WO2022196093A1 - Information processing device, line-of-sight detection method, and program - Google Patents

Information processing device, line-of-sight detection method, and program Download PDF

Info

Publication number
WO2022196093A1
WO2022196093A1 PCT/JP2022/002165 JP2022002165W WO2022196093A1 WO 2022196093 A1 WO2022196093 A1 WO 2022196093A1 JP 2022002165 W JP2022002165 W JP 2022002165W WO 2022196093 A1 WO2022196093 A1 WO 2022196093A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
line
sight detection
angle information
calibration data
Prior art date
Application number
PCT/JP2022/002165
Other languages
French (fr)
Japanese (ja)
Inventor
卓郎 野田
恵一朗 谷口
篤孝 伊藤
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2023506806A priority Critical patent/JPWO2022196093A1/ja
Publication of WO2022196093A1 publication Critical patent/WO2022196093A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/113Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining or recording eye movement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • This technology relates to an information processing device, a line-of-sight detection method, and a program, and particularly to technology for line-of-sight detection processing.
  • a technique for detecting a line of sight using a pupillary corneal reflection method is known.
  • a viewfinder of an imaging device camera
  • the user holds the camera vertically or horizontally, so the relative posture between the user and the camera is not constant. Therefore, the tilt of the eye detected by the line-of-sight detection device may be significantly different from that at the time of calibration. Therefore, for example, a plurality of calibration data corresponding to a plurality of camera orientations are required.
  • Patent Document 1 discloses a method for detecting whether the camera is held vertically or horizontally by detecting the orientation of the camera with respect to gravity using an acceleration sensor or the like, and storing a plurality of calibration data according to the camera orientation. It is disclosed that
  • an object of the present disclosure is to be able to deal with various relative posture states using calibration data obtained in one calibration.
  • An information processing apparatus performs a line-of-sight detection process for detecting a line-of-sight direction based on an eye image captured by an eye-image capturing unit, and performs calibration data used for the line-of-sight detection process by:
  • a line-of-sight detection calculation unit is provided for performing correction processing for correction based on roll angle information, which is information on a relative angle change between the eye and the eye image capturing unit.
  • roll angle information which is information on a relative angle change between the eye and the eye image capturing unit.
  • correction processing based on roll angle information is processing for further correcting the calibration data in accordance with the orientation of the user's eyes when the line of sight is detected.
  • the line-of-sight detection calculation unit includes reference angle information used to calculate the roll angle information when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing. and store the calibration data in association with the reference angle information. For example, information that changes according to the relative posture relationship between the user's eyes and the information processing device is acquired during the calibration process, and stored as reference angle information in association with the calibration data.
  • the line-of-sight detection calculation unit acquires current angle information, which is the same type of information as the reference angle information, during the line-of-sight detection processing. It is conceivable to calculate the roll angle information using the current angle information and perform the correction processing. For example, as information that changes according to the relative posture relationship between the user's eyes and the information processing device, the same information as the reference angle information is acquired during the line-of-sight detection process and compared with the reference angle information to obtain the roll angle information.
  • the line-of-sight detection calculation unit may calculate roll angle information from an iris code used in iris authentication processing.
  • iris authentication as a method of user personal authentication.
  • the iris code used in this iris authentication is used to obtain roll angle information during line-of-sight detection processing.
  • the line-of-sight detection calculation unit performs calibration processing for obtaining calibration data used in the line-of-sight detection processing at an opportunity to obtain an iris code, and converts the obtained iris code to the
  • the iris code used in the iris authentication process is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This iris code is acquired when performing calibration, and stored as reference angle information in association with the calibration data.
  • the line-of-sight detection calculation unit uses the iris code detected in the iris authentication process as current angle information, and uses the reference angle information and the current angle information to obtain the roll angle information. is calculated to perform the correction process.
  • the iris code obtained in the iris authentication process is used as the current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
  • the line-of-sight detection calculation unit calculates the roll angle information based on the Hamming distance between the iris code as the reference angle information and the iris code as the current angle information. can be considered. Since the iris code is information bit-shifted by a shift amount corresponding to the amount of change in the relative posture relationship, the change in angle can be obtained from the Hamming distance.
  • the line-of-sight detection calculation unit detects the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person as the reference angle information.
  • the iris code detected in the iris authentication process may be used as current angle information, and the correction process may be performed using the roll angle information calculated using the reference angle information and the current angle information. Correction processing using the iris code is performed when it is determined that the person is a person whose iris code has been stored as reference angle information in the past.
  • the line-of-sight detection calculation unit detects the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person as the reference angle information when the iris code is not stored as the reference angle information.
  • the calibration process may be performed, and the iris code acquired in the iris authentication process may be stored as the reference angle information in association with the calibration data. If the person is not a person whose iris code has been stored as reference angle information in the past, the roll angle information cannot be calculated correctly even if the reference angle information and the current angle information are compared, so correction processing is not performed.
  • the line-of-sight detection calculation unit may calculate the roll angle information based on eyelid boundary information in the captured image of the eye.
  • the boundary information is information related to the boundary of the eyelids. For example, the boundary line of the eyelid, the feature points near the boundary line, the circumscribed triangle of the eyelid boundary, and the like.
  • the line-of-sight detection calculation unit acquires the boundary information from the captured image of the eye when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing.
  • the boundary information may be stored in association with the calibration data as reference angle information used for calculating the roll angle information.
  • Information about the shape of the eyelid boundary that appears in the captured image of the eye is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This boundary information is obtained when performing calibration, and stored as reference angle information in association with the calibration data.
  • the line-of-sight detection calculation unit acquires the boundary information from the captured image of the eye as current angle information, and uses the reference angle information and the current angle information to determine the roll angle. It is conceivable to calculate the angle information and perform the correction process.
  • boundary information is used as current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
  • the line-of-sight detection calculation unit calculates the roll angle information based on the contact position information with respect to the touch panel. For example, in the case where a touch panel is provided at the bottom of the viewfinder of the imaging device, roll angle information is obtained by detecting the contact position of the user's nose or the like on the touch panel when the user looks into the viewfinder.
  • the line-of-sight detection calculation unit acquires the contact position information when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing, and calculates the contact position information. It is conceivable to perform a process of storing the information in association with the calibration data as reference angle information used for calculating the roll angle information.
  • the contact position information on the touch panel is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This contact position information is acquired when performing calibration, and stored as reference angle information in association with calibration data.
  • the line-of-sight detection calculation unit acquires the contact position information to use it as current angle information, and calculates the roll angle information using the reference angle information and the current angle information. It is conceivable that the correction process is performed as described above. At the time of line-of-sight detection, contact position information is used as current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
  • the information processing device includes a detection unit that detects the posture of the device itself, and the line-of-sight detection calculation unit receives device posture information of the head-mounted device transmitted from the head-mounted device, It is conceivable to calculate the roll angle information based on the device orientation information detected by the detection unit. For example, assuming a combination of an imaging device and a head-mounted device, the head-mounted device corresponds to the posture of the user. Therefore, it is possible to obtain roll angle information for correction processing by comparing apparatus attitude information.
  • the information processing apparatus includes the eye image capturing unit. That is, in an information processing apparatus integrally provided with an eye image capturing section, a line-of-sight detection process based on an eye image by the eye image capturing section and a correction process of calibration data are performed.
  • the information processing apparatus includes an imaging unit that performs image capturing and the eye image capturing unit. That is, it is an example configured as an imaging device that performs line-of-sight detection processing.
  • a line-of-sight detection method performs line-of-sight detection processing for detecting a line-of-sight direction based on an eye image captured by an eye image capturing unit, and performs calibration data used for the line-of-sight detection processing by:
  • an information processing device executes a line-of-sight detection calculation for performing a correction process based on roll angle information, which is information about a relative angle change between an eye and the eye image capturing unit.
  • roll angle information which is information about a relative angle change between an eye and the eye image capturing unit.
  • the information processing apparatus performs line-of-sight detection using the corrected calibration data.
  • a program according to the present technology is a program that causes an information processing apparatus to execute the line-of-sight detection calculation described above. This facilitates the realization of the above information processing apparatus.
  • FIG. 1 is an explanatory diagram of an example of an information processing device according to an embodiment of the present technology
  • FIG. 1 is a perspective view of an imaging device according to an embodiment
  • FIG. 1 is a block diagram of an imaging device according to an embodiment
  • FIG. 1 is a block diagram of an information processing device according to an embodiment
  • FIG. 10 is an explanatory diagram of line-of-sight detection processing
  • FIG. 4 is an explanatory diagram of an optical axis and a visual axis
  • FIG. 10 is an explanatory diagram of calibration using a plurality of points
  • FIG. 4 is an explanatory diagram of generation and application of calibration data
  • 7 is a flow chart of an example of processing when recording calibration data according to the first embodiment
  • FIG. 10 is an explanatory diagram of comparing the line angles of the eyeballs of the same person using iris patterns;
  • FIG. 10 is an explanatory diagram of Hamming distance comparison of iris codes according to the first embodiment;
  • 7 is a flowchart of an example of correction processing according to the first embodiment;
  • FIG. 11 is an explanatory diagram of detection of roll angle information from an eye image according to the second embodiment;
  • FIG. 11 is a flow chart of an example of processing when recording calibration data according to the second embodiment;
  • FIG. 10 is a flowchart of an example of correction processing according to the second embodiment;
  • FIG. 11 is a flow chart of an example of processing when recording calibration data according to the third embodiment;
  • FIG. FIG. 11 is a flow chart of an example of correction processing according to the third embodiment;
  • FIG. 14 is a flow chart of an example of processing when recording calibration data according to the fourth embodiment
  • FIG. 16 is a flow chart of an example of correction processing according to the fourth embodiment
  • FIG. 5 is an explanatory diagram of an application example of roll angle information according to the embodiment
  • An information processing apparatus is an apparatus capable of performing information processing, and specifically, an apparatus including a microprocessor or the like and capable of performing line-of-sight detection calculations.
  • a line-of-sight detection calculation is a calculation as a line-of-sight detection process for detecting a line-of-sight direction based on an eye image captured by an eye image pickup unit inside or outside the apparatus.
  • the “eye image” referred to in the present disclosure is an image of a person's eye.
  • correction processing is also performed for correcting the calibration data used in the line-of-sight detection processing based on roll angle information, which is information on relative angle changes between the eyes and the eye image capturing unit.
  • a processor device such as a CPU or a DSP that performs at least line-of-sight detection processing and correction processing, or a device provided with such a processor device, is the information processing device according to the present disclosure.
  • FIG. 1 illustrates an imaging device 1, a terminal device 100, and a table top display 120 as specific device examples corresponding to information processing devices.
  • the imaging device 1 it is assumed that it has a function of detecting the line-of-sight direction of the user looking into the EVF (Electric Viewfinder) 5.
  • a tablet device, a smartphone, etc. are exemplified.
  • these terminal devices 100 for example, a configuration example for detecting the line-of-sight direction of the user with respect to the screen is conceivable.
  • the equipment listed in FIG. 1 is only an example.
  • the technology of the present disclosure can be applied to equipment that detects the line-of-sight direction.
  • Devices corresponding to the information processing device of the present disclosure are extremely diverse, such as, for example, television receivers, game machines, personal computers, workstations, robots, monitoring devices, and sensor devices.
  • FIG. 2 is a perspective view of the imaging device 1 as seen from the rear side.
  • the subject side is the front side (front side)
  • the photographer side is the rear side (rear side).
  • the imaging device 1 includes a camera housing 2 and a lens barrel 3 that is detachable from the camera housing 2 and attached to the front surface portion 2a. It is an example that the lens barrel 3 is detachable as a so-called interchangeable lens, and the lens barrel may be a lens barrel that cannot be removed from the camera housing 2 .
  • a rear monitor 4 is arranged on the rear surface portion 2 b of the camera housing 2 .
  • the rear monitor 4 displays live view images, reproduced images of recorded images, and the like.
  • the rear monitor 4 is configured by a display device such as a liquid crystal display (LCD) or an organic EL (Electro-Luminescence) display.
  • LCD liquid crystal display
  • organic EL Electro-Luminescence
  • the EVF 5 is arranged on the upper surface portion 2 c of the camera housing 2 .
  • the EVF 5 includes an EVF monitor 5a and a frame-shaped enclosing portion 5b that protrudes rearward so as to enclose an upper portion and left and right sides of the EVF monitor 5a.
  • the EVF monitor 5a is formed using an LCD, an organic EL display, or the like.
  • An optical view finder (OVF) may be provided instead of the EVF monitor 5a.
  • Various operators 6 are provided on the rear surface portion 2b and the upper surface portion 2c.
  • it is a shutter button (release button), a reproduction menu activation button, an enter button, a cross key, a cancel button, a zoom key, a slide key, and the like.
  • manipulators 6 include various types of manipulators such as buttons, dials, pressable and rotatable composite manipulators.
  • shutter operation, menu operation, playback operation, mode selection/switching operation, focus operation, zoom operation, and parameter selection/setting such as shutter speed and F-number are enabled by operating elements 6 of various modes.
  • FIG. 3 shows the internal configuration of the imaging device 1.
  • the imaging apparatus 1 includes, for example, a lens system 11, an imaging element section 12, a camera signal processing section 13, a recording control section 14, a display section 15, a communication section 16, an operation section 17, a camera control section 18, a memory section 19, a driver section 22, and a , a sensor unit 23 and a line-of-sight detection device unit 41 .
  • the lens system 11 includes lenses such as a zoom lens and a focus lens, an aperture mechanism, and the like. Light (incident light) from a subject is guided by the lens system 11 and condensed on the imaging element section 12 .
  • the imaging device unit 12 is configured by having an image sensor 12a (imaging device) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
  • image sensor 12a imaging device
  • CDS Correlated Double Sampling
  • AGC Automatic Gain Control
  • the imaging signal as digital data is output to the camera signal processing section 13 and the camera control section 18 in the subsequent stage.
  • the camera signal processing unit 13 is configured as an image processing processor such as a DSP (Digital Signal Processor).
  • the camera signal processing section 13 performs various signal processing on the digital signal (captured image signal) from the imaging element section 12 .
  • the camera signal processing unit 13 performs preprocessing, synchronization processing, YC generation processing, resolution conversion processing, and the like.
  • the camera signal processing unit 13 performs, for example, compression encoding for recording and communication, formatting, generation and addition of metadata, etc. on the image data that has been subjected to the various types of processing described above, and converts the image data into image data for recording and communication.
  • file is generated.
  • an image file in a format such as JPEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), or GIF (Graphics Interchange Format) is generated as a still image file.
  • JPEG Joint Photographic Experts Group
  • TIFF Tagged Image File Format
  • GIF Graphics Interchange Format
  • the recording control unit 14 performs recording and reproduction on a recording medium such as a non-volatile memory.
  • the recording control unit 14 performs a process of recording image files such as moving image data and still image data, and metadata including thumbnail images and the like on a recording medium, for example.
  • the recording control unit 14 may be configured as a flash memory built in the imaging device 1 and its writing/reading circuit.
  • the recording control unit 14 may be configured by a card recording/reproducing unit that performs recording/reproducing access to a recording medium detachable from the imaging apparatus 1, such as a memory card (portable flash memory, etc.).
  • the recording control unit 14 may be implemented as an HDD (Hard Disk Drive) or the like as a form incorporated in the imaging device 1 .
  • HDD Hard Disk Drive
  • the display unit 15 is a display unit that provides various displays to the photographer.
  • a liquid crystal panel LCD: Liquid Crystal Display
  • organic EL display devices such as Electro-Luminescence
  • the display unit 15 executes various displays on the display screen based on instructions from the camera control unit 18 .
  • the display unit 15 displays a reproduced image of image data read from the recording medium by the recording control unit 14 .
  • the display unit 15 is supplied with the image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13, and the display unit 15 responds to an instruction from the camera control unit 18 to display the image data of the captured image. may be displayed.
  • a so-called through image (monitoring image of the subject), which is an image captured while confirming the composition or recording a moving image, is displayed.
  • the display unit 15 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) on the screen based on instructions from the camera control unit 18 .
  • GUI Graphic User Interface
  • the communication unit 16 performs wired or wireless data communication and network communication with external devices. For example, captured image data (still image files and moving image files) and metadata are transmitted and output to external information processing devices, display devices, recording devices, playback devices, and the like.
  • the communication unit 16 performs communication via various networks such as the Internet, a home network, and a LAN (Local Area Network), and can transmit and receive various data to and from servers, terminals, etc. on the network. can.
  • the communication unit 16 enables the imaging device 1 to communicate with, for example, a PC, a smartphone, a tablet terminal, headphones, earphones, a headset, or the like via Bluetooth (registered trademark), Wi-Fi communication, NFC, or the like. It may also be possible to perform mutual information communication by means of distance wireless communication or infrared communication. Alternatively, the imaging device 1 and other equipment may be able to communicate with each other through wired connection communication.
  • the operation unit 17 collectively indicates an input device for a user to perform various operation inputs. Specifically, the operation unit 17 indicates various operators (keys, dials, touch panels, touch pads, etc.) provided on the housing of the imaging device 1 . For example, it is assumed that the touch panel is provided on the surface of the rear monitor 4 . A user's operation is detected by the operation unit 17 , and a signal corresponding to the input operation is sent to the camera control unit 18 .
  • the line-of-sight detection device 41 is a device that captures an eye image for detecting the line of sight of the user. It is composed of an image capturing unit 51 (for example, an infrared camera) and the like. For example, by arranging the line-of-sight detection device 41 having the eye image capturing unit 51 in the EVF 5 shown in FIG. Also, such a line-of-sight detection device unit 41 is arranged near the rear monitor 4 so that an eye image for detecting the line-of-sight direction of the user looking at the rear monitor 4 can be picked up. good too.
  • an image capturing unit 51 for example, an infrared camera
  • the camera control unit 18 is configured by a microcomputer (information processing device) having a CPU (Central Processing Unit).
  • the memory unit 19 stores information and the like that the camera control unit 18 uses for processing.
  • a ROM Read Only Memory
  • RAM Random Access Memory
  • flash memory and the like are comprehensively illustrated.
  • the memory section 19 may be a memory area built into a microcomputer chip as the camera control section 18, or may be configured by a separate memory chip.
  • the camera control unit 18 controls the entire imaging apparatus 1 by executing programs stored in the ROM of the memory unit 19, flash memory, or the like. For example, the camera control unit 18 controls the shutter speed of the image sensor unit 12, instructs various signal processing in the camera signal processing unit 13, performs image capturing and recording operations in response to user operations, reproduces recorded image files, performs lens It controls the operations of necessary units for operations of the lens system 11 such as zoom, focus, and aperture adjustment in the lens barrel, user interface operations, and the like.
  • the camera control unit 18 has a function as a line-of-sight detection calculation unit 40 by an application program.
  • the line-of-sight detection calculation unit 40 analyzes the eye image obtained from the line-of-sight detection device unit 41 and performs line-of-sight detection processing for detecting the line-of-sight direction of the user. Also, in order to improve the accuracy of this line-of-sight detection, calibration processing is also performed. Furthermore, in the case of the present embodiment, the calibration data used for the line-of-sight detection process is corrected based on the roll angle information, which is the information on the relative angle change between the eye and the eye image capturing section in the line-of-sight detection device section 41. I am trying to process it. Details of these processes will be described later.
  • the camera control unit 18 can also perform various controls based on the user's line-of-sight direction detected by the function of the line-of-sight detection calculation unit 40 . For example, depending on the line-of-sight direction, it is possible to set the focus area so that the subject in the line-of-sight direction is in just focus, or to perform aperture adjustment control according to the brightness of the subject in the line-of-sight direction.
  • the camera control unit 18 may perform so-called AI (artificial intelligence) processing for line-of-sight detection processing, correction processing, and other processing.
  • AI artificial intelligence
  • the RAM in the memory unit 19 is used as a work area for the CPU of the camera control unit 18 to perform various data processing, and is used for temporary storage of data, programs, and the like.
  • the ROM and flash memory (nonvolatile memory) in the memory unit 19 store an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. , and used to store various setting information.
  • Various setting information includes communication setting information, exposure setting, shutter speed setting, mode setting as setting information related to imaging operation, white balance setting, color setting, image effect setting as setting information related to image processing, etc.
  • the memory unit 19 also stores programs for line-of-sight detection processing, calibration processing, and correction processing, which will be described later, and data used for these processing.
  • the memory unit 19 can also function as a database regarding calibration data for line-of-sight detection processing.
  • authentication data for iris authentication which will be described later, code information obtained by encoding an iris pattern, pattern data used for object recognition by semantic segmentation, and the like are also stored.
  • the driver unit 22 includes, for example, a motor driver for the zoom lens drive motor, a motor driver for the focus lens drive motor, a motor driver for the motor of the aperture mechanism, and the like. These motor drivers apply drive currents to the corresponding drivers in accordance with instructions from the camera control unit 18 to move the focus lens and zoom lens, open and close the diaphragm blades of the diaphragm mechanism, and the like.
  • the sensor unit 23 comprehensively indicates various sensors mounted on the imaging device.
  • an IMU intial measurement unit
  • the IMU can detect angular velocity with, for example, three-axis angular velocity (gyro) sensors of pitch, yaw, and roll, and acceleration with an acceleration sensor. This makes it possible to detect the orientation of the imaging device 1 with respect to the direction of gravity.
  • a position information sensor, an illuminance sensor, a range sensor, etc. may be mounted.
  • the line-of-sight detection device unit 41 is incorporated in the EVF 5 or near the rear monitor 4, and the line-of-sight direction of the user looking through the EVF 5 or looking at the rear monitor 4 can be detected.
  • the camera control unit 18 (line-of-sight detection calculation unit 40) performs line-of-sight detection processing, calibration processing, and calibration data correction processing based on the eye image captured by the line-of-sight detection device unit 41.
  • FIG. 4 describes a configuration example of the terminal device 100 as a tablet device or a smartphone illustrated in FIG. 1 as an example of the information processing device of the present disclosure.
  • the CPU 71 of the terminal device 100 executes various programs according to a program stored in a ROM 72 or a non-volatile memory unit 74 such as an EEP-ROM (Electrically Erasable Programmable Read-Only Memory), or a program loaded from the storage unit 79 to the RAM 73. Execute the process.
  • the RAM 73 also appropriately stores data necessary for the CPU 71 to execute various processes.
  • the CPU 71 , ROM 72 , RAM 73 and nonvolatile memory section 74 are interconnected via a bus 83 .
  • An input/output interface 75 is also connected to this bus 83 .
  • the terminal device 100 is assumed to perform image processing and AI (artificial intelligence) processing, instead of the CPU 71 or together with the CPU 71, GPU (Graphics Processing Unit), GPGPU (General-purpose computing on graphics processing units) , an AI-dedicated processor, or the like may be provided.
  • AI artificial intelligence
  • the input/output interface 75 is connected to an input section 76 including operators and operating devices.
  • various operators and operation devices such as a keyboard, mouse, key, dial, touch panel, touch pad, remote controller, etc. are assumed.
  • a user's operation is detected by the input unit 76 , and a signal corresponding to the input operation is interpreted by the CPU 71 .
  • a microphone is also envisioned as input 76 .
  • a voice uttered by the user can also be input as operation information.
  • Various sensing devices such as an image sensor (imaging unit), an acceleration sensor, an angular velocity sensor, a vibration sensor, an air pressure sensor, a temperature sensor, and an illuminance sensor are also assumed as the input unit.
  • the input/output interface 75 is connected integrally or separately with a display unit 77 such as an LCD or an organic EL panel, and an audio output unit 78 such as a speaker.
  • the display unit 77 is a display unit that performs various displays, and is configured by, for example, a display device provided in the housing of the terminal device 100, a separate display device connected to the terminal device 100, or the like.
  • the display unit 77 displays images for various types of image processing, moving images to be processed, etc. on the display screen based on instructions from the CPU 71 . Further, the display unit 77 displays various operation menus, icons, messages, etc., ie, as a GUI (Graphical User Interface), based on instructions from the CPU 71 .
  • GUI Graphic User Interface
  • the input/output interface 75 may be connected to a storage unit 79 made up of a hard disk, a solid-state memory, etc., and a communication unit 80 made up of a modem or the like.
  • the storage unit 79 stores various programs, data files, and the like.
  • a database may also be constructed.
  • the communication unit 80 performs communication processing via a transmission line such as the Internet, and communication by wired/wireless communication with various devices, bus communication, and the like.
  • a drive 81 is also connected to the input/output interface 75 as required, and a removable recording medium 82 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory is appropriately loaded.
  • Data files such as image files and various computer programs can be read from the removable recording medium 82 by the drive 81 .
  • the read data file is stored in the storage unit 79 , and the image and sound contained in the data file are output by the display unit 77 and the sound output unit 78 .
  • Computer programs and the like read from the removable recording medium 82 are installed in the storage unit 79 as required.
  • software for the processing of this embodiment can be installed via network communication by the communication unit 80 or via the removable recording medium 82.
  • the software may be stored in advance in the ROM 72, the storage unit 79, or the like.
  • the line-of-sight detection device section 41 is connected to the input/output interface 75 .
  • the line-of-sight detection device 41 is a device that captures an eye image for detecting the line of sight of the user.
  • LED light source
  • an eye image capturing unit 51 for example, an infrared camera
  • the CPU 71 functions as the line-of-sight detection calculation unit 40 by means of an application program.
  • the line-of-sight detection calculation unit 40 analyzes the eye image obtained from the line-of-sight detection device unit 41 and performs line-of-sight detection processing for detecting the line-of-sight direction of the user, as described for the imaging device 1 in FIG. 3 .
  • calibration processing and correction processing for correcting calibration data based on roll angle information which is information on relative angle changes between the eyes and the eye image capturing unit in the sight line detection device unit 41, are performed.
  • the CPU 71 can also perform various controls based on the user's line-of-sight direction detected by the function of the line-of-sight detection calculation unit 40 . For example, it is possible to move a pointer on the display unit 77, switch images, output sound, and perform communication according to the line-of-sight direction.
  • the non-volatile memory unit 74, ROM 72, and storage unit 79 can also function as a database regarding calibration data for line-of-sight detection processing. For example, authentication data for iris authentication, which will be described later, code information obtained by encoding an iris pattern, pattern data used for object recognition by semantic segmentation, and the like are also stored.
  • the table top display 120 in FIG. 1 game machines, personal computers, workstations, etc. have almost the same configuration.
  • the television receiver has a tuner function
  • the monitoring device and the sensor device have an imaging unit and a detection unit necessary for monitoring and sensing
  • the robot has the necessary functions for the operation of the robot. It is sufficient if the function is provided.
  • Gaze detection and calibration The line-of-sight detection and calibration performed by the imaging device 1, the terminal device 100, and the like will be described.
  • a "reference point” and a “moving part (moving point)" of the eye are found, and the line of sight is detected from the position of the moving point with respect to the reference point.
  • the corneal reflection method and the image processing method are known as specific methods, the pupil corneal reflection method will be explained here.
  • the eye is photographed while the cornea is irradiated with a point light source, and the center of corneal curvature obtained from this corneal reflection image (Purkinje image) is used as a reference point and the moving point is measured as the pupil.
  • 5A and 5B show a pupil 60, a cornea 61, an iris 62, an inner corner 63, and an outer corner 64 as structures of the eye.
  • FIG. 5C schematically shows an infrared irradiation section 50 and an eye image pickup section 51 as an example of the line-of-sight detection device section 41 shown in FIGS.
  • the infrared irradiation unit 50 is composed of, for example, an infrared LED (light emitting diode).
  • the eye image pickup unit 51 is configured by, for example, an infrared camera. In this case, the infrared irradiation unit 50 irradiates the cornea 61 with a point light source.
  • the eye image capturing unit 51 captures an image of the eye in a state where the cornea 61 is irradiated with the point light source, and outputs the captured eye image.
  • This eye image is supplied to the line-of-sight detection calculation unit 40, that is, the camera control unit 18 in FIG. 3 and the CPU 71 in FIG.
  • the line-of-sight detection calculation unit 40 detects the pupil 60 and the corneal reflection image 65 from the eye images shown in FIGS. 5D and 5E as line-of-sight detection processing.
  • the line-of-sight direction is calculated from the positions of the moving point and the reference point. That is, the viewpoint (coordinates) is measured by applying the imaging information of the corneal reflection image 65 to the eyeball model.
  • FIG. 6 shows the optical axis AX1 and visual axis AX2 of the human eye.
  • the optical axis AX1 is the corneal normal passing through the center of the pupil 60 .
  • This optical axis AX1 can be estimated by the eyeball 3D model.
  • a visual axis AX2 is an axis that connects the nodal point (central posterior surface of the lens 66) and the fovea 70. FIG. What a person actually sees is this visual axis AX2.
  • the optical axis AX1 and the visual axis AX2 are tilted by about 5 degrees. There are individual differences in this inclination, and it is generally about 4 to 8 degrees.
  • the direction of the optical axis AX1 can be calculated by observing the pupil 60, so by correcting it to the direction of the visual axis AX2, the line-of-sight direction of the person (actual viewing direction) can be accurately detected. become. Therefore, calibration data for correcting the deviation between the optical axis AX1 and the visual axis AX2 for each individual is collected by performing calibration processing. As a result, correction can be performed using the calibration data in subsequent actual line-of-sight detection.
  • the optical axis AX1 when viewing a certain "point" in the field of view is estimated.
  • the difference between the vector from the center of curvature of the cornea 61 to that "point” and the vector of the optical axis AX1 is measured.
  • the visual axis AX2 at that time is estimated from the optical axis AX1 when an arbitrary point is viewed.
  • a plurality of points for example, 5 to 9 points) in the normal visual field are used because the calibration parameters differ depending on the orientation of the eyeball.
  • FIG. 7 shows an example of calibration processing using multiple points.
  • a gaze point marker 67 is displayed on the screen viewed by the user. The user is made to gaze at this marker 67 . Observe the line of sight at that time. The observable line-of-sight direction is the direction of the optical axis AX1. Also, the direction toward the center of the marker 67 is the direction of the visual axis AX2.
  • the marker 67 is moved to the next point. As shown in the figure, data is collected while moving the marker 67 to, for example, the center, upper left corner, upper right corner, lower left corner, and lower right corner of the screen.
  • vectors G and T shown in FIG. 8A are obtained for each point.
  • Vector G is the detected viewing direction (that is, optical axis AX1)
  • vector T is a vector (that is, visual axis AX2) connecting the center of the user's eye and the calibration point (the point indicated by marker 67).
  • a rotational transformation Q from this vector G to vector T is obtained.
  • the rotation transform Q is a quaternion.
  • the rotational transformation Q for each vector G is stored in the database 52 as calibration data for the person who made the measurement. This rotational transformation Q becomes a correction amount for each individual.
  • the database 52 may be constructed, for example, in the memory section 19 of FIG. 3 or the non-volatile memory section 74 or storage section 79 of FIG.
  • each correction amount is weighted by the reciprocal of the distance from the gaze point P0 to the neighboring three points P1, P2, and P3, and added.
  • the correction amount is applied to the current gazing point P0 to obtain the post-correction gazing point P0A. This makes it possible to accurately detect the direction in which the user is actually looking.
  • the difference between the attitude relationship when the calibration process is performed and the attitude relationship when the line-of-sight detection is actually performed can be represented by the amount of rotation in the roll direction.
  • Correction processing is performed to correct the calibration data according to the information.
  • the roll angle can be said to be information about the relative angle between the user's eyes and the eye image capturing unit 51, with reference to the time of the calibration process (angle change amount).
  • the corrected calibration data is used to correct from the optical axis AX1 to the visual axis AX2. To detect a line of sight with high accuracy only with obtained calibration data.
  • the camera control unit 18 or the CPU 71 also has a function of performing iris authentication processing.
  • Iris authentication is known as a technology that uses eyeballs. This technique encodes an iris pattern into an iris code, and compares the iris code to perform personal authentication. When the Hamming distance is obtained by shifting the iris code when performing this comparison, the shift amount that minimizes it is proportional to the roll angle of the eyeball. Therefore, correction is performed by rotating the calibration data by the difference (roll angle) between the angle at the time of calibration processing and the current angle.
  • the processing of the line-of-sight detection calculation unit 40 for performing such processing will be described.
  • the processing of the line-of-sight detection calculation unit 40 described below is processing performed by an information processing device such as the camera control unit 18 in FIG. 3 and the CPU 71 in FIG.
  • FIG. 9 shows calibration processing of the line-of-sight detection calculation unit 40 .
  • the line-of-sight detection calculation unit 40 acquires an image captured by the eye image capturing unit 51 of the line-of-sight detection device unit 41, that is, an eye image of the user.
  • step S102 the camera control unit 18 or the CPU 71 equipped with the line-of-sight detection calculation unit 40 performs encoding for iris authentication by the iris authentication function also provided. That is, an iris code is generated by encoding the iris pattern observed from the user's eye image.
  • FIG. 10A For example, assume that an eye image (image IM1) as shown in FIG. 10A is captured.
  • image IM1 image IM1
  • the donut-shaped portion of the iris 62 is extracted by polar coordinate transformation, and as shown in FIGS. 11A and 11B, 256 divisions in the angular direction and 4 lines in the radial direction are obtained.
  • it is converted into a 2048-bit code as shown in FIG. 11C by a Gapole wavelet filter.
  • one pixel has 2 bits of filter response real part and imaginary part, which is 2048 bits as 256 degrees ⁇ 2 bits ⁇ 4 lines. This is the iris code obtained from the eye image as image IM1.
  • step S103 of FIG. 9 the line-of-sight detection calculation unit 40 collects calibration data.
  • the vector G and the vector T are determined while the marker 67 is gazed at, and the rotational transformation Q is determined with the position of the marker 67 as the gaze point. While changing the position of the marker 67, this is performed for a plurality of fixation points. As a result, calibration data is obtained in the posture relation in which the eye image as the image IM1 was obtained.
  • step S104 the line-of-sight detection calculation unit 40 stores the calibration data and the iris code as a pair in the database 52 in association with each other.
  • the iris code paired with the calibration data and stored in step S104 is used at least as information used for line-of-sight detection.
  • the camera control unit 18 or the CPU 71 may perform registration processing separately as information for personal authentication for the generated iris code when the iris code is generated in step S102.
  • the iris code stored for the line-of-sight detection process in step S104 may also be used as information for later personal authentication.
  • the iris code registration for personal authentication is performed simultaneously with the calibration process shown in FIG. may be held on another occasion.
  • step S201 the line-of-sight detection calculation unit 40 acquires an image captured by the eye image capturing unit 51 of the line-of-sight detection device unit 41, that is, an eye image of the user.
  • image IM1 in FIG. 10A an eye image in the same posture relationship as in the calibration process may be obtained.
  • an eye image with a pose relationship can be obtained.
  • the image IM2 is an image with a convolution angle ⁇ compared to the image IM1.
  • step S202 the camera control unit 18 or the CPU 71 having the line-of-sight detection calculation unit 40 performs iris authentication using the iris authentication function also provided.
  • the camera control unit 18 or CPU 71 first generates an iris code from the eye image in the same manner as described above. If an eye image exactly the same as the image IM1 with zero rotation angle is obtained for the same person who obtained the iris code in the past, the same iris code as the iris code in FIG. 11C is obtained. However, although there may be some bit differences depending on the imaging state of the eye image and the determination of the iris pattern, the codes are generally the same. 10B for the same person, the iris code is bit-shifted as compared to the iris code in FIG. 11C, as in FIG. 11D. you get the code.
  • the Hamming distance that is, the amount of difference in bits
  • the Hamming distance is minimized.
  • the iris code stored for iris authentication in the past is the iris code of the user who is registered as a person whose personal authentication is OK.
  • the iris code may be stored during the calibration process of FIG. 9, or may be stored during a separate registration process.
  • the minimum value of the Hamming distance is found as described above, the Hamming distance is compared with a predetermined threshold value for authentication.
  • the minimum value of the Hamming distance is equal to or less than a predetermined value, it can be determined that the current iris code belongs to the same person as the iris code stored for iris authentication in the past. This is because the smaller the Hamming distance, the higher the similarity of the iris code.
  • the minimum value of the Hamming distance is not equal to or less than the predetermined value, it can be determined that the user has not stored an iris code as a person who should be authenticated in the past.
  • the camera control unit 18 or the CPU 71 can thus perform personal authentication using the iris authentication method.
  • step S203 the camera control unit 18 or the CPU 71 continues processing using the function of the line-of-sight detection calculation unit 40.
  • the line-of-sight detection calculation unit 40 determines whether or not the iris code acquired this time and the iris code of the same person are stored in the database 52 in a pair with the calibration data.
  • the roll angle is calculated based on the Hamming distance between the iris code detected this time and the iris code stored in the database 52 .
  • the iris code detected this time is positioned as the current angle information and compared with the iris code as the reference angle information stored in step S104 of FIG. For example, if the iris code of the image IM2 is obtained this time, the iris code detected this time as current angle information is bit-shifted from the stored iris code by the amount corresponding to the rotation angle ⁇ . .
  • the bit shift amount when the Hamming distance becomes the minimum corresponds to the rotation angle ⁇ . That is, the roll angle can be calculated from the bit shift amount up to the minimum Hamming distance.
  • step S206 the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data. Then, in step S207, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector. This means that the calibration data has been corrected according to the current relative attitude relationship. Therefore, after that, using the corrected calibration data, the line-of-sight detection process can be performed as described with reference to FIG. 8B.
  • step S210 the process of FIG. 12 proceeds from step S204 to step S210.
  • the line-of-sight detection calculation unit 40 collects calibration data in step S210.
  • step S211 the line-of-sight detection calculation unit 40 stores the calibration data and the iris code in the database 52 in a state in which they are associated as a pair.
  • iris code may be executed independently of personal authentication by iris authentication.
  • iris authentication for example, the iris code of a user whose authentication is acceptable is registered, and if the iris code obtained during personal authentication is determined to be of the same person as the registered iris code, the authentication is accepted. be.
  • the iris code stored in pairs with the calibration data is stored at least in the sense of reference angle information for correcting the calibration data. Therefore, regardless of whether the user is authenticated OK or not, when performing the calibration processing in step S103 of FIG. 9 or step S210 of FIG. They may be stored in pairs. However, it is conceivable to prevent the processing of steps S210 and S211 from being performed for users who have not been authenticated.
  • FIG. 12 there are various possible timings for iris authentication, roll angle detection, and calibration data correction. It may be executed irregularly by some trigger, or may be executed periodically. For example, in the case of a configuration in which the EVF 5 of the imaging device 1 detects the line of sight, it is conceivable to execute the processing in FIG.
  • the movement of the imaging device 1 or the terminal device 100 is acquired by an acceleration sensor, a gyro sensor, or the like, and if there is a large movement, the inclination may have changed. good too. In such a case, roll angle detection and calibration data correction may be performed intermittently only when movement such as rotation stops.
  • Second Embodiment Correction Processing Based on Eye Image>
  • This process is particularly applicable to devices that do not perform iris authentication.
  • the eyelid area is detected by semantic segmentation of the eyeball image, and the roll angle relative to the eyelid area shape at the time of calibration is obtained.
  • the line-of-sight detection calculation unit 40 also has a function of performing object recognition processing from an image by semantic segmentation.
  • FIG. 13A is an eye image captured by the eye image capturing unit 51 .
  • FIG. 13B shows the eyelid region 68 of this eye image with diagonal lines.
  • step S 14 and 15 show processing examples of the line-of-sight detection calculation unit 40.
  • FIG. FIG. 14 is an example of calibration processing.
  • step S ⁇ b>120 the line-of-sight detection calculation unit 40 acquires an eye image from the eye image capturing unit 51 .
  • step S121 the line-of-sight detection calculation unit 40 determines the eyelid region 68 in the eye image by semantic segmentation processing, and acquires the eyelid boundary information.
  • Boundary information is information related to the boundary of the eyelids.
  • information on the boundary line 69 can be used as boundary information.
  • feature points near the boundary line 69 may be extracted and used as boundary information.
  • a circumscribing triangle 86 with respect to the boundary of the eyelid may be detected as indicated by the dashed line in FIG. 13B, and the information of the circumscribing triangle 86 may be used as the boundary information.
  • step S122 in FIG. 14 the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 in FIG. 9 described above.
  • FIG. 15 shows an example of calibration data correction processing.
  • the line-of-sight detection calculation unit 40 acquires an eye image from the eye image capturing unit 51 .
  • the line-of-sight detection calculation unit 40 determines the eyelid region 68 in the eye image by semantic segmentation processing, and acquires the eyelid boundary information.
  • step S222 the line-of-sight detection calculation unit 40 compares the boundary information acquired in step S221 with the boundary information stored in the database 52 to obtain the roll angle.
  • the boundary information detected this time is used as the current angle information, and is compared with the boundary information as the reference angle information stored in step S123 of FIG.
  • the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S223 of FIG. Then, in step S224, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector. As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
  • the imaging device 1 has a touch panel provided on the surface of the rear monitor 4 .
  • the user's nose may touch or come close to the touch panel. If there is a response on the right side of the touch panel, you know you are looking with your left eye. If there is a response on the left side of the touch panel, you know that you are looking with your right eye. Further, since the deviation of the detection position on the touch panel shows the change in the roll angle, the roll angle can be estimated therefrom.
  • FIG. 16 and 17 show processing examples of the line-of-sight detection calculation unit 40.
  • FIG. FIG. 16 is an example of calibration processing.
  • the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 of FIG. 9 described above.
  • step S ⁇ b>141 the line-of-sight detection calculation unit 40 acquires contact position information from information on the touch panel of the operation unit 17 .
  • the response of the touch panel while the user is looking into the EVF 5 for the calibration process is accumulated to generate contact position information on the touch panel with the nose during the calibration process.
  • step S ⁇ b>142 the line-of-sight detection calculation unit 40 pairs the calibration data and the contact position information and stores them in the database 52 . That is, in this case, the contact position information is stored as the reference angle information for setting the calibration data to be stored so that the roll angle is zero.
  • FIG. 17 shows an example of calibration data correction processing.
  • the line-of-sight detection calculation unit 40 acquires contact position information on the touch panel.
  • the contact position information detected this time becomes the current angle information to be compared with the contact position information as the reference angle information stored in step S142 of FIG. Therefore, in step S241, the line-of-sight detection calculation unit 40 compares the contact position information acquired in step S240 with the contact position information stored in the database 52 to obtain the roll angle.
  • the difference in contact position on the touch panel corresponds to the roll angle centering on the position of the EVF 5, for example.
  • the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S242. Then, in step S243, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector. As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
  • FIG. 18 shows the yaw axis Yax, the pitch axis Pax, and the roll axis Rax.
  • the sensor unit 23 of the imaging device 1 has a function of detecting the orientation of the device itself by using an acceleration sensor, an angular velocity sensor, or the like. For example, it detects postures in three axial directions of yaw, pitch, and roll.
  • the headset 130 can also detect the posture of the device itself in three axial directions of yaw, pitch, and roll using an acceleration sensor, an angular velocity sensor, and the like. It is assumed that the imaging apparatus 1 receives the posture information of the headset 130 through the communication unit 16, and the camera control unit 18 can detect the posture state of the headset 130 in real time.
  • the pose of headset 130 can be assumed to be the pose of the user's head. Therefore, the line-of-sight detection calculation unit 40 of the image pickup device 1 detects the relative relationship between the orientation of the image pickup device 1 itself and the orientation of the headset 130 and the relative relationship between the user's eye and the eye image pickup unit 51 for the EVF 5 and the rear monitor 4 . posture relationship (tilt amount) can be detected. That is, the current roll angle can be determined.
  • the roll angle of the eye-to-eye image pickup unit 51 is the difference in roll angle when rotation correction is applied so that the yaw angles in the depth direction of the imaging device 1 and the depth direction of the headset 130 match.
  • step S150 the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 of FIG. 9 described above.
  • step S151 the line-of-sight detection calculation unit 40 acquires device orientation information of the imaging device 1 itself.
  • step S ⁇ b>152 the line-of-sight detection calculation unit 40 acquires device orientation information of the headset 130 .
  • step S ⁇ b>153 the line-of-sight detection calculation unit 40 associates the device orientation information of the imaging device 1 , the device orientation information of the headset 130 , and the calibration data, and stores them in the database 52 . That is, in this case, the calibration data to be stored includes device orientation information of the imaging device 1 and device orientation information of the headset 130 as reference angle information for setting the roll angle to zero. Note that the relative angle obtained from the device orientation information of the imaging device 1 and the device orientation information of the headset 130 at this time may be used as the reference angle information.
  • FIG. 20 shows an example of calibration data correction processing.
  • the line-of-sight detection calculation unit 40 acquires current device orientation information of the imaging device 1 .
  • the line-of-sight detection calculation unit 40 acquires current device orientation information of the headset 130 .
  • the device orientation information of the imaging device 1 and the device orientation information of the headset 130 acquired this time become current angle information that is compared with both device orientation information as the reference angle information stored in step S157 of FIG.
  • step S252 the line-of-sight detection calculation unit 40 calculates the roll angle based on the device posture information. For example, if the database 52 stores device posture information of the imaging device 1 and device posture information of the headset 130, a relative angle is obtained as the relative posture difference. Also, the relative angle is obtained for each device orientation information acquired in steps S250 and S251. The difference between the stored relative angle of both apparatus attitude information and the current relative angle of both attitude information is the current roll angle.
  • the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S253. Then, in step S254, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector. As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
  • processing may be performed to notify the user that it is recommended to correct the inclination of the wearing state.
  • Correction for eliminating the difference between the optical axis AX1 and the visual axis AX2 in the line-of-sight detection process uses three neighboring points P1, P2, and P3 with respect to the current gaze point P0, as described with reference to FIG. 8B. Therefore, it is possible to improve the accuracy of the points gazed at during the calibration process performed in advance, that is, the areas included in the plurality of points on which the markers 67 are displayed as shown in FIG.
  • FIG. 21A assumes, for example, the screen of the EVF 5 or the rear monitor 4, and shows a hatched area 90 in the screen as an area with a high calibration effect.
  • the four corners of this area 90 correspond to the four corners showing the markers 67 as shown in FIG.
  • three points P1, P2, and P3 near the current gaze point P0 can be obtained as shown in FIG. 8B, so that the calibration effect is enhanced.
  • the accuracy is lowered because three neighboring points cannot be obtained.
  • the rotation of the screen is considered. If the screen is rotated vertically and horizontally when the area 90 with high calibration accuracy is not square, the area outside the area 90 becomes relatively wide in the vertical direction, as shown in FIG. 21B. Therefore, for example, as shown in FIG. 21C, for a UI that uses the entire screen based on when the image capturing apparatus 1 is held horizontally, when the screen is rotated when held vertically, the icons used for the UI, etc., are changed as shown in FIG. 21D. , so as to be within the area 90 . The number of icons to be displayed and the contents may be changed without changing the scale.
  • FIG. 21 shows an example in which the screen of the EVF 5 or the rear monitor 4 is rotated from a horizontally elongated state to a vertically elongated state by holding the imaging device 1 vertically.
  • the area outside the area 90 can be widened to the left and right.
  • placement of icons and the like, size conversion, etc. are similarly applicable.
  • the face is slanted, it is possible to maintain the previous state.
  • UI parts such as icons according to the detection accuracy of the roll angle. Since the detection accuracy differs depending on the method of obtaining the roll angle, if the accuracy is low, the UI parts are made larger to provide a screen that allows deviation.
  • the information processing apparatus (imaging device 1, terminal device 100, etc.) of the embodiment includes a line-of-sight detection calculation unit 40.
  • FIG. The line-of-sight detection calculation unit 40 performs line-of-sight detection processing for detecting the line-of-sight direction based on the eye image captured by the eye image capturing unit 51 in the line-of-sight detection device unit 41, and also calculates the calibration data used for the line-of-sight detection processing from the eye. Correction processing is performed based on the roll angle information, which is the information on the relative angle change between the eye image pickup unit 51 and the eye image pickup unit 51 .
  • the line-of-sight detection calculation unit 40 acquires reference angle information used for calculating roll angle information when performing calibration processing for acquiring calibration data used for line-of-sight detection processing, and performs calibration data and the reference angle information.
  • the reference angle information is angle information with zero roll angle.
  • the iris code, boundary information, contact position information, device attitude information, etc. acquired when performing calibration.
  • the reference angle information is not limited to the iris code, boundary information, contact position information, and device posture information, and various other types of information are conceivable. Information that changes according to the relative posture relationship between the user's eyes and the eye image capturing unit 51 of the imaging device 1 or the terminal device 100 may be used as the reference angle information.
  • the line-of-sight detection calculation unit 40 acquires current angle information, which is the same type of information as the reference angle information, during line-of-sight detection processing, and calculates roll angle information using the reference angle information and the current angle information.
  • An example of performing correction processing by The current angle information is angle information at the time of line-of-sight detection processing.
  • the iris code, boundary information, contact position information, device orientation information, etc. acquired during the line-of-sight detection process.
  • Roll angle information can be easily calculated by comparing the current angle information and the reference angle information.
  • the current angle information may be the same type of information as the reference angle information, and is not limited to the iris code, boundary information, contact position information, and apparatus orientation information. Various types of current angle information are conceivable according to the type of information employed as the reference angle information.
  • the line-of-sight detection calculation unit 40 calculates the roll angle information from the iris code used in the iris authentication process. This makes it possible to obtain roll angle information using information obtained by iris authentication processing, and eliminates the need to separately perform detection processing only for roll angle information. Therefore, processing can be made more efficient.
  • the line-of-sight detection calculation unit 40 performs calibration processing to acquire calibration data used for line-of-sight detection processing at an opportunity to acquire an iris code, and uses the acquired iris code to calculate roll angle information.
  • the line-of-sight detection calculation unit 40 uses the iris code detected in the iris authentication process as the current angle information, calculates the roll angle information using the reference angle information and the current angle information, and performs the correction process.
  • An example was given (see FIG. 12).
  • the roll angle information can be easily calculated by comparing the reference angle information with the iris code acquired during the line-of-sight detection process as the current angle information. Therefore, when iris authentication is performed, calibration data correction processing can be executed without special detection.
  • the line-of-sight detection calculation unit 40 calculates the roll angle information based on the Hamming distance between the iris code as the reference angle information and the iris code as the current angle information. Both the current angle information and the iris code as the reference angle information have a bit-shifted relationship according to the relative change in the eye posture of the imaging device 1 and the user's eye. Therefore, the shift amount when the Hamming distance is the minimum represents the angle change amount, that is, the roll angle information. Accordingly, roll angle information can be calculated, and calibration data correction processing can be executed.
  • the line-of-sight detection calculation unit 40 detects the iris code in the iris authentication process.
  • An example has been described in which the calculated iris code is used as current angle information, and correction processing is performed using roll angle information calculated using the reference angle information and current angle information.
  • correction processing using the iris code is performed in steps S205 to S207 of FIG. do. As a result, calculation of the roll angle information using the iris code becomes appropriate, and correction processing of the calibration data appropriate for the current person is ensured.
  • the line-of-sight detection calculation unit 40 performs the calibration process. and stores the iris code acquired in the iris authentication process as reference angle information in association with the calibration data. That is, it is the processing of steps S210 and S211 in FIG. In this case, even if the reference angle information and the current angle information are compared, the roll angle information cannot be calculated correctly, so correction processing is not performed. Accordingly, correction processing based on inaccurate roll angle information can be prevented from being performed. Also, when detecting a new person, by storing the current iris code as reference angle information in association with the calibration data, the calibration data for that person can be appropriately corrected thereafter. .
  • the line-of-sight detection calculation unit 40 calculates the roll angle information based on the eyelid boundary information in the captured image of the eye.
  • Boundary information is information representing features related to the eyelids.
  • the line-of-sight detection calculation unit 40 acquires boundary information from the captured image of the eye when performing calibration processing for obtaining calibration data used in the line-of-sight detection processing, and rolls the boundary information.
  • the reference angle information used for calculating the angle information an example is given in which processing is performed to store the reference angle information in association with the calibration data (see FIG. 14).
  • the line-of-sight detection calculation unit 40 acquires boundary information from the captured image of the eye and uses it as current angle information, calculates roll angle information using the reference angle information and the current angle information, and performs correction processing. (see FIG. 15).
  • the roll angle information can be easily calculated by acquiring the boundary information, which is the information on the boundary shape of the eyelids, from the eye image and using it as the current angle information, and comparing it with the reference angle information.
  • the line-of-sight detection calculation unit 40 calculates the roll angle information based on the contact position information on the touch panel. By using the contact position on the touch panel, it is possible to easily obtain the roll angle information and perform correction processing of the calibration data.
  • the device does not perform personal authentication processing or object recognition from images, and is suitable for use in devices in which the user looks into the display unit 15, such as the imaging device 1 and the telescope.
  • the line-of-sight detection calculation unit 40 acquires contact position information when performing calibration processing for acquiring calibration data used in line-of-sight detection processing, and converts the contact position information into roll angle information.
  • the reference angle information used for the calculation an example is given in which the reference angle information is stored in association with the calibration data (see FIG. 16).
  • the line-of-sight detection calculation unit 40 acquires the contact position information and uses it as current angle information, calculates the roll angle information using the reference angle information and the current angle information, and performs the correction process. (see FIG. 17).
  • the roll angle information can be easily calculated by acquiring the boundary information, which is the information on the boundary shape of the eyelids, from the eye image and using it as the current angle information, and comparing it with the reference angle information.
  • the information processing device (for example, the imaging device 1) includes a detection unit (for example, the sensor unit 23) that detects its own posture, and the line-of-sight detection calculation unit 40 is connected to an external head-mounted device (for example, An example of calculating the roll angle information based on the device orientation information transmitted from the headset 130) and the device orientation information detected by the detection unit has been given (see FIGS. 18, 19, and 20).
  • the device orientation information of the imaging device 1 and the headset 130 the relative relationship between the orientation of the user's head and the line of sight of the imaging device 1 can be known. Therefore, the roll angle can be calculated, and correction processing of the calibration data can be performed.
  • the terminal device 100 and the imaging device 1 as the information processing device of the embodiment include the line-of-sight detection device section 41 having the eye image imaging section 51. That is, in the information processing apparatus integrally including the eye image capturing unit 51, the line-of-sight detection processing and calibration data correction processing are performed by the line-of-sight detection calculation unit 40 based on the detection result of the line-of-sight detection device unit 41. .
  • the terminal device 100 and the imaging device 1 can implement a device that detects the line of sight after correcting the calibration data. Therefore, highly accurate line-of-sight detection processing can be performed in the terminal device 100 or the like, and highly accurate line-of-sight direction detection results can be applied to various types of processing.
  • the angle at which the user removes the screen is diverse. Therefore, the calibration data correction process of the present technology is extremely useful. Also, in the case of a device such as the tabletop display 120, the relative posture relationship varies depending on the user's standing position with respect to the table, and a user standing in a corner may appear oblique, especially to the eye imaging device. be. In such a situation, the correction processing of the present technology is useful.
  • the device including the line-of-sight detection device unit 41 and the device including the line-of-sight detection calculation unit 40 are configured separately.
  • the imaging device 1 is given as an example of an information processing device that includes an imaging unit that captures an image, the line-of-sight detection device unit 41 that has the eye image capturing unit 51 , and the line-of-sight detection calculation unit 40 .
  • the imaging section is an imaging system including the lens system 11 , the imaging element section 12 and the camera signal processing section 13 .
  • the imaging apparatus 1 is realized as an apparatus that detects the line of sight after correcting the calibration data. Therefore, highly accurate line-of-sight detection processing becomes possible, and the result of line-of-sight detection can be effectively used for imaging operations. For example, focus control according to the line-of-sight direction can be realized with high precision.
  • reference angle information iris code, boundary information, contact position information, device posture information
  • iris code, boundary information, contact position information, device posture information is stored for each of the right and left eyes. etc.
  • the tilt of the face may be obtained using skeleton estimation or face detection.
  • a program according to an embodiment is a program that causes a CPU, DSP, GPU, GPGPU, AI processor, etc., or a device including these to execute the calibration data correction process described above. That is, the program according to the embodiment performs line-of-sight detection processing for detecting the line-of-sight direction based on the eye image captured by the eye image capturing unit 51, and also performs the calibration data used for the line-of-sight detection processing in relation to the eyes and the eye image capturing unit. It is a program that causes an information processing device such as the camera control unit 18 or the CPU 71 to execute a line-of-sight detection calculation that performs a correction process based on roll angle information, which is information about a change in angle. With such a program, the calibration data correction process referred to in the present disclosure can be realized by various information processing apparatuses.
  • a HDD as a recording medium built in equipment such as a computer device, or in a ROM or the like in a microcomputer having a CPU.
  • a flexible disc a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a Blu-ray disc (Blu-ray Disc (registered trademark)), a magnetic disc, a semiconductor memory
  • a removable recording medium such as a memory card.
  • Such removable recording media can be provided as so-called package software.
  • a program from a removable recording medium to a personal computer or the like, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • Such a program is suitable for widely providing the information processing apparatus of the present disclosure.
  • a terminal device 100 such as a smartphone or tablet, a mobile phone, a personal computer, a game device, a video device, a PDA (Personal Digital Assistant), etc.
  • these devices function as the information processing device of the present disclosure. be able to.
  • a line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit.
  • An information processing apparatus comprising a line-of-sight detection calculation unit that performs correction processing for correcting based on roll angle information, which is information of.
  • the line-of-sight detection calculation unit is When performing the calibration process for acquiring the calibration data used for the line-of-sight detection process, the reference angle information used for calculating the roll angle information is acquired, and the calibration data and the reference angle information are stored in association with each other.
  • the information processing apparatus according to (1) above.
  • (3) The line-of-sight detection calculation unit is During the line-of-sight detection process, current angle information that is the same type of information as the reference angle information is acquired, and the roll angle information is calculated using the reference angle information and the current angle information, and the correction process is performed.
  • the information processing apparatus according to (2) above.
  • (4) The line-of-sight detection calculation unit is The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated from an iris code used in iris authentication processing.
  • the line-of-sight detection calculation unit is performing calibration processing for acquiring calibration data used in the line-of-sight detection processing at an opportunity to acquire the iris code,
  • the information processing apparatus according to (4) above wherein the acquired iris code is stored as reference angle information used for calculating the roll angle information in association with calibration data.
  • the line-of-sight detection calculation unit is The information processing apparatus according to (5) above, wherein the iris code detected in the iris authentication process is used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process. .
  • the line-of-sight detection calculation unit is The information processing apparatus according to (6), wherein the roll angle information is calculated based on a Hamming distance between the iris code as the reference angle information and the iris code as the current angle information.
  • the line-of-sight detection calculation unit is When the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are stored as the reference angle information, the iris code detected in the iris authentication process is used as the current angle information, and the reference angle
  • the information processing apparatus according to any one of (6) to (7) above, wherein the correction process is performed using the roll angle information calculated using the information and the current angle information.
  • the line-of-sight detection calculation unit is If the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are not stored as the reference angle information, the calibration process is performed, and the iris code acquired in the iris authentication process is used as the iris code.
  • the information processing apparatus according to any one of (6) to (8) above, wherein the reference angle information is stored in association with the calibration data.
  • the line-of-sight detection calculation unit is The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated based on eyelid boundary information in a captured image of an eye.
  • the line-of-sight detection calculation unit is obtaining the boundary information from the captured image of the eye when performing calibration processing for obtaining calibration data used in the line-of-sight detection processing;
  • the information processing apparatus according to (10), wherein the boundary information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
  • the line-of-sight detection calculation unit is The information according to (11) above, wherein the boundary information is obtained from the captured image of the eye and used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process. processing equipment.
  • the line-of-sight detection calculation unit is The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated based on contact position information with respect to the touch panel.
  • the line-of-sight detection calculation unit is Acquiring the contact position information when performing a calibration process for acquiring calibration data used in the line-of-sight detection process, The information processing apparatus according to (13), wherein the contact position information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
  • the line-of-sight detection calculation unit is The information processing apparatus according to (14), wherein the contact position information is obtained as current angle information, the roll angle information is calculated using the reference angle information and the current angle information, and the correction process is performed.
  • the line-of-sight detection calculation unit is calculating the roll angle information based on the device posture information of the head-mounted device transmitted from the head-mounted device and the device posture information detected by the detection unit; any of the above (1) to (3) 1.
  • the information processing device according to claim 1.
  • the information processing apparatus according to any one of (1) to (16) above, including the eye image capturing section.
  • an imaging unit that captures an image; the eye image capturing unit; The information processing apparatus according to any one of (1) to (17) above.
  • a line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit.
  • the line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of A line-of-sight detection method executed by an information processing device.
  • a line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit.
  • the line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of A program to be executed by an information processing device.
  • imaging device 4 rear monitor 5 EVF 15 display unit 16 communication unit 18 camera control unit 19 memory unit 23 sensor unit 24 line-of-sight detection unit 40 line-of-sight detection calculation unit 41 line-of-sight detection device unit 50 infrared irradiation unit 51 eye image capturing unit 52 database 71 CPU 100 terminal device 120 table top display 130 headset

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

Provided is an information processing device comprising a line-of-sight detection computation unit that performs a line-of-sight detection process for detecting a line-of-sight direction on the basis of an eye image captured by an eye image capture unit and performs a correction process for correcting calibration data to be used in the line-of-sight detection process on the basis of roll angle information about a change in the relative angle between the eye and an image capture unit in the line-of-sight detection device unit.

Description

情報処理装置、視線検出方法、プログラムInformation processing device, line-of-sight detection method, program
 本技術は情報処理装置、視線検出方法、プログラムに関し、特に視線検出処理についての技術に関する。 This technology relates to an information processing device, a line-of-sight detection method, and a program, and particularly to technology for line-of-sight detection processing.
 例えば瞳孔角膜反射法などを用いた視線検出を行う技術が知られている。このような視線検出を行う場合、事前に目の個人差に応じたキャリブレーションを行うことが必要となる。
 また、例えば撮像装置(カメラ)のビューファインダーに視線検出機能を搭載した場合、ユーザはカメラを縦持ちしたり横持ちしたりするため、ユーザとカメラの相対的な姿勢は一定ではない。そのため視線検出装置で検出される目の傾きが、キャリブレーション実行時と大きく異なることがある。従って例えば複数のカメラ姿勢に合わせた複数のキャリブレーションデータが必要である。
For example, a technique for detecting a line of sight using a pupillary corneal reflection method is known. When performing such line-of-sight detection, it is necessary to perform calibration according to individual differences in eyes in advance.
Further, for example, when a viewfinder of an imaging device (camera) is equipped with a line-of-sight detection function, the user holds the camera vertically or horizontally, so the relative posture between the user and the camera is not constant. Therefore, the tilt of the eye detected by the line-of-sight detection device may be significantly different from that at the time of calibration. Therefore, for example, a plurality of calibration data corresponding to a plurality of camera orientations are required.
 下記特許文献1には、加速度センサなどにより重力に対するカメラの向きを検出してカメラが縦持ちされているか横持ちされているかを検出することや、カメラ姿勢に応じた複数のキャリブレーションデータを保存していることが開示されている。 Patent Document 1 below discloses a method for detecting whether the camera is held vertically or horizontally by detecting the orientation of the camera with respect to gravity using an acceleration sensor or the like, and storing a plurality of calibration data according to the camera orientation. It is disclosed that
特開平7-255676号公報JP-A-7-255676
 ところが、カメラの姿勢に応じた複数のキャリブレーションデータを保存するようにするためには、カメラの複数の姿勢状態に応じて複数回のキャリブレーションを実行しなければならない。
 またカメラの姿勢に応じて例えば縦持ちの場合と横持ちの場合のキャリブレーションデータを記憶したとしても、例えばユーザが斜めからのぞき込んだり、カメラが傾いて置かれたりした場合などは、適切なキャリブレーションデータが存在しないことになる。
 結果として精度のよい視線検出が実行できない。
 以上はカメラの例で述べたが、視線検出を行う各種の情報処理装置においても同様の事情が存在する。
However, in order to save a plurality of pieces of calibration data according to camera orientations, calibration must be performed a plurality of times according to a plurality of camera orientations.
Also, even if the calibration data for vertical and horizontal holding are stored according to the camera posture, for example, when the user looks at the camera from an angle or the camera is placed at an angle, appropriate calibration may not be performed. option data does not exist.
As a result, accurate line-of-sight detection cannot be executed.
Although the camera has been described above as an example, the same situation exists in various information processing apparatuses that detect the line of sight.
 そこで本開示では、1回のキャリブレーションで得たキャリブレーションデータによって各種の相対的な姿勢状態に対応できるようにすることを目的とする。 Therefore, an object of the present disclosure is to be able to deal with various relative posture states using calibration data obtained in one calibration.
 本技術に係る情報処理装置は、目画像撮像部で撮像された目画像撮像部による目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算部を備える。
 視線検出処理においては、光軸と視軸の個人差に応じたキャリブレーションが必要である。ロール角度情報に基づく補正処理とは、そのキャリブレーションデータを、さらに視線検出の際のユーザの目の方向性に応じて補正する処理である。
An information processing apparatus according to the present technology performs a line-of-sight detection process for detecting a line-of-sight direction based on an eye image captured by an eye-image capturing unit, and performs calibration data used for the line-of-sight detection process by: A line-of-sight detection calculation unit is provided for performing correction processing for correction based on roll angle information, which is information on a relative angle change between the eye and the eye image capturing unit.
In line-of-sight detection processing, calibration according to individual differences in the optical axis and the visual axis is required. Correction processing based on roll angle information is processing for further correcting the calibration data in accordance with the orientation of the user's eyes when the line of sight is detected.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行うときに、前記ロール角度情報の算出に用いる基準角度情報を取得し、キャリブレーションデータと基準角度情報を関連づけて記憶する処理を行うことが考えられる。
 例えばユーザの目と情報処理装置との相対的な姿勢関係に応じて変化する情報を、キャリブレーション処理時に取得し、基準角度情報としてキャリブレーションデータと関連づけて記憶する。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit includes reference angle information used to calculate the roll angle information when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing. and store the calibration data in association with the reference angle information.
For example, information that changes according to the relative posture relationship between the user's eyes and the information processing device is acquired during the calibration process, and stored as reference angle information in association with the calibration data.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記視線検出処理の際に、前記基準角度情報と同種の情報である現在角度情報を取得し、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行うことが考えられる。
 例えばユーザの目と情報処理装置との相対的な姿勢関係に応じて変化する情報として、基準角度情報と同じ情報を視線検出処理時に取得し、基準角度情報と比較してロール角度情報を求める。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit acquires current angle information, which is the same type of information as the reference angle information, during the line-of-sight detection processing. It is conceivable to calculate the roll angle information using the current angle information and perform the correction processing.
For example, as information that changes according to the relative posture relationship between the user's eyes and the information processing device, the same information as the reference angle information is acquired during the line-of-sight detection process and compared with the reference angle information to obtain the roll angle information.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、ロール角度情報を、虹彩認証処理で用いる虹彩コードから算出することが考えられる。
 ユーザの個人認証の手法として虹彩認証がある。この虹彩認証で用いる虹彩コードを用いて視線検出処理の際にロール角度情報を求める。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit may calculate roll angle information from an iris code used in iris authentication processing.
There is iris authentication as a method of user personal authentication. The iris code used in this iris authentication is used to obtain roll angle information during line-of-sight detection processing.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、虹彩コードの取得機会に、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行い、取得した虹彩コードを前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行うことが考えられる。
 虹彩認証処理で用いる虹彩コードは、ユーザの目と情報処理装置との相対的な姿勢関係に応じて変化する情報である。この虹彩コードをキャリブレーション実行時に取得し、基準角度情報としてキャリブレーションデータと関連づけて記憶する。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit performs calibration processing for obtaining calibration data used in the line-of-sight detection processing at an opportunity to obtain an iris code, and converts the obtained iris code to the As the reference angle information used for calculating the roll angle information, it is conceivable to perform a process of storing the reference angle information in association with the calibration data.
The iris code used in the iris authentication process is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This iris code is acquired when performing calibration, and stored as reference angle information in association with the calibration data.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行うことが考えられる。
 視線検出の際には、虹彩認証処理で得る虹彩コードを現在角度情報とする。これを予め記憶していた基準角度情報と比較してロール角度情報を求め、キャリブレーションデータを補正して視線検出処理に用いることができるようにする。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit uses the iris code detected in the iris authentication process as current angle information, and uses the reference angle information and the current angle information to obtain the roll angle information. is calculated to perform the correction process.
When detecting the line of sight, the iris code obtained in the iris authentication process is used as the current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記基準角度情報としての虹彩コードと、前記現在角度情報としての虹彩コードのハミング距離に基づいて前記ロール角度情報を算出することが考えられる。
 虹彩コードは相対的な姿勢関係の変化量に応じたシフト量でビットシフトした情報となるためハミング距離で角度変化を求めることができる。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit calculates the roll angle information based on the Hamming distance between the iris code as the reference angle information and the iris code as the current angle information. can be considered.
Since the iris code is information bit-shifted by a shift amount corresponding to the amount of change in the relative posture relationship, the change in angle can be obtained from the Hamming distance.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていた場合に、前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて算出した前記ロール角度情報を用いて前記補正処理を行うことが考えられる。
 過去に虹彩コードを基準角度情報として記憶した人物であると判定できたときに、虹彩コードを用いた補正処理を行うようにする。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit detects the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person as the reference angle information. Alternatively, the iris code detected in the iris authentication process may be used as current angle information, and the correction process may be performed using the roll angle information calculated using the reference angle information and the current angle information.
Correction processing using the iris code is performed when it is determined that the person is a person whose iris code has been stored as reference angle information in the past.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていない場合に、前記キャリブレーション処理を行い、前記虹彩認証処理で取得した虹彩コードを前記基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行うことが考えられる。
 過去に虹彩コードを基準角度情報として記憶した人物でない場合は、基準角度情報と現在角度情報を比較しても正しくロール角度情報を算出できないため補正処理は行わない。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit detects the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person as the reference angle information when the iris code is not stored as the reference angle information. Alternatively, the calibration process may be performed, and the iris code acquired in the iris authentication process may be stored as the reference angle information in association with the calibration data.
If the person is not a person whose iris code has been stored as reference angle information in the past, the roll angle information cannot be calculated correctly even if the reference angle information and the current angle information are compared, so correction processing is not performed.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、ロール角度情報を、目の撮像画像におけるまぶたの境界情報に基づいて算出することが考えられる。
 目の撮像画像(目画像)についてまぶた近傍の特徴を検出することで、その特徴点の変化からロール角度情報を求める。
 なお境界情報とは、まぶたの境界に関連する情報である。例えばまぶたの境界線や、境界線近傍の特徴点、まぶた境界の外接三角形などである。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit may calculate the roll angle information based on eyelid boundary information in the captured image of the eye.
By detecting features in the vicinity of the eyelids in the captured image of the eyes (eye image), roll angle information is obtained from changes in the feature points.
Note that the boundary information is information related to the boundary of the eyelids. For example, the boundary line of the eyelid, the feature points near the boundary line, the circumscribed triangle of the eyelid boundary, and the like.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、目の撮像画像から前記境界情報を取得し、前記境界情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行うことが考えられる。
 目の撮像画像に表れるまぶたの境界の形状の情報は、ユーザの目と情報処理装置との相対的な姿勢関係に応じて変化する情報である。この境界情報をキャリブレーション実行時に取得し、基準角度情報としてキャリブレーションデータと関連づけて記憶する。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit acquires the boundary information from the captured image of the eye when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing. , the boundary information may be stored in association with the calibration data as reference angle information used for calculating the roll angle information.
Information about the shape of the eyelid boundary that appears in the captured image of the eye is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This boundary information is obtained when performing calibration, and stored as reference angle information in association with the calibration data.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、目の撮像画像から前記境界情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行うことが考えられる。
 視線検出の際には、境界情報を現在角度情報とする。これを予め記憶していた基準角度情報と比較してロール角度情報を求め、キャリブレーションデータを補正して視線検出処理に用いることができるようにする。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit acquires the boundary information from the captured image of the eye as current angle information, and uses the reference angle information and the current angle information to determine the roll angle. It is conceivable to calculate the angle information and perform the correction process.
In line-of-sight detection, boundary information is used as current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、ロール角度情報を、タッチパネルに対する接触位置情報に基づいて算出することが考えられる。
 例えば撮像装置のビューファインダーの下部にタッチパネルが設けられるような場合に、ユーザがビューファインダーをのぞき込んだ時の、ユーザの鼻などによるタッチパネルへの接触位置を検出してロール角度情報を求める。
In the information processing apparatus according to the present technology described above, it is conceivable that the line-of-sight detection calculation unit calculates the roll angle information based on the contact position information with respect to the touch panel.
For example, in the case where a touch panel is provided at the bottom of the viewfinder of the imaging device, roll angle information is obtained by detecting the contact position of the user's nose or the like on the touch panel when the user looks into the viewfinder.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、前記接触位置情報を取得し、前記接触位置情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行うことが考えられる。
 タッチパネルに対する接触位置情報は、ユーザの目と情報処理装置との相対的な姿勢関係に応じて変化する情報である。この接触位置情報をキャリブレーション実行時に取得し、基準角度情報としてキャリブレーションデータと関連づけて記憶する。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit acquires the contact position information when performing calibration processing for acquiring calibration data used in the line-of-sight detection processing, and calculates the contact position information. It is conceivable to perform a process of storing the information in association with the calibration data as reference angle information used for calculating the roll angle information.
The contact position information on the touch panel is information that changes according to the relative posture relationship between the user's eyes and the information processing device. This contact position information is acquired when performing calibration, and stored as reference angle information in association with calibration data.
 上記した本技術に係る情報処理装置においては、前記視線検出演算部は、前記接触位置情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行うことが考えられる。
 視線検出の際には、接触位置情報を現在角度情報とする。これを予め記憶していた基準角度情報と比較してロール角度情報を求め、キャリブレーションデータを補正して視線検出処理に用いることができるようにする。
In the information processing apparatus according to the present technology described above, the line-of-sight detection calculation unit acquires the contact position information to use it as current angle information, and calculates the roll angle information using the reference angle information and the current angle information. It is conceivable that the correction process is performed as described above.
At the time of line-of-sight detection, contact position information is used as current angle information. This is compared with pre-stored reference angle information to obtain roll angle information, and the calibration data is corrected so that it can be used for line-of-sight detection processing.
 上記した本技術に係る情報処理装置においては、自己の姿勢を検出する検出部を備え、前記視線検出演算部は、頭部装着装置から送信された前記頭部装着装置の装置姿勢情報と、前記検出部で検出された装置姿勢情報に基づいて、前記ロール角度情報を算出することが考えられる。
 例えば撮像装置と、頭部装着装置というような組み合わせを想定した場合に、頭部装着装置はユーザの姿勢に応じたものとなる。そのため、装置姿勢情報の比較で補正処理のためのロール角度情報を求めることが可能となる。
The information processing device according to the present technology described above includes a detection unit that detects the posture of the device itself, and the line-of-sight detection calculation unit receives device posture information of the head-mounted device transmitted from the head-mounted device, It is conceivable to calculate the roll angle information based on the device orientation information detected by the detection unit.
For example, assuming a combination of an imaging device and a head-mounted device, the head-mounted device corresponds to the posture of the user. Therefore, it is possible to obtain roll angle information for correction processing by comparing apparatus attitude information.
 上記した本技術に係る情報処理装置においては、前記目画像撮像部を備えることが考えられる。
 即ち目画像撮像部を一体的に備える情報処理装置において、目画像撮像部による目画像に基づいた視線検出処理及びキャリブレーションデータの補正処理が行われる構成とする。
It is conceivable that the information processing apparatus according to the present technology described above includes the eye image capturing unit.
That is, in an information processing apparatus integrally provided with an eye image capturing section, a line-of-sight detection process based on an eye image by the eye image capturing section and a correction process of calibration data are performed.
 上記した本技術に係る情報処理装置においては、画像撮像を行う撮像部と、前記目画像撮像部と、を有することが考えられる。
 即ち視線検出処理を行う撮像装置として構成される例とする。
It is conceivable that the information processing apparatus according to the present technology described above includes an imaging unit that performs image capturing and the eye image capturing unit.
That is, it is an example configured as an imaging device that performs line-of-sight detection processing.
 本技術に係る視線検出方法は、目画像撮像部で撮像された目画像撮像部による目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を情報処理装置が実行する視線検出方法である。
 これにより情報処理装置が補正されたキャリブレーションデータを用いた視線検出を行うようにする。
 本技術に係るプログラムは、上記の視線検出演算を情報処理装置に実行させるプログラムである。これにより上記の情報処理装置を容易に実現する。
A line-of-sight detection method according to the present technology performs line-of-sight detection processing for detecting a line-of-sight direction based on an eye image captured by an eye image capturing unit, and performs calibration data used for the line-of-sight detection processing by: In the line-of-sight detection method, an information processing device executes a line-of-sight detection calculation for performing a correction process based on roll angle information, which is information about a relative angle change between an eye and the eye image capturing unit.
Thus, the information processing apparatus performs line-of-sight detection using the corrected calibration data.
A program according to the present technology is a program that causes an information processing apparatus to execute the line-of-sight detection calculation described above. This facilitates the realization of the above information processing apparatus.
本技術の実施の形態の情報処理装置の例の説明図である。1 is an explanatory diagram of an example of an information processing device according to an embodiment of the present technology; FIG. 実施の形態の撮像装置の斜視図である。1 is a perspective view of an imaging device according to an embodiment; FIG. 実施の形態の撮像装置のブロック図である。1 is a block diagram of an imaging device according to an embodiment; FIG. 実施の形態の情報処理装置のブロック図である。1 is a block diagram of an information processing device according to an embodiment; FIG. 視線検出処理の説明図である。FIG. 10 is an explanatory diagram of line-of-sight detection processing; 光軸と視軸の説明図である。FIG. 4 is an explanatory diagram of an optical axis and a visual axis; 複数点を用いたキャリブレーションの説明図である。FIG. 10 is an explanatory diagram of calibration using a plurality of points; キャリブレーションデータの生成と適用の説明図である。FIG. 4 is an explanatory diagram of generation and application of calibration data; 第1の実施の形態のキャリブレーションデータ記録時の処理例のフローチャートである。7 is a flow chart of an example of processing when recording calibration data according to the first embodiment; 同一人物の眼球の回線角度を虹彩パターンで比較することの説明図である。FIG. 10 is an explanatory diagram of comparing the line angles of the eyeballs of the same person using iris patterns; 第1の実施の形態の虹彩コードのハミング距離比較の説明図である。FIG. 10 is an explanatory diagram of Hamming distance comparison of iris codes according to the first embodiment; 第1の実施の形態の補正処理例のフローチャートである。7 is a flowchart of an example of correction processing according to the first embodiment; 第2の実施の形態の目画像によるロール角度情報の検出の説明図である。FIG. 11 is an explanatory diagram of detection of roll angle information from an eye image according to the second embodiment; 第2の実施の形態のキャリブレーションデータ記録時の処理例のフローチャートである。FIG. 11 is a flow chart of an example of processing when recording calibration data according to the second embodiment; FIG. 第2の実施の形態の補正処理例のフローチャートである。10 is a flowchart of an example of correction processing according to the second embodiment; 第3の実施の形態のキャリブレーションデータ記録時の処理例のフローチャートである。FIG. 11 is a flow chart of an example of processing when recording calibration data according to the third embodiment; FIG. 第3の実施の形態の補正処理例のフローチャートである。FIG. 11 is a flow chart of an example of correction processing according to the third embodiment; FIG. 第4の実施の形態の装置姿勢の説明図である。It is explanatory drawing of the apparatus attitude|position of 4th Embodiment. 第4の実施の形態のキャリブレーションデータ記録時の処理例のフローチャートである。FIG. 14 is a flow chart of an example of processing when recording calibration data according to the fourth embodiment; FIG. 第4の実施の形態の補正処理例のフローチャートである。FIG. 16 is a flow chart of an example of correction processing according to the fourth embodiment; FIG. 実施の形態のロール角度情報の応用例の説明図である。FIG. 5 is an explanatory diagram of an application example of roll angle information according to the embodiment;
 以下、実施の形態を次の順序で説明する。
<1.適用装置例>
<2.撮像装置の構成例>
<3.情報処理装置の構成例>
<4.視線検出とキャリブレーション>
<5.第1の実施の形態:虹彩認証を利用した補正処理>
<6.第2の実施の形態:目画像に基づく補正処理>
<7.第3の実施の形態:タッチパネルを用いた補正処理>
<8.第4の実施の形態:ヘッドセットを用いた補正処理>
<9.ロール角度情報の応用>
<10.まとめ及び変形例>
Hereinafter, embodiments will be described in the following order.
<1. Applied device example>
<2. Configuration Example of Imaging Device>
<3. Configuration example of information processing device>
<4. Gaze detection and calibration>
<5. First Embodiment: Correction Processing Using Iris Authentication>
<6. Second Embodiment: Correction Processing Based on Eye Image>
<7. Third Embodiment: Correction Processing Using Touch Panel>
<8. Fourth Embodiment: Correction Processing Using Headset>
<9. Application of Roll Angle Information>
<10. Summary and Modifications>
<1.適用装置例>
 まず本開示の情報処理装置として想定される具体的な装置例を説明する。
 本開示の情報処理装置は、情報処理を行うことができる装置であり、具体的にはマイクロプロセッサ等を備えて視線検出演算を行うことのできる装置である。
<1. Applied device example>
First, a specific device example assumed as an information processing device of the present disclosure will be described.
An information processing apparatus according to the present disclosure is an apparatus capable of performing information processing, and specifically, an apparatus including a microprocessor or the like and capable of performing line-of-sight detection calculations.
 視線検出演算とは、装置内又は装置外にある目画像撮像部による目画像に基づいて視線方向を検出する視線検出処理としての演算である。なお本開示で言う「目画像」とは、人の目を撮像した画像のことである。
 さらに加えて本実施の形態の場合、その視線検出処理に用いるキャリブレーションデータを、目と目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理も行う。
 つまり少なくとも視線検出処理と補正処理を行うCPU、DSP等のプロセッサ装置、或いはそのようなプロセッサ装置を備える機器が、本開示でいう情報処理装置となる。
A line-of-sight detection calculation is a calculation as a line-of-sight detection process for detecting a line-of-sight direction based on an eye image captured by an eye image pickup unit inside or outside the apparatus. Note that the “eye image” referred to in the present disclosure is an image of a person's eye.
In addition, in the case of the present embodiment, correction processing is also performed for correcting the calibration data used in the line-of-sight detection processing based on roll angle information, which is information on relative angle changes between the eyes and the eye image capturing unit. .
That is, a processor device such as a CPU or a DSP that performs at least line-of-sight detection processing and correction processing, or a device provided with such a processor device, is the information processing device according to the present disclosure.
 図1に情報処理装置に該当する具体的な装置例として、撮像装置1、端末装置100、テーブルトップディスプレイ120を例示している。 FIG. 1 illustrates an imaging device 1, a terminal device 100, and a table top display 120 as specific device examples corresponding to information processing devices.
 撮像装置1の場合、そのEVF(Electric Viewfinder)5を覗くユーザの視線方向を検出する機能を備えることが想定される。
 或いは撮像装置1において背面モニタ4を目視するユーザの視線方向を検出する機能を備える構成も想定される。
In the case of the imaging device 1, it is assumed that it has a function of detecting the line-of-sight direction of the user looking into the EVF (Electric Viewfinder) 5. FIG.
Alternatively, a configuration having a function of detecting the line-of-sight direction of the user viewing the rear monitor 4 in the imaging device 1 is also assumed.
 端末装置100としては、タブレット装置やスマートフォン等を例示している。これらの端末装置100としても、例えば画面に対するユーザの視線方向を検出する構成例が考えられる。 As the terminal device 100, a tablet device, a smartphone, etc. are exemplified. For these terminal devices 100 as well, for example, a configuration example for detecting the line-of-sight direction of the user with respect to the screen is conceivable.
 テーブルトップディスプレイ120の場合、周囲にいてテーブル上面のディスプレイを目視する人の視線方向を検出する構成例が想定される。 In the case of the table top display 120, a configuration example is assumed in which the line-of-sight direction of a person in the vicinity looking at the display on the top of the table is detected.
 例えばこれらのように、各種の機器において視線方向を検出する構成を備えることが想定されるが、その場合、内部のプロセッサ装置において、視線検出処理、及び視線検出処理のためのキャリブレーション処理などを行う。本実施の形態の場合、そのようなプロセッサ装置で、さらにキャリブレーションデータの補正処理が行われるようにするものである。 For example, as in these, it is assumed that various devices are equipped with a configuration for detecting the line-of-sight direction. conduct. In the case of the present embodiment, such a processor device further performs correction processing of the calibration data.
 図1に挙げた機器は一例に過ぎない。視線方向検出を行う機器に本開示の技術を適用できる。例えばテレビジョン受像器、ゲーム機器、パーソナルコンピュータ、ワークステーション、ロボット、監視装置、センサ装置など、本開示の情報処理装置に相当する機器は極めて多様である。
The equipment listed in FIG. 1 is only an example. The technology of the present disclosure can be applied to equipment that detects the line-of-sight direction. Devices corresponding to the information processing device of the present disclosure are extremely diverse, such as, for example, television receivers, game machines, personal computers, workstations, robots, monitoring devices, and sensor devices.
<2.撮像装置の構成例>
 本開示の情報処理装置の例としての撮像装置1の構成例を説明する。
 図2は撮像装置1を背面側から見た斜視図である。なお説明上、被写体側を前方(正面側)とし撮像者側を後方(背面側)とする。
<2. Configuration Example of Imaging Device>
A configuration example of an imaging device 1 as an example of an information processing device according to the present disclosure will be described.
FIG. 2 is a perspective view of the imaging device 1 as seen from the rear side. For the sake of explanation, the subject side is the front side (front side), and the photographer side is the rear side (rear side).
 撮像装置1は、カメラ筐体2と、カメラ筐体2に対して着脱可能とされ前面部2aに取り付けられるレンズ鏡筒3を備える。なお、レンズ鏡筒3がいわゆる交換レンズとして着脱可能とされるのは一例であり、カメラ筐体2から取り外せないレンズ鏡筒であってもよい。 The imaging device 1 includes a camera housing 2 and a lens barrel 3 that is detachable from the camera housing 2 and attached to the front surface portion 2a. It is an example that the lens barrel 3 is detachable as a so-called interchangeable lens, and the lens barrel may be a lens barrel that cannot be removed from the camera housing 2 .
 カメラ筐体2の後面部2bには、背面モニタ4が配置されている。背面モニタ4には、ライブビュー画像や記録した画像の再生画像などが表示される。
 背面モニタ4は、例えば、液晶ディスプレイ(LCD:Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイ等の表示デバイスにより構成される。
A rear monitor 4 is arranged on the rear surface portion 2 b of the camera housing 2 . The rear monitor 4 displays live view images, reproduced images of recorded images, and the like.
The rear monitor 4 is configured by a display device such as a liquid crystal display (LCD) or an organic EL (Electro-Luminescence) display.
 カメラ筐体2の上面部2cには、EVF5が配置されている。EVF5は、EVFモニタ5aとEVFモニタ5aの上方及び左右の側方を囲むように後方に突出された枠状の囲い部5bを備えている。
 EVFモニタ5aは、LCDや有機ELディスプレイ等を用いて形成されている。なお、EVFモニタ5aに代わって光学式ファインダー(OVF:Optical View Finder)が設けられていてもよい。
An EVF 5 is arranged on the upper surface portion 2 c of the camera housing 2 . The EVF 5 includes an EVF monitor 5a and a frame-shaped enclosing portion 5b that protrudes rearward so as to enclose an upper portion and left and right sides of the EVF monitor 5a.
The EVF monitor 5a is formed using an LCD, an organic EL display, or the like. An optical view finder (OVF) may be provided instead of the EVF monitor 5a.
 後面部2bや上面部2cには、各種の操作子6が設けられている。例えば、シャッターボタン(レリーズボタン)、再生メニュー起動ボタン、決定ボタン、十字キー、キャンセルボタン、ズームキー、スライドキー等である。これらの操作子6としては、ボタン、ダイヤル、押圧及び回転可能な複合操作子など、各種の態様のものを含んでいる。各種の態様の操作子6により、例えば、シャッター操作、メニュー操作、再生操作、モード選択/切換操作、フォーカス操作、ズーム操作、シャッタースピードやF値等のパラメータ選択/設定が可能とされる。 Various operators 6 are provided on the rear surface portion 2b and the upper surface portion 2c. For example, it is a shutter button (release button), a reproduction menu activation button, an enter button, a cross key, a cancel button, a zoom key, a slide key, and the like. These manipulators 6 include various types of manipulators such as buttons, dials, pressable and rotatable composite manipulators. For example, shutter operation, menu operation, playback operation, mode selection/switching operation, focus operation, zoom operation, and parameter selection/setting such as shutter speed and F-number are enabled by operating elements 6 of various modes.
 撮像装置1の内部構成を図3に示す。
 撮像装置1は、例えばレンズ系11、撮像素子部12、カメラ信号処理部13、記録制御部14、表示部15、通信部16、操作部17、カメラ制御部18、メモリ部19、ドライバ部22、センサ部23、視線検出装置部41を有する。
FIG. 3 shows the internal configuration of the imaging device 1. As shown in FIG.
The imaging apparatus 1 includes, for example, a lens system 11, an imaging element section 12, a camera signal processing section 13, a recording control section 14, a display section 15, a communication section 16, an operation section 17, a camera control section 18, a memory section 19, a driver section 22, and a , a sensor unit 23 and a line-of-sight detection device unit 41 .
 レンズ系11は、ズームレンズ、フォーカスレンズ等のレンズや絞り機構などを備える。このレンズ系11により被写体からの光(入射光)が導かれ撮像素子部12に集光される。 The lens system 11 includes lenses such as a zoom lens and a focus lens, an aperture mechanism, and the like. Light (incident light) from a subject is guided by the lens system 11 and condensed on the imaging element section 12 .
 撮像素子部12は、例えば、CMOS(Complementary Metal Oxide Semiconductor)型やCCD(Charge Coupled Device)型などのイメージセンサ12a(撮像素子)を有して構成される。
 この撮像素子部12では、イメージセンサ12aで受光した光を光電変換して得た電気信号について、例えばCDS(Correlated Double Sampling)処理、AGC(Automatic Gain Control)処理などを実行し、さらにA/D(Analog/Digital)変換処理を行う。そしてデジタルデータとしての撮像信号を、後段のカメラ信号処理部13やカメラ制御部18に出力する。
The imaging device unit 12 is configured by having an image sensor 12a (imaging device) such as a CMOS (Complementary Metal Oxide Semiconductor) type or a CCD (Charge Coupled Device) type.
In the image sensor unit 12, for example, CDS (Correlated Double Sampling) processing, AGC (Automatic Gain Control) processing, etc. are performed on an electrical signal obtained by photoelectrically converting light received by the image sensor 12a, and further A/D processing is performed. Performs (Analog/Digital) conversion processing. Then, the imaging signal as digital data is output to the camera signal processing section 13 and the camera control section 18 in the subsequent stage.
 カメラ信号処理部13は、例えばDSP(Digital Signal Processor)等により画像処理プロセッサとして構成される。このカメラ信号処理部13は、撮像素子部12からのデジタル信号(撮像画像信号)に対して、各種の信号処理を施す。例えばカメラプロセスとしてカメラ信号処理部13は、前処理、同時化処理、YC生成処理、解像度変換処理等を行う。 The camera signal processing unit 13 is configured as an image processing processor such as a DSP (Digital Signal Processor). The camera signal processing section 13 performs various signal processing on the digital signal (captured image signal) from the imaging element section 12 . For example, as a camera process, the camera signal processing unit 13 performs preprocessing, synchronization processing, YC generation processing, resolution conversion processing, and the like.
 そしてカメラ信号処理部13は、例えば以上の各種処理が施された画像データについて、例えば記録用や通信用の圧縮符号化、フォーマティング、メタデータの生成や付加などを行って記録用や通信用のファイル生成を行う。
 例えば静止画ファイルとしてJPEG(Joint Photographic Experts Group)、TIFF(Tagged Image File Format)、GIF(Graphics Interchange Format)等の形式の画像ファイルの生成を行う。またMPEG-4準拠の動画・音声の記録に用いられているMP4フォーマットなどとしての画像ファイルの生成を行うことも考えられる。
 なおロー(RAW)画像データとして画像ファイルを生成することも考えられる。
Then, the camera signal processing unit 13 performs, for example, compression encoding for recording and communication, formatting, generation and addition of metadata, etc. on the image data that has been subjected to the various types of processing described above, and converts the image data into image data for recording and communication. file is generated.
For example, an image file in a format such as JPEG (Joint Photographic Experts Group), TIFF (Tagged Image File Format), or GIF (Graphics Interchange Format) is generated as a still image file. It is also conceivable to generate an image file in the MP4 format, which is used for recording MPEG-4 compliant moving images and audio.
It is also conceivable to generate an image file as raw (RAW) image data.
 記録制御部14は、例えば不揮発性メモリによる記録媒体に対して記録再生を行う。記録制御部14は例えば記録媒体に対し動画データや静止画データ等の画像ファイルや、サムネイル画像等を含むメタデータを記録する処理を行う。
 記録制御部14の実際の形態は多様に考えられる。例えば記録制御部14は、撮像装置1に内蔵されるフラッシュメモリとその書込/読出回路として構成されてもよい。また記録制御部14は、撮像装置1に着脱できる記録媒体、例えばメモリカード(可搬型のフラッシュメモリ等)に対して記録再生アクセスを行うカード記録再生部による形態でもよい。また記録制御部14は、撮像装置1に内蔵されている形態としてHDD(Hard Disk Drive)などとして実現されることもある。
The recording control unit 14 performs recording and reproduction on a recording medium such as a non-volatile memory. The recording control unit 14 performs a process of recording image files such as moving image data and still image data, and metadata including thumbnail images and the like on a recording medium, for example.
Various actual forms of the recording control unit 14 are conceivable. For example, the recording control unit 14 may be configured as a flash memory built in the imaging device 1 and its writing/reading circuit. Also, the recording control unit 14 may be configured by a card recording/reproducing unit that performs recording/reproducing access to a recording medium detachable from the imaging apparatus 1, such as a memory card (portable flash memory, etc.). Also, the recording control unit 14 may be implemented as an HDD (Hard Disk Drive) or the like as a form incorporated in the imaging device 1 .
 表示部15は撮像者に対して各種表示を行う表示部であり、例えば撮像装置1の筐体に配置される背面モニタ4やEVF5などとしての液晶パネル(LCD:Liquid Crystal Display)や有機EL(Electro-Luminescence)ディスプレイ等のディスプレイデバイスとされる。
 表示部15は、カメラ制御部18の指示に基づいて表示画面上に各種表示を実行させる。
 例えば表示部15は、記録制御部14において記録媒体から読み出された画像データの再生画像を表示させる。
 また表示部15にはカメラ信号処理部13で表示用に解像度変換された撮像画像の画像データが供給され、表示部15はカメラ制御部18の指示に応じて、当該撮像画像の画像データに基づいて表示を行う場合がある。これにより構図確認中や動画記録中などの撮像画像である、いわゆるスルー画(被写体のモニタリング画像)が表示される。
 また表示部15はカメラ制御部18の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を画面上に実行させる。
The display unit 15 is a display unit that provides various displays to the photographer. For example, a liquid crystal panel (LCD: Liquid Crystal Display) or an organic EL ( display devices such as Electro-Luminescence) displays.
The display unit 15 executes various displays on the display screen based on instructions from the camera control unit 18 .
For example, the display unit 15 displays a reproduced image of image data read from the recording medium by the recording control unit 14 .
The display unit 15 is supplied with the image data of the captured image whose resolution has been converted for display by the camera signal processing unit 13, and the display unit 15 responds to an instruction from the camera control unit 18 to display the image data of the captured image. may be displayed. As a result, a so-called through image (monitoring image of the subject), which is an image captured while confirming the composition or recording a moving image, is displayed.
Further, the display unit 15 displays various operation menus, icons, messages, etc., that is, as a GUI (Graphical User Interface) on the screen based on instructions from the camera control unit 18 .
 通信部16は、外部機器との間のデータ通信やネットワーク通信を有線又は無線で行う。例えば外部の情報処理装置、表示装置、記録装置、再生装置等に対して撮像画像データ(静止画ファイルや動画ファイル)やメタデータの送信出力を行う。
 また通信部16はネットワーク通信部として、例えばインターネット、ホームネットワーク、LAN(Local Area Network)等の各種のネットワークによる通信を行い、ネットワーク上のサーバ、端末等との間で各種データ送受信を行うことができる。
 また撮像装置1は、通信部16により、例えばPC、スマートフォン、タブレット端末、ヘッドフォン、イヤフォン、ヘッドセットなどとの間で、例えばブルートゥース(Bluetooth(登録商標))、Wi-Fi通信、NFC等の近距離無線通信、赤外線通信により、相互に情報通信を行うことも可能とされてもよい。
 また撮像装置1と他の機器が有線接続通信によって相互に通信可能とされてもよい。
The communication unit 16 performs wired or wireless data communication and network communication with external devices. For example, captured image data (still image files and moving image files) and metadata are transmitted and output to external information processing devices, display devices, recording devices, playback devices, and the like.
As a network communication unit, the communication unit 16 performs communication via various networks such as the Internet, a home network, and a LAN (Local Area Network), and can transmit and receive various data to and from servers, terminals, etc. on the network. can.
In addition, the communication unit 16 enables the imaging device 1 to communicate with, for example, a PC, a smartphone, a tablet terminal, headphones, earphones, a headset, or the like via Bluetooth (registered trademark), Wi-Fi communication, NFC, or the like. It may also be possible to perform mutual information communication by means of distance wireless communication or infrared communication.
Alternatively, the imaging device 1 and other equipment may be able to communicate with each other through wired connection communication.
 操作部17は、ユーザが各種操作入力を行うための入力デバイスを総括して示している。具体的には操作部17は撮像装置1の筐体に設けられた各種の操作子(キー、ダイヤル、タッチパネル、タッチパッド等)を示している。例えばタッチパネルとしては、背面モニタ4の表面に設けられていることが想定される。
 操作部17によりユーザの操作が検知され、入力された操作に応じた信号はカメラ制御部18へ送られる。
The operation unit 17 collectively indicates an input device for a user to perform various operation inputs. Specifically, the operation unit 17 indicates various operators (keys, dials, touch panels, touch pads, etc.) provided on the housing of the imaging device 1 . For example, it is assumed that the touch panel is provided on the surface of the rear monitor 4 .
A user's operation is detected by the operation unit 17 , and a signal corresponding to the input operation is sent to the camera control unit 18 .
 視線検出装置部41は、ユーザの視線検出のために目画像を撮像するデバイスであり、例えばユーザの目に赤外線を照射する赤外線照射部50(例えば赤外線LED)や、ユーザの目を撮像する目画像撮像部51(例えば赤外線カメラ)などにより構成される。
 例えばこのように目画像撮像部51を有する視線検出装置部41が、図2に示したEVF5内に配置されることで、EVF5をのぞき込んだユーザの目画像を撮像することができる。またこのような視線検出装置部41が背面モニタ4の近辺に配置されるようにし、背面モニタ4を見ているユーザの視線方向の検出のための目画像の撮像を行うことができるようにしてもよい。
The line-of-sight detection device 41 is a device that captures an eye image for detecting the line of sight of the user. It is composed of an image capturing unit 51 (for example, an infrared camera) and the like.
For example, by arranging the line-of-sight detection device 41 having the eye image capturing unit 51 in the EVF 5 shown in FIG. Also, such a line-of-sight detection device unit 41 is arranged near the rear monitor 4 so that an eye image for detecting the line-of-sight direction of the user looking at the rear monitor 4 can be picked up. good too.
 カメラ制御部18はCPU(Central Processing Unit)を備えたマイクロコンピュータ(情報処理装置)により構成される。
 メモリ部19は、カメラ制御部18が処理に用いる情報等を記憶する。図示するメモリ部19としては、例えばROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどを包括的に示している。
 メモリ部19はカメラ制御部18としてのマイクロコンピュータチップに内蔵されるメモリ領域であってもよいし、別体のメモリチップにより構成されてもよい。
The camera control unit 18 is configured by a microcomputer (information processing device) having a CPU (Central Processing Unit).
The memory unit 19 stores information and the like that the camera control unit 18 uses for processing. As the illustrated memory unit 19, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), a flash memory, and the like are comprehensively illustrated.
The memory section 19 may be a memory area built into a microcomputer chip as the camera control section 18, or may be configured by a separate memory chip.
 カメラ制御部18はメモリ部19のROMやフラッシュメモリ等に記憶されたプログラムを実行することで、この撮像装置1の全体を制御する。
 例えばカメラ制御部18は、撮像素子部12のシャッタースピードの制御、カメラ信号処理部13における各種信号処理の指示、ユーザの操作に応じた撮像動作や記録動作、記録した画像ファイルの再生動作、レンズ鏡筒におけるズーム、フォーカス、絞り調整等のレンズ系11の動作、ユーザインタフェース動作等について、必要各部の動作を制御する。
The camera control unit 18 controls the entire imaging apparatus 1 by executing programs stored in the ROM of the memory unit 19, flash memory, or the like.
For example, the camera control unit 18 controls the shutter speed of the image sensor unit 12, instructs various signal processing in the camera signal processing unit 13, performs image capturing and recording operations in response to user operations, reproduces recorded image files, performs lens It controls the operations of necessary units for operations of the lens system 11 such as zoom, focus, and aperture adjustment in the lens barrel, user interface operations, and the like.
 カメラ制御部18は、アプリケーションプログラムにより視線検出演算部40としての機能を備える。
 視線検出演算部40は、視線検出装置部41から取得する目画像を解析してユーザの視線方向を検出する視線検出処理を行う。またこの視線検出の精度を向上させるために、キャリブレーション処理も行う。更に本実施の形態の場合、視線検出処理に用いるキャリブレーションデータを、目と視線検出装置部41における目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行うようにしている。
 これらの処理の詳細については後述する。
The camera control unit 18 has a function as a line-of-sight detection calculation unit 40 by an application program.
The line-of-sight detection calculation unit 40 analyzes the eye image obtained from the line-of-sight detection device unit 41 and performs line-of-sight detection processing for detecting the line-of-sight direction of the user. Also, in order to improve the accuracy of this line-of-sight detection, calibration processing is also performed. Furthermore, in the case of the present embodiment, the calibration data used for the line-of-sight detection process is corrected based on the roll angle information, which is the information on the relative angle change between the eye and the eye image capturing section in the line-of-sight detection device section 41. I am trying to process it.
Details of these processes will be described later.
 カメラ制御部18は、視線検出演算部40の機能により検出したユーザの視線方向に基づいて、各種の制御を行うこともできる。例えば視線方向に応じて、視線方向の被写体がジャストフォーカスとなるようにフォーカスエリアを設定することや、視線方向の被写体の明るさに応じて絞り調整制御を行うことなどが可能である。 The camera control unit 18 can also perform various controls based on the user's line-of-sight direction detected by the function of the line-of-sight detection calculation unit 40 . For example, depending on the line-of-sight direction, it is possible to set the focus area so that the subject in the line-of-sight direction is in just focus, or to perform aperture adjustment control according to the brightness of the subject in the line-of-sight direction.
 なおカメラ制御部18は、視線検出処理や補正処理、さらには他の処理のためにいわゆるAI(artificial intelligence)処理を行うものとしてもよい。 The camera control unit 18 may perform so-called AI (artificial intelligence) processing for line-of-sight detection processing, correction processing, and other processing.
 メモリ部19におけるRAMは、カメラ制御部18のCPUの各種データ処理の際の作業領域として、データやプログラム等の一時的な格納に用いられる。
 メモリ部19におけるROMやフラッシュメモリ(不揮発性メモリ)は、CPUが各部を制御するためのOS(Operating System)や、画像ファイル等のコンテンツファイルの他、各種動作のためのアプリケーションプログラムや、ファームウエア、各種の設定情報等の記憶に用いられる。
 各種の設定情報としては、通信設定情報や、撮像動作に関する設定情報としての露出設定、シャッタースピード設定、モード設定や、画像処理に係る設定情報としてのホワイトバランス設定、色設定、画像エフェクトに関する設定などがある。
The RAM in the memory unit 19 is used as a work area for the CPU of the camera control unit 18 to perform various data processing, and is used for temporary storage of data, programs, and the like.
The ROM and flash memory (nonvolatile memory) in the memory unit 19 store an OS (Operating System) for the CPU to control each unit, content files such as image files, application programs for various operations, and firmware. , and used to store various setting information.
Various setting information includes communication setting information, exposure setting, shutter speed setting, mode setting as setting information related to imaging operation, white balance setting, color setting, image effect setting as setting information related to image processing, etc. There is
 またメモリ部19には、後述の視線検出処理、キャリブレーション処理、補正処理のためのプログラムや、これらの処理に用いるデータも記憶される。例えばメモリ部19は視線検出処理についてのキャリブレーションデータに関するデータベースとしても機能することができる。例えば後述する虹彩認証のための認証データや、虹彩パターンをコード化したコード情報、セマンティックセグメンテーションによる物体認識に用いるパターンデータなどの記憶も行われる。 The memory unit 19 also stores programs for line-of-sight detection processing, calibration processing, and correction processing, which will be described later, and data used for these processing. For example, the memory unit 19 can also function as a database regarding calibration data for line-of-sight detection processing. For example, authentication data for iris authentication, which will be described later, code information obtained by encoding an iris pattern, pattern data used for object recognition by semantic segmentation, and the like are also stored.
 ドライバ部22には、例えばズームレンズ駆動モータに対するモータドライバ、フォーカスレンズ駆動モータに対するモータドライバ、絞り機構のモータに対するモータドライバ等が設けられている。
 これらのモータドライバはカメラ制御部18からの指示に応じて駆動電流を対応するドライバに印加し、フォーカスレンズやズームレンズの移動、絞り機構の絞り羽根の開閉等を実行させることになる。
The driver unit 22 includes, for example, a motor driver for the zoom lens drive motor, a motor driver for the focus lens drive motor, a motor driver for the motor of the aperture mechanism, and the like.
These motor drivers apply drive currents to the corresponding drivers in accordance with instructions from the camera control unit 18 to move the focus lens and zoom lens, open and close the diaphragm blades of the diaphragm mechanism, and the like.
 センサ部23は、撮像装置に搭載される各種のセンサを包括的に示している。
 センサ部23としては例えばIMU(inertial measurement unit:慣性計測装置)が搭載される場合がある。IMUにより例えばピッチ、ヨー、ロールの3軸の角速度(ジャイロ)センサで角速度を検出し、加速度センサで加速度を検出することができる。これにより撮像装置1の重力方向に対する姿勢などが検出可能である。
 またセンサ部23としては、例えば位置情報センサ、照度センサ、測距センサ等が搭載される場合もある。
The sensor unit 23 comprehensively indicates various sensors mounted on the imaging device.
As the sensor section 23, for example, an IMU (inertial measurement unit) may be mounted. The IMU can detect angular velocity with, for example, three-axis angular velocity (gyro) sensors of pitch, yaw, and roll, and acceleration with an acceleration sensor. This makes it possible to detect the orientation of the imaging device 1 with respect to the direction of gravity.
As the sensor unit 23, for example, a position information sensor, an illuminance sensor, a range sensor, etc. may be mounted.
 例えばこのような撮像装置1においては、EVF5内、或いは背面モニタ4の近傍に視線検出装置部41が組み込まれ、EVF5を覗くユーザや背面モニタ4を見ているユーザの視線方向を検出することができる。その場合、カメラ制御部18(視線検出演算部40)が視線検出装置部41で撮像した目画像に基づく視線検出処理、キャリブレーション処理、及びキャリブレーションデータの補正処理を行う。
For example, in such an imaging device 1, the line-of-sight detection device unit 41 is incorporated in the EVF 5 or near the rear monitor 4, and the line-of-sight direction of the user looking through the EVF 5 or looking at the rear monitor 4 can be detected. can. In this case, the camera control unit 18 (line-of-sight detection calculation unit 40) performs line-of-sight detection processing, calibration processing, and calibration data correction processing based on the eye image captured by the line-of-sight detection device unit 41. FIG.
<3.情報処理装置の構成例>
 次に図4で、本開示の情報処理装置の例として図1に示したタブレット装置やスマートフォンとしての端末装置100の構成例を説明する。
<3. Configuration example of information processing device>
Next, FIG. 4 describes a configuration example of the terminal device 100 as a tablet device or a smartphone illustrated in FIG. 1 as an example of the information processing device of the present disclosure.
 端末装置100のCPU71は、ROM72や例えばEEP-ROM(Electrically Erasable Programmable Read-Only Memory)などの不揮発性メモリ部74に記憶されているプログラム、または記憶部79からRAM73にロードされたプログラムに従って各種の処理を実行する。RAM73にはまた、CPU71が各種の処理を実行する上において必要なデータなども適宜記憶される。
 CPU71、ROM72、RAM73、不揮発性メモリ部74は、バス83を介して相互に接続されている。このバス83にはまた、入出力インタフェース75も接続されている。
The CPU 71 of the terminal device 100 executes various programs according to a program stored in a ROM 72 or a non-volatile memory unit 74 such as an EEP-ROM (Electrically Erasable Programmable Read-Only Memory), or a program loaded from the storage unit 79 to the RAM 73. Execute the process. The RAM 73 also appropriately stores data necessary for the CPU 71 to execute various processes.
The CPU 71 , ROM 72 , RAM 73 and nonvolatile memory section 74 are interconnected via a bus 83 . An input/output interface 75 is also connected to this bus 83 .
 なお端末装置100は、画像処理やAI(artificial intelligence)処理を行うこと想定されるため、CPU71に代えて、或いはCPU71と共に、GPU(Graphics Processing Unit)、GPGPU(General-purpose computing on graphics processing units)、AI専用プロセッサ等が設けられてもよい。 Since the terminal device 100 is assumed to perform image processing and AI (artificial intelligence) processing, instead of the CPU 71 or together with the CPU 71, GPU (Graphics Processing Unit), GPGPU (General-purpose computing on graphics processing units) , an AI-dedicated processor, or the like may be provided.
 入出力インタフェース75には、操作子や操作デバイスよりなる入力部76が接続される。例えば入力部76としては、キーボード、マウス、キー、ダイヤル、タッチパネル、タッチパッド、リモートコントローラ等の各種の操作子や操作デバイスが想定される。
 入力部76によりユーザの操作が検知され、入力された操作に応じた信号はCPU71によって解釈される。
 入力部76としてはマイクロフォンも想定される。ユーザの発する音声を操作情報として入力することもできる。
 また入力部としてはイメージセンサ(撮像部)、加速度センサ、角速度センサ、振動センサ、気圧センサ、温度センサ、照度センサなど、各種のセンシングデバイスも想定される。
The input/output interface 75 is connected to an input section 76 including operators and operating devices. For example, as the input unit 76, various operators and operation devices such as a keyboard, mouse, key, dial, touch panel, touch pad, remote controller, etc. are assumed.
A user's operation is detected by the input unit 76 , and a signal corresponding to the input operation is interpreted by the CPU 71 .
A microphone is also envisioned as input 76 . A voice uttered by the user can also be input as operation information.
Various sensing devices such as an image sensor (imaging unit), an acceleration sensor, an angular velocity sensor, a vibration sensor, an air pressure sensor, a temperature sensor, and an illuminance sensor are also assumed as the input unit.
 入出力インタフェース75には、LCD或いは有機ELパネルなどよりなる表示部77や、スピーカなどよりなる音声出力部78が一体又は別体として接続される。
 表示部77は各種表示を行う表示部であり、例えば端末装置100の筐体に設けられるディスプレイデバイスや、端末装置100に接続される別体のディスプレイデバイス等により構成される。
 表示部77は、CPU71の指示に基づいて表示画面上に各種の画像処理のための画像や処理対象の動画等の表示を実行する。また表示部77はCPU71の指示に基づいて、各種操作メニュー、アイコン、メッセージ等、即ちGUI(Graphical User Interface)としての表示を行う。
The input/output interface 75 is connected integrally or separately with a display unit 77 such as an LCD or an organic EL panel, and an audio output unit 78 such as a speaker.
The display unit 77 is a display unit that performs various displays, and is configured by, for example, a display device provided in the housing of the terminal device 100, a separate display device connected to the terminal device 100, or the like.
The display unit 77 displays images for various types of image processing, moving images to be processed, etc. on the display screen based on instructions from the CPU 71 . Further, the display unit 77 displays various operation menus, icons, messages, etc., ie, as a GUI (Graphical User Interface), based on instructions from the CPU 71 .
 入出力インタフェース75には、ハードディスクや固体メモリなどより構成される記憶部79や、モデムなどより構成される通信部80が接続される場合もある。
 記憶部79には各種のプログラム、データファイル等が記憶される。データベースが構築される場合もある。
 通信部80は、インターネット等の伝送路を介しての通信処理や、各種機器との有線/無線通信、バス通信などによる通信を行う。
The input/output interface 75 may be connected to a storage unit 79 made up of a hard disk, a solid-state memory, etc., and a communication unit 80 made up of a modem or the like.
The storage unit 79 stores various programs, data files, and the like. A database may also be constructed.
The communication unit 80 performs communication processing via a transmission line such as the Internet, and communication by wired/wireless communication with various devices, bus communication, and the like.
 入出力インタフェース75にはまた、必要に応じてドライブ81が接続され、磁気ディスク、光ディスク、光磁気ディスク、或いは半導体メモリなどのリムーバブル記録媒体82が適宜装着される。
 ドライブ81により、リムーバブル記録媒体82からは画像ファイル等のデータファイルや、各種のコンピュータプログラムなどを読み出すことができる。読み出されたデータファイルは記憶部79に記憶されたり、データファイルに含まれる画像や音声が表示部77や音声出力部78で出力されたりする。またリムーバブル記録媒体82から読み出されたコンピュータプログラム等は必要に応じて記憶部79にインストールされる。
A drive 81 is also connected to the input/output interface 75 as required, and a removable recording medium 82 such as a magnetic disk, optical disk, magneto-optical disk, or semiconductor memory is appropriately loaded.
Data files such as image files and various computer programs can be read from the removable recording medium 82 by the drive 81 . The read data file is stored in the storage unit 79 , and the image and sound contained in the data file are output by the display unit 77 and the sound output unit 78 . Computer programs and the like read from the removable recording medium 82 are installed in the storage unit 79 as required.
 この端末装置100では、例えば本実施の形態の処理のためのソフトウェアを、通信部80によるネットワーク通信やリムーバブル記録媒体82を介してインストールすることができる。或いは当該ソフトウェアは予めROM72や記憶部79等に記憶されていてもよい。 In this terminal device 100, for example, software for the processing of this embodiment can be installed via network communication by the communication unit 80 or via the removable recording medium 82. Alternatively, the software may be stored in advance in the ROM 72, the storage unit 79, or the like.
 入出力インタフェース75には視線検出装置部41が接続される。視線検出装置部41は図3の撮像装置1で説明したように、ユーザの視線検出のために目画像を撮像するデバイスであり、例えばユーザの目に赤外線を照射する赤外線照射部50(例えば赤外線LED)や、ユーザの目を撮像する目画像撮像部51(例えば赤外線カメラ)などにより構成される。 The line-of-sight detection device section 41 is connected to the input/output interface 75 . 3, the line-of-sight detection device 41 is a device that captures an eye image for detecting the line of sight of the user. LED), an eye image capturing unit 51 (for example, an infrared camera) that captures an image of the user's eyes, and the like.
 この端末装置100では、CPU71は、アプリケーションプログラムにより視線検出演算部40としての機能を備えるようにされる。
 視線検出演算部40は、図3の撮像装置1で説明したように視線検出装置部41から取得する目画像を解析してユーザの視線方向を検出する視線検出処理を行う。またキャリブレーション処理や、キャリブレーションデータを、目と視線検出装置部41における目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う。
In this terminal device 100, the CPU 71 functions as the line-of-sight detection calculation unit 40 by means of an application program.
The line-of-sight detection calculation unit 40 analyzes the eye image obtained from the line-of-sight detection device unit 41 and performs line-of-sight detection processing for detecting the line-of-sight direction of the user, as described for the imaging device 1 in FIG. 3 . In addition, calibration processing and correction processing for correcting calibration data based on roll angle information, which is information on relative angle changes between the eyes and the eye image capturing unit in the sight line detection device unit 41, are performed.
 CPU71は、視線検出演算部40の機能により検出したユーザの視線方向に基づいて、各種の制御を行うこともできる。例えば視線方向に応じて、表示部77上でポインタを移動させたり、画像を切り替えたり、音声出力や通信を行うことなどが可能である。 The CPU 71 can also perform various controls based on the user's line-of-sight direction detected by the function of the line-of-sight detection calculation unit 40 . For example, it is possible to move a pointer on the display unit 77, switch images, output sound, and perform communication according to the line-of-sight direction.
 不揮発性メモリ部74、ROM72、記憶部79は、視線検出処理についてのキャリブレーションデータに関するデータベースとしても機能することができる。例えば後述する虹彩認証のための認証データや、虹彩パターンをコード化したコード情報、セマンティックセグメンテーションによる物体認識に用いるパターンデータなどの記憶も行われる。 The non-volatile memory unit 74, ROM 72, and storage unit 79 can also function as a database regarding calibration data for line-of-sight detection processing. For example, authentication data for iris authentication, which will be described later, code information obtained by encoding an iris pattern, pattern data used for object recognition by semantic segmentation, and the like are also stored.
 ここでは端末装置100の構成例を述べたが、図1のテーブルトップディスプレイ120や、ゲーム機器、パーソナルコンピュータ、ワークステーションなども、ほぼ同様の構成となる。また図3の構成に加えて、テレビジョン受像器の場合はチューナー機能を備え、監視装置やセンサ装置は撮像部や監視やセンシングに必要な検出部を備え、ロボットはそのロボットの動作に必要な機能が備えられればよい。
Although the configuration example of the terminal device 100 has been described here, the table top display 120 in FIG. 1, game machines, personal computers, workstations, etc. have almost the same configuration. In addition to the configuration shown in FIG. 3, the television receiver has a tuner function, the monitoring device and the sensor device have an imaging unit and a detection unit necessary for monitoring and sensing, and the robot has the necessary functions for the operation of the robot. It is sufficient if the function is provided.
<4.視線検出とキャリブレーション>
 撮像装置1や端末装置100等で行われる視線検出とキャリブレーションについて説明する。
<4. Gaze detection and calibration >
The line-of-sight detection and calibration performed by the imaging device 1, the terminal device 100, and the like will be described.
 視線検出は、目の「基準点」と「動く部分(動点)」を見つけ、基準点に対する動点の位置から視線を検出する。
 具体的な手法としては角膜反射法や画像処理法が知られているが、ここでは瞳孔角膜反射法を説明する。
In line-of-sight detection, a "reference point" and a "moving part (moving point)" of the eye are found, and the line of sight is detected from the position of the moving point with respect to the reference point.
Although the corneal reflection method and the image processing method are known as specific methods, the pupil corneal reflection method will be explained here.
 角膜反射法は、点光源を角膜に照射した状態の目を撮影し、この角膜反射像(プルキニエ像)から求まる角膜曲率中心を基準点、動点を瞳孔として計測する。
 図5A、図5Bに目の構造として、瞳孔60、角膜61、虹彩62、目頭63、目尻64を示している。
In the corneal reflection method, the eye is photographed while the cornea is irradiated with a point light source, and the center of corneal curvature obtained from this corneal reflection image (Purkinje image) is used as a reference point and the moving point is measured as the pupil.
5A and 5B show a pupil 60, a cornea 61, an iris 62, an inner corner 63, and an outer corner 64 as structures of the eye.
 図5Cは、図3,図4に示した視線検出装置部41の例として赤外線照射部50と目画像撮像部51を模式的に示している。赤外線照射部50は例えば赤外線LED( light emitting diode)により構成される。目画像撮像部51は例えば赤外線カメラにより構成される。
 この場合、赤外線照射部50により点光源を角膜61に照射する。そして目画像撮像部51は、点光源を角膜61に照射した状態の目を撮像し、撮像した目画像を出力する。
 この目画像は視線検出演算部40、つまり図3のカメラ制御部18や図4のCPU71に供給される。
 視線検出演算部40は、視線検出処理として、図5D、図5Eのような目画像から、瞳孔60と角膜反射像65を検出する。これらを動点と基準点の位置から視線方向を算出する。即ち角膜反射像65の撮像情報を眼球モデルにあてはめて視点(座標)を計測する。
FIG. 5C schematically shows an infrared irradiation section 50 and an eye image pickup section 51 as an example of the line-of-sight detection device section 41 shown in FIGS. The infrared irradiation unit 50 is composed of, for example, an infrared LED (light emitting diode). The eye image pickup unit 51 is configured by, for example, an infrared camera.
In this case, the infrared irradiation unit 50 irradiates the cornea 61 with a point light source. The eye image capturing unit 51 captures an image of the eye in a state where the cornea 61 is irradiated with the point light source, and outputs the captured eye image.
This eye image is supplied to the line-of-sight detection calculation unit 40, that is, the camera control unit 18 in FIG. 3 and the CPU 71 in FIG.
The line-of-sight detection calculation unit 40 detects the pupil 60 and the corneal reflection image 65 from the eye images shown in FIGS. 5D and 5E as line-of-sight detection processing. The line-of-sight direction is calculated from the positions of the moving point and the reference point. That is, the viewpoint (coordinates) is measured by applying the imaging information of the corneal reflection image 65 to the eyeball model.
 このような視線検出処理を行うためには個人差に応じたキャリブレーションが必要になる。図6に人の目における光軸AX1と視軸AX2を示している。
 光軸AX1は瞳孔60の中心を通る角膜法線である。この光軸AX1は眼球3Dモデルで推定可能である。
 視軸AX2は、節点(水晶体66の中央後面)と中心窩70を結ぶ軸である。実際に人が見ているのはこの視軸AX2である。
In order to perform such line-of-sight detection processing, calibration corresponding to individual differences is required. FIG. 6 shows the optical axis AX1 and visual axis AX2 of the human eye.
The optical axis AX1 is the corneal normal passing through the center of the pupil 60 . This optical axis AX1 can be estimated by the eyeball 3D model.
A visual axis AX2 is an axis that connects the nodal point (central posterior surface of the lens 66) and the fovea 70. FIG. What a person actually sees is this visual axis AX2.
 光軸AX1と視軸AX2は約5度傾いている。この傾きには個人差があり、一般に4度から8度程度である。
 視線検出処理では瞳孔60の観測によって光軸AX1の方向が算出できるため、それを視軸AX2の方向に補正することで、その人の視線方向(実際に見ている方向)を精度よく検出できることになる。
 そのため、個人毎の光軸AX1と視軸AX2のずれを補正するためのキャリブレーションデータを、キャリブレーション処理を行って収集する。これによりその後の実際の視線検出の際にキャリブレーションデータを用いて補正できるようにする。
The optical axis AX1 and the visual axis AX2 are tilted by about 5 degrees. There are individual differences in this inclination, and it is generally about 4 to 8 degrees.
In the line-of-sight detection process, the direction of the optical axis AX1 can be calculated by observing the pupil 60, so by correcting it to the direction of the visual axis AX2, the line-of-sight direction of the person (actual viewing direction) can be accurately detected. become.
Therefore, calibration data for correcting the deviation between the optical axis AX1 and the visual axis AX2 for each individual is collected by performing calibration processing. As a result, correction can be performed using the calibration data in subsequent actual line-of-sight detection.
 キャリブレーション処理の一例を説明する。
 まず視野内のある「点」を見た時の光軸AX1を推定する。
 そして角膜61の曲率中心からその「点」へのベクトルと光軸AX1のベクトルとの差分を測定する。その差分を用いて、任意の点を見た時の光軸AX1からその時の視軸AX2を推定する。
 キャリブレーションのパラメータは眼球の向きによって異なるため、通常視野内の複数の点(例えば5点から9点)を用いる。
An example of calibration processing will be described.
First, the optical axis AX1 when viewing a certain "point" in the field of view is estimated.
Then, the difference between the vector from the center of curvature of the cornea 61 to that "point" and the vector of the optical axis AX1 is measured. Using the difference, the visual axis AX2 at that time is estimated from the optical axis AX1 when an arbitrary point is viewed.
A plurality of points (for example, 5 to 9 points) in the normal visual field are used because the calibration parameters differ depending on the orientation of the eyeball.
 図7に複数点を用いたキャリブレーション処理の例を示す。
 ユーザが視認している画面に注視点のマーカー67を表示する。このマーカー67をユーザに注視させる。そのときの視線方向を観察する。観察できる視線方向は、光軸AX1の方向である。また、マーカー67の中心への方向は視軸AX2の方向である。
 そのマーカー67の点でのデータ、即ち光軸AX1とそのときの視軸AX2のベクトルが得られたら、マーカー67を次の点に移動させる。
 図示のように、マーカー67を例えば画面の中央、左上隅、右上隅、左下隅、右下隅というように移動させながらデータを収集していく。
FIG. 7 shows an example of calibration processing using multiple points.
A gaze point marker 67 is displayed on the screen viewed by the user. The user is made to gaze at this marker 67 . Observe the line of sight at that time. The observable line-of-sight direction is the direction of the optical axis AX1. Also, the direction toward the center of the marker 67 is the direction of the visual axis AX2.
After obtaining the data at the point of the marker 67, ie, the vector of the optical axis AX1 and the visual axis AX2 at that time, the marker 67 is moved to the next point.
As shown in the figure, data is collected while moving the marker 67 to, for example, the center, upper left corner, upper right corner, lower left corner, and lower right corner of the screen.
 このような測定を行うことで、図8Aに示すベクトルG、ベクトルTが各点について得られる。ベクトルGは検出された視線方向(つまり光軸AX1)であり、ベクトルTはユーザの目とキャリブレーション点(マーカー67で示した点)の中心を結ぶベクトル(つまり視軸AX2)である。 By performing such measurements, vectors G and T shown in FIG. 8A are obtained for each point. Vector G is the detected viewing direction (that is, optical axis AX1), and vector T is a vector (that is, visual axis AX2) connecting the center of the user's eye and the calibration point (the point indicated by marker 67).
 このベクトルGからベクトルTへの回転変換Qを求める。回転変換Qはクォータニオンである。このベクトルG毎の回転変換Qが、その測定した人の個人についてのキャリブレーションデータとされ、データベース52に記憶される。この回転変換Qは、個人毎の補正量となる。
 データベース52は、例えば図3のメモリ部19や図4の不揮発性メモリ部74又は記憶部79などに構築されればよい。
A rotational transformation Q from this vector G to vector T is obtained. The rotation transform Q is a quaternion. The rotational transformation Q for each vector G is stored in the database 52 as calibration data for the person who made the measurement. This rotational transformation Q becomes a correction amount for each individual.
The database 52 may be constructed, for example, in the memory section 19 of FIG. 3 or the non-volatile memory section 74 or storage section 79 of FIG.
 実際に視線検出処理を行うときに、以上のようなキャリブレーション処理で得たキャリブレーションデータを適用する場合は、例えば図8Bに示すように、現在の注視点P0の近傍三点P1,P2,P3を抽出する。近傍三点P1,P2,P3は、キャリブレーション処理のときにユーザに注視させ、回転変換Qを求めた点のうちで、現在の注視点P0に近い3つの点である。
 そして注視点P0から近傍三点P1,P2,P3への距離の逆数でそれぞれの補正量に重みをつけて加算する。その補正量を、現在の注視点P0に適用して、補正後の注視点P0Aを求めるようにする。
 これにより実際にユーザが見ている方向を精度よく検出できることになる。
When applying the calibration data obtained by the above calibration processing when actually performing the line-of-sight detection processing, for example, as shown in FIG. Extract P3. The three neighboring points P1, P2, and P3 are three points close to the current gaze point P0 among the points for which the user is caused to gaze and the rotational transformation Q is obtained during the calibration process.
Then, each correction amount is weighted by the reciprocal of the distance from the gaze point P0 to the neighboring three points P1, P2, and P3, and added. The correction amount is applied to the current gazing point P0 to obtain the post-correction gazing point P0A.
This makes it possible to accurately detect the direction in which the user is actually looking.
 但しこのような補正は、ユーザが、キャリブレーション処理を行ったときと同じ相対的な角度の状態で見ているときに有効である。
 例えばユーザがEVF5をのぞき込んだ状態でキャリブレーション処理を行った場合、そのユーザの目と、視線検出装置部41の目画像撮像部51との間の相対的な姿勢関係(角度関係)の状態におけるキャリブレーションデータが得られる。
 もしユーザが、撮像装置1を水平に持って通常の立ち姿勢でEVF5を除いた状態でキャリブレーション処理を行った場合、その相対的な姿勢関係のキャリブレーションデータが得られる。その後、ユーザが撮像装置1を縦持ちした場合や、或いは斜めからEVF5をのぞき込んだような場合、姿勢関係がキャリブレーション処理時と異なるため、キャリブレーションデータを用いて補正しても、正確な視線方向とはならない。
However, such correction is effective when the user views the image at the same relative angle as when the calibration process was performed.
For example, when the calibration process is performed while the user is looking into the EVF 5, the relative posture relationship (angular relationship) between the user's eyes and the eye image capturing unit 51 of the line-of-sight detection device unit 41 Calibration data are obtained.
If the user holds the imaging apparatus 1 horizontally and performs the calibration process in a normal standing posture with the EVF 5 removed, calibration data of the relative posture relationship can be obtained. After that, when the user holds the imaging device 1 vertically or looks into the EVF 5 from an oblique angle, the posture relationship differs from that at the time of the calibration process. not a direction.
 すると、各種の姿勢関係に対応するために、各種の姿勢関係においてキャリブレーション処理を行い、それぞれの姿勢関係におけるキャリブレーションデータを得ておいて、実際の視線検出処理の際には、姿勢関係に応じてキャリブレーションデータを選択して補正処理に適用しなければならない。
 これはユーザにとって、キャリブレーション処理が面倒なものとなり、また複数のキャリブレーションデータを記憶することで、撮像装置1や端末装置100にとっても効率的とはいえない。さらに、全ての姿勢関係の状態を網羅するようにキャリブレーション処理を行うことは現実的ではなく、実際には、精度のよい視線検出を行うことができない場合が生ずることも想定される。
Then, in order to correspond to various posture relationships, calibration processing is performed in various posture relationships, and calibration data for each posture relationship is obtained. Accordingly, calibration data must be selected and applied to the correction process.
This makes the calibration process troublesome for the user, and storing a plurality of pieces of calibration data is not efficient for the imaging device 1 and the terminal device 100 . Furthermore, it is not realistic to perform calibration processing so as to cover all posture-related states, and in fact, it is assumed that there may be cases where accurate line-of-sight detection cannot be performed.
 そこで本実施の形態では、キャリブレーション処理を行ったときの姿勢関係と、実際に視線検出を行う時の姿勢関係の差は、ロール方向の回転量で表せるため、それをロール角度とし、ロール角度情報に応じてキャリブレーションデータを補正する補正処理を行う。ロール角度は、ユーザの目と目画像撮像部51との相対的な角度について、キャリブレーション処理時を基準とした角度(角度の変化量)の情報であるといえる。 Therefore, in the present embodiment, the difference between the attitude relationship when the calibration process is performed and the attitude relationship when the line-of-sight detection is actually performed can be represented by the amount of rotation in the roll direction. Correction processing is performed to correct the calibration data according to the information. The roll angle can be said to be information about the relative angle between the user's eyes and the eye image capturing unit 51, with reference to the time of the calibration process (angle change amount).
 視線検出の際に、補正処理を施したキャリブレーションデータを用いて、光軸AX1から視軸AX2への補正を行うようにすることで、姿勢関係にかかわらず、しかも1回のキャリブレーション処理で得たキャリブレーションデータのみで、精度の高い視線検出ができるようにする。
When detecting the line of sight, the corrected calibration data is used to correct from the optical axis AX1 to the visual axis AX2. To detect a line of sight with high accuracy only with obtained calibration data.
<5.第1の実施の形態:虹彩認証を利用した補正処理>
 第1の実施の形態として、虹彩認証を利用したキャリブレーションデータの補正処理を説明する。
 なお、この第1の実施の形態の処理を行う場合、カメラ制御部18又はCPU71は、虹彩認証の処理を行う機能も備えることになる。
<5. First Embodiment: Correction Processing Using Iris Authentication>
As a first embodiment, calibration data correction processing using iris authentication will be described.
When performing the processing of the first embodiment, the camera control unit 18 or the CPU 71 also has a function of performing iris authentication processing.
 眼球を使った技術として虹彩認証が知られている。この技術は虹彩パターンをコード化して虹彩コードとし、この虹彩コードを比較することで個人認証を行う技術である。この比較を行う際に虹彩コードをシフトさせてハミング距離を求めたとき、それが最小となるシフト量が眼球のロール角度と比例する。そこでキャリブレーション処理時における角度と、現在の角度の差(ロール角度)の分だけ、キャリブレーションデータを回転させるように補正する。 Iris authentication is known as a technology that uses eyeballs. This technique encodes an iris pattern into an iris code, and compares the iris code to perform personal authentication. When the Hamming distance is obtained by shifting the iris code when performing this comparison, the shift amount that minimizes it is proportional to the roll angle of the eyeball. Therefore, correction is performed by rotating the calibration data by the difference (roll angle) between the angle at the time of calibration processing and the current angle.
 このような処理を行うための視線検出演算部40の処理を説明する。なお以下で述べる視線検出演算部40の処理とは、図3のカメラ制御部18や図4のCPU71などの情報処理装置で行われる処理である。 The processing of the line-of-sight detection calculation unit 40 for performing such processing will be described. The processing of the line-of-sight detection calculation unit 40 described below is processing performed by an information processing device such as the camera control unit 18 in FIG. 3 and the CPU 71 in FIG.
 図9は視線検出演算部40のキャリブレーション処理を示している。
 ステップS101で視線検出演算部40は、視線検出装置部41の目画像撮像部51による撮像画像、つまりユーザの目画像を取得する。
FIG. 9 shows calibration processing of the line-of-sight detection calculation unit 40 .
In step S101, the line-of-sight detection calculation unit 40 acquires an image captured by the eye image capturing unit 51 of the line-of-sight detection device unit 41, that is, an eye image of the user.
 ステップS102で視線検出演算部40を備えたカメラ制御部18又はCPU71は、同じく備える虹彩認証機能により、虹彩認証のためのコード化を行う。つまり、ユーザの目画像から観察される虹彩パターンをコード化して虹彩コードを生成する。 In step S102, the camera control unit 18 or the CPU 71 equipped with the line-of-sight detection calculation unit 40 performs encoding for iris authentication by the iris authentication function also provided. That is, an iris code is generated by encoding the iris pattern observed from the user's eye image.
 虹彩コードについて図10、図11で説明する。
 例えば図10Aのような目画像(イメージIM1)が撮像されたとする。この虹彩62としてのドーナツ状の部分を極座標変換により抽出し、図11A、図11Bに示すように、例えば角度方向に256分割、半径方向に4ライン分とした情報を得る。
 そしてガポールウェーブレットフィルタにより図11Cのような2048ビットのコードに変換する。例えば1画素あたりフィルタ応答実部・虚部2ビット分で、256度×2ビット×4ライン分としての2048ビットである。
 これがイメージIM1としての目画像から得られる虹彩コードである。
The iris code will be described with reference to FIGS. 10 and 11. FIG.
For example, assume that an eye image (image IM1) as shown in FIG. 10A is captured. The donut-shaped portion of the iris 62 is extracted by polar coordinate transformation, and as shown in FIGS. 11A and 11B, 256 divisions in the angular direction and 4 lines in the radial direction are obtained.
Then, it is converted into a 2048-bit code as shown in FIG. 11C by a Gapole wavelet filter. For example, one pixel has 2 bits of filter response real part and imaginary part, which is 2048 bits as 256 degrees×2 bits×4 lines.
This is the iris code obtained from the eye image as image IM1.
 図9のステップS103で視線検出演算部40は、キャリブレーションデータの収集を行う。例えば図7、図8で説明したように、マーカー67を注視させながらベクトルG、ベクトルTを求め、そのマーカー67の位置を注視点とした回転変換Qを求める。これをマーカー67の位置を変えながら、複数の注視点に対して行う。
 これによって、イメージIM1としての目画像が得られた姿勢関係におけるキャリブレーションデータが得られる。
In step S103 of FIG. 9, the line-of-sight detection calculation unit 40 collects calibration data. For example, as described with reference to FIGS. 7 and 8, the vector G and the vector T are determined while the marker 67 is gazed at, and the rotational transformation Q is determined with the position of the marker 67 as the gaze point. While changing the position of the marker 67, this is performed for a plurality of fixation points.
As a result, calibration data is obtained in the posture relation in which the eye image as the image IM1 was obtained.
 ステップS104で視線検出演算部40は、キャリブレーションデータと虹彩コードをペアとして関連づけた状態でデータベース52に記憶する。
 これは或る個人について虹彩コードを個人認証のために記憶するとともに、その虹彩コードを、キャリブレーションデータの補正のためのロール角度の基準角度情報とする意味を持つ。基準角度情報とは、例えばロール角度=0度の状態を示す情報である。従って、この場合に虹彩コードとペアで記憶されるキャリブレーションデータは、ロール角度=0度とした場合のキャリブレーションデータとして位置づけられる。
 なお、このステップS104でキャリブレーションデータとペアにして記憶した虹彩コードは、少なくとも視線検出のために用いる情報とするものである。カメラ制御部18又はCPU71は、この記憶処理とは別途、ステップS102で虹彩コードを生成した際に、生成した虹彩コードについて、別途、個人認証のための情報としての登録処理を行ってもよいし、或いはステップS104で視線検出処理のために記憶した虹彩コードを、後の個人認証用の情報として兼用するようにしてもよい。
 また、以上の説明は、個人認証のための虹彩コードの登録を図9のキャリブレーション処理と同時に行うようにする例としているが、個人認証のための虹彩コードの登録処理は、キャリブレーション処理とは別の機会に行われるようにしてもよい。
In step S104, the line-of-sight detection calculation unit 40 stores the calibration data and the iris code as a pair in the database 52 in association with each other.
This means that an iris code for a certain individual is stored for personal authentication, and that iris code is used as reference angle information of the roll angle for correction of calibration data. The reference angle information is, for example, information indicating a roll angle=0 degree state. Therefore, the calibration data stored in a pair with the iris code in this case is positioned as the calibration data when the roll angle is set to 0 degrees.
It should be noted that the iris code paired with the calibration data and stored in step S104 is used at least as information used for line-of-sight detection. Separately from this storage processing, the camera control unit 18 or the CPU 71 may perform registration processing separately as information for personal authentication for the generated iris code when the iris code is generated in step S102. Alternatively, the iris code stored for the line-of-sight detection process in step S104 may also be used as information for later personal authentication.
In the above description, the iris code registration for personal authentication is performed simultaneously with the calibration process shown in FIG. may be held on another occasion.
 次に図12で実際に視線方向を検出する視線検出処理を行う場合の処理例を説明する。
 ステップS201で視線検出演算部40は、視線検出装置部41の目画像撮像部51による撮像画像、つまりユーザの目画像を取得する。
 この場合、図10AのイメージIM1のように、キャリブレーション処理時と同じ姿勢関係の状態の目画像が得られる場合もあるし、例えば図10BのイメージIM2のように、キャリブレーション処理時とは異なる姿勢関係の状態の目画像が得られる場合もある。この場合、イメージIM2は、イメージIM1と比べて回旋角度θをもつ画像である。
Next, an example of processing when performing line-of-sight detection processing for actually detecting the line-of-sight direction will be described with reference to FIG.
In step S201, the line-of-sight detection calculation unit 40 acquires an image captured by the eye image capturing unit 51 of the line-of-sight detection device unit 41, that is, an eye image of the user.
In this case, as in image IM1 in FIG. 10A, an eye image in the same posture relationship as in the calibration process may be obtained. In some cases, an eye image with a pose relationship can be obtained. In this case, the image IM2 is an image with a convolution angle θ compared to the image IM1.
 ステップS202で視線検出演算部40を備えたカメラ制御部18又はCPU71は、同じく備える虹彩認証機能により虹彩認証を行う。
 この場合、まずカメラ制御部18又はCPU71は、目画像から虹彩コードを上述と同様に生成する。仮に、過去に虹彩コードを得た人物と同じ人物について回旋角度がゼロのイメージIM1と全く同じ目画像が得られたとしたら、図11Cの虹彩コードと同じ虹彩コードが得られる。但し、目画像の撮像状態や虹彩パターンの判定の状況によって、多少のビット違いはあり得るが、おおむね同様のコードとなる。
 また、同じ人物について、図10Bのように、回旋角度θの目画像が得られた場合は、虹彩コードとして、図11Dのように、図11Cの虹彩コードと比較してビットシフトしたような虹彩コードが得られる。
In step S202, the camera control unit 18 or the CPU 71 having the line-of-sight detection calculation unit 40 performs iris authentication using the iris authentication function also provided.
In this case, the camera control unit 18 or CPU 71 first generates an iris code from the eye image in the same manner as described above. If an eye image exactly the same as the image IM1 with zero rotation angle is obtained for the same person who obtained the iris code in the past, the same iris code as the iris code in FIG. 11C is obtained. However, although there may be some bit differences depending on the imaging state of the eye image and the determination of the iris pattern, the codes are generally the same.
10B for the same person, the iris code is bit-shifted as compared to the iris code in FIG. 11C, as in FIG. 11D. you get the code.
 この場合に、得られた虹彩コードをビットシフトしながら、ビットシフトさせた状態毎に過去に虹彩認証のために記憶した虹彩コードとのハミング距離(つまりビットが異なる量)を求めていく。すると、得られた虹彩コードを或るシフト状態としたときに、ハミング距離が最小になる。
 なお、過去に虹彩認証のために記憶した虹彩コードとは、個人認証OKとする人物として登録されたユーザの虹彩コードのことである。その虹彩コードは、図9のキャリブレーション処理の過程で記憶されるものとする例もあるし、別途の登録処理で記憶されるものとする場合もある。
 上記のようにハミング距離の最小値が見つかったら、そのハミング距離を認証のための閾値とした所定値と比較する。
 そしてハミング距離の最小値が所定値以下であれば、今回の虹彩コードは、過去に虹彩認証のために記憶した虹彩コードと同一人物のものであると判定できる。ハミング距離が小さければ虹彩コードの類似度が高いためである。
 一方でハミング距離の最小値が所定値以下でなければ、ユーザは、過去に認証OKとすべき人物としては虹彩コードを記憶していないユーザであると判定できる。
 カメラ制御部18又はCPU71は、このように虹彩認証の手法により個人認証を実行できる。
In this case, while bit-shifting the obtained iris code, the Hamming distance (that is, the amount of difference in bits) from the iris code stored for iris authentication in the past is calculated for each bit-shifted state. Then, when the obtained iris code is in a certain shift state, the Hamming distance is minimized.
The iris code stored for iris authentication in the past is the iris code of the user who is registered as a person whose personal authentication is OK. The iris code may be stored during the calibration process of FIG. 9, or may be stored during a separate registration process.
When the minimum value of the Hamming distance is found as described above, the Hamming distance is compared with a predetermined threshold value for authentication.
If the minimum value of the Hamming distance is equal to or less than a predetermined value, it can be determined that the current iris code belongs to the same person as the iris code stored for iris authentication in the past. This is because the smaller the Hamming distance, the higher the similarity of the iris code.
On the other hand, if the minimum value of the Hamming distance is not equal to or less than the predetermined value, it can be determined that the user has not stored an iris code as a person who should be authenticated in the past.
The camera control unit 18 or the CPU 71 can thus perform personal authentication using the iris authentication method.
 続いてステップS203以降で、カメラ制御部18又はCPU71は、視線検出演算部40の機能により処理を続ける。ステップS203で視線検出演算部40は、今回取得した虹彩コードと同一人物の虹彩コードが、データベース52において、キャリブレーションデータとペアで記憶されたものであるか否かを判定する。 Subsequently, from step S203 onwards, the camera control unit 18 or the CPU 71 continues processing using the function of the line-of-sight detection calculation unit 40. In step S203, the line-of-sight detection calculation unit 40 determines whether or not the iris code acquired this time and the iris code of the same person are stored in the database 52 in a pair with the calibration data.
 もし今回の虹彩コードが、過去に図9のステップS104の処理でキャリブレーションデータとペアで記憶されたものとしてデータベース52上で発見されたら、視線検出演算部40はステップS204からステップS205に進み、今回検出した虹彩コードとデータベース52に記憶された虹彩コードのハミング距離に基づいてロール角度を算出する。
 この場合、今回検出した虹彩コードは現在角度情報として位置づけられ、図9のステップS104で記憶した基準角度情報としての虹彩コードと比較されることになる。
 例えば今回、イメージIM2の虹彩コードが得られたとしたら、この今回検出した現在角度情報としての虹彩コードは、回旋角度θに相当する分だけ、記憶された虹彩コードからビットシフトしたものとなっている。従ってステップS202の虹彩認証のときにビットシフトさせながらハミング距離を求めていった際に、ハミング距離が最小となったときのビットシフト量が、回旋角度θに相当する。つまりその最小のハミング距離に至るまでのビットシフト量からロール角度を算出できる。
If the current iris code is found in the database 52 as having been paired with the calibration data in the process of step S104 of FIG. The roll angle is calculated based on the Hamming distance between the iris code detected this time and the iris code stored in the database 52 .
In this case, the iris code detected this time is positioned as the current angle information and compared with the iris code as the reference angle information stored in step S104 of FIG.
For example, if the iris code of the image IM2 is obtained this time, the iris code detected this time as current angle information is bit-shifted from the stored iris code by the amount corresponding to the rotation angle θ. . Therefore, when the Hamming distance is obtained while bit-shifting during iris authentication in step S202, the bit shift amount when the Hamming distance becomes the minimum corresponds to the rotation angle θ. That is, the roll angle can be calculated from the bit shift amount up to the minimum Hamming distance.
 ステップS206で視線検出演算部40は、記憶されているキャリブレーションデータから、現在の注視点におけるキャリブレーションベクトルを算出する。
 そしてステップS207でキャリブレーションベクトルに対してロール角度で回転をかけ、補正後のキャリブレーションベクトルを得る。
 これにより現在の相対的な姿勢関係に応じてキャリブレーションデータが補正されたことになる。従って、その後は、補正されたキャリブレーションデータを用いて、図8Bで説明したように視線検出処理を行うことができる。
In step S206, the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data.
Then, in step S207, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector.
This means that the calibration data has been corrected according to the current relative attitude relationship. Therefore, after that, using the corrected calibration data, the line-of-sight detection process can be performed as described with reference to FIG. 8B.
 なお、虹彩コードが、過去にキャリブレーションデータとペアで記憶されたものではなかった場合、図12の処理はステップS204からステップS210に進む。
 視線検出演算部40はステップS210でキャリブレーションデータの収集を行う。そしてステップS211で視線検出演算部40は、キャリブレーションデータと虹彩コードをペアとして関連づけた状態でデータベース52に記憶する。
 このステップS210,S211は図9のステップS103,S104と同じ処理である。これにより、今回の処理で虹彩コードを生成したユーザについて、その後、キャリブレーションデータの補正ができるようになる。
Note that if the iris code has not been stored as a pair with the calibration data in the past, the process of FIG. 12 proceeds from step S204 to step S210.
The line-of-sight detection calculation unit 40 collects calibration data in step S210. Then, in step S211, the line-of-sight detection calculation unit 40 stores the calibration data and the iris code in the database 52 in a state in which they are associated as a pair.
These steps S210 and S211 are the same processing as steps S103 and S104 in FIG. As a result, it becomes possible to correct the calibration data for the user who generated the iris code in this process.
 なお、このような虹彩コードの記憶は、虹彩認証による個人認証とは無関係で実行してもよい。
 虹彩認証では、例えば認証OKとするユーザの虹彩コードを登録しておき、個人認証時に得られた虹彩コードが、登録された虹彩コードと同一人物のものと判定されれば認証OKとするものである。
 一方、キャリブレーションデータとペアで記憶させる虹彩コードは、少なくともキャリブレーションデータの補正のための基準角度情報としての意味で記憶させるものである。従って、認証OKとなるユーザか否かにかかわらず、図9のステップS103や図12のステップS210のキャリブレーション処理を行ったときに、キャリブレーションデータと、その際に検出されていた虹彩コードをペアにして記憶してもよい。
 但し、認証OKとならなかったユーザに対しては、ステップS210,S211の処理が行われないようにすることも考えられる。
It should be noted that such storage of the iris code may be executed independently of personal authentication by iris authentication.
In iris authentication, for example, the iris code of a user whose authentication is acceptable is registered, and if the iris code obtained during personal authentication is determined to be of the same person as the registered iris code, the authentication is accepted. be.
On the other hand, the iris code stored in pairs with the calibration data is stored at least in the sense of reference angle information for correcting the calibration data. Therefore, regardless of whether the user is authenticated OK or not, when performing the calibration processing in step S103 of FIG. 9 or step S210 of FIG. They may be stored in pairs.
However, it is conceivable to prevent the processing of steps S210 and S211 from being performed for users who have not been authenticated.
 以上の図12のように虹彩認証と、ロール角度検出及びキャリブレーションデータの補正を行うタイミングは各種考えられる。何らかのトリガーで不定期に実行してもよいし、定期的に実行してもよい。例えば撮像装置1のEVF5において視線検出を行う構成の場合は、ユーザがEVF5に目をあてたことをトリガーとして図12の処理を実行することが考えられる。 As shown in FIG. 12, there are various possible timings for iris authentication, roll angle detection, and calibration data correction. It may be executed irregularly by some trigger, or may be executed periodically. For example, in the case of a configuration in which the EVF 5 of the imaging device 1 detects the line of sight, it is conceivable to execute the processing in FIG.
 また、撮像装置1や端末装置100の動きを加速度センサ、ジャイロセンサなどにより取得し、大きく動いているときは傾きが変化している可能性があるため、図12のような処理を中断してもよい。そのようにする場合、回転等の動きがとまったときのみ、間欠的にロール角度検出及びキャリブレーションデータの補正を行うようにしてもよい。
In addition, the movement of the imaging device 1 or the terminal device 100 is acquired by an acceleration sensor, a gyro sensor, or the like, and if there is a large movement, the inclination may have changed. good too. In such a case, roll angle detection and calibration data correction may be performed intermittently only when movement such as rotation stops.
<6.第2の実施の形態:目画像に基づく補正処理>
 第2の実施の形態として、目画像に基づいてロール角度を検出してキャリブレーションデータの補正を行う例を説明する。
 特に虹彩認証を行わない機器に適用できる処理であり、具体的には、眼球画像のセマンティックセグメンテーションによりまぶた領域を検出し、キャリブレーション時のまぶた領域形状に対してのロール角度を求める。
 なお、この第2の実施の形態の処理を行う場合、視線検出演算部40は、セマンティックセグメンテーションによる画像からの物体認識処理を行う機能も備えることになる。
<6. Second Embodiment: Correction Processing Based on Eye Image>
As a second embodiment, an example of detecting the roll angle based on the eye image and correcting the calibration data will be described.
This process is particularly applicable to devices that do not perform iris authentication. Specifically, the eyelid area is detected by semantic segmentation of the eyeball image, and the roll angle relative to the eyelid area shape at the time of calibration is obtained.
When performing the processing of the second embodiment, the line-of-sight detection calculation unit 40 also has a function of performing object recognition processing from an image by semantic segmentation.
 図13Aは目画像撮像部51で撮像した目画像であるとする。この目画像のまぶた領域68を斜線で示したものが図13Bである。 Assume that FIG. 13A is an eye image captured by the eye image capturing unit 51 . FIG. 13B shows the eyelid region 68 of this eye image with diagonal lines.
 視線検出演算部40の処理例を図14,図15に示す。
 図14はキャリブレーション処理の例である。
 ステップS120で視線検出演算部40は目画像撮像部51からの目画像を取得する。
 ステップS121で視線検出演算部40は、セマンティックセグメンテーションの処理で目画像におけるまぶた領域68を判定し、そのまぶたの境界情報を取得する。
14 and 15 show processing examples of the line-of-sight detection calculation unit 40. FIG.
FIG. 14 is an example of calibration processing.
In step S<b>120 , the line-of-sight detection calculation unit 40 acquires an eye image from the eye image capturing unit 51 .
In step S121, the line-of-sight detection calculation unit 40 determines the eyelid region 68 in the eye image by semantic segmentation processing, and acquires the eyelid boundary information.
 境界情報とは、まぶたの境界に関連する情報である。例えば境界線69の情報を境界情報とすることができる。或いは境界線69の近傍の特徴点を抽出し、それを境界情報としてもよい。さらには図13Bに破線で示すような、まぶたの境界に対する外接三角形86を検出して、その外接三角形86の情報を境界情報としてもよい。 Boundary information is information related to the boundary of the eyelids. For example, information on the boundary line 69 can be used as boundary information. Alternatively, feature points near the boundary line 69 may be extracted and used as boundary information. Further, a circumscribing triangle 86 with respect to the boundary of the eyelid may be detected as indicated by the dashed line in FIG. 13B, and the information of the circumscribing triangle 86 may be used as the boundary information.
 図14のステップS122で視線検出演算部40は、上述の図9のステップS103と同様にキャリブレーション処理を行ってキャリブレーションデータを収集する。
 ステップS123で視線検出演算部40は、キャリブレーションデータと境界情報をペアにしてデータベース52に記憶する。
 つまりこの場合、記憶するキャリブレーションデータを、ロール角度=ゼロの状態とするための基準角度情報として境界情報を記憶する。
In step S122 in FIG. 14, the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 in FIG. 9 described above.
In step S<b>123 , the line-of-sight detection calculation unit 40 pairs the calibration data and the boundary information and stores them in the database 52 .
That is, in this case, boundary information is stored as reference angle information for setting the calibration data to be stored to the roll angle=0 state.
 図15はキャリブレーションデータの補正処理例を示している。
 ステップS220で視線検出演算部40は目画像撮像部51からの目画像を取得する。
 ステップS221で視線検出演算部40は、セマンティックセグメンテーションの処理で目画像におけるまぶた領域68を判定し、そのまぶたの境界情報を取得する。
FIG. 15 shows an example of calibration data correction processing.
In step S<b>220 , the line-of-sight detection calculation unit 40 acquires an eye image from the eye image capturing unit 51 .
In step S221, the line-of-sight detection calculation unit 40 determines the eyelid region 68 in the eye image by semantic segmentation processing, and acquires the eyelid boundary information.
 ステップS222で視線検出演算部40は、ステップS221で取得した境界情報と、データベース52に記憶されている境界情報を比較してロール角度を求める。
 今回検出した境界情報は現在角度情報とされ、図14のステップS123で記憶した基準角度情報としての境界情報と比較される。
 このように記憶されている境界情報と、今回の境界情報を比較することで、目の回旋角度θに応じた位置状態の違いが検出できるため、ロール角度を算出できる。
In step S222, the line-of-sight detection calculation unit 40 compares the boundary information acquired in step S221 with the boundary information stored in the database 52 to obtain the roll angle.
The boundary information detected this time is used as the current angle information, and is compared with the boundary information as the reference angle information stored in step S123 of FIG.
By comparing the boundary information stored in this manner with the current boundary information, it is possible to detect the difference in the position state according to the rotation angle θ of the eye, and thus the roll angle can be calculated.
 ロール角度を算出したら、視線検出演算部40は図15のステップS223で、記憶されているキャリブレーションデータから、現在の注視点におけるキャリブレーションベクトルを算出する。そしてステップS224でキャリブレーションベクトルに対してロール角度で回転をかけ、補正後のキャリブレーションベクトルを得る。
 これにより現在の相対的な姿勢関係に応じてキャリブレーションデータ補正されたことになり、その後は、補正されたキャリブレーションデータを用いて視線検出処理を行うことができる。
After calculating the roll angle, the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S223 of FIG. Then, in step S224, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector.
As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
<7.第3の実施の形態:タッチパネルを用いた補正処理>
 第3の実施の形態としてタッチパネルを用いてロール角度を検出してキャリブレーションデータの補正を行う例を説明する。
<7. Third Embodiment: Correction Processing Using Touch Panel>
As a third embodiment, an example of detecting a roll angle using a touch panel and correcting calibration data will be described.
 撮像装置1において、タッチパネルが背面モニタ4の表面に設けられていると場合を想定する。ユーザがEVF5を覗く状態では、そのユーザの鼻がタッチパネルに接触もしくは近接することがある。
 タッチパネルの右側に反応がある場合は、左目で覗き込んでいることがわかる。
 タッチパネルの左側に反応がある場合は、右目で覗き込んでいることがわかる。
 さらにそのタッチパネル上の検出位置のずれには、ロール角度の変化が表れるので、そこからロール角度を推定することができる。
Assume that the imaging device 1 has a touch panel provided on the surface of the rear monitor 4 . When the user looks into the EVF 5, the user's nose may touch or come close to the touch panel.
If there is a response on the right side of the touch panel, you know you are looking with your left eye.
If there is a response on the left side of the touch panel, you know that you are looking with your right eye.
Further, since the deviation of the detection position on the touch panel shows the change in the roll angle, the roll angle can be estimated therefrom.
 視線検出演算部40の処理例を図16,図17に示す。
 図16はキャリブレーション処理の例である。
 ステップS140で視線検出演算部40は、上述の図9のステップS103と同様にキャリブレーション処理を行ってキャリブレーションデータを収集する。
16 and 17 show processing examples of the line-of-sight detection calculation unit 40. FIG.
FIG. 16 is an example of calibration processing.
In step S140, the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 of FIG. 9 described above.
 ステップS141で視線検出演算部40は、操作部17におけるタッチパネルの情報から、接触位置情報を取得する。例えばキャリブレーション処理のためにユーザがEVF5を覗いている期間のタッチパネルの反応を蓄積して、キャリブレーション処理時における鼻によるタッチパネル上の接触位置情報を生成する。 In step S<b>141 , the line-of-sight detection calculation unit 40 acquires contact position information from information on the touch panel of the operation unit 17 . For example, the response of the touch panel while the user is looking into the EVF 5 for the calibration process is accumulated to generate contact position information on the touch panel with the nose during the calibration process.
 ステップS142で視線検出演算部40は、キャリブレーションデータと接触位置情報をペアにしてデータベース52に記憶する。
 つまりこの場合、記憶するキャリブレーションデータを、ロール角度=ゼロの状態とするための基準角度情報として接触位置情報を記憶する。
In step S<b>142 , the line-of-sight detection calculation unit 40 pairs the calibration data and the contact position information and stores them in the database 52 .
That is, in this case, the contact position information is stored as the reference angle information for setting the calibration data to be stored so that the roll angle is zero.
 図17はキャリブレーションデータの補正処理例を示している。
 ステップS240で視線検出演算部40はタッチパネル上の接触位置情報を取得する。
 今回検出した接触位置情報は、図16のステップS142で記憶した基準角度情報としての接触位置情報と比較される、現在角度情報となる。
 そこで、ステップS241で視線検出演算部40は、ステップS240で取得した接触位置情報と、データベース52に記憶されている接触位置情報を比較してロール角度を求める。タッチパネル上の接触位置の違いは、例えばEVF5の位置を中心としたロール角度に相当するものとなる。
FIG. 17 shows an example of calibration data correction processing.
In step S240, the line-of-sight detection calculation unit 40 acquires contact position information on the touch panel.
The contact position information detected this time becomes the current angle information to be compared with the contact position information as the reference angle information stored in step S142 of FIG.
Therefore, in step S241, the line-of-sight detection calculation unit 40 compares the contact position information acquired in step S240 with the contact position information stored in the database 52 to obtain the roll angle. The difference in contact position on the touch panel corresponds to the roll angle centering on the position of the EVF 5, for example.
 ロール角度を算出したら、視線検出演算部40はステップS242で、記憶されているキャリブレーションデータから、現在の注視点におけるキャリブレーションベクトルを算出する。そしてステップS243でキャリブレーションベクトルに対してロール角度で回転をかけ、補正後のキャリブレーションベクトルを得る。
 これにより現在の相対的な姿勢関係に応じてキャリブレーションデータ補正されたことになり、その後は、補正されたキャリブレーションデータを用いて視線検出処理を行うことができる。
After calculating the roll angle, the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S242. Then, in step S243, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector.
As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
<8.第4の実施の形態:ヘッドセットを用いた補正処理>
 第4の実施の形態として、図18のように撮像装置1とヘッドセット130を用いた例を説明する。図18ではヨー軸Yax、ピッチ軸Pax、ロール軸Raxを示している。
<8. Fourth Embodiment: Correction Processing Using Headset>
As a fourth embodiment, an example using an imaging device 1 and a headset 130 as shown in FIG. 18 will be described. FIG. 18 shows the yaw axis Yax, the pitch axis Pax, and the roll axis Rax.
 ユーザがヘッドセット130を頭部に装着した状態で、撮像装置1を使用することを想定する。撮像装置1のセンサ部23は加速度センサ、角速度センサなどにより、装置自体の姿勢を検出する機能を持つ。例えばヨー、ピッチ、ロールの3軸方向の姿勢を検出する。同様にヘッドセット130も加速度センサ、角速度センサなどにより、装置自体のヨー、ピッチ、ロールの3軸方向の姿勢を検出することができるものとする。
 そして撮像装置1は通信部16により、ヘッドセット130側の姿勢情報を受信し、カメラ制御部18がヘッドセット130の姿勢状態をリアルタイムで検出できるものとする。
It is assumed that the user uses the imaging device 1 while wearing the headset 130 on the head. The sensor unit 23 of the imaging device 1 has a function of detecting the orientation of the device itself by using an acceleration sensor, an angular velocity sensor, or the like. For example, it detects postures in three axial directions of yaw, pitch, and roll. Similarly, the headset 130 can also detect the posture of the device itself in three axial directions of yaw, pitch, and roll using an acceleration sensor, an angular velocity sensor, and the like.
It is assumed that the imaging apparatus 1 receives the posture information of the headset 130 through the communication unit 16, and the camera control unit 18 can detect the posture state of the headset 130 in real time.
 この場合、ヘッドセット130の姿勢は、ユーザの頭部の姿勢と想定することができる。従って、撮像装置1の視線検出演算部40は、撮像装置1自体の姿勢と、ヘッドセット130の姿勢の相対関係から、EVF5や背面モニタ4についての目画像撮像部51に対するユーザの目の相対的な姿勢関係(傾き量)を検出できる。つまり現在のロール角度を判定できる。
 例えば、撮像装置1の奥行き方向とヘッドセット130の奥行き方向のヨー角が一致するように回転補正を掛けたときのロール角度の差を、目と目画像撮像部51のロール角度とする。
In this case, the pose of headset 130 can be assumed to be the pose of the user's head. Therefore, the line-of-sight detection calculation unit 40 of the image pickup device 1 detects the relative relationship between the orientation of the image pickup device 1 itself and the orientation of the headset 130 and the relative relationship between the user's eye and the eye image pickup unit 51 for the EVF 5 and the rear monitor 4 . posture relationship (tilt amount) can be detected. That is, the current roll angle can be determined.
For example, the roll angle of the eye-to-eye image pickup unit 51 is the difference in roll angle when rotation correction is applied so that the yaw angles in the depth direction of the imaging device 1 and the depth direction of the headset 130 match.
 視線検出演算部40の処理例を図19,図20に示す。
 図19はキャリブレーション処理の例である。
 ステップS150で視線検出演算部40は、上述の図9のステップS103と同様にキャリブレーション処理を行ってキャリブレーションデータを収集する。
19 and 20 show processing examples of the line-of-sight detection calculation unit 40. FIG.
FIG. 19 is an example of calibration processing.
In step S150, the line-of-sight detection calculation unit 40 performs calibration processing and collects calibration data in the same manner as in step S103 of FIG. 9 described above.
 ステップS151で視線検出演算部40は、撮像装置1自体の装置姿勢情報を取得する。
 ステップS152で視線検出演算部40は、ヘッドセット130の装置姿勢情報を取得する。
In step S151, the line-of-sight detection calculation unit 40 acquires device orientation information of the imaging device 1 itself.
In step S<b>152 , the line-of-sight detection calculation unit 40 acquires device orientation information of the headset 130 .
 ステップS153で視線検出演算部40は、撮像装置1の装置姿勢情報と、ヘッドセット130の装置姿勢情報と、キャリブレーションデータとを関連づけてデータベース52に記憶する。
 つまりこの場合、記憶するキャリブレーションデータを、ロール角度=ゼロの状態とするための基準角度情報として撮像装置1の装置姿勢情報とヘッドセット130の装置姿勢情報とを記憶する。なお、このときの撮像装置1の装置姿勢情報とヘッドセット130の装置姿勢情報から求められる相対角度を、基準角度情報としてもよい。
In step S<b>153 , the line-of-sight detection calculation unit 40 associates the device orientation information of the imaging device 1 , the device orientation information of the headset 130 , and the calibration data, and stores them in the database 52 .
That is, in this case, the calibration data to be stored includes device orientation information of the imaging device 1 and device orientation information of the headset 130 as reference angle information for setting the roll angle to zero. Note that the relative angle obtained from the device orientation information of the imaging device 1 and the device orientation information of the headset 130 at this time may be used as the reference angle information.
 図20はキャリブレーションデータの補正処理例を示している。
 ステップS250で視線検出演算部40は撮像装置1の現在の装置姿勢情報を取得する。
 ステップS251で視線検出演算部40はヘッドセット130の現在の装置姿勢情報を取得する。
 今回取得した撮像装置1の装置姿勢情報とヘッドセット130の装置姿勢情報は、図19のステップS157で記憶した基準角度情報としての両装置姿勢情報と比較される、現在角度情報となる。
FIG. 20 shows an example of calibration data correction processing.
In step S<b>250 , the line-of-sight detection calculation unit 40 acquires current device orientation information of the imaging device 1 .
In step S<b>251 , the line-of-sight detection calculation unit 40 acquires current device orientation information of the headset 130 .
The device orientation information of the imaging device 1 and the device orientation information of the headset 130 acquired this time become current angle information that is compared with both device orientation information as the reference angle information stored in step S157 of FIG.
 ステップS252で視線検出演算部40は、装置姿勢情報に基づいてロール角度を算出する。例えばデータベース52に撮像装置1の装置姿勢情報とヘッドセット130の装置姿勢情報とが記憶されている場合、その相対的な姿勢差として相対角度を求める。またステップS250,S251で取得した各装置姿勢情報についても相対角度を求める。
 この記憶された両装置姿勢情報の相対角度と、現在の両姿勢情報の相対角度との差分が、今回のロール角度となる。
In step S252, the line-of-sight detection calculation unit 40 calculates the roll angle based on the device posture information. For example, if the database 52 stores device posture information of the imaging device 1 and device posture information of the headset 130, a relative angle is obtained as the relative posture difference. Also, the relative angle is obtained for each device orientation information acquired in steps S250 and S251.
The difference between the stored relative angle of both apparatus attitude information and the current relative angle of both attitude information is the current roll angle.
 ロール角度を算出したら、視線検出演算部40はステップS253で、記憶されているキャリブレーションデータから、現在の注視点におけるキャリブレーションベクトルを算出する。そしてステップS254でキャリブレーションベクトルに対してロール角度で回転をかけ、補正後のキャリブレーションベクトルを得る。
 これにより現在の相対的な姿勢関係に応じてキャリブレーションデータ補正されたことになり、その後は、補正されたキャリブレーションデータを用いて視線検出処理を行うことができる。
After calculating the roll angle, the line-of-sight detection calculation unit 40 calculates a calibration vector at the current gaze point from the stored calibration data in step S253. Then, in step S254, the calibration vector is rotated by the roll angle to obtain the corrected calibration vector.
As a result, the calibration data is corrected in accordance with the current relative posture relationship, and thereafter the line-of-sight detection process can be performed using the corrected calibration data.
<9.ロール角度情報の応用>
 続いて、ロール角度情報の応用例を説明する。
 以上の各実施の形態のように、キャリブレーションデータの補正のためにロール角度を求める場合、そのロール角度を利用した処理を行うようにすることも考えられる。
<9. Application of Roll Angle Information>
Next, an application example of roll angle information will be described.
As in each of the above embodiments, when the roll angle is obtained for correcting the calibration data, it is conceivable to perform processing using the roll angle.
 ここではUI(ユーザインタフェース)としての画面表示に応用する例を説明する。
 まずロール角度に応じて、UI画面を回転させることが考えられる。
 レーザー距離計のような単眼デバイスの場合に傾きの自動補正を行うことができる。
Here, an example of application to screen display as a UI (user interface) will be described.
First, it is conceivable to rotate the UI screen according to the roll angle.
Automatic tilt correction can be performed for monocular devices such as laser rangefinders.
 またAR(Augmented Reality)/VR(Virtual Reality)におけるヘッドマウントディスプレイなどのデバイスなどにおいても、目に対するデバイスの傾きをロール角度として検出する場合、ロール角度に基づいて画像を補正することができる。 Also, in devices such as head-mounted displays in AR (Augmented Reality) / VR (Virtual Reality), when the tilt of the device with respect to the eyes is detected as the roll angle, the image can be corrected based on the roll angle.
 ヘッドマウントディスプレイをユーザが装着した場合、厳密に水平になるように装着することは難しい。装着ずれもあるし、ユーザの頭部形状によっても、わずかに傾くことはある。ところが、若干の水平ずれがあっても、人間の脳内では、両眼に投影する画像のずれを補正する働きがある。このためユーザは、若干のずれは気にならないことが通常である。ところが、そのような脳内補正を続けていることで、疲労が蓄積されるという研究報告もある。
 そこで、ロール角度を検出した場合、若干のずれであっても、画像の傾きをロール角度に基づいて補正するようにする。これによりユーザに疲れを感じさせにくいデバイスとすることができる。
When the user wears the head-mounted display, it is difficult to wear it so that it is strictly horizontal. There is also mounting misalignment, and it may be slightly tilted depending on the user's head shape. However, even if there is a slight horizontal shift, there is a function in the human brain to correct the shift of the images projected on both eyes. For this reason, users usually do not mind a slight deviation. However, there is also a research report that fatigue accumulates by continuing such brain correction.
Therefore, when the roll angle is detected, the inclination of the image is corrected based on the roll angle even if the deviation is slight. As a result, it is possible to provide a device that does not make the user feel tired easily.
 或いは画像の補正を行わなくとも、水平に対するロール角度があるときは、装着状態の傾き正すことを推奨する通知をユーザに対して行うような処理を行ってもよい。 Alternatively, even if the image is not corrected, if there is a roll angle with respect to the horizontal, processing may be performed to notify the user that it is recommended to correct the inclination of the wearing state.
 UIに応用する例としては、画面上のアイコン配置への利用も考えられる。
 視線検出処理において光軸AX1と視軸AX2の差を解消する補正は、図8Bで説明したように、現在の注視点P0に対する近傍三点P1,P2,P3を用いる。
 従って、事前に行ったキャリブレーション処理時に注視させた点、つまり図7のようにマーカー67を表示させた複数の点に内包されるエリアの精度を高くできるものである。
As an example of application to the UI, use in arranging icons on the screen is also conceivable.
Correction for eliminating the difference between the optical axis AX1 and the visual axis AX2 in the line-of-sight detection process uses three neighboring points P1, P2, and P3 with respect to the current gaze point P0, as described with reference to FIG. 8B.
Therefore, it is possible to improve the accuracy of the points gazed at during the calibration process performed in advance, that is, the areas included in the plurality of points on which the markers 67 are displayed as shown in FIG.
 図21Aは、例えばEVF5や背面モニタ4の画面を想定し、その画面内で斜線部を付したエリア90をキャリブレーション効果が高いエリアとして示している。
 例えばこのエリア90の四隅が、図7のようにマーカー67を示した四隅に相当する。このエリア90内であれば、図8Bのように現在の注視点P0に対して近傍三点P1,P2,P3を得ることができるため、キャリブレーション効果が高くなる。ところが現在の注視点P0が、エリア90外となると、近傍三点がとれないため精度が低下する。
FIG. 21A assumes, for example, the screen of the EVF 5 or the rear monitor 4, and shows a hatched area 90 in the screen as an area with a high calibration effect.
For example, the four corners of this area 90 correspond to the four corners showing the markers 67 as shown in FIG. Within this area 90, three points P1, P2, and P3 near the current gaze point P0 can be obtained as shown in FIG. 8B, so that the calibration effect is enhanced. However, when the current gaze point P0 is out of the area 90, the accuracy is lowered because three neighboring points cannot be obtained.
 そのような事情を踏まえて、画面の回転を考える。
 キャリブレーション精度の高いエリア90が正方形でない場合に、画面の縦横を回転させた場合、図21Bに示すように、エリア90外の領域が上下に比較的広くできてしまう。
 そこで、例えば図21Cのように、撮像装置1の横持ち時を基準として全画面を使うUIについては、縦持ちの際に画面を回転させるときには、UIに用いるアイコン等を、図21Dのように、エリア90内となるように配置変換や縮尺変換を行うようにする。縮尺はそのままで、表示するアイコン数や内容を変えてもよい。
Based on such circumstances, the rotation of the screen is considered.
If the screen is rotated vertically and horizontally when the area 90 with high calibration accuracy is not square, the area outside the area 90 becomes relatively wide in the vertical direction, as shown in FIG. 21B.
Therefore, for example, as shown in FIG. 21C, for a UI that uses the entire screen based on when the image capturing apparatus 1 is held horizontally, when the screen is rotated when held vertically, the icons used for the UI, etc., are changed as shown in FIG. 21D. , so as to be within the area 90 . The number of icons to be displayed and the contents may be changed without changing the scale.
 このようにすることで、画面の回転によらず、アイコン等が常にキャリブレーション効果の高い領域に配置されるようにすることができる。
 例えば視線による操作を可能とするような場合、キャリブレーション効果により視線方向検出の精度が高い状態で、アイコン等の操作子が配置されることは極めて好適である。
By doing so, it is possible to always arrange the icons and the like in areas where the calibration effect is high regardless of the rotation of the screen.
For example, in the case of enabling operation by line of sight, it is extremely preferable to arrange controls such as icons in a state in which line-of-sight direction detection accuracy is high due to the calibration effect.
 なお図21では撮像装置1の縦持ちによりEVF5や背面モニタ4の画面が横に長い状態から縦に長い状態に回転させたときの例を挙げたが、逆に縦長の画面状態でキャリブレーションを行った場合、横長に回転させると、エリア90外の領域が左右に広くできる状況になる。そのような場合も、アイコン等の配置、サイズ変換なども同様に適用可能である。
 また顔の向きが斜めになっている場合には前の状態を維持することも考えられる。
Note that FIG. 21 shows an example in which the screen of the EVF 5 or the rear monitor 4 is rotated from a horizontally elongated state to a vertically elongated state by holding the imaging device 1 vertically. In this case, if it is rotated horizontally, the area outside the area 90 can be widened to the left and right. In such a case, placement of icons and the like, size conversion, etc. are similarly applicable.
Also, if the face is slanted, it is possible to maintain the previous state.
 またUI画面への応用としては、ロール角度の検出精度に応じてアイコン等のUIパーツのサイズを変更するようなことも考えられる。ロール角を求める手法によって、その検出精度は異なるため、精度が低い場合にはUIパーツを大きくするなどして、ずれを許容する画面を提供するなどである。
Also, as an application to a UI screen, it is conceivable to change the size of UI parts such as icons according to the detection accuracy of the roll angle. Since the detection accuracy differs depending on the method of obtaining the roll angle, if the accuracy is low, the UI parts are made larger to provide a screen that allows deviation.
<10.まとめ及び変形例>
 以上の実施の形態によれば次のような効果を得ることができる。
 実施の形態の情報処理装置(撮像装置1や端末装置100など)は視線検出演算部40を備えている。視線検出演算部40は、視線検出装置部41における目画像撮像部51で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、視線検出処理に用いるキャリブレーションデータを、目と目画像撮像部51との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う。
 これによりキャリブレーション処理を一度実行すれば、撮像装置1に対するユーザの持ち方や姿勢が変わっても、それに応じたキャリブレーションデータを得て視線検出処理を行うことができる。従って、再度キャリブレーション処理を行う必要もなく、また、ユーザの姿勢や持ち方に応じた複数のキャリブレーションデータを記憶しておく必要もなくなる。
 また、相対的な角度変化に基づくため、例えば水平に置かれた撮像装置1をユーザが斜めに除いたような場合にも適切なキャリブレーションデータの補正を行うことができる。
 従って撮像装置1、端末装置100などの使用性の向上や処理の効率化、記憶するキャリブレーションデータのデータ量の効率化を図りつつ、視線検出精度を向上させることができる。
<10. Summary and Modifications>
According to the above embodiment, the following effects can be obtained.
The information processing apparatus (imaging device 1, terminal device 100, etc.) of the embodiment includes a line-of-sight detection calculation unit 40. FIG. The line-of-sight detection calculation unit 40 performs line-of-sight detection processing for detecting the line-of-sight direction based on the eye image captured by the eye image capturing unit 51 in the line-of-sight detection device unit 41, and also calculates the calibration data used for the line-of-sight detection processing from the eye. Correction processing is performed based on the roll angle information, which is the information on the relative angle change between the eye image pickup unit 51 and the eye image pickup unit 51 .
Accordingly, once the calibration process is executed, even if the user's way of holding the imaging device 1 or the posture changes, it is possible to obtain the calibration data corresponding to it and perform the line-of-sight detection process. Therefore, there is no need to perform calibration processing again, and there is no need to store a plurality of pieces of calibration data according to the user's posture and holding method.
Moreover, since it is based on relative angular changes, it is possible to appropriately correct the calibration data even when the user obliquely removes the imaging device 1 placed horizontally, for example.
Therefore, it is possible to improve usability of the imaging device 1, the terminal device 100, etc., improve processing efficiency, and improve the efficiency of the amount of calibration data to be stored, while improving the accuracy of line-of-sight detection.
 実施の形態では、視線検出演算部40が、視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行うときに、ロール角度情報の算出に用いる基準角度情報を取得し、キャリブレーションデータと基準角度情報を関連づけて記憶する処理を行う例を挙げた。
 基準角度情報は、ロール角度をゼロの角度情報である。例えばキャリブレーション実行時に取得する虹彩コード、境界情報、接触位置情報、装置姿勢情報などである。このような基準角度情報をキャリブレーションデータとペアで記憶しておくことで、取得したキャリブレーションデータについての相対的な姿勢関係、つまりそのキャリブレーションデータについて、ロール角度情報をゼロとした場合の相対的な姿勢関係を把握できる。これはその後の視線検出処理時にロール角度の算出の基準として用いることができる。
 なお基準角度情報は、虹彩コード、境界情報、接触位置情報、装置姿勢情報に限らず、他にも各種考えられる。ユーザの目と、撮像装置1や端末装置100等の目画像撮像部51との相対的な姿勢関係に応じて変化する情報を基準角度情報として用いればよい。
In the embodiment, the line-of-sight detection calculation unit 40 acquires reference angle information used for calculating roll angle information when performing calibration processing for acquiring calibration data used for line-of-sight detection processing, and performs calibration data and the reference angle information. An example of performing processing for storing angle information in association with each other has been given.
The reference angle information is angle information with zero roll angle. For example, the iris code, boundary information, contact position information, device attitude information, etc. acquired when performing calibration. By storing such reference angle information in pairs with calibration data, the relative posture relationship for the acquired calibration data, that is, the relative posture relationship for the calibration data when the roll angle information is set to zero. It is possible to grasp the relationship between physical postures. This can be used as a reference for calculating the roll angle during the subsequent line-of-sight detection processing.
Note that the reference angle information is not limited to the iris code, boundary information, contact position information, and device posture information, and various other types of information are conceivable. Information that changes according to the relative posture relationship between the user's eyes and the eye image capturing unit 51 of the imaging device 1 or the terminal device 100 may be used as the reference angle information.
 実施の形態では、視線検出演算部40が、視線検出処理の際に、基準角度情報と同種の情報である現在角度情報を取得し、基準角度情報と現在角度情報を用いてロール角度情報を算出して補正処理を行う例を挙げた。
 現在角度情報は、視線検出処理時の角度情報である。例えば視線検出処理時に取得する虹彩コード、境界情報、接触位置情報、装置姿勢情報などである。このような現在角度情報と基準角度情報を比較することでロール角度情報を容易に算出できる。
 現在角度情報は、基準角度情報と同種の情報であればよく、虹彩コード、境界情報、接触位置情報、装置姿勢情報に限られない。基準角度情報として採用する情報種別に応じて、現在角度情報も各種考えられる。
In the embodiment, the line-of-sight detection calculation unit 40 acquires current angle information, which is the same type of information as the reference angle information, during line-of-sight detection processing, and calculates roll angle information using the reference angle information and the current angle information. An example of performing correction processing by
The current angle information is angle information at the time of line-of-sight detection processing. For example, the iris code, boundary information, contact position information, device orientation information, etc., acquired during the line-of-sight detection process. Roll angle information can be easily calculated by comparing the current angle information and the reference angle information.
The current angle information may be the same type of information as the reference angle information, and is not limited to the iris code, boundary information, contact position information, and apparatus orientation information. Various types of current angle information are conceivable according to the type of information employed as the reference angle information.
 第1の実施の形態では、視線検出演算部40が、ロール角度情報を、虹彩認証処理で用いる虹彩コードから算出する例を挙げた。
 これにより虹彩認証処理で得られる情報を利用してロール角度情報を取得することができ、ロール角度情報のためのみの検出処理を別途行う必要がない。従って処理を効率化できる。
In the first embodiment, the line-of-sight detection calculation unit 40 calculates the roll angle information from the iris code used in the iris authentication process.
This makes it possible to obtain roll angle information using information obtained by iris authentication processing, and eliminates the need to separately perform detection processing only for roll angle information. Therefore, processing can be made more efficient.
 第1の実施の形態では、視線検出演算部40が、虹彩コードの取得機会に視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行い、取得した虹彩コードをロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う例とした(図9参照)。
 虹彩コードを基準角度情報としてキャリブレーションデータとペアで記憶しておくことで、記憶するキャリブレーションデータについてのロール角度情報をゼロとした場合の相対的な姿勢関係を把握できるようになる。
In the first embodiment, the line-of-sight detection calculation unit 40 performs calibration processing to acquire calibration data used for line-of-sight detection processing at an opportunity to acquire an iris code, and uses the acquired iris code to calculate roll angle information. This is an example in which the reference angle information is stored in association with the calibration data (see FIG. 9).
By storing the iris code as reference angle information in pairs with the calibration data, it becomes possible to grasp the relative attitude relationship when the roll angle information for the stored calibration data is set to zero.
 第1の実施の形態では、視線検出演算部40が、虹彩認証処理で検出した虹彩コードを現在角度情報とし、基準角度情報と現在角度情報を用いてロール角度情報を算出して補正処理を行う例を挙げた(図12参照)。
 視線検出処理時に取得する虹彩コードを現在角度情報として、基準角度情報を比較することでロール角度情報を容易に算出できる。従って虹彩認証を行う場合に、特別な検出を行わなくともキャリブレーションデータの補正処理が実行できる。
In the first embodiment, the line-of-sight detection calculation unit 40 uses the iris code detected in the iris authentication process as the current angle information, calculates the roll angle information using the reference angle information and the current angle information, and performs the correction process. An example was given (see FIG. 12).
The roll angle information can be easily calculated by comparing the reference angle information with the iris code acquired during the line-of-sight detection process as the current angle information. Therefore, when iris authentication is performed, calibration data correction processing can be executed without special detection.
 第1の実施の形態では、視線検出演算部40が、基準角度情報としての虹彩コードと、現在角度情報としての虹彩コードのハミング距離に基づいてロール角度情報を算出する例を挙げた。
 現在角度情報と基準角度情報としての両虹彩コードは、撮像装置1とユーザの目の相対的な姿勢変化に応じてビットシフトした関係となる。従ってハミング距離が最小となるときのシフト量は角度変化量、即ちロール角度情報を表すものとなる。これによりロール角度情報を算出でき、キャリブレーションデータの補正処理が実行できる。
In the first embodiment, the line-of-sight detection calculation unit 40 calculates the roll angle information based on the Hamming distance between the iris code as the reference angle information and the iris code as the current angle information.
Both the current angle information and the iris code as the reference angle information have a bit-shifted relationship according to the relative change in the eye posture of the imaging device 1 and the user's eye. Therefore, the shift amount when the Hamming distance is the minimum represents the angle change amount, that is, the roll angle information. Accordingly, roll angle information can be calculated, and calibration data correction processing can be executed.
 第1の実施の形態では、視線検出演算部40は、虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが基準角度情報として記憶されていた場合に、虹彩認証処理で検出した虹彩コードを現在角度情報とし、基準角度情報と現在角度情報を用いて算出したロール角度情報を用いて補正処理を行う例を述べた。
 過去に虹彩コードを基準角度情報としてキャリブレーションデータとペアにして記憶したときの人物であると判定できたときに、図12のステップS205からステップS207で虹彩コードを用いた補正処理を行うようにする。
 これにより虹彩コードを用いたロール角度情報の算出が適切なものとなり、現在の人物に対して適切なキャリブレーションデータの補正処理が担保される。
In the first embodiment, if the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are stored as the reference angle information, the line-of-sight detection calculation unit 40 detects the iris code in the iris authentication process. An example has been described in which the calculated iris code is used as current angle information, and correction processing is performed using roll angle information calculated using the reference angle information and current angle information.
When it can be determined that the person is the same person as when the iris code was paired with the calibration data as reference angle information and stored in the past, correction processing using the iris code is performed in steps S205 to S207 of FIG. do.
As a result, calculation of the roll angle information using the iris code becomes appropriate, and correction processing of the calibration data appropriate for the current person is ensured.
 また第1の実施の形態では、視線検出演算部40は、虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが基準角度情報として記憶されていない場合には、キャリブレーション処理を行い、虹彩認証処理で取得した虹彩コードを基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う例を挙げた。つまり図12のステップS210,S211の処理である。
 この場合、基準角度情報と現在角度情報を比較しても正しくロール角度情報を算出できないため補正処理は行わない。これにより不正確なロール角度情報に基づく補正処理が行われないようにできる。
 また、新たな人物の検出として、今回の虹彩コードを基準角度情報としてキャリブレーションデータと関連づけて記憶することで、その後は、その人物についても適切にキャリブレーションデータを補正できる状態とすることになる。
Further, in the first embodiment, if the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are not stored as the reference angle information, the line-of-sight detection calculation unit 40 performs the calibration process. and stores the iris code acquired in the iris authentication process as reference angle information in association with the calibration data. That is, it is the processing of steps S210 and S211 in FIG.
In this case, even if the reference angle information and the current angle information are compared, the roll angle information cannot be calculated correctly, so correction processing is not performed. Accordingly, correction processing based on inaccurate roll angle information can be prevented from being performed.
Also, when detecting a new person, by storing the current iris code as reference angle information in association with the calibration data, the calibration data for that person can be appropriately corrected thereafter. .
 第2の実施の形態では、視線検出演算部40が、ロール角度情報を、目の撮像画像におけるまぶたの境界情報に基づいて算出する例を挙げた。境界情報はまぶたに関連する特徴などを表す情報である。
 目画像から得られる情報を利用してロール角度情報を取得することで、簡易にロール角度情報を求め、キャリブレーションデータの補正処理を行うことができる。特に個人認証を行う必要がない機器や個人用の機器などでは有用となる。
In the second embodiment, the line-of-sight detection calculation unit 40 calculates the roll angle information based on the eyelid boundary information in the captured image of the eye. Boundary information is information representing features related to the eyelids.
By acquiring the roll angle information using the information obtained from the eye image, it is possible to easily obtain the roll angle information and correct the calibration data. This is particularly useful for devices that do not require personal authentication or personal devices.
 第2の実施の形態では、視線検出演算部40が、視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、目の撮像画像から境界情報を取得し、境界情報を、ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う例を挙げた(図14参照)。
 目画像から認識される境界情報を基準角度情報としてキャリブレーションデータとペアで記憶しておくことで、記憶するキャリブレーションデータについてのロール角度情報をゼロとした場合の相対的な姿勢関係を把握できるようになる。
In the second embodiment, the line-of-sight detection calculation unit 40 acquires boundary information from the captured image of the eye when performing calibration processing for obtaining calibration data used in the line-of-sight detection processing, and rolls the boundary information. As the reference angle information used for calculating the angle information, an example is given in which processing is performed to store the reference angle information in association with the calibration data (see FIG. 14).
By storing the boundary information recognized from the eye image as reference angle information in pairs with the calibration data, it is possible to grasp the relative attitude relationship when the roll angle information for the stored calibration data is set to zero. become.
 第2の実施の形態では、視線検出演算部40が、目の撮像画像から境界情報を取得して現在角度情報とし、基準角度情報と現在角度情報を用いてロール角度情報を算出して補正処理を行う例を挙げた(図15参照)。
 視線検出処理時に、目画像からまぶたの境界形状の情報である境界情報を取得して現在角度情報とし、基準角度情報を比較することでロール角度情報を容易に算出できる。
In the second embodiment, the line-of-sight detection calculation unit 40 acquires boundary information from the captured image of the eye and uses it as current angle information, calculates roll angle information using the reference angle information and the current angle information, and performs correction processing. (see FIG. 15).
During the line-of-sight detection process, the roll angle information can be easily calculated by acquiring the boundary information, which is the information on the boundary shape of the eyelids, from the eye image and using it as the current angle information, and comparing it with the reference angle information.
 第3の実施の形態では、視線検出演算部40が、ロール角度情報を、タッチパネルに対する接触位置情報に基づいて算出する例を挙げた。
 タッチパネルによる接触位置を用いることで、簡易にロール角度情報を求め、キャリブレーションデータの補正処理を行うことができる。特に個人認証処理や画像からの物体認識等の処理も行わない機器であり、ユーザが表示部15をのぞき込むような機器、例えば撮像装置1や望遠鏡のような機器においての適用に好適である。
In the third embodiment, the line-of-sight detection calculation unit 40 calculates the roll angle information based on the contact position information on the touch panel.
By using the contact position on the touch panel, it is possible to easily obtain the roll angle information and perform correction processing of the calibration data. In particular, the device does not perform personal authentication processing or object recognition from images, and is suitable for use in devices in which the user looks into the display unit 15, such as the imaging device 1 and the telescope.
 第3の実施の形態では、視線検出演算部40が、視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、接触位置情報を取得し、接触位置情報を、ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う例を挙げた(図16参照)。
 接触位置情報を基準角度情報としてキャリブレーションデータとペアで記憶しておくことで、記憶するキャリブレーションデータについてのロール角度情報をゼロとした場合の相対的な姿勢関係を把握できるようになる。
In the third embodiment, the line-of-sight detection calculation unit 40 acquires contact position information when performing calibration processing for acquiring calibration data used in line-of-sight detection processing, and converts the contact position information into roll angle information. As the reference angle information used for the calculation, an example is given in which the reference angle information is stored in association with the calibration data (see FIG. 16).
By storing the contact position information as reference angle information in pairs with the calibration data, it is possible to grasp the relative attitude relationship when the roll angle information for the stored calibration data is set to zero.
 第3の実施の形態では、視線検出演算部40が、接触位置情報を取得して現在角度情報とし、基準角度情報と現在角度情報を用いてロール角度情報を算出して前記補正処理を行う例を挙げた(図17参照)。
 視線検出処理時に、目画像からまぶたの境界形状の情報である境界情報を取得して現在角度情報とし、基準角度情報を比較することでロール角度情報を容易に算出できる。
In the third embodiment, the line-of-sight detection calculation unit 40 acquires the contact position information and uses it as current angle information, calculates the roll angle information using the reference angle information and the current angle information, and performs the correction process. (see FIG. 17).
During the line-of-sight detection process, the roll angle information can be easily calculated by acquiring the boundary information, which is the information on the boundary shape of the eyelids, from the eye image and using it as the current angle information, and comparing it with the reference angle information.
 第4の実施の形態では、情報処理装置(例えば撮像装置1)が自己の姿勢を検出する検出部(例えばセンサ部23)を備え、視線検出演算部40は、外部の頭部装着装置(例えばヘッドセット130)から送信された装置姿勢情報と、検出部で検出された装置姿勢情報に基づいてロール角度情報を算出する例を挙げた(図18,図19,図20参照)。
 例えば撮像装置1とヘッドセット130のそれぞれの装置姿勢情報を用いれば、ユーザの頭部の姿勢と、撮像装置1の視線の相対関係がわかる。従ってロール角度を算出でき、キャリブレーションデータの補正処理を行うことができる。
In the fourth embodiment, the information processing device (for example, the imaging device 1) includes a detection unit (for example, the sensor unit 23) that detects its own posture, and the line-of-sight detection calculation unit 40 is connected to an external head-mounted device (for example, An example of calculating the roll angle information based on the device orientation information transmitted from the headset 130) and the device orientation information detected by the detection unit has been given (see FIGS. 18, 19, and 20).
For example, by using the device orientation information of the imaging device 1 and the headset 130, the relative relationship between the orientation of the user's head and the line of sight of the imaging device 1 can be known. Therefore, the roll angle can be calculated, and correction processing of the calibration data can be performed.
 実施の形態の情報処理装置としての端末装置100や撮像装置1は、目画像撮像部51を有する視線検出装置部41を備える例を示した。即ち目画像撮像部51を一体的に備える情報処理装置において、視線検出装置部41の検出結果に基づいて、視線検出演算部40で視線検出処理及びキャリブレーションデータの補正処理が行われる構成とする。
 これにより端末装置100や撮像装置1としてキャリブレーションデータの補正処理を行ったうえで視線検出を行う装置が実現される。従って端末装置100等で精度の高い視線検出処理が可能になり、高精度な視線方向の検出結果を各種の処理に適用できる。
 特にスマートフォンやタブレット装置として例示した端末装置100では、ユーザが画面を除く角度は多様である。そのため、本技術のキャリブレーションデータの補正処理は極めて有用である。
 またテーブルトップディスプレイ120のような装置の場合、テーブルに対するユーザの立ち位置によって相対的な姿勢関係が異なり、また角の方に立ったユーザは特に目画像撮像装置に対しては斜めに写ることがある。このような状況で本技術の補正処理は有用である。
An example in which the terminal device 100 and the imaging device 1 as the information processing device of the embodiment include the line-of-sight detection device section 41 having the eye image imaging section 51 is shown. That is, in the information processing apparatus integrally including the eye image capturing unit 51, the line-of-sight detection processing and calibration data correction processing are performed by the line-of-sight detection calculation unit 40 based on the detection result of the line-of-sight detection device unit 41. .
As a result, the terminal device 100 and the imaging device 1 can implement a device that detects the line of sight after correcting the calibration data. Therefore, highly accurate line-of-sight detection processing can be performed in the terminal device 100 or the like, and highly accurate line-of-sight direction detection results can be applied to various types of processing.
In particular, in the terminal device 100 exemplified as a smartphone or tablet device, the angle at which the user removes the screen is diverse. Therefore, the calibration data correction process of the present technology is extremely useful.
Also, in the case of a device such as the tabletop display 120, the relative posture relationship varies depending on the user's standing position with respect to the table, and a user standing in a corner may appear oblique, especially to the eye imaging device. be. In such a situation, the correction processing of the present technology is useful.
 なお、視線検出装置部41を備える機器と、視線検出演算部40を備える機器が別体構成とされ、視線検出装置部41の目画像撮像部51で撮像した目画像を、視線検出装置部41を備える情報処理装置に送信するような構成も考えられる。 Note that the device including the line-of-sight detection device unit 41 and the device including the line-of-sight detection calculation unit 40 are configured separately. A configuration in which the information is transmitted to an information processing apparatus including
 実施の形態では、画像撮像を行う撮像部と、目画像撮像部51を有する視線検出装置部41と、視線検出演算部40を備える情報処理装置の例として撮像装置1を挙げた。撮像部とは、レンズ系11、撮像素子部12、カメラ信号処理部13を含む、画像撮像系である。
 これにより撮像装置1としてキャリブレーションデータの補正処理を行ったうえで視線検出を行う装置が実現される。従って精度の高い視線検出処理が可能になり、視線検出結果を撮像動作に有効に利用できる。例えば視線方向に応じたフォーカス制御などが精度よく実現できる。
In the embodiments, the imaging device 1 is given as an example of an information processing device that includes an imaging unit that captures an image, the line-of-sight detection device unit 41 that has the eye image capturing unit 51 , and the line-of-sight detection calculation unit 40 . The imaging section is an imaging system including the lens system 11 , the imaging element section 12 and the camera signal processing section 13 .
As a result, the imaging apparatus 1 is realized as an apparatus that detects the line of sight after correcting the calibration data. Therefore, highly accurate line-of-sight detection processing becomes possible, and the result of line-of-sight detection can be effectively used for imaging operations. For example, focus control according to the line-of-sight direction can be realized with high precision.
 なお、以上のいずれの実施の形態の場合でも、右目と左目でそれぞれのキャリブレーションデータを記憶する場合は、右目と左目でそれぞれ基準角度情報(虹彩コード、境界情報、接触位置情報、装置姿勢情報等)を、キャリブレーションデータと関連づけて記憶することが想定される。 In any of the above embodiments, when storing calibration data for each of the right eye and left eye, reference angle information (iris code, boundary information, contact position information, device posture information) is stored for each of the right and left eyes. etc.) are assumed to be stored in association with the calibration data.
 また端末装置100やテーブルトップディスプレイ120の場合のように、比較的離れたところから顔全体が写る場合は、骨格推定や顔検出を用いて顔の傾きを求めてもよい。 Also, when the entire face is captured from a relatively distant place, as in the case of the terminal device 100 or the tabletop display 120, the tilt of the face may be obtained using skeleton estimation or face detection.
 実施の形態のプログラムは、上述のキャリブレーションデータの補正処理を、例えばCPU、DSP、GPU、GPGPU、AIプロセッサ等、或いはこれらを含むデバイスに実行させるプログラムである。
 即ち実施の形態のプログラムは、目画像撮像部51による目画像に基づいて視線方向を検出する視線検出処理を行うとともに、視線検出処理に用いるキャリブレーションデータを、目と目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を、カメラ制御部18やCPU71等の情報処理装置に実行させるプログラムである。
 このようなプログラムにより本開示でいうキャリブレーションデータの補正処理を各種の情報処理装置により実現できる。
A program according to an embodiment is a program that causes a CPU, DSP, GPU, GPGPU, AI processor, etc., or a device including these to execute the calibration data correction process described above.
That is, the program according to the embodiment performs line-of-sight detection processing for detecting the line-of-sight direction based on the eye image captured by the eye image capturing unit 51, and also performs the calibration data used for the line-of-sight detection processing in relation to the eyes and the eye image capturing unit. It is a program that causes an information processing device such as the camera control unit 18 or the CPU 71 to execute a line-of-sight detection calculation that performs a correction process based on roll angle information, which is information about a change in angle.
With such a program, the calibration data correction process referred to in the present disclosure can be realized by various information processing apparatuses.
 これらのプログラムはコンピュータ装置等の機器に内蔵されている記録媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。
 あるいはまた、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、MO(Magneto Optical)ディスク、DVD(Digital Versatile Disc)、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、このようなプログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、LAN(Local Area Network)、インターネットなどのネットワークを介してダウンロードすることもできる。
These programs can be recorded in advance in a HDD as a recording medium built in equipment such as a computer device, or in a ROM or the like in a microcomputer having a CPU.
Alternatively, a flexible disc, a CD-ROM (Compact Disc Read Only Memory), an MO (Magneto Optical) disc, a DVD (Digital Versatile Disc), a Blu-ray disc (Blu-ray Disc (registered trademark)), a magnetic disc, a semiconductor memory, It can be temporarily or permanently stored (recorded) in a removable recording medium such as a memory card. Such removable recording media can be provided as so-called package software.
In addition to installing such a program from a removable recording medium to a personal computer or the like, it can also be downloaded from a download site via a network such as a LAN (Local Area Network) or the Internet.
 またこのようなプログラムによれば、本開示の情報処理装置の広範な提供に適している。例えばスマートフォンやタブレット等の端末装置100、携帯電話機、パーソナルコンピュータ、ゲーム機器、ビデオ機器、PDA(Personal Digital Assistant)等にプログラムをダウンロードすることで、これらの機器を本開示の情報処理装置として機能させることができる。 Also, such a program is suitable for widely providing the information processing apparatus of the present disclosure. For example, by downloading a program to a terminal device 100 such as a smartphone or tablet, a mobile phone, a personal computer, a game device, a video device, a PDA (Personal Digital Assistant), etc., these devices function as the information processing device of the present disclosure. be able to.
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 It should be noted that the effects described in this specification are merely examples and are not limited, and other effects may also occur.
 なお本技術は以下のような構成も採ることができる。
 (1)
 目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算部を備えた
 情報処理装置。
 (2)
 前記視線検出演算部は、
 前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行うときに、前記ロール角度情報の算出に用いる基準角度情報を取得し、キャリブレーションデータと基準角度情報を関連づけて記憶する処理を行う
 上記(1)に記載の情報処理装置。
 (3)
 前記視線検出演算部は、
 前記視線検出処理の際に、前記基準角度情報と同種の情報である現在角度情報を取得し、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
 上記(2)に記載の情報処理装置。
 (4)
 前記視線検出演算部は、
 ロール角度情報を、虹彩認証処理で用いる虹彩コードから算出する
 上記(1)から(3)のいずれかに記載の情報処理装置。
 (5)
 前記視線検出演算部は、
 虹彩コードの取得機会に、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行い、
 取得した虹彩コードを前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
 上記(4)に記載の情報処理装置。
 (6)
 前記視線検出演算部は、
 前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
 上記(5)に記載の情報処理装置。
 (7)
 前記視線検出演算部は、
 前記基準角度情報としての虹彩コードと、前記現在角度情報としての虹彩コードのハミング距離に基づいて前記ロール角度情報を算出する
 上記(6)に記載の情報処理装置。
 (8)
 前記視線検出演算部は、
 前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていた場合に、前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて算出した前記ロール角度情報を用いて前記補正処理を行う
 上記(6)から(7)のいずれかに記載の情報処理装置。
 (9)
 前記視線検出演算部は、
 前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていない場合に、前記キャリブレーション処理を行い、前記虹彩認証処理で取得した虹彩コードを前記基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
 上記(6)から(8)のいずれかに記載の情報処理装置。
 (10)
 前記視線検出演算部は、
 ロール角度情報を、目の撮像画像におけるまぶたの境界情報に基づいて算出する
 上記(1)から(3)のいずれかに記載の情報処理装置。
 (11)
 前記視線検出演算部は、
 前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、目の撮像画像から前記境界情報を取得し、
 前記境界情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
 上記(10)に記載の情報処理装置。
 (12)
 前記視線検出演算部は、
 目の撮像画像から前記境界情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
 上記(11)に記載の情報処理装置。
 (13)
 前記視線検出演算部は、
 ロール角度情報を、タッチパネルに対する接触位置情報に基づいて算出する
 上記(1)から(3)のいずれかに記載の情報処理装置。
 (14)
 前記視線検出演算部は、
 前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、前記接触位置情報を取得し、
 前記接触位置情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
 上記(13)に記載の情報処理装置。
 (15)
 前記視線検出演算部は、
 前記接触位置情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
 上記(14)に記載の情報処理装置。
 (16)
 自己の姿勢を検出する検出部を備え、
 前記視線検出演算部は、
 頭部装着装置から送信された前記頭部装着装置の装置姿勢情報と、前記検出部で検出された装置姿勢情報に基づいて、前記ロール角度情報を算出する
 上記(1)から(3)のいずれかに記載の情報処理装置。
 (17)
 前記目画像撮像部を備える
 上記(1)から(16)のいずれかに記載の情報処理装置。
 (18)
 画像撮像を行う撮像部と、
 前記目画像撮像部と、
 を有する
 上記(1)から(17)のいずれかに記載の情報処理装置。
 (19)
 目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を、
 情報処理装置が実行する視線検出方法。
 (20)
 目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を、
 情報処理装置に実行させるプログラム。
Note that the present technology can also adopt the following configuration.
(1)
A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. An information processing apparatus comprising a line-of-sight detection calculation unit that performs correction processing for correcting based on roll angle information, which is information of.
(2)
The line-of-sight detection calculation unit is
When performing the calibration process for acquiring the calibration data used for the line-of-sight detection process, the reference angle information used for calculating the roll angle information is acquired, and the calibration data and the reference angle information are stored in association with each other. The information processing apparatus according to (1) above.
(3)
The line-of-sight detection calculation unit is
During the line-of-sight detection process, current angle information that is the same type of information as the reference angle information is acquired, and the roll angle information is calculated using the reference angle information and the current angle information, and the correction process is performed. The information processing apparatus according to (2) above.
(4)
The line-of-sight detection calculation unit is
The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated from an iris code used in iris authentication processing.
(5)
The line-of-sight detection calculation unit is
performing calibration processing for acquiring calibration data used in the line-of-sight detection processing at an opportunity to acquire the iris code,
The information processing apparatus according to (4) above, wherein the acquired iris code is stored as reference angle information used for calculating the roll angle information in association with calibration data.
(6)
The line-of-sight detection calculation unit is
The information processing apparatus according to (5) above, wherein the iris code detected in the iris authentication process is used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process. .
(7)
The line-of-sight detection calculation unit is
The information processing apparatus according to (6), wherein the roll angle information is calculated based on a Hamming distance between the iris code as the reference angle information and the iris code as the current angle information.
(8)
The line-of-sight detection calculation unit is
When the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are stored as the reference angle information, the iris code detected in the iris authentication process is used as the current angle information, and the reference angle The information processing apparatus according to any one of (6) to (7) above, wherein the correction process is performed using the roll angle information calculated using the information and the current angle information.
(9)
The line-of-sight detection calculation unit is
If the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are not stored as the reference angle information, the calibration process is performed, and the iris code acquired in the iris authentication process is used as the iris code. The information processing apparatus according to any one of (6) to (8) above, wherein the reference angle information is stored in association with the calibration data.
(10)
The line-of-sight detection calculation unit is
The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated based on eyelid boundary information in a captured image of an eye.
(11)
The line-of-sight detection calculation unit is
obtaining the boundary information from the captured image of the eye when performing calibration processing for obtaining calibration data used in the line-of-sight detection processing;
The information processing apparatus according to (10), wherein the boundary information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
(12)
The line-of-sight detection calculation unit is
The information according to (11) above, wherein the boundary information is obtained from the captured image of the eye and used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process. processing equipment.
(13)
The line-of-sight detection calculation unit is
The information processing apparatus according to any one of (1) to (3) above, wherein roll angle information is calculated based on contact position information with respect to the touch panel.
(14)
The line-of-sight detection calculation unit is
Acquiring the contact position information when performing a calibration process for acquiring calibration data used in the line-of-sight detection process,
The information processing apparatus according to (13), wherein the contact position information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
(15)
The line-of-sight detection calculation unit is
The information processing apparatus according to (14), wherein the contact position information is obtained as current angle information, the roll angle information is calculated using the reference angle information and the current angle information, and the correction process is performed.
(16)
Equipped with a detection unit that detects its own posture,
The line-of-sight detection calculation unit is
calculating the roll angle information based on the device posture information of the head-mounted device transmitted from the head-mounted device and the device posture information detected by the detection unit; any of the above (1) to (3) 1. The information processing device according to claim 1.
(17)
The information processing apparatus according to any one of (1) to (16) above, including the eye image capturing section.
(18)
an imaging unit that captures an image;
the eye image capturing unit;
The information processing apparatus according to any one of (1) to (17) above.
(19)
A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. The line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of
A line-of-sight detection method executed by an information processing device.
(20)
A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. The line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of
A program to be executed by an information processing device.
1 撮像装置
4 背面モニタ
5 EVF
15 表示部
16 通信部
18 カメラ制御部
19 メモリ部
23 センサ部
24 視線検出部
40 視線検出演算部
41 視線検出装置部
50 赤外線照射部
51 目画像撮像部
52 データベース
71 CPU
100 端末装置
120 テーブルトップディスプレイ
130 ヘッドセット
1 imaging device 4 rear monitor 5 EVF
15 display unit 16 communication unit 18 camera control unit 19 memory unit 23 sensor unit 24 line-of-sight detection unit 40 line-of-sight detection calculation unit 41 line-of-sight detection device unit 50 infrared irradiation unit 51 eye image capturing unit 52 database 71 CPU
100 terminal device 120 table top display 130 headset

Claims (20)

  1.  目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算部を備えた
     情報処理装置。
    A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. An information processing apparatus comprising a line-of-sight detection calculation unit that performs correction processing for correcting based on roll angle information, which is information of.
  2.  前記視線検出演算部は、
     前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行うときに、前記ロール角度情報の算出に用いる基準角度情報を取得し、キャリブレーションデータと基準角度情報を関連づけて記憶する処理を行う
     請求項1に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    When performing the calibration process for acquiring the calibration data used for the line-of-sight detection process, the reference angle information used for calculating the roll angle information is acquired, and the calibration data and the reference angle information are stored in association with each other. The information processing device according to claim 1 .
  3.  前記視線検出演算部は、
     前記視線検出処理の際に、前記基準角度情報と同種の情報である現在角度情報を取得し、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
     請求項2に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    During the line-of-sight detection process, current angle information that is the same type of information as the reference angle information is acquired, and the roll angle information is calculated using the reference angle information and the current angle information, and the correction process is performed. The information processing apparatus according to claim 2.
  4.  前記視線検出演算部は、
     ロール角度情報を、虹彩認証処理で用いる虹彩コードから算出する
     請求項1に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    The information processing apparatus according to claim 1, wherein roll angle information is calculated from an iris code used in iris authentication processing.
  5.  前記視線検出演算部は、
     虹彩コードの取得機会に、前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行い、
     取得した虹彩コードを前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
     請求項4に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    performing calibration processing for acquiring calibration data used in the line-of-sight detection processing at an opportunity to acquire the iris code,
    5. The information processing apparatus according to claim 4, wherein the obtained iris code is stored in association with calibration data as reference angle information used for calculating the roll angle information.
  6.  前記視線検出演算部は、
     前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
     請求項5に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    6. The information processing apparatus according to claim 5, wherein the iris code detected in the iris authentication process is used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process.
  7.  前記視線検出演算部は、
     前記基準角度情報としての虹彩コードと、前記現在角度情報としての虹彩コードのハミング距離に基づいて前記ロール角度情報を算出する
     請求項6に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    7. The information processing apparatus according to claim 6, wherein the roll angle information is calculated based on a Hamming distance between the iris code as the reference angle information and the iris code as the current angle information.
  8.  前記視線検出演算部は、
     前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていた場合に、前記虹彩認証処理で検出した虹彩コードを現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて算出した前記ロール角度情報を用いて前記補正処理を行う
     請求項5に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    When the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are stored as the reference angle information, the iris code detected in the iris authentication process is used as the current angle information, and the reference angle The information processing apparatus according to claim 5, wherein the correction processing is performed using the roll angle information calculated using the roll angle information and the current angle information.
  9.  前記視線検出演算部は、
     前記虹彩認証処理で検出した虹彩コードと同一人物のものと認証した虹彩コードが前記基準角度情報として記憶されていない場合に、前記キャリブレーション処理を行い、前記虹彩認証処理で取得した虹彩コードを前記基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
     請求項5に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    If the iris code detected in the iris authentication process and the iris code authenticated as belonging to the same person are not stored as the reference angle information, the calibration process is performed, and the iris code acquired in the iris authentication process is used as the iris code. The information processing apparatus according to claim 5, wherein the reference angle information is stored in association with the calibration data.
  10.  前記視線検出演算部は、
     ロール角度情報を、目の撮像画像におけるまぶたの境界情報に基づいて算出する
     請求項1に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    The information processing apparatus according to claim 1, wherein roll angle information is calculated based on eyelid boundary information in a captured image of an eye.
  11.  前記視線検出演算部は、
     前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、目の撮像画像から前記境界情報を取得し、
     前記境界情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
     請求項10に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    obtaining the boundary information from the captured image of the eye when performing calibration processing for obtaining calibration data used in the line-of-sight detection processing;
    11. The information processing apparatus according to claim 10, wherein the boundary information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
  12.  前記視線検出演算部は、
     目の撮像画像から前記境界情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
     請求項11に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    12. The information processing according to claim 11, wherein the boundary information is acquired from the captured image of the eye and used as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process. Device.
  13.  前記視線検出演算部は、
     ロール角度情報を、タッチパネルに対する接触位置情報に基づいて算出する
     請求項1に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    The information processing apparatus according to claim 1, wherein roll angle information is calculated based on contact position information with respect to the touch panel.
  14.  前記視線検出演算部は、
     前記視線検出処理に用いるキャリブレーションデータを取得するキャリブレーション処理を行う際に、前記接触位置情報を取得し、
     前記接触位置情報を、前記ロール角度情報の算出に用いる基準角度情報として、キャリブレーションデータと関連づけて記憶する処理を行う
     請求項13に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    Acquiring the contact position information when performing a calibration process for acquiring calibration data used in the line-of-sight detection process,
    The information processing apparatus according to claim 13, wherein the contact position information is stored in association with calibration data as reference angle information used for calculating the roll angle information.
  15.  前記視線検出演算部は、
     前記接触位置情報を取得して現在角度情報とし、前記基準角度情報と前記現在角度情報を用いて前記ロール角度情報を算出して前記補正処理を行う
     請求項14に記載の情報処理装置。
    The line-of-sight detection calculation unit is
    15. The information processing apparatus according to claim 14, wherein the contact position information is obtained as current angle information, and the roll angle information is calculated using the reference angle information and the current angle information to perform the correction process.
  16.  自己の姿勢を検出する検出部を備え、
     前記視線検出演算部は、
     頭部装着装置から送信された前記頭部装着装置の装置姿勢情報と、前記検出部で検出された装置姿勢情報に基づいて、前記ロール角度情報を算出する
     請求項1に記載の情報処理装置。
    Equipped with a detection unit that detects its own posture,
    The line-of-sight detection calculation unit is
    The information processing apparatus according to claim 1, wherein the roll angle information is calculated based on device posture information of the head mounted device transmitted from the head mounted device and device posture information detected by the detection unit.
  17.  前記目画像撮像部を備える
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, comprising the eye image capturing section.
  18.  画像撮像を行う撮像部と、
     前記目画像撮像部と、
     を有する
     請求項1に記載の情報処理装置。
    an imaging unit that captures an image;
    the eye image capturing unit;
    The information processing apparatus according to claim 1, comprising:
  19.  目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を、
     情報処理装置が実行する視線検出方法。
    A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. The line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of
    A line-of-sight detection method executed by an information processing device.
  20.  目画像撮像部で撮像された目画像に基づいて視線方向を検出する視線検出処理を行うとともに、前記視線検出処理に用いるキャリブレーションデータを、目と前記目画像撮像部との相対的な角度変化の情報であるロール角度情報に基づいて補正する補正処理を行う視線検出演算を、
     情報処理装置に実行させるプログラム。
    A line-of-sight detection process for detecting a line-of-sight direction is performed based on an eye image captured by an eye image capturing unit, and calibration data used for the line-of-sight detection process is obtained by detecting a relative angle change between the eye and the eye image capturing unit. The line-of-sight detection calculation that performs the correction process based on the roll angle information, which is the information of
    A program to be executed by an information processing device.
PCT/JP2022/002165 2021-03-17 2022-01-21 Information processing device, line-of-sight detection method, and program WO2022196093A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023506806A JPWO2022196093A1 (en) 2021-03-17 2022-01-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021043750 2021-03-17
JP2021-043750 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022196093A1 true WO2022196093A1 (en) 2022-09-22

Family

ID=83320228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002165 WO2022196093A1 (en) 2021-03-17 2022-01-21 Information processing device, line-of-sight detection method, and program

Country Status (2)

Country Link
JP (1) JPWO2022196093A1 (en)
WO (1) WO2022196093A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229067A (en) * 1999-02-09 2000-08-22 Canon Inc Visual axis detecting device and optical instrument having same
JP2003132355A (en) * 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd Iris authenticating method and its device
JP2004129927A (en) * 2002-10-11 2004-04-30 Canon Inc Glance detector
WO2015136908A1 (en) * 2014-03-13 2015-09-17 パナソニックIpマネジメント株式会社 Gaze detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000229067A (en) * 1999-02-09 2000-08-22 Canon Inc Visual axis detecting device and optical instrument having same
JP2003132355A (en) * 2001-10-25 2003-05-09 Matsushita Electric Ind Co Ltd Iris authenticating method and its device
JP2004129927A (en) * 2002-10-11 2004-04-30 Canon Inc Glance detector
WO2015136908A1 (en) * 2014-03-13 2015-09-17 パナソニックIpマネジメント株式会社 Gaze detection device

Also Published As

Publication number Publication date
JPWO2022196093A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
JP6025690B2 (en) Information processing apparatus and information processing method
JP6897728B2 (en) Image processing equipment, image processing methods and programs
WO2017126172A1 (en) Information processing device, information processing method, and recording medium
JP2010147769A (en) Imaging system, image presentation method, and program
US8400532B2 (en) Digital image capturing device providing photographing composition and method thereof
JP2015088095A (en) Information processor and information processing method
JP2015088096A (en) Information processor and information processing method
KR20170074742A (en) Image processing device, image processing method amd program
US20150022627A1 (en) Photographing apparatus, photographing method and computer-readable storage medium storing photographing program of photographing apparatus
JPWO2010073619A1 (en) Imaging device
JP2009010987A (en) Electronic camera
WO2018198499A1 (en) Information processing device, information processing method, and recording medium
JP2015088098A (en) Information processor and information processing method
JP7059934B2 (en) Information processing equipment, information processing methods, and programs
JP2006040232A (en) Image processor and its method, imaging apparatus, program
WO2018146922A1 (en) Information processing device, information processing method, and program
JP7425562B2 (en) Imaging device and its control method
JP6677900B2 (en) Image processing apparatus, image processing method, and program
US11443719B2 (en) Information processing apparatus and information processing method
CN113424515A (en) Information processing apparatus, information processing method, and program
JP6720966B2 (en) Information processing apparatus, information processing method, and program
WO2022061541A1 (en) Control method, handheld gimbal, system, and computer-readable storage medium
WO2018116582A1 (en) Control device, control method, and medical observation system
WO2022196093A1 (en) Information processing device, line-of-sight detection method, and program
US9679391B2 (en) Image pickup system and image pickup method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506806

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770855

Country of ref document: EP

Kind code of ref document: A1