WO2022195684A1 - Optical receiver and station-side device - Google Patents

Optical receiver and station-side device Download PDF

Info

Publication number
WO2022195684A1
WO2022195684A1 PCT/JP2021/010409 JP2021010409W WO2022195684A1 WO 2022195684 A1 WO2022195684 A1 WO 2022195684A1 JP 2021010409 W JP2021010409 W JP 2021010409W WO 2022195684 A1 WO2022195684 A1 WO 2022195684A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
threshold
detection
crossings
optical receiver
Prior art date
Application number
PCT/JP2021/010409
Other languages
French (fr)
Japanese (ja)
Inventor
啓敬 川中
聡 吉間
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/010409 priority Critical patent/WO2022195684A1/en
Publication of WO2022195684A1 publication Critical patent/WO2022195684A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present disclosure relates to an optical receiver and a station-side device that receive burst signals.
  • PON Passive Optical Network
  • a PON system consists of one OLT (Optical Line Terminal), which is a station-side device, and multiple subscribers connected to the OLT via an optical star coupler, which is a passive element that does not require a power supply. It is composed of an ONU (Optical Network Unit), which is a terminal device on the user side.
  • OLT Optical Line Terminal
  • ONU Optical Network Unit
  • each ONU will be installed at a different distance from the OLT. That is, the distance between the OLT and each ONU is not constant. Since the strength of the signal reaching the OLT from each ONU depends on the distance from the ONU to the OLT, the OLT must be configured to receive packet signals with large signal strength variations.
  • Patent Document 1 describes a receiving circuit for receiving an optical burst signal in a PON system.
  • the receiving circuit described in Patent Document 1 converts an optical signal input from an optical fiber into a current signal with a photodiode, amplifies this current signal with a preamplifier that is a differential amplifier, and then converts it into a constant current signal in a main amplifier circuit. voltage amplitude signal and output.
  • the output amplitude of the preamplifier depends on the input optical power and varies from several mV to several hundred mV. That is, a signal having a fluctuation range of several mV to several hundred mV is input to the main amplifier circuit. On the other hand, several hundred mV is required for the output amplitude value of the main amplifier circuit.
  • Generation of a constant voltage amplitude signal that does not depend on the input optical power is an essential process for stable signal identification in the subsequent clock data recovery circuit.
  • the main amplifier circuit constituting the receiving circuit described in Patent Document 1 counts the number of times the input signal becomes high level, and when the count number reaches a predetermined number, the main signal, that is, the optical burst signal is received. It has a signal detection function (Signal Detect function, hereinafter sometimes referred to as SD function) that determines that Reception of the main signal is determined based on the number of times the input signal becomes high level, thereby suppressing erroneous detection of the main signal.
  • a signal detection function Signal Detect function, hereinafter sometimes referred to as SD function
  • the amplitude of the output signal of the main amplifier has a level corresponding to the amplitude of the input signal, the amplitude of the signal used to determine whether or not the burst signal has been received may fluctuate greatly, resulting in a determination error.
  • the electrical characteristics of devices such as photodiodes, preamplifiers, and amplifiers that make up the receiving circuit vary greatly depending on operating conditions such as ambient temperature and operating voltage.
  • the electrical characteristics of each device also change due to aged deterioration. Therefore, it is required to realize a configuration that can stably operate even when the electrical characteristics of the device fluctuate.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain an optical receiver capable of stably detecting a signal even when the electrical characteristics of the devices constituting the circuit change. .
  • an optical receiver provides a differential signal for detection by applying a bias voltage to a differential signal based on a current signal output by a light receiving element that receives an optical signal.
  • a variable bias circuit that generates a signal and is capable of adjusting a voltage offset between the positive phase and the negative phase of the differential signal for detection; a comparator that compares with a second threshold that is smaller than the first threshold; a signal detection circuit that detects input of an optical signal based on the comparison result between the number of crossings and the first threshold; and a computing unit that adjusts the setting of the voltage offset value of the variable bias circuit based on the result of the comparison with the threshold.
  • the optical receiver according to the present disclosure has the effect of being able to stably detect signals even when the electrical characteristics of the devices that make up the circuit change.
  • FIG. 1 is a diagram showing a configuration example of an optical receiver according to an embodiment
  • FIG. FIG. 11 is a diagram showing an example of a detection differential signal input to the crossing detection unit in the main amplifier circuit
  • FIG. 10 is a diagram showing the relationship between the number of crossing detections of the detection differential signal per unit time and the sensitivity characteristic of the SD function
  • Diagram for explaining voltage offset adjustment operation of differential signal 3 is a flow chart showing an example of voltage offset adjustment operation of a differential signal in a main amplifier circuit of an optical receiver;
  • optical receiver and station-side device according to the embodiments of the present disclosure will be described below in detail based on the drawings.
  • FIG. 1 is a diagram showing a configuration example of an optical receiver 100 according to an embodiment.
  • the optical receiver 100 is mounted, for example, in an OLT, which is a station-side device of a PON system, and receives optical burst signals from each of ONUs, which are a plurality of subscriber-side terminal devices, via an optical transmission line composed of an optical fiber or the like.
  • the optical receiver 100 includes a photodiode 2, which is a light receiving element that outputs a current signal corresponding to an optical signal received via an optical transmission line, and a preamplifier that converts the current signal output by the photodiode 2 into a voltage signal.
  • the preamplifier 3 is a differential amplifier that amplifies an input signal and outputs it from a non-inverting output terminal, and also inverts the amplified signal and outputs it from an inverting output terminal.
  • the signal output by the preamplifier 3 is a differential signal.
  • the main amplifier circuit 1 includes a main amplifier 11 that differentially amplifies the differential signal input from the preamplifier 3, and a limiting amplifier 12 that adjusts the output of the main amplifier 11 to a differential signal of constant amplitude.
  • the main amplifier circuit 1 receives a signal obtained by branching the output of the main amplifier 11, and an AC coupling capacitor 13 that removes the DC voltage from the input differential signal. and a variable bias circuit 14 that applies a bias voltage of a predetermined value to the dynamic signal to generate a detection differential signal.
  • the main amplifier 11 is a low-noise, high-frequency differential amplifier.
  • AC coupling capacitance 13 is composed of capacitors 131 and 132 that pass only high frequency components.
  • the variable bias circuit 14 is composed of a power supply and a plurality of resistors.
  • resistors R4 and R5 form a voltage dividing circuit.
  • Resistors R4 and R5 are variable resistors, and their resistance values can be set externally.
  • Resistors R6 and R7 also constitute a voltage dividing circuit, and by dividing the power supply voltage, a predetermined bias voltage is applied to the signal after the DC component has been removed.
  • the main amplifier circuit 1 further includes a crossing detection unit 15 that detects a crossing of the detection differential signals output from the variable bias circuit 14, and a crossing detection unit 15 that is input from a calculation unit 19 described later.
  • a comparator 17 that compares the detected number of crossings with a threshold value, and a signal detection circuit 18 that outputs a detection signal indicating the presence or absence of an optical signal based on the comparison result of the comparator 17 .
  • Comparator 17 compares the number of crossings input from crossing detector 15 with a predetermined first threshold and a second threshold selected by counter threshold selection circuit 5 .
  • the comparator 17 outputs a comparison result between the number of crossings and the first threshold to the signal detection circuit 18 , and outputs a comparison result between the number of crossings and the second threshold to the calculation unit 19 .
  • the crossing detection unit 15 outputs a short pulse when crossing of the detection differential signals occurs.
  • the signal detection circuit 18 outputs a detection signal indicating "optical signal present" when the comparator 17 determines that the number of crossings measured by the crossing detection unit 15 is greater than the first threshold.
  • the detection signal output by the signal detection circuit 18 will be referred to as an SD output signal.
  • the SD output signal is, for example, a signal that changes from Low level to High level when an optical signal is detected.
  • the signal detection circuit 18 detects the optical signal, it changes the SD output signal to a state indicating that effect (for example, High level), and maintains this state until a reset signal is input from the reset signal generation circuit 4 .
  • the reset signal generation circuit 4 is configured to generate a reset signal when the end of input of the main signal is detected in the transmission processing section that processes the signal output from the optical receiver 100 . That is, the reset signal generation circuit 4 generates a reset signal when the state where the main signal is input to the optical receiver 100 changes to a no-signal state where there is no main signal input. returns to the state before the optical signal was detected.
  • FIG. 2 is a diagram showing an example of a detection differential signal input to the crossing detection section 15 in the main amplifier circuit 1.
  • the waveform on the left side of FIG. 2 shows the waveform of the differential signal for detection input to the crossing detection section 15 when there is no signal
  • the waveform on the right side shows the waveform of the differential signal for detection input to the crossing detection section 15 when the minimum received power is received. indicates
  • the waveform on the right side of FIG. 2 is the waveform of the detection differential signal that is input to the crossing detector 15 when the optical receiver 100 receives an optical signal of the prescribed lowest level.
  • the noise when there is no signal follows a normal distribution and spreads with a standard deviation of A (mV).
  • A standard deviation of A
  • the area where the distributions of positive-phase noise and negative-phase noise overlap becomes smaller. In other words, it is possible to avoid erroneous signal detection due to detection of crossing of the positive phase and the negative phase when there is no signal.
  • the voltage offset is increased, it becomes a factor that inhibits the occurrence of the crossing of the positive phase and the negative phase when there is an optical signal, increasing the possibility that the reception of the optical signal cannot be detected.
  • the noise distribution during no signal changes depending on the ambient temperature, operating voltage, and the like of the optical receiver 100 .
  • the main amplifier circuit 1 has a function of dynamically changing the voltage offset described above, and stabilizes the operation by changing the voltage offset.
  • the voltage offset can be changed by adjusting the values of resistors R4 and R5 of variable bias circuit 14. FIG.
  • the crossing detector 15 is periodically reset based on the output signal of the local oscillator 16 .
  • the output signal of the local oscillator 16 is also input to the calculation section 19 .
  • the calculation unit 19 calculates the number of crossing detections B per unit time by measuring the output signal of the local oscillator 16 and the output signal of the crossing detection unit 15 .
  • the calculation unit 19 outputs the calculated number of crossing detections B per unit time to the comparator 17 .
  • the arithmetic unit 19 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these implemented in a circuit.
  • the arithmetic unit 19 may be realized by a control circuit configured by a memory and a processor that executes a program stored in the memory.
  • the memories that make up this control circuit are, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) etc.
  • FIG. 3 is a timing chart for explaining the operation of the optical receiver 100.
  • optical input indicates an optical signal input to the photodiode 2 .
  • the crossing detector input voltage offset indicates the differential voltage difference between the output of the variable bias circuit 14 , that is, the input of the crossing detector 15 .
  • Local Oscillator Output indicates the output waveform of local oscillator 16 .
  • the intersection detector output indicates the output of the intersection detector 15 .
  • the number of crossings detected per unit time indicates the number of crossings of differential signals detected by the crossing detector 15 per unit time (corresponding to the number of crossings detected B described above).
  • the result of comparison with X 2 is the threshold X 2 for determining the characteristic change of the optical receiver 100 and the number of crossings of the differential signal detected by the crossing detector 15 per unit time (crossing detection count B, hereinafter referred to as This is the result of comparison with the number of detections B in some cases).
  • the value of the detection count B fluctuates according to the following formula (1).
  • FIG. 4 is a diagram showing the relationship between the number of cross detections of the detection differential signal per unit time and the sensitivity characteristic of the SD function.
  • the horizontal axis indicates the voltage offset (mV)
  • the vertical axis indicates the average false detection time (until the signal detection circuit 18 falsely detects the noise input).
  • T/B T indicates the oscillation period of the local oscillator 16 (unit: seconds).
  • FIG. 5 is a diagram for explaining voltage offset adjustment operation of a differential signal.
  • the horizontal axis represents the average detection time when the cumulative number of times is set to 4, that is, the average value of the time required until the number of crossing detections of the differential signal by the crossing detector 15 reaches 4 times.
  • the vertical axis represents the average detection time when the cumulative number of times is set to 16, that is, the average value of the time required until the number of crossing detections of the differential signal by the crossing detection unit 15 reaches 16 times.
  • the optical receiver 100 not only the threshold X1, which is the first threshold used for signal detection, but also the threshold X2, which is the second threshold used for detecting variations in the SD function, is set. .
  • the calculation unit 19 performs characteristic variation detection and voltage offset adjustment.
  • the computing unit 19 compares the signal detection characteristic T error with the target value T target of the erroneous detection average time, and controls the voltage offset, that is, the values of the resistors R4 and R5 of the variable bias circuit 14 based on the comparison result. do.
  • T error calculated from T ave is longer than T target .
  • the calculation unit 19 determines that the sensitivity of the SD function fluctuates (for example, the noise variation ⁇ decreases) and the voltage offset can be reduced.
  • the next important item in the optical receiver 100 is the definition of the time interval for performing the comparison calculation with X2 and the measurement result used for the calculation.
  • the number of pulses output by the crossing detection unit 15 per unit time increases from the time the optical signal is received.
  • the crossing detection number of 24 is not suitable for use in the above calculation for detecting variations in the characteristics of the optical receiver 100 .
  • the signal detection circuit 18 detects a signal, the number of crossing detections affected by the signal is not used in calculations for detecting variations in characteristics. That is, the variation in characteristics is detected using the number of crossings detected by the crossing detection unit 15 in the no-signal state.
  • FIG. 6 is a flow chart showing an example of the voltage offset adjustment operation of the differential signal in the main amplifier circuit 1 of the optical receiver 100. As shown in FIG.
  • the initial value of the voltage offset, the function f(x) for signal detection characteristic calculation, and the target value T target of the signal detection characteristic are set (step S1).
  • the calculation unit 19 confirms whether or not it is a non-signal section (step S2). That is, the calculation unit 19 confirms the state of the SD output signal input from the signal detection circuit 18 . If it is not a no-signal section (step S2: No), the calculation unit 19 continues the checking operation of step S2. If it is a no-signal section (step S2: Yes), the calculation unit 19 measures the number of intersection detection times M per unit time (step S3). The calculation unit 19 then calculates an average detection time T ave that is the average value of the time required for the number of crossing detections to reach the threshold value X2 ( step S4). That is, the calculation unit 19 measures the time required for the number of intersection detections to reach the threshold value X2 a plurality of times, and calculates the average detection time T ave .
  • the calculator 19 calculates the signal detection characteristic f(T ave ) (step S5). Calculation of the signal detection characteristic f(T ave ) is performed using a function corresponding to the set value of the threshold value X 2 . Note that the threshold X 2 is set by the counter threshold selection circuit 5 .
  • the counter threshold selection circuit 5 receives, for example, a user's selection operation of the threshold X 2 and sets the selected threshold X 2 in the comparator 17 .
  • the calculator 19 next compares the signal detection characteristic f(T ave ) with the target value T target (step S6). If the signal detection characteristic f(T ave ) is smaller than the target value T target (step S6: Yes), the calculator 19 increases the voltage offset (step S8). Note that the voltage offset is changed step by step by a predetermined change amount, for example, and the calculation unit 19 changes the voltage offset to a value obtained by adding the change amount to the current value. After executing step S8, the process returns to step S2.
  • step S6 When the signal detection characteristic f(T ave ) is equal to or greater than the target value T target (step S6: No), the calculation unit 19 adds the signal detection characteristic f(T ave ) to the target value T target and the offset value ⁇ . value (step S7). If the signal detection characteristic f(T ave ) is greater than T target + ⁇ (step S7: Yes), the calculator 19 reduces the voltage offset (step S9). In step S9, the voltage offset is changed in the same manner as in step S8 described above. Specifically, the calculator 19 changes the voltage offset to a value obtained by subtracting the change amount from the current value. After executing step S9, the process returns to step S2. If the signal detection characteristic f(T ave ) is equal to or less than T target + ⁇ (step S7: No), the process returns to step S2.
  • the main amplifier circuit 1 that amplifies the differential signal output from the preamplifier 3 measures the number of crossings of the differential signal per unit time and the number of crossings per unit time.
  • the input of the optical signal is detected based on the result of the comparison with the threshold value of 1.
  • the main amplifier circuit 1 outputs a positive phase signal of the differential signal based on the result of comparison between the number of crossings of the differential signal per unit time and the second threshold.
  • Adjust the voltage offset which is the DC voltage difference between the and the inverse signal.

Abstract

An optical receiver (100) includes: a variable bias circuit (14) that generates a detection differential signal by applying a bias voltage to a differential signal which is based on a current signal output by a light receiving element for receiving an optical signal and is capable of adjusting a voltage offset between a positive phase and a reverse phase of the detection differential signal; a comparator (17) that compares the number of crossings per unit time of the detection differential signal with a first threshold and a second threshold smaller than the first threshold; a signal detection circuit (18) that detects an input of an optical signal on the basis of the result of comparison between the number of crossings and the first threshold; and a computing unit (19) that adjusts a setting regarding the value of the voltage offset of the variable bias circuit on the basis of the result of comparison between the number of crossings and the second threshold.

Description

光受信器および局側装置Optical receiver and station equipment
 本開示は、バースト信号を受信する光受信器および局側装置に関する。 The present disclosure relates to an optical receiver and a station-side device that receive burst signals.
 近年、一本の光ファイバを複数の利用者で共有できるPON(Passive Optical Network)システムと呼ばれる一対多数のアクセス系光通信システムが広く用いられている。 In recent years, a one-to-many access optical communication system called a PON (Passive Optical Network) system that allows multiple users to share a single optical fiber has been widely used.
 PONシステムは、局側装置である1台のOLT(Optical Line Terminal:光加入者線終端装置)と、電源を必要としない受動素子である光スターカプラを介してOLTに接続される複数の加入者側端末装置であるONU(Optical Network Unit:光ネットワーク装置)とで構成される。 A PON system consists of one OLT (Optical Line Terminal), which is a station-side device, and multiple subscribers connected to the OLT via an optical star coupler, which is a passive element that does not require a power supply. It is composed of an ONU (Optical Network Unit), which is a terminal device on the user side.
 PONシステムにおいて収容数増加のため、OLT-ONU間最大接続距離の長延化およびONU分岐数の増加が要求される。この要求を実現する場合、各ONUはOLTからの距離が異なる位置に設置されることになる。すなわち、OLTと各ONUとの間の距離は一定とならない。各ONUからOLTに到達する信号の強度はONUからOLTまでの距離に依存するため、OLTは信号強度変化の大きいパケット信号を受信可能な構成とする必要がある。 Due to the increase in the number of units accommodated in the PON system, it is required to lengthen the maximum connection distance between OLT and ONU and increase the number of ONU branches. To realize this requirement, each ONU will be installed at a different distance from the OLT. That is, the distance between the OLT and each ONU is not constant. Since the strength of the signal reaching the OLT from each ONU depends on the distance from the ONU to the OLT, the OLT must be configured to receive packet signals with large signal strength variations.
 特許文献1には、PONシステムにおいて光バースト信号を受信する受信回路が記載されている。特許文献1に記載の受信回路は、光ファイバから入力される光信号をフォトダイオードで電流信号に変換し、この電流信号を差動増幅器である前置増幅器で増幅した後、主増幅回路において一定の電圧振幅信号に変換して出力する。前置増幅器の出力振幅は入力光パワーに依存し、数mVから数百mVで変動する。すなわち、主増幅回路には数mVから数百mVの変動幅を有する信号が入力される。一方、主増幅回路の出力振幅の値としては数百mVが要求される。入力光パワーに依存しない一定の電圧振幅信号の生成は、後段のクロックデータリカバリ回路での安定した信号識別のためには必要不可欠の処理となっている。 Patent Document 1 describes a receiving circuit for receiving an optical burst signal in a PON system. The receiving circuit described in Patent Document 1 converts an optical signal input from an optical fiber into a current signal with a photodiode, amplifies this current signal with a preamplifier that is a differential amplifier, and then converts it into a constant current signal in a main amplifier circuit. voltage amplitude signal and output. The output amplitude of the preamplifier depends on the input optical power and varies from several mV to several hundred mV. That is, a signal having a fluctuation range of several mV to several hundred mV is input to the main amplifier circuit. On the other hand, several hundred mV is required for the output amplitude value of the main amplifier circuit. Generation of a constant voltage amplitude signal that does not depend on the input optical power is an essential process for stable signal identification in the subsequent clock data recovery circuit.
 また、特許文献1に記載の受信回路を構成する主増幅回路は、入力信号がハイレベルとなる回数をカウントし、カウント数が定められた数に達すると、主信号すなわち光バースト信号を受信したと判定する信号検出機能(Signal Detect機能、以下、SD機能と称する場合がある)を有する。入力信号がハイレベルとなる回数に基づいて主信号の受信を判定することにより、主信号の誤検出の抑制を実現している。 Further, the main amplifier circuit constituting the receiving circuit described in Patent Document 1 counts the number of times the input signal becomes high level, and when the count number reaches a predetermined number, the main signal, that is, the optical burst signal is received. It has a signal detection function (Signal Detect function, hereinafter sometimes referred to as SD function) that determines that Reception of the main signal is determined based on the number of times the input signal becomes high level, thereby suppressing erroneous detection of the main signal.
特開2016-63345号公報JP 2016-63345 A
 上述したように、PONシステムの収容数を増加させる場合、OLTが受信する信号強度の変化が大きくなる。しかしながら、特許文献1に記載されているような従来の技術では、受信信号の強度の変化量が大きくなるケースについては考慮されておらず、強度が大きく変化する場合に信号の検出精度が劣化する可能性がある。特許文献1に記載の受信回路を構成する主増幅回路においては、前置増幅器からの入力信号を主増幅器で増幅した後の信号に基づいてバースト信号受信の有無を判定する。主増幅器の出力信号の振幅は入力信号の振幅に応じたレベルとなるため、バースト信号受信の有無の判定に用いる信号の振幅が大きく変動し、判定誤りが発生するおそれがある。また、受信回路を構成するフォトダイオード、前置増幅器、主増幅回路を構成する増幅器などのデバイスの電気的特性は、周辺環境温度および動作電圧といった動作条件に依存して大きく変動する。また、各デバイスの経年劣化によっても電気的特性が変化する。そのため、デバイスの電気的特性が変動した場合も安定して動作可能な構成の実現が要求される。 As described above, when the number of PON systems accommodated is increased, the change in signal strength received by the OLT increases. However, in the conventional technique as described in Patent Document 1, the case where the amount of change in the strength of the received signal is large is not considered, and the signal detection accuracy deteriorates when the strength is greatly changed. there is a possibility. In the main amplifier circuit constituting the receiving circuit described in Patent Document 1, the presence or absence of burst signal reception is determined based on the signal after the input signal from the preamplifier is amplified by the main amplifier. Since the amplitude of the output signal of the main amplifier has a level corresponding to the amplitude of the input signal, the amplitude of the signal used to determine whether or not the burst signal has been received may fluctuate greatly, resulting in a determination error. In addition, the electrical characteristics of devices such as photodiodes, preamplifiers, and amplifiers that make up the receiving circuit vary greatly depending on operating conditions such as ambient temperature and operating voltage. In addition, the electrical characteristics of each device also change due to aged deterioration. Therefore, it is required to realize a configuration that can stably operate even when the electrical characteristics of the device fluctuate.
 本開示は、上記に鑑みてなされたものであって、回路を構成するデバイスの電気的特性が変化した場合でも安定して信号を検出することが可能な光受信器を得ることを目的とする。 The present disclosure has been made in view of the above, and an object thereof is to obtain an optical receiver capable of stably detecting a signal even when the electrical characteristics of the devices constituting the circuit change. .
 上述した課題を解決し、目的を達成するために、本開示にかかる光受信器は、光信号を受光する受光素子が出力する電流信号に基づく差動信号にバイアス電圧を与えて検出用差動信号を生成するとともに、検出用差動信号の正相と逆相との間の電圧オフセットを調整可能な可変バイアス回路と、検出用差動信号の単位時間当たりの交差回数を第1の閾値および第1の閾値よりも小さい第2の閾値と比較する比較器と、交差回数と第1の閾値との比較結果に基づいて光信号の入力を検出する信号検出回路と、交差回数と第2の閾値との比較結果に基づいて、可変バイアス回路の電圧オフセットの値に関する設定を調整する演算部と、を備える。 In order to solve the above-described problems and achieve an object, an optical receiver according to the present disclosure provides a differential signal for detection by applying a bias voltage to a differential signal based on a current signal output by a light receiving element that receives an optical signal. A variable bias circuit that generates a signal and is capable of adjusting a voltage offset between the positive phase and the negative phase of the differential signal for detection; a comparator that compares with a second threshold that is smaller than the first threshold; a signal detection circuit that detects input of an optical signal based on the comparison result between the number of crossings and the first threshold; and a computing unit that adjusts the setting of the voltage offset value of the variable bias circuit based on the result of the comparison with the threshold.
 本開示にかかる光受信器は、回路を構成するデバイスの電気的特性が変化した場合でも安定して信号を検出することができる、という効果を奏する。 The optical receiver according to the present disclosure has the effect of being able to stably detect signals even when the electrical characteristics of the devices that make up the circuit change.
実施の形態にかかる光受信器の構成例を示す図1 is a diagram showing a configuration example of an optical receiver according to an embodiment; FIG. 主増幅回路において交差検知部へ入力する検出用差動信号の一例を示す図FIG. 11 is a diagram showing an example of a detection differential signal input to the crossing detection unit in the main amplifier circuit; 光受信器の動作を説明するためのタイミングチャートTiming chart for explaining the operation of the optical receiver 単位時間当たりの検出用差動信号の交差検知回数とSD機能の感度特性の関係を示す図FIG. 10 is a diagram showing the relationship between the number of crossing detections of the detection differential signal per unit time and the sensitivity characteristic of the SD function; 差動信号の電圧オフセット調整動作を説明するための図Diagram for explaining voltage offset adjustment operation of differential signal 光受信器の主増幅回路における差動信号の電圧オフセット調整動作の一例を示すフローチャート3 is a flow chart showing an example of voltage offset adjustment operation of a differential signal in a main amplifier circuit of an optical receiver;
 以下に、本開示の実施の形態にかかる光受信器および局側装置を図面に基づいて詳細に説明する。 The optical receiver and station-side device according to the embodiments of the present disclosure will be described below in detail based on the drawings.
実施の形態.
 図1は、実施の形態にかかる光受信器100の構成例を示す図である。光受信器100は、例えば、PONシステムの局側装置であるOLTに実装され、光ファイバ等で構成される光伝送路を介して複数の加入者側端末装置であるONUのそれぞれから光バースト信号を受信する。光受信器100は、光伝送路を介して受光した光信号に対応する電流信号を出力する受光素子であるフォトダイオード2と、フォトダイオード2が出力する電流信号を電圧信号に変換する前置増幅器(TIA:Trans-Impedance-Amplifier)3と、前置増幅器3が出力する電圧信号を増幅して外部回路の伝送制御部(図示せず)に出力する主増幅回路1と、を備える。前置増幅器3は差動増幅器であり、入力信号を増幅して非反転出力端子から出力するとともに、増幅後の信号を反転させて反転出力端子から出力する。前置増幅器3が出力する信号は差動信号である。
Embodiment.
FIG. 1 is a diagram showing a configuration example of an optical receiver 100 according to an embodiment. The optical receiver 100 is mounted, for example, in an OLT, which is a station-side device of a PON system, and receives optical burst signals from each of ONUs, which are a plurality of subscriber-side terminal devices, via an optical transmission line composed of an optical fiber or the like. to receive The optical receiver 100 includes a photodiode 2, which is a light receiving element that outputs a current signal corresponding to an optical signal received via an optical transmission line, and a preamplifier that converts the current signal output by the photodiode 2 into a voltage signal. (TIA: Trans-Impedance-Amplifier) 3, and a main amplifier circuit 1 that amplifies the voltage signal output from the preamplifier 3 and outputs it to a transmission control section (not shown) of an external circuit. The preamplifier 3 is a differential amplifier that amplifies an input signal and outputs it from a non-inverting output terminal, and also inverts the amplified signal and outputs it from an inverting output terminal. The signal output by the preamplifier 3 is a differential signal.
 主増幅回路1は、前置増幅器3から入力される差動信号を差動増幅する主増幅器11と、主増幅器11の出力を一定振幅の差動信号に調整する制限増幅器12と、を備える。 The main amplifier circuit 1 includes a main amplifier 11 that differentially amplifies the differential signal input from the preamplifier 3, and a limiting amplifier 12 that adjusts the output of the main amplifier 11 to a differential signal of constant amplitude.
 また、主増幅回路1は、主増幅器11の出力を分岐した信号が入力され、入力された差動信号から直流電圧を除去するAC結合容量13と、AC結合容量13で直流電圧を除去した差動信号に予め定められた値のバイアス電圧を与えて検出用差動信号を生成する可変バイアス回路14と、を備える。 Further, the main amplifier circuit 1 receives a signal obtained by branching the output of the main amplifier 11, and an AC coupling capacitor 13 that removes the DC voltage from the input differential signal. and a variable bias circuit 14 that applies a bias voltage of a predetermined value to the dynamic signal to generate a detection differential signal.
 主増幅器11は、低雑音の高周波差動アンプである。AC結合容量13は、高周波数成分のみを通過させるコンデンサ131および132から構成される。可変バイアス回路14は、電源と複数の抵抗から構成される。可変バイアス回路14において、抵抗R4およびR5は分圧回路を構成する。抵抗R4およびR5は可変抵抗であり、抵抗値は外部から設定可能とする。抵抗R6およびR7も分圧回路を構成し、電源電圧を分圧することにより、予め定めたバイアス電圧を直流成分が除去された後の信号に印加する。 The main amplifier 11 is a low-noise, high-frequency differential amplifier. AC coupling capacitance 13 is composed of capacitors 131 and 132 that pass only high frequency components. The variable bias circuit 14 is composed of a power supply and a plurality of resistors. In variable bias circuit 14, resistors R4 and R5 form a voltage dividing circuit. Resistors R4 and R5 are variable resistors, and their resistance values can be set externally. Resistors R6 and R7 also constitute a voltage dividing circuit, and by dividing the power supply voltage, a predetermined bias voltage is applied to the signal after the DC component has been removed.
 主増幅回路1は、さらに、可変バイアス回路14が出力する検出用差動信号の交差を検知する交差検知部15と、後述する演算部19から入力される、交差検知部15が単位時間あたりに検知した交差回数を閾値と比較する比較器17と、比較器17による比較結果に基づき、光信号の有無を示す検出信号を出力する信号検出回路18と、を備える。比較器17は、交差検知部15から入力される交差回数を、予め定められた第1の閾値およびカウンタ閾値選択回路5で選択された第2の閾値のそれぞれと比較する。比較器17は、交差回数と第1の閾値との比較結果を信号検出回路18に出力し、交差回数と第2の閾値との比較結果を演算部19に出力する。 The main amplifier circuit 1 further includes a crossing detection unit 15 that detects a crossing of the detection differential signals output from the variable bias circuit 14, and a crossing detection unit 15 that is input from a calculation unit 19 described later. A comparator 17 that compares the detected number of crossings with a threshold value, and a signal detection circuit 18 that outputs a detection signal indicating the presence or absence of an optical signal based on the comparison result of the comparator 17 . Comparator 17 compares the number of crossings input from crossing detector 15 with a predetermined first threshold and a second threshold selected by counter threshold selection circuit 5 . The comparator 17 outputs a comparison result between the number of crossings and the first threshold to the signal detection circuit 18 , and outputs a comparison result between the number of crossings and the second threshold to the calculation unit 19 .
 交差検知部15は、検出用差動信号の交差が発生すると短パルスを出力する。信号検出回路18は、交差検知部15が計測した交差回数が第1の閾値よりも大きい状態であると比較器17が判定した場合、「光信号あり」を示す検出信号を出力する。これ以降の説明では、信号検出回路18が出力する検出信号をSD出力信号と称する。SD出力信号は、例えば、光信号を検出した場合にLowレベルからHighレベルに変化する信号である。信号検出回路18は、光信号を検出するとその旨を示す状態(例えばHighレベル)にSD出力信号を変化させ、この状態をリセット信号生成回路4からリセット信号が入力されるまで維持する。リセット信号生成回路4は、光受信器100が出力する信号を処理する伝送処理部において主信号の入力終了が検知されるとリセット信号を生成するように構成されている。すなわち、リセット信号生成回路4は、光受信器100に主信号の入力がある状態から主信号の入力が無い無信号状態となった場合にリセット信号を生成し、この結果、信号検出回路18からのSD出力信号の状態が、光信号を検出する前の状態に戻る。 The crossing detection unit 15 outputs a short pulse when crossing of the detection differential signals occurs. The signal detection circuit 18 outputs a detection signal indicating "optical signal present" when the comparator 17 determines that the number of crossings measured by the crossing detection unit 15 is greater than the first threshold. In the following description, the detection signal output by the signal detection circuit 18 will be referred to as an SD output signal. The SD output signal is, for example, a signal that changes from Low level to High level when an optical signal is detected. When the signal detection circuit 18 detects the optical signal, it changes the SD output signal to a state indicating that effect (for example, High level), and maintains this state until a reset signal is input from the reset signal generation circuit 4 . The reset signal generation circuit 4 is configured to generate a reset signal when the end of input of the main signal is detected in the transmission processing section that processes the signal output from the optical receiver 100 . That is, the reset signal generation circuit 4 generates a reset signal when the state where the main signal is input to the optical receiver 100 changes to a no-signal state where there is no main signal input. returns to the state before the optical signal was detected.
 ここで、交差検知部15への入力信号について説明する。図2は、主増幅回路1において交差検知部15へ入力する検出用差動信号の一例を示す図である。図2の左側の波形は無信号時に交差検知部15へ入力する検出用差動信号の波形を示し、右側の波形は最小受信パワー受光時に交差検知部15へ入力する検出用差動信号の波形を示す。図2の右側の波形は、規定される最低レベルの光信号を光受信器100が受信した場合に交差検知部15に入力する検出用差動信号の波形である。 Here, the input signal to the intersection detection unit 15 will be described. FIG. 2 is a diagram showing an example of a detection differential signal input to the crossing detection section 15 in the main amplifier circuit 1. As shown in FIG. The waveform on the left side of FIG. 2 shows the waveform of the differential signal for detection input to the crossing detection section 15 when there is no signal, and the waveform on the right side shows the waveform of the differential signal for detection input to the crossing detection section 15 when the minimum received power is received. indicates The waveform on the right side of FIG. 2 is the waveform of the detection differential signal that is input to the crossing detector 15 when the optical receiver 100 receives an optical signal of the prescribed lowest level.
 図2の左側に示すように、無信号時の雑音は正規分布に従い標準偏差A(mV)の広がりを持つ。検出用差動信号の交差検出回数に基づいて光信号を検出する場合、無信号時に「光信号あり」と判断するのを防止するためには、雑音の分布に対して、差動信号の正相信号(例えば図2の上側に示す信号)と逆相信号(例えば図2の下側に示す信号)とが交差しないように電圧オフセット(正相と逆相の直流電圧差)を決定する必要がある。電圧オフセットは、図2の右側に示す波形からも明らかなように大きくすればするほど正相と逆相とが交差する確率が下がる。換言すれば、正相雑音と逆相雑音の分布が重なる面積が小さくなる。つまり、無信号時に正相と逆相との交差を検知してしまい信号を誤検出することを回避できる。一方で、電圧オフセットを大きくすると、光信号がある場合に正相と逆相との交差が発生するのを阻害する要因となり、光信号の受信を検知できなくなる可能性が高まる。また、無信号時の雑音の分布は、光受信器100の周辺温度、動作電圧などに依存して変化する。 As shown on the left side of Fig. 2, the noise when there is no signal follows a normal distribution and spreads with a standard deviation of A (mV). When detecting an optical signal based on the number of crossing detections of the differential signal for detection, in order to prevent the judgment that "there is an optical signal" when there is no signal, the positive It is necessary to determine the voltage offset (the DC voltage difference between positive phase and negative phase) so that the phase signal (eg, the signal shown in the upper part of FIG. 2) and the negative phase signal (eg, the signal shown in the lower part of FIG. 2) do not cross. There is As is clear from the waveforms shown on the right side of FIG. 2, the greater the voltage offset, the lower the probability that the positive and negative phases intersect. In other words, the area where the distributions of positive-phase noise and negative-phase noise overlap becomes smaller. In other words, it is possible to avoid erroneous signal detection due to detection of crossing of the positive phase and the negative phase when there is no signal. On the other hand, if the voltage offset is increased, it becomes a factor that inhibits the occurrence of the crossing of the positive phase and the negative phase when there is an optical signal, increasing the possibility that the reception of the optical signal cannot be detected. Also, the noise distribution during no signal changes depending on the ambient temperature, operating voltage, and the like of the optical receiver 100 .
 このような事情を考慮し、主増幅回路1においては、上述の電圧オフセットを動的に変化させる機能を有し、電圧オフセットを変更することで動作の安定化を図る。電圧オフセットは、可変バイアス回路14の抵抗R4およびR5の値を調整することにより変更可能である。 In consideration of such circumstances, the main amplifier circuit 1 has a function of dynamically changing the voltage offset described above, and stabilizes the operation by changing the voltage offset. The voltage offset can be changed by adjusting the values of resistors R4 and R5 of variable bias circuit 14. FIG.
 図1の説明に戻り、主増幅回路1において、交差検知部15は、局部発振器16の出力信号に基づいて周期的にリセットされる。局部発振器16の出力信号は、演算部19にも入力される。演算部19は、局部発振器16の出力信号と交差検知部15の出力信号とを計測することで、単位時間当たりの交差検知回数Bを演算する。演算部19は、演算した単位時間当たりの交差検知回数Bは比較器17へ出力する。ここで、演算部19は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた処理回路で実現される。また、演算部19は、メモリおよびメモリに格納されるプログラムを実行するプロセッサで構成される制御回路で実現されてもよい。この制御回路を構成するメモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等である。 Returning to the description of FIG. 1 , in the main amplifier circuit 1 , the crossing detector 15 is periodically reset based on the output signal of the local oscillator 16 . The output signal of the local oscillator 16 is also input to the calculation section 19 . The calculation unit 19 calculates the number of crossing detections B per unit time by measuring the output signal of the local oscillator 16 and the output signal of the crossing detection unit 15 . The calculation unit 19 outputs the calculated number of crossing detections B per unit time to the comparator 17 . Here, the arithmetic unit 19 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these implemented in a circuit. Further, the arithmetic unit 19 may be realized by a control circuit configured by a memory and a processor that executes a program stored in the memory. The memories that make up this control circuit are, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory) etc.
 図3は、光受信器100の動作を説明するためのタイミングチャートである。図3において、光入力は、フォトダイオード2に入力される光信号を示す。交差検知部入力電圧オフセットは、可変バイアス回路14の出力すなわち交差検知部15の入力の差動間電圧差を示す。局部発振器出力は、局部発振器16の出力波形を示す。交差検知部出力は、交差検知部15の出力を示す。単位時間当たり交差検知数は、単位時間当たりに交差検知部15が差動信号の交差を検知した数(上記の交差検知回数Bに相当)を示す。X2との比較結果は、光受信器100の特性変化を判定するための閾値X2と単位時間当たりに交差検知部15が差動信号の交差を検知した数(交差検知回数B、以下、単に検知回数Bと記載する場合がある)とを比較した結果である。図3はX2=4の場合の例を示しており、比較結果は、検知回数Bが4よりも小さいときに論理レベル‘1’となる。 FIG. 3 is a timing chart for explaining the operation of the optical receiver 100. FIG. In FIG. 3, optical input indicates an optical signal input to the photodiode 2 . The crossing detector input voltage offset indicates the differential voltage difference between the output of the variable bias circuit 14 , that is, the input of the crossing detector 15 . Local Oscillator Output indicates the output waveform of local oscillator 16 . The intersection detector output indicates the output of the intersection detector 15 . The number of crossings detected per unit time indicates the number of crossings of differential signals detected by the crossing detector 15 per unit time (corresponding to the number of crossings detected B described above). The result of comparison with X 2 is the threshold X 2 for determining the characteristic change of the optical receiver 100 and the number of crossings of the differential signal detected by the crossing detector 15 per unit time (crossing detection count B, hereinafter referred to as This is the result of comparison with the number of detections B in some cases). FIG. 3 shows an example in which X 2 =4, and the comparison result is logic level '1' when the detection count B is less than four.
 ここで、検知回数Bは以下の式(1)に従い、値が変動する。 Here, the value of the detection count B fluctuates according to the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 つまり、電圧オフセットVoffsetが大きくなると検知回数Bは小さい値となり、雑音のばらつきσが大きくなると、検知回数Bは大きい値となる。以上の事から、検知回数Bの演算結果は、雑音のばらつきσによる変動を計測した結果といえる。 In other words, the larger the voltage offset V offset , the smaller the number of detections B, and the larger the noise variation σ, the larger the number of detections B. From the above, it can be said that the calculation result of the detection count B is the result of measuring the variation due to the noise variation σ.
 SD出力は、信号検出回路18による信号検出結果を示す。図3は、信号検出に用いる閾値がX1=16の場合の例を示しており、SD出力は、単位時間当たり交差検知数が16よりも大きいときに論理レベル‘1’となる。 SD output indicates the signal detection result by the signal detection circuit 18 . FIG. 3 shows an example in which the threshold used for signal detection is X 1 =16, and the SD output becomes logic level '1' when the number of crossing detections per unit time is greater than 16. In FIG.
 次に、検知回数Bを変えたときのSD機能の感度特性について説明する。図4は、単位時間当たりの検出用差動信号の交差検知回数とSD機能の感度特性の関係を示す図である。図4において、横軸が電圧オフセット(mV)を示し、縦軸は、雑音入力時に信号検出回路18が誤検出するまで(信号入力と誤判定するまで)の平均時間である平均誤検出時間(=T/B,Tは局部発振器16の発振周期(単位:秒))を示す。検知回数に相当する累積回数設定が小さい値、例えば、図4中の「OUT1(累積回数設定:2回)」の場合、電圧オフセットに対する平均誤検出時間の変動は比較的緩やかな特性である。一方で、検知回数が大きい値、例えば、図4中の「OUT4(累積回数設定:16回)」の場合、電圧オフセットに対する平均誤検出時間の変動は急峻な特性である。重要なことは、累積回数設定が小さいときの特性と累積回数設定が大きいときの特性とが、図5に示すように一意に記述できることである。図5は、差動信号の電圧オフセット調整動作を説明するための図である。図5において、横軸は、累積回数4回設定時の平均検出時間、すなわち、交差検知部15による差動信号の交差検出回数が4回に達するまでの所要時間の平均値を示す。縦軸は、累積回数16回設定時の平均検出時間、すなわち、交差検知部15による差動信号の交差検出回数が16回に達するまでの所要時間の平均値を示す。 Next, we will explain the sensitivity characteristics of the SD function when the number of times of detection B is changed. FIG. 4 is a diagram showing the relationship between the number of cross detections of the detection differential signal per unit time and the sensitivity characteristic of the SD function. In FIG. 4, the horizontal axis indicates the voltage offset (mV), and the vertical axis indicates the average false detection time (until the signal detection circuit 18 falsely detects the noise input). =T/B, T indicates the oscillation period of the local oscillator 16 (unit: seconds). When the accumulated number setting corresponding to the detection number is small, for example, "OUT1 (accumulated number setting: 2 times)" in FIG. On the other hand, when the number of times of detection is large, for example, "OUT4 (accumulation number setting: 16 times)" in FIG. What is important is that the characteristics when the cumulative count setting is small and the characteristics when the cumulative count setting is large can be uniquely described as shown in FIG. FIG. 5 is a diagram for explaining voltage offset adjustment operation of a differential signal. In FIG. 5 , the horizontal axis represents the average detection time when the cumulative number of times is set to 4, that is, the average value of the time required until the number of crossing detections of the differential signal by the crossing detector 15 reaches 4 times. The vertical axis represents the average detection time when the cumulative number of times is set to 16, that is, the average value of the time required until the number of crossing detections of the differential signal by the crossing detection unit 15 reaches 16 times.
 SD機能に要求される特性を考えたとき、上記の累積回数は大きい値に設定することが望ましい。電圧オフセットが極力小さい値で、平均誤検出時間を大きくすることができるためである。一方で、特性がばらついた時に、累積回数が大きいと、平均誤検出時間が長いため、ばらつきの検出は困難である。そこで、光受信器100においては、信号検出のために用いる第1の閾値である閾値X1だけではなく、SD機能のばらつきを検出するために用いる第2の閾値である閾値X2を設定する。 Considering the characteristics required for the SD function, it is desirable to set the above cumulative count to a large value. This is because the voltage offset is as small as possible and the average false detection time can be increased. On the other hand, if the number of accumulated times is large when the characteristics vary, the average erroneous detection time is long, making it difficult to detect the variation. Therefore, in the optical receiver 100, not only the threshold X1, which is the first threshold used for signal detection, but also the threshold X2, which is the second threshold used for detecting variations in the SD function, is set. .
 閾値X2を用いた特性のばらつき検出と電圧オフセットの調整動作について、具体例を用いて説明する。特性のばらつき検出および電圧オフセットの調整は演算部19が行う。光受信器100において、演算部19は、まず、図4に示す累積回数設定が小さい場合の平均検出時間Taveを算出し、次に、図5に示すように、平均検出時間Taveを用いて、信号検出用(閾値X1設定時の平均誤検出時間)の特性Terrorを算出(Terror=f(Tave))する。演算部19は、次に、信号検出用特性Terrorを誤検出平均時間の目標値Ttargetと比較し、比較結果に基づいて、電圧オフセットすなわち可変バイアス回路14の抵抗R4およびR5の値を制御する。図5に示す例では、Taveから算出されるTerrorがTtargetよりも長い時間である。このことから、演算部19は、SD機能の感度に変動が起きて(例えば雑音のばらつきσが小さくなり)、電圧オフセットを小さくできると判断する。図3のタイミングチャートも同じような変動をとらえたときの制御を示しており、単位時間当たり交差検知数が3の場合はX2(=4)よりも小さいことから、交差検知部入力電圧オフセットが小さい値に変更されている。これとは逆に、単位時間当たり交差検知数がX2よりも大きい場合は交差検知部入力電圧オフセットが大きい値に変更されることになる。 A characteristic variation detection and a voltage offset adjustment operation using the threshold value X2 will be described using a specific example. The calculation unit 19 performs characteristic variation detection and voltage offset adjustment. In the optical receiver 100, the calculation unit 19 first calculates the average detection time T ave when the cumulative count setting shown in FIG. 4 is small, and then uses the average detection time T ave as shown in FIG. Then, the characteristic T error for signal detection ( average erroneous detection time when threshold X1 is set) is calculated (T error =f(T ave )). The computing unit 19 then compares the signal detection characteristic T error with the target value T target of the erroneous detection average time, and controls the voltage offset, that is, the values of the resistors R4 and R5 of the variable bias circuit 14 based on the comparison result. do. In the example shown in FIG. 5, T error calculated from T ave is longer than T target . From this, the calculation unit 19 determines that the sensitivity of the SD function fluctuates (for example, the noise variation σ decreases) and the voltage offset can be reduced. The timing chart of FIG. 3 also shows the control when a similar variation is caught, and when the number of crossings detected per unit time is 3, it is smaller than X 2 (=4), so the crossing detection unit input voltage offset is changed to a smaller value. Conversely, if the number of crossings detected per unit time is greater than X2, the crossing detector input voltage offset is changed to a larger value.
 本実施の形態にかかる光受信器100において次に重要な事項は、X2との比較演算を行う時間区間および演算に使用する計測結果の定義である。図3に示す交差検知部出力からわかるように、交差検知部15が単位時間当たりに出力するパルス数は、光信号を受信した時点から大きくなる。図3に示す例では、光入力が開始すると単位時間当たり交差検知数は24となる。これは信号検出判定用の累積回数閾値X1(=16)よりも大きい値となるため、SD出力信号は、信号検出を示す値(High:論理レベル‘1’)となる。一方で、この交差検知数24は、光受信器100の特性のばらつきを検知するための上記演算に用いるには不適である。そのため、信号検出回路18が信号を検知した場合、その影響を受けた交差検知数を特性のばらつき検知用の演算には用いない。すなわち、無信号状態のときに交差検知部15が交差を検知した数を用いて、特性のばらつきを検知する。 The next important item in the optical receiver 100 according to the present embodiment is the definition of the time interval for performing the comparison calculation with X2 and the measurement result used for the calculation. As can be seen from the crossing detection unit output shown in FIG. 3, the number of pulses output by the crossing detection unit 15 per unit time increases from the time the optical signal is received. In the example shown in FIG. 3, the number of crossing detections per unit time is 24 when the light input starts. Since this value is larger than the cumulative count threshold value X 1 (=16) for signal detection determination, the SD output signal becomes a value indicating signal detection (High: logic level '1'). On the other hand, the crossing detection number of 24 is not suitable for use in the above calculation for detecting variations in the characteristics of the optical receiver 100 . Therefore, when the signal detection circuit 18 detects a signal, the number of crossing detections affected by the signal is not used in calculations for detecting variations in characteristics. That is, the variation in characteristics is detected using the number of crossings detected by the crossing detection unit 15 in the no-signal state.
 以上の電圧オフセットの調整動作をフローチャートで示すと図6のようになる。図6は、光受信器100の主増幅回路1における差動信号の電圧オフセット調整動作の一例を示すフローチャートである。 A flow chart of the above voltage offset adjustment operation is shown in FIG. FIG. 6 is a flow chart showing an example of the voltage offset adjustment operation of the differential signal in the main amplifier circuit 1 of the optical receiver 100. As shown in FIG.
 図6に示すように、まず、電圧オフセットの初期値と、信号検出特性算出用の関数f(x)と、信号検出特性の目標値Ttargetとを設定する(ステップS1)。関数f(x)は特性変化検出用の閾値X2の候補それぞれについて設定する。例えば、閾値X2の候補が2回、4回および8回の場合、X2=2とした場合に用いる関数f(x)、X2=4とした場合に用いる関数f(x)、および、X2=8とした場合に用いる関数f(x)を設定する。 As shown in FIG. 6, first, the initial value of the voltage offset, the function f(x) for signal detection characteristic calculation, and the target value T target of the signal detection characteristic are set (step S1). The function f(x) is set for each candidate threshold value X2 for characteristic change detection. For example, when the candidates for the threshold value X 2 are 2 times, 4 times, and 8 times, the function f(x) used when X 2 =2, the function f(x) used when X 2 =4, and , X 2 =8, the function f(x) is set.
 次に、演算部19が、無信号区間であるか否かを確認する(ステップS2)。すなわち、演算部19は、信号検出回路18から入力されるSD出力信号の状態を確認する。無信号区間ではない場合(ステップS2:No)、演算部19は、ステップS2の確認動作を継続する。無信号区間である場合(ステップS2:Yes)、演算部19は、単位時間当たりの交差検知回数Mを計測する(ステップS3)。演算部19は、次に、交差検知回数が閾値X2に達するまでの所要時間の平均値である平均検出時間Taveを算出する(ステップS4)。すなわち、演算部19は、交差検知回数が閾値X2に達するまでの所要時間を複数回にわたって計測し、平均検出時間Taveを算出する。 Next, the calculation unit 19 confirms whether or not it is a non-signal section (step S2). That is, the calculation unit 19 confirms the state of the SD output signal input from the signal detection circuit 18 . If it is not a no-signal section (step S2: No), the calculation unit 19 continues the checking operation of step S2. If it is a no-signal section (step S2: Yes), the calculation unit 19 measures the number of intersection detection times M per unit time (step S3). The calculation unit 19 then calculates an average detection time T ave that is the average value of the time required for the number of crossing detections to reach the threshold value X2 ( step S4). That is, the calculation unit 19 measures the time required for the number of intersection detections to reach the threshold value X2 a plurality of times, and calculates the average detection time T ave .
 演算部19は、平均検出時間Taveを算出すると、次に、信号検出特性f(Tave)を算出する(ステップS5)。信号検出特性f(Tave)の算出は、閾値X2の設定値に対応する関数を用いて行う。なお、閾値X2はカウンタ閾値選択回路5により設定される。カウンタ閾値選択回路5は、例えば、ユーザによる閾値X2の選択操作を受け付け、選択された閾値X2を比較器17に設定する。 After calculating the average detection time T ave , the calculator 19 calculates the signal detection characteristic f(T ave ) (step S5). Calculation of the signal detection characteristic f(T ave ) is performed using a function corresponding to the set value of the threshold value X 2 . Note that the threshold X 2 is set by the counter threshold selection circuit 5 . The counter threshold selection circuit 5 receives, for example, a user's selection operation of the threshold X 2 and sets the selected threshold X 2 in the comparator 17 .
 図6に示す動作の説明に戻り、演算部19は、次に、信号検出特性f(Tave)を目標値Ttargetと比較する(ステップS6)。信号検出特性f(Tave)が目標値Ttargetよりも小さい場合(ステップS6:Yes)、演算部19は、電圧オフセットを大きくする(ステップS8)。なお、電圧オフセットの変更は、例えば、予め定められた変更量で段階的に行うこととし、演算部19は、電圧オフセットを、現在の値に変更量を加算した値に変更する。ステップS8実行後はステップS2に戻る。 Returning to the description of the operation shown in FIG. 6, the calculator 19 next compares the signal detection characteristic f(T ave ) with the target value T target (step S6). If the signal detection characteristic f(T ave ) is smaller than the target value T target (step S6: Yes), the calculator 19 increases the voltage offset (step S8). Note that the voltage offset is changed step by step by a predetermined change amount, for example, and the calculation unit 19 changes the voltage offset to a value obtained by adding the change amount to the current value. After executing step S8, the process returns to step S2.
 信号検出特性f(Tave)が目標値Ttarget以上である場合(ステップS6:No)、演算部19は、信号検出特性f(Tave)を、目標値Ttargetにオフセット値αを加算した値と比較する(ステップS7)。信号検出特性f(Tave)がTtarget+αよりも大きい場合(ステップS7:Yes)、演算部19は、電圧オフセットを小さくする(ステップS9)。ステップS9では、上述したステップS8と同様の方法で電圧オフセットを変更する。具体的には、演算部19は、電圧オフセットを、現在の値から変更量を減算した値に変更する。ステップS9実行後はステップS2に戻る。信号検出特性f(Tave)がTtarget+α以下の場合(ステップS7:No)、ステップS2に戻る。 When the signal detection characteristic f(T ave ) is equal to or greater than the target value T target (step S6: No), the calculation unit 19 adds the signal detection characteristic f(T ave ) to the target value T target and the offset value α. value (step S7). If the signal detection characteristic f(T ave ) is greater than T target +α (step S7: Yes), the calculator 19 reduces the voltage offset (step S9). In step S9, the voltage offset is changed in the same manner as in step S8 described above. Specifically, the calculator 19 changes the voltage offset to a value obtained by subtracting the change amount from the current value. After executing step S9, the process returns to step S2. If the signal detection characteristic f(T ave ) is equal to or less than T target +α (step S7: No), the process returns to step S2.
 以上説明したように、本実施の形態にかかる光受信器100において、前置増幅器3が出力する差動信号を増幅する主増幅回路1は、差動信号の単位時間当たりの交差発生回数と第1の閾値との比較結果に基づいて光信号の入力を検出する。また、主増幅回路1は、光信号の入力が無い状態のときに、差動信号の単位時間当たりの交差発生回数と第2の閾値との比較結果に基づいて、差動信号の正相信号と逆相信号との間の直流電圧差である電圧オフセットを調整する。これにより、部品の経年変化などが原因で光受信器100の特性に変化が生じた場合に特性変化に合わせて電圧オフセットを調整することができ、安定した信号検出が可能となる。 As described above, in the optical receiver 100 according to the present embodiment, the main amplifier circuit 1 that amplifies the differential signal output from the preamplifier 3 measures the number of crossings of the differential signal per unit time and the number of crossings per unit time. The input of the optical signal is detected based on the result of the comparison with the threshold value of 1. Further, when no optical signal is input, the main amplifier circuit 1 outputs a positive phase signal of the differential signal based on the result of comparison between the number of crossings of the differential signal per unit time and the second threshold. Adjust the voltage offset, which is the DC voltage difference between the and the inverse signal. As a result, even if the characteristics of the optical receiver 100 change due to aging of components, etc., the voltage offset can be adjusted in accordance with the change in characteristics, and stable signal detection becomes possible.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 主増幅回路、2 フォトダイオード、3 前置増幅器、4 リセット信号生成回路、5 カウンタ閾値選択回路、11 主増幅器、12 制限増幅器、13 AC結合容量、14 可変バイアス回路、15 交差検知部、16 局部発振器、17 比較器、18 信号検出回路、19 演算部、100 光受信器。 1 main amplifier circuit, 2 photodiode, 3 preamplifier, 4 reset signal generation circuit, 5 counter threshold selection circuit, 11 main amplifier, 12 limiting amplifier, 13 AC coupling capacitance, 14 variable bias circuit, 15 crossing detector, 16 Local oscillator, 17 comparator, 18 signal detection circuit, 19 arithmetic unit, 100 optical receiver.

Claims (6)

  1.  光信号を受光する受光素子が出力する電流信号に基づく差動信号にバイアス電圧を与えて検出用差動信号を生成するとともに、前記検出用差動信号の正相と逆相との間の電圧オフセットを調整可能な可変バイアス回路と、
     前記検出用差動信号の単位時間当たりの交差回数を第1の閾値および前記第1の閾値よりも小さい第2の閾値と比較する比較器と、
     前記交差回数と前記第1の閾値との比較結果に基づいて光信号の入力を検出する信号検出回路と、
     前記交差回数と前記第2の閾値との比較結果に基づいて、前記可変バイアス回路の前記電圧オフセットの値に関する設定を調整する演算部と、
     を備えることを特徴とする光受信器。
    A differential signal for detection is generated by applying a bias voltage to a differential signal based on a current signal output by a light receiving element that receives an optical signal, and a voltage between the positive phase and the negative phase of the differential signal for detection. a variable bias circuit with adjustable offset;
    a comparator that compares the number of crossings per unit time of the differential signal for detection with a first threshold and a second threshold smaller than the first threshold;
    a signal detection circuit that detects input of an optical signal based on a comparison result between the number of crossings and the first threshold;
    a computing unit that adjusts the setting of the voltage offset value of the variable bias circuit based on the comparison result between the number of crossings and the second threshold;
    An optical receiver comprising:
  2.  前記演算部は、前記光受信器に光信号の入力が無い無信号状態のときに前記比較器が前記交差回数と前記第2の閾値とを比較した結果に基づいて前記設定を調整する、
     ことを特徴とする請求項1に記載の光受信器。
    The computing unit adjusts the setting based on a result of comparison between the number of crossings and the second threshold by the comparator when the optical receiver is in a no-signal state in which no optical signal is input.
    2. The optical receiver according to claim 1, wherein:
  3.  前記演算部は、前記交差回数が前記第2の閾値よりも小さい場合、前記電圧オフセットが小さくなるよう前記設定を調整し、前記交差回数が前記第2の閾値よりも大きい場合、前記電圧オフセットが大きくなるよう前記設定を調整する、
     ことを特徴とする請求項1または2に記載の光受信器。
    The computing unit adjusts the setting so that the voltage offset is reduced when the number of crossings is less than the second threshold, and adjusts the setting to reduce the voltage offset when the number of crossings is greater than the second threshold. adjusting the settings to be larger;
    3. The optical receiver according to claim 1, wherein:
  4.  前記演算部は、前記光受信器に光信号の入力が無い無信号状態において前記交差回数のカウントを開始してから前記交差回数が前記第2の閾値に達するまでの所要時間の平均値を算出し、算出した平均値に基づいて、前記光受信器に光信号の入力が開始されてから前記信号検出回路が光信号の入力を検出するまでの所要時間である検出所要時間を算出し、算出した検出所要時間が予め定められた目標値よりも大きい場合、前記電圧オフセットが小さくなるよう前記設定を調整し、前記検出所要時間が前記目標値よりも小さい場合、前記電圧オフセットが大きくなるよう前記設定を調整する、
     ことを特徴とする請求項1から3のいずれか一つに記載の光受信器。
    The calculation unit calculates an average value of the time required from the start of counting the number of crossings to the number of crossings reaching the second threshold in a no-signal state in which no optical signal is input to the optical receiver. Then, based on the calculated average value, the required detection time, which is the time required from the start of the input of the optical signal to the optical receiver until the signal detection circuit detects the input of the optical signal, is calculated. adjusting the setting to reduce the voltage offset if the detected required time is greater than a predetermined target value; and adjusting the setting to increase the voltage offset if the detected required time is smaller than the target value. adjust settings,
    4. The optical receiver according to any one of claims 1 to 3, characterized in that:
  5.  前記第2の閾値を変更可能に構成されていることを特徴とする請求項1から4のいずれか一つに記載の光受信器。 The optical receiver according to any one of claims 1 to 4, wherein the second threshold is changeable.
  6.  請求項1から5のいずれか一つに記載の光受信器を備えることを特徴とする局側装置。 A station-side device comprising the optical receiver according to any one of claims 1 to 5.
PCT/JP2021/010409 2021-03-15 2021-03-15 Optical receiver and station-side device WO2022195684A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010409 WO2022195684A1 (en) 2021-03-15 2021-03-15 Optical receiver and station-side device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010409 WO2022195684A1 (en) 2021-03-15 2021-03-15 Optical receiver and station-side device

Publications (1)

Publication Number Publication Date
WO2022195684A1 true WO2022195684A1 (en) 2022-09-22

Family

ID=83319997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010409 WO2022195684A1 (en) 2021-03-15 2021-03-15 Optical receiver and station-side device

Country Status (1)

Country Link
WO (1) WO2022195684A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060206A1 (en) * 2014-10-15 2016-04-21 株式会社フジクラ Optical receiver, active optical cable, and control method for optical receiver
WO2019163135A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Signal detecting circuit, optical receiver, master station device, and signal detecting method
WO2020174628A1 (en) * 2019-02-27 2020-09-03 三菱電機株式会社 Limiting amplification circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060206A1 (en) * 2014-10-15 2016-04-21 株式会社フジクラ Optical receiver, active optical cable, and control method for optical receiver
WO2019163135A1 (en) * 2018-02-26 2019-08-29 三菱電機株式会社 Signal detecting circuit, optical receiver, master station device, and signal detecting method
WO2020174628A1 (en) * 2019-02-27 2020-09-03 三菱電機株式会社 Limiting amplification circuit

Similar Documents

Publication Publication Date Title
US8861584B2 (en) Noise discriminator for passive optical network burst mode receiver
US11099065B2 (en) Method and system for balancing optical receiver
CN102257749B (en) Transimpedance amplifier and PON system
KR101172946B1 (en) Delay line calibration
RU2276329C2 (en) Circuit for measuring signal
US20090009246A1 (en) Electronic circuit
WO2022195684A1 (en) Optical receiver and station-side device
JPH0454043A (en) Reception data identification circuit
US8301038B2 (en) Electronic circuit and communication system
US20020051271A1 (en) Loss of signal detection circuit for light receiver
JP2010278753A (en) Differential amplifier and optical receiver
US20050100350A1 (en) Optical receiving device
JP5056583B2 (en) Signal detection device, signal reception device, and signal detection method
EP3276826B1 (en) Precise signal swing squelch detector
JP2014107794A (en) Burst optical receiver
JP7278393B2 (en) receiver
CN114637717A (en) Detection circuit and differential receiver
JP4588592B2 (en) Burst signal receiving apparatus and burst signal detecting method
US9160483B2 (en) Signal transmission device with data length changer
US20210075387A1 (en) Limiting amplifier circuitry
KR20130116567A (en) Bias voltage setting appratus of avalanche photo diode detector for laser range finder
CN111030648B (en) Symmetrical double-channel signal peak-to-peak value detection circuit
JP2006229540A (en) Burst signal receiving device
KR20220095708A (en) All Digital Optical Signal Detection Circuit Using a Counter Inside a Clock Data Recovery IC
KR20220122392A (en) Apparatus for reducing noise of lidar and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931439

Country of ref document: EP

Kind code of ref document: A1