WO2022195853A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2022195853A1
WO2022195853A1 PCT/JP2021/011409 JP2021011409W WO2022195853A1 WO 2022195853 A1 WO2022195853 A1 WO 2022195853A1 JP 2021011409 W JP2021011409 W JP 2021011409W WO 2022195853 A1 WO2022195853 A1 WO 2022195853A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
room
opening
air conditioning
control
Prior art date
Application number
PCT/JP2021/011409
Other languages
French (fr)
Japanese (ja)
Inventor
千賀 田邊
宗一郎 ▲徳▼久
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023506669A priority Critical patent/JP7438452B2/en
Priority to PCT/JP2021/011409 priority patent/WO2022195853A1/en
Publication of WO2022195853A1 publication Critical patent/WO2022195853A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • This disclosure relates to an air conditioning system.
  • Patent Document 1 discloses that an air conditioner provided in an air conditioning section having an opening having a structure that can be opened and closed continues to operate while the opening is not closed. Disclosed is an air conditioner control device for suppressing an increase in the amount of energy.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2017-142013
  • measures are taken to suppress the operation of the air conditioner during ventilation and perform energy saving operation, but comfort due to ventilation is improved. Decrease was not seen as a problem.
  • the purpose of this disclosure is to disclose an air conditioning system that can maintain comfort even during ventilation.
  • Another object of the present disclosure is to disclose an air conditioning system capable of promoting ventilation during ventilation.
  • the present disclosure relates to an air conditioning system that air-conditions a room.
  • the air conditioning system includes a sensor configured to detect the open/closed state of an opening provided in a room, an air conditioner that draws air from the room, air-conditions it, and sends it out to the room, and an air conditioner that responds to the output of the sensor. and a control device for controlling the The control device is configured to allow the air conditioner to increase air conditioning when the sensor detects that the opening has changed from the closed state to the open state.
  • An air-conditioning system includes a sensor configured to detect the open/closed state of an opening provided in a room, an air conditioner that takes in air in the room, air-conditions it, and delivers it to the room, and a controller for controlling the air conditioner according to the output of the sensor.
  • the control device controls the direction of the air sent to the room by the air direction changing unit so as to promote ventilation of the room. is configured to be able to perform
  • the air conditioning system of the present disclosure it is possible to rapidly increase the air conditioning operation during ventilation, so it is possible to maintain the comfort of the room during ventilation.
  • ventilation is facilitated when windows and the like are opened.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1;
  • FIG. FIG. 3 is a block diagram for explaining the configuration of each control unit of the outdoor unit, indoor unit, and remote control; It is a sectional view for explaining composition of an indoor unit.
  • 4 is a flowchart for explaining a process of switching control of the air conditioning system between ventilation and normal control; 7 is a flowchart for explaining thermo ON determination processing during normal control (cooling); 7 is a flowchart for explaining thermo-OFF determination processing during normal control (cooling); 7 is a flowchart for explaining thermo ON determination processing during normal control (heating); 9 is a flowchart for explaining thermo-OFF determination processing during normal control (heating).
  • FIG. 4 is a flowchart for explaining control during ventilation according to Embodiment 1.
  • FIG. FIG. 5 is a diagram for explaining the wind direction when ventilation is not performed;
  • FIG. 4 is a diagram for explaining wind direction control during ventilation in the summer or intermediate season according to Embodiment 1;
  • FIG. 4 is a diagram for explaining wind direction control during ventilation in the winter season or intermediate season according to Embodiment 1;
  • FIG. 9 is a top view showing an example of a floor map of an air-conditioned space targeted in Embodiment 2;
  • FIG. 11 is a side view for explaining wind direction control during ventilation during cooling operation in summer in Embodiment 2;
  • FIG. 11 is a top view for explaining wind direction control during ventilation during cooling operation in summer in Embodiment 2;
  • FIG. 11 is a side view for explaining wind direction control during ventilation during heating operation in winter in Embodiment 2;
  • FIG. 11 is a top view for explaining wind direction control during ventilation during heating operation in winter in Embodiment 2;
  • 10 is a flow chart for explaining control during ventilation according to Embodiment 2.
  • FIG. 10 is a diagram showing an example of a floor map in which an area that is difficult to ventilate occurs in a room;
  • FIG. 11 is a top view for explaining wind direction control during ventilation in Embodiment 3;
  • FIG. 11 is a side view for explaining wind direction control during ventilation in Embodiment 3;
  • FIG. 4 is a diagram for explaining an example in which natural wind during ventilation is blocked by an air conditioning system;
  • FIG. 12 is a side view for explaining wind direction control during ventilation in Embodiment 4; It is a figure for demonstrating the modification of an opening-and-closing sensor.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1.
  • the air conditioning system 1 shown in FIG. 1 includes an outdoor unit 10 that functions as a heat source and a cold source, an indoor unit 20 that uses heat and cold, a remote control 30, and an open/close detection sensor 40 .
  • the outdoor unit 10 and the indoor unit 20 constitute an air conditioner 2 that air-conditions the room 100 .
  • the outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, a fan 13, a four-way valve 14, and a control device 15.
  • the indoor unit 20 includes a plurality of air conditioning units 20A to 20D arranged in the same room 100.
  • the air conditioning unit 20A includes an expansion valve 21A, an indoor heat exchanger 22A, a fan 23A, a wind direction changing section 24A, and a control device 25A.
  • the air conditioning unit 20B includes an expansion valve 21B, an indoor heat exchanger 22B, a fan 23B, a wind direction changing section 24B, and a control device 25B.
  • the air conditioning unit 20C includes an expansion valve 21C, an indoor heat exchanger 22C, a fan 23C, a wind direction changing section 24C, and a control device 25C.
  • the air conditioning unit 20D includes an expansion valve 21D, an indoor heat exchanger 22D, a fan 23D, a wind direction changing section 24D, and a control device 25D.
  • the control device 15 controls the compressor 11, the four-way valve 14, and the fan 13 according to the operation command signal given by the user and the outputs of various sensors.
  • the control device 15 includes a CPU (Central Processing Unit) 16, a memory 17, an input/output buffer (not shown), and the like.
  • the CPU 16 develops and executes a program stored in the memory 17 .
  • This program is a program in which processing procedures of the control device 15 are described.
  • the control device 15 executes control of each device in the air conditioning system 1 according to these programs.
  • the air-conditioning control performed by the control device 15 is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
  • the compressor 11 is configured to change the operating frequency according to a control signal received from the control device 15 . By changing the operating frequency of the compressor 11, the output of the compressor 11 is adjusted.
  • Various types such as a rotary type, a reciprocating type, a scroll type, and a screw type can be adopted for the compressor 11 .
  • the four-way valve 14 is controlled by a control signal received from the control device 15 so as to be in either the cooling operation state or the heating operation state.
  • the cooling operation state the refrigerant discharged from the compressor 11 is sent to the outdoor heat exchanger 12 and the refrigerant that has passed through the indoor unit 20 is sucked into the compressor 11 .
  • the heating operation state the refrigerant discharged from the compressor 11 is sent to the indoor unit 20 and the refrigerant that has passed through the outdoor heat exchanger 12 is sucked into the compressor 11 .
  • An accumulator (not shown) may be provided between the suction port of the compressor 11 and the four-way valve 14 .
  • An oil separator (not shown) may be provided between the discharge port of the compressor 11 and the four-way valve 14 .
  • the expansion valve 21A is controlled in its degree of opening based on a control signal received from the control device 25A so as to be fully open, SH (superheat: degree of heating) control, SC (subcool: degree of supercooling) control, or closed. be done.
  • SH superheat: degree of heating
  • SC subcool: degree of supercooling
  • the fan 23A and the wind direction changer 24A control the blowing air volume and wind direction based on the control signal received from the control device 25A.
  • the opening of the expansion valve 21B is controlled based on a control signal received from the control device 25B so as to perform either full opening, SH control, SC control or closing.
  • the fan 23B and the wind direction changer 24B control the blowing air volume and wind direction based on the control signal received from the control device 25B.
  • the opening of the expansion valve 21C is controlled based on a control signal received from the control device 25C so as to perform either full opening, SH control, SC control or closing.
  • the fan 23C and the wind direction changer 24C control the blowing air volume and wind direction based on the control signal received from the control device 25C.
  • the opening of the expansion valve 21D is controlled based on a control signal received from the control device 25D so as to perform either full opening, SH control, SC control or closing.
  • the fan 23D and the wind direction changer 24D control the blowing air volume and wind direction based on the control signal received from the control device 25D.
  • the remote controller 30 is arranged on a wall surface or the like, and configured to set and display the target temperature of the space to be air-conditioned.
  • Remote controller 30 includes CPU 31, memory 32, display unit 33, and the like.
  • the control of setting, display, etc. performed by the remote control 30 is not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the open/close detection sensor 40 is configured to detect the open/close state of openings such as windows and doors provided in the room 100 .
  • the air conditioning system 1 of Embodiment 1 controls the air conditioner 2 consisting of the outdoor unit 10 and the indoor unit 20 based on the open/closed state of the opening of the room 100 so as to prevent deterioration of comfort during ventilation. Further, the air conditioning system of Embodiment 1 controls the air conditioner composed of the outdoor unit 10 and the indoor unit 20 based on the opening/closing state of the opening of the room 100 so as to promote ventilation during ventilation.
  • FIG. 2 is a block diagram for explaining the configuration of each control unit for the outdoor unit, indoor unit, and remote control.
  • the control devices 25A to 25D of the indoor units are represented as the control device 25. As shown in FIG.
  • control device 25 receives commands from the remote control 30 and controls the indoor unit 20 in general.
  • the control device 25 includes a CPU 26 that operates as a control section, a memory 27 that operates as a storage section, an input section 28 that receives input signals from sensors and the like, and an output section 29 that outputs various control signals.
  • the CPU 26, memory 27, input section 28, and output section 29 are connected by a data bus to exchange data.
  • the opening/closing detection sensor 40 includes an opening/closing sensor 41 that detects opening/closing of the opening on the window side, and an opening/closing sensor 42 that detects opening/closing of the opening on the corridor side. Note that the number of opening/closing sensors may be increased or decreased depending on the number of openings used for ventilation.
  • the input unit 28 includes a room temperature recognition unit that receives inputs from a room temperature sensor (not shown) and an open/close recognition unit that receives outputs from the open/close sensors 41 and 42 .
  • the CPU 26 operates as a normal control section, a window open determination section, a window closed determination section, and a ventilation control section by executing programs.
  • the normal control unit performs normal control of air conditioning.
  • the window open determination unit determines whether an opening such as a window is open based on open/close sensors 41 and 42 .
  • the window closing determination unit determines whether an opening such as a window is closed based on the opening/closing sensors 41 and 42 .
  • the ventilation control unit provides control for ventilation when the opening is open.
  • the memory 27 stores programs executed by the CPU 26 and data used by the CPU 26 for control.
  • the floor map of the room 100 in which the indoor unit 20 is installed is stored in the memory 27 as data.
  • the floor map data does not necessarily exist in the memory itself, but may be a pointer indicating position information or an address number.
  • the output unit 29 outputs control signals for controlling the wind direction, air volume, and refrigerant flow rate to the vanes, fans, and expansion valves of the indoor unit 20, respectively. During ventilation, the output unit 29 outputs a control signal to the control device 15 of the outdoor unit so as to execute the augmented operation.
  • the control device 15 includes a CPU 16 that operates as a control unit, a memory 17 that operates as a storage unit, and an input unit 18 that receives input signals from sensors and the like.
  • the CPU 16 controls the compressor, four-way valve, outdoor fan, etc. inside the outdoor unit.
  • the memory 17 stores programs executed by the CPU 16 and data used by the CPU 16 for control.
  • the input unit 18 receives detection signals from an outside air temperature sensor (not shown) and the like.
  • the remote controller 30 includes an operation switching unit for switching cooling/heating operation, a temperature setting unit for setting the target temperature of the air-conditioned space, a display unit 33, and the like.
  • the operation switching unit and the temperature setting unit are also integrated with the display unit 33 .
  • the operation switching unit and temperature setting unit may be configured by push buttons, adjustment knobs, and the like.
  • control device 25 arranged in the indoor unit, the control device 15 arranged in the outdoor unit, and the remote control 30 cooperate to execute control. It should be noted that the control does not necessarily have to be performed by three control devices, the control devices may be integrated into one, and the number of control devices can be changed arbitrarily.
  • FIG. 3 is a cross-sectional view for explaining the configuration of the indoor unit.
  • the indoor unit 20 shown in FIG. 3 includes a fan 23 and a heat exchanger 22, which are an example of a blower.
  • indoor unit 20 further includes a control device 25 and a suction temperature sensor.
  • the indoor unit 20 is a ceiling-embedded indoor unit that is embedded in the ceiling of the room 100 as shown in the cross-sectional view of FIG.
  • the indoor unit 20 air-conditions the indoor air taken in through the suction port provided in the center, and blows out the air-conditioned air into the room through outlets provided around the suction port.
  • the air outlet is provided with a vane, which is a kind of air direction changing unit 24, to control the air direction and open and close the air outlet.
  • FIG. 3 shows vertical airflow direction vanes for changing the vertical airflow direction, but horizontal airflow direction vanes (not shown) are also provided.
  • the wind direction changing unit 24 includes vertical wind direction vanes and horizontal wind direction vanes. The vanes are sometimes called flaps or louvers.
  • the fan 23 is controlled by the control device 25 to generate a flow of air from the inlet to the outlet. That is, as the fan 23 rotates, the fan 23 sucks indoor air through the suction port, and blows the conditioned air that has passed through the heat exchanger 22 through the blowout port.
  • the fan 23 is controlled to reduce the air volume.
  • the indoor temperature and the set temperature are transmitted from the remote controller 30, and the controller 25 determines that the thermostat is OFF.
  • the controller 25 determines that the thermostat is OFF, the air volume of the fan 23 is suppressed.
  • the suction temperature sensor is arranged, for example, near the fan 23 and measures the suction temperature of the air sucked from the suction port as the fan 23 rotates.
  • the controller 25 receives information on the measured suction temperature directly from the suction temperature sensor or via the remote controller 30 .
  • the intake temperature sensor may be arranged at another position within the air conditioner 100 .
  • the suction temperature sensor may be located near the suction port.
  • the heat exchanger 22 conditions the air by, for example, exchanging heat between the refrigerant circulating with the outdoor unit 10 and the air sucked from the suction port. For example, the heat exchanger 22 cools, heats, or dehumidifies the air sucked from the suction port.
  • the control device 25 stops heat exchange in the heat exchanger 22 by closing the expansion valve to stop circulation of the refrigerant or by stopping the compressor that compresses the refrigerant.
  • Fig. 4 is a flowchart for explaining the process of switching between ventilation control and normal control of the air conditioning system.
  • the processing of this flowchart is executed in the control device 25 in FIG.
  • the processing of this flowchart corresponds to the processing when the CPU 26 operates as the window open determination unit, the window close determination unit, and the ventilation control unit. Note that the processing of this flowchart may be executed in the remote controller 30 or the control device 15 .
  • step S1 the control device 25 determines whether or not the opening such as the window has changed from the closed state to the open state based on the output of the open/close sensor. If no change is detected (NO in S1), normal control is executed in step S5.
  • step S2 If a change is detected (YES in S1), it is determined in step S2 whether or not the opening has remained open for a certain period of time. If the open state does not continue for a certain period of time and returns to the closed state (NO in S2), normal control is executed in step S5. This eliminates the opening and closing of windows and the like that are not for ventilation purposes.
  • step S4 If the open state continues for a certain period of time (YES in S2), ventilation control is executed in step S3. Then, in step S4, the control device 25 determines whether or not the opening such as the window has changed from the open state to the closed state based on the output of the open/close sensor. If no change is detected (NO in S4), the ventilatory control in step S3 is maintained. If a change is detected (YES in S4), normal control is executed in step S5.
  • FIG. 5 is a flowchart for explaining thermo ON determination processing during normal control (cooling).
  • the processing of this flowchart is executed by the controller 25 of the indoor unit 20 .
  • the control device 25 determines whether or not a certain period of time has elapsed after the thermo-off determination. If the predetermined time has not passed (NO in S11), the process is returned to the start of this flowchart.
  • step S12 the control device 25 determines whether or not the room temperature is higher than the judgment temperature indicated by "set temperature + constant". If the room temperature is not higher than the judgment temperature (NO in S12), the process returns to the start of this flowchart.
  • thermo ON state When the room temperature is higher than the judgment temperature (YES in S12), control is switched to the thermo ON state.
  • the thermo ON state the compressor 11 is in an operating state, the degree of opening of the expansion valve 21 of the indoor unit 20 is controlled, and the fan 23 also rotates according to the air volume setting.
  • FIG. 6 is a flowchart for explaining the thermo OFF determination process during normal control (cooling).
  • the processing of this flowchart is executed by the controller 25 of the indoor unit 20 .
  • the control device 25 determines whether or not the room temperature is lower than the determination temperature indicated by "set temperature - constant". If the room temperature is not lower than the judgment temperature (NO in S21), the process is returned to the start of this flowchart.
  • thermo OFF state When the room temperature is lower than the judgment temperature (YES in S21), control is switched to the thermo OFF state. In the thermo-off state, the compressor 11 is stopped or the expansion valve 21 of the indoor unit 20 is closed.
  • thermo ON determination and the thermo OFF determination are changed in rapid operation executed during ventilation control compared to normal operation.
  • the difference between rapid operation and normal control is the rate of temperature rise or fall. Rapid operation basically cools quickly and strongly.
  • rapid operation is executed, and the timing of the thermo ON determination is advanced.
  • Thermo ON conditions room temperature > set temperature + constant A
  • Thermo OFF condition room temperature ⁇ set temperature - constant A
  • the determination temperature is set as follows.
  • Thermo ON condition room temperature > set temperature + constant B
  • Thermo OFF condition room temperature ⁇ set temperature - constant B
  • the constants A and B indicate temperature ranges indicating margins, where A>B.
  • thermo ON or thermo OFF By changing the determination temperature in this way, rapid operation can be performed during ventilation, and the timing of determination of thermo ON or thermo OFF can be advanced.
  • FIG. 7 is a flowchart for explaining the thermo ON determination process during normal control (heating).
  • the processing of this flowchart is executed by the controller 25 of the indoor unit 20 .
  • the control device 25 determines whether or not a certain period of time has elapsed after the thermo OFF determination. If the predetermined time has not elapsed (NO in S31), the process is returned to the start of this flowchart.
  • step S32 the control device 25 determines whether or not the room temperature is lower than the determination temperature indicated by "set temperature - constant". If the room temperature is not lower than the judgment temperature (NO in S32), the process is returned to the start of this flowchart.
  • thermo ON state When the room temperature is lower than the judgment temperature (YES in S32), control is switched to the thermo ON state. In the thermo ON state, the compressor 11 and the fan 13 are in operation, the opening of the expansion valve 21 of the indoor unit 20 is controlled, and the fan 23 also rotates.
  • FIG. 8 is a flowchart for explaining the thermo OFF determination process during normal control (heating).
  • the processing of this flowchart is executed by the controller 25 of the indoor unit 20 .
  • the control device 25 determines whether or not the room temperature is higher than the determination temperature indicated by "set temperature + constant". If the room temperature is not higher than the judgment temperature (NO in S41), the process is returned to the start of this flowchart.
  • thermo OFF state When the room temperature is higher than the judgment temperature (YES in S41), control is switched to the thermo OFF state. In the thermo-off state, the compressor 11 is stopped or the expansion valve 21 of the indoor unit 20 is closed.
  • thermo ON judgment and thermo OFF judgment are changed in rapid operation executed during ventilation control compared to normal operation.
  • the difference between rapid operation and normal control is the rate of temperature rise or fall. Rapid operation basically heats quickly and strongly. Also during heating, rapid operation is executed during the ventilation control executed in step S3 of FIG.
  • the room temperature will drop at once, so if you use normal control, the room temperature will drop to some extent. Therefore, during ventilation, rapid operation is performed so that the room temperature does not fall below normal control.
  • FIG. 9 is a flowchart for explaining control during ventilation according to the first embodiment. The processing of this flowchart shows the details of the processing of step S3 in FIG.
  • step S51 the air conditioner is operated to increase the air conditioning.
  • the controller 25 increases the rotation speed of the fan 23 above the rotation speed set during normal operation, and the controller 15 increases the operating frequency of the compressor 11 in the outdoor unit.
  • the enhancement of air conditioning may be either an increase in the rotation speed of the fan or an increase in the operating frequency of the compressor.
  • the judgment temperature for thermo ON/OFF judgment is changed so as to allow rapid operation.
  • step S52 the control device 25 determines whether the indoor temperature is lower than the outdoor temperature. If the indoor temperature ⁇ outdoor temperature is established (YES in S52), the control device 25 sets the wind direction in the direction opposite to the opening in step S53. On the other hand, if the indoor temperature ⁇ outdoor temperature does not hold (NO in S52), the controller 25 sets the wind direction in the direction of the opening in step S54.
  • FIG. 10 is a diagram for explaining the wind direction when ventilation is not performed.
  • the wind direction changing units 24A and 24B control the vanes to an angle corresponding to the wind direction set by a remote controller or the like.
  • room air is sucked in from the central suction port, air-conditioned, and the conditioned air is blown out from outlets around the suction port, and the air flows into the room 100 as indicated by the arrows in the figure. is circulating.
  • the indoor unit circulates air to keep the temperature constant.
  • the indoor unit only circulates air and does not provide ventilation.
  • FIG. 11 is a diagram for explaining wind direction control during ventilation in the summer or intermediate season according to the first embodiment.
  • the outside temperature is higher than the room temperature.
  • the outside air temperature may be higher than the room temperature even in intermediate seasons such as spring and autumn. In such a case, the wind direction of the indoor unit is controlled as shown in FIG.
  • the airflow of the entire room is created by giving directionality to the airflow direction of the ceiling-embedded four-way blowing indoor unit.
  • the premise is that cold air moves toward warm air. Cold air has high pressure and warm air has low pressure.
  • the indoor unit can be used to ventilate the entire room.
  • ventilation is basically only performed near the windows, but in this embodiment, when it is detected that the opening is open, the wind direction is controlled to promote ventilation.
  • FIG. 12 is a diagram for explaining wind direction control during ventilation in the winter season or intermediate season according to the first embodiment.
  • the outside temperature is lower than the room temperature.
  • the outside air temperature may be lower than the room temperature even in intermediate seasons such as spring and autumn. In such a case, the wind direction of the indoor unit is controlled as shown in FIG.
  • the basic idea is to control the wind direction in the direction of the opening in winter when the temperature outside the room is lower than inside. Then, as shown in FIG. 12, warm air is sent from the back of room 100 toward window 103 as indicated by arrows W14, W13, and W15. Then, cold outside air flows into the room 100 from below the window 103 as indicated by arrows W11 and W12.
  • the schedule function with a built-in calendar can determine the season and set the wind direction, or receive the weather forecast to determine the temperature and set the wind direction. You can
  • the outside temperature and the set temperature are close to each other, so the compressor is not boosted during ventilation, and only the air direction and air volume are controlled in response to changes in the state of the opening. Also good.
  • the air conditioning system of Embodiment 1 enhances the air conditioning operation in the open state depending on the state of the opening.
  • the operating frequency of the compressor is increased in summer and winter to perform rapid cooling or rapid heating.
  • the fan is controlled to make the wind speed one step stronger than usual. Either one of the increase in the operating frequency of the compressor and the increase in the rotation speed of the fan may be performed.
  • the air conditioning system of Embodiment 1 controls the direction of the air to create an air flow throughout the room that promotes ventilation, in addition to enhancing the air conditioning operation when the opening is open.
  • the wind direction may be controlled to promote ventilation without increasing the air conditioning operation.
  • only the air volume or wind direction may be controlled.
  • the air conditioning system may be configured so that both modes can be executed, and the user can select which one to use.
  • Embodiment 2 In addition to windows, openings such as doors may also be opened during ventilation. In Embodiment 2, multiple openings are considered. In order to promote ventilation, it is desirable to have two or more openings such as windows and doors.
  • the air conditioning system may be configured such that two input signals from contacts or temperature sensors provided in each of the plurality of openings are input to the indoor units.
  • FIG. 13 is a top view showing an example of a floor map of an air-conditioned space targeted in the second embodiment.
  • FIG. 13 shows a view of the floor surface from the ceiling side.
  • a room 100A shown in FIG. 13 is provided with a window 103 on the wall surface facing the outdoors, and a door 104 on the wall surface that is the boundary with a corridor or another room.
  • Air conditioning units 20A to 20D are arranged on the ceiling surface.
  • Each of the air conditioning units 20A to 20D has the configuration shown in FIG. 3, but in FIG. 13, it can be clearly seen that it is a ceiling-embedded cassette type indoor unit that can send air in four directions from four outlets.
  • Each of the four outlets is provided with a vane, which can be opened and closed, and can change the direction of the wind when the outlet is open.
  • An open/close sensor 41 for detecting opening/closing of the window 103 is arranged near the window 103
  • an open/close sensor 42 for detecting opening/closing of the door 104 is arranged near the door 104.
  • a contact type opening/closing sensor or a temperature sensor that detects opening/closing based on temperature change can be used.
  • FIG. 14 is a side view for explaining wind direction control during ventilation during cooling operation in summer according to the second embodiment.
  • FIG. 14 shows the state of an example of use including the case where there is a corridor, which corresponds to the XIV-XIV section of FIG. FIG. 14 will be used to explain wind direction control when windows 103 and doors 104 are opened for ventilation during cooling operation in summer. However, even if the window is opened, the environment is such that a strong wind does not blow in.
  • the room 100A can be passed through from the outside to the outside from the corridor. In this case, too, ventilation can be performed without problems because of the flow of air toward the room.
  • FIG. 15 is a top view for explaining wind direction control during ventilation during cooling operation in summer according to the second embodiment.
  • the four indoor units in this example are operated by one remote controller attached to the wall.
  • the four indoor units are simultaneously set to ventilation operation or normal control by operating the remote control or the like.
  • the temperature sensors are individually attached, the timing for turning on the thermostat differs from one to another.
  • the window and the door are not provided on the walls facing each other, but even in such a case, the air outlet close to the window side is closed in each indoor unit, and the air outlet close to the door side is closed. Ventilation can be promoted by opening the hood and setting the wind direction as indicated by the arrow in the figure.
  • the wind direction is set in the direction of the door that is the indoor side opening or in the direction of the air conditioning unit 20A that is close to the door, and the outside air is cooled and sent to the upper part of the room, and the cold air is sent to the room. Ventilate the entire room by creating an air current that flows through the lower part and goes out of the room through the window.
  • the layout of the indoor units close to the door and the direction of the door for each indoor unit can be known from a pre-stored floor map.
  • FIG. 16 is a side view for explaining wind direction control during ventilation during heating operation in winter according to the second embodiment.
  • FIG. 17 is a top view for explaining wind direction control during ventilation during heating operation in winter according to the second embodiment.
  • the air conditioning is reinforced during ventilation, and the wind direction is controlled in the direction opposite to that in summer.
  • the wind direction is set in the direction of the window or the ventilation opening that is the outdoor side opening, or in the direction of the air conditioning unit 20D that is close to them, and warm air flows in the upper part of the room, and cold air creates an air current that flows through the lower part of the room and ventilates the entire room.
  • the layout of the indoor units close to the windows or ventilation openings and the direction of the windows or ventilation openings for each indoor unit can be known from a pre-stored floor map.
  • FIG. 18 is a flowchart for explaining control during ventilation in the second embodiment.
  • step S101 the non-ventilation time is reset. Then, normal control is started in step S102. Until a certain period of time elapses (NO in S103), normal control is continued with no ventilation. If a certain period of time has passed without ventilation (YES in S103), in step S104, the control device 25 outputs a notification requesting opening of the opening. For example, in step S104, a message "Do you want to start ventilation control?" is displayed on the screen of the remote control. If the user refuses to open the door (YES at S105), the process from step S101 is repeated.
  • step S106 the control device 25 controls the opening/closing sensor based on the output of the opening/closing sensor. to determine whether or not the opening of the opening has been completed.
  • control device 25 If the opening of the opening has not been completed (NO in S106), the control device 25 returns to step S104 and outputs a message requesting opening of the opening to the remote control screen or the like again.
  • step S107 onwards is executed.
  • step S104 the remote controller displays a screen asking "Are you sure you want to start control during ventilation?" You may make it start the ventilation control after S107.
  • the ventilation control will start automatically. Also good.
  • step S107 the control device 25 determines the current season. Season determination can be based on calendars, temperatures, distributed weather forecasts, and the like. Then, in step S108, as described with reference to FIGS. 14 to 17, the wind direction and wind volume corresponding to the season are determined. Then, in step S109, a criterion for ending ventilation is calculated.
  • the criterion for ending ventilation in step S109 is, for example, when judging by the passage of time in ventilation control, the time in which a certain percentage or more of the air can be replaced based on the amount of ventilation determined from the site area and the opening opening is calculated, and the passage of time based on Further, when judging the end of ventilation by temperature, the end of ventilation control is determined using the relational expression of thermo ON/OFF of normal cooling and heating. For example, when air conditioning is stably performed in a closed space at normal times, most of the thermostats are basically in the OFF state. In such a case, if the opening is opened for ventilation, a large difference between the room temperature and the outside air temperature is generated, satisfying the thermo ON condition. When the thermo-ON condition is satisfied, the rapid-enhancement air conditioning (comfortable ventilation operation) is performed, and then the ventilation control is terminated when the thermo-OFF condition is met.
  • step S110 the control device 25 executes a comfortable ventilation operation that maintains comfort during ventilation with the determined air volume and wind direction.
  • the comfortable ventilation operation is performed until the end determination condition of the ventilation control is satisfied in step S111.
  • the condition for determining the end of ventilation control in step S111 can be determined based on the passage of time in ventilation control or the relationship between the room temperature and the set temperature. The user may be allowed to select which condition is used for termination determination, or whether to use AND or OR of both.
  • step S112 the control device 25 notifies a message requesting that the opening be closed on the remote control screen or the like. Then, in step S113, the control device 25 determines whether or not the closing of the opening is completed based on the output of the open/close sensor of the opening. In addition, in order to maintain comfort after ventilation, the user was notified by a remote control display unit that the opening would be closed when sufficient ventilation was achieved, and the opening was closed manually. to close the opening.
  • step S110 If the closing of the opening is not completed (NO in S113), the processing from step S110 onwards is repeated. On the other hand, if the closing of the opening has been completed (YES in S113), the process returns to step S101, the unventilated time is reset, and the processes after step S102 are repeated.
  • the control is such that the augmented operation is performed in all directions for a short period of time but for a certain period of time so that the entire room becomes comfortable. may be added before the process of step S101. However, at this time, unlike during ventilation, it is preferable to return the wind direction to the state before opening the opening.
  • the following wind direction switching is performed between ventilation during cooling operation and ventilation during heating operation.
  • dirty warm air is blown by the indoor unit to the opening to the outside and discharged to the outside.
  • Fresh cold air enters the lower part of the room to replace the outgoing warm air, and part of it flows out from the door side, which is the opening inside the room.
  • ventilation is promoted by the indoor unit both during the cooling operation and during the heating operation.
  • Embodiment 3 Depending on the placement of the openings, there may be areas in the room that are poorly ventilated. Embodiment 3 will describe control during ventilation when such an area exists.
  • FIG. 19 is a diagram showing an example of a floor map in which areas that are difficult to ventilate occur in the room.
  • the two openings of the door and the window are close to each other, and if the wind direction is controlled as in the second embodiment, an area 110 that is difficult to ventilate occurs.
  • FIG. 20 is a top view for explaining wind direction control during ventilation in the third embodiment.
  • FIG. 21 is a side view for explaining wind direction control during ventilation according to the third embodiment.
  • an air outlet capable of blowing air to an area 110 facing a wall that is difficult to ventilate is opened, and the air direction setting during ventilation control of the air conditioning units 20A and 20B is set to "automatic". By changing the settings, it is possible to stir and ventilate the air in areas that are difficult to ventilate.
  • the indoor unit may be provided with a function of turning on the contact during ventilation control so that the circulator power is turned on only during ventilation control.
  • Embodiment 4 Depending on the arrangement of the openings, a relatively strong wind may blow through during ventilation. In the fourth embodiment, control during ventilation in such a case will be described.
  • FIG. 22 is a diagram for explaining an example in which the natural wind during ventilation is blocked by the air conditioning system. For example, consider a room 100D with windows on each of two opposing walls. In such a case, it is conceivable that a strong wind blows through from window to window. For example, such a situation is likely to occur on the upper floors of an apartment building.
  • the ventilation mode when the ventilation mode is controlled during the cooling operation, a strong wind blows from the window 104D, and the ventilation direction of the indoor units 120A and 120B in the ventilation mode is opposite to the natural wind.
  • the air-conditioning system only needs to be in augmented operation.
  • FIG. 23 is a side view for explaining wind direction control during ventilation according to the fourth embodiment.
  • wind direction and air volume meters 41E and 42E are provided in the two openings of a room 100E, namely a window 103E and a door 104E.
  • the control device 25 determines the air blowing direction from the indoor unit based on the wind direction and air volume detected by the anemometers 41E and 42E in addition to the output from the opening/closing sensor.
  • the control device 25 controls the wind direction using the wind direction control units 124A and 124B of the indoor units 120A and 120B so as to match the main wind flows indicated by the large arrows detected by the anemometers 41E and 42E. to control.
  • the total amount of air passing through the opening can be increased to increase the amount of ventilation.
  • a wind vane is installed at the opening and controlled to blow air toward the outlet side of the wind, thereby increasing the amount of ventilation.
  • the user may be able to select the wind direction of the indoor unit during ventilation even if the wind direction and air volume meter is not attached.
  • the wind direction can be manually set in the same direction as the natural wind. If the direction of the wind changes from day to day, the user may be requested to make the setting by outputting a message "Please set the opening where the wind is blowing stronger.”
  • FIG. 24 is a diagram for explaining a modification of the open/close sensor.
  • a contact or a temperature sensor installed near the opening is used for recognizing the state of the opening.
  • an infrared sensor installed at a position away from the opening may be used.
  • an infrared sensor installed in the indoor unit obtains a thermal image that displays the temperature distribution in color, and displays it on a smartphone via communication.
  • the user designates the position of the opening in the thermal image on the smartphone with a finger touch.
  • the position of the opening may be input to the indoor unit from the position of the pixel of the thermal image, and the infrared sensor may detect the temperature change of that portion to detect the opening/closing of the opening.
  • the method of specifying the opening on the thermal image can be, for example, by touching four points to specify the opening in a rectangular range, or by touching one point and automatically drawing a temperature band of a similar color around the touched point. You may designate it as an opening directly. Also, various designation methods are conceivable, such as designating two openings by touching two locations on the thermal image. Basically, the control is such that the air is blown toward the open area, and if the indoor opening and the outdoor opening are recognized separately, it becomes possible to control the direction of the air in the entire room.
  • settings prepared in advance according to the pattern of the floor map may be set for each indoor unit.
  • a system controller that manages the control of multiple indoor units is prepared, and the system controller judges and issues a command that instructs the optimum wind direction angle to each indoor unit so that it cooperates with an application that displays the temperature distribution in colors. You may send. Also, a thermal image showing the temperature distribution may be recorded to confirm the effect.
  • control device 25 representatively shown in FIG. 2 is which of the control devices 25A to 25D of the indoor units 20A to 20D in FIG. or one may be determined.
  • a wind direction instruction from the representative control device is transmitted to control devices other than the representative control devices 25A to 25D.
  • the information on the map, the position of the equipment, and the position of the opening is held in the storage unit of the control device managed by the representative.
  • the indoor unit 20B on the window side and the indoor unit 20A on the wall side may be determined to indicate different wind directions with respect to the map.
  • the present disclosure relates to an air conditioning system 1 that air-conditions a room 100 .
  • the air conditioning system 1 includes an open/close detection sensor 40 configured to detect the open/closed state of an opening provided in the room 100, an air conditioner 2 that draws air from the room 100, air-conditions the air, and sends the air to the room 100. and a control device 25 that controls the air conditioner 2 according to the output of the open/close detection sensor 40 .
  • the control device 25 is configured to allow the air conditioner 2 to increase the air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state.
  • the air conditioner 2 includes a compressor 11 for circulating the refrigerant, a heat exchanger 22 for exchanging heat between the air in the room 100 and the refrigerant, and a heat exchanger 22 for sending the air in the room. and a fan 23 of .
  • the air conditioner 2 enhances air conditioning by increasing the operating frequency of the compressor 11 or increasing the rotational speed of the fan 23 .
  • the control device 25 is configured to select either the first mode or the second mode as the operation mode based on user settings.
  • the first mode is an operation mode in which the air conditioner 2 is made to increase the air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state (ventilation priority).
  • the second mode is an operation mode in which the air conditioner 2 suppresses air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state (eco-drive priority).
  • the air conditioner 2 further includes a wind direction changing unit 24 capable of changing the direction of the air sent toward the room 100.
  • the control device 25 can control the direction of the air sent to the room 100 by the air direction changing unit 24 so as to facilitate ventilation of the room 100. Configured.
  • the controller 25 controls the wind direction changing unit 24 so as to send air in the first direction toward the opening. If it is lower than , the wind direction changing unit 24 is controlled to send air in a second direction opposite to the first direction.
  • the air conditioning system 1 further includes anemometers 41E and 42E that detect the direction of the wind passing through the opening.
  • the control device 25 controls the wind direction changer 24 based on the outputs of the wind direction and air volume meters 41E and 42E.
  • An air conditioning system 1 related to another aspect of the present disclosure includes an open/close detection sensor 40 configured to detect the open/closed state of an opening provided in a room 100, and sucks in the air in the room 100 and air-conditions the air in the room 100.
  • the air conditioner 2 that sends air
  • the wind direction changing unit 24 that can change the direction of the air that is sent toward the room 100
  • the control device 25 that controls the air conditioner 2 according to the output of the open/close detection sensor 40.
  • the control device 25 changes the direction of the air sent to the room 100 so as to promote ventilation of the room 100. It is configured to be able to perform wind direction control controlled by the unit 24 .
  • 1 air conditioning system 2 air conditioner, 10 outdoor unit, 11 compressor, 12, 22, 22A, 22B, 22C, 22D heat exchanger, 13, 23, 23A, 23B, 23C, 23D fan, 14 four-way valve, 15, 25, 25A, 25B, 25C, 25D control device, 16, 26 CPU, 17, 27, 32 memory, 18, 28 input unit, 20, 120A, 120B indoor unit, 20A, 20B, 20C, 20D air conditioning unit, 21, 21A, 21B, 21C, 21D expansion valves, 24, 24A, 24B, 24C, 24D wind direction change unit, 29 output unit, 30 remote controller, 33 display unit, 40 open/close detection sensor, 41, 42 open/close sensor, 41E, 42E wind direction and air volume Total, 100, 100A, 100C, 100D, 100E rooms, 103, 103E, 104D windows, 104, 104E doors, 110 areas, 124A, 124B wind direction control unit.

Abstract

An air conditioning system (1) is provided with: an open/close detection sensor (40) configured to detect an open/close state of an opening provided in a room (100); an air conditioning device (2) that draws in air from the room (100), and conditions and delivers the air to the room (100); and a control device (25) that controls the air conditioning device (2) in accordance with the output from the open/close detection sensor (40). The control device (25) is configured to be able to cause, when the open/close detection sensor (40) detects that the opening has changed from a closed state to an open state, the air conditioning device (2) to enhance air conditioning.

Description

空調システムair conditioning system
 本開示は、空調システムに関する。 This disclosure relates to an air conditioning system.
 特開2017-142013号公報(特許文献1)は、開閉可能な構造を有する開口部が存在する空調区画に設けられた空調機が、開口部が閉じられていない状態で運転を続けることによる消費エネルギー量の増大を抑制するための空調機の制御装置を開示する。 Japanese Patent Application Laid-Open No. 2017-142013 (Patent Document 1) discloses that an air conditioner provided in an air conditioning section having an opening having a structure that can be opened and closed continues to operate while the opening is not closed. Disclosed is an air conditioner control device for suppressing an increase in the amount of energy.
特開2017-142013号公報JP 2017-142013 A
 近年、感染症の予防のために、空調が必要な夏冬でも換気が重要であることが認識されるようになっている。しかしながら、特開2017-142013号公報(特許文献1)に示されるように、換気時の空調装置の運転を抑制して、省エネルギー運転を行なうことについては対策されているが、換気による快適性の低下については問題視されていなかった。また、空調と換気を同時に行なう場合の換気効率については、さらに改善の余地があった。 In recent years, it has become recognized that ventilation is important for the prevention of infectious diseases, even in summer and winter when air conditioning is required. However, as shown in Japanese Patent Application Laid-Open No. 2017-142013 (Patent Document 1), measures are taken to suppress the operation of the air conditioner during ventilation and perform energy saving operation, but comfort due to ventilation is improved. Decrease was not seen as a problem. In addition, there is still room for improvement in terms of ventilation efficiency when air conditioning and ventilation are performed at the same time.
 本開示は、換気時であっても快適性を維持することができる空調システムについて開示することを目的とする。本開示は、換気時に換気を促進することができる空調システムについて開示することを他の目的とする。 The purpose of this disclosure is to disclose an air conditioning system that can maintain comfort even during ventilation. Another object of the present disclosure is to disclose an air conditioning system capable of promoting ventilation during ventilation.
 本開示は、部屋の空調を行なう空調システムに関する。空調システムは、部屋に設けられた開口部の開閉状態を検出するように構成されたセンサと、部屋の空気を吸い込み、空調して部屋に送出する空調装置と、センサの出力に応じて空調装置を制御する制御装置とを備える。制御装置は、開口部が閉状態から開状態に変化したことをセンサが検出した場合に、空調装置に空調の増強をさせることが可能に構成される。 The present disclosure relates to an air conditioning system that air-conditions a room. The air conditioning system includes a sensor configured to detect the open/closed state of an opening provided in a room, an air conditioner that draws air from the room, air-conditions it, and sends it out to the room, and an air conditioner that responds to the output of the sensor. and a control device for controlling the The control device is configured to allow the air conditioner to increase air conditioning when the sensor detects that the opening has changed from the closed state to the open state.
 本開示の他の局面に従う空調システムは、部屋に設けられた開口部の開閉状態を検出するように構成されたセンサと、部屋の空気を吸い込み、空調して部屋に送出する空調装置と、部屋に向けて送出する空気の向きを変更することが可能である風向変更部と、センサの出力に応じて空調装置を制御する制御装置とを備える。制御装置は、開口部が閉状態から開状態に変化したことをセンサが検出した場合に、部屋の換気が促進されるように、部屋に送出する空気の向きを風向変更部によって制御する風向制御を行なうことが可能に構成される。 An air-conditioning system according to another aspect of the present disclosure includes a sensor configured to detect the open/closed state of an opening provided in a room, an air conditioner that takes in air in the room, air-conditions it, and delivers it to the room, and a controller for controlling the air conditioner according to the output of the sensor. When the sensor detects that the opening changes from closed to open, the control device controls the direction of the air sent to the room by the air direction changing unit so as to promote ventilation of the room. is configured to be able to perform
 本開示の空調システムによれば、換気時に速やかに空調運転を増強することが可能であるので、換気時の部屋の快適性を維持することができる。 According to the air conditioning system of the present disclosure, it is possible to rapidly increase the air conditioning operation during ventilation, so it is possible to maintain the comfort of the room during ventilation.
 本開示の他の局面に従う空調システムによれば、窓等を空けたときに換気が促進される。 According to the air conditioning system according to another aspect of the present disclosure, ventilation is facilitated when windows and the like are opened.
実施の形態1の空調システムの構成を示す図である。1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1; FIG. 室外機、室内機およびリモコンの各制御部の構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining the configuration of each control unit of the outdoor unit, indoor unit, and remote control; 室内機の構成を説明するための断面図である。It is a sectional view for explaining composition of an indoor unit. 空調システムの換気時および通常時の制御を切替える処理を説明するためのフローチャートである。4 is a flowchart for explaining a process of switching control of the air conditioning system between ventilation and normal control; 通常制御時(冷房)のサーモON判定処理を説明するためのフローチャートである。7 is a flowchart for explaining thermo ON determination processing during normal control (cooling); 通常制御時(冷房)のサーモOFF判定処理を説明するためのフローチャートである。7 is a flowchart for explaining thermo-OFF determination processing during normal control (cooling); 通常制御時(暖房)のサーモON判定処理を説明するためのフローチャートである。7 is a flowchart for explaining thermo ON determination processing during normal control (heating); 通常制御時(暖房)のサーモOFF判定処理を説明するためのフローチャートである。9 is a flowchart for explaining thermo-OFF determination processing during normal control (heating). 実施の形態1における換気時制御を説明するためのフローチャートである。4 is a flowchart for explaining control during ventilation according to Embodiment 1. FIG. 換気していない場合の風向を説明するための図である。FIG. 5 is a diagram for explaining the wind direction when ventilation is not performed; 実施の形態1における夏期または中間期における換気時の風向制御を説明するための図である。FIG. 4 is a diagram for explaining wind direction control during ventilation in the summer or intermediate season according to Embodiment 1; 実施の形態1における冬期または中間期における換気時の風向制御を説明するための図である。FIG. 4 is a diagram for explaining wind direction control during ventilation in the winter season or intermediate season according to Embodiment 1; 実施の形態2で対象とする空調対象空間のフロアマップの一例を示す上面図である。FIG. 9 is a top view showing an example of a floor map of an air-conditioned space targeted in Embodiment 2; 実施の形態2における夏期の冷房運転時における換気時の風向制御を説明するための側面図である。FIG. 11 is a side view for explaining wind direction control during ventilation during cooling operation in summer in Embodiment 2; 実施の形態2における夏期の冷房運転時における換気時の風向制御を説明するための上面図である。FIG. 11 is a top view for explaining wind direction control during ventilation during cooling operation in summer in Embodiment 2; 実施の形態2における冬期の暖房運転時における換気時の風向制御を説明するための側面図である。FIG. 11 is a side view for explaining wind direction control during ventilation during heating operation in winter in Embodiment 2; 実施の形態2における冬期の暖房運転時における換気時の風向制御を説明するための上面図である。FIG. 11 is a top view for explaining wind direction control during ventilation during heating operation in winter in Embodiment 2; 実施の形態2における換気時の制御を説明するためのフローチャートである。10 is a flow chart for explaining control during ventilation according to Embodiment 2. FIG. 換気されにくいエリアが部屋の中に生じるフロアマップの一例を示す図である。FIG. 10 is a diagram showing an example of a floor map in which an area that is difficult to ventilate occurs in a room; 実施の形態3における換気時の風向制御を説明するための上面図である。FIG. 11 is a top view for explaining wind direction control during ventilation in Embodiment 3; 実施の形態3における換気時の風向制御を説明するための側面図である。FIG. 11 is a side view for explaining wind direction control during ventilation in Embodiment 3; 換気時の自然の風が空調システムによって妨げられる例を説明するための図である。FIG. 4 is a diagram for explaining an example in which natural wind during ventilation is blocked by an air conditioning system; 実施の形態4における換気時の風向制御を説明するための側面図である。FIG. 12 is a side view for explaining wind direction control during ventilation in Embodiment 4; 開閉センサの変形例を説明するための図である。It is a figure for demonstrating the modification of an opening-and-closing sensor.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。なお、以下の図は各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. A plurality of embodiments will be described below, but appropriate combinations of the configurations described in the respective embodiments have been planned since the filing of the application. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated. In the following figures, the size relationship of each component may differ from the actual size.
 実施の形態1.
 図1は、実施の形態1の空調システムの構成を示す図である。図1に示す空調システム1は、熱源および冷熱源として働く室外機10と、熱および冷熱を利用する室内機20と、リモコン30と、開閉検知センサ40とを備える。室外機10と室内機20とは、部屋100を空調する空調装置2を構成する。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of an air conditioning system according to Embodiment 1. FIG. The air conditioning system 1 shown in FIG. 1 includes an outdoor unit 10 that functions as a heat source and a cold source, an indoor unit 20 that uses heat and cold, a remote control 30, and an open/close detection sensor 40 . The outdoor unit 10 and the indoor unit 20 constitute an air conditioner 2 that air-conditions the room 100 .
 室外機10は、圧縮機11と、室外熱交換器12と、ファン13と、四方弁14と、制御装置15とを備える。 The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, a fan 13, a four-way valve 14, and a control device 15.
 室内機20は、同じ部屋100に配置される複数の空調ユニット20A~20Dを備える。空調ユニット20Aは、膨張弁21Aと、室内熱交換器22Aと、ファン23Aと、風向変更部24Aと、制御装置25Aとを備える。空調ユニット20Bは、膨張弁21Bと、室内熱交換器22Bと、ファン23Bと、風向変更部24Bと、制御装置25Bとを備える。空調ユニット20Cは、膨張弁21Cと、室内熱交換器22Cと、ファン23Cと、風向変更部24Cと、制御装置25Cとを備える。空調ユニット20Dは、膨張弁21Dと、室内熱交換器22Dと、ファン23Dと、風向変更部24Dと、制御装置25Dとを備える。 The indoor unit 20 includes a plurality of air conditioning units 20A to 20D arranged in the same room 100. The air conditioning unit 20A includes an expansion valve 21A, an indoor heat exchanger 22A, a fan 23A, a wind direction changing section 24A, and a control device 25A. The air conditioning unit 20B includes an expansion valve 21B, an indoor heat exchanger 22B, a fan 23B, a wind direction changing section 24B, and a control device 25B. The air conditioning unit 20C includes an expansion valve 21C, an indoor heat exchanger 22C, a fan 23C, a wind direction changing section 24C, and a control device 25C. The air conditioning unit 20D includes an expansion valve 21D, an indoor heat exchanger 22D, a fan 23D, a wind direction changing section 24D, and a control device 25D.
 制御装置15は、ユーザから与えられる運転指令信号と各種センサの出力とに応じて、圧縮機11と、四方弁14と、ファン13とを制御する。 The control device 15 controls the compressor 11, the four-way valve 14, and the fan 13 according to the operation command signal given by the user and the outputs of various sensors.
 制御装置15は、CPU(Central Processing Unit)16、メモリ17および図示しない入出力バッファ等を含む。CPU16は、メモリ17に格納されているプログラムを展開して実行する。このプログラムは、制御装置15の処理手順が記されたプログラムである。制御装置15は、これらのプログラムに従って、空調システム1における各機器の制御を実行する。制御装置15が行なう空調制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 15 includes a CPU (Central Processing Unit) 16, a memory 17, an input/output buffer (not shown), and the like. The CPU 16 develops and executes a program stored in the memory 17 . This program is a program in which processing procedures of the control device 15 are described. The control device 15 executes control of each device in the air conditioning system 1 according to these programs. The air-conditioning control performed by the control device 15 is not limited to processing by software, and processing by dedicated hardware (electronic circuit) is also possible.
 圧縮機11は、制御装置15から受ける制御信号によって運転周波数を変更するように構成される。圧縮機11の運転周波数を変更することにより圧縮機11の出力が調整される。圧縮機11には種々のタイプ、たとえば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用することができる。 The compressor 11 is configured to change the operating frequency according to a control signal received from the control device 15 . By changing the operating frequency of the compressor 11, the output of the compressor 11 is adjusted. Various types such as a rotary type, a reciprocating type, a scroll type, and a screw type can be adopted for the compressor 11 .
 四方弁14は、制御装置15から受ける制御信号によって冷房運転状態および暖房運転状態のいずれかになるように制御される。冷房運転状態では、圧縮機11から吐出された冷媒が室外熱交換器12に送られ、室内機20を通過した冷媒が圧縮機11に吸入される。暖房運転状態では、圧縮機11から吐出された冷媒が室内機20に送られ、室外熱交換器12を通過した冷媒が圧縮機11に吸入される。なお、圧縮機11の吸入口と四方弁14との間には図示しないアキュムレータが設けられていても良い。また、圧縮機11の吐出口と四方弁14との間には図示しないオイルセパレータが設けられていても良い。 The four-way valve 14 is controlled by a control signal received from the control device 15 so as to be in either the cooling operation state or the heating operation state. In the cooling operation state, the refrigerant discharged from the compressor 11 is sent to the outdoor heat exchanger 12 and the refrigerant that has passed through the indoor unit 20 is sucked into the compressor 11 . In the heating operation state, the refrigerant discharged from the compressor 11 is sent to the indoor unit 20 and the refrigerant that has passed through the outdoor heat exchanger 12 is sucked into the compressor 11 . An accumulator (not shown) may be provided between the suction port of the compressor 11 and the four-way valve 14 . An oil separator (not shown) may be provided between the discharge port of the compressor 11 and the four-way valve 14 .
 膨張弁21Aは、制御装置25Aから受ける制御信号に基づいて、全開、SH(スーパーヒート:加熱度)制御、SC(サブクール:過冷却度)制御または閉止のいずれかを行なうように開度が制御される。ファン23Aおよび風向変更部24Aは、制御装置25Aから受ける制御信号に基づいて吹出し風量および風向を制御する。 The expansion valve 21A is controlled in its degree of opening based on a control signal received from the control device 25A so as to be fully open, SH (superheat: degree of heating) control, SC (subcool: degree of supercooling) control, or closed. be done. The fan 23A and the wind direction changer 24A control the blowing air volume and wind direction based on the control signal received from the control device 25A.
 膨張弁21Bは、制御装置25Bから受ける制御信号に基づいて、全開、SH制御、SC制御または閉止のいずれかを行なうように開度が制御される。ファン23Bおよび風向変更部24Bは、制御装置25Bから受ける制御信号に基づいて吹出し風量および風向を制御する。 The opening of the expansion valve 21B is controlled based on a control signal received from the control device 25B so as to perform either full opening, SH control, SC control or closing. The fan 23B and the wind direction changer 24B control the blowing air volume and wind direction based on the control signal received from the control device 25B.
 膨張弁21Cは、制御装置25Cから受ける制御信号に基づいて、全開、SH制御、SC制御または閉止のいずれかを行なうように開度が制御される。ファン23Cおよび風向変更部24Cは、制御装置25Cから受ける制御信号に基づいて吹出し風量および風向を制御する。 The opening of the expansion valve 21C is controlled based on a control signal received from the control device 25C so as to perform either full opening, SH control, SC control or closing. The fan 23C and the wind direction changer 24C control the blowing air volume and wind direction based on the control signal received from the control device 25C.
 膨張弁21Dは、制御装置25Dから受ける制御信号に基づいて、全開、SH制御、SC制御または閉止のいずれかを行なうように開度が制御される。ファン23Dおよび風向変更部24Dは、制御装置25Dから受ける制御信号に基づいて吹出し風量および風向を制御する。 The opening of the expansion valve 21D is controlled based on a control signal received from the control device 25D so as to perform either full opening, SH control, SC control or closing. The fan 23D and the wind direction changer 24D control the blowing air volume and wind direction based on the control signal received from the control device 25D.
 リモコン30は、壁面などに配置され、被空調対象空間の目標温度などを設定、表示するように構成される。リモコン30は、CPU31、メモリ32および表示部33等を含む。リモコン30が行なう設定、表示などの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The remote controller 30 is arranged on a wall surface or the like, and configured to set and display the target temperature of the space to be air-conditioned. Remote controller 30 includes CPU 31, memory 32, display unit 33, and the like. The control of setting, display, etc. performed by the remote control 30 is not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
 開閉検知センサ40は、部屋100に設けられた窓およびドアなどの開口部の開閉状態を検知するように構成される。 The open/close detection sensor 40 is configured to detect the open/close state of openings such as windows and doors provided in the room 100 .
 実施の形態1の空調システム1は、部屋100の開口部の開閉状態に基づいて、換気時の快適性の低下を防ぐように室外機10および室内機20からなる空調装置2を制御する。また、実施の形態1の空調システムは、部屋100の開口部の開閉状態に基づいて、換気時の換気を促進するように、室外機10および室内機20からなる空調装置を制御する。 The air conditioning system 1 of Embodiment 1 controls the air conditioner 2 consisting of the outdoor unit 10 and the indoor unit 20 based on the open/closed state of the opening of the room 100 so as to prevent deterioration of comfort during ventilation. Further, the air conditioning system of Embodiment 1 controls the air conditioner composed of the outdoor unit 10 and the indoor unit 20 based on the opening/closing state of the opening of the room 100 so as to promote ventilation during ventilation.
 図2は、室外機、室内機およびリモコンの各制御部の構成を説明するためのブロック図である。図2では、室内機の制御装置25A~25Dを代表的に制御装置25と表記する。 FIG. 2 is a block diagram for explaining the configuration of each control unit for the outdoor unit, indoor unit, and remote control. In FIG. 2, the control devices 25A to 25D of the indoor units are represented as the control device 25. As shown in FIG.
 制御装置25は、たとえば、リモコン30からの指令を受けて、室内機20全般を制御する。制御装置25は、制御部として動作するCPU26と記憶部として動作するメモリ27と、センサ等からの入力信号を受ける入力部28と、各種制御信号を出力する出力部29とを含む。CPU26とメモリ27と入力部28と出力部29とはデータバスで接続されており、データをやりとりしている。 For example, the control device 25 receives commands from the remote control 30 and controls the indoor unit 20 in general. The control device 25 includes a CPU 26 that operates as a control section, a memory 27 that operates as a storage section, an input section 28 that receives input signals from sensors and the like, and an output section 29 that outputs various control signals. The CPU 26, memory 27, input section 28, and output section 29 are connected by a data bus to exchange data.
 開閉検知センサ40は、窓側の開口の開閉を検知する開閉センサ41と、廊下側の開口の開閉を検知する開閉センサ42とを含む。なお、換気に使用される開口の数によって、開閉センサの数は増減しても良い。 The opening/closing detection sensor 40 includes an opening/closing sensor 41 that detects opening/closing of the opening on the window side, and an opening/closing sensor 42 that detects opening/closing of the opening on the corridor side. Note that the number of opening/closing sensors may be increased or decreased depending on the number of openings used for ventilation.
 入力部28は、図示しない室温センサなどからの入力を受ける室温認識部と、開閉センサ41,42の出力を受ける開閉認識部とを含む。 The input unit 28 includes a room temperature recognition unit that receives inputs from a room temperature sensor (not shown) and an open/close recognition unit that receives outputs from the open/ close sensors 41 and 42 .
 CPU26は、プログラムを実行することによって、通常制御部、窓開判定部、窓閉判定部、換気制御部として動作する。通常制御部は、空調の通常制御を行なう。窓開判定部は、開閉センサ41,42に基づいて窓等の開口部の開きを判定する。窓閉判定部は、開閉センサ41,42に基づいて窓等の開口部の閉じを判定する。換気制御部は、開口部が開いている場合に換気用の制御を行なう。 The CPU 26 operates as a normal control section, a window open determination section, a window closed determination section, and a ventilation control section by executing programs. The normal control unit performs normal control of air conditioning. The window open determination unit determines whether an opening such as a window is open based on open/ close sensors 41 and 42 . The window closing determination unit determines whether an opening such as a window is closed based on the opening/ closing sensors 41 and 42 . The ventilation control unit provides control for ventilation when the opening is open.
 メモリ27は、CPU26で実行されるプログラム、およびCPU26が制御に使用するデータを記憶する。たとえば、室内機20が設置される部屋100のフロアマップがデータとしてメモリ27に記憶されている。なお、フロアマップデータは、マップそのものがメモリ内にあるわけではなく、位置情報を示すポインタ、アドレス番号であってもよい。 The memory 27 stores programs executed by the CPU 26 and data used by the CPU 26 for control. For example, the floor map of the room 100 in which the indoor unit 20 is installed is stored in the memory 27 as data. Note that the floor map data does not necessarily exist in the memory itself, but may be a pointer indicating position information or an address number.
 出力部29は、風向、風量、冷媒の流量を制御する制御信号を室内機20のベーン、ファン、膨張弁にそれぞれ出力する。換気時には、出力部29からは、室外機の制御装置15に対して増強運転を実行するように制御信号が出力される。 The output unit 29 outputs control signals for controlling the wind direction, air volume, and refrigerant flow rate to the vanes, fans, and expansion valves of the indoor unit 20, respectively. During ventilation, the output unit 29 outputs a control signal to the control device 15 of the outdoor unit so as to execute the augmented operation.
 制御装置15は、制御部として動作するCPU16と記憶部として動作するメモリ17と、センサ等からの入力信号を受ける入力部18とを含む。 The control device 15 includes a CPU 16 that operates as a control unit, a memory 17 that operates as a storage unit, and an input unit 18 that receives input signals from sensors and the like.
 CPU16は、室外機の内部の圧縮機、四方弁、室外ファンなどの制御を行なう。メモリ17は、CPU16で実行されるプログラムと、CPU16が制御に使用するデータとを記憶する。入力部18は、図示しない外気温センサの検出信号などを受ける。 The CPU 16 controls the compressor, four-way valve, outdoor fan, etc. inside the outdoor unit. The memory 17 stores programs executed by the CPU 16 and data used by the CPU 16 for control. The input unit 18 receives detection signals from an outside air temperature sensor (not shown) and the like.
 リモコン30は、冷房/暖房の運転切替を行なう運転切替部、空調対象空間の目標温度を設定する温度設定部、および表示部33等を含む。表示部33がタッチパネルなどの場合には、運転切替部、温度設定部も表示部33と一体化されている。なお、運転切替部、温度設定部を押しボタン、調整つまみなどで構成しても良い。 The remote controller 30 includes an operation switching unit for switching cooling/heating operation, a temperature setting unit for setting the target temperature of the air-conditioned space, a display unit 33, and the like. When the display unit 33 is a touch panel or the like, the operation switching unit and the temperature setting unit are also integrated with the display unit 33 . The operation switching unit and temperature setting unit may be configured by push buttons, adjustment knobs, and the like.
 本実施の形態では、室内機に配置される制御装置25と室外機に配置される制御装置15と、リモコン30とが連携して制御を実行する。なお、必ずしも、3つの制御装置によって制御されなくても良く、制御装置が1つにまとめられていても良く、制御装置の数は任意に変更可能である。 In the present embodiment, the control device 25 arranged in the indoor unit, the control device 15 arranged in the outdoor unit, and the remote control 30 cooperate to execute control. It should be noted that the control does not necessarily have to be performed by three control devices, the control devices may be integrated into one, and the number of control devices can be changed arbitrarily.
 図3は、室内機の構成を説明するための断面図である。図3に示す室内機20は、送風手段の一例であるファン23と、熱交換器22とを含む。なお、図3には図示しないが、室内機20は、制御装置25と、吸込温度センサとをさらに含む。 FIG. 3 is a cross-sectional view for explaining the configuration of the indoor unit. The indoor unit 20 shown in FIG. 3 includes a fan 23 and a heat exchanger 22, which are an example of a blower. Although not shown in FIG. 3, indoor unit 20 further includes a control device 25 and a suction temperature sensor.
 室内機20は、図3の断面図に示すように、部屋100の天井に埋め込まれて設置される天井埋め込み型の室内機である。室内機20は、中央に設けられた吸込口から吸い込んだ室内の空気を空気調和し、そして、空気調和した空気を吸込口の周囲に設けられた吹出口から室内へ吹出す。吹出口には、風向変更部24の一種であるベーンが設けられ、風向制御および吹出し口の開閉を行なう。図3では、上下方向の風向を変える上下風向ベーンが示されているが、図示しない左右風向ベーンも設けられている。風向変更部24は、上下風向ベーンおよび左右風向ベーンを含む。なお、ベーンは、フラップまたはルーバーと呼ばれることもある。 The indoor unit 20 is a ceiling-embedded indoor unit that is embedded in the ceiling of the room 100 as shown in the cross-sectional view of FIG. The indoor unit 20 air-conditions the indoor air taken in through the suction port provided in the center, and blows out the air-conditioned air into the room through outlets provided around the suction port. The air outlet is provided with a vane, which is a kind of air direction changing unit 24, to control the air direction and open and close the air outlet. FIG. 3 shows vertical airflow direction vanes for changing the vertical airflow direction, but horizontal airflow direction vanes (not shown) are also provided. The wind direction changing unit 24 includes vertical wind direction vanes and horizontal wind direction vanes. The vanes are sometimes called flaps or louvers.
 ファン23は、制御装置25に制御され、吸込口から吹出口に向かう空気の流れを生じさせる。つまり、ファン23は、回転に伴って、吸込口から室内の空気を吸い込み、熱交換器22を通過させた調和空気を、吹出口から送風する。 The fan 23 is controlled by the control device 25 to generate a flow of air from the inlet to the outlet. That is, as the fan 23 rotates, the fan 23 sucks indoor air through the suction port, and blows the conditioned air that has passed through the heat exchanger 22 through the blowout port.
 暖房運転中に、室内の現在温度が設定温度に到達してサーモOFF状態になると、ファン23が、風量を抑制するように制御される。たとえば、リモコン30から室内温度と設定温度が送信され、制御装置25がサーモOFFと判定する。サーモOFFと判定した制御装置25は、ファン23の風量を抑制させる。 When the current indoor temperature reaches the set temperature during heating operation and the thermostat is turned off, the fan 23 is controlled to reduce the air volume. For example, the indoor temperature and the set temperature are transmitted from the remote controller 30, and the controller 25 determines that the thermostat is OFF. When the controller 25 determines that the thermostat is OFF, the air volume of the fan 23 is suppressed.
 吸込温度センサは、たとえば、ファン23の近傍に配置され、ファン23の回転に伴って吸込口から吸い込まれた空気の吸込温度を計測する。制御装置25は、計測された吸込温度の情報を吸込温度センサから直接受けるか、または、リモコン30を通じて受ける。なお、吸込温度センサの配置位置は、空調機100内における他の位置であってもよい。たとえば、吸込温度センサは、吸込口の近傍に配置されていてもよい。 The suction temperature sensor is arranged, for example, near the fan 23 and measures the suction temperature of the air sucked from the suction port as the fan 23 rotates. The controller 25 receives information on the measured suction temperature directly from the suction temperature sensor or via the remote controller 30 . Note that the intake temperature sensor may be arranged at another position within the air conditioner 100 . For example, the suction temperature sensor may be located near the suction port.
 熱交換器22は、たとえば、室外機10との間で循環する冷媒と吸込口から吸い込んだ空気との間で熱交換させることで、空気を調和する。たとえば、熱交換器22は、吸込口から吸い込んだ空気を冷却,加熱,または除湿等する。 The heat exchanger 22 conditions the air by, for example, exchanging heat between the refrigerant circulating with the outdoor unit 10 and the air sucked from the suction port. For example, the heat exchanger 22 cools, heats, or dehumidifies the air sucked from the suction port.
 なお、サーモOFF状態になると、熱交換器22による熱交換が、停止するように制御される。たとえば、サーモOFF状態では、制御装置25は、膨張弁を閉じて冷媒の循環を停止させたり、冷媒を圧縮する圧縮機を停止させたりすることによって、熱交換器22の熱交換を停止させる。 It should be noted that when the thermostat is turned off, the heat exchange by the heat exchanger 22 is controlled to stop. For example, in the thermo-off state, the control device 25 stops heat exchange in the heat exchanger 22 by closing the expansion valve to stop circulation of the refrigerant or by stopping the compressor that compresses the refrigerant.
 図4は、空調システムの換気時および通常時の制御を切替える処理を説明するためのフローチャートである。このフローチャートの処理は、図2における制御装置25において実行される。このフローチャートの処理は、CPU26が窓開判定部、窓閉判定部、換気制御部として動作する場合の処理に相当する。なお、リモコン30または制御装置15においてこのフローチャートの処理が実行されても良い。  Fig. 4 is a flowchart for explaining the process of switching between ventilation control and normal control of the air conditioning system. The processing of this flowchart is executed in the control device 25 in FIG. The processing of this flowchart corresponds to the processing when the CPU 26 operates as the window open determination unit, the window close determination unit, and the ventilation control unit. Note that the processing of this flowchart may be executed in the remote controller 30 or the control device 15 .
 まずステップS1において、制御装置25は、開閉センサの出力に基づいて窓等の開口部が閉状態から開状態に変化したか否かを判断する。変化が検出されない場合には(S1でNO)、ステップS5において通常制御が実行される。 First, in step S1, the control device 25 determines whether or not the opening such as the window has changed from the closed state to the open state based on the output of the open/close sensor. If no change is detected (NO in S1), normal control is executed in step S5.
 変化が検出された場合には(S1でYES)、ステップS2において開口部の開状態が一定時間継続したか否かが判断される。開状態が一定時間継続せずに閉状態に戻った場合には(S2でNO)、ステップS5において通常制御が実行される。これにより、換気目的ではない窓等の開閉が排除される。 If a change is detected (YES in S1), it is determined in step S2 whether or not the opening has remained open for a certain period of time. If the open state does not continue for a certain period of time and returns to the closed state (NO in S2), normal control is executed in step S5. This eliminates the opening and closing of windows and the like that are not for ventilation purposes.
 開状態が一定時間継続した場合には(S2でYES)、ステップS3において換気時制御が実行される。そして、ステップS4において、制御装置25は、開閉センサの出力に基づいて窓等の開口部が開状態から閉状態に変化したか否かを判断する。変化が検出されない場合には(S4でNO)、ステップS3における換気時制御が維持される。変化が検出された場合には(S4でYES)、ステップS5において通常制御が実行される。 If the open state continues for a certain period of time (YES in S2), ventilation control is executed in step S3. Then, in step S4, the control device 25 determines whether or not the opening such as the window has changed from the open state to the closed state based on the output of the open/close sensor. If no change is detected (NO in S4), the ventilatory control in step S3 is maintained. If a change is detected (YES in S4), normal control is executed in step S5.
 図5は、通常制御時(冷房)のサーモON判定処理を説明するためのフローチャートである。このフローチャートの処理は、室内機20の制御装置25で実行される。ステップS11において、制御装置25は、サーモOFF判定後に、一定時間が経過したか否かを判断する。一定時間が経過していない場合(S11でNO)、このフローチャートのスタートに処理が戻される。 FIG. 5 is a flowchart for explaining thermo ON determination processing during normal control (cooling). The processing of this flowchart is executed by the controller 25 of the indoor unit 20 . In step S11, the control device 25 determines whether or not a certain period of time has elapsed after the thermo-off determination. If the predetermined time has not passed (NO in S11), the process is returned to the start of this flowchart.
 一定時間が経過していた場合(S11でYES)、ステップS12において、制御装置25は、室温が「設定温度+定数」で示される判定温度よりも高いか否かを判断する。室温が判定温度よりも高くない場合(S12でNO)、このフローチャートのスタートに処理が戻される。 If a certain period of time has passed (YES in S11), in step S12, the control device 25 determines whether or not the room temperature is higher than the judgment temperature indicated by "set temperature + constant". If the room temperature is not higher than the judgment temperature (NO in S12), the process returns to the start of this flowchart.
 室温が判定温度よりも高い場合(S12でYES)、サーモON状態に制御が切替えられる。サーモON状態では、圧縮機11が運転状態となり、室内機20の膨張弁21の開度が制御され、ファン23も風量設定に従った回転となる。 When the room temperature is higher than the judgment temperature (YES in S12), control is switched to the thermo ON state. In the thermo ON state, the compressor 11 is in an operating state, the degree of opening of the expansion valve 21 of the indoor unit 20 is controlled, and the fan 23 also rotates according to the air volume setting.
 図6は、通常制御時(冷房)のサーモOFF判定処理を説明するためのフローチャートである。このフローチャートの処理は、室内機20の制御装置25で実行される。ステップS21において、制御装置25は、室温が「設定温度-定数」で示される判定温度よりも低いか否かを判断する。室温が判定温度よりも低くない場合(S21でNO)、このフローチャートのスタートに処理が戻される。 FIG. 6 is a flowchart for explaining the thermo OFF determination process during normal control (cooling). The processing of this flowchart is executed by the controller 25 of the indoor unit 20 . In step S21, the control device 25 determines whether or not the room temperature is lower than the determination temperature indicated by "set temperature - constant". If the room temperature is not lower than the judgment temperature (NO in S21), the process is returned to the start of this flowchart.
 室温が判定温度よりも低い場合(S21でYES)、サーモOFF状態に制御が切替えられる。サーモOFF状態では、圧縮機11が停止状態となるか、または室内機20の膨張弁21が閉止される。 When the room temperature is lower than the judgment temperature (YES in S21), control is switched to the thermo OFF state. In the thermo-off state, the compressor 11 is stopped or the expansion valve 21 of the indoor unit 20 is closed.
 なお、サーモON判定およびサーモOFF判定は、換気制御時に実行される急速運転では、通常運転時に対して、判定温度が変更される。急速運転と通常制御との違いは温度上昇または下降の速度である。急速運転では、基本的には、素早く、強めに冷房する。図4のステップS3で実行される換気制御時には、急速運転が実行され、サーモON判定とするタイミングを早くする。 It should be noted that the determination temperatures for the thermo ON determination and the thermo OFF determination are changed in rapid operation executed during ventilation control compared to normal operation. The difference between rapid operation and normal control is the rate of temperature rise or fall. Rapid operation basically cools quickly and strongly. During the ventilation control executed in step S3 of FIG. 4, rapid operation is executed, and the timing of the thermo ON determination is advanced.
 また、急速運転では、通常制御時よりも圧縮機容量制御の制限を緩くする。通常制御では、設定温度と周囲温度の差が縮まってくると室内機の膨張弁および圧縮機容量制御を省エネ制御にするが、急速運転ではその制限を弱める。 In addition, during rapid operation, the restrictions on compressor capacity control are loosened more than during normal control. In normal control, when the difference between the set temperature and the ambient temperature is reduced, the expansion valve and compressor capacity control of the indoor unit are controlled to save energy.
 たとえば、夏に換気すると室温が一気に上がるので、通常制御だと室温がある程度上昇してしまうが、急速運転を行なうことによって、通常制御よりも室温を上昇させないようにできる。 For example, if you ventilate in the summer, the room temperature rises at once, so with normal control, the room temperature rises to some extent, but by performing rapid operation, you can prevent the room temperature from rising more than normal control.
 図5、図6で説明した冷房時の例について説明する。
 通常時では、以下のように判定温度が設定されているとする。
サーモON条件:室温>設定温度+定数A
サーモOFF条件:室温<設定温度-定数A
 これに対して、急速運転時には、判定温度は以下のように設定される。
サーモON条件:室温>設定温度+定数B
サーモOFF条件:室温<設定温度-定数B
なお、定数A,Bは、マージンを示す温度幅を示し、A>Bである。
An example at the time of cooling described with reference to FIGS. 5 and 6 will be described.
Assume that the determination temperature is set as follows under normal conditions.
Thermo ON conditions: room temperature > set temperature + constant A
Thermo OFF condition: room temperature < set temperature - constant A
On the other hand, during rapid operation, the determination temperature is set as follows.
Thermo ON condition: room temperature > set temperature + constant B
Thermo OFF condition: room temperature < set temperature - constant B
Note that the constants A and B indicate temperature ranges indicating margins, where A>B.
 このように判定温度を変えることによって、換気時に急速運転を行ない、サーモON、サーモOFFの判定のタイミングを早めることができる。 By changing the determination temperature in this way, rapid operation can be performed during ventilation, and the timing of determination of thermo ON or thermo OFF can be advanced.
 図7は、通常制御時(暖房)のサーモON判定処理を説明するためのフローチャートである。このフローチャートの処理は、室内機20の制御装置25で実行される。ステップS31において、制御装置25は、サーモOFF判定後に、一定時間が経過したか否かを判断する。一定時間が経過していない場合(S31でNO)、このフローチャートのスタートに処理が戻される。 FIG. 7 is a flowchart for explaining the thermo ON determination process during normal control (heating). The processing of this flowchart is executed by the controller 25 of the indoor unit 20 . In step S31, the control device 25 determines whether or not a certain period of time has elapsed after the thermo OFF determination. If the predetermined time has not elapsed (NO in S31), the process is returned to the start of this flowchart.
 一定時間が経過していた場合(S31でYES)、ステップS32において、制御装置25は、室温が「設定温度-定数」で示される判定温度よりも低いか否かを判断する。室温が判定温度よりも低くない場合(S32でNO)、このフローチャートのスタートに処理が戻される。 If a certain period of time has passed (YES in S31), in step S32, the control device 25 determines whether or not the room temperature is lower than the determination temperature indicated by "set temperature - constant". If the room temperature is not lower than the judgment temperature (NO in S32), the process is returned to the start of this flowchart.
 室温が判定温度よりも低い場合(S32でYES)、サーモON状態に制御が切替えられる。サーモON状態では、圧縮機11およびファン13が運転状態となり、室内機20の膨張弁21の開度が制御され、ファン23も回転する。 When the room temperature is lower than the judgment temperature (YES in S32), control is switched to the thermo ON state. In the thermo ON state, the compressor 11 and the fan 13 are in operation, the opening of the expansion valve 21 of the indoor unit 20 is controlled, and the fan 23 also rotates.
 図8は、通常制御時(暖房)のサーモOFF判定処理を説明するためのフローチャートである。このフローチャートの処理は、室内機20の制御装置25で実行される。ステップS41において、制御装置25は、室温が「設定温度+定数」で示される判定温度よりも高いか否かを判断する。室温が判定温度よりも高くない場合(S41でNO)、このフローチャートのスタートに処理が戻される。 FIG. 8 is a flowchart for explaining the thermo OFF determination process during normal control (heating). The processing of this flowchart is executed by the controller 25 of the indoor unit 20 . In step S41, the control device 25 determines whether or not the room temperature is higher than the determination temperature indicated by "set temperature + constant". If the room temperature is not higher than the judgment temperature (NO in S41), the process is returned to the start of this flowchart.
 室温が判定温度よりも高い場合(S41でYES)、サーモOFF状態に制御が切替えられる。サーモOFF状態では、圧縮機11が停止状態となるか、または室内機20の膨張弁21が閉止される。 When the room temperature is higher than the judgment temperature (YES in S41), control is switched to the thermo OFF state. In the thermo-off state, the compressor 11 is stopped or the expansion valve 21 of the indoor unit 20 is closed.
 暖房時においても、サーモON判定およびサーモOFF判定は、換気制御時に実行される急速運転では、通常運転時に対して、判定温度が変更される。急速運転と通常制御との違いは温度上昇または下降の速度である。急速運転では、基本的には、素早く、強めに暖房する。暖房時においても、図4のステップS3で実行される換気制御時には、急速運転が実行され、サーモON判定とするタイミングを早くする。 Even during heating, the judgment temperatures for the thermo ON judgment and thermo OFF judgment are changed in rapid operation executed during ventilation control compared to normal operation. The difference between rapid operation and normal control is the rate of temperature rise or fall. Rapid operation basically heats quickly and strongly. Also during heating, rapid operation is executed during the ventilation control executed in step S3 of FIG.
 たとえば、冬に換気すると室温が一気に下がるので、通常制御だと室温がある程度下がってしまう。したがって、換気時には、急速運転を実行し、通常制御よりも室温が下がらないようにする。 For example, if you ventilate in winter, the room temperature will drop at once, so if you use normal control, the room temperature will drop to some extent. Therefore, during ventilation, rapid operation is performed so that the room temperature does not fall below normal control.
 図9は、実施の形態1における換気時制御を説明するためのフローチャートである。このフローチャートの処理は、図4のステップS3の処理の詳細を示している。 FIG. 9 is a flowchart for explaining control during ventilation according to the first embodiment. The processing of this flowchart shows the details of the processing of step S3 in FIG.
 換気時制御では、ステップS51において空調装置において空調を増強する運転が実行される。具体的には、制御装置25がファン23の回転速度を通常運転時に設定されている回転速度よりも増加させ、かつ室外機においては制御装置15が圧縮機11の運転周波数を増加させる。なお、空調の増強は、ファンの回転速度の増加と、圧縮機の運転周波数の増加のいずれか一方のみであっても良い。特に、外気温が室内の適温と差が大きい夏および冬などには、圧縮機11の運転周波数を増加させ、冷媒の循環量を増やすことが望ましい。また、サーモON/OFF判定の判定温度も急速運転を許容するように変更される。 In the ventilation control, in step S51, the air conditioner is operated to increase the air conditioning. Specifically, the controller 25 increases the rotation speed of the fan 23 above the rotation speed set during normal operation, and the controller 15 increases the operating frequency of the compressor 11 in the outdoor unit. It should be noted that the enhancement of air conditioning may be either an increase in the rotation speed of the fan or an increase in the operating frequency of the compressor. In particular, in summer and winter, when there is a large difference between the outside air temperature and the indoor temperature, it is desirable to increase the operating frequency of the compressor 11 to increase the circulation amount of the refrigerant. Also, the judgment temperature for thermo ON/OFF judgment is changed so as to allow rapid operation.
 続いて、ステップS52において、制御装置25は、室内温度が室外温度よりも低いか否かを判断する。室内温度<室外温度が成立した場合(S52でYES)、制御装置25は、ステップS53において開口部と反対方向に風向を設定する。一方、室内温度<室外温度が成立しない場合(S52でNO)、制御装置25は、ステップS54において開口部の方向に風向を設定する。 Subsequently, in step S52, the control device 25 determines whether the indoor temperature is lower than the outdoor temperature. If the indoor temperature<outdoor temperature is established (YES in S52), the control device 25 sets the wind direction in the direction opposite to the opening in step S53. On the other hand, if the indoor temperature<outdoor temperature does not hold (NO in S52), the controller 25 sets the wind direction in the direction of the opening in step S54.
 以下に、ステップS53、S54の風向と換気との関係について説明する。図10は、換気していない場合の風向を説明するための図である。図10に示すように、風向変更部24A、24Bは、リモコンなどで設定された風向に対応する角度にベーンを制御する。一般的には、中央部の吸込口から室内の空気が吸い込まれ、空調されて、吸込口の周囲の吹出口から空調された空気が吹出し、図中矢印に示すように、空気が部屋100内を循環している。 The relationship between the wind direction and ventilation in steps S53 and S54 will be described below. FIG. 10 is a diagram for explaining the wind direction when ventilation is not performed. As shown in FIG. 10, the wind direction changing units 24A and 24B control the vanes to an angle corresponding to the wind direction set by a remote controller or the like. In general, room air is sucked in from the central suction port, air-conditioned, and the conditioned air is blown out from outlets around the suction port, and the air flows into the room 100 as indicated by the arrows in the figure. is circulating.
 すなわち、通常制御時には、室内機は、空気を循環させて温度を一定にする。室内機は、空気を循環させるだけで換気はできない。 That is, during normal control, the indoor unit circulates air to keep the temperature constant. The indoor unit only circulates air and does not provide ventilation.
 図11は、実施の形態1における夏期または中間期における換気時の風向制御を説明するための図である。夏は、外気温が室温よりも高い。春、秋などの中間期においても外気温が室温よりも高い場合がある。このような場合に、図11に示すように室内機の風向が制御される。 FIG. 11 is a diagram for explaining wind direction control during ventilation in the summer or intermediate season according to the first embodiment. In summer, the outside temperature is higher than the room temperature. The outside air temperature may be higher than the room temperature even in intermediate seasons such as spring and autumn. In such a case, the wind direction of the indoor unit is controlled as shown in FIG.
 本実施の形態では、天井埋め込み型の4方向吹出しの室内機の風向きに方向性を持たせることで、部屋全体の空気の流れを作る。その前提としては、冷たい空気は暖かい空気の方に移動するという法則がある。冷たい空気は、気圧が高く、暖かい空気は気圧が低いからである。 In this embodiment, the airflow of the entire room is created by giving directionality to the airflow direction of the ceiling-embedded four-way blowing indoor unit. The premise is that cold air moves toward warm air. Cold air has high pressure and warm air has low pressure.
 基本の考え方としては、部屋の外の方が室内よりも気温が高い夏などは、開口部とは反対側の方向に風向制御が行なわれる。すると、図11に示すように、温かい空気は、矢印W1,W2に示すように開口部である窓103から部屋100の奥に向けて送られる。すると、冷たい空気は、矢印W3,W4,W5に示すように流れて窓103の下側から部屋100の外に押し出される。 The basic idea is that in summer when the temperature outside the room is higher than inside, the wind direction is controlled in the direction opposite to the opening. Then, as shown in FIG. 11, warm air is sent to the interior of the room 100 through the window 103, which is an opening, as indicated by arrows W1 and W2. Then, cold air flows as indicated by arrows W3, W4, and W5 and is pushed out of the room 100 from below the window 103. FIG.
 このように、部屋全体の空気の流れがあると、室内外の温度差によって、開口部において空気が順次入れ替わるため、室内機を用いた部屋全体の換気が実現できる。 In this way, if there is an air flow throughout the room, the temperature difference between the indoor and outdoor areas will cause the air to be sequentially replaced at the openings, so the indoor unit can be used to ventilate the entire room.
 通常の室内機の運用だと、基本的に窓付近しか換気がされないが、本実施の形態では、開口部が開いたことを検出すると換気が促進されるように風向制御が行なわれる。 In normal indoor unit operation, ventilation is basically only performed near the windows, but in this embodiment, when it is detected that the opening is open, the wind direction is controlled to promote ventilation.
 図12は、実施の形態1における冬期または中間期における換気時の風向制御を説明するための図である。冬は、外気温が室温よりも低い。また、春、秋などの中間期においても外気温が室温よりも低い場合がある。このような場合に、図12に示すように室内機の風向が制御される。 FIG. 12 is a diagram for explaining wind direction control during ventilation in the winter season or intermediate season according to the first embodiment. In winter, the outside temperature is lower than the room temperature. In addition, the outside air temperature may be lower than the room temperature even in intermediate seasons such as spring and autumn. In such a case, the wind direction of the indoor unit is controlled as shown in FIG.
 基本の考え方としては、部屋の外の方が室内よりも気温が低い冬などは、開口部の方向に風向制御をする。すると、図12に示すように、温かい空気は、矢印W14,W13,W15に示すように部屋100の奥から窓103に向けて送られる。すると、冷たい外気が矢印W11,W12に示すように窓103の下側から部屋100の内部に流入する。 The basic idea is to control the wind direction in the direction of the opening in winter when the temperature outside the room is lower than inside. Then, as shown in FIG. 12, warm air is sent from the back of room 100 toward window 103 as indicated by arrows W14, W13, and W15. Then, cold outside air flows into the room 100 from below the window 103 as indicated by arrows W11 and W12.
 厳密には、通常の風向制御をしていても、室内機のベーンが動くため、空気が攪拌されるし、人の移動等によって窓付近以外の空気も移動するため、多少は換気される。しかし、本実施の形態では、部屋の奥の空気を積極的に開口側に移動させるため、通常の室内機の運用よりも換気効果は高い。 Strictly speaking, even with normal wind direction control, the air is agitated because the vanes of the indoor unit move, and the air outside the window area moves due to the movement of people, etc., so there is some ventilation. However, in this embodiment, since the air in the back of the room is actively moved to the opening side, the ventilation effect is higher than that of the normal operation of the indoor unit.
 なお、換気時の風向を自動で決定するには、いくつかの方法が考えられる。
 まず、単純にリモコンの設定が冷房モードであれば夏(外気温>室温)、暖房モードであれば冬(外気温<室温)であるとして、換気時の風向を切替えることができる。
Several methods are conceivable for automatically determining the wind direction during ventilation.
First, it is possible to switch the direction of the wind during ventilation by simply setting the remote controller to summer (outside temperature > room temperature) in the cooling mode and winter (outside temperature < room temperature) in the heating mode.
 また、リモコンの設定が冷暖自動切替モードである場合には、カレンダーを内蔵したスケジュール機能で季節を判定し風向を設定したり、天気予報を受信して温度の高低を判断して風向を設定したりしても良い。 In addition, when the remote control is set to automatic cooling/heating switching mode, the schedule function with a built-in calendar can determine the season and set the wind direction, or receive the weather forecast to determine the temperature and set the wind direction. You can
 また、中間期は、外気温と設定温度が近い値のため、換気時の圧縮機の増強運転をしないようにし、開口部の状態変化に応答して風向と風量制御のみを実行するようにしても良い。 In addition, during the interim period, the outside temperature and the set temperature are close to each other, so the compressor is not boosted during ventilation, and only the air direction and air volume are controlled in response to changes in the state of the opening. Also good.
 以上説明したように、実施の形態1の空調システムは、開口部の状態により開状態で空調運転を増強させる。 As described above, the air conditioning system of Embodiment 1 enhances the air conditioning operation in the open state depending on the state of the opening.
 具体的には、開口部が開いたことを検知した後すぐ、夏冬では圧縮機の運転周波数を増加させ、急速冷房または急速暖房を実施する。併せて、風速を通常よりも一段回強くするようにファンを制御する。圧縮機の運転周波数の増加とファン回転速度の増加のいずれか一方を行なうようにしても良い。 Specifically, immediately after detecting that the opening has opened, the operating frequency of the compressor is increased in summer and winter to perform rapid cooling or rapid heating. At the same time, the fan is controlled to make the wind speed one step stronger than usual. Either one of the increase in the operating frequency of the compressor and the increase in the rotation speed of the fan may be performed.
 これにより、換気時に室温が空調の目標温度から離れることを少なくすることができる。したがって、換気時のユーザの快適性を向上させることができる。 This makes it possible to reduce the deviation of the room temperature from the air conditioning target temperature during ventilation. Therefore, the user's comfort during ventilation can be improved.
 また、実施の形態1の空調システムは、開口部が開いた状態において、空調運転の増強に加えて、換気を促すような部屋全体の空気の流れを作るように風向を制御する。なお、空調運転の増強をせずに、換気を促すように風向を制御しても良い。特に、春秋の中間期では風量または風向制御のみとしてもよい。 In addition, the air conditioning system of Embodiment 1 controls the direction of the air to create an air flow throughout the room that promotes ventilation, in addition to enhancing the air conditioning operation when the opening is open. Note that the wind direction may be controlled to promote ventilation without increasing the air conditioning operation. In particular, in the middle of spring and autumn, only the air volume or wind direction may be controlled.
 これにより、換気時に空調システムによって換気が促進される。したがって、部屋全体の換気が行なえるとともに換気時間が短時間で済む。 As a result, ventilation is promoted by the air conditioning system during ventilation. Therefore, the entire room can be ventilated and the ventilation time can be shortened.
 なお、本実施の形態では、空調運転の増強を行なう場合を説明したが、本実施の形態のように、換気を優先するモードと、従来のように、窓を開けた場合に省エネを優先するモードとの両方を実行できるように空調システムを構成しておき、ユーザがいずれを使用するかを選べるようにしても良い。 In the present embodiment, the case where the air conditioning operation is enhanced has been described. The air conditioning system may be configured so that both modes can be executed, and the user can select which one to use.
 実施の形態2.
 換気時に窓に加えてドアなどの開口部も開く場合もある。実施の形態2では、複数の開口部を考慮する。換気を促すためには窓およびドアなど2箇所以上の開口がある方が望ましい。複数の開口の各々に設けた接点または温度センサなどからの2箇所の入力信号を室内機に入力するように空調システムを構成してもよい。
Embodiment 2.
In addition to windows, openings such as doors may also be opened during ventilation. In Embodiment 2, multiple openings are considered. In order to promote ventilation, it is desirable to have two or more openings such as windows and doors. The air conditioning system may be configured such that two input signals from contacts or temperature sensors provided in each of the plurality of openings are input to the indoor units.
 図13は、実施の形態2で対象とする空調対象空間のフロアマップの一例を示す上面図である。図13には、天井側から、床面を見たときの図が示されている。図13に示す部屋100Aは、屋外に面した壁面に窓103が設けられ、廊下または別室との境界である壁面にドア104が設けられている。空調ユニット20A~20Dが天井面に配置されている。 FIG. 13 is a top view showing an example of a floor map of an air-conditioned space targeted in the second embodiment. FIG. 13 shows a view of the floor surface from the ceiling side. A room 100A shown in FIG. 13 is provided with a window 103 on the wall surface facing the outdoors, and a door 104 on the wall surface that is the boundary with a corridor or another room. Air conditioning units 20A to 20D are arranged on the ceiling surface.
 空調ユニット20A~20Dの各々は、図3で示した構成であるが、図13では4つの吹出口から4方向に風を送ることができる天井埋め込みカセット形の室内機であることがよくわかる。4つの吹出口の各々にはベーンが設けられており、吹出口を開閉したり、開状態において風向を変えたりすることができる。 Each of the air conditioning units 20A to 20D has the configuration shown in FIG. 3, but in FIG. 13, it can be clearly seen that it is a ceiling-embedded cassette type indoor unit that can send air in four directions from four outlets. Each of the four outlets is provided with a vane, which can be opened and closed, and can change the direction of the wind when the outlet is open.
 窓103の開閉を検知する開閉センサ41が窓103付近に配置され、ドア104の開閉を検知する開閉センサ42がドア104付近に配置されている。各々の開閉センサとしては、接点式の開閉センサ、または、温度の変化で開閉を検知する温度センサを用いることができる。 An open/close sensor 41 for detecting opening/closing of the window 103 is arranged near the window 103, and an open/close sensor 42 for detecting opening/closing of the door 104 is arranged near the door 104. As each opening/closing sensor, a contact type opening/closing sensor or a temperature sensor that detects opening/closing based on temperature change can be used.
 図14は、実施の形態2における夏期の冷房運転時における換気時の風向制御を説明するための側面図である。図14には、図13のXIV-XIV断面に相当する、廊下がある場合も含めた使用例の状態が示されている。夏の冷房運転中に窓103およびドア104を開けて換気をする場合の風向制御を図14によって説明する。ただし、窓を開けても強風が吹きこまない環境であるとする。 FIG. 14 is a side view for explaining wind direction control during ventilation during cooling operation in summer according to the second embodiment. FIG. 14 shows the state of an example of use including the case where there is a corridor, which corresponds to the XIV-XIV section of FIG. FIG. 14 will be used to explain wind direction control when windows 103 and doors 104 are opened for ventilation during cooling operation in summer. However, even if the window is opened, the environment is such that a strong wind does not blow in.
 室内機から風が吹出していない場合、冷気は部屋の下側に、暖気は部屋の上側に貯まる。窓を開けても強風が吹きこまない環境の場合には、窓を開けると部屋の下部では冷たい室内から暖かい屋外に向けて空気はゆっくりと移動していく。 When air is not blowing out from the indoor unit, cool air accumulates in the lower part of the room and warm air accumulates in the upper part of the room. If the window is open and no strong wind blows in, the air will slowly move from the cold interior to the warm exterior in the lower part of the room when the window is opened.
 これらの空気の特徴を考えると、廊下または別室側が閉鎖空間の場合、空調ユニット20A、20Bの各々からドア104の開口部に向けて送風することによって、図14の大きな矢印のように、室外から暖気を室内側に取り込み、室内の冷気が室内下部を回り込んで、外部に移動する空気の流れが実現できる。これにより、窓から新鮮な空気が入り、部屋全体の換気が促進される。 Considering these characteristics of air, if the corridor or separate room is a closed space, by blowing air from each of the air conditioning units 20A and 20B toward the opening of the door 104, as shown by the large arrows in FIG. Warm air is taken into the room, and cold air in the room goes around the lower part of the room and moves to the outside. This allows fresh air to enter through the windows and promote ventilation throughout the room.
 なお、ドア104が設けられている壁面の反対側である廊下、もしくは別室側が閉鎖空間でなく、別の外部への開放部を持つ場合でも、屋外から部屋100Aを通過し廊下から別の外部に向かう空気の流れができるため、この場合も問題なく換気できる。 Even if the corridor opposite to the wall on which the door 104 is provided or the separate room is not a closed space but has an opening to the outside, the room 100A can be passed through from the outside to the outside from the corridor. In this case, too, ventilation can be performed without problems because of the flow of air toward the room.
 図15は、実施の形態2における夏期の冷房運転時における換気時の風向制御を説明するための上面図である。この例の4台の室内機は壁についている1台のリモコンで操作される。4台の室内機は、リモコンの操作等によって、4台とも同時に換気運転になったり、通常制御になったりする。ただし、温度センサは個別についているので、サーモONするタイミング等は個々に異なる。 FIG. 15 is a top view for explaining wind direction control during ventilation during cooling operation in summer according to the second embodiment. The four indoor units in this example are operated by one remote controller attached to the wall. The four indoor units are simultaneously set to ventilation operation or normal control by operating the remote control or the like. However, since the temperature sensors are individually attached, the timing for turning on the thermostat differs from one to another.
 図15の部屋100Bの例では、窓とドアが対向する壁面に設けられていないが、このような場合であっても、各室内機において窓側に近い吹出口を閉じ、ドア側に近い吹出口を開き、図中矢印に示すように風向を設定することによって、換気を促進させることができる。 In the example of the room 100B in FIG. 15, the window and the door are not provided on the walls facing each other, but even in such a case, the air outlet close to the window side is closed in each indoor unit, and the air outlet close to the door side is closed. Ventilation can be promoted by opening the hood and setting the wind direction as indicated by the arrow in the figure.
 すなわち、部屋に対して複数の室内機がある場合は、部屋への吸気および部屋からの排気がスムーズにいくように、換気時にそれぞれの室内機の風向角度を変化させる。 In other words, if there are multiple indoor units for a room, change the wind direction angle of each indoor unit during ventilation so that air intake into and exhaust from the room goes smoothly.
 夏または外気温が高い中間期は、屋内側開口部であるドアの方向またはドアに位置が近い空調ユニット20Aの方向に風向を設定し、外気を冷やしつつ室内上部に送り、冷えた空気が室内下部を流れ窓から室外へ出ていく気流を作り、室内全体を換気する。なお、ドアに位置が近い室内機の配置、および各室内機におけるドアの方向は、予め記憶されているフロアマップからわかる。 In the summer or in the middle of the season when the outside temperature is high, the wind direction is set in the direction of the door that is the indoor side opening or in the direction of the air conditioning unit 20A that is close to the door, and the outside air is cooled and sent to the upper part of the room, and the cold air is sent to the room. Ventilate the entire room by creating an air current that flows through the lower part and goes out of the room through the window. The layout of the indoor units close to the door and the direction of the door for each indoor unit can be known from a pre-stored floor map.
 図16は、実施の形態2における冬期の暖房運転時における換気時の風向制御を説明するための側面図である。図17は、実施の形態2における冬期の暖房運転時における換気時の風向制御を説明するための上面図である。冬期の暖房運転時においても同様に換気時には空調の増強運転を行なうとともに、夏期とは反対方向への風向制御を行なう。 FIG. 16 is a side view for explaining wind direction control during ventilation during heating operation in winter according to the second embodiment. FIG. 17 is a top view for explaining wind direction control during ventilation during heating operation in winter according to the second embodiment. Similarly, during heating operation in winter, the air conditioning is reinforced during ventilation, and the wind direction is controlled in the direction opposite to that in summer.
 すなわち、寒い時期は、空調ユニット20A~20Dの各々において、窓側に近い吹出口を開き、ドア側に近い吹出口を閉じ、屋外側開口部に向かうように風向を設定する。 That is, in the cold season, in each of the air conditioning units 20A to 20D, the air outlets near the windows are opened, the air outlets near the doors are closed, and the wind is directed toward the outdoor openings.
 冬または外気温が低い中間期は、屋外側開口部である窓または換気口の方向、もしくはそれらに位置が近い空調ユニット20Dの方向に風向を設定し、温かい空気が室内上部を流れ、冷たい空気が室内下部を流れる気流を作り、室内全体を換気する。なお、窓または換気口に位置が近い室内機の配置、および各室内機における窓または換気口の方向は、予め記憶されているフロアマップからわかる。 In winter or in the middle of the season when the outside temperature is low, the wind direction is set in the direction of the window or the ventilation opening that is the outdoor side opening, or in the direction of the air conditioning unit 20D that is close to them, and warm air flows in the upper part of the room, and cold air creates an air current that flows through the lower part of the room and ventilates the entire room. The layout of the indoor units close to the windows or ventilation openings and the direction of the windows or ventilation openings for each indoor unit can be known from a pre-stored floor map.
 図18は、実施の形態2における換気時の制御を説明するためのフローチャートである。ステップS101において、未換気時間がリセットされる。そしてステップS102において通常制御が開始される。一定時間が経過するまでは(S103でNO)、未換気のまま通常制御が継続される。未換気のまま一定時間が経過した場合(S103でYES)、ステップS104において、制御装置25は、開口部の開放を要求する旨の通知を出力する。たとえば、ステップS104において、「換気制御を開始してよいか?」というメッセージがリモコンの画面上に表示される。ユーザが開放を拒否する場合には(S105でYES)、再びステップS101からの処理が繰返される。一方、ユーザが開放に同意する場合、たとえば、ユーザが手動で窓を開けてOKボタンを押した場合は(S105でNO)、ステップS106において制御装置25は、開口部の開閉センサの出力に基づいて、開口部の開放が完了したか否かを判断する。 FIG. 18 is a flowchart for explaining control during ventilation in the second embodiment. In step S101, the non-ventilation time is reset. Then, normal control is started in step S102. Until a certain period of time elapses (NO in S103), normal control is continued with no ventilation. If a certain period of time has passed without ventilation (YES in S103), in step S104, the control device 25 outputs a notification requesting opening of the opening. For example, in step S104, a message "Do you want to start ventilation control?" is displayed on the screen of the remote control. If the user refuses to open the door (YES at S105), the process from step S101 is repeated. On the other hand, if the user agrees to open the window, for example, if the user manually opens the window and presses the OK button (NO in S105), in step S106, the control device 25 controls the opening/closing sensor based on the output of the opening/closing sensor. to determine whether or not the opening of the opening has been completed.
 開口部の開放が完了していない場合(S106でNO)、ステップS104に戻り制御装置25は開口部の開放を要求するメッセージをリモコン画面などに再び出力する。 If the opening of the opening has not been completed (NO in S106), the control device 25 returns to step S104 and outputs a message requesting opening of the opening to the remote control screen or the like again.
 一方、開口部の開放が完了した場合(S106でYES)、ステップS107以降の換気時制御が実行される。 On the other hand, if the opening of the opening has been completed (YES in S106), the control during ventilation from step S107 onwards is executed.
 なお、ステップS104においてリモコンに「換気時制御を開始してよいか?」の画面が表示され、ユーザが手動で窓を開けてOKボタンを押したら(S105でYES,かつS106でYES)、ステップS107以降の換気制御を開始するようにしても良い。 In step S104, the remote controller displays a screen asking "Are you sure you want to start control during ventilation?" You may make it start the ventilation control after S107.
 また、これに代えて、定期的な換気制御を許可する設定にしておき、窓が時間になったら自動で開く仕組みを持った建物であれば、自動的に換気時制御を開始するようにしても良い。 Also, instead of this, if the building is set to allow periodic ventilation control, and if the building has a mechanism that automatically opens the windows when the time is up, the ventilation control will start automatically. Also good.
 換気時制御では、まず、ステップS107において、制御装置25は、現在のシーズンを判定する。シーズン判定は、カレンダー、気温、配信される天気予報などに基づいて判断することができる。そしてステップS108において、図14~図17で説明したように、シーズンに対応する風向および風量が決定される。そしてステップS109において換気終了の基準を計算する。ステップS109における換気終了の基準は、たとえば換気制御の時間経過で判断する場合、敷地面積と開口部開度から定まる換気量に基づいて一定割合以上の空気を入れ替えられる時間を算出し、その時間経過を基準とする。また、換気終了を温度で判断する場合は、通常の冷房、暖房のサーモON/OFFの関係式を用いて換気制御終了判定を行なう。たとえば、通常時に密閉空間において空調が安定して実施されている場合は、基本は大半がサーモOFF状態である。このような場合、換気のために開口部を開放すると室温と外気温度の差が大きく生まれサーモON条件を満たす。サーモON条件を満たした時点から急速増強空調(快適換気運転)を行ない、その後にサーモOFF条件になった段階で換気制御終了とする。 In the ventilation control, first, in step S107, the control device 25 determines the current season. Season determination can be based on calendars, temperatures, distributed weather forecasts, and the like. Then, in step S108, as described with reference to FIGS. 14 to 17, the wind direction and wind volume corresponding to the season are determined. Then, in step S109, a criterion for ending ventilation is calculated. The criterion for ending ventilation in step S109 is, for example, when judging by the passage of time in ventilation control, the time in which a certain percentage or more of the air can be replaced based on the amount of ventilation determined from the site area and the opening opening is calculated, and the passage of time based on Further, when judging the end of ventilation by temperature, the end of ventilation control is determined using the relational expression of thermo ON/OFF of normal cooling and heating. For example, when air conditioning is stably performed in a closed space at normal times, most of the thermostats are basically in the OFF state. In such a case, if the opening is opened for ventilation, a large difference between the room temperature and the outside air temperature is generated, satisfying the thermo ON condition. When the thermo-ON condition is satisfied, the rapid-enhancement air conditioning (comfortable ventilation operation) is performed, and then the ventilation control is terminated when the thermo-OFF condition is met.
 続いて、ステップS110において制御装置25は、決定された風量および風向で換気時の快適性を維持する快適換気運転を実行する。快適換気運転は、ステップS111において換気制御の終了判定条件が成立するまで行なわれる。 Subsequently, in step S110, the control device 25 executes a comfortable ventilation operation that maintains comfort during ventilation with the determined air volume and wind direction. The comfortable ventilation operation is performed until the end determination condition of the ventilation control is satisfied in step S111.
 ステップS111における換気制御の終了判定条件は、換気制御の時間経過または、室温と設定温度の関係に基づいて決定することができる。終了判定にどの条件を用いるか、または両方のANDまたはORを用いるかについては、ユーザが選択できるようにしても良い。 The condition for determining the end of ventilation control in step S111 can be determined based on the passage of time in ventilation control or the relationship between the room temperature and the set temperature. The user may be allowed to select which condition is used for termination determination, or whether to use AND or OR of both.
 換気制御の終了判定条件が成立した場合(S111でYES)、ステップS112において、制御装置25は開口部を閉鎖するように要求するメッセージをリモコン画面などに通知する。そして、ステップS113において制御装置25は、開口部の開閉センサの出力に基づいて、開口部の閉鎖が完了したか否かを判断する。なお、換気後の快適性を保つべく、十分な換気ができたら、開口部を閉状態にすることをリモコン表示部などによってユーザに報知して、手動で開口部を閉じるようにしたが、自動で開口部を閉状態にするようにしてもよい。 When the ventilation control end determination condition is satisfied (YES in S111), in step S112, the control device 25 notifies a message requesting that the opening be closed on the remote control screen or the like. Then, in step S113, the control device 25 determines whether or not the closing of the opening is completed based on the output of the open/close sensor of the opening. In addition, in order to maintain comfort after ventilation, the user was notified by a remote control display unit that the opening would be closed when sufficient ventilation was achieved, and the opening was closed manually. to close the opening.
 開口部の閉鎖が完了しない場合(S113でNO)、ステップS110以降の処理が繰返される。一方、開口部の閉鎖が完了した場合(S113でYES)、ステップS101に処理が戻り、未換気時間がリセットされ、ステップS102以降の処理が繰返される。 If the closing of the opening is not completed (NO in S113), the processing from step S110 onwards is repeated. On the other hand, if the closing of the opening has been completed (YES in S113), the process returns to step S101, the unventilated time is reset, and the processes after step S102 are repeated.
 さらに、開口部の閉鎖が完了したことを開閉センサが検知した後に(S113でYES)、低下した部屋全体の快適な状況になるように短時間だが一定時間増強運転を全方向に実施するという制御をステップS101の処理の前に追加しても良い。ただし、このときは換気時とは異なり、風向を開口部開前の状態に戻すことが好ましい。 Furthermore, after the open/close sensor detects that the opening has been closed (YES in S113), the control is such that the augmented operation is performed in all directions for a short period of time but for a certain period of time so that the entire room becomes comfortable. may be added before the process of step S101. However, at this time, unlike during ventilation, it is preferable to return the wind direction to the state before opening the opening.
 以上説明したように、実施の形態2の空調システムによれば、冷房運転時の換気、暖房運転時の換気で以下のような風向切替が行なわれる。 As described above, according to the air conditioning system of Embodiment 2, the following wind direction switching is performed between ventilation during cooling operation and ventilation during heating operation.
 図14、図15に示したように、冷房運転時の換気では、窓を開くと汚れた冷気は屋外の暖気側に移動するため室内全体で換気される。そして、出ていく冷気と入れ替わりで、新鮮な暖気が部屋上部に侵入する。室内機は、その空気を冷やしながら、屋内の開口部であるドア側に送風する。  As shown in Figures 14 and 15, in ventilation during cooling operation, when the window is opened, dirty cold air moves to the outdoor warm air side, so the entire room is ventilated. Then, fresh warm air enters the upper part of the room to replace the cold air that goes out. The indoor unit cools the air and blows it toward the door, which is an indoor opening.
 また、図16、図17に示したように、暖房運転時の換気では、汚れた暖気は室内機によって屋外への開口部に送風され、屋外に排出される。そして、出ていく暖気と入れ替わりで、新鮮な冷気が部屋下部に侵入し、屋内の開口部であるドア側から一部が流出する。 Also, as shown in FIGS. 16 and 17, during ventilation during heating operation, dirty warm air is blown by the indoor unit to the opening to the outside and discharged to the outside. Fresh cold air enters the lower part of the room to replace the outgoing warm air, and part of it flows out from the door side, which is the opening inside the room.
 このようにして、本実施の形態の空調システムによれば、冷房運転時においても暖房運転時においても、室内機によって換気が促進される。 In this way, according to the air conditioning system of the present embodiment, ventilation is promoted by the indoor unit both during the cooling operation and during the heating operation.
 実施の形態3.
 開口部の配置によっては、換気されにくいエリアが部屋の中に生じる場合がある。実施の形態3では、そのようなエリアが存在する場合の換気時の制御について説明する。
Embodiment 3.
Depending on the placement of the openings, there may be areas in the room that are poorly ventilated. Embodiment 3 will describe control during ventilation when such an area exists.
 図19は、換気されにくいエリアが部屋の中に生じるフロアマップの一例を示す図である。図19に示す部屋100Cでは、ドアと窓の2か所の開口部が近接しており、実施の形態2のように風向制御をすると換気されにくいエリア110が生じる。 FIG. 19 is a diagram showing an example of a floor map in which areas that are difficult to ventilate occur in the room. In the room 100C shown in FIG. 19, the two openings of the door and the window are close to each other, and if the wind direction is controlled as in the second embodiment, an area 110 that is difficult to ventilate occurs.
 図20は、実施の形態3における換気時の風向制御を説明するための上面図である。図21は、実施の形態3における換気時の風向制御を説明するための側面図である。図20、図21に示すように、壁に面した換気されにくいエリア110に風を吹出すことができる吹出口を開いて、空調ユニット20A,20Bの換気制御中の風向設定を“自動“に設定変更することによって、換気されにくいエリアの空気を攪拌し、換気することができる。 FIG. 20 is a top view for explaining wind direction control during ventilation in the third embodiment. FIG. 21 is a side view for explaining wind direction control during ventilation according to the third embodiment. As shown in FIGS. 20 and 21, an air outlet capable of blowing air to an area 110 facing a wall that is difficult to ventilate is opened, and the air direction setting during ventilation control of the air conditioning units 20A and 20B is set to "automatic". By changing the settings, it is possible to stir and ventilate the air in areas that are difficult to ventilate.
 なお、一部の空気は、換気されにくいエリア110と空調ユニット20A,20Bの間を循環するため、換気効率は落ちるが、ある程度の量の空気は右側にも流れていくため、換気はできる。したがって、実施の形態2のような制御を行なうよりも換気効率は改善される。 Some of the air circulates between the hard-to-ventilate area 110 and the air- conditioning units 20A and 20B, so ventilation efficiency drops, but a certain amount of air also flows to the right side, so ventilation is possible. Therefore, the ventilation efficiency is improved more than the control as in the second embodiment.
 換気時にどの室内機のどの吹出口を開くかについては、予めフロアマップから定めておくことができる。 It is possible to determine in advance from the floor map which air outlets of which indoor units are to be opened during ventilation.
 なお、このような室内構成の場合は、室内機だけで換気を促進しようとせず、素直にサーキュレータを置いた方が換気効率は良い。したがって、室内機に、換気制御中に接点ONする機能を持たせ、換気制御中のみサーキュレータの電源をONするようにしても良い。 In addition, in the case of such an indoor configuration, ventilation efficiency is better if a circulator is simply placed instead of trying to promote ventilation with the indoor unit alone. Therefore, the indoor unit may be provided with a function of turning on the contact during ventilation control so that the circulator power is turned on only during ventilation control.
 実施の形態4.
 開口部の配置によっては、換気時に比較的強い風が吹き抜ける場合がある。実施の形態4では、そのような場合の換気時の制御について説明する。
Embodiment 4.
Depending on the arrangement of the openings, a relatively strong wind may blow through during ventilation. In the fourth embodiment, control during ventilation in such a case will be described.
 図22は、換気時の自然の風が空調システムによって妨げられる例を説明するための図である。たとえば、対向する2つの壁の各々に窓が設けられている部屋100Dを考える。このような場合に、窓から窓に向かって強風が吹き抜けることが考えられる。たとえば、マンションの上層階では、このような状況が生じやすい。 FIG. 22 is a diagram for explaining an example in which the natural wind during ventilation is blocked by the air conditioning system. For example, consider a room 100D with windows on each of two opposing walls. In such a case, it is conceivable that a strong wind blows through from window to window. For example, such a situation is likely to occur on the upper floors of an apartment building.
 たとえば、冷房運転時に換気モードに制御された場合、窓104Dから強風が吹込み、換気モードでの室内機120A,120Bの送風方向が自然風と逆向きであるときを考える。 For example, when the ventilation mode is controlled during the cooling operation, a strong wind blows from the window 104D, and the ventilation direction of the indoor units 120A and 120B in the ventilation mode is opposite to the natural wind.
 自然風の風量が室内機の風量程度で妨げられないくらい強風の場合は、問題にならない。たとえば、周りに遮蔽物のないマンションなど、窓を開けることで強風が吹きこむ環境の場合は、窓を開放しただけで十分換気されるので、室内機の風向および風速が自然風を妨げても問題にはならない。快適性を保つため、空調システムは増強運転さえ行なえていればよい。 If the wind is so strong that the natural air volume is not blocked by the air volume of the indoor unit, it will not be a problem. For example, in environments where strong winds blow in by opening windows, such as in apartments with no shielding around them, simply opening the windows will provide sufficient ventilation, so even if the wind direction and speed of the indoor unit block the natural wind, Not a problem. In order to maintain comfort, the air-conditioning system only needs to be in augmented operation.
 しかし、家屋の周囲の見通しが悪い場合など、自然風が通り抜けにくい場合には、室内機からの送風が換気を妨げてしまう。 However, when it is difficult for natural wind to pass through, such as when the visibility around the house is poor, the air blown from the indoor unit interferes with ventilation.
 そこで、本実施の形態では、室内機から吹出す空気の向きを自然風の通過方向に一致させる。図23は、実施の形態4における換気時の風向制御を説明するための側面図である。 Therefore, in the present embodiment, the direction of the air blown out from the indoor unit is matched with the passage direction of the natural wind. FIG. 23 is a side view for explaining wind direction control during ventilation according to the fourth embodiment.
 図23に示すように、実施の形態4では、部屋100Eの2つの開口である窓103Eとドア104Eに、風向風量計41E,42Eをそれぞれ設ける。室内機120A,120Bの風が直接当たらない位置に風向風量計41E,42Eを設置することにより、自然風の風向を正確に検知することができる。 As shown in FIG. 23, in the fourth embodiment, wind direction and air volume meters 41E and 42E are provided in the two openings of a room 100E, namely a window 103E and a door 104E. By installing the anemometers 41E and 42E at positions where the wind from the indoor units 120A and 120B does not directly hit, the direction of the natural wind can be accurately detected.
 制御装置25は、開閉センサからの出力に加えて、風向風量計41E,42Eで検出された風向および風量に基づいて、室内機からの送風方向を決定する。図23では、風向風量計41E,42Eで検出された大きな矢印で示す主な風の流れに一致するように、制御装置25は、室内機120A,120Bの風向制御部124A,124Bを用いて風向を制御する。これにより、開口部を通過する全体の風量を増加させて換気量を増やすことができる。 The control device 25 determines the air blowing direction from the indoor unit based on the wind direction and air volume detected by the anemometers 41E and 42E in addition to the output from the opening/closing sensor. In FIG. 23, the control device 25 controls the wind direction using the wind direction control units 124A and 124B of the indoor units 120A and 120B so as to match the main wind flows indicated by the large arrows detected by the anemometers 41E and 42E. to control. As a result, the total amount of air passing through the opening can be increased to increase the amount of ventilation.
 実施の形態4では、図23に示すように風向計を開口部に設置し、風の出口側に向かって送風するよう制御することで、換気量を増やすことができる。 In the fourth embodiment, as shown in FIG. 23, a wind vane is installed at the opening and controlled to blow air toward the outlet side of the wind, thereby increasing the amount of ventilation.
 なお、風向風量計をつけない場合でも、ユーザが換気時に室内機の風向を選択できるようにしても良い。たとえば、自然風がいつも同じ方向に吹く設置場所の場合は手動で風向を自然風と同じ方向に設定すればよい。日によって風向きが変わる場合は、「風の吹込みが強い方を開口部として設定してください。」というメッセージを出力してユーザに設定を要求しても良い。 It should be noted that the user may be able to select the wind direction of the indoor unit during ventilation even if the wind direction and air volume meter is not attached. For example, in the case of an installation location where the natural wind always blows in the same direction, the wind direction can be manually set in the same direction as the natural wind. If the direction of the wind changes from day to day, the user may be requested to make the setting by outputting a message "Please set the opening where the wind is blowing stronger."
 種々の変形例.
 図24は、開閉センサの変形例を説明するための図である。実施の形態1~4では、開口部の状態認識には、開口部付近に設置した接点または温度センサを用いた。これに代えて、開口部から離れた位置に設置された赤外線センサを用いても良い。
Various modifications.
FIG. 24 is a diagram for explaining a modification of the open/close sensor. In Embodiments 1 to 4, a contact or a temperature sensor installed near the opening is used for recognizing the state of the opening. Alternatively, an infrared sensor installed at a position away from the opening may be used.
 たとえば、室内機に設置された赤外線センサによって、温度分布を色表示する熱画像を得て、通信によってスマートフォンに表示させる。初期設定時に、ユーザは、スマートフォン上の熱画像における開口部の位置を指タッチで指定する。この操作によって、熱画像の画素の位置から室内機に開口部の場所をインプットし、その部分の温度変化を赤外線センサで検出し、開口部の開閉を検出しても良い。 For example, an infrared sensor installed in the indoor unit obtains a thermal image that displays the temperature distribution in color, and displays it on a smartphone via communication. At the initial setting, the user designates the position of the opening in the thermal image on the smartphone with a finger touch. By this operation, the position of the opening may be input to the indoor unit from the position of the pixel of the thermal image, and the infrared sensor may detect the temperature change of that portion to detect the opening/closing of the opening.
 このようにすれば、開口部付近に温度センサを設置する工事を行なわなくて済む。
 なお、熱画像上における開口部の指定方法は、たとえば、4点タッチして、四角形の範囲で開口部を指定したり、1点タッチしてタッチした点の周囲の類似色の温度帯を自動的に開口部に指定したりしてもよい。また、熱画像上の2か所をタッチし、2つの開口部を指定する、など、種々の指定方法が考えられる。基本的に、開放部に向かって送風する制御としておいて、さらに屋内側の開口部と屋外側の開口部とを分けて認識すれば、室内全体の風向を揃える制御が可能となる。
In this way, it is not necessary to carry out work to install the temperature sensor near the opening.
The method of specifying the opening on the thermal image can be, for example, by touching four points to specify the opening in a rectangular range, or by touching one point and automatically drawing a temperature band of a similar color around the touched point. You may designate it as an opening directly. Also, various designation methods are conceivable, such as designating two openings by touching two locations on the thermal image. Basically, the control is such that the air is blown toward the open area, and if the indoor opening and the outdoor opening are recognized separately, it becomes possible to control the direction of the air in the entire room.
 また、図15および図17に示したような複数の室内機の風向角度に関しての指令は、フロアマップのパターンに合わせて予め用意した設定を各室内機にそれぞれ設定しても良い。また、複数の室内機の制御を管理するシステムコントローラを用意して、温度分布を色表示するアプリと連携するように、システムコントローラが判断して各室内機に最適な風向角度を指示するコマンドを送信してもよい。また、温度分布を示す熱画像を記録し効果確認をしてもよい。 In addition, as for commands regarding the wind direction angles of a plurality of indoor units as shown in FIGS. 15 and 17, settings prepared in advance according to the pattern of the floor map may be set for each indoor unit. In addition, a system controller that manages the control of multiple indoor units is prepared, and the system controller judges and issues a command that instructs the optimum wind direction angle to each indoor unit so that it cooperates with an application that displays the temperature distribution in colors. You may send. Also, a thermal image showing the temperature distribution may be recorded to confirm the effect.
 なお、図2で代表的に示した制御装置25は、図1の室内機20A~20Dの制御装置25A~25Dのうち、アドレスの番号、DIPスイッチ、通信等で代表として管理する制御装置をどれか1つに決めたものであっても良い。制御装置25A~25Dの代表以外の制御装置には、代表の制御装置からの風向指示が送信される。その場合は、代表で管理する制御装置の記憶部にマップと機器の位置、開口部位置の情報を保持する。そして、代表の制御装置において、図11等の配置の場合に窓側にある室内機20Bと、壁側にある室内機20Aとで、マップに対する風向指示を異なるように決めてもよい。 Note that the control device 25 representatively shown in FIG. 2 is which of the control devices 25A to 25D of the indoor units 20A to 20D in FIG. or one may be determined. A wind direction instruction from the representative control device is transmitted to control devices other than the representative control devices 25A to 25D. In that case, the information on the map, the position of the equipment, and the position of the opening is held in the storage unit of the control device managed by the representative. Then, in the representative control device, in the case of the arrangement shown in FIG. 11, etc., the indoor unit 20B on the window side and the indoor unit 20A on the wall side may be determined to indicate different wind directions with respect to the map.
 (まとめ)
 本開示は、部屋100の空調を行なう空調システム1に関する。空調システム1は、部屋100に設けられた開口部の開閉状態を検出するように構成された開閉検知センサ40と、部屋100の空気を吸い込み、空調して部屋100に送出する空調装置2と、開閉検知センサ40の出力に応じて空調装置2を制御する制御装置25とを備える。制御装置25は、開口部が閉状態から開状態に変化したことを開閉検知センサ40が検出した場合に、空調装置2に空調の増強をさせることが可能に構成される。
(summary)
The present disclosure relates to an air conditioning system 1 that air-conditions a room 100 . The air conditioning system 1 includes an open/close detection sensor 40 configured to detect the open/closed state of an opening provided in the room 100, an air conditioner 2 that draws air from the room 100, air-conditions the air, and sends the air to the room 100. and a control device 25 that controls the air conditioner 2 according to the output of the open/close detection sensor 40 . The control device 25 is configured to allow the air conditioner 2 to increase the air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state.
 好ましくは、空調装置2は、冷媒を循環させるための圧縮機11と、部屋100の空気と冷媒との間で熱交換を行なう熱交換器22と、熱交換器22に部屋の空気を送るためのファン23とを含む。空調装置2は、圧縮機11の運転周波数の増加、またはファン23の回転速度の増加によって空調を増強する。 Preferably, the air conditioner 2 includes a compressor 11 for circulating the refrigerant, a heat exchanger 22 for exchanging heat between the air in the room 100 and the refrigerant, and a heat exchanger 22 for sending the air in the room. and a fan 23 of . The air conditioner 2 enhances air conditioning by increasing the operating frequency of the compressor 11 or increasing the rotational speed of the fan 23 .
 好ましくは、制御装置25は、運転モードとして、第1モードと第2モードとのいずれかをユーザの設定に基づいて選択するように構成される。第1モードは、開口部が閉状態から開状態に変化したことを開閉検知センサ40が検出した場合に、空調装置2に空調の増強をさせる運転モードである(換気優先)。第2モードは、開口部が閉状態から開状態に変化したことを開閉検知センサ40が検出した場合に、空調装置2に空調の抑制をさせる運転モードである(エコ運転優先)。 Preferably, the control device 25 is configured to select either the first mode or the second mode as the operation mode based on user settings. The first mode is an operation mode in which the air conditioner 2 is made to increase the air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state (ventilation priority). The second mode is an operation mode in which the air conditioner 2 suppresses air conditioning when the opening/closing detection sensor 40 detects that the opening has changed from the closed state to the open state (eco-drive priority).
 好ましくは、空調装置2は、部屋100に向けて送出する空気の向きを変更することが可能である風向変更部24をさらに含む。制御装置25は、開口部が開状態であるときに、部屋100の換気が促進されるように、部屋100に送出する空気の向きを風向変更部24によって制御する風向制御を行なうことが可能に構成される。 Preferably, the air conditioner 2 further includes a wind direction changing unit 24 capable of changing the direction of the air sent toward the room 100. When the opening is open, the control device 25 can control the direction of the air sent to the room 100 by the air direction changing unit 24 so as to facilitate ventilation of the room 100. Configured.
 より好ましくは、風向制御において、制御装置25は、室温が外気温よりも高い場合には、開口部に向かう第1方向に空気を送出するように風向変更部24を制御し、室温が外気温よりも低い場合には、第1方向と反対の第2方向に向けて空気を送出するように風向変更部24を制御する。 More preferably, in the wind direction control, when the room temperature is higher than the outside temperature, the controller 25 controls the wind direction changing unit 24 so as to send air in the first direction toward the opening. If it is lower than , the wind direction changing unit 24 is controlled to send air in a second direction opposite to the first direction.
 より好ましくは、空調システム1は、開口部を通過する風の向きを検出する風向風量計41E,42Eをさらに備える。風向制御において、制御装置25は、風向風量計41E,42Eの出力に基づいて風向変更部24を制御する。 More preferably, the air conditioning system 1 further includes anemometers 41E and 42E that detect the direction of the wind passing through the opening. In the wind direction control, the control device 25 controls the wind direction changer 24 based on the outputs of the wind direction and air volume meters 41E and 42E.
 本開示の他の局面に関する空調システム1は、部屋100に設けられた開口部の開閉状態を検出するように構成された開閉検知センサ40と、部屋100の空気を吸い込み、空調して部屋100に送出する空調装置2と、部屋100に向けて送出する空気の向きを変更することが可能である風向変更部24と、開閉検知センサ40の出力に応じて空調装置2を制御する制御装置25とを備える。制御装置25は、開口部が閉状態から開状態に変化したことを開閉検知センサ40が検出した場合に、部屋100の換気が促進されるように、部屋100に送出する空気の向きを風向変更部24によって制御する風向制御を行なうことが可能に構成される。 An air conditioning system 1 related to another aspect of the present disclosure includes an open/close detection sensor 40 configured to detect the open/closed state of an opening provided in a room 100, and sucks in the air in the room 100 and air-conditions the air in the room 100. The air conditioner 2 that sends air, the wind direction changing unit 24 that can change the direction of the air that is sent toward the room 100, and the control device 25 that controls the air conditioner 2 according to the output of the open/close detection sensor 40. Prepare. When the open/close detection sensor 40 detects that the opening has changed from the closed state to the open state, the control device 25 changes the direction of the air sent to the room 100 so as to promote ventilation of the room 100. It is configured to be able to perform wind direction control controlled by the unit 24 .
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 空調システム、2 空調装置、10 室外機、11 圧縮機、12,22,22A,22B,22C,22D 熱交換器、13,23,23A,23B,23C,23D ファン、14 四方弁、15,25,25A,25B,25C,25D 制御装置、16,26 CPU、17,27,32 メモリ、18,28 入力部、20,120A,120B 室内機、20A,20B,20C,20D 空調ユニット、21,21A,21B,21C,21D 膨張弁、24,24A,24B,24C,24D 風向変更部、29 出力部、30 リモコン、33 表示部、40 開閉検知センサ、41,42 開閉センサ、41E,42E 風向風量計、100,100A,100C,100D,100E 部屋、103,103E,104D 窓、104,104E ドア、110 エリア、124A,124B 風向制御部。 1 air conditioning system, 2 air conditioner, 10 outdoor unit, 11 compressor, 12, 22, 22A, 22B, 22C, 22D heat exchanger, 13, 23, 23A, 23B, 23C, 23D fan, 14 four-way valve, 15, 25, 25A, 25B, 25C, 25D control device, 16, 26 CPU, 17, 27, 32 memory, 18, 28 input unit, 20, 120A, 120B indoor unit, 20A, 20B, 20C, 20D air conditioning unit, 21, 21A, 21B, 21C, 21D expansion valves, 24, 24A, 24B, 24C, 24D wind direction change unit, 29 output unit, 30 remote controller, 33 display unit, 40 open/close detection sensor, 41, 42 open/close sensor, 41E, 42E wind direction and air volume Total, 100, 100A, 100C, 100D, 100E rooms, 103, 103E, 104D windows, 104, 104E doors, 110 areas, 124A, 124B wind direction control unit.

Claims (7)

  1.  部屋の空調を行なう空調システムであって、
     前記部屋に設けられた開口部の開閉状態を検出するように構成されたセンサと、
     前記部屋の空気を吸い込み、空調して前記部屋に送出する空調装置と、
     前記センサの出力に応じて前記空調装置を制御する制御装置とを備え、
     前記制御装置は、前記開口部が閉状態から開状態に変化したことを前記センサが検出した場合に、前記空調装置に空調の増強をさせることが可能に構成される、空調システム。
    An air conditioning system for air conditioning a room,
    a sensor configured to detect an open/closed state of an opening provided in the room;
    an air conditioner that draws air from the room, air-conditions the air, and delivers the air to the room;
    A control device that controls the air conditioner according to the output of the sensor,
    The air conditioning system, wherein the controller is configured to allow the air conditioner to increase air conditioning when the sensor detects that the opening has changed from a closed state to an open state.
  2.  前記空調装置は、
     冷媒を循環させるための圧縮機と、
     前記部屋の空気と前記冷媒との間で熱交換を行なう熱交換器と、
     前記熱交換器に前記部屋の空気を送るためのファンとを含み、
     前記空調装置は、前記圧縮機の運転周波数の増加、または前記ファンの回転速度の増加によって空調を増強する、請求項1に記載の空調システム。
    The air conditioner is
    a compressor for circulating the refrigerant;
    a heat exchanger that exchanges heat between the air in the room and the refrigerant;
    a fan for blowing air in the room to the heat exchanger;
    2. The air conditioning system of claim 1, wherein the air conditioner enhances air conditioning by increasing the operating frequency of the compressor or increasing the rotational speed of the fan.
  3.  前記制御装置は、運転モードとして、第1モードと第2モードとのいずれかをユーザの設定に基づいて選択するように構成され、
     前記第1モードは、前記開口部が閉状態から開状態に変化したことを前記センサが検出した場合に、前記空調装置に空調の増強をさせる運転モードであり、
     前記第2モードは、前記開口部が閉状態から開状態に変化したことを前記センサが検出した場合に、前記空調装置に空調の抑制をさせる運転モードである、請求項1に記載の空調システム。
    The control device is configured to select either a first mode or a second mode as an operation mode based on user settings,
    The first mode is an operation mode that causes the air conditioner to increase air conditioning when the sensor detects that the opening has changed from a closed state to an open state,
    2. The air conditioning system according to claim 1, wherein said second mode is an operation mode in which said air conditioner suppresses air conditioning when said sensor detects that said opening has changed from a closed state to an open state. .
  4.  前記空調装置は、
     前記部屋に向けて送出する空気の向きを変更することが可能である風向変更部をさらに含み、
     前記制御装置は、前記開口部が開状態であるときに、前記部屋の換気が促進されるように、前記部屋に送出する空気の向きを前記風向変更部によって制御する風向制御を行なうことが可能に構成される、請求項1に記載の空調システム。
    The air conditioner is
    further comprising a wind direction changing unit capable of changing the direction of the air delivered toward the room;
    The control device can perform wind direction control for controlling the direction of air sent to the room by the wind direction changing unit so as to facilitate ventilation of the room when the opening is in an open state. 2. The air conditioning system of claim 1, wherein the air conditioning system comprises:
  5.  前記風向制御において、前記制御装置は、室温が外気温よりも高い場合には、前記開口部に向かう第1方向に空気を送出するように前記風向変更部を制御し、室温が外気温よりも低い場合には、前記第1方向と反対の第2方向に向けて空気を送出するように前記風向変更部を制御する、請求項4に記載の空調システム。 In the wind direction control, when the room temperature is higher than the outside temperature, the control device controls the wind direction changing unit to send air in a first direction toward the opening, and the room temperature is higher than the outside temperature. 5. The air conditioning system according to claim 4, wherein, if low, said wind direction changer is controlled to send air in a second direction opposite to said first direction.
  6.  前記開口部を通過する風の向きを検出する風向センサをさらに備え、
     前記風向制御において、前記制御装置は、前記風向センサの出力に基づいて前記風向変更部を制御する、請求項4に記載の空調システム。
    Further comprising a wind direction sensor that detects the direction of the wind passing through the opening,
    5. The air conditioning system according to claim 4, wherein in said wind direction control, said controller controls said wind direction changing unit based on the output of said wind direction sensor.
  7.  部屋の空調を行なう空調システムであって、
     前記部屋に設けられた開口部の開閉状態を検出するように構成されたセンサと、
     前記部屋の空気を吸い込み、空調して前記部屋に送出する空調装置と、
     前記部屋に向けて送出する空気の向きを変更することが可能である風向変更部と、
     前記センサの出力に応じて前記空調装置を制御する制御装置とを備え、
     前記制御装置は、前記開口部が閉状態から開状態に変化したことを前記センサが検出した場合に、前記部屋の換気が促進されるように、前記部屋に送出する空気の向きを前記風向変更部によって制御する風向制御を行なうことが可能に構成される、空調システム。 
    An air conditioning system for air conditioning a room,
    a sensor configured to detect an open/closed state of an opening provided in the room;
    an air conditioner that draws air from the room, air-conditions the air, and delivers the air to the room;
    a wind direction changing unit capable of changing the direction of the air sent toward the room;
    A control device that controls the air conditioner according to the output of the sensor,
    When the sensor detects that the opening has changed from a closed state to an open state, the control device changes the direction of the air delivered to the room so as to facilitate ventilation of the room. An air conditioning system configured to be capable of performing wind direction control controlled by a unit.
PCT/JP2021/011409 2021-03-19 2021-03-19 Air conditioning system WO2022195853A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023506669A JP7438452B2 (en) 2021-03-19 2021-03-19 air conditioning system
PCT/JP2021/011409 WO2022195853A1 (en) 2021-03-19 2021-03-19 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011409 WO2022195853A1 (en) 2021-03-19 2021-03-19 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2022195853A1 true WO2022195853A1 (en) 2022-09-22

Family

ID=83319982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011409 WO2022195853A1 (en) 2021-03-19 2021-03-19 Air conditioning system

Country Status (2)

Country Link
JP (1) JP7438452B2 (en)
WO (1) WO2022195853A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2015001360A (en) * 2013-06-18 2015-01-05 アズビル株式会社 Automatic air capacity control method in central air conditioning system
JP2016023819A (en) * 2014-07-16 2016-02-08 トヨタホーム株式会社 Air conditioning system
JP2016075443A (en) * 2014-10-08 2016-05-12 三菱電機株式会社 Ventilation system and ventilation method
JP2018162925A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Air conditioning control device, air conditioner, air conditioning system, air conditioning control method, and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985539B1 (en) 2013-04-12 2021-06-30 Panasonic Intellectual Property Management Co., Ltd. Air-conditioning system
JP6410435B2 (en) 2014-02-13 2018-10-24 大和ハウス工業株式会社 Window opening and closing system
JP6993213B2 (en) 2017-12-22 2022-01-13 シャープ株式会社 Drain water backflow prevention device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011137595A (en) * 2009-12-28 2011-07-14 Mitsubishi Electric Corp Air conditioning system
JP2015001360A (en) * 2013-06-18 2015-01-05 アズビル株式会社 Automatic air capacity control method in central air conditioning system
JP2016023819A (en) * 2014-07-16 2016-02-08 トヨタホーム株式会社 Air conditioning system
JP2016075443A (en) * 2014-10-08 2016-05-12 三菱電機株式会社 Ventilation system and ventilation method
JP2018162925A (en) * 2017-03-27 2018-10-18 三菱電機株式会社 Air conditioning control device, air conditioner, air conditioning system, air conditioning control method, and program

Also Published As

Publication number Publication date
JP7438452B2 (en) 2024-02-26
JPWO2022195853A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2010131336A1 (en) Air conditioning device
JP4478082B2 (en) Control method of air conditioner
JP6498598B2 (en) Control device, air conditioning system including the same, and control method
JP2012184868A (en) Air conditioning system
JP6808999B2 (en) Air conditioner
EP3130861B1 (en) Indoor unit and air-conditioning apparatus including the same, control method for indoor unit, and control program for the same
WO2019146121A1 (en) Air conditioning system and ventilation device
JP2017116120A (en) Control device, air conditioning system including the same, and control method
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JPWO2019230201A1 (en) How to install ventilation system, air conditioning system and air conditioning system
JP2011208808A (en) Air-conditioning control device, air-conditioning control system, and air-conditioning control method
KR101243226B1 (en) The Control Method Of an Air Conditioning System
WO2022195853A1 (en) Air conditioning system
CN111279136B (en) Air conditioner
JP2019178811A (en) Air conditioner
JP6288138B2 (en) Control device
EP3208550B1 (en) Air conditioning apparatus
WO2017168511A1 (en) Control device, air conditioning system, air conditioning method, and program
JP7292046B2 (en) Humidification air conditioning system
JP3369337B2 (en) Air conditioner
JPH08145432A (en) Air conditioner
JP2021188852A (en) Environment control system
JP2021188811A (en) Air conditioning system, air conditioning device and air conditioning control method
US20230123211A1 (en) Ventilation and air-conditioning system
WO2022230055A1 (en) Blower device and blower system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506669

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931599

Country of ref document: EP

Kind code of ref document: A1