極層14の厚さと、ヤング率との積が、第2保護層20および第1保護層18の厚さとヤング率との積を下回れば、可撓性を大きく損なうことがないため、好適である。
 例えば、第2保護層20および第1保護層18がPET(ヤング率:約6.2GPa)で、第2電極層16および第1電極層14が銅(ヤング率:約130GPa)からなる組み合わせの場合、第2保護層20および第1保護層18の厚さが25μmだとすると、第2電極層16および第1電極層14の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
In the piezoelectric film 10, if the product of the thickness of the second electrode layer 16 and the first electrode layer 14 and the Young's modulus is less than the product of the thickness of the second protective layer 20 and the first protective layer 18 and the Young's modulus , is preferred because it does not significantly impair flexibility.
For example, the second protective layer 20 and the first protective layer 18 are made of PET (Young's modulus: about 6.2 GPa), and the second electrode layer 16 and the first electrode layer 14 are made of copper (Young's modulus: about 130 GPa). In this case, if the thickness of the second protective layer 20 and the first protective layer 18 is 25 μm, the thickness of the second electrode layer 16 and the first electrode layer 14 is preferably 1.2 μm or less, more preferably 0.3 μm or less. , it is preferably 0.1 μm or less.
 上述したように、圧電フィルム10は、高分子材料を含むマトリックス24に圧電体粒子26を分散してなる圧電体層12を、第2電極層16および第1電極層14で挟持し、さらに、この積層体を、第2保護層20および第1保護層18を挟持してなる構成を有する。
 このような圧電フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。
 これにより、圧電フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
As described above, in the piezoelectric film 10, the piezoelectric layer 12, which is formed by dispersing the piezoelectric particles 26 in the matrix 24 containing a polymer material, is sandwiched between the second electrode layer 16 and the first electrode layer 14, and further, This laminate has a structure in which the second protective layer 20 and the first protective layer 18 are sandwiched.
In such a piezoelectric film 10, the maximum value of the loss tangent (Tan δ) at a frequency of 1 Hz by dynamic viscoelasticity measurement preferably exists at room temperature, and the maximum value of 0.1 or more exists at room temperature. more preferred.
As a result, even if the piezoelectric film 10 is subjected to a relatively slow and large bending deformation of several Hz or less from the outside, the strain energy can be effectively diffused to the outside as heat. It is possible to prevent cracks from occurring at the interface of
 圧電フィルム10は、動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)が、0℃において10~30GPa、50℃において1~10GPaであるのが好ましい。なお、この条件に関しては、圧電体層12も同様である。
 これにより、常温で圧電フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
The piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Note that this condition applies to the piezoelectric layer 12 as well.
Accordingly, the piezoelectric film 10 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
 また、圧電フィルム10は、厚さと動的粘弾性測定による周波数1Hzでの貯蔵弾性率(E’)との積が、0℃において1.0×105~2.0×106N/m、50℃において1.0×105~1.0×106N/mであるのが好ましい。なお、この条件に関しては、圧電体層12も同様である。
 これにより、圧電フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
In addition, the piezoelectric film 10 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz determined by dynamic viscoelasticity measurement of 1.0×10 5 to 2.0×10 6 N/m at 0° C. , 1.0×10 5 to 1.0×10 6 N/m at 50°C. Note that this condition applies to the piezoelectric layer 12 as well.
As a result, the piezoelectric film 10 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
 さらに、圧電フィルム10は、動的粘弾性測定から得られたマスターカーブにおいて、25℃、周波数1kHzにおける損失正接(Tanδ)が、0.05以上であるのが好ましい。この条件に関しては、圧電体層12も同様である。
 これにより、圧電フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数fが変化した際の音質の変化量も小さくできる。
Furthermore, the piezoelectric film 10 preferably has a loss tangent (Tan δ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. This condition applies to the piezoelectric layer 12 as well.
As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the amount of change in sound quality when the lowest resonance frequency f0 changes as the curvature of the speaker changes can be reduced.
 なお、本発明において、圧電フィルム10および圧電体層12等の貯蔵弾性率(ヤング率)および損失正接は、公知の方法で測定すればよい。一例として、エスアイアイ・ナノテクノロジー社製(SIIナノテクノロジー社製)の動的粘弾性測定装置DMS6100を用いて測定すればよい。
 測定条件としては、一例として、測定周波数は0.1Hz~20Hz(0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hz)が、測定温度は-50~150℃が、昇温速度は2℃/分(窒素雰囲気中)が、サンプルサイズは40mm×10mm(クランプ領域込み)が、チャック間距離は20mmが、それぞれ、例示される。
In the present invention, the storage elastic modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 12, etc. may be measured by known methods. As an example, the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) may be used for measurement.
As an example of the measurement conditions, the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz), and the measurement temperature is -50 to 150 ° C. , a heating rate of 2° C./min (in a nitrogen atmosphere), a sample size of 40 mm×10 mm (including the clamping area), and a distance between chucks of 20 mm.
 圧電素子50において、各圧電フィルム10の第2電極層16および第1電極層14には、圧電フィルム10を伸縮させる駆動電圧を印加すなわち駆動電力を供給する、電源が接続される。
 電源には、制限はなく、直流電源でも交流電源でもよい。また、駆動電圧も、圧電フィルム10の圧電体層12の厚さおよび形成材料等に応じて、圧電フィルム10を適正に駆動できる駆動電圧を、適宜、設定すればよい。
In the piezoelectric element 50 , a power source is connected to the second electrode layer 16 and the first electrode layer 14 of each piezoelectric film 10 to apply a drive voltage for expanding and contracting the piezoelectric film 10 , that is, to supply drive power.
There are no restrictions on the power source, and it may be a DC power source or an AC power source. Also, the driving voltage may be appropriately set according to the thickness of the piezoelectric layer 12 of the piezoelectric film 10, the material used for forming the piezoelectric film 10, and the like, so that the piezoelectric film 10 can be properly driven.
 第2電極層16および第1電極層14から電極の引き出し方法には、制限はなく、公知の各種の方法が利用可能である。
 一例として、第2電極層16および第1電極層14に銅箔等の導電体を接続して外部に電極を引き出す方法、および、レーザ等によって第2保護層20および第1保護層18に貫通孔を形成して、この貫通孔に導電性材料を充填して外部に電極を引き出す方法、等が例示される。
 好適な電極の引き出し方法として、特開2014-209724号公報に記載される方法、および、特開2016-015354号公報に記載される方法等が例示される。
There are no restrictions on the method of extracting electrodes from the second electrode layer 16 and the first electrode layer 14, and various known methods can be used.
As an example, a method of connecting a conductor such as a copper foil to the second electrode layer 16 and the first electrode layer 14 to lead the electrodes to the outside, and a method of penetrating the second protective layer 20 and the first protective layer 18 by a laser or the like. Examples include a method of forming a hole, filling the through hole with a conductive material, and leading an electrode to the outside.
Examples of suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
 熱伝導部材52は、圧電フィルム10が発生した熱を伝熱して放熱する部材である。
 熱伝導部材52としては、ステンレス鋼、銅合金、および、アルミニウム等の金属材料、グラファイト、ならびに、セラミックなどの熱伝導率が高い無機材料を含む部材が用いられる。
The heat-conducting member 52 is a member that conducts and radiates heat generated by the piezoelectric film 10 .
As the heat-conducting member 52, a member containing a metal material such as stainless steel, a copper alloy, and aluminum, graphite, and an inorganic material with high thermal conductivity such as ceramic is used.
 また、絶縁性を付与するために、熱伝導部材52は、上記の無機材料からなる層にPET、ポリエステル、ポリプロピレン等の樹脂フィルムを積層した構成を有していてもよい。その際、熱伝導部材52は、金属箔の一方の表面に樹脂フィルムを積層した構成であってもよいし、金属箔の両方の表面に樹脂フィルムを積層した構成であってもよい。 In addition, in order to provide insulation, the thermally conductive member 52 may have a structure in which a resin film such as PET, polyester, or polypropylene is laminated on the layer made of the above inorganic material. In this case, the heat conducting member 52 may have a structure in which a resin film is laminated on one surface of a metal foil, or may have a structure in which resin films are laminated on both surfaces of the metal foil.
 熱伝導部材52の厚さとしては、圧電フィルムの振動を阻害しにくくなる観点からは薄い方が好ましい。また、放熱性の観点からも薄い方が好ましい。これらの観点から、熱伝導部材52の厚さは、0.1μm~1000μmが好ましく、1μm~100μmがより好ましく、1μm~50μmがさらに好ましい。 The thickness of the heat-conducting member 52 is preferably thinner from the standpoint of preventing the vibration of the piezoelectric film from being hindered. Moreover, the thinner one is preferable also from a heat dissipation viewpoint. From these points of view, the thickness of the heat conducting member 52 is preferably 0.1 μm to 1000 μm, more preferably 1 μm to 100 μm, even more preferably 1 μm to 50 μm.
 粘着層54は、圧電フィルム10の保護層と熱伝導部材52とを貼着するものである。従って、粘着層54は、圧電フィルム10の保護層と熱伝導部材52とを貼着することができる粘着性を有する材料からなる。
 ここで、前述のとおり、粘着層54は、ガラス転移温度が0℃以下の樹脂を含む。ガラス転移温度が0℃以下の樹脂を含むことで、粘着層54は、0℃以上では、ゲル状(ゴム状)の柔らかい状態になり、熱伝導部材52が圧電フィルム10を拘束することを防止でき、圧電フィルム10の伸縮を阻害することを抑制できる。
The adhesive layer 54 adheres the protective layer of the piezoelectric film 10 and the heat conducting member 52 together. Accordingly, the adhesive layer 54 is made of an adhesive material that allows the protective layer of the piezoelectric film 10 and the thermally conductive member 52 to be adhered together.
Here, as described above, the adhesive layer 54 contains a resin having a glass transition temperature of 0° C. or lower. By including a resin with a glass transition temperature of 0° C. or lower, the adhesive layer 54 becomes a gel-like (rubber-like) soft state at 0° C. or higher, preventing the heat-conducting member 52 from binding the piezoelectric film 10 . It is possible to prevent the expansion and contraction of the piezoelectric film 10 from being inhibited.
 粘着性を有し、ガラス転移温度が0℃以下の樹脂としては、アクリル酸エチル、アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸イソノニル等のアクリル系樹脂、および、シリコーン、ウレタンゴム等が例示される。 Examples of adhesive resins with a glass transition temperature of 0°C or lower include acrylic resins such as ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, and isononyl acrylate, silicone, and urethane rubber. be done.
 ここで、本発明において、熱伝導部材52と粘着層54との積層体の厚み方向における熱伝導率は0.3W/mK以上である。このような熱伝導率を確保するために、粘着層54は、金属等の熱伝導性が高い材料からなるフィラーを含有していてもよい。 Here, in the present invention, the thermal conductivity in the thickness direction of the laminate of the thermally conductive member 52 and the adhesive layer 54 is 0.3 W/mK or more. In order to ensure such thermal conductivity, the adhesive layer 54 may contain a filler made of a material with high thermal conductivity such as metal.
 粘着層54の厚さとしては、圧電フィルムの振動を阻害しにくくなる観点からは厚い方が好ましいが、放熱性の観点からは薄い方が好ましい。これらの観点から、粘着層54の厚さは、1μm~500μmが好ましく、5μm~300μmがより好ましく、10μm~200μmがさらに好ましい。 The thickness of the adhesive layer 54 is preferably thicker from the viewpoint of preventing vibration of the piezoelectric film, but is preferably thinner from the viewpoint of heat dissipation. From these points of view, the thickness of the adhesive layer 54 is preferably 1 μm to 500 μm, more preferably 5 μm to 300 μm, even more preferably 10 μm to 200 μm.
 上述した圧電素子50を有する電気音響変換器100において、振動板102は、好ましい態様として、可撓性を有するものである。なお、本発明において、可撓性を有するとは、一般的な解釈における可撓性を有すると同義であり、曲げること、および、撓めることが可能であることを示し、具体的には、破壊および損傷を生じることなく、曲げ伸ばしができることを示す。
 振動板102は、好ましくは可撓性を有するものであれば、制限はなく、各種のシート状物(板状物、フィルム)が利用可能である。
 一例として、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)および環状オレフィン系樹脂等からなる樹脂フィルム、発泡ポリスチレン、発泡スチレンおよび発泡ポリエチレン等からなる発泡プラスチック、ならびに、波状にした板紙の片面または両面に他の板紙をはりつけてなる各種の段ボール材等が例示される。
 また、電気音響変換器100では、可撓性を有するものであれば、振動板102として、有機エレクトロルミネセンス(OLED(Organic Light Emitting Diode))ディスプレイ、液晶ディスプレイ、マイクロLED(Light Emitting Diode)ディスプレイ、および、無機エレクトロルミネセンスディスプレイなどの表示デバイス等も好適に利用可能である。
In the electroacoustic transducer 100 having the piezoelectric element 50 described above, the diaphragm 102 preferably has flexibility. In the present invention, having flexibility is synonymous with having flexibility in general interpretation, and indicates that it is possible to bend and bend, specifically , indicating that it can be bent and stretched without fracture and damage.
Diaphragm 102 is not limited as long as it preferably has flexibility, and various sheet-like materials (plate-like material, film) can be used.
Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films composed of polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, etc.; expanded polystyrene, expanded plastics composed of expanded styrene, expanded polyethylene, etc.; Examples include various corrugated cardboard materials made by pasting paperboards of the above.
In the electroacoustic transducer 100, the diaphragm 102 may be an organic electroluminescence (OLED (Organic Light Emitting Diode)) display, a liquid crystal display, or a micro LED (Light Emitting Diode) display as long as it has flexibility. , and display devices such as inorganic electroluminescence displays can also be suitably used.
 電気音響変換器100においては、振動板102と、圧電素子50とは、貼着層104によって貼着されている。 In the electroacoustic transducer 100 , the diaphragm 102 and the piezoelectric element 50 are adhered by the adhesion layer 104 .
 貼着層104は、振動板102と圧電素子50とを貼着可能であれば、公知のものが、各種、利用可能である。
 従って、貼着層104は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。
Various known layers can be used for the adhesive layer 104 as long as the diaphragm 102 and the piezoelectric element 50 can be adhered.
Therefore, the adhesive layer 104 has fluidity at the time of bonding and then becomes a solid. Even a layer made of an adhesive, which is a gel-like (rubber-like) soft solid at the time of bonding, remains gel-like after that. It may be a layer made of an adhesive that does not change its shape, or a layer made of a material that has the characteristics of both an adhesive and an adhesive.
 ここで、電気音響変換器100では、圧電素子50を伸縮させることで、振動板102を撓ませ振動させて、音を発生させる。従って、電気音響変換器100では、圧電素子50の伸縮が、直接的に振動板102に伝達されるのが好ましい。振動板102と圧電素子50との間に、振動を緩和するような粘性を有する物質が存在すると、振動板102への圧電素子50の伸縮のエネルギーの伝達効率が低くなってしまい、電気音響変換器100の駆動効率が低下してしまう。
 この点を考慮すると、貼着層104は、粘着剤からなる粘着剤層よりも、固体で硬い貼着層104が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい貼着層104としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が例示される。
 接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
Here, in the electroacoustic transducer 100, by expanding and contracting the piezoelectric element 50, the diaphragm 102 is bent and vibrated to generate sound. Therefore, in the electroacoustic transducer 100 , it is preferable that the expansion and contraction of the piezoelectric element 50 is directly transmitted to the diaphragm 102 . If a substance having a viscosity that reduces vibration is present between the diaphragm 102 and the piezoelectric element 50, the efficiency of transmission of the expansion and contraction energy of the piezoelectric element 50 to the diaphragm 102 is lowered, resulting in electroacoustic conversion. The driving efficiency of the device 100 is lowered.
Considering this point, the sticking layer 104 is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer 104 rather than a sticky layer made of an adhesive. As a more preferable adhesive layer 104, specifically, an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive is exemplified.
Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
 貼着層104の厚さには、制限はなく、貼着層104の材料に応じて、十分な貼着力(接着力、粘着力)が得られる厚さを、適宜、設定すればよい。
 ここで、電気音響変換器100においては、貼着層104が薄い方が、振動板102に伝達する圧電素子50の伸縮エネルギー(振動エネルギー)の伝達効果を高くして、エネルギー効率を高くできる。また、貼着層104が厚く剛性が高いと、圧電素子50の伸縮を拘束する可能性もある。
 この点を考慮すると、貼着層104は、薄い方が好ましい。具体的には、貼着層104の厚さは、貼着後の厚さで0.1~50μmが好ましく、0.1~30μmがより好ましく、0.1~10μmがさらに好ましい。
The thickness of the adhesive layer 104 is not limited, and the thickness that provides sufficient adhesive strength (adhesive strength, cohesive strength) may be appropriately set according to the material of the adhesive layer 104 .
Here, in the electroacoustic transducer 100, the thinner the adhesive layer 104, the higher the effect of transmitting the stretching energy (vibrational energy) of the piezoelectric element 50 to the diaphragm 102, and the higher the energy efficiency. Also, if the adhesive layer 104 is thick and rigid, it may restrict expansion and contraction of the piezoelectric element 50 .
Considering this point, the adhesive layer 104 is preferably thinner. Specifically, the thickness of the adhesive layer 104 is preferably 0.1 to 50 μm, more preferably 0.1 to 30 μm, and even more preferably 0.1 to 10 μm after being attached.
 なお、電気音響変換器100において、貼着層104は、好ましい態様として設けられるものであり、必須の構成要素ではない。
 従って、電気音響変換器100は、貼着層104を有さず、公知の圧着手段、締結手段、および、固定手段等を用いて、振動板102と圧電素子50とを固定してもよい。例えば、圧電素子50の平面視の形状が矩形である場合には、四隅をボルトナットのような部材で締結して電気音響変換器を構成してもよく、または、四隅と中心部とをボルトナットのような部材で締結して電気音響変換器を構成してもよい。
Note that in the electroacoustic transducer 100, the adhesive layer 104 is provided as a preferred embodiment and is not an essential component.
Therefore, the electroacoustic transducer 100 does not have the adhesive layer 104, and the diaphragm 102 and the piezoelectric element 50 may be fixed using known crimping means, fastening means, fixing means, or the like. For example, when the shape of the piezoelectric element 50 is rectangular in plan view, the four corners may be fastened with members such as bolts and nuts to form an electroacoustic transducer, or the four corners and the central portion may be bolted together. The electroacoustic transducer may be configured by fastening with a member such as a nut.
 しかしながら、この場合には、電源から駆動電圧を印加した際に、振動板102に対して圧電素子50が独立して伸縮してしまい、場合によっては、圧電素子50のみが撓んで、圧電素子50の伸縮が振動板102に伝わらない。このように、振動板102に対して圧電素子50が独立して伸縮した場合には、圧電素子50による振動板102の振動効率が低下してしまい。振動板102を十分に振動させられなくなってしまう可能性がある。
 この点を考慮すると、振動板102と圧電素子50とは、図1に示すように、貼着層104で貼着するのが好ましい。
However, in this case, the piezoelectric element 50 expands and contracts independently of the diaphragm 102 when a drive voltage is applied from the power supply. is not transmitted to the diaphragm 102. In this way, when the piezoelectric element 50 expands and contracts independently of the diaphragm 102, the efficiency of vibration of the diaphragm 102 by the piezoelectric element 50 decreases. There is a possibility that the diaphragm 102 cannot be sufficiently vibrated.
Considering this point, it is preferable that the vibration plate 102 and the piezoelectric element 50 are adhered with an adhesion layer 104 as shown in FIG.
 ここで、上述したように、圧電体層12は、マトリックス24に圧電体粒子26を含むものである。また、圧電体層12を厚さ方向で挟むように、第2電極層16および第1電極層14が設けられる。
 このような圧電体層12を有する圧電フィルム10の第2電極層16および第1電極層14に電圧を印加すると、印加した電圧に応じて圧電体粒子26が分極方向に伸縮する。その結果、圧電フィルム10(圧電体層12)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルム10は、面内方向にも伸縮する。この伸縮は、0.01~0.1%程度である。
Here, as described above, the piezoelectric layer 12 contains the piezoelectric particles 26 in the matrix 24 . A second electrode layer 16 and a first electrode layer 14 are provided so as to sandwich the piezoelectric layer 12 in the thickness direction.
When a voltage is applied to the second electrode layer 16 and the first electrode layer 14 of the piezoelectric film 10 having such a piezoelectric layer 12, the piezoelectric particles 26 expand and contract in the polarization direction according to the applied voltage. As a result, the piezoelectric film 10 (piezoelectric layer 12) shrinks in the thickness direction. At the same time, due to the Poisson's ratio, the piezoelectric film 10 also expands and contracts in the in-plane direction. This expansion and contraction is about 0.01 to 0.1%.
 上述したように、圧電体層12の厚さは、好ましくは10~300μm程度である。従って、厚さ方向の伸縮は、最大でも0.3μm程度と非常に小さい。
 これに対して、圧電フィルム10すなわち圧電体層12は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム10の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルム10は伸縮する。
As described above, the thickness of the piezoelectric layer 12 is preferably about 10-300 μm. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 μm at maximum.
In contrast, the piezoelectric film 10, that is, the piezoelectric layer 12, has a size much larger than its thickness in the plane direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by about 0.2 mm at maximum due to voltage application.
 振動板102は、貼着層104によって圧電フィルム10に貼着されている。従って、圧電フィルム10の伸縮によって、振動板102は撓み、その結果、振動板102は、厚さ方向に振動する。
 この厚さ方向の振動によって、振動板102は、音を発生する。すなわち、振動板102は、圧電フィルム10に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。
The diaphragm 102 is attached to the piezoelectric film 10 with an adhesive layer 104 . Therefore, the expansion and contraction of the piezoelectric film 10 bends the diaphragm 102, and as a result, the diaphragm 102 vibrates in the thickness direction.
Due to this vibration in the thickness direction, the diaphragm 102 generates sound. That is, the diaphragm 102 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 .
 また、振動板102のばね定数に応じて、圧電フィルム10の質量を調整することで、音圧レベルを向上させることができる。圧電フィルム10の質量が大きいと、振動板102が撓んでしまうため、駆動時の振動板102の振動を抑制する可能性がある。一方、圧電フィルム10の質量が小さいと、共振周波数が高くなり、低周波数における振動板102の振動を抑制する可能性がある。これらの点を考慮すると、圧電フィルム10の質量は、振動板102のばね定数に応じて、適切に調整することが好ましい。 Further, by adjusting the mass of the piezoelectric film 10 according to the spring constant of the diaphragm 102, the sound pressure level can be improved. If the mass of the piezoelectric film 10 is large, the diaphragm 102 will be bent, which may suppress vibration of the diaphragm 102 during driving. On the other hand, if the mass of the piezoelectric film 10 is small, the resonance frequency will be high, possibly suppressing the vibration of the diaphragm 102 at low frequencies. Considering these points, it is preferable to appropriately adjust the mass of the piezoelectric film 10 according to the spring constant of the diaphragm 102 .
 また、図示は省略するが、圧電素子において、複数の圧電フィルムを有する場合に、圧電フィルム同士は貼着層によって貼着される。
 圧電フィルム同士を貼着する貼着層は、隣接する圧電フィルム10を貼着可能であれば、公知のものが、各種、利用可能であり、上述した振動板と圧電素子とを貼着する貼着層104と同様の材料を用いることができる。
Although not shown in the drawings, when a piezoelectric element has a plurality of piezoelectric films, the piezoelectric films are attached to each other by an adhesive layer.
As the adhesive layer for attaching the piezoelectric films to each other, as long as the adjacent piezoelectric films 10 can be attached, various known adhesive layers can be used. Materials similar to the deposition layer 104 can be used.
 以下、図7~図10を参照して、圧電フィルム10の製造方法の一例を説明する。 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 7 to 10. FIG.
 まず、図7に示す、第2保護層20の表面に第2電極層16が形成されたシート状物42を準備する。さらに、図9に概念的に示す、第1保護層18の表面に第1電極層14が形成されたシート状物40を準備する。 First, a sheet-like object 42 having the second electrode layer 16 formed on the surface of the second protective layer 20 shown in FIG. 7 is prepared. Further, a sheet 40 having the first electrode layer 14 formed on the surface of the first protective layer 18 conceptually shown in FIG. 9 is prepared.
 シート状物42は、第2保護層20の表面に、真空蒸着、スパッタリング、めっき等によって第2電極層16として銅薄膜等を形成して、作製すればよい。同様に、シート状物40は、第1保護層18の表面に、真空蒸着、スパッタリング、めっき等によって第1電極層14として銅薄膜等を形成して、作製すればよい。
 あるいは、保護層の上に銅薄膜等が形成された市販品をシート状物を、シート状物42および/またはシート状物40として利用してもよい。
 シート状物42およびシート状物40は、同じものでもよく、異なるものでもよい。
The sheet 42 may be produced by forming a copper thin film or the like as the second electrode layer 16 on the surface of the second protective layer 20 by vacuum deposition, sputtering, plating, or the like. Similarly, the sheet 40 may be produced by forming a copper thin film or the like as the first electrode layer 14 on the surface of the first protective layer 18 by vacuum deposition, sputtering, plating, or the like.
Alternatively, a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the sheet 42 and/or the sheet 40 .
The sheet-like material 42 and the sheet-like material 40 may be the same or different.
 なお、保護層が非常に薄く、ハンドリング性が悪い時などは、必要に応じて、セパレータ(仮支持体)付きの保護層を用いても良い。なお、セパレータとしては、厚さ25~100μmのPET等を用いることができる。セパレータは、電極層および保護層の熱圧着後、取り除けばよい。 In addition, when the protective layer is very thin and the handling property is poor, a protective layer with a separator (temporary support) may be used as necessary. As the separator, PET or the like having a thickness of 25 to 100 μm can be used. The separator may be removed after the electrode layer and protective layer are thermocompression bonded.
 次いで、図8に示すように、シート状物42の第2電極層16上に、圧電体層12となる塗料(塗布組成物)を塗布した後、硬化して圧電体層12を形成する。これにより、シート状物42と圧電体層12とを積層した圧電積層体46を作製する。 Next, as shown in FIG. 8 , a paint (coating composition) that will form the piezoelectric layer 12 is applied onto the second electrode layer 16 of the sheet 42 and cured to form the piezoelectric layer 12 . As a result, a piezoelectric laminate 46 in which the sheet-like material 42 and the piezoelectric layer 12 are laminated is produced.
 圧電体層12の形成は、圧電体層12を形成する材料に応じて、各種の方法が利用可能である。
 一例として、まず、有機溶媒に、上述したシアノエチル化PVA等の高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子26を添加し、攪拌して塗料を調製する。
 有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)、および、シクロヘキサノン等の各種の有機溶媒が利用可能である。
 シート状物42を準備し、かつ、塗料を調製したら、この塗料をシート状物42にキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図8に示すように、第2保護層20の上に第2電極層16を有し、第2電極層16の上に圧電体層12を積層してなる圧電積層体46を作製する。
Various methods can be used to form the piezoelectric layer 12 depending on the material forming the piezoelectric layer 12 .
As an example, first, the polymer material such as cyanoethylated PVA described above is dissolved in an organic solvent, and then piezoelectric particles 26 such as PZT particles are added and stirred to prepare a paint.
Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone (MEK), and cyclohexanone can be used.
After the sheet 42 is prepared and the paint is prepared, the paint is cast (applied) onto the sheet 42 and dried by evaporating the organic solvent. As a result, as shown in FIG. 8, a piezoelectric laminate 46 having the second electrode layer 16 on the second protective layer 20 and the piezoelectric layer 12 laminated on the second electrode layer 16 is produced. do.
 塗料のキャスティング方法には制限はなく、バーコーター、スライドコーターおよびドクターナイフ等の公知の方法(塗布装置)が、全て、利用可能である。
 あるいは高分子材料が加熱溶融可能な物であれば、高分子材料を加熱溶融して、これに圧電体粒子26を添加してなる溶融物を作製し、押し出し成形等によって、図7に示すシート状物42の上にシート状に押し出し、冷却することにより、図8に示すような、圧電積層体46を作製してもよい。
There are no restrictions on the method of casting the coating material, and known methods (coating equipment) such as bar coaters, slide coaters and doctor knives can all be used.
Alternatively, if the polymer material is heat-meltable, the polymer material is heat-melted and the piezoelectric particles 26 are added to prepare a melt, which is then extruded or otherwise molded into the sheet shown in FIG. A piezoelectric laminate 46 such as that shown in FIG.
 なお、上述のように、圧電体層12において、マトリックス24には、常温で粘弾性を有する高分子材料以外にも、PVDF等の高分子圧電材料を添加しても良い。
 マトリックス24に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、加熱溶融した常温で粘弾性を有する高分子材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
As described above, in the piezoelectric layer 12, the matrix 24 may be added with a polymeric piezoelectric material such as PVDF, in addition to the polymeric material having viscoelasticity at room temperature.
When these polymeric piezoelectric materials are added to the matrix 24, the polymeric piezoelectric materials to be added to the paint may be dissolved. Alternatively, the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
 圧電体層12を形成したら、必要に応じて、カレンダ処理を行ってもよい。カレンダ処理は、1回でもよく、複数回、行ってもよい。
 周知のように、カレンダ処理とは、加熱プレスや加熱ローラ等によって、被処理面を加熱しつつ押圧して、平坦化等を施す処理である。
After the piezoelectric layer 12 is formed, it may be calendered, if desired. Calendering may be performed once or multiple times.
As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
 次いで、第2保護層20の上に第2電極層16を有し、第2電極層16の上に圧電体層12を形成してなる圧電積層体46の圧電体層12に、分極処理(ポーリング)を行う。圧電体層12の分極処理は、カレンダ処理の前に行ってもよいが、カレンダ処理を行った後に行うのが好ましい。
 圧電体層12の分極処理の方法には制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第1電極層14を形成して、第1電極層14および第2電極層16を利用して、電界ポーリング処理を行ってもよい。
 また、本発明の圧電フィルム10においては、分極処理は、圧電体層12の面方向ではなく、厚さ方向に分極を行うのが好ましい。
Next, the piezoelectric layer 12 of the piezoelectric laminate 46 having the second electrode layer 16 on the second protective layer 20 and the piezoelectric layer 12 formed on the second electrode layer 16 is subjected to a polarization treatment ( polling). The polarization treatment of the piezoelectric layer 12 may be performed before calendering, but is preferably performed after calendering.
The method of polarization treatment of the piezoelectric layer 12 is not limited, and known methods can be used. For example, electric field poling, in which a DC electric field is directly applied to an object to be polarized, is exemplified. When electric field poling is performed, the first electrode layer 14 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 14 and the second electrode layer 16. .
Moreover, in the piezoelectric film 10 of the present invention, it is preferable that the polarization treatment is performed not in the surface direction of the piezoelectric layer 12 but in the thickness direction.
 次いで、図9に示すように、分極処理を行った圧電積層体46の圧電体層12側に、先に準備したシート状物40を、第1電極層14を圧電体層12に向けて積層する。
 さらに、この積層体を、第1保護層18および第2保護層20を挟持するようにして、加熱プレス装置および加熱ローラ等を用いて熱圧着して、圧電積層体46とシート状物40とを貼り合わせ、図10に示すような、圧電フィルム10を作製する。
 あるいは、圧電積層体46とシート状物40とを、接着剤を用いて貼り合わせて、好ましくは、さらに圧着して、圧電フィルム10を作製してもよい。
Next, as shown in FIG. 9, the previously prepared sheet 40 is laminated on the piezoelectric layer 12 side of the piezoelectric laminate 46 that has been subjected to the polarization treatment, with the first electrode layer 14 facing the piezoelectric layer 12 . do.
Furthermore, this laminated body is thermocompression bonded using a hot press device, a heating roller, etc., with the first protective layer 18 and the second protective layer 20 sandwiched between them, to form the piezoelectric laminated body 46 and the sheet-like material 40. are bonded together to produce a piezoelectric film 10 as shown in FIG.
Alternatively, the piezoelectric film 10 may be produced by bonding the piezoelectric laminate 46 and the sheet-like material 40 together using an adhesive and preferably further pressing them together.
 なお、この圧電フィルム10は、カットシート状のシート状物42およびシート状物40等を用いて製造してもよく、あるいは、ロール・トゥ・ロール(Roll to Roll)を利用して製造してもよい。 The piezoelectric film 10 may be manufactured using the cut sheet-like sheet 42 and the sheet 40, or may be manufactured using roll to roll. good too.
 作製された圧電フィルムは、各種用途に合わせて、所望の形状に裁断されてもよい。
 このようにして作製される圧電フィルム10は、面方向ではなく厚さ方向に分極されており、かつ、分極処理後に延伸処理をしなくても大きな圧電特性が得られる。そのため、圧電フィルム10は、圧電特性に面内異方性がなく、駆動電圧を印加すると、面方向では全方向に等方的に伸縮する。
The produced piezoelectric film may be cut into a desired shape according to various uses.
The piezoelectric film 10 produced in this manner is polarized in the thickness direction rather than in the plane direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric film 10 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a driving voltage is applied.
 以上、本発明の圧電素子について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 Although the piezoelectric element of the present invention has been described in detail above, the present invention is not limited to the above examples, and various improvements and modifications may be made without departing from the gist of the present invention. is.
 以下、本発明の具体的実施例を挙げ、本発明についてより詳細に説明する。なお、本発明はこの実施例に限定されるものでなく、以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。 Hereinafter, the present invention will be described in more detail by giving specific examples of the present invention. The present invention is not limited to this example, and the materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. can.
 [圧電フィルムの作製]
 上述した図7~図10に示す方法によって、図6に示すような圧電フィルムを作製した。
 まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、圧電体粒子としてPZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で攪拌して、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
 なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
[Preparation of piezoelectric film]
A piezoelectric film as shown in FIG. 6 was produced by the method shown in FIGS. 7 to 10 described above.
First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
・PZT particles・・・・・・・・・・300 parts by mass ・Cyanoethylated PVA・・・・・・・・30 parts by mass ・DMF・・・・・・・・・・・・70 parts by mass The PZT particles used were obtained by sintering a commercially available PZT raw material powder at 1000 to 1200° C. and then pulverizing and classifying the sintered particles to an average particle size of 5 μm.
 一方、厚さ4μmのPETフィルムに、厚さ0.3μmの銅薄膜を真空蒸着してなるシート状物を用意した。すなわち、本例においては、第1電極層および第2電極層は、厚さ0.3μmの銅蒸着薄膜であり、第1保護層および第2保護層は、厚さ4μmのPETフィルムとなる。
 シート状物の第2電極層(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が50μmになるように、塗布した。
 次いで、シート状物に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の第2保護層の上に銅製の第2電極層を有し、その上に、厚さが50μmの圧電体層(高分子複合圧電体層)を有する圧電積層体を作製した。
On the other hand, a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.3 μm on a PET film with a thickness of 4 μm. That is, in this example, the first electrode layer and the second electrode layer are 0.3 μm thick copper-deposited thin films, and the first protective layer and the second protective layer are 4 μm thick PET films.
Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. In addition, the paint was applied so that the thickness of the coating film after drying was 50 μm.
Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C. to evaporate the DMF. As a result, a piezoelectric laminate having a second electrode layer made of copper on a second protective layer made of PET and a piezoelectric layer (polymer composite piezoelectric layer) having a thickness of 50 μm thereon is produced. bottom.
 作製した圧電体層を、厚さ方向に分極処理した。 The produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
 分極処理を行った圧電積層体の上に、第1電極層(銅薄膜側)を圧電体層に向けて、PETフィルムに同薄膜を蒸着したシート状物を積層した。
 次いで、圧電積層体とシート状物との積層体を、ラミネータ装置を用いて、温度120℃で熱圧着することで、圧電体層と第1電極層とを貼着して接着して、図10に示すような圧電フィルムを作製した。
A sheet-like material obtained by vapor-depositing the same thin film on a PET film was laminated on the piezoelectric laminate that had been subjected to the polarization treatment, with the first electrode layer (copper thin film side) facing the piezoelectric layer.
Next, the laminate of the piezoelectric laminate and the sheet-like material is thermocompression bonded at a temperature of 120° C. using a laminator device, so that the piezoelectric layer and the first electrode layer are adhered and adhered. A piezoelectric film as shown in 10 was produced.
 次に、この圧電フィルムを、平面形状が20cm×5cmの長方形に切り出した。 Next, this piezoelectric film was cut into a rectangle with a planar shape of 20 cm x 5 cm.
 [実施例1]
 切り出した圧電フィルムを5枚、貼着層(アクリル系粘着剤)を介して積層した。次に、積層した圧電フィルムの一方の最外面に、20cm×5cmの長方形に切り出した熱伝導テープ(3M社製9876-10)を貼着し、圧電素子を作製した。この熱伝導テープは、金属箔をポリマーフィルムで被覆し、アクリル系の粘着層を有するものである。すなわち、この熱伝導テープは、熱伝導部材と粘着層との積層体であり、熱伝導部材が、金属箔と樹脂フィルムとの積層体である構成を有する。
 この熱伝導テープ(熱伝導部材と粘着層との積層体)の厚さ方向の熱伝導率は、0.8W/mKである。
[Example 1]
Five piezoelectric films cut out were laminated via an adhesive layer (acrylic adhesive). Next, a heat conductive tape (9876-10 manufactured by 3M Co., Ltd.) cut into a rectangle of 20 cm×5 cm was adhered to one outermost surface of the laminated piezoelectric film to fabricate a piezoelectric element. This heat conductive tape has a metal foil coated with a polymer film and an acrylic adhesive layer. That is, this thermally conductive tape is a laminate of a thermally conductive member and an adhesive layer, and has a structure in which the thermally conductive member is a laminate of a metal foil and a resin film.
The thermal conductivity in the thickness direction of this thermal conductive tape (laminate of thermal conductive member and adhesive layer) is 0.8 W/mK.
 次に、作製した圧電素子の、熱伝導部材とは反対側の面を振動板に貼着し、電気音響変換器を作製した。振動板としては、大きさ500mm×450mm、厚さ0.8mm、材質:アルミニウムの板状部材を用いた。圧電素子と振動板とを貼着する貼着層としては、アクリル系粘着剤を用いた。なお、熱伝導部材と振動板とは直接接していない。 Next, the surface of the produced piezoelectric element opposite to the heat-conducting member was attached to a diaphragm to produce an electroacoustic transducer. As the diaphragm, a plate-shaped member having a size of 500 mm×450 mm, a thickness of 0.8 mm, and a material of aluminum was used. An acrylic pressure-sensitive adhesive was used as a bonding layer for bonding the piezoelectric element and the diaphragm. Note that the heat conducting member and the diaphragm are not in direct contact.
 [実施例2]
 熱伝導テープ(3M社製9876-10)に代えて、熱伝導テープ(3M社製9876B-08)を用いた以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。この熱伝導テープは、金属箔をポリマーフィルムで被覆し、アクリル系の粘着層を有するものである。すなわち、この熱伝導テープは、熱伝導部材と粘着層との積層体であり、熱伝導部材が、金属箔と樹脂フィルムとの積層体である構成を有する。この熱伝導テープ(熱伝導部材と粘着層との積層体)の厚さ方向の熱伝導率は、1.4W/mKである。
[Example 2]
A piezoelectric element was produced in the same manner as in Example 1 except that a heat conductive tape (9876B-08 manufactured by 3M) was used instead of the heat conductive tape (9876-10 manufactured by 3M), and an electroacoustic transducer was manufactured. made. This heat conductive tape has a metal foil coated with a polymer film and an acrylic adhesive layer. That is, this thermally conductive tape is a laminate of a thermally conductive member and an adhesive layer, and has a structure in which the thermally conductive member is a laminate of a metal foil and a resin film. The thermal conductivity in the thickness direction of this thermal conductive tape (laminate of thermal conductive member and adhesive layer) is 1.4 W/mK.
 [実施例3]
 熱伝導テープ(3M社製9876-10)に代えて、熱伝導テープ(日東電工株式会社製TR-5310EX)を用いた以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。この熱伝導テープは、ポリエステルフィルムと、アクリル系の粘着層を有するものである。この熱伝導テープ(熱伝導部材と粘着層との積層体)の厚さ方向の熱伝導率は、0.4W/mKである。
[Example 3]
A piezoelectric element was produced in the same manner as in Example 1 except that a thermal conductive tape (TR-5310EX manufactured by Nitto Denko Corporation) was used instead of the thermal conductive tape (9876-10 manufactured by 3M), and electroacoustic conversion was performed. I made a vessel. This heat conductive tape has a polyester film and an acrylic adhesive layer. The thermal conductivity in the thickness direction of this thermal conductive tape (laminate of thermal conductive member and adhesive layer) is 0.4 W/mK.
 [実施例4]
 熱伝導テープを20cm×10cmの長方形に切り出し、積層した圧電フィルムの一方の最外面に貼着すると共に、熱伝導テープの両端部が振動板に接するように配置した以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。
[Example 4]
The same as in Example 1, except that a heat conductive tape was cut into a rectangular shape of 20 cm x 10 cm, adhered to one of the outermost surfaces of the laminated piezoelectric films, and both ends of the heat conductive tape were placed in contact with the diaphragm. Then, a piezoelectric element was produced, and an electroacoustic transducer was produced.
 [実施例5]
 熱伝導テープを20cm×5cmの長方形に2枚切り出し、積層した圧電フィルムの一方の最外面に、5mm離間するように貼着し、各熱伝導テープの端部が振動板に接するように配置した以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。熱伝導テープを貼着した部位の面積の割合は、圧電フィルムの最外面の面積の45%(一方の表面の面積の90%)となる。
[Example 5]
Two 20 cm x 5 cm rectangles of heat conductive tape were cut out and attached to one of the outermost surfaces of the laminated piezoelectric film with a gap of 5 mm, and the end of each heat conductive tape was placed in contact with the diaphragm. A piezoelectric element was produced in the same manner as in Example 1 except for the above, and an electroacoustic transducer was produced. The ratio of the area of the portion to which the heat conductive tape is attached is 45% of the area of the outermost surface of the piezoelectric film (90% of the area of one surface).
 [実施例6]
 熱伝導テープを5cm×5cmの長方形に切り出し、積層した圧電フィルムの一方の最外面に、貼着した部位の面積が、圧電フィルムの最外面の面積の5%となるように貼着し、熱伝導テープの端部が振動板に接するように配置した以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。
[Example 6]
A heat-conducting tape was cut into a 5 cm x 5 cm rectangle, and was attached to one of the outermost surfaces of the laminated piezoelectric film so that the area of the attached portion was 5% of the area of the outermost surface of the piezoelectric film. A piezoelectric element and an electroacoustic transducer were fabricated in the same manner as in Example 1, except that the ends of the conductive tape were placed in contact with the diaphragm.
 [比較例1]
 熱伝導テープを貼着しない以外は実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。
[Comparative Example 1]
A piezoelectric element was produced in the same manner as in Example 1, except that the heat conductive tape was not adhered, and an electroacoustic transducer was produced.
 [比較例2]
 熱伝導テープ(3M社製9876-10)に代えて、東レ・デュポン株式会社製カプトンテープ(登録商標)を用いた以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。
 このカプトンテープの厚さ方向の熱伝導率は、0.16W/mKである。
[Comparative Example 2]
A piezoelectric element was produced in the same manner as in Example 1 except that Kapton tape (registered trademark) manufactured by DuPont Toray Co., Ltd. was used instead of the thermal conductive tape (9876-10 manufactured by 3M), and an electroacoustic transducer was obtained. was made.
The thermal conductivity in the thickness direction of this Kapton tape is 0.16 W/mK.
 [比較例3]
 粘着層を有さない、PETフィルムと銅箔からなる熱伝導部材を、東亞合成株式会社製アロンアルファ(登録商標)を用いて圧電フィルムに貼着した以外は、実施例1と同様にして圧電素子を作製し、電気音響変換器を作製した。
 アロンアルファのガラス転移温度は、50℃以上である。
[Comparative Example 3]
A piezoelectric element was fabricated in the same manner as in Example 1, except that a heat-conducting member composed of a PET film and a copper foil, which did not have an adhesive layer, was attached to the piezoelectric film using Aron Alpha (registered trademark) manufactured by Toagosei Co., Ltd. was produced, and an electroacoustic transducer was produced.
Aron alpha has a glass transition temperature of 50° C. or higher.
[評価]
 作製した各実施例および比較例の電気音響変換器について、音圧、および、到達温度を評価した。
[evaluation]
The sound pressure and the temperature reached were evaluated for the fabricated electroacoustic transducers of Examples and Comparative Examples.
<音圧>
 振動板の短辺を支持して、振動板を立設した。振動板側において、圧電素子の中心から法線方向(PETフィルムに垂直な方向)に1mの位置に、マイクロホンを設置し、圧電素子を駆動して、周波数1kHzにおける音圧を測定した。
 圧電素子への入力信号は、20~20kHzのスイープサイン波(50Vrms)とした。
<Sound pressure>
The diaphragm was erected by supporting the short sides of the diaphragm. On the diaphragm side, a microphone was installed at a position of 1 m in the normal direction (perpendicular to the PET film) from the center of the piezoelectric element, the piezoelectric element was driven, and the sound pressure at a frequency of 1 kHz was measured.
The input signal to the piezoelectric element was a 20-20 kHz sweep sine wave (50 Vrms).
<到達温度>
 作製した電気音響変換器を連続駆動試験(50Vrms)に接続し、30分連続駆動した後の圧電素子の到達温度をサーモグラフィ(Keysight Technologies社製 U5855A)により測定した。測定雰囲気温度は23℃とした。入力信号はSN2信号とした。SN2信号とは、JEITAが定めたノイズ信号の規格であり、ホワイトノイズ信号の高周波成分や低周波成分をカットしたノイズ信号である。印加する電圧の周波数は、20Hz~20kHzの領域とした。また、圧電素子の温度の測定箇所は最高到達温度を示した任意の位置とした。
 結果を表1に示す。なお、表1において、貼付け面積の項目は、積層した圧電フィルムの最外面の面積に対する、熱伝導テープ(熱伝導部材)を貼着した部位の面積の割合を表す項目である。また、連続性の項目は、熱伝導部材が1枚か2以上に分割された構成かを表す項目である。
<Achievement temperature>
The produced electroacoustic transducer was connected to a continuous driving test (50 Vrms), and the temperature reached by the piezoelectric element after continuous driving for 30 minutes was measured by thermography (U5855A manufactured by Keysight Technologies). The ambient temperature for measurement was 23°C. An SN2 signal was used as an input signal. The SN2 signal is a noise signal standard defined by JEITA, and is a noise signal obtained by cutting high frequency components and low frequency components of a white noise signal. The frequency of the applied voltage was in the range of 20 Hz to 20 kHz. Also, the temperature of the piezoelectric element was measured at an arbitrary position where the highest temperature was reached.
Table 1 shows the results. In Table 1, the item "Attached area" indicates the ratio of the area of the portion to which the thermal conductive tape (thermal conductive member) is attached to the area of the outermost surface of the laminated piezoelectric film. Further, the item of continuity is an item representing whether the heat conducting member is composed of one sheet or divided into two or more pieces.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、本発明の実施例は音圧が高く、かつ、到達温度が低いことがわかる。比較例1は熱伝導部材を有さないので到達温度が高くなることがわかる。比較例2は熱伝導部材と粘着層との積層体の厚さ方向の熱伝導率が低いため到達温度が高くなることがわかる。比較例3は粘着層のガラス転移温度が高いため圧電フィルムの振動を阻害し音圧が低くなることがわかる。 From Table 1, it can be seen that the examples of the present invention have a high sound pressure and a low ultimate temperature. Since Comparative Example 1 does not have a heat-conducting member, it can be seen that the temperature reached is high. It can be seen that in Comparative Example 2, the temperature reached is high because the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is low. In Comparative Example 3, since the glass transition temperature of the adhesive layer is high, the vibration of the piezoelectric film is inhibited and the sound pressure is lowered.
 また、実施例1~3の対比から、熱伝導部材と粘着層との積層体の厚さ方向の熱伝導率は高いほうが好ましいことがわかる。
 また、実施例1と実施例4との対比から、熱伝導部材と振動板とが接していることが好ましいことがわかる。
 また、実施例4と実施例5との対比から、熱伝導部材を複数に分割することで、圧電フィルムの振動を阻害することをより好適に低減できるため好ましいことがわかる。
 以上から本発明の効果は明らかである。
Moreover, from the comparison of Examples 1 to 3, it is found that the thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is preferably high.
Also, from the comparison between Example 1 and Example 4, it can be seen that it is preferable that the heat-conducting member and the diaphragm are in contact with each other.
Moreover, from the comparison between Example 4 and Example 5, it can be seen that by dividing the heat conducting member into a plurality of pieces, it is possible to more preferably reduce the inhibition of the vibration of the piezoelectric film, which is preferable.
From the above, the effect of the present invention is clear.
 本発明の圧電素子は、例えば、音波センサー、超音波センサー、圧力センサー、触覚センサー、歪みセンサーおよび振動センサー等の各種センサー(特に、ひび検知等のインフラ点検や異物混入検知等の製造現場検査に有用である)、マイクロフォン、ピックアップ、スピーカーおよびエキサイター等の音響デバイス(具体的な用途としては、ノイズキャンセラー(車、電車、飛行機、ロボット等に使用)、人工声帯、害虫・害獣侵入防止用ブザー、家具、壁紙、写真、ヘルメット、ゴーグル、ヘッドレスト、サイネージ、ロボットなどが例示される)、自動車、スマートフォン、スマートウォッチ、ゲーム等に適用して用いるハプティクス、超音波探触子およびハイドロホン等の超音波トランスデューサ、水滴付着防止、輸送、攪拌、分散、研磨等に用いるアクチュエータ、容器、乗り物、建物、スキーおよびラケット等のスポーツ用具に用いる制振材(ダンパー)、ならびに、道路、床、マットレス、椅子、靴、タイヤ、車輪およびパソコンキーボード等に適用して用いる振動発電装置として好適に使用することができる。 The piezoelectric element of the present invention can be used, for example, in various sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially for infrastructure inspection such as crack detection and manufacturing site inspection such as foreign matter contamination detection). useful), acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots, etc.), artificial vocal cords, buzzers for preventing insects and vermin from entering , furniture, wallpaper, photographs, helmets, goggles, headrests, signage, robots, etc.), automobiles, smartphones, smart watches, haptics used for games, etc. Ultrasonic probes and hydrophones Acoustic transducers, actuators used for water drop adhesion prevention, transport, agitation, dispersion, polishing, etc., dampers used in containers, vehicles, buildings, sports equipment such as skis and rackets, and roads, floors, mattresses, and chairs , shoes, tires, wheels, and personal computer keyboards.
 10、10L 圧電フィルム
 11 張り出し部
 14 第1電極層
 16 第2電極層
 18 第1保護層
 20 第2保護層
 24 マトリックス
 26 圧電体粒子
 40 シート状物
 42 シート状物
 46 圧電積層体
 50a、50b、50c、50d 圧電素子
 52、52a、52b、52c、52d 熱伝導部材
 54、54d 粘着層
 100a、100b、100c、100d 電気音響変換器
 102 振動板
 104 貼着層
Reference Signs List 10, 10L piezoelectric film 11 projecting portion 14 first electrode layer 16 second electrode layer 18 first protective layer 20 second protective layer 24 matrix 26 piezoelectric particles 40 sheet 42 sheet 46 piezoelectric laminate 50a, 50b, 50c, 50d Piezoelectric element 52, 52a, 52b, 52c, 52d Heat conduction member 54, 54d Adhesive layer 100a, 100b, 100c, 100d Electroacoustic transducer 102 Diaphragm 104 Adhesion layer

Claims (11)

  1.  圧電体層と、前記圧電体層の両面に設けられる電極層と、前記電極層上に設けられる保護層と、を有する圧電フィルム、および、
     少なくとも一方の前記保護層側に粘着層を介して貼着される熱伝導部材、を有し、
     前記熱伝導部材と前記粘着層との積層体の厚み方向における熱伝導率が0.3W/mK以上であり、
     前記粘着層は、ガラス転移温度が0℃以下の樹脂を含む、圧電素子。
    A piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers;
    a heat-conducting member attached to at least one of the protective layers via an adhesive layer;
    The thermal conductivity in the thickness direction of the laminate of the thermally conductive member and the adhesive layer is 0.3 W/mK or more,
    The piezoelectric element, wherein the adhesive layer contains a resin having a glass transition temperature of 0° C. or lower.
  2.  前記粘着層は、アクリル系樹脂を含む、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the adhesive layer contains an acrylic resin.
  3.  前記熱伝導部材と前記圧電フィルムとを貼着した部位の面積は、前記圧電フィルムの最外面の面積の10%以上である、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the area of the portion where the thermally conductive member and the piezoelectric film are attached is 10% or more of the area of the outermost surface of the piezoelectric film.
  4.  前記圧電フィルムの面方向に、複数の前記熱伝導部材が離間して貼着されている、請求項1に記載の圧電素子。 2. The piezoelectric element according to claim 1, wherein a plurality of said thermally conductive members are affixed with a space therebetween in the surface direction of said piezoelectric film.
  5.  前記熱伝導部材が、無機材料と樹脂フィルムとの積層体である、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the thermally conductive member is a laminate of an inorganic material and a resin film.
  6.  前記圧電フィルムを複数層有する、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, comprising a plurality of layers of the piezoelectric film.
  7.  積層された前記圧電フィルムのうち1層が、他の前記圧電フィルムよりも面方向に張り出した張り出し部を有し、
     前記熱伝導部材が、前記張り出し部に貼着されている、請求項6に記載の圧電素子。
    one layer of the laminated piezoelectric films has an overhanging portion that overhangs the other piezoelectric films in a plane direction;
    7. The piezoelectric element according to claim 6, wherein said thermally conductive member is attached to said projecting portion.
  8.  前記圧電体層が、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体である、請求項1に記載の圧電素子。 The piezoelectric element according to claim 1, wherein the piezoelectric layer is a polymeric composite piezoelectric body containing piezoelectric particles in a matrix containing a polymeric material.
  9.  請求項1~8のいずれか一項に記載の圧電素子を、振動板に貼り付けてなる、電気音響変換器。 An electroacoustic transducer in which the piezoelectric element according to any one of claims 1 to 8 is attached to a diaphragm.
  10.  前記熱伝導部材が前記振動板に接している、請求項9に記載の電気音響変換器。 The electroacoustic transducer according to claim 9, wherein said heat conducting member is in contact with said diaphragm.
  11.  前記圧電素子の前記振動板との貼着面の一部に、前記熱伝導部材が設けられ、
     前記熱伝導部材が貼着される面以外の領域に前記圧電素子と前記振動板とを貼着する貼着層を有する、請求項9に記載の電気音響変換器。
     
     
    The thermally conductive member is provided on a part of the bonding surface of the piezoelectric element to the vibration plate,
    10. The electroacoustic transducer according to claim 9, further comprising an adhesion layer for adhering said piezoelectric element and said diaphragm in a region other than the surface to which said heat conducting member is adhered.

PCT/JP2022/028181 2021-09-16 2022-07-20 Piezoelectric element and electroacoustic transducer WO2023042542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021150821 2021-09-16
JP2021-150821 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023042542A1 true WO2023042542A1 (en) 2023-03-23

Family

ID=85602693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028181 WO2023042542A1 (en) 2021-09-16 2022-07-20 Piezoelectric element and electroacoustic transducer

Country Status (2)

Country Link
TW (1) TW202313325A (en)
WO (1) WO2023042542A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021738A (en) * 2008-07-09 2010-01-28 Osaka Gas Co Ltd Ultrasonic transducer and ultrasonic flowmeter
WO2016136522A1 (en) * 2015-02-25 2016-09-01 富士フイルム株式会社 Structure body and electro-acoustic converter
WO2020095812A1 (en) * 2018-11-08 2020-05-14 富士フイルム株式会社 Laminated piezoelectric element and electro-acoustic transducer
WO2021225071A1 (en) * 2020-05-07 2021-11-11 富士フイルム株式会社 Piezoelectric element and piezoelectric speaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010021738A (en) * 2008-07-09 2010-01-28 Osaka Gas Co Ltd Ultrasonic transducer and ultrasonic flowmeter
WO2016136522A1 (en) * 2015-02-25 2016-09-01 富士フイルム株式会社 Structure body and electro-acoustic converter
WO2020095812A1 (en) * 2018-11-08 2020-05-14 富士フイルム株式会社 Laminated piezoelectric element and electro-acoustic transducer
WO2021225071A1 (en) * 2020-05-07 2021-11-11 富士フイルム株式会社 Piezoelectric element and piezoelectric speaker

Also Published As

Publication number Publication date
TW202313325A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP2023033366A (en) Laminated piezoelectric element and electroacoustic transducer
JP7265625B2 (en) Electroacoustic conversion film and electroacoustic transducer
JP7166428B2 (en) Electroacoustic transducer
TW202143515A (en) Piezoelectric element and piezoelectric speaker
JP7143524B2 (en) Polymer Composite Piezoelectric Materials and Piezoelectric Films
JP7177268B2 (en) Polymer Composite Piezoelectric Materials and Piezoelectric Films
WO2023042542A1 (en) Piezoelectric element and electroacoustic transducer
JP7331143B2 (en) Polymer composite piezoelectric film
WO2023053750A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023053751A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023153126A1 (en) Piezoelectric element and electroacoustic transducer
WO2023166892A1 (en) Electroacoustic transducer
WO2023149073A1 (en) Piezoelectric device
WO2023157636A1 (en) Piezoelectric film and laminated piezoelectric element
WO2022196202A1 (en) Piezoelectric element
WO2023181699A1 (en) Electroacoustic transducer
WO2023248696A1 (en) Piezoelectric film, piezoelectric element, electroacoustic transducer, and method for manufacturing piezoelectric film
WO2023188966A1 (en) Piezoelectric film, piezoelectric element, and electroacoustic transducer
WO2023053758A1 (en) Piezoelectric film and laminated piezoelectric element
WO2023286544A1 (en) Piezoelectric film
WO2023021944A1 (en) Piezoelectric element and piezoelectric speaker
WO2023053931A1 (en) Piezoelectric element and piezoelectric speaker
WO2023157532A1 (en) Piezoelectric element, and electro-acoustic converter
WO2023054019A1 (en) Piezoelectric film and laminated piezoelectric element
WO2022190807A1 (en) Piezoelectric film and laminated piezoelectric element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023548148

Country of ref document: JP