WO2022196172A1 - 電池および電池の製造方法 - Google Patents

電池および電池の製造方法 Download PDF

Info

Publication number
WO2022196172A1
WO2022196172A1 PCT/JP2022/004534 JP2022004534W WO2022196172A1 WO 2022196172 A1 WO2022196172 A1 WO 2022196172A1 JP 2022004534 W JP2022004534 W JP 2022004534W WO 2022196172 A1 WO2022196172 A1 WO 2022196172A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
case
gasket
electrode
battery
Prior art date
Application number
PCT/JP2022/004534
Other languages
English (en)
French (fr)
Inventor
貴弘 井上
康伸 児玉
英之 植田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280018963.7A priority Critical patent/CN116964858A/zh
Priority to US18/549,913 priority patent/US20240154264A1/en
Priority to JP2023506853A priority patent/JPWO2022196172A1/ja
Publication of WO2022196172A1 publication Critical patent/WO2022196172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/545Terminals formed by the casing of the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • H01M50/566Terminals characterised by their manufacturing process by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a battery and a method of manufacturing a battery.
  • a battery including a gasket provided between an opening and a cap is known (for example, Patent Document 1).
  • Patent Document 1 an annular groove projecting inward from the case is formed in the side surface of the case, and the lead is sandwiched between the portion of the side surface of the case where the groove is formed and the gasket.
  • the electrolytic solution contained in the case may easily leak to the outside (that is, the leakage resistance may be lowered). This is because it is important for improving leakage resistance that the portion of the side surface of the case where the groove is formed and the gasket are in close contact with each other. This is because the Under such circumstances, one object of the present disclosure is to improve the leakage resistance of the battery.
  • the battery includes a case having a cylindrical side surface, an opening at one end and a bottom at the other end, and a first electrode and a first electrode having a polarity different from that of the first electrode.
  • an electrode group having a second electrode, a first end electrically connected to the first electrode and a second end opposite the first end, and welded to the tubular side portion; a cap for sealing the opening; and a gasket provided between the opening and the cap.
  • An annular groove is formed for compressing a portion of the gasket, the gasket has a tubular portion extending to the bottom side continuously from the compressed portion, which is the compressed portion, and the first lead is , the second end of the first lead is not sandwiched between the cylindrical side surface portion and the compression portion and is in contact with the cylindrical portion, and the second end portion of the first lead extends through the opening portion of the electrode group. It is positioned closer to the opening than the end on the side.
  • the first lead is bent so as to protrude toward the opening on the second end side of the welded portion.
  • FIG. 1 is a cross-sectional view schematically showing the battery of Embodiment 1.
  • FIG. 3 is a cross-sectional view schematically showing a battery of Embodiment 2;
  • FIG. 3 is a cross-sectional view for explaining each dimension in a battery;
  • a battery according to the present disclosure includes a case, an electrode group, a first lead, a cap, and a gasket.
  • the case has a cylindrical shape with a bottom, has a cylindrical side surface, has an opening at one end, and has a bottom at the other end.
  • the case may be cylindrical with a bottom, oval with a bottom, or square with a bottom.
  • a part of the cylindrical side surface is formed with an annular groove projecting inwardly of the case (that is, radially inwardly of the case) for compressing part of the gasket.
  • the annular groove may be formed near the opening.
  • the case is constructed of an electrically conductive material.
  • the case is made of stainless steel with a thickness of 0.05 mm to 0.2 mm, but is not limited to this.
  • the electrode group is housed in the case together with the electrolyte.
  • the electrode group has a first electrode and a second electrode having a polarity different from that of the first electrode.
  • the electrode group may be configured as a columnar body by winding the first electrode and the second electrode with a separator interposed therebetween.
  • the first electrode may have a first collector sheet and first active material layers formed on both sides thereof.
  • the second electrode may have a second collector sheet and second active material layers formed on both sides thereof.
  • the first electrode is connected to the inner peripheral surface of the conductive case via the first lead.
  • the second electrode may be connected to the conductive cap via a second lead.
  • the case may function as a first terminal (eg, negative terminal) of the battery
  • the cap may function as a second terminal (eg, positive terminal) of the battery.
  • first electrode and the second electrode are the negative electrode and the positive electrode, respectively.
  • the negative electrode has a negative electrode current collector sheet and negative electrode active material layers formed on both sides thereof.
  • a known negative electrode current collector sheet can be used as the negative electrode current collector sheet, but when the battery is a lithium ion secondary battery, metal foils such as stainless steel, nickel, copper, and copper alloys are used. be done. Its thickness is, for example, 5 ⁇ m to 20 ⁇ m, but is not limited to this.
  • the negative electrode active material layer contains a negative electrode active material as an essential component, and optionally a binder, a conductive agent, and the like.
  • a negative electrode active material known negative electrode active materials can be used.
  • the battery is a lithium ion secondary battery, for example, metal lithium, alloys such as silicon alloys and tin alloys, graphite, carbon such as hard carbon, etc. Materials such as silicon compounds, tin compounds, and lithium titanate are used.
  • the use of a negative electrode current collector sheet is optional because it itself exhibits high conductivity and flexibility.
  • the thickness of the negative electrode active material is, for example, 70 ⁇ m to 150 ⁇ m, but is not limited to this.
  • the negative electrode current collecting lead (first lead) of the lithium ion secondary battery. Its thickness is, for example, 10 ⁇ m to 120 ⁇ m, but is not limited to this.
  • the negative electrode current collecting lead may be connected to the inner surface of the cylindrical side surface near the opening of the case.
  • the positive electrode has a positive electrode current collector sheet and positive electrode active material layers formed on both sides thereof.
  • a known positive electrode current collector sheet can be used as the positive electrode current collector sheet, but when the battery is a lithium ion secondary battery, for example, a metal foil such as aluminum or aluminum alloy is used. Its thickness is, for example, 5 ⁇ m to 20 ⁇ m, but is not limited to this.
  • the positive electrode active material layer contains a positive electrode active material as an essential component, and optionally a binder, a conductive agent, and the like.
  • a known positive electrode active material can be used as the positive electrode active material, but the positive electrode active material for the lithium ion secondary battery is preferably a lithium-containing composite oxide, such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like. be done. Manganese dioxide, graphite fluoride, and the like are used as positive electrode active materials for lithium primary batteries.
  • the thickness of the positive electrode active material layer is, for example, 20 ⁇ m to 130 ⁇ m, but is not limited to this.
  • the positive electrode current collecting lead may be connected to the bottom surface of the cap, which also serves as the positive electrode terminal, through the inner space of the cylindrical portion (described later) of the gasket.
  • a known separator can be used for the separator arranged between the negative electrode and the positive electrode.
  • it is formed using an insulating microporous thin film, woven fabric, or non-woven fabric.
  • Polyolefins such as polypropylene and polyethylene can be used for the separator of the lithium ion secondary battery. Its thickness may be between 10 ⁇ m and 50 ⁇ m, preferably between 10 ⁇ m and 30 ⁇ m.
  • a known electrolytic solution can be used as the electrolytic solution.
  • the electrolyte is composed of a known lithium salt and a known non-aqueous solvent.
  • a cyclic carbonate, a chain carbonate, a cyclic carboxylate, or the like is used as the non-aqueous solvent.
  • LiPF 6 , LiBF 4 and the like are used as lithium salts, but the present invention is not limited to these.
  • the first lead has a first end electrically connected to the first electrode and a second end opposite to the first end.
  • the first lead is welded to the cylindrical side surface of the case.
  • the first lead may be the negative current collecting lead described above.
  • the cap seals the opening of the case.
  • the cap may be composed of a conductive material.
  • a gasket is provided between the opening of the case and the cap.
  • the gasket has a compressed portion, which is a portion compressed by the annular groove. At this compressed portion, the gasket is in close contact with the grooved portion of the case.
  • the compressed portion may be compressed over the entire circumference of the gasket (or over the entire circumference of the case).
  • the gasket has a cylindrical portion that continues from the compressed portion and extends toward the bottom side of the case.
  • the gasket is made of an insulating material and electrically insulates the case and cap.
  • the gasket is preferably made of a material that is resistant to electrolytes, such as fluororesin, polyolefin, and polyamide. Among them, it is preferable to use a fluororesin, and for example, a copolymer (PFA) of tetrafluoroethylene and perfluoroalkoxyvinyl ether can be used.
  • PFA copolymer
  • the first lead is not sandwiched between the cylindrical side surface of the case and the compressed portion of the gasket, and is in contact with the cylindrical portion of the gasket.
  • the second end of the first lead is positioned closer to the opening than the end of the electrode group on the opening side.
  • the first lead has a sufficient length including the portion welded to the case, but does not contact the electrode group. Therefore, even if there is a tolerance in the length of the first lead, the first lead can be welded to the case (specifically, the cylindrical side surface), and an internal short circuit of the battery can be avoided. be able to.
  • the first lead while having such a sufficient length, is not sandwiched between the case and the gasket. Therefore, the adhesion between the case and the gasket is not impaired, and the leakage resistance of the battery can be improved.
  • the first lead may be welded to the grooved region of the cylindrical side surface of the case. Since the groove is usually formed in the vicinity of the opening of the case, this configuration makes it easy to secure the distance between the electrode group and the welding portion. It becomes easy to bring the end of the electrode group closer to the opening, and the volume occupied by the electrode group in the case can be increased. Therefore, the discharge capacity of the battery can be increased.
  • the region of the cylindrical side surface where the groove is formed means not only the deepest portion of the groove but also the entire region where the outer diameter gradually decreases toward the deepest portion.
  • the welded portion is provided closer to the bottom of the case than the deepest portion of the groove.
  • the outer diameter of the case may be 6 mm or less.
  • the configuration of the present disclosure is particularly effective in a battery having a case with an outer diameter of 6 mm or less.
  • the outer diameter of the case may be 4.5 mm or less.
  • the outer diameter of the case may be 3 mm or more for manufacturing practicality.
  • the first lead may be bent so as to protrude toward the opening of the case on the second end side of the welded portion.
  • the second end of the first lead extends toward the bottom of the case.
  • the first lead may be bent in a U shape so as to protrude toward the opening of the case. The bent first lead is even less likely to be caught between the case and the gasket. Therefore, it is easy to avoid impairing the leakage resistance of the battery.
  • the first lead may be in contact with the tubular portion of the gasket at a portion closer to the second end than the bent portion as described above.
  • Such contact may be point contact, line contact, or area contact.
  • the second end of the first lead may be in contact with the tubular portion of the gasket.
  • the first lead is not bent convexly toward the opening of the case.
  • the first lead has sufficient length that the second end contacts the tubular portion of the gasket.
  • the length of the first lead is such that, even with acceptable tolerances, at least the second end contacts the tubular portion of the gasket and is between the tubular side portion and the compression portion of the gasket. Designed to be long enough not to get pinched.
  • the first lead contacts the cylindrical portion of the gasket at the portion closer to the second end than the bent portion as described above, and the rest of the first lead contacts the gasket.
  • at least the second end contacts the tubular portion of the gasket. That is, in principle, a battery in which the second end portion is sandwiched between the cylindrical side portion and the compression portion of the gasket does not occur.
  • a method for manufacturing a battery according to the present disclosure is a method for manufacturing a battery in which the first lead is bent so as to project toward the opening of the case, and comprises a first step and a second step. , a third step, and a fourth step.
  • an electrode group in which the first end of the first lead is electrically connected to the first electrode is accommodated in the case.
  • One end of a second lead may be electrically connected to the second electrode of the electrode group.
  • the first lead is welded to the cylindrical side surface of the case.
  • Types of welding include laser welding, spot welding, or resistance welding.
  • annular groove is formed in a portion of the cylindrical side surface of the case.
  • the annular groove may be formed, for example, by grooving to reduce the diameter of a part of the cylindrical side surface.
  • the gasket is press-fitted into the case.
  • part of the gasket is compressed by the groove.
  • the first lead is pressed and bent by the gasket so that the second end of the first lead is displaced toward the bottom of the case.
  • this bending causes the second end of the first lead to be bent when the gasket is press-fitted into the case.
  • it is caused by contacting or engaging with the gasket and receiving pressure from the gasket in the vicinity thereof.
  • the first lead is bent so as to protrude toward the opening of the case.
  • the first lead can be appropriately welded to the case regardless of the length tolerance of the first lead, and the leakage resistance of the battery can be improved. Moreover, the present disclosure allows for the facile manufacture of such batteries.
  • the battery 10 of this embodiment includes a case 20, an electrode group 30, a first lead 40, a second lead 50, a cap 60, and a gasket .
  • the case 20 is configured in a cylindrical shape with a bottom.
  • the case 20 has a cylindrical side surface 21, an opening 22 at one end (upper end in FIG. 1), and a bottom 23 at the other end (lower end in FIG. 1).
  • An annular groove 24 projecting inward of the case is formed in a portion of the cylindrical side surface 21 near the opening 22 .
  • This groove portion 24 compresses a portion of the gasket 70 .
  • the portion of the gasket 70 compressed by the groove portion 24 is hereinafter also referred to as a compressed portion 72 .
  • Case 20 is made of stainless steel with a thickness of 0.05 mm to 0.2 mm.
  • the outer diameter of the case 20 may be 3 mm or more and 6 mm or less, or may be 3 mm or more and 4.5 mm or less.
  • the electrode group 30 is housed in the case 20 together with an electrolytic solution (not shown).
  • the electrode group 30 has a first electrode 31 and a second electrode 32 having a polarity different from that of the first electrode 31 .
  • the first electrode 31 constitutes the negative electrode and the second electrode 32 constitutes the positive electrode, but it is not limited to this.
  • the electrode group 30 is configured by winding a first electrode 31 and a second electrode 32 with a separator 33 interposed therebetween.
  • the first electrode 31 has a first collector sheet and first active material layers (negative electrode active material layers in this example) formed on both sides thereof (both not shown).
  • the second electrode 32 has a second collector sheet and second active material layers (in this example, positive electrode active material layers) formed on both sides thereof (both not shown).
  • the first electrode 31 is connected to the inner peripheral surface of the case 20 via the first lead 40 .
  • the second electrode 32 is connected to the cap 60 via the second lead 50 .
  • the case 20 functions as the negative terminal of the battery 10 and the cap 60 functions as the positive terminal of the battery 10, but the present invention is not limited to this.
  • the first lead 40 has a first end 41 electrically connected to the first electrode 31 and a second end 42 opposite to the first end 41 .
  • the first lead 40 is welded to the cylindrical side surface portion 21 of the case 20 . More specifically, the first lead 40 is welded to a portion of the cylindrical side surface portion 21 closer to the bottom portion 23 than the groove portion 24 is. However, although illustration is omitted, the first lead 40 may be welded to the region of the cylindrical side surface portion 21 in which the groove portion 24 is formed.
  • the first lead 40 of this embodiment is a negative electrode current collecting lead.
  • the second lead 50 has a third end 51 electrically connected to the second electrode 32 and a fourth end 52 electrically connected to the cap 60 .
  • the second lead 50 passes through an internal space of a tubular portion 73 of the gasket 70, which will be described later.
  • a fourth end 52 of the second lead 50 is welded to the bottom surface of the cap 60 .
  • the second lead 50 of this embodiment is a positive collector lead.
  • Cap 60 seals the opening 22 of the case 20 .
  • Cap 60 is composed of a conductive material.
  • Cap 60 functions as the positive terminal of battery 10 as described above.
  • the cap 60 has a terminal portion 61 extending in the axial direction of the battery 10 and a flange 62 extending radially outward of the battery 10 .
  • the terminal portion 61 and the flange 62 are configured integrally.
  • the flange 62 is held by a later-described seal portion 71 of the gasket 70 .
  • a gasket 70 is provided between the opening 22 of the case 20 and the cap 60 .
  • Gasket 70 is made of an insulating material and electrically insulates case 20 and cap 60 .
  • the gasket 70 has a seal portion 71 that accommodates the cap 60 , a compression portion 72 that is continuous with the seal portion 71 , and a cylindrical portion 73 that is continuous with the compression portion 72 and extends toward the bottom portion 23 of the case 20 .
  • the seal portion 71 includes a flat support portion that supports the lower surface of the flange 62 of the cap 60 and a holding portion that holds the upper surface of the flange 62 .
  • the compressed portion 72 is compressed by the groove portion 24 over the entire circumference of the gasket 70 . Before compression, the outer diameter of the compressed portion 72 and the outer diameter of the tubular portion 73 are substantially equal to each other and larger than the minimum inner diameter of the groove portion 24 (that is, the inner diameter of the deepest portion 24a of the groove portion 24).
  • the first lead 40 is not sandwiched between the cylindrical side surface portion 21 of the case 20 and the compression portion 72 of the gasket 70 and is in contact with the cylindrical portion 73 of the gasket 70 .
  • the second end 42 of the first lead 40 is positioned closer to the opening 22 (upper in FIG. 1) than the end of the electrode group 30 on the opening 22 side (upper end in FIG. 1). In other words, the second end 42 of the first lead 40 is not in contact with the electrode group 30 .
  • the end (upper end) of the electrode group 30 on the opening 22 side may be, for example, the end of an insulating member (for example, a separator) that protrudes most from the end face of the electrode group 30 .
  • the first lead 40 is located closer to the second end 42 than the portion welded to the cylindrical side surface 21 and is bent so as to project toward the opening 22 of the case 20 .
  • the first lead 40 is in contact with the cylindrical portion 73 of the gasket 70 at a portion closer to the second end portion 42 than the bent portion.
  • the second end 42 of the first lead 40 faces the electrode group 30 with a predetermined gap in the axial direction of the battery 10 .
  • the first lead 40 generally has an inverted U-shape or an inverted J-shape when viewed in cross section in FIG.
  • the distance between bottom 23 of case 20 (specifically, the outer surface of bottom 23) and deepest part 24a of groove 24 is D1 [mm]
  • bottom 23 of case 20 The distance between (specifically, the outer surface of the bottom portion 23) and the upper end portion of the electrode group 30 is assumed to be D2 [mm] (see FIG. 3).
  • D1 may be between 18 mm and 19 mm
  • D2 may be between 16.5 mm and 17.5 mm.
  • such a condition does not have to hold.
  • the manufacturing method includes a first step, a second step, a third step, a fourth step, a fifth step, a sixth step, and a seventh step.
  • the first end 41 of the first lead 40 is electrically connected to the first electrode 31 and the third end 51 of the second lead 50 is electrically connected to the second electrode 32 in the case 20 .
  • the electrode group 30 is opened so that the first lead 40 and the second lead 50 extend toward the opening 22 of the case 20 (upward in FIG. 1). It is inserted into the case 20 from the portion 22 .
  • the first lead 40 is welded to the cylindrical side surface portion 21 of the case 20 .
  • the first lead 40 is welded to the cylindrical side surface portion 21 by resistance welding.
  • annular groove 24 is formed in a part of the cylindrical side surface 21 of the case 20 (in this example, the part near the opening 22). More specifically, the annular groove 24 is formed in the region where the first lead 40 extends. Therefore, in the state where the groove 24 is formed, a portion of the first lead 40 (that is, the portion including the second end 42) is pushed inward of the case when the groove 24 is formed, and the deepest portion of the groove 24 is pushed. It protrudes inward of the case from 24a.
  • the groove portion 24 of the present embodiment is formed by grooving for reducing the diameter of a part of the cylindrical side surface portion 21 .
  • the gasket 70 is press-fitted (inserted) into the case 20 .
  • the gasket 70 presses down the portion of the first lead 40 that protrudes further into the case than the groove portion 24 (that is, the portion including the second end portion 42 ).
  • the first lead 40 is bent by the gasket 70 so that the second end 42 of the first lead 40 is displaced toward the bottom 23 of the case 20 .
  • the first lead 40 is bent to project toward the opening 22 of the case 20 .
  • the second lead 50 is pulled out from the cylindrical portion 73 of the gasket 70 and welded to the cap 60 .
  • the second lead 50 is welded to the bottom surface of the cap 60 by ultrasonic welding.
  • the electrolytic solution is injected into the inside of the case 20 by a vacuum injection method.
  • the annular groove 24 and the gasket 70 are in close contact with each other, the electrolyte can be prevented from entering above the annular groove 24 .
  • the cap 60 is accommodated in the seal portion 71 of the gasket 70.
  • the battery 10 of the present embodiment is obtained.
  • the second end 42 of the first lead 40 of this embodiment is in contact with the tubular portion 73 of the gasket 70 .
  • the first lead 40 is not bent upwardly.
  • Other configurations are the same as those of the first embodiment.
  • the dimension D1 is the axial distance between the bottom portion 23 of the case 20 and the deepest portion 24a of the groove portion 24.
  • the dimension D2 is the axial distance between the bottom 23 of the case 20 and the end (upper end) of the electrode group 30 on the opening 22 side.
  • the end (upper end) of the electrode group 30 on the opening 22 side may be, for example, the end of the separator 33 that protrudes most from the end surface of the electrode group 30 .
  • the dimension D3 is the axial distance between the lower end of the cylindrical portion 73 of the gasket 70 and the deepest portion 24a of the groove portion 24. As shown in FIG.
  • the dimension D4 is the length along the first lead 40 from the reference point to the second end 42, with the height position of the first lead 40 being the same as the upper end of the electrode group 30 as a reference point.
  • a dimension D5 is the axial distance between the upper end of the electrode group 30 and the second end 42 of the first lead 40 .
  • the battery 10 was initially charged, then subjected to high-temperature aging and charging/discharging to adjust the SOC (State Of Charge) to 100%. After storing for 20 days, the presence or absence of leakage from between the opening 22 of the case 20 and the gasket 70 was evaluated. The number of samples at this time was 20 for each example and each comparative example. or the occurrence of liquid leakage at a visual level) was evaluated as "present”.
  • the battery 10 was initially charged, then subjected to high-temperature aging and charging/discharging to adjust the SOC to 100%. After that, after discharging 90% of the capacity at 2C and providing a rest period of 1 minute, discharging 7% of the capacity at 1C and providing a rest period of 1 minute, finally at 0.2C the remaining capacity (3 %) was discharged, and the discharge capacity during this series of discharges was evaluated.
  • the discharge capacity of Comparative Example 1 is defined as a reference value (100), and the discharge capacities of Examples 1 to 3 and Comparative Examples 2 and 3 are expressed as ratios to the reference value.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.88 mm. Therefore, the gasket 70 was press-fitted into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was not sandwiched between the case 20 and the gasket 70 .
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were not in contact with each other.
  • D1 was 18.59 mm
  • D2 was 16.999 mm
  • D3 was 1.271 mm
  • D4 was 1.39 mm
  • D5 was 1.331 mm. The above evaluation was performed under these conditions, and the results of no liquid leakage, no internal short circuit, and a discharge capacity of 102.7 were obtained.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.88 mm. Therefore, the gasket 70 was press-fitted into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was not sandwiched between the case 20 and the gasket 70 .
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were not in contact with each other.
  • D1 was 18.59 mm
  • D2 was 17.449 mm
  • D3 was 0.821 mm
  • D4 was 1.39 mm
  • D5 was 1.016 mm. The above evaluation was performed under these conditions, and the results of no liquid leakage, no internal short circuit, and a discharge capacity of 105.5 were obtained.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.88 mm. Therefore, the gasket 70 was press-fitted into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was not sandwiched between the case 20 and the gasket 70 .
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were not in contact with each other.
  • D1 was 18.59 mm
  • D2 was 17.762 mm
  • D3 was 0.508 mm
  • D4 was 1.39 mm
  • D5 was 0.39 mm. The above evaluation was performed under these conditions, and the results of no liquid leakage, no internal short circuit, and a discharge capacity of 107.4 were obtained.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.68 mm. Therefore, the gasket 70 was not press-fitted into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was not sandwiched between the case 20 and the gasket 70 .
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were not in contact with each other.
  • D1 was 18.59 mm
  • D2 was 16.6 mm
  • D3 was 1.67 mm
  • D4 was 1.39 mm. The above evaluation was performed under these conditions, and the results of no liquid leakage, no internal short circuit, and a discharge capacity of 100 were obtained.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.68 mm. Therefore, the gasket 70 was not press-fitted into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was sandwiched between the case 20 and the gasket 70 (the same state as in Patent Document 1).
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were not in contact with each other.
  • D1 was 18.59 mm
  • D2 was 17.762 mm
  • D3 was 0.508 mm
  • D4 was 1.39 mm
  • D5 was 0.39 mm. The above-mentioned evaluation was performed under these conditions, and the results of leakage, no internal short circuit, and discharge capacity of 107.4 were obtained.
  • the battery 10 had an outer diameter of 3.51 mm and an axial length of 19.75 mm.
  • the inner diameter of the deepest portion 24a of the groove portion 24 was set to 2.78 mm, and the outer diameter of the cylindrical portion 73 of the gasket 70 was set to 2.88 mm. Therefore, the gasket 70 was pressed into the case 20 .
  • the first lead 40 was welded to the cylindrical side surface portion 21 of the case 20 at a position 0.5 mm above the upper end portion of the electrode group 30 .
  • the first lead 40 was not sandwiched between the case 20 and the gasket 70 .
  • the second end portion 42 of the first lead 40 and the upper end portion of the electrode group 30 were brought into contact with each other.
  • D1 is 18.59 mm
  • D2 is 18.212 mm
  • D3 is 0.058 mm
  • D4 is 1.39 mm
  • D5 is -0.06 mm (where D5 is a negative value because the first lead 40 and the upper end of the electrode group 30 are in contact with each other).
  • Table 1 shows a list of the dimensions D1 to D5 and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 3.
  • the units of D1 to D5 are mm.
  • the present disclosure can be used for batteries and battery manufacturing methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

開示される電池は、筒状側面部、開口部、および底部を有するケースと、ケースに電解液と共に収容され、第1電極および第2電極を有する電極群と、第1電極に電気的に接続された第1端部を有し、筒状側面部に溶接された第1リードと、開口部を封口するキャップと、開口部とキャップとの間に設けられるガスケットと、を備える。筒状側面部一部に、ガスケット一部を圧縮する溝部が形成されている。ガスケットは、圧縮部に連続して底部側に延びる筒状部を有する。第1リードは、筒状側面部と圧縮部との間に挟まれておらず、かつ筒状部に接触している。第1リードの第2端部は、電極群よりも開口部寄りに位置する。

Description

電池および電池の製造方法
 本開示は、電池および電池の製造方法に関する。
 従来、有底筒状のケースと、ケースに電解液と共に収容された電極群と、電極群の一方の電極およびケースに電気的に接続されるリードと、ケースの開口部を封口するキャップと、開口部とキャップとの間に設けられるガスケットとを備える電池が知られている(例えば、特許文献1)。特許文献1の電池では、ケース側面部に、ケース内方に突出する環状の溝部が形成されており、ケース側面部のうち溝部が形成された部分とガスケットとの間にリードが挟持されている。
特開2006-278195号公報
 しかしながら、特許文献1の構成では、ケースに収容された電解液が外部に漏れやすくなるおそれがある(すなわち、耐漏液性が低くなるおそれがある)。なぜなら、ケース側面部のうち溝部が形成された部分とガスケットとが互いに密着していることが耐漏液性を高める上で重要であるところ、上述のとおり、当該部位にリードが挟持されて密着性が損なわれるためである。このような状況において、本開示は、電池の耐漏液性を高めることを目的の1つとする。
 本開示に係る一局面は、電池に関する。当該電池は、筒状側面部を具備し、一端に開口部を有しかつ他端に底部を有するケースと、前記ケースに電解液と共に収容され、第1電極および前記第1電極と極性が異なる第2電極を有する電極群と、前記第1電極に電気的に接続された第1端部および前記第1端部と反対側の第2端部を有し、前記筒状側面部に溶接された第1リードと、前記開口部を封口するキャップと、前記開口部と前記キャップとの間に設けられるガスケットと、を備え、前記筒状側面部の一部に、ケース内方に突出して前記ガスケットの一部を圧縮する環状の溝部が形成されており、前記ガスケットは、前記圧縮された部分である圧縮部に連続して前記底部側に延びる筒状部を有し、前記第1リードは、前記筒状側面部と前記圧縮部との間に挟まれておらず、かつ前記筒状部に接触しており、前記第1リードの前記第2端部は、前記電極群の前記開口部側の端部よりも前記開口部寄りに位置する。
 本開示に係る別の一局面は、電池の製造方法に関する。当該製造方法は、上述の電池において、前記第1リードは、前記溶接された部分よりも前記第2端部側で前記開口部に向かって凸となるように曲がっている、電池を製造するための方法であって、前記ケースに、前記第1リードの前記第1端部が前記第1電極に電気的に接続された前記電極群を収容する第1工程と、前記第1リードを、前記筒状側面部に溶接する第2工程と、前記筒状側面部の一部に、前記溝部を形成する第3工程と、前記ケースに、前記ガスケットを圧入する第4工程と、を備え、前記第4工程において、前記第1リードの前記第2端部が前記底部側に変位するように、前記第1リードを前記ガスケットで押し曲げる。
 本開示によれば、電池の耐漏液性を高めることができる。
実施形態1の電池を模式的に示す断面図である。 実施形態2の電池を模式的に示す断面図である。 電池における各寸法を説明するための断面図である。
 本開示に係る電池および電池の製造方法の実施形態について例を挙げて以下に説明する。しかしながら、本開示は以下に説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。
 (電池)
 本開示に係る電池は、ケースと、電極群と、第1リードと、キャップと、ガスケットとを備える。
 ケースは、有底筒状であって、筒状側面部を具備し、一端に開口部を有しかつ他端に底部を有する。ケースは、有底円筒状、有底楕円筒状、または有底角筒状であってもよい。筒状側面部の一部には、ケース内方(すなわち、ケースの径方向内側)に突出してガスケットの一部を圧縮する環状の溝部が形成されている。環状の溝部は、開口部の近傍に形成されていてもよい。ケースは、導電性材料で構成される。例えば、ケースは、0.05mm~0.2mmの厚さを有するステンレス鋼で構成されるが、これに限定されるものではない。
 電極群は、ケースに電解液と共に収容される。電極群は、第1電極と、第1電極と極性が異なる第2電極とを有する。電極群は、第1電極および第2電極を、セパレータを介して捲回して柱状体として構成されてもよい。第1電極は、第1集電シートと、その両面に形成された第1活物質層とを有してもよい。第2電極は、第2集電シートと、その両面に形成された第2活物質層とを有してもよい。
 第1電極は、第1リードを介して、導電性を有するケースの内周面に接続される。第2電極は、第2リードを介して、導電性を有するキャップと接続されてもよい。ここで、ケースは、電池の第1端子(例えば、負極端子)として、キャップは、電池の第2端子(例えば、正極端子)として機能してもよい。
 第1電極および第2電極がそれぞれ負極および正極である場合について、さらに詳しく説明する。
 負極は、負極集電体シートと、その両面に形成された負極活物質層とを有する。負極集電体シートには公知の負極集電体シートを用いることができるが、電池がリチウムイオン二次電池である場合には、例えばステンレス鋼、ニッケル、銅、銅合金などの金属箔が用いられる。その厚さは、例えば5μm~20μmであるが、これに限定されるものではない。
 負極活物質層は、必須成分として負極活物質を含み、任意成分として結着剤、導電剤などを含む。負極活物質としては公知の負極活物質を用いることができるが、電池がリチウムイオン二次電池である場合には、例えば金属リチウム、珪素合金、錫合金などの合金、黒鉛、ハードカーボンなどの炭素材料、珪素化合物、錫化合物、チタン酸リチウムなどが用いられる。特に金属リチウムの場合はそれ自体が高い導電性と柔軟性を示すため、負極集電体シートの使用が任意となる。負極活物質の厚さは、例えば70μm~150μmであるが、これに限定されるものではない。
 リチウムイオン二次電池の負極集電リード(第1リード)には、例えばニッケル、ニッケル合金、鉄、ステンレス鋼、銅、銅合金などの材料を用いることができる。その厚さは、例えば10μm~120μmであるが、これに限定されるものではない。負極集電リードは、ケースの開口部近傍の、筒状側面部の内面に接続されてもよい。
 正極は、正極集電体シートと、その両面に形成された正極活物質層とを有する。正極集電体シートには公知の正極集電体シートを用いることができるが、電池がリチウムイオン二次電池である場合には、例えばアルミニウム、アルミニウム合金などの金属箔が用いられる。その厚さは、例えば5μm~20μmであるが、これに限定されるものではない。
 正極活物質層は、必須成分として正極活物質を含み、任意成分として結着剤、導電剤などを含む。正極活物質としては公知の正極活物質を用いることができるが、リチウムイオン二次電池の正極活物質としてはリチウム含有複合酸化物が好ましく、例えばLiCoO、LiNiO、LiMnなどが用いられる。また、リチウム一次電池の正極活物質としては、二酸化マンガン、フッ化黒鉛などが用いられる。正極活物質層の厚さは、例えば20μm~130μmであるが、これに限定されるものではない。
 リチウムイオン二次電池の正極集電リード(第2リード)には、例えばアルミニウム、アルミニウム合金、ニッケル、ニッケル合金、鉄、ステンレス鋼などの材料を用いることができる。その厚さは、例えば10μm~120μmであるが、これに限定されるものではない。正極集電リードは、ガスケットの筒状部(後述)の内部空間を通って、正極端子を兼ねるキャップの底面に接続されてもよい。
 負極と正極の間に配されるセパレータには公知のセパレータを用いることができ、例えば、絶縁性の微多孔薄膜、織布、または不織布を用いて形成される。リチウムイオン二次電池のセパレータには、例えばポリプロピレン、ポリエチレンなどのポリオレフィンを用いることができる。その厚さは、10μm~50μmであってもよく、好適には10μm~30μmである。
 電解液には公知の電解液を用いることができる。電池がリチウムイオン二次電池である場合には、電解液は、公知のリチウム塩と公知の非水溶媒とで構成される。例えば、非水溶媒としては、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステルなどが用いられる。また、例えば、リチウム塩としては、LiPF、LiBFなどが用いられるが、これらに限定されるものではない。
 第1リードは、第1電極に電気的に接続された第1端部と、第1端部と反対側の第2端部とを有する。第1リードは、ケースの筒状側面部に溶接されている。第1リードは、上述の負極集電リードであってもよい。
 キャップは、ケースの開口部を封口する。キャップは、導電性材料で構成されてもよい。
 ガスケットは、ケースの開口部とキャップとの間に設けられる。ガスケットは、環状の溝部により圧縮された部分である圧縮部を有する。この圧縮部において、ガスケットは、ケースの溝部が形成された部分と密着する。圧縮部は、ガスケットの全周にわたって(あるいは、ケースの全周にわたって)圧縮されていてもよい。ガスケットは、圧縮部に連続してケースの底部側に延びる筒状部を有する。
 ガスケットは、絶縁性材料で構成されていて、ケースとキャップとを電気的に絶縁する。ガスケットは、電解質に対する耐性を有する材料で構成されることが好ましく、例えばフッ素樹脂、ポリオレフィン、ポリアミドなどを用いることができる。その中でもフッ素樹脂を用いることが好ましく、例えばテトラフルオロエチレンとパーフルオロアルコキシビニルエーテルとの共重合体(PFA)を用いることができる。
 本開示の特徴部として、第1リードは、ケースの筒状側面部とガスケットの圧縮部との間に挟まれておらず、かつガスケットの筒状部に接触している。また、第1リードの第2端部は、電極群の開口部側の端部よりも当該開口部寄りに位置する。このように、第1リードは、ケースに溶接される部分を含んで十分な長さを有する一方で、電極群には接触していない。このため、第1リードの長さに公差が存在しても、第1リードをケース(具体的には、筒状側面部)に溶接することが可能となると共に、電池の内部短絡を回避することができる。さらに、第1リードは、そのように十分な長さを有する一方で、ケースとガスケットとの間に挟まれていない。したがって、ケースとガスケットとの間の密着性が損なわれず、電池の耐漏液性を高めることができる。
 ケースの軸方向において、ケースの底部と溝部の最深部との間の距離をD1[mm]とし、かつケースの底部と電極群の開口部側の端部との間の距離をD2[mm]として、0.91≦D2/D1≦0.96が成り立ってもよい。この構成によると、ケース内における電極群の占有体積を大きくすることで、電池の放電容量を高めることができる。なお、0.91≦D2/D1の場合、溝部の最深部と溶接部位との間の距離は非常に短くなる。この場合、第1リードの溶接部位よりも第2端部側の部分の長さを短くして筒状側面部と圧縮部との間に第1リードが挟まれるのを防止しようとするよりも、第1リードの溶接部位よりも第2端部側の部分の長さを十分に長くすることがより有効になる。
 第1リードは、ケースの筒状側面部のうち溝部が形成された領域に溶接されていてもよい。溝部は通常、ケースの開口部近傍に形成されるため、この構成によると、電極群と溶接部位との間の距離を確保しやすい。電極群の開口部側の端部を開口部に近づけることが容易になり、ケース内における電極群の占有体積を大きくすることができる。したがって、電池の放電容量を高めることができる。なお、筒状側面部のうち溝部が形成された領域とは、溝部の最深部のみでなく、最深部に向かって外径が徐々に小さくなる領域全体のことをいう。溶接部位は、溝部の最深部よりもケースの底部寄りに設けられる。
 ケースの外径は、6mm以下であってもよい。本開示の構成は、外径が6mm以下のケースを備える電池において特に有効である。ケースの外径は、4.5mm以下であってもよい。ケースの外径は、製造上の現実性を考慮して3mm以上であってもよい。
 第1リードは、溶接された部分よりも第2端部側でケースの開口部に向かって凸となるように曲がっていてもよい。この構成によると、第1リードの第2端部はケースの底部の方を向いて延びる。例えば、第1リードは、ケースの開口部に向かって凸となるようにU字状に曲がっていてもよい。そのように曲がった第1リードは、ケースとガスケットとの間により一層挟まれにくい。よって、電池の耐漏液性が損なわれることを回避しやすい。
 第1リードは、上述のように曲がった部分よりも第2端部側の部分でガスケットの筒状部に接触していてもよい。そのような接触は、点接触、線接触、または面接触のいずれであってもよい。
 第1リードの第2端部が、ガスケットの筒状部に接触していてもよい。この構成では、第1リードは、ケースの開口部に向かって凸となるように曲がってはいない。ただし、第1リードは、第2端部がガスケットの筒状部に接触するほどの十分な長さを有する。換言すると、第1リードの長さは、許容される公差が生じた場合でも、少なくとも第2端部がガスケットの筒状部に接触し、かつ筒状側面部とガスケットの圧縮部との間に挟まれない十分な長さに設計される。このような設計で相当数の電池を製造すると、多くの電池では、第1リードが、上述のように曲がった部分よりも第2端部側の部分でガスケットの筒状部に接触し、残りの電池では、少なくとも第2端部がガスケットの筒状部に接触する。すなわち、筒状側面部とガスケットの圧縮部との間に第2端部が挟まれる電池は原則として生じない。
 (電池の製造方法)
 本開示に係る電池の製造方法は、第1リードが、ケースの開口部に向かって凸となるように曲がっている、電池を製造するための方法であって、第1工程と、第2工程と、第3工程と、第4工程とを備える。
 第1工程では、ケースに、第1リードの第1端部が第1電極に電気的に接続された電極群を収容する。電極群の第2電極には、第2リードの一端が電気的に接続されていてもよい。
 第2工程では、第1リードを、ケースの筒状側面部に溶接する。溶接の種類としては、レーザ溶接、スポット溶接、または抵抗溶接などが挙げられる。
 第3工程では、ケースの筒状側面部の一部に、環状の溝部を形成する。環状の溝部は、例えば、筒状側面部の一部を縮径する溝入れ加工により形成されてもよい。
 第4工程では、ケースに、ガスケットを圧入する。これにより、ガスケットの一部が溝部によって圧縮される。ここで、ケースにガスケットを圧入する際、第1リードの第2端部がケースの底部側に変位するように、第1リードをガスケットで押し曲げる。この押曲げは、第1リードが、第2端部がガスケットの筒状部に接触するほどの十分な長さを有する場合において、ケースにガスケットを圧入する際、第1リードの第2端部もしくはその近傍箇所がガスケットと接触もしくは係合してガスケットから圧力を受けることによる。これにより、第1リードが、ケースの開口部に向かって凸となるように曲がった状態となる。
 以上のように、本開示によれば、第1リードの長さの公差によらず第1リードをケースに適切に溶接できると共に、電池の耐漏液性を高めることができる。さらに、本開示によれば、そのような電池を容易に製造することが可能である。
 以下では、本開示に係る電池および電池の製造方法の一例について、図面を参照して具体的に説明する。以下で説明する一例の電池および電池の製造方法の構成要素および工程には、上述した構成要素および工程を適用できる。以下で説明する一例の電池および電池の製造方法の構成要素および工程は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。以下で説明する一例の電池および電池の製造方法の構成要素および工程のうち、本開示に係る電池および電池の製造方法に必須ではない構成要素および工程は省略してもよい。なお、以下で示す図は模式的なものであり、実際の部材の形状や数を正確に反映するものではない。
 《実施形態1》
 本開示の実施形態1について説明する。図1に示すように、本実施形態の電池10は、ケース20と、電極群30と、第1リード40と、第2リード50と、キャップ60と、ガスケット70とを備える。
 ケース20は、有底円筒状に構成される。ケース20は、筒状側面部21を具備し、一端(図1における上端)に開口部22を有しかつ他端(図1における下端)に底部23を有する。筒状側面部21の開口部22近傍の部分には、ケース内方に突出する環状の溝部24が形成されている。この溝部24は、ガスケット70の一部を圧縮している。なお、ガスケット70の溝部24により圧縮された部分を、以下では圧縮部72ともいう。ケース20は、0.05mm~0.2mmの厚さを有するステンレス鋼で構成される。ケース20の外径は、3mm以上、6mm以下であってもよく、3mm以上、4.5mm以下であってもよい。
 電極群30は、ケース20に電解液(図示せず)と共に収容される。電極群30は、第1電極31と、第1電極31と極性が異なる第2電極32とを有する。本実施形態では、第1電極31が負極を構成し、かつ第2電極32が正極を構成するが、これに限られるものではない。電極群30は、第1電極31および第2電極32を、セパレータ33を介して捲回することで構成される。第1電極31は、第1集電シートと、その両面に形成された第1活物質層(この例では、負極活物質層)とを有する(共に図示せず)。第2電極32は、第2集電シートと、その両面に形成された第2活物質層(この例では、正極活物質層)とを有する(共に図示せず)。
 第1電極31は、第1リード40を介して、ケース20の内周面に接続される。第2電極32は、第2リード50を介して、キャップ60に接続される。本実施形態では、ケース20が電池10の負極端子として機能すると共に、キャップ60が電池10の正極端子として機能するが、これに限られるものではない。
 第1リード40は、第1電極31に電気的に接続された第1端部41と、第1端部41と反対側の第2端部42とを有する。第1リード40は、ケース20の筒状側面部21に溶接されている。より詳細には、第1リード40は、筒状側面部21のうち溝部24よりも底部23寄りの部分に溶接されている。ただし、第1リード40は、図示を省略するが、筒状側面部21のうち溝部24が形成された領域に溶接されていてもよい。本実施形態の第1リード40は、負極集電リードである。
 第2リード50は、第2電極32に電気的に接続された第3端部51と、キャップ60に電気的に接続された第4端部52とを有する。第2リード50は、ガスケット70の後述する筒状部73の内部空間を通っている。第2リード50の第4端部52は、キャップ60の底面に溶接されている。本実施形態の第2リード50は、正極集電リードである。
 キャップ60は、ケース20の開口部22を封口する。キャップ60は、導電性材料で構成される。キャップ60は、上述のように電池10の正極端子として機能する。キャップ60は、電池10の軸方向に延びる端子部61と、電池10の径方向外側に延びるフランジ62とを有する。端子部61およびフランジ62は、一体に構成されている。フランジ62は、ガスケット70の後述するシール部71によって保持される。
 ガスケット70は、ケース20の開口部22とキャップ60との間に設けられる。ガスケット70は、絶縁性材料で構成されていて、ケース20とキャップ60とを電気的に絶縁する。ガスケット70は、キャップ60を収容するシール部71と、シール部71に連続する圧縮部72と、圧縮部72に連続してケース20の底部23側に延びる筒状部73とを有する。シール部71は、キャップ60のフランジ62の下面を支持する平坦な支持部と、フランジ62の上面を保持する保持部とを具備する。圧縮部72は、ガスケット70の全周にわたって溝部24によって圧縮されている。圧縮前の状態において、圧縮部72の外径と筒状部73の外径は、互いに実質的に等しく、かつ溝部24の最小内径(すなわち、溝部24の最深部24aの内径)よりも大きい。
 ここで、第1リード40は、ケース20の筒状側面部21とガスケット70の圧縮部72との間に挟まれておらず、かつガスケット70の筒状部73に接触している。また、第1リード40の第2端部42は、電極群30の開口部22側の端部(図1における上端部)よりも開口部22寄り(図1における上寄り)に位置する。換言すると、第1リード40の第2端部42は、電極群30と接触していない。電極群30の開口部22側の端部(上端部)とは、例えば、電極群30の端面において最も突出する絶縁性部材(例えば、セパレータ)の端部であってもよい。
 第1リード40は、筒状側面部21に溶接された部分よりも第2端部42側で、ケース20の開口部22に向かって凸となるように曲がっている。第1リード40は、そのように曲がった部分よりも第2端部42側の部分でガスケット70の筒状部73に接触している。第1リード40の第2端部42は、電池10の軸方向において電極群30と所定の間隔をおいて対向している。第1リード40は、図1の断面視において、概ね逆U字状または逆J字状になっている。
 また、ケース20の軸方向において、ケース20の底部23(具体的には、底部23の外面)と溝部24の最深部24aとの間の距離をD1[mm]とし、かつケース20の底部23(具体的には、底部23の外面)と電極群30の上端部との間の距離をD2[mm]とする(図3を参照)。その場合において、本実施形態の電池10では、0.91≦D2/D1≦0.96が成り立つ。その条件下において、例えば、D1は、18mm~19mmであってもよく、D2は、16.5mm~17.5mmであってもよい。ただし、そのような条件が成り立っていなくてもよい。
 -電池の製造方法-
 次に、本実施形態に係る電池の製造方法について説明する。当該製造方法は、第1工程と、第2工程と、第3工程と、第4工程と、第5工程と、第6工程と、第7工程とを備える。
 第1工程では、ケース20に、第1リード40の第1端部41が第1電極31に電気的に接続され、かつ第2リード50の第3端部51が第2電極32に電気的に接続された電極群30を収容する。ケース20に電極群30を収容する際には、第1リード40および第2リード50がケース20の開口部22に向かって(図1における上方に向かって)延びるように、電極群30を開口部22からケース20に挿入する。
 第2工程では、第1リード40を、ケース20の筒状側面部21に溶接する。本実施形態では、抵抗溶接により、第1リード40を筒状側面部21に溶接する。
 第3工程では、ケース20の筒状側面部21の一部(この例では、開口部22近傍の部分)に、環状の溝部24を形成する。より具体的に、環状の溝部24は、第1リード40が延在する領域において形成される。このため、溝部24が形成された状態において、第1リード40の一部(すなわち、第2端部42を含む部分)は、溝部24の形成時にケース内方に押され、溝部24の最深部24aよりもケース内方に突出する。本実施形態の溝部24は、筒状側面部21の一部を縮径する溝入れ加工により形成される。
 第4工程では、ケース20に、ガスケット70を圧入(挿入)する。このとき、第1リード40のうち溝部24よりもケース内方に突出している部分(すなわち、第2端部42を含む部分)を、ガスケット70で押し下げる。換言すると、ケース20にガスケット70を圧入する際、第1リード40の第2端部42がケース20の底部23側に変位するように、第1リード40をガスケット70で押し曲げる。これにより、第1リード40が、ケース20の開口部22に向かって凸となるように曲がった状態となる。
 第5工程では、第2リード50を、ガスケット70の筒状部73の内部から引き出し、キャップ60と溶接する。本実施形態では、超音波溶接により、第2リード50キャップ60の底面に溶接する。
 第6工程では、真空注液方式により、ケース20の内部に電解液を注液する。このとき、環状の溝部24とガスケット70とが密着しているため、環状の溝部24よりも上方に電解液が浸入することが抑止され得る。
 第7工程では、キャップ60を、ガスケット70のシール部71に収容する。そして、ケース20の開口部22を、ガスケット70を介してキャップ60とかしめることにより、本実施形態の電池10が得られる。
 《実施形態2》
 本開示の実施形態2について説明する。本実施形態は、第1リード40の構成が上記実施形態1と異なる。以下、上記実施形態1と異なる点について主に説明する。
 図2に示すように、本実施形態の第1リード40は、第2端部42がガスケット70の筒状部73に接触している。第1リード40は、上方に向かって凸となるように曲がってはいない。それ以外の構成は、上記実施形態1と同じである。
 以下に示す実施例1~3および比較例1~3の電池10について、図3に示す各部寸法D1~D5を含む各種条件と、耐漏液性、内部ショートの有無、および放電容量との関係を評価した。
 ここで、寸法D1は、ケース20の底部23と溝部24の最深部24aとの間の軸方向の距離である。寸法D2は、ケース20の底部23と電極群30の開口部22側の端部(上端部)との間の軸方向の距離である。電極群30の開口部22側の端部(上端部)は、例えば、電極群30の端面において最も突出するセパレータ33の端部であってもよい。寸法D3は、ガスケット70の筒状部73の下端と溝部24の最深部24aとの間の軸方向の距離である。寸法D4は、第1リード40において、電極群30の上端部と同じ高さ位置を基準点として、この基準点から第2端部42までの第1リード40に沿った長さである。そして、寸法D5は、電極群30の上端部と第1リード40の第2端部42との間の軸方向の距離である。
 耐漏液性の評価方法として、電池10を初期充電後、高温エージングおよび充放電を行ってSOC(State Of Charge)100%に調整した後、温度60℃、湿度90%の恒温恒湿環境下で20日間保管して、ケース20の開口部22とガスケット70との間からの漏液の有無を評価した。このときのサンプル数は各実施例および各比較例につき20個とし、20個のサンプル全てで漏液が発生しない場合を「なし」と評価し、その他の場合(例えば、顕微鏡観察レベルで漏液の発生が認められた場合や、目視レベルで漏液の発生が認められた場合)を「あり」と評価した。
 放電容量の評価方法として、電池10を初期充電後、高温エージングおよび充放電を行ってSOC100%に調整した。その後、2Cで容量の90%を放電して1分の休止期間を設けた後、1Cで容量の7%を放電して1分間の休止期間を設け、最後に0.2Cで残容量(3%)を放電し、この一連の放電時における放電容量を評価した。なお、以下において、比較例1の放電容量を基準値(100)とし、実施例1~3および比較例2,3の放電容量は当該基準値に対する比率で表す。
 《実施例1》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.88mmとした。このため、ガスケット70は、ケース20に圧入される状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれない状態とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触しない状態とした。そして、D1を18.59mm、D2を16.999mm、D3を1.271mm、D4を1.39mm、D5を1.331mmとした。これらの条件で上述の評価を行い、漏液なし、内部ショートなし、放電容量102.7との結果を得た。
 《実施例2》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.88mmとした。このため、ガスケット70は、ケース20に圧入される状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれない状態とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触しない状態とした。そして、D1を18.59mm、D2を17.449mm、D3を0.821mm、D4を1.39mm、D5を1.016mmとした。これらの条件で上述の評価を行い、漏液なし、内部ショートなし、放電容量105.5との結果を得た。
 《実施例3》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.88mmとした。このため、ガスケット70は、ケース20に圧入される状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれない状態とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触しない状態とした。そして、D1を18.59mm、D2を17.762mm、D3を0.508mm、D4を1.39mm、D5を0.39mmとした。これらの条件で上述の評価を行い、漏液なし、内部ショートなし、放電容量107.4との結果を得た。
 《比較例1》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.68mmとした。このため、ガスケット70は、ケース20に圧入されない状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれない状態とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触しない状態とした。そして、D1を18.59mm、D2を16.6mm、D3を1.67mm、D4を1.39mmとした。これらの条件で上述の評価を行い、漏液なし、内部ショートなし、放電容量100との結果を得た。
 《比較例2》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.68mmとした。このため、ガスケット70は、ケース20に圧入されない状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれた状態(特許文献1と同様の状態)とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触しない状態とした。そして、D1を18.59mm、D2を17.762mm、D3を0.508mm、D4を1.39mm、D5を0.39mmとした。これらの条件で上述の評価を行い、漏液あり、内部ショートなし、放電容量107.4との結果を得た。
 《比較例3》
 電池10の外径を3.51mmとし、電池10の軸方向長さを19.75mmとした。溝部24の最深部24aの内径を2.78mmとし、ガスケット70の筒状部73の外径を2.88mmとした。このため、ガスケット70は、ケース20に圧入されたる状態となった。第1リード40を、電極群30の上端部よりも0.5mm上の位置でケース20の筒状側面部21に溶接した。第1リード40は、ケース20とガスケット70との間に挟まれない状態とした。第1リード40の第2端部42と電極群30の上端部とは、互いに接触する状態とした。そして、D1を18.59mm、D2を18.212mm、D3を0.058mm、D4を1.39mm、D5を-0.06mm(ここで、D5が負の値であることは、第1リード40の第2端部42と電極群30の上端部とが接触していることを意味する。)とした。これらの条件で上述の評価を行い、漏液なし、内部ショートあり、放電容量110.1との結果を得た。
 なお、実施例1~3および比較例1~3の各寸法D1~D5および評価結果の一覧を、表1に示す。表1において、D1~D5の単位はmmである。
Figure JPOXMLDOC01-appb-T000001
 以上のように、実施例1~3の電池10では、漏液も内部ショートも発生せず、高い放電容量が得られた。一方、比較例1の電池10では、漏液も内部ショートも発生しないが、放電容量が低かった。また、比較例2,3の電池10では、放電容量は高いものの、漏液または内部ショートが発生した。これらより、各比較例に対する各実施例の優位性が示されたと言える。
 本開示は、電池および電池の製造方法に利用できる。
  10:電池
  20:ケース
  21:筒状側面部
  22:開口部
  23:底部
  24:溝部
  24a:最深部
  30:電極群
  31:第1電極
  32:第2電極
  33:セパレータ
  40:第1リード
  41:第1端部
  42:第2端部
  50:第2リード
  51:第3端部
  52:第4端部
  60:キャップ
  61:端子部
  62:フランジ
  70:ガスケット
  71:シール部
  72:圧縮部
  73:筒状部

Claims (8)

  1.  筒状側面部を具備し、一端に開口部を有しかつ他端に底部を有するケースと、
     前記ケースに電解液と共に収容され、第1電極および前記第1電極と極性が異なる第2電極を有する電極群と、
     前記第1電極に電気的に接続された第1端部および前記第1端部と反対側の第2端部を有し、前記筒状側面部に溶接された第1リードと、
     前記開口部を封口するキャップと、
     前記開口部と前記キャップとの間に設けられるガスケットと、
    を備え、
     前記筒状側面部の一部に、ケース内方に突出して前記ガスケットの一部を圧縮する環状の溝部が形成されており、
     前記ガスケットは、前記圧縮された部分である圧縮部に連続して前記底部側に延びる筒状部を有し、
     前記第1リードは、前記筒状側面部と前記圧縮部との間に挟まれておらず、かつ前記筒状部に接触しており、
     前記第1リードの前記第2端部は、前記電極群の前記開口部側の端部よりも前記開口部寄りに位置する、電池。
  2.  前記ケースの軸方向において、前記底部と前記溝部の最深部との間の距離をD1[mm]とし、かつ前記底部と前記電極群の前記端部との間の距離をD2[mm]として、
     0.91≦D2/D1≦0.96が成り立つ、請求項1に記載の電池。
  3.  前記第1リードは、前記筒状側面部のうち前記溝部が形成された領域に溶接されている、請求項1または2に記載の電池。
  4.  前記ケースの外径は、6mm以下である、請求項1~3のいずれか1項に記載の電池。
  5.  前記第1リードは、前記溶接された部分よりも前記第2端部側で前記開口部に向かって凸となるように曲がっている、請求項1~4のいずれか1項に記載の電池。
  6.  前記第1リードは、前記曲がった部分よりも前記第2端部側の部分で前記筒状部に接触している、請求項5に記載の電池。
  7.  前記第1リードの前記第2端部が、前記筒状部に接触している、請求項1~4のいずれか1項に記載の電池。
  8.  請求項5または6に記載の電池を製造するための方法であって、
     前記ケースに、前記第1リードの前記第1端部が前記第1電極に電気的に接続された前記電極群を収容する第1工程と、
     前記第1リードを、前記筒状側面部に溶接する第2工程と、
     前記筒状側面部の一部に、前記溝部を形成する第3工程と、
     前記ケースに、前記ガスケットを圧入する第4工程と、
    を備え、
     前記第4工程において、前記第1リードの前記第2端部が前記底部側に変位するように、前記第1リードを前記ガスケットで押し曲げる、電池の製造方法。
PCT/JP2022/004534 2021-03-16 2022-02-04 電池および電池の製造方法 WO2022196172A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280018963.7A CN116964858A (zh) 2021-03-16 2022-02-04 电池以及电池的制造方法
US18/549,913 US20240154264A1 (en) 2021-03-16 2022-02-04 Battery and method for manufacturing battery
JP2023506853A JPWO2022196172A1 (ja) 2021-03-16 2022-02-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021042584 2021-03-16
JP2021-042584 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196172A1 true WO2022196172A1 (ja) 2022-09-22

Family

ID=83322223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004534 WO2022196172A1 (ja) 2021-03-16 2022-02-04 電池および電池の製造方法

Country Status (4)

Country Link
US (1) US20240154264A1 (ja)
JP (1) JPWO2022196172A1 (ja)
CN (1) CN116964858A (ja)
WO (1) WO2022196172A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278195A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 二次電池
JP2014222670A (ja) * 2011-02-16 2014-11-27 パナソニック株式会社 電池および電池の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278195A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 二次電池
JP2014222670A (ja) * 2011-02-16 2014-11-27 パナソニック株式会社 電池および電池の製造方法

Also Published As

Publication number Publication date
US20240154264A1 (en) 2024-05-09
JPWO2022196172A1 (ja) 2022-09-22
CN116964858A (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
JP2023087895A (ja) 円筒形電池、及び円筒形電池の製造方法
US11495833B2 (en) Cylindrical battery
CN113228384A (zh) 电池及其制造方法
JP5958712B2 (ja) 角形電池
WO2018061381A1 (ja) 非水電解質二次電池
CN111937176A (zh) 电池
JP7320491B2 (ja) 電池
JP5171441B2 (ja) 密閉型二次電池
JPWO2018124152A1 (ja) コイン形電池及びその製造方法
US9601735B2 (en) Cylindrical battery
JP6906193B2 (ja) 電池
JP5159076B2 (ja) 円筒型蓄電池およびその製造方法
WO2022196172A1 (ja) 電池および電池の製造方法
CN113169347B (zh) 电池
KR20150000159A (ko) 전극조립체 및 이를 포함하는 이차전지
CN111902960B (zh) 电池
WO2019194227A1 (ja) 電池
JP2016173907A (ja) 角形二次電池
JP2001313011A (ja) リチウム二次電池
WO2024070513A1 (ja) 円筒形電池
WO2024048147A1 (ja) 円筒形電池
US20230126089A1 (en) Secondary battery
WO2023181853A1 (ja) 円筒形電池
US20230121750A1 (en) Secondary battery
US20240039093A1 (en) Hermetically sealed battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280018963.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18549913

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770932

Country of ref document: EP

Kind code of ref document: A1