WO2022196157A1 - Automated analysis device and flow path confirmation method - Google Patents

Automated analysis device and flow path confirmation method Download PDF

Info

Publication number
WO2022196157A1
WO2022196157A1 PCT/JP2022/004287 JP2022004287W WO2022196157A1 WO 2022196157 A1 WO2022196157 A1 WO 2022196157A1 JP 2022004287 W JP2022004287 W JP 2022004287W WO 2022196157 A1 WO2022196157 A1 WO 2022196157A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
automatic analyzer
unit
flow path
conductivity
Prior art date
Application number
PCT/JP2022/004287
Other languages
French (fr)
Japanese (ja)
Inventor
隼佑 宮本
創 山崎
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2023506843A priority Critical patent/JPWO2022196157A1/ja
Publication of WO2022196157A1 publication Critical patent/WO2022196157A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present invention relates to an automatic analyzer and its flow channel confirmation method.
  • the automatic analyzer is a device that performs quantitative and qualitative analysis of the components of biological samples (hereinafter referred to as samples) such as serum and urine using optical and electrical analysis methods.
  • samples biological samples
  • analysis methods there is a method in which a plurality of types of liquids such as samples and reagents are supplied at different timings into a flow path including an analysis unit, and the components of each liquid are analyzed. Further, in the automatic analyzer, an operation of discharging a cleaning solution obtained by combining detergent and water supplied through a common flow path is performed to clean the reaction vessel after analysis.
  • a technique using a conductivity sensor is known as a technique for measuring the physical quantity of liquid in a flow path.
  • a reagent after preparation is measured by a conductivity sensor and it is determined whether or not the measured value is within a predetermined range. (Paragraph 0095, etc.).
  • the automatic analyzer may switch the type of liquid flowing through the same flow path at a predetermined timing to supply different types of liquids to desired locations. At this time, in the current automatic analyzer, an excessive amount of liquid had to be supplied so that a specific liquid could be reliably supplied regardless of the individual differences of the apparatuses and the installation environment.
  • the purpose of the present invention is to provide an automatic analyzer that can reduce running costs by reducing the amount of reagents and detergents used and suppressing the frequency of replacement of reagent containers and detergent containers.
  • the automatic analyzer of the present invention relates to the same flow path through which a plurality of types of liquids flow, a pump that supplies the liquid to the flow path, and the liquid supplied to the flow path.
  • a measurement unit that measures a physical quantity
  • a determination unit that determines, based on the physical quantity measured by the measurement unit, that a flow channel upstream of the measurement unit has been replaced with a specific liquid.
  • an automatic analyzer that can reduce running costs by reducing the amount of reagents and detergents used and suppressing the replacement frequency of reagent containers and detergent containers.
  • FIG. 1 is an example of a schematic block diagram of an automatic analyzer for electrolyte analysis to which Embodiment 1 is applied;
  • FIG. FIG. 10 is a functional block diagram showing a configuration of a controller, in particular, a configuration related to an operation sequence for determining replacement of liquid in a channel;
  • An example of a flow chart for electrolyte analysis. 4 is a time chart showing an operation sequence of each part in the automatic analyzer according to Example 1; 4 is a time chart showing another operation sequence of each part in the automatic analyzer according to Example 1; 4 is a flowchart showing processing of a syringe pump;
  • FIG. 4 is a schematic diagram showing the structure of the conductivity measuring part and the flow path around it in Example 1;
  • FIG. 4 is a schematic diagram showing the structure of another conductivity measuring part and its peripheral flow path in Example 1; An example of a schematic configuration diagram of an automatic analyzer that performs detergent dilution to which Embodiment 2 is applied. An example of a schematic configuration diagram of a detergent dilution channel in the automatic analyzer of Example 2.
  • FIG. 4 is a flow chart showing the process from diluting the detergent with water to discharging it into the reaction container.
  • 6 is a time chart showing the operation sequence of each part in the automatic analyzer according to Example 2;
  • the automatic analyzer according to the present embodiment performs measurement for measuring physical quantities related to liquids in the same flow path to which multiple types of liquids (samples, reagents, detergents, water, etc.) are supplied at different timings during analysis or maintenance. department is provided. Then, the determination unit of the automatic analyzer according to the present embodiment determines that the inside of the flow path on the upstream side of the measurement unit has been replaced with a specific liquid, based on the physical quantity measured by the measurement unit. As a result, the amount of liquid to be fed is optimized, and an automatic analyzer capable of reducing the amount of liquid used can be provided.
  • the measurement unit measures the conductivity of the liquid in the flow channel, and when the conductivity reaches a predetermined value, the determination unit determines that the liquid in the analysis unit is the object of analysis. It is determined that the liquid has been replaced. Therefore, according to the automatic analyzer 10 of the present embodiment, the timing at which the liquid is completely replaced can be accurately determined, and the amount of excessively supplied liquid can be reduced.
  • electrolyte analysis will be described as an example of analysis.
  • a sample is supplied into a flow channel including an electrolyte analysis section, and the potential difference from a reference solution is measured as the ion concentration (electrolyte concentration) in the sample.
  • a standard solution reagent
  • a cleaning liquid is supplied into the channel at regular intervals to clean the channel and the analysis unit.
  • FIG. 1 is an example of a schematic configuration diagram of an automatic analyzer 10 that performs electrolyte analysis to which Embodiment 1 is applied.
  • the automatic analyzer 10 of this embodiment includes an analysis unit 11 and an operation unit 12. As shown in FIG. 1
  • the analysis unit 11 is a unit that analyzes requested items on the sample and outputs analysis results.
  • This analysis unit 11 includes a sample disk 102, a dilution tank 103, a diluent container 104, a cleaning solution container 105, a reagent container 106, a sample pipetting probe 107, an electrolyte analysis section 108, a syringe pump 109, A dilution pump 110 , a washing solenoid valve 115 , a reagent solenoid valve 116 , a dilution solenoid valve 117 , a suction side solenoid valve 118 , a drain side solenoid valve 119 , and a conductivity measuring section 111 are provided.
  • the reagent electromagnetic valve 116 and the dilution electromagnetic valve 117 are located upstream of the electrolyte analysis unit 108 and are electromagnetic valves that switch the liquid supplied to the flow path between the reagent and the diluted sample.
  • the suction side solenoid valve 118 is positioned downstream of the conductivity measuring section 111 and is a solenoid valve that opens and closes the flow path.
  • a sample container 101 (collection tube) is mounted on the circumference of the sample disk 102 .
  • a sample pipetting probe 107 is installed which can rotate and move up and down.
  • the sample dispensing probe 107 rotates and moves vertically to dispense the sample from the sample container 101 to the dilution tank 103 .
  • the dilution tank 103 has an open cup-shaped upper surface and a channel connected to a syringe pump 109 on its bottom surface.
  • the dilution pump 110 transfers the diluent from the diluent container 104 to the dilution tank 103 .
  • the sample and the diluent are agitated by the water pressure of the dilution pump 110 when the liquid is fed, and the sample is diluted.
  • the conductivity measurement unit 111 is a measurement unit that measures the electrical conductivity as a physical quantity related to the liquid supplied to the channel.
  • the electrolyte analysis unit 108 measures a physical quantity different from the physical quantity measured by the conductivity measurement unit in order to analyze the components of the liquid.
  • the syringe pump 109 supplies the liquid to the channel by sucking and discharging the liquid.
  • a flow path upstream of the syringe pump 109 is provided with a suction-side solenoid valve 118, a conductivity measuring section 111, an electrolyte analysis section 108, and a branch section branching in three directions in order toward the upstream. .
  • a cleaning electromagnetic valve 115 is positioned in the first direction in which the branching portion branches, and a cleaning liquid container 105 is connected to the flow path on the upstream side thereof.
  • a reagent electromagnetic valve 116 is positioned in the second direction in which the branching portion branches, and the reagent container 106 is connected to the flow path on the upstream side thereof.
  • a dilution electromagnetic valve 117 is positioned in the third direction in which the branching section branches, and the dilution pump 110 and the dilution tank 103 are connected to the upstream side thereof.
  • the operation unit 12 is a part that plays a role of controlling the information of the entire system of the automatic analyzer 10, and has a computer 112 and a controller 113.
  • the computer 112 includes a display section and an input section.
  • the display unit displays various screens such as analysis request items and analysis results.
  • the input unit is used by an operator or the like to input various parameter settings, start or stop of analysis, etc., based on the operation screen displayed on the display unit.
  • the controller 113 is connected to each mechanism within the analysis unit 11, and includes a control section, a data acquisition section, a calculation section, a determination section, and a storage section.
  • the control unit controls operations of the syringe pump 109, each solenoid valve, the electrolyte analysis unit 108, the conductivity measurement unit 111, and the like.
  • the data acquisition unit acquires data measured by the electrolyte analysis unit 108 and the conductivity measurement unit 111 .
  • the computation unit computes the electrolyte concentration in the sample to be analyzed based on the potential and the like measured by the electrolyte analysis unit 108 .
  • the determination unit determines whether or not the flow path on the upstream side of the conductivity measurement unit 111 has been replaced with a specific liquid.
  • the storage unit stores time charts and operation parameters necessary for the operation of each mechanism, various information on samples, diluents, reagents, and cleaning solutions, analysis results, as well as calculations using the electrolyte analysis unit 108 and the conductivity measurement unit 111. Stores reference data and the like used for determination.
  • FIG. 2 is a functional block diagram showing the configuration of the controller 113, particularly related to the operation sequence for determining replacement of the liquid in the channel.
  • the controller 113 pre-stores a conductivity data acquisition unit 131 that acquires conductivity measurement data from the conductivity measurement unit 111, and a conductivity reference data of the liquid supplied into the channel.
  • the conductivity data acquired by the conductivity data acquisition unit 131 is within a predetermined range by referring to the reference conductivity storage unit 133 and the reference data stored in the reference conductivity storage unit 133.
  • a syringe pump control unit 134 for controlling the syringe pump.
  • the automatic analyzer 10 that performs electrolyte analysis is described, but the analysis items are not limited to electrolyte analysis. It can be applied as long as it has a channel through which a plurality of types of liquids pass.
  • FIG. 3 is an example of a flow chart of electrolyte analysis. Note that the electrolyte analysis process shown in FIG. 3 is mainly controlled by the controller 113 .
  • the controller 113 first operates the syringe pump 109 to aspirate the reagent (step S101). As a result, the channel in the electrolyte analysis section 108 is filled with the reagent.
  • the controller 113 measures the potential of the liquid (reagent) in the electrolyte analysis unit 108 by controlling the electrolyte analysis unit 108 (step S102).
  • the measured data is stored in the storage section of the controller 113 via the data acquisition section.
  • the controller 113 operates the sample dispensing probe 107 to dispense the sample from the sample container 101 to the dilution tank 103 (step S103).
  • the controller 113 operates the dilution pump 110 to discharge the diluent into the dilution tank 103 (step S104).
  • the sample is diluted so that the sample amount and the diluent amount become the set ratio.
  • the controller 113 operates the syringe pump 109 to aspirate the diluted sample in the dilution tank 103 (step S105).
  • the channel in the electrolyte analysis section 108 is filled with the diluted sample.
  • the controller 113 measures the potential of the liquid (diluted sample) in the electrolyte analysis unit 108 by controlling the electrolyte analysis unit 108 (step S106).
  • the measured data is stored in the storage section of the controller 113 via the data acquisition section.
  • the controller 113 uses the potential of the reagent and the potential of the diluted sample to calculate the electrolyte concentration of the analyte contained in the sample (step S107), stores it in the storage unit, and displays it on the computer 112. section (step S108).
  • step S107 when a plurality of samples are continuously subjected to electrolyte analysis, after step S107 is completed, the process returns to step S101, and steps S102 to S108 are repeated thereafter.
  • FIG. 4 is a time chart showing the operation sequence of each part in the automatic analyzer 10 according to the first embodiment.
  • the reagent electromagnetic valve 116 and the suction-side electromagnetic valve 118 open the flow path including the electrolyte analysis unit 108 and the conductivity measurement unit 111 (S11), and the syringe pump 109 starts the suction operation. After a certain amount of the reagent is supplied to the channel, the syringe pump 109 stops the suction operation, and the conductivity measuring section 111 measures the conductivity of the liquid in the conductivity measuring section 111 (S12). The measured conductivity is stored in the storage section of the controller 113 and output to the display section of the computer 112 . When the conductivity measuring unit 111 measures a predetermined conductivity, the flow path is replaced with the reagent, so the flow path is blocked by the reagent electromagnetic valve 116 and the suction side electromagnetic valve 118 (S13).
  • each electromagnetic valve shuts off the flow path after the conductivity is measured in S12 and the determination unit 132 determines that the replacement of the liquid (replacement with the reagent) is completed. If the conductivity is to be measured after each solenoid valve has blocked the flow path, each solenoid valve must be opened again if the conductivity has not reached a predetermined level. The opening/closing operation of the solenoid valve causes the liquid in the flow path to sway, and as a result, the measurement and analysis in the conductivity measurement unit 111 and the electrolyte analysis unit 108 are affected.
  • the flow path on the downstream side of the syringe pump 109 is opened by the drain-side electromagnetic valve 119 (S14), and the syringe pump 109 performs the return-to-origin operation (S15), whereby the residual liquid is discharged to the drain section 114. be done.
  • the flow path is blocked by the discharge side electromagnetic valve 119 (S16).
  • the electrolyte analysis unit 108 measures the potential of the liquid (reagent) (S17).
  • the sample is dispensed from the predetermined sample container 101 to the dilution tank 103 by the sample dispensing probe 107 according to the analysis item requested by the computer 112. be done. Further, the dilution pump 110 sends a predetermined amount of diluent to the dilution tank 103 to dilute the sample (S18). Thereafter, the dilution solenoid valve 117 and the suction side solenoid valve 118 open the flow path including the electrolyte analysis section 108 and the conductivity measurement section 111 (S19), and the syringe pump 109 starts suction operation.
  • the conductivity measuring section 111 measures the conductivity of the liquid in the conductivity measuring section 111 (S20).
  • the measured conductivity is stored in the storage section of the controller 113 and output to the display section of the computer 112 .
  • the conductivity measuring unit 111 measures a predetermined conductivity, the channel is replaced with the diluted sample, so the channel is blocked by the dilution solenoid valve 117 and the suction side solenoid valve 118 ( S21).
  • the flow path on the downstream side of the syringe pump 109 is opened by the drain-side solenoid valve 119 (S22), and the syringe pump 109 performs the return-to-origin operation (S23), whereby the residual liquid is discharged to the drain section 114. be done.
  • the flow path is blocked by the discharge side electromagnetic valve 119 (S24).
  • the electrolyte analysis unit 108 measures the potential of the liquid (diluted sample) (S25).
  • FIG. 5 is a time chart showing another operation sequence of each part in the automatic analyzer 10 according to the first embodiment.
  • the conductivity measurement unit 111 continuously measures the conductivity in parallel with the suction operation of the syringe pump 109 .
  • the operation sequence other than the reagent conductivity measurement operation (S26) and the diluted sample conductivity measurement operation (S27) by the conductivity measurement unit 111 is the same as in FIG.
  • FIG. 6 is a flow chart showing the processing of the syringe pump.
  • the determination unit 132 acquires the reference data of the liquid being sucked from the reference conductivity storage unit 133 (step S1). Next, in parallel with the suction operation of the syringe pump 109, the conductivity measurement operation of the reagent (S26 in FIG. 5) and the conductivity measurement operation of the diluted sample (S27 in FIG. 5) are performed by the conductivity measurement unit 111. Executed (step S2) Further, the determination unit 132 refers to the reference data in the reference conductivity storage unit 133, and determines whether the data acquired by the conductivity data acquisition unit 131 has reached a predetermined conductivity. is determined (step S3).
  • the determination unit 132 sends a signal to the syringe pump control unit 134 to stop the syringe pump 109, and proceeds to the next operation, that is, blockage of the flow path (S13 or S21 in FIG. 5) (step S4).
  • step S3 when the data acquired by the conductivity data acquisition unit 131 has not reached the predetermined conductivity, the determination unit 132 determines whether the syringe pump 109 has operated to the upper limit value.
  • the upper limit is an amount set with a certain margin with respect to the operating amount of the syringe pump 109 at which the liquid in the flow path is expected to be completely replaced and the predetermined conductivity is reached. Further, as a specific amount of the upper limit, there are the number of pulses of the motor constituting the syringe pump 109, the drive time, and the like.
  • step S5 when the operation of the syringe pump 109 reaches the upper limit, the syringe pump control unit 134 stops the operation of the syringe pump 109 and stops the liquid supply (step S6).
  • the determination unit 132 outputs an alarm to the display unit of the computer 112 to notify that the liquid replacement operation is abnormal (step S7).
  • FIG. 7 is a schematic diagram showing the structure of the conductivity measuring part 111 and its surrounding flow path in Example 1.
  • the conductivity measuring section 111 of this embodiment is composed of a conductivity detecting section 120 .
  • the conductivity detection unit 120 includes a channel connected to the electrolyte analysis unit 108 and an electrode 121 for detecting conductivity, and is capable of measuring the conductivity of the liquid flowing through the channel.
  • FIG. 8 is a schematic diagram showing the structure of another conductivity measuring part and its peripheral flow path in Example 1.
  • the conductivity measuring section of this embodiment is composed of a solenoid valve 122 with an electrode.
  • the conductivity detection unit 120 in the flow path, so the number of parts can be reduced and the cost can be reduced.
  • the electrode-equipped solenoid valve has the electrode 121 capable of measuring the conductivity inside the solenoid valve, so that the conductivity can be measured more accurately.
  • the inside of the flow path up to the conductivity measurement unit 111, including the electrolyte analysis unit 108, can be completely replaced with the liquid to be fed using the minimum amount of liquid used.
  • the quantitative evaluation method of liquid replacement in electrolyte analysis was described, but the quantitative evaluation of liquid replacement by this method is not limited to electrolyte analysis, and multiple types of liquids with different physical quantities pass through the same flow path. If it is a flow path that does, it can be expected to reduce the amount of liquid used. That is, according to this embodiment, by measuring the physical quantity in the flow channel during the replacement operation and stopping the replacement operation when the physical quantity of the liquid after replacement reaches the range, the completion of replacement can be confirmed and the reagent consumption amount can be determined. can be reduced.
  • the measurement unit measures the conductivity of the liquid in the flow channel, and when the conductivity reaches a predetermined value, the determination unit determines whether the flow channel contains detergent or water. It is determined that it has been replaced. As a result, a constant amount of detergent or water that fills the flow path on the upstream side of the measuring section is sequentially supplied to the downstream side, making it possible to obtain cleaning liquid with a constant dilution rate.
  • the dilution of the detergent will be described, but the quantitative dilution according to this method can be applied not only to the dilution of the detergent but also to other dilutions as long as two or more liquids having different physical quantities are used.
  • FIG. 9 is an example of a schematic configuration diagram of an automatic analyzer 20 that performs detergent dilution to which Embodiment 2 is applied.
  • the automatic analyzer 20 of the present embodiment includes a sample disk 202 capable of mounting a plurality of sample containers 201 (collection tubes) holding samples, and a sample disk 202 capable of mounting a plurality of reagent containers 203 holding reagents. It includes a first reagent disk 204, a second reagent disk 205, and a reaction disk 207 having a plurality of reaction containers 206 arranged on its circumference.
  • the automatic analyzer 20 of this embodiment includes a sample dispensing probe 208 that dispenses a sample aspirated from a sample container 201 into a reaction container 206, and a reagent aspirated from the reagent container 203 in the first reagent disk 204 for reaction.
  • a channel 21 and a detergent probe 211 for sucking detergent from the detergent dilution channel 21 and discharging it into the reaction container 206 are provided.
  • the automatic analyzer 20 of this embodiment includes a stirring device 212 for stirring the liquid in the reaction container 206, a container cleaning mechanism 213 for cleaning the reaction container 206, and a light source installed near the inner periphery of the reaction disk 207. 214, a spectroscopic detector 215, a computer 216 connected to the spectroscopic detector 215, and a controller 217 that controls the overall operation of the automatic analyzer 20 and exchanges data with the outside.
  • FIG. 10 is an example of a schematic diagram of the detergent dilution channel 21 in the automatic analyzer 20 of the second embodiment.
  • the detergent dilution flow path 21 includes a detergent pump 219 that feeds detergent, a water pump 220 that feeds water, and a diluted detergent pump 221 that feeds diluted detergent. , a three-way electromagnetic valve 222 that switches the flow path to prevent backflow of the liquid, a conductivity measurement unit 223 that measures the conductivity of the liquid, a detergent dilution tank 224 that dilutes the detergent with water, a detergent probe 211, A detergent container 225 and a water container 226 are provided.
  • FIG. 11 is a flow chart showing the process from diluting the detergent with water to discharging it into the reaction container. Note that the processing shown in FIG. 11 is mainly controlled by the controller 113 .
  • the controller 113 switches the three-way electromagnetic valve 222 and uses the detergent pump 219 to feed a certain amount of detergent from the detergent container 225 (step S201).
  • the controller 113 switches the three-way solenoid valve 222 and uses the water pump 220 to feed a certain amount of water from the water container 226 (step S202).
  • a certain amount of water is added to the detergent dilution tank 224 containing a certain amount of detergent, and the detergent is diluted with water in the detergent dilution tank 224 .
  • the controller 113 sends the diluted detergent in the detergent dilution tank 224 to the detergent probe 211 using the diluted detergent pump 221, and discharges it into the reaction container 206 as a cleaning liquid (step S203).
  • steps S201 to S203 are repeated.
  • FIG. 12 is a time chart showing the operation sequence of each part in the automatic analyzer 20 according to the second embodiment.
  • the three-way electromagnetic valve 222 located upstream of the conductivity measuring section 223 is actuated to connect the detergent container 225 and the detergent dilution tank 224 (S31).
  • the conductivity measuring unit 223 starts measuring the conductivity of the liquid in the detergent dilution channel 21, and the detergent pump 219 operates until the conductivity reaches a predetermined value (detergent determination value).
  • the detergent liquid is sent (S32). While the detergent pump 219 is pumping the detergent, the conductivity measuring section 223 continuously measures the conductivity.
  • the three-way solenoid valve 222 is switched to connect the water container 226 and the detergent dilution tank 224 (S33).
  • the conductivity measurement unit 223 starts measuring the conductivity of the liquid in the detergent dilution channel 21, and the water pump 220 operates until the conductivity reaches a predetermined value (water judgment value). Water is sent (S34). While the detergent pump 219 is pumping the detergent, the conductivity measuring section 223 continuously measures the conductivity.
  • the diluted detergent is sent from the detergent dilution tank 224 to the detergent probe 211 and discharged from the detergent probe 211 to the reaction container 206 (S35).
  • the flow path between the conductivity measuring part 223 and the three-way electromagnetic valve 222 is filled with detergent. Therefore, when the water pump 220 operates, a fixed amount of detergent for the passage between the conductivity measuring section 223 and the three-way electromagnetic valve 222 is supplied to the detergent dilution tank 224 . Thereafter, the flow path between the conductivity measuring unit 223 and the three-way solenoid valve 222 is filled with water, and when the detergent pump 219 operates in this state, a certain amount of water is supplied to the detergent dilution tank 224.
  • the dilution rate of the detergent can be kept constant, and as a result, there is an advantage that the excessive supply of detergent can be avoided. Furthermore, by providing a plurality of conductivity measuring units 223 in the flow path, the amount of liquid to be fed can be changed, and thus the dilution ratio can be adjusted.
  • the conductivity of the detergent itself or the water itself before being diluted (mixed) is measured, so if there is an abnormality (such as deterioration in quality) inherent in either liquid itself, can also be discriminated.
  • the present invention is not limited to the above-described embodiments, and includes various modifications.
  • the conductivity sensor was used as an example of the measurement unit, but a sensor that can quantitatively measure physical quantities other than conductivity, such as heat transfer coefficient and density, is used as the measurement unit.
  • a sensor that can quantitatively measure physical quantities other than conductivity, such as heat transfer coefficient and density is used as the measurement unit.
  • Sample Dispensing probe 108 Electrolyte analysis unit 109 Syringe pump 110 Dilution pump 111 Conductivity measurement unit 112 Computer 113 Controller 114 Drainage unit 115 Cleaning electromagnetic valve 116 Reagent Solenoid valve 117 Dilution solenoid valve 118 Suction side solenoid valve 119 Drainage side solenoid valve 120 Conductivity detector 121 Electrode 122 Solenoid valve with electrode 131 Conductivity data acquisition unit DESCRIPTION OF SYMBOLS 132... Determination part 133... Reference conductivity storage part 134... Syringe pump control part 20... Automatic analyzer 21... Detergent dilution flow path 201... Sample container 202... Sample disk 203... Reagent container 204...

Abstract

The purpose of the present invention is to provide an automated analysis device with which it is possible to cut running cost by reducing the use amount of reagents and detergents and suppressing the exchange frequency of reagent containers and detergent containers. To achieve this purpose, the automated analysis device according to the present invention comprises: a flow path through which a plurality of types of fluids flow; a pump for supplying the fluids to the flow path; a measurement unit for measuring the physical quantity relating to each of the fluids supplied through the flow path; and a determination unit for determining that, on the basis of the physical quantity measured by the measurement unit, a fluid inside the flow path on the upstream side of the measurement unit has been replaced with a specific fluid.

Description

自動分析装置およびその流路確認方法Autoanalyzer and its flow path confirmation method
 本発明は、自動分析装置およびその流路確認方法に関する。 The present invention relates to an automatic analyzer and its flow channel confirmation method.
 自動分析装置は、血清や尿などの生体試料(以下試料と称する)の成分を、光学的、電気的な分析手法を用いて定量、定性分析を行う装置である。分析手法の中には、分析部が含まれる流路内に、試料や試薬などの複数種の液体を異なるタイミングで供給し、各液体の成分の分析を行う手法が存在する。さらに、自動分析装置では、分析後の反応容器などの洗浄のため、共通の流路を通して供給された洗剤と水で得られる洗浄液を吐出する動作が行われる。 The automatic analyzer is a device that performs quantitative and qualitative analysis of the components of biological samples (hereinafter referred to as samples) such as serum and urine using optical and electrical analysis methods. Among analysis methods, there is a method in which a plurality of types of liquids such as samples and reagents are supplied at different timings into a flow path including an analysis unit, and the components of each liquid are analyzed. Further, in the automatic analyzer, an operation of discharging a cleaning solution obtained by combining detergent and water supplied through a common flow path is performed to clean the reaction vessel after analysis.
 また、流路内の液体の物理量を測定する技術として、導電率センサを用いた技術が知られている。例えば、特許文献1には、調製後の試薬を導電率センサにより測定し、測定値が所定範囲にあるか否かを判断することで、濃度が所定範囲内にない試薬が検体を処理するための試薬として用いられるのを防止することができる、旨が開示されている(段落0095等)。 Also, a technique using a conductivity sensor is known as a technique for measuring the physical quantity of liquid in a flow path. For example, in Patent Document 1, a reagent after preparation is measured by a conductivity sensor and it is determined whether or not the measured value is within a predetermined range. (Paragraph 0095, etc.).
特開2010-54198号公報Japanese Patent Application Laid-Open No. 2010-54198
 自動分析装置では、前述のように、同一流路に流す液体の種類を所定のタイミングで切り替えて、所望の場所へ、異なる種類の液体を供給する場合がある。このとき、現状の自動分析装置では、装置の個体差や設置環境によらず、特定の液体が確実に供給できるように、過剰な分量の液体を供給しなければならなかった。 As described above, the automatic analyzer may switch the type of liquid flowing through the same flow path at a predetermined timing to supply different types of liquids to desired locations. At this time, in the current automatic analyzer, an excessive amount of liquid had to be supplied so that a specific liquid could be reliably supplied regardless of the individual differences of the apparatuses and the installation environment.
 また、特許文献1に記載の技術は、導電率センサが設けられた流路に、複数種の液体である試薬と水が予め混合された混合液が存在しており、この混合液の濃度を導電率センサが測定するものである。したがって、所定のタイミングで特定の液体が供給されていることは、確認することができない。 Further, in the technique described in Patent Document 1, a mixed liquid in which a plurality of types of liquids, namely reagents and water, are premixed exists in a channel provided with a conductivity sensor, and the concentration of this mixed liquid is This is what the conductivity sensor measures. Therefore, it cannot be confirmed that a specific liquid is being supplied at a predetermined timing.
 本発明の目的は、試薬や洗剤の使用量を低減し、試薬容器や洗剤容器の交換頻度を抑制することで、ランニングコストを削減できる自動分析装置を提供することにある。 The purpose of the present invention is to provide an automatic analyzer that can reduce running costs by reducing the amount of reagents and detergents used and suppressing the frequency of replacement of reagent containers and detergent containers.
 前記課題を解決するために、本発明の自動分析装置は、複数種の液体が流れる同一の流路と、前記流路に前記液体を供給するポンプと、前記流路に供給された前記液体に関する物理量を測定する測定部と、前記測定部で測定された物理量に基づいて、前記測定部の上流側の流路内が特定の液体に置換されたことを判定する判定部と、を備えた。 In order to solve the above problems, the automatic analyzer of the present invention relates to the same flow path through which a plurality of types of liquids flow, a pump that supplies the liquid to the flow path, and the liquid supplied to the flow path. A measurement unit that measures a physical quantity, and a determination unit that determines, based on the physical quantity measured by the measurement unit, that a flow channel upstream of the measurement unit has been replaced with a specific liquid.
 本発明によれば、試薬や洗剤の使用量を低減し、試薬容器や洗剤容器の交換頻度を抑制することで、ランニングコストを削減できる自動分析装置を提供することが可能となる。 According to the present invention, it is possible to provide an automatic analyzer that can reduce running costs by reducing the amount of reagents and detergents used and suppressing the replacement frequency of reagent containers and detergent containers.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiment.
実施例1が適用される電解質分析を行う自動分析装置の概略構成図の一例。1 is an example of a schematic block diagram of an automatic analyzer for electrolyte analysis to which Embodiment 1 is applied; FIG. コントローラのうち、特に、流路内の液体の置換を判定する動作シーケンスに関わる構成を示す機能ブロック図。FIG. 10 is a functional block diagram showing a configuration of a controller, in particular, a configuration related to an operation sequence for determining replacement of liquid in a channel; 電解質分析のフローチャートの一例。An example of a flow chart for electrolyte analysis. 実施例1に係る自動分析装置における各部の動作シーケンスを示すタイムチャート。4 is a time chart showing an operation sequence of each part in the automatic analyzer according to Example 1; 実施例1に係る自動分析装置における各部の別の動作シーケンスを示すタイムチャート。4 is a time chart showing another operation sequence of each part in the automatic analyzer according to Example 1; シリンジポンプの処理を示すフローチャート。4 is a flowchart showing processing of a syringe pump; 実施例1の導電度測定部とその周辺の流路の構造を示す概略図。FIG. 4 is a schematic diagram showing the structure of the conductivity measuring part and the flow path around it in Example 1; 実施例1の別の導電度測定部とその周辺の流路の構造を示す概略図。FIG. 4 is a schematic diagram showing the structure of another conductivity measuring part and its peripheral flow path in Example 1; 実施例2が適用される洗剤希釈を行う自動分析装置の概略構成図の一例。An example of a schematic configuration diagram of an automatic analyzer that performs detergent dilution to which Embodiment 2 is applied. 実施例2の自動分析装置における、洗剤希釈流路の概略構成図の一例。An example of a schematic configuration diagram of a detergent dilution channel in the automatic analyzer of Example 2. FIG. 洗剤を水で希釈してから反応容器に吐出するまでの処理を示すフローチャート。4 is a flow chart showing the process from diluting the detergent with water to discharging it into the reaction container. 実施例2に係る自動分析装置における各部の動作シーケンスを示すタイムチャート。6 is a time chart showing the operation sequence of each part in the automatic analyzer according to Example 2;
 以下、本発明の実施形態を図面に基づいて詳細に説明する。本実施形態に係る自動分析装置は、分析またはメンテナンスの際に複数種(試料、試薬、洗剤、水など)の液体が異なるタイミングで供給される同一の流路に、液体に関する物理量を測定する測定部が設けられている。そして、本実施形態に係る自動分析装置の判定部は、測定部で測定された物理量に基づいて、測定部の上流側の流路内が特定の液体に置換されたことを判定する。これにより、液体の送液量が最適化され、液体の使用量を低減可能な自動分析装置を提供できる。 Hereinafter, embodiments of the present invention will be described in detail based on the drawings. The automatic analyzer according to the present embodiment performs measurement for measuring physical quantities related to liquids in the same flow path to which multiple types of liquids (samples, reagents, detergents, water, etc.) are supplied at different timings during analysis or maintenance. department is provided. Then, the determination unit of the automatic analyzer according to the present embodiment determines that the inside of the flow path on the upstream side of the measurement unit has been replaced with a specific liquid, based on the physical quantity measured by the measurement unit. As a result, the amount of liquid to be fed is optimized, and an automatic analyzer capable of reducing the amount of liquid used can be provided.
  実施例1は、自動分析装置10の分析時に、測定部が流路内の液体の導電度を測定し、その導電度が所定値に達すると、判定部が、分析部内の液体が分析対象の液体に置換されたと判定するものである。したがって、本実施例の自動分析装置10によれば、液体が完全に置換されたタイミングを精度よく判定でき、過剰に供給する液体の量を低減することが可能となる。 In the first embodiment, when the automatic analyzer 10 analyzes, the measurement unit measures the conductivity of the liquid in the flow channel, and when the conductivity reaches a predetermined value, the determination unit determines that the liquid in the analysis unit is the object of analysis. It is determined that the liquid has been replaced. Therefore, according to the automatic analyzer 10 of the present embodiment, the timing at which the liquid is completely replaced can be accurately determined, and the amount of excessively supplied liquid can be reduced.
 ここでは、分析の一例として、電解質分析について述べる。電解質分析では、電解質分析部を含む流路内に試料を供給し、参照液との電位差を、試料中のイオンの濃度(電解質濃度)として測定する。電解質濃度を正確に測定するために、分析後には、電解質分析部を含む流路内に標準液(試薬)を供給し、前回分析時の試料を流路内から取り除く必要がある。また、流路内の汚れによるデータ異常を防止するため、一定周期毎に洗浄液を流路内に供給し、流路および分析部を洗浄する。 Here, electrolyte analysis will be described as an example of analysis. In the electrolyte analysis, a sample is supplied into a flow channel including an electrolyte analysis section, and the potential difference from a reference solution is measured as the ion concentration (electrolyte concentration) in the sample. In order to accurately measure the electrolyte concentration, after the analysis, it is necessary to supply a standard solution (reagent) into the channel including the electrolyte analysis section and remove the sample from the previous analysis from the channel. In addition, in order to prevent data abnormalities due to contamination in the channel, a cleaning liquid is supplied into the channel at regular intervals to clean the channel and the analysis unit.
 したがって、分析を正常に実施するためには、分析前に流路内に供給された液体を残留させることなく、試料、試薬および洗浄液の置換が完全に行われ、電解質分析部内を分析対象の液体で完全に満たした状態とする必要がある。 Therefore, in order to carry out the analysis normally, it is necessary to completely replace the sample, the reagent and the cleaning solution without leaving the liquid supplied in the flow channel before the analysis, and the liquid to be analyzed in the electrolyte analysis section. must be completely filled with
 図1は、実施例1が適用される電解質分析を行う自動分析装置10の概略構成図の一例である。図1に示すとおり、本実施例の自動分析装置10は、分析ユニット11と、操作ユニット12と、を備えている。 FIG. 1 is an example of a schematic configuration diagram of an automatic analyzer 10 that performs electrolyte analysis to which Embodiment 1 is applied. As shown in FIG. 1, the automatic analyzer 10 of this embodiment includes an analysis unit 11 and an operation unit 12. As shown in FIG.
 分析ユニット11は、試料に対して依頼された項目の分析を行い、分析結果を出力するユニットである。この分析ユニット11は、試料ディスク102と、希釈槽103と、希釈液容器104と、洗浄液容器105と、試薬容器106と、試料分注プローブ107と、電解質分析部108と、シリンジポンプ109と、希釈ポンプ110と、洗浄電磁弁115と、試薬電磁弁116と、希釈電磁弁117と、吸引側電磁弁118と、排液側電磁弁119と、導電度測定部111と、を備えている。なお、試薬電磁弁116および希釈電磁弁117は、電解質分析部108の上流側に位置して、流路に供給される液体を試薬か希釈された試料かに切り替える電磁弁である。一方、吸引側電磁弁118は、導電度測定部111の下流側に位置して、流路の開放および遮断を行う電磁弁である。 The analysis unit 11 is a unit that analyzes requested items on the sample and outputs analysis results. This analysis unit 11 includes a sample disk 102, a dilution tank 103, a diluent container 104, a cleaning solution container 105, a reagent container 106, a sample pipetting probe 107, an electrolyte analysis section 108, a syringe pump 109, A dilution pump 110 , a washing solenoid valve 115 , a reagent solenoid valve 116 , a dilution solenoid valve 117 , a suction side solenoid valve 118 , a drain side solenoid valve 119 , and a conductivity measuring section 111 are provided. Note that the reagent electromagnetic valve 116 and the dilution electromagnetic valve 117 are located upstream of the electrolyte analysis unit 108 and are electromagnetic valves that switch the liquid supplied to the flow path between the reagent and the diluted sample. On the other hand, the suction side solenoid valve 118 is positioned downstream of the conductivity measuring section 111 and is a solenoid valve that opens and closes the flow path.
 試料ディスク102には、試料容器101(採血管)が円周上に載置されている。試料ディスク102と希釈槽103の間には、回転動作および上下動作が可能な試料分注プローブ107が設置されている。試料分注プローブ107は、回転動作および上下動作を行い、試料容器101から希釈槽103へ試料の分注を行う。希釈槽103は、上面が開放系のカップ型形状であり、底面にはシリンジポンプ109と接続された流路を有している。希釈ポンプ110は、希釈液容器104から希釈槽103へ希釈液の送液を行う。希釈槽103では、希釈ポンプ110の送液時の水勢によって、試料と希釈液が撹拌され試料の希釈が行われる。 A sample container 101 (collection tube) is mounted on the circumference of the sample disk 102 . Between the sample disk 102 and the dilution tank 103, a sample pipetting probe 107 is installed which can rotate and move up and down. The sample dispensing probe 107 rotates and moves vertically to dispense the sample from the sample container 101 to the dilution tank 103 . The dilution tank 103 has an open cup-shaped upper surface and a channel connected to a syringe pump 109 on its bottom surface. The dilution pump 110 transfers the diluent from the diluent container 104 to the dilution tank 103 . In the dilution tank 103 , the sample and the diluent are agitated by the water pressure of the dilution pump 110 when the liquid is fed, and the sample is diluted.
 導電度測定部111は、流路に供給された液体に関する物理量として、電気伝導度を測定する測定部である。また、電解質分析部108は、液体の成分を分析するために、導電度測定部で測定される物理量とは別の物理量を測定するものであり、具体的には、イオン選択電極を用いて液体の電位を測定することにより、試料中の電解質濃度を分析する分析部である。シリンジポンプ109は、液体の吸引・吐出を行うことで、流路に液体を供給する。シリンジポンプ109の上流の流路には、上流へ向かう順に、吸引側電磁弁118と、導電度測定部111と、電解質分析部108と、3方向に分岐する分岐部と、が設けられている。さらに、分岐部が分岐する第1の方向には、洗浄電磁弁115が位置し、その上流側の流路には洗浄液容器105が接続されている。分岐部が分岐する第2の方向には、試薬電磁弁116が位置し、その上流側の流路には試薬容器106が接続されている。分岐部が分岐する第3の方向には、希釈電磁弁117が位置し、その上流側には、希釈ポンプ110および希釈槽103が接続されている。 The conductivity measurement unit 111 is a measurement unit that measures the electrical conductivity as a physical quantity related to the liquid supplied to the channel. In addition, the electrolyte analysis unit 108 measures a physical quantity different from the physical quantity measured by the conductivity measurement unit in order to analyze the components of the liquid. is an analysis part that analyzes the electrolyte concentration in the sample by measuring the potential of The syringe pump 109 supplies the liquid to the channel by sucking and discharging the liquid. A flow path upstream of the syringe pump 109 is provided with a suction-side solenoid valve 118, a conductivity measuring section 111, an electrolyte analysis section 108, and a branch section branching in three directions in order toward the upstream. . Further, a cleaning electromagnetic valve 115 is positioned in the first direction in which the branching portion branches, and a cleaning liquid container 105 is connected to the flow path on the upstream side thereof. A reagent electromagnetic valve 116 is positioned in the second direction in which the branching portion branches, and the reagent container 106 is connected to the flow path on the upstream side thereof. A dilution electromagnetic valve 117 is positioned in the third direction in which the branching section branches, and the dilution pump 110 and the dilution tank 103 are connected to the upstream side thereof.
 操作ユニット12は、自動分析装置10のシステム全体の情報を統括する役割を担う部分であり、コンピュータ112と、コントローラ113と、を有している。 The operation unit 12 is a part that plays a role of controlling the information of the entire system of the automatic analyzer 10, and has a computer 112 and a controller 113.
 コンピュータ112は、表示部と、入力部と、を備える。表示部は、分析依頼項目や分析結果、等の様々な画面を表示する。入力部は、表示部に表示された操作画面に基づいて、オペレータ等が、各種パラメータの設定、分析の開始や停止、等を入力するものである。 The computer 112 includes a display section and an input section. The display unit displays various screens such as analysis request items and analysis results. The input unit is used by an operator or the like to input various parameter settings, start or stop of analysis, etc., based on the operation screen displayed on the display unit.
 コントローラ113は、分析ユニット11内の各機構に接続されており、制御部と、データ取得部と、演算部と、判定部と、記憶部と、を備える。制御部は、シリンジポンプ109、各電磁弁、電解質分析部108、導電度測定部111、等の動作を制御する。データ取得部は、電解質分析部108や導電度測定部111で測定されたデータを取得する。演算部は、電解質分析部108において測定された電位などに基づいて、分析対象の試料中の電解質濃度を演算する。判定部は、導電度測定部111で測定された導電度に基づいて、導電度測定部111の上流側の流路が特定の液体に置換されたか否かを判定する。記憶部は、各機構の動作に必要なタイムチャートや動作パラメータ、試料,希釈液,試薬,洗浄液の各種情報、分析結果、の他、電解質分析部108や導電度測定部111を用いた演算や判定に供される参照データ等を記憶する。 The controller 113 is connected to each mechanism within the analysis unit 11, and includes a control section, a data acquisition section, a calculation section, a determination section, and a storage section. The control unit controls operations of the syringe pump 109, each solenoid valve, the electrolyte analysis unit 108, the conductivity measurement unit 111, and the like. The data acquisition unit acquires data measured by the electrolyte analysis unit 108 and the conductivity measurement unit 111 . The computation unit computes the electrolyte concentration in the sample to be analyzed based on the potential and the like measured by the electrolyte analysis unit 108 . Based on the conductivity measured by the conductivity measurement unit 111, the determination unit determines whether or not the flow path on the upstream side of the conductivity measurement unit 111 has been replaced with a specific liquid. The storage unit stores time charts and operation parameters necessary for the operation of each mechanism, various information on samples, diluents, reagents, and cleaning solutions, analysis results, as well as calculations using the electrolyte analysis unit 108 and the conductivity measurement unit 111. Stores reference data and the like used for determination.
 図2は、コントローラ113のうち、特に、流路内の液体の置換を判定する動作シーケンスに関わる構成を示す機能ブロック図である。図2に示すように、コントローラ113は、導電度測定部111から導電度の測定データを取得する導電度データ取得部131と、流路内に供給される液体の導電度の基準データが予め記憶されている基準導電度記憶部133と、基準導電度記憶部133に記憶されている基準データを参照し、導電度データ取得部131により取得される導電度データが所定の範囲内の値にあるかを判定する判定部132と、シリンジポンプを制御するシリンジポンプ制御部134と、を備えている。 FIG. 2 is a functional block diagram showing the configuration of the controller 113, particularly related to the operation sequence for determining replacement of the liquid in the channel. As shown in FIG. 2, the controller 113 pre-stores a conductivity data acquisition unit 131 that acquires conductivity measurement data from the conductivity measurement unit 111, and a conductivity reference data of the liquid supplied into the channel. The conductivity data acquired by the conductivity data acquisition unit 131 is within a predetermined range by referring to the reference conductivity storage unit 133 and the reference data stored in the reference conductivity storage unit 133. and a syringe pump control unit 134 for controlling the syringe pump.
 本実施例では、電解質分析を行う自動分析装置10について説明しているが、分析項目は電解質分析に限られず、例えば、生化学項目や免疫項目の分析を行う自動分析装置においても、物理量の異なる複数種の液体が通過する流路を有していれば適用できる。 In this embodiment, the automatic analyzer 10 that performs electrolyte analysis is described, but the analysis items are not limited to electrolyte analysis. It can be applied as long as it has a channel through which a plurality of types of liquids pass.
 次に、電解質分析の概要について説明する。図3は、電解質分析のフローチャートの一例である。なお、図3に示す電解質分析の処理は、主にコントローラ113によって制御される。 Next, an outline of electrolyte analysis will be explained. FIG. 3 is an example of a flow chart of electrolyte analysis. Note that the electrolyte analysis process shown in FIG. 3 is mainly controlled by the controller 113 .
 図3に示すように、まず、コントローラ113は、シリンジポンプ109を動作させて、試薬を吸引する(ステップS101)。これにより、電解質分析部108内の流路は試薬で満たされる。 As shown in FIG. 3, the controller 113 first operates the syringe pump 109 to aspirate the reagent (step S101). As a result, the channel in the electrolyte analysis section 108 is filled with the reagent.
 次に、コントローラ113は、電解質分析部108を制御することにより、電解質分析部108内の液体(試薬)の電位を測定する(ステップS102)。測定されたデータは、データ取得部を介して、コントローラ113の記憶部に記憶される。 Next, the controller 113 measures the potential of the liquid (reagent) in the electrolyte analysis unit 108 by controlling the electrolyte analysis unit 108 (step S102). The measured data is stored in the storage section of the controller 113 via the data acquisition section.
 次に、コントローラ113は、試料分注プローブ107を動作させて、試料容器101から希釈槽103に試料を分注する(ステップS103)。 Next, the controller 113 operates the sample dispensing probe 107 to dispense the sample from the sample container 101 to the dilution tank 103 (step S103).
 次に、コントローラ113は、希釈ポンプ110を動作させて、希釈液を希釈槽103に吐出する(ステップS104)。これにより、試料量と希釈液量が設定した比率になるように試料が希釈される。 Next, the controller 113 operates the dilution pump 110 to discharge the diluent into the dilution tank 103 (step S104). As a result, the sample is diluted so that the sample amount and the diluent amount become the set ratio.
 次に、コントローラ113は、シリンジポンプ109を動作させて、希釈槽103内の希釈された試料を吸引する(ステップS105)。これにより、電解質分析部108内の流路は希釈された試料で満たされる。 Next, the controller 113 operates the syringe pump 109 to aspirate the diluted sample in the dilution tank 103 (step S105). As a result, the channel in the electrolyte analysis section 108 is filled with the diluted sample.
 次に、コントローラ113は、電解質分析部108を制御することにより、電解質分析部108内の液体(希釈された試料)の電位を計測する(ステップS106)。測定されたデータは、データ取得部を介して、コントローラ113の記憶部に記憶される。 Next, the controller 113 measures the potential of the liquid (diluted sample) in the electrolyte analysis unit 108 by controlling the electrolyte analysis unit 108 (step S106). The measured data is stored in the storage section of the controller 113 via the data acquisition section.
 次に、コントローラ113は、試薬の電位および希釈された試料の電位を用いて、試料中に含まれる分析対象の電解質濃度を算出(ステップS107)し、記憶部に記憶するとともに、コンピュータ112の表示部に出力する(ステップS108)。 Next, the controller 113 uses the potential of the reagent and the potential of the diluted sample to calculate the electrolyte concentration of the analyte contained in the sample (step S107), stores it in the storage unit, and displays it on the computer 112. section (step S108).
 ここで、複数の試料を連続して電解質分析する場合、ステップS107が終了すると、再び、ステップS101に戻り、以降、ステップS102~ステップS108を繰り返す。 Here, when a plurality of samples are continuously subjected to electrolyte analysis, after step S107 is completed, the process returns to step S101, and steps S102 to S108 are repeated thereafter.
 次に、本実施例に係る自動分析装置10が、液体の置換判定を行いつつ、電解質分析を行う場合の具体的な処理について説明する。図4は、実施例1に係る自動分析装置10における各部の動作シーケンスを示すタイムチャートである。 Next, the specific processing when the automatic analyzer 10 according to the present embodiment performs electrolyte analysis while performing liquid replacement determination will be described. FIG. 4 is a time chart showing the operation sequence of each part in the automatic analyzer 10 according to the first embodiment.
 まず、試薬の電解質濃度分析時の動作シーケンス(T1)について説明する。 First, the operation sequence (T1) when analyzing the electrolyte concentration of the reagent will be described.
 試薬電磁弁116および吸引側電磁弁118により、電解質分析部108および導電度測定部111を含む流路が開放され(S11)、シリンジポンプ109が吸引動作を開始する。一定量の試薬が前記流路に供給された後、シリンジポンプ109は、吸引動作を停止し、導電度測定部111が導電度測定部111内の液体の導電度を測定する(S12)。測定された導電度は、コントローラ113の記憶部に記憶されるとともに、コンピュータ112の表示部に出力される。導電度測定部111が所定の導電度を測定すると、前記流路が試薬に置換されたことになるため、試薬電磁弁116および吸引側電磁弁118により前記流路が遮断される(S13)。 The reagent electromagnetic valve 116 and the suction-side electromagnetic valve 118 open the flow path including the electrolyte analysis unit 108 and the conductivity measurement unit 111 (S11), and the syringe pump 109 starts the suction operation. After a certain amount of the reagent is supplied to the channel, the syringe pump 109 stops the suction operation, and the conductivity measuring section 111 measures the conductivity of the liquid in the conductivity measuring section 111 (S12). The measured conductivity is stored in the storage section of the controller 113 and output to the display section of the computer 112 . When the conductivity measuring unit 111 measures a predetermined conductivity, the flow path is replaced with the reagent, so the flow path is blocked by the reagent electromagnetic valve 116 and the suction side electromagnetic valve 118 (S13).
 このように、各電磁弁により流路を遮断するのは、S12において導電度を測定し、液体の置換(試薬への置換)完了を判定部132が判定した後とするのが望ましい。仮に、各電磁弁が流路を遮断した後に、導電度の測定を行うとすると、所定の導電度に到達していなかった場合に、再度各電磁弁を開放しなければならない。電磁弁の開閉動作は、流路内の液体の揺れを生じさせ、結果として、導電度測定部111や電解質分析部108での測定や分析に影響を与えてしまう。 In this way, it is desirable that each electromagnetic valve shuts off the flow path after the conductivity is measured in S12 and the determination unit 132 determines that the replacement of the liquid (replacement with the reagent) is completed. If the conductivity is to be measured after each solenoid valve has blocked the flow path, each solenoid valve must be opened again if the conductivity has not reached a predetermined level. The opening/closing operation of the solenoid valve causes the liquid in the flow path to sway, and as a result, the measurement and analysis in the conductivity measurement unit 111 and the electrolyte analysis unit 108 are affected.
 その後、排液側電磁弁119により、シリンジポンプ109の下流側の流路が開放され(S14)、シリンジポンプ109が原点復帰動作を行う(S15)ことにより、残液が排液部114に排出される。残液の排出が完了すると、排液側電磁弁119により流路が遮断される(S16)。このとき、電解質分析部108が、液体(試薬)の電位を測定する(S17)。 After that, the flow path on the downstream side of the syringe pump 109 is opened by the drain-side electromagnetic valve 119 (S14), and the syringe pump 109 performs the return-to-origin operation (S15), whereby the residual liquid is discharged to the drain section 114. be done. When the discharge of the residual liquid is completed, the flow path is blocked by the discharge side electromagnetic valve 119 (S16). At this time, the electrolyte analysis unit 108 measures the potential of the liquid (reagent) (S17).
 次に、試料の電解質濃度分析時の動作シーケンス(T2)について説明する。 Next, the operation sequence (T2) when analyzing the electrolyte concentration of the sample will be described.
 試料ディスク102上に並べられた試料容器101内の各試料に対して、コンピュータ112により依頼された分析項目に従い、試料分注プローブ107により、所定の試料容器101から希釈槽103に試料が分注される。さらに、希釈ポンプ110により、希釈槽103に所定の量の希釈液が送液され、試料の希釈が行われる(S18)。その後、希釈電磁弁117および吸引側電磁弁118により、電解質分析部108および導電度測定部111を含む流路が開放され(S19)、シリンジポンプ109が吸引動作を開始する。一定量の試料が前記流路に供給された後、シリンジポンプ109は、吸引動作を停止し、導電度測定部111が導電度測定部111内の液体の導電度を測定する(S20)。測定された導電度は、コントローラ113の記憶部に記憶されるとともに、コンピュータ112の表示部に出力される。導電度測定部111が所定の導電度を測定すると、前記流路が希釈された試料に置換されたことになるため、希釈電磁弁117および吸引側電磁弁118により前記流路が遮断される(S21)。 For each sample in the sample container 101 arranged on the sample disk 102, the sample is dispensed from the predetermined sample container 101 to the dilution tank 103 by the sample dispensing probe 107 according to the analysis item requested by the computer 112. be done. Further, the dilution pump 110 sends a predetermined amount of diluent to the dilution tank 103 to dilute the sample (S18). Thereafter, the dilution solenoid valve 117 and the suction side solenoid valve 118 open the flow path including the electrolyte analysis section 108 and the conductivity measurement section 111 (S19), and the syringe pump 109 starts suction operation. After a certain amount of the sample is supplied to the channel, the syringe pump 109 stops the suction operation, and the conductivity measuring section 111 measures the conductivity of the liquid in the conductivity measuring section 111 (S20). The measured conductivity is stored in the storage section of the controller 113 and output to the display section of the computer 112 . When the conductivity measuring unit 111 measures a predetermined conductivity, the channel is replaced with the diluted sample, so the channel is blocked by the dilution solenoid valve 117 and the suction side solenoid valve 118 ( S21).
 その後、排液側電磁弁119により、シリンジポンプ109の下流側の流路が開放され(S22)、シリンジポンプ109が原点復帰動作を行う(S23)ことにより、残液が排液部114に排出される。残液の排出が完了すると、排液側電磁弁119により流路が遮断される(S24)。このとき、電解質分析部108が、液体(希釈された試料)の電位を測定する(S25)。 After that, the flow path on the downstream side of the syringe pump 109 is opened by the drain-side solenoid valve 119 (S22), and the syringe pump 109 performs the return-to-origin operation (S23), whereby the residual liquid is discharged to the drain section 114. be done. When the discharge of the residual liquid is completed, the flow path is blocked by the discharge side electromagnetic valve 119 (S24). At this time, the electrolyte analysis unit 108 measures the potential of the liquid (diluted sample) (S25).
 図5は、実施例1に係る自動分析装置10における各部の別の動作シーケンスを示すタイムチャートである。図5に示す動作シーケンスでは、図4に示す動作シーケンスと異なり、シリンジポンプ109の吸引動作と併行して、導電度測定部111が連続的に導電度を測定する。導電度測定部111による、試薬の導電度測定動作(S26)および希釈された試料の導電度測定動作(S27)を除く、他の動作シーケンスは、図4と同じである。 FIG. 5 is a time chart showing another operation sequence of each part in the automatic analyzer 10 according to the first embodiment. In the operation sequence shown in FIG. 5, unlike the operation sequence shown in FIG. 4, the conductivity measurement unit 111 continuously measures the conductivity in parallel with the suction operation of the syringe pump 109 . The operation sequence other than the reagent conductivity measurement operation (S26) and the diluted sample conductivity measurement operation (S27) by the conductivity measurement unit 111 is the same as in FIG.
 図5に示す動作シーケンスの場合、図4に示す動作シーケンスの場合と比べて、導電度が所定値に到達したか否かを連続的に判定するため、液体が完全に置換されたタイミングを精度よく判定し、過剰に供給する液体の量を極力低減することが可能となる。ただし、導電度測定部111は、電極間を流れる電流を測定するものであるため、液体に連続して電流が流れると、液体が変質する可能性もあるので、電気分解し易い液体を用いるときには、図4の動作シーケンスが望ましい。また、図4の動作シーケンスでは、連続して導電度を測定する必要がないため、消費電力を低減できる利点や、蓄積すべきテータ量を少なくできる利点もある。 In the case of the operation sequence shown in FIG. 5, as compared with the case of the operation sequence shown in FIG. It is possible to make a good judgment and reduce the amount of excessively supplied liquid as much as possible. However, since the conductivity measuring unit 111 measures the current flowing between the electrodes, if the current continuously flows through the liquid, the liquid may deteriorate. , the sequence of operations of FIG. In addition, since the operation sequence of FIG. 4 does not require continuous measurement of the conductivity, there are advantages of reducing power consumption and reducing the amount of data to be accumulated.
 ここで、図5の動作シーケンスにおいて、コントローラ113がシリンジポンプ109に対して行う制御に関し、説明する。図6は、シリンジポンプの処理を示すフローチャートである。 Here, the control performed by the controller 113 on the syringe pump 109 in the operation sequence of FIG. 5 will be described. FIG. 6 is a flow chart showing the processing of the syringe pump.
 まず、判定部132が、吸引を行っている液体の基準データを、基準導電度記憶部133から取得する(ステップS1)。次に、シリンジポンプ109の吸引動作と併行して、導電度測定部111による、試薬の導電度測定動作(図5のS26)および希釈された試料の導電度測定動作(図5のS27)が実行される(ステップS2)さらに、判定部132は、基準導電度記憶部133の基準データを参照し、導電度データ取得部131により取得されるデータが所定の導電度に到達したか否か、を判定する(ステップS3)。 First, the determination unit 132 acquires the reference data of the liquid being sucked from the reference conductivity storage unit 133 (step S1). Next, in parallel with the suction operation of the syringe pump 109, the conductivity measurement operation of the reagent (S26 in FIG. 5) and the conductivity measurement operation of the diluted sample (S27 in FIG. 5) are performed by the conductivity measurement unit 111. Executed (step S2) Further, the determination unit 132 refers to the reference data in the reference conductivity storage unit 133, and determines whether the data acquired by the conductivity data acquisition unit 131 has reached a predetermined conductivity. is determined (step S3).
 導電度データ取得部131により取得されるデータが所定の導電度に到達すると、流路内の液体が置換されたと見做すことができる。したがって、判定部132は、シリンジポンプ制御部134に信号を送信し、シリンジポンプ109を停止させ、次の動作すなわち流路の遮断(図5のS13またはS21)に移行する(ステップS4)。 When the data acquired by the conductivity data acquisition unit 131 reaches a predetermined conductivity, it can be assumed that the liquid in the channel has been replaced. Therefore, the determination unit 132 sends a signal to the syringe pump control unit 134 to stop the syringe pump 109, and proceeds to the next operation, that is, blockage of the flow path (S13 or S21 in FIG. 5) (step S4).
 一方、ステップS3で、導電度データ取得部131により取得されるデータが、所定の導電度に到達していない場合、判定部132は、シリンジポンプ109が上限値まで動作したか否かを判定する(ステップS5)。ここで、上限値とは、流路内の液体が完全に置換され所定の導電度に到達すると見込まれる、シリンジポンプ109の動作量に対して、一定の余裕をもって設定された量である。また、上限値の具体的な量としては、シリンジポンプ109を構成するモータのパルス数や駆動時間などである。 On the other hand, in step S3, when the data acquired by the conductivity data acquisition unit 131 has not reached the predetermined conductivity, the determination unit 132 determines whether the syringe pump 109 has operated to the upper limit value. (Step S5). Here, the upper limit is an amount set with a certain margin with respect to the operating amount of the syringe pump 109 at which the liquid in the flow path is expected to be completely replaced and the predetermined conductivity is reached. Further, as a specific amount of the upper limit, there are the number of pulses of the motor constituting the syringe pump 109, the drive time, and the like.
 ステップS5で、シリンジポンプ109の動作が上限値まで達した場合、シリンジポンプ制御部134は、シリンジポンプ109の動作を停止させ、液体の供給を停止する(ステップS6)。判定部132は、液体の置換動作異常を知らせるアラームをコンピュータ112の表示部に出力する(ステップS7)。 In step S5, when the operation of the syringe pump 109 reaches the upper limit, the syringe pump control unit 134 stops the operation of the syringe pump 109 and stops the liquid supply (step S6). The determination unit 132 outputs an alarm to the display unit of the computer 112 to notify that the liquid replacement operation is abnormal (step S7).
 なお、置換動作異常の例としては、シリンジポンプ109が壊れている場合、流路の接続部に漏れがある場合、吸引される液体自体に問題がある場合、などが考えられる。ここで、吸引される液体自体の問題としては、電解質分析の場合、溶液に含まれるタンパク質が壁面に付着して固化し、その一部のタンパク質が置換後の溶液の中に混入してしまい、正常な導電度が得られないケースが想定される。 It should be noted that, as examples of a replacement operation abnormality, it is conceivable that the syringe pump 109 is broken, that there is a leak at the connecting portion of the flow path, that there is a problem with the liquid to be sucked, and the like. Here, as a problem of the sucked liquid itself, in the case of electrolyte analysis, the protein contained in the solution adheres to the wall surface and solidifies, and a part of the protein is mixed in the solution after replacement. A case where normal conductivity cannot be obtained is assumed.
 図7は、実施例1の導電度測定部111とその周辺の流路の構造を示す概略図である。図7に示すように、本実施例の導電度測定部111は、導電度検出部120で構成されている。導電度検出部120は、電解質分析部108に接続される流路と、導電度を検出する電極121と、を備え、流路内を流れる液体の導電度を測定することが可能である。 FIG. 7 is a schematic diagram showing the structure of the conductivity measuring part 111 and its surrounding flow path in Example 1. FIG. As shown in FIG. 7, the conductivity measuring section 111 of this embodiment is composed of a conductivity detecting section 120 . The conductivity detection unit 120 includes a channel connected to the electrolyte analysis unit 108 and an electrode 121 for detecting conductivity, and is capable of measuring the conductivity of the liquid flowing through the channel.
 図8は、実施例1の別の導電度測定部とその周辺の流路の構造を示す概略図である。図8に示すように、本実施例の導電度測定部は、電極付き電磁弁122で構成されている。図8の構成の場合、図7の構成と異なり、導電度検出部120を流路に別途設ける必要がないため、部品点数が減り、コストが低減できる。 FIG. 8 is a schematic diagram showing the structure of another conductivity measuring part and its peripheral flow path in Example 1. FIG. As shown in FIG. 8, the conductivity measuring section of this embodiment is composed of a solenoid valve 122 with an electrode. In the case of the configuration of FIG. 8, unlike the configuration of FIG. 7, there is no need to separately provide the conductivity detection unit 120 in the flow path, so the number of parts can be reduced and the cost can be reduced.
 また、図8の構成の場合、所定の導電度に達した時点で、電極付き電磁弁122を遮断することで、電極付き電磁弁122の上流側は、置換後の液体ですべて満たされるため、電解質分析部108に置換前の液体が戻らなくすることができる。これに対して、図7の構成の場合、電極121と、その下流にある吸引側電磁弁118と、の間の流路に置換前の溶液が残っていた場合に、電極121へ逆流してしまう可能性がある。図8の構成では、電極付き電磁弁が、電磁弁内部に導電度を測定可能な電極121を備えているため、導電度をより正確に測定することが可能である。 Further, in the case of the configuration of FIG. 8, by shutting off the solenoid valve 122 with the electrode when the predetermined conductivity is reached, the upstream side of the solenoid valve 122 with the electrode is completely filled with the liquid after replacement. The liquid before replacement can be prevented from returning to the electrolyte analysis section 108 . On the other hand, in the case of the configuration of FIG. 7, when the solution before replacement remains in the flow path between the electrode 121 and the suction side solenoid valve 118 downstream thereof, it flows back to the electrode 121. It may get lost. In the configuration of FIG. 8, the electrode-equipped solenoid valve has the electrode 121 capable of measuring the conductivity inside the solenoid valve, so that the conductivity can be measured more accurately.
 本実施例によれば、電解質分析部108を含む、導電度測定部111までの流路内部を、必要最低限の液体使用量で、送液対象の液体に完全に置換することが可能となる。なお、本実施例では、電解質分析における液体置換の定量評価方法について述べたが、本手法による液体置換の定量評価は電解質分析に限らず、同一流路内に物理量の異なる複数種の液体が通過する流路であれば、液体使用量の低減に期待できる。すなわち、本実施例によれば、置換動作中の流路内の物理量を測定し、置換後の液体の物理量範囲に達した時点で置換動作を停止することで、置換完了の確認および試薬消費量の低減を実現することが可能となる。 According to the present embodiment, the inside of the flow path up to the conductivity measurement unit 111, including the electrolyte analysis unit 108, can be completely replaced with the liquid to be fed using the minimum amount of liquid used. . In this example, the quantitative evaluation method of liquid replacement in electrolyte analysis was described, but the quantitative evaluation of liquid replacement by this method is not limited to electrolyte analysis, and multiple types of liquids with different physical quantities pass through the same flow path. If it is a flow path that does, it can be expected to reduce the amount of liquid used. That is, according to this embodiment, by measuring the physical quantity in the flow channel during the replacement operation and stopping the replacement operation when the physical quantity of the liquid after replacement reaches the range, the completion of replacement can be confirmed and the reagent consumption amount can be determined. can be reduced.
  実施例2は、自動分析装置20のメンテナンス時に、測定部が流路内の液体の導電度を測定し、その導電度が所定値に達すると、判定部が、流路内が洗剤か水に置換されたと判定するものである。これにより、測定部の上流側の流路を満たす一定量の洗剤または水が逐次下流側に供給され、一定の希釈率の洗浄液を得ることが可能となる。なお、本実施例では、洗剤の希釈について述べるが、本手法による定量希釈は、物理量の異なる2種以上の液体であれば、洗剤の希釈に限らず他の希釈にも適用できる。 In the second embodiment, during maintenance of the automatic analyzer 20, the measurement unit measures the conductivity of the liquid in the flow channel, and when the conductivity reaches a predetermined value, the determination unit determines whether the flow channel contains detergent or water. It is determined that it has been replaced. As a result, a constant amount of detergent or water that fills the flow path on the upstream side of the measuring section is sequentially supplied to the downstream side, making it possible to obtain cleaning liquid with a constant dilution rate. In this embodiment, the dilution of the detergent will be described, but the quantitative dilution according to this method can be applied not only to the dilution of the detergent but also to other dilutions as long as two or more liquids having different physical quantities are used.
 図9は、実施例2が適用される洗剤希釈を行う自動分析装置20の概略構成図の一例である。図9に示すとおり、本実施例の自動分析装置20は、試料を保持する試料容器201(採血管)を複数搭載可能な試料ディスク202と、試薬を保持する試薬容器203を複数搭載可能な第1試薬ディスク204および第2試薬ディスク205と、周上に複数の反応容器206を配置した反応ディスク207と、を備える。 FIG. 9 is an example of a schematic configuration diagram of an automatic analyzer 20 that performs detergent dilution to which Embodiment 2 is applied. As shown in FIG. 9, the automatic analyzer 20 of the present embodiment includes a sample disk 202 capable of mounting a plurality of sample containers 201 (collection tubes) holding samples, and a sample disk 202 capable of mounting a plurality of reagent containers 203 holding reagents. It includes a first reagent disk 204, a second reagent disk 205, and a reaction disk 207 having a plurality of reaction containers 206 arranged on its circumference.
 また、本実施例の自動分析装置20は、試料容器201から吸引した試料を反応容器206に分注する試料分注プローブ208と、第1試薬ディスク204内の試薬容器203から吸引した試薬を反応容器206に分注する第1試薬プローブ209と、第2試薬ディスク205内の試薬容器203から吸引した試薬を反応容器206に分注する第2試薬プローブ210と、洗剤を水で希釈する洗剤希釈流路21と、洗剤希釈流路21から洗剤を吸引して反応容器206に吐出する洗剤プローブ211と、を備えている。 In addition, the automatic analyzer 20 of this embodiment includes a sample dispensing probe 208 that dispenses a sample aspirated from a sample container 201 into a reaction container 206, and a reagent aspirated from the reagent container 203 in the first reagent disk 204 for reaction. A first reagent probe 209 that dispenses into the container 206, a second reagent probe 210 that dispenses the reagent aspirated from the reagent container 203 in the second reagent disk 205 into the reaction container 206, and a detergent dilution that dilutes the detergent with water. A channel 21 and a detergent probe 211 for sucking detergent from the detergent dilution channel 21 and discharging it into the reaction container 206 are provided.
 さらに、本実施例の自動分析装置20は、反応容器206内の液体を撹拌する攪拌装置212と、反応容器206を洗浄する容器洗浄機構213と、反応ディスク207の内周付近に設置された光源214と、分光検出器215と、分光検出器215に接続されたコンピュータ216と、自動分析装置20全体の動作を制御し、外部とのデータの交換を行うコントローラ217とを備える。 Further, the automatic analyzer 20 of this embodiment includes a stirring device 212 for stirring the liquid in the reaction container 206, a container cleaning mechanism 213 for cleaning the reaction container 206, and a light source installed near the inner periphery of the reaction disk 207. 214, a spectroscopic detector 215, a computer 216 connected to the spectroscopic detector 215, and a controller 217 that controls the overall operation of the automatic analyzer 20 and exchanges data with the outside.
 図10は、実施例2の自動分析装置20における、洗剤希釈流路21の概略構成図の一例である。図10に示すように、洗剤希釈流路21は、洗剤の送液を行う洗剤ポンプ219と、水の送液を行う水ポンプ220と、希釈された洗剤の送液を行う希釈洗剤ポンプ221と、流路の切り替えを行い液体の逆流を防止する三方電磁弁222と、液体の導電度を測定する導電度測定部223と、洗剤を水で希釈する洗剤希釈槽224と、洗剤プローブ211と、洗剤容器225と、水容器226と、を備えている。 FIG. 10 is an example of a schematic diagram of the detergent dilution channel 21 in the automatic analyzer 20 of the second embodiment. As shown in FIG. 10, the detergent dilution flow path 21 includes a detergent pump 219 that feeds detergent, a water pump 220 that feeds water, and a diluted detergent pump 221 that feeds diluted detergent. , a three-way electromagnetic valve 222 that switches the flow path to prevent backflow of the liquid, a conductivity measurement unit 223 that measures the conductivity of the liquid, a detergent dilution tank 224 that dilutes the detergent with water, a detergent probe 211, A detergent container 225 and a water container 226 are provided.
 図11は、洗剤を水で希釈してから反応容器に吐出するまでの処理を示すフローチャートである。なお、図11に示す処理は、主にコントローラ113によって制御される。 FIG. 11 is a flow chart showing the process from diluting the detergent with water to discharging it into the reaction container. Note that the processing shown in FIG. 11 is mainly controlled by the controller 113 .
 図11に示すように、まず、コントローラ113は、三方電磁弁222を切り替え、洗剤ポンプ219を用いて、洗剤容器225内から一定量の洗剤を送液する(ステップS201)。 As shown in FIG. 11, first, the controller 113 switches the three-way electromagnetic valve 222 and uses the detergent pump 219 to feed a certain amount of detergent from the detergent container 225 (step S201).
 次に、コントローラ113は、三方電磁弁222を切り替え、水ポンプ220を用いて、水容器226内から一定量の水を送液する(ステップS202)。これにより、一定量の洗剤が入っている洗剤希釈槽224に、一定量の水が加えられ、洗剤希釈槽224内で洗剤が水で希釈される。 Next, the controller 113 switches the three-way solenoid valve 222 and uses the water pump 220 to feed a certain amount of water from the water container 226 (step S202). As a result, a certain amount of water is added to the detergent dilution tank 224 containing a certain amount of detergent, and the detergent is diluted with water in the detergent dilution tank 224 .
 次に、コントローラ113は、洗剤希釈槽224内の希釈された洗剤を、希釈洗剤ポンプ221を用いて洗剤プローブ211へ送液し、洗浄液として反応容器206に吐出する(ステップS203)。 Next, the controller 113 sends the diluted detergent in the detergent dilution tank 224 to the detergent probe 211 using the diluted detergent pump 221, and discharges it into the reaction container 206 as a cleaning liquid (step S203).
 なお、複数の反応容器206を連続して洗浄する場合は、ステップS201~ステップS203が繰り返される。 When cleaning a plurality of reaction vessels 206 continuously, steps S201 to S203 are repeated.
 図12は、実施例2に係る自動分析装置20における各部の動作シーケンスを示すタイムチャートである。 FIG. 12 is a time chart showing the operation sequence of each part in the automatic analyzer 20 according to the second embodiment.
 まず、導電度測定部223の上流側に位置する三方電磁弁222が作動し、洗剤容器225と洗剤希釈槽224が接続される(S31)。 First, the three-way electromagnetic valve 222 located upstream of the conductivity measuring section 223 is actuated to connect the detergent container 225 and the detergent dilution tank 224 (S31).
 次に、導電度測定部223が、洗剤希釈流路21内の液体の導電度の測定を開始し、導電度が所定の値(洗剤判定値)となるまで、洗剤ポンプ219が動作して、洗剤の送液が行われる(S32)。なお、洗剤ポンプ219によって洗剤が送液されている間、導電度測定部223は、連続的に導電度を測定する。 Next, the conductivity measuring unit 223 starts measuring the conductivity of the liquid in the detergent dilution channel 21, and the detergent pump 219 operates until the conductivity reaches a predetermined value (detergent determination value). The detergent liquid is sent (S32). While the detergent pump 219 is pumping the detergent, the conductivity measuring section 223 continuously measures the conductivity.
 次に、三方電磁弁222が切り替えられ、水容器226と洗剤希釈槽224が接続される(S33)。 Next, the three-way solenoid valve 222 is switched to connect the water container 226 and the detergent dilution tank 224 (S33).
 次に、導電度測定部223が、洗剤希釈流路21内の液体の導電度の測定を開始し、導電度が所定の値(水判定値)となるまで、水ポンプ220が動作して、水の送液が行われる(S34)。なお、洗剤ポンプ219によって洗剤が送液されている間、導電度測定部223は、連続的に導電度を測定する。 Next, the conductivity measurement unit 223 starts measuring the conductivity of the liquid in the detergent dilution channel 21, and the water pump 220 operates until the conductivity reaches a predetermined value (water judgment value). Water is sent (S34). While the detergent pump 219 is pumping the detergent, the conductivity measuring section 223 continuously measures the conductivity.
 最後に、希釈洗剤ポンプ221が動作することにより、洗剤希釈槽224から希釈洗剤が洗剤プローブ211へ送液され、洗剤プローブ211から反応容器206へ吐出される(S35)。 Finally, by operating the diluted detergent pump 221, the diluted detergent is sent from the detergent dilution tank 224 to the detergent probe 211 and discharged from the detergent probe 211 to the reaction container 206 (S35).
 なお、導電度が洗剤判定値となって三方電磁弁222が作動した時点では、導電度測定部223と三方電磁弁222との間の流路内は洗剤で満たされている。このため、水ポンプ220が動作すると、導電度測定部223と三方電磁弁222との間の流路分の定量の洗剤が、洗剤希釈槽224へ供給されることになる。その後は、導電度測定部223と三方電磁弁222との間の流路内は、水で満たされた状態になり、その状態で、洗剤ポンプ219が動作すると、定量の水が洗剤希釈槽224へ供給される。このような、動作を繰り返すことにより、洗剤の希釈率を一定に保つことができ、結果として、洗剤を過剰に供給しなくて済む利点がある。さらに、流路内に導電度測定部223を複数設ければ、送液量が変更できるので、希釈率の調整も可能となる。 It should be noted that when the conductivity reaches the detergent determination value and the three-way electromagnetic valve 222 is activated, the flow path between the conductivity measuring part 223 and the three-way electromagnetic valve 222 is filled with detergent. Therefore, when the water pump 220 operates, a fixed amount of detergent for the passage between the conductivity measuring section 223 and the three-way electromagnetic valve 222 is supplied to the detergent dilution tank 224 . Thereafter, the flow path between the conductivity measuring unit 223 and the three-way solenoid valve 222 is filled with water, and when the detergent pump 219 operates in this state, a certain amount of water is supplied to the detergent dilution tank 224. supplied to By repeating such operations, the dilution rate of the detergent can be kept constant, and as a result, there is an advantage that the excessive supply of detergent can be avoided. Furthermore, by providing a plurality of conductivity measuring units 223 in the flow path, the amount of liquid to be fed can be changed, and thus the dilution ratio can be adjusted.
 また、本実施例によれば、希釈(混合)される前の洗剤自体または水自体の導電度が測定されるので、いずれかの液体自体に固有の異常(品質の劣化など)があった場合にも、それを判別できる。 In addition, according to this embodiment, the conductivity of the detergent itself or the water itself before being diluted (mixed) is measured, so if there is an abnormality (such as deterioration in quality) inherent in either liquid itself, can also be discriminated.
 本発明は、前述の各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述の各実施例では、測定部として導電度センサを例に挙げて説明したが、測定部として導電度以外の物理量、例えば、熱伝達率や密度を定量的に測定可能なセンサを用いても良い。液体として、粘性の高い有機溶媒などが試薬に用いられる場合には、密度を測定するのが好ましい。 The present invention is not limited to the above-described embodiments, and includes various modifications. For example, in each of the above-described embodiments, the conductivity sensor was used as an example of the measurement unit, but a sensor that can quantitatively measure physical quantities other than conductivity, such as heat transfer coefficient and density, is used as the measurement unit. can be When a liquid such as a highly viscous organic solvent is used as a reagent, it is preferable to measure the density.
 また、前述の各実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, each of the above-described embodiments has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration.
10…自動分析装置、11…分析ユニット、12…操作ユニット、101…試料容器、102…試料ディスク、103…希釈槽、104…希釈液容器、105…洗浄液容器、106…試薬容器、107…試料分注プローブ、108…電解質分析部、109…シリンジポンプ、110…希釈ポンプ、111…導電度測定部、112…コンピュータ、113…コントローラ、114…排液部、115…洗浄電磁弁、116…試薬電磁弁、117…希釈電磁弁、118…吸引側電磁弁、119…排液側電磁弁、120…導電度検出部、121…電極、122…電極付き電磁弁、131…導電度データ取得部、132…判定部、133…基準導電度記憶部、134…シリンジポンプ制御部、20…自動分析装置、21…洗剤希釈流路、201…試料容器、202…試料ディスク、203…試薬容器、204…第1試薬ディスク、205…第2試薬ディスク、206…反応容器、207…反応ディスク、208…試料分注プローブ、209…第1試薬プローブ、210…第2試薬プローブ、211…洗剤プローブ、212…攪拌装置、213…容器洗浄機構、214…光源、215…分光検出器、216…コンピュータ、217…コントローラ、219…洗剤ポンプ、220…水ポンプ、221…希釈洗剤ポンプ、222…三方電磁弁、223…導電度測定部、224…洗剤希釈槽、225…洗剤容器、226…水容器 DESCRIPTION OF SYMBOLS 10... Automatic analyzer, 11... Analysis unit, 12... Operation unit, 101... Sample container, 102... Sample disk, 103... Dilution tank, 104... Diluent container, 105... Washing liquid container, 106... Reagent container, 107... Sample Dispensing probe 108 Electrolyte analysis unit 109 Syringe pump 110 Dilution pump 111 Conductivity measurement unit 112 Computer 113 Controller 114 Drainage unit 115 Cleaning electromagnetic valve 116 Reagent Solenoid valve 117 Dilution solenoid valve 118 Suction side solenoid valve 119 Drainage side solenoid valve 120 Conductivity detector 121 Electrode 122 Solenoid valve with electrode 131 Conductivity data acquisition unit DESCRIPTION OF SYMBOLS 132... Determination part 133... Reference conductivity storage part 134... Syringe pump control part 20... Automatic analyzer 21... Detergent dilution flow path 201... Sample container 202... Sample disk 203... Reagent container 204... First reagent disk 205 Second reagent disk 206 Reaction vessel 207 Reaction disk 208 Sample dispensing probe 209 First reagent probe 210 Second reagent probe 211 Detergent probe 212 Stirrer 213 Container washing mechanism 214 Light source 215 Spectral detector 216 Computer 217 Controller 219 Detergent pump 220 Water pump 221 Diluted detergent pump 222 Three-way electromagnetic valve 223 ...Conductivity measurement part, 224...Detergent dilution tank, 225...Detergent container, 226...Water container

Claims (10)

  1. 複数種の液体が流れる同一の流路と、
    前記流路に前記液体を供給するポンプと、
    前記流路に供給された前記液体に関する物理量を測定する測定部と、
    前記測定部で測定された物理量に基づいて、前記測定部の上流側の流路内が特定の液体に置換されたことを判定する判定部と、を備えた自動分析装置。
    the same flow path through which multiple types of liquids flow;
    a pump that supplies the liquid to the channel;
    a measurement unit that measures a physical quantity related to the liquid supplied to the flow channel;
    an automatic analyzer, comprising: a determination unit that determines, based on the physical quantity measured by the measurement unit, that the interior of the flow channel on the upstream side of the measurement unit has been replaced with a specific liquid.
  2. 請求項1に記載の自動分析装置において、
    前記液体の成分を分析するために、前記測定部で測定される物理量とは別の物理量を測定する分析部、をさらに備え、
    前記分析部が、前記測定部の上流側に位置することを特徴とする自動分析装置。
    In the automatic analyzer according to claim 1,
    further comprising an analysis unit that measures a physical quantity different from the physical quantity measured by the measurement unit in order to analyze the components of the liquid;
    An automatic analyzer, wherein the analysis unit is positioned upstream of the measurement unit.
  3. 請求項2に記載の自動分析装置において、
    前記測定部は、前記液体の電気伝導度を測定する導電度測定部であり、
    前記分析部は、前記液体の電位を測定することでイオンの濃度を分析する電解質分析部であることを特徴とする自動分析装置。
    In the automatic analyzer according to claim 2,
    The measuring unit is a conductivity measuring unit that measures the electrical conductivity of the liquid,
    The automatic analyzer, wherein the analysis unit is an electrolyte analysis unit that analyzes the concentration of ions by measuring the potential of the liquid.
  4. 請求項2に記載の自動分析装置において、
    前記分析部の上流側に位置して、前記流路に供給される液体を切り替える第1電磁弁と、
    前記測定部の下流側に位置して、前記流路の開放および遮断を行う第2電磁弁と、
    をさらに備えたことを特徴とする自動分析装置。
    In the automatic analyzer according to claim 2,
    a first electromagnetic valve located upstream of the analysis unit and switching the liquid supplied to the channel;
    a second solenoid valve located downstream of the measurement unit and configured to open and close the flow path;
    An automatic analyzer, further comprising:
  5. 請求項2に記載の自動分析装置において、
    前記測定部が、前記流路の開放および遮断を行う電磁弁に設けられたことを特徴とする自動分析装置。
    In the automatic analyzer according to claim 2,
    An automatic analyzer, wherein the measuring unit is provided in an electromagnetic valve that opens and closes the flow path.
  6. 請求項2に記載の自動分析装置において、
    前記流路の開放および遮断を行う電磁弁、をさらに備え、
    前記測定部が所定の物理量を測定すると、前記電磁弁が前記流路を遮断した後、前記分析部が測定を行うことを特徴とする自動分析装置。
    In the automatic analyzer according to claim 2,
    further comprising a solenoid valve for opening and closing the flow path,
    An automatic analyzer, wherein when the measurement unit measures a predetermined physical quantity, the analysis unit performs the measurement after the solenoid valve shuts off the flow path.
  7. 請求項6に記載の自動分析装置において、
    前記測定部が所定の物理量を測定する前に、前記ポンプの動作量が上限値に達すると、前記ポンプは前記液体の供給を停止し、前記判定部がアラームを出力することを特徴とする
    自動分析装置。
    In the automatic analyzer according to claim 6,
    When the operation amount of the pump reaches an upper limit value before the measurement unit measures a predetermined physical quantity, the pump stops supplying the liquid, and the determination unit outputs an alarm. Analysis equipment.
  8. 請求項1に記載の自動分析装置において、
    前記測定部の下流側で、一方の液体に対して他方の液体が加えられ、一方の液体が希釈されることを特徴とする自動分析装置。
    In the automatic analyzer according to claim 1,
    An automatic analyzer, wherein one liquid is added to the other liquid to dilute the one liquid on the downstream side of the measuring section.
  9. 請求項8に記載の自動分析装置において、
    前記測定部の上流側に位置する電磁弁、をさらに備え、
    前記測定部が所定の物理量を測定すると、前記電磁弁は前記流路に供給する液体を切り替えることを特徴とする自動分析装置。
    In the automatic analyzer according to claim 8,
    further comprising a solenoid valve located upstream of the measurement unit,
    The automatic analyzer, wherein the solenoid valve switches the liquid to be supplied to the flow channel when the measurement unit measures a predetermined physical quantity.
  10. 自動分析装置の流路に供給される液体に関する物理量を測定するステップと、
    測定された物理量に基づいて、前記流路内が特定の液体に置換されたことを判定するステップと、を備えた自動分析装置の流路確認方法。
    a step of measuring a physical quantity related to the liquid supplied to the channel of the automatic analyzer;
    and determining that the inside of the channel has been replaced with a specific liquid based on the measured physical quantity.
PCT/JP2022/004287 2021-03-15 2022-02-03 Automated analysis device and flow path confirmation method WO2022196157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506843A JPWO2022196157A1 (en) 2021-03-15 2022-02-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-041137 2021-03-15
JP2021041137 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022196157A1 true WO2022196157A1 (en) 2022-09-22

Family

ID=83322202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004287 WO2022196157A1 (en) 2021-03-15 2022-02-03 Automated analysis device and flow path confirmation method

Country Status (2)

Country Link
JP (1) JPWO2022196157A1 (en)
WO (1) WO2022196157A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506080A (en) * 2003-09-15 2007-03-15 ディアグノスイス ソシエテ アノニム Flow monitoring microfluidic device
JP2017015418A (en) * 2015-06-29 2017-01-19 東ソー株式会社 Reagent preparation apparatus and specimen analyzer
CN208193738U (en) * 2018-01-31 2018-12-07 国家海洋局北海环境监测中心 A kind of Full Automatic Liquid liquid abstraction instrument analyzed for oils in seawater

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007506080A (en) * 2003-09-15 2007-03-15 ディアグノスイス ソシエテ アノニム Flow monitoring microfluidic device
JP2017015418A (en) * 2015-06-29 2017-01-19 東ソー株式会社 Reagent preparation apparatus and specimen analyzer
CN208193738U (en) * 2018-01-31 2018-12-07 国家海洋局北海环境监测中心 A kind of Full Automatic Liquid liquid abstraction instrument analyzed for oils in seawater

Also Published As

Publication number Publication date
JPWO2022196157A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6836597B2 (en) Automatic analyzer
US20220206029A1 (en) Automatic analysis apparatus and cleaning method for same
US9897624B2 (en) Automatic analyzer
JP2008058163A (en) Automalyzer
US8734721B2 (en) Analyzer
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
EP2386866A2 (en) Automatic analyzer
WO2020066449A1 (en) Automated analysis device
JP7455142B2 (en) automatic analyzer
JP6654881B2 (en) Automatic analyzer and method for determining abnormality of automatic analyzer
WO2022196157A1 (en) Automated analysis device and flow path confirmation method
JP2009031203A (en) Automatic analyzer
JP5912787B2 (en) Automatic analyzer
NL1006211C2 (en) Analysis device.
CN111133317B (en) Automatic analyzer and method for detecting clogging of flow path in automatic analyzer
JP2020143923A (en) Automatic analyzer
JP6824219B2 (en) Automatic analyzer and automatic analysis method
JP2013246055A (en) Autoanalyzer
JP7208727B2 (en) AUTOMATIC ANALYZER AND WATER LEAK DETECTION METHOD OF AUTOMATIC ANALYZER
WO2023119835A1 (en) Automatic analysis device
EP4012419A1 (en) Liquid dispensing device
WO2024034381A1 (en) Automatic analysis device and method for adjusting amount of cleaning liquid
EP3570043B1 (en) Automatic analyzer and automatic analysis method
WO2022244565A1 (en) Automatic analysis device
JP7167037B2 (en) Abnormal detection method for automatic analyzer and specimen pipetting mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770917

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023506843

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770917

Country of ref document: EP

Kind code of ref document: A1