WO2022195669A1 - 測定装置 - Google Patents

測定装置 Download PDF

Info

Publication number
WO2022195669A1
WO2022195669A1 PCT/JP2021/010360 JP2021010360W WO2022195669A1 WO 2022195669 A1 WO2022195669 A1 WO 2022195669A1 JP 2021010360 W JP2021010360 W JP 2021010360W WO 2022195669 A1 WO2022195669 A1 WO 2022195669A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulsed light
light
pulsed
measuring device
unit
Prior art date
Application number
PCT/JP2021/010360
Other languages
English (en)
French (fr)
Inventor
響一 上野
Original Assignee
パイオニア株式会社
パイオニアスマートセンシングイノベーションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, パイオニアスマートセンシングイノベーションズ株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2021/010360 priority Critical patent/WO2022195669A1/ja
Publication of WO2022195669A1 publication Critical patent/WO2022195669A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters

Definitions

  • the present invention relates to a measuring device.
  • a distance measuring device is one that measures the time it takes for emitted light to be reflected by an object and return to measure the distance to surrounding objects.
  • the signal saturates when strong reflected light from a nearby object enters the light-receiving element.
  • the accuracy of measurements on nearby objects is degraded and subsequent measurements are affected.
  • Patent Document 1 discloses that when a received signal corresponding to a part of pixels of an image is saturated in a laser radar device, the peak power of the laser beam is lowered so that the target pixel is not saturated in the next measurement. is stated. It also describes that when saturation occurs, the distance signal at that time is ignored.
  • Patent Document 2 a plurality of measurements are performed by dynamically changing the transmission power of a transmitter or the reception amplification factor of a receiver, and the received wave is not saturated and the distance value of the received wave with high strength is measured. It is described that it is output as a distance.
  • Patent Documents 1 and 2 detect saturation and then deal with it, so the original saturation cannot be avoided.
  • One example of the problem to be solved by the present invention is to avoid saturation of the light receiving part in a measurement device that detects light.
  • an emission unit that emits pulsed light
  • a light receiving unit that receives the pulsed light reflected by the target
  • a control unit that controls the emitting unit, If the light receiving unit does not receive the pulsed light reflected by the target within a predetermined time after causing the emitting unit to emit the first pulsed light, the control unit controls the emitting unit is a measuring device for emitting the second pulsed light having a higher intensity than the first pulsed light.
  • FIG. 1 is a block diagram illustrating the configuration of a measuring device according to a first embodiment
  • FIG. FIG. 4 is a diagram illustrating emitted pulses and received light signals in the first embodiment
  • It is a figure which illustrates the composition of the measuring device concerning a 1st embodiment.
  • 4 is a diagram illustrating the hardware configuration of a control unit according to the first embodiment;
  • FIG. It is a flow chart which shows a flow of operation of a measuring device concerning a 1st embodiment. It is a figure for demonstrating the point cloud data produced
  • FIG. 4 is a diagram showing another example of an emitted pulse and a received light signal in the first embodiment
  • 9 is a flow chart showing the operation flow of the measuring device according to the second embodiment. It is a figure for demonstrating the 1st example of the point cloud data produced
  • FIG. 1 is a block diagram illustrating the configuration of a measuring device 10 according to the first embodiment. In the figure, the paths of the pulsed light are schematically indicated by dashed arrows.
  • FIG. 2 is a diagram illustrating an emitted pulse and a received light signal in this embodiment.
  • a measuring device 10 according to the present embodiment includes an emitting section 14 , a light receiving section 18 and a control section 17 .
  • the emission unit 14 emits pulsed light.
  • the light receiving unit 18 receives the pulsed light reflected by the target 30 .
  • the control section 17 controls the emission section 14 .
  • the control unit 17 causes the emitting unit 14 to emit the first pulsed light 21.
  • 14 emits a second pulsed light 22 having a higher intensity than the first pulsed light 21 .
  • the measuring device 10 emits the first pulsed light 21 having a lower emission intensity than the second pulsed light 22 before emitting the second pulsed light 22 capable of measuring long distances.
  • the first pulsed light 21 is reflected by the object 30 outside the measuring device 10 and returns to the measuring device 10 within the predetermined time T1
  • the second pulsed light 22 is not emitted.
  • FIG. 3 is a diagram illustrating the configuration of the measuring device 10 according to this embodiment. The configuration of the measuring device 10 will be described in detail with reference to this figure.
  • Measuring device 10 measures the distance from measuring device 10 to an object (target 30) within scanning range 160 based on, for example, the difference between the emission timing of pulsed light and the reception timing of reflected light (reflected pulsed light).
  • the pulsed light is light such as infrared light, for example.
  • the pulsed light is, for example, a laser pulse.
  • the pulsed light emitted from the emitting unit 14 provided in the measuring device 10 and emitted to the outside of the measuring device 10 is reflected by an object and at least part of it returns toward the measuring device 10 .
  • the reflected light then enters the measuring device 10 .
  • the reflected light incident on the measuring device 10 is received by the light receiving unit 18 and the intensity thereof is detected.
  • the measuring device 10 the time from when the pulsed light is emitted from the emitting section 14 to when the reflected light is detected by the light receiving section 18 is measured. Then, the control unit 17 calculates the distance between the measuring device 10 and the object using the measured time and the propagation speed of the pulsed light.
  • the measurement device 10 is, for example, a lidar (LIDAR: Laser Imaging Detection and Ranging, Laser Illuminated Detection and Ranging or LiDAR: Light Detection and Ranging) device, radar device, or the like.
  • the emission unit 14 emits pulsed light.
  • the output section 14 includes a light emitting element 142 and a drive circuit 141.
  • Light emitting element 142 is, for example, a laser diode.
  • the drive circuit 141 is a circuit for causing the light emitting element 142 to emit light based on the control signal from the control section 17, and includes, for example, a switching circuit and a capacitive element.
  • the light receiving unit 18 receives pulsed light incident on the measuring device 10 .
  • the light receiving section 18 includes a light receiving element 182 and a detection circuit 181 .
  • Light receiving element 182 is, for example, a photodiode such as an avalanche photodiode (APD).
  • the detection circuit 181 includes an IV converter and an amplifier, and outputs a signal indicating the intensity of light detected by the light receiving element 182 .
  • the measuring device 10 further comprises a movable mirror 16.
  • the movable mirror 16 is, for example, a uniaxially movable or biaxially movable MEMS mirror. By changing the orientation of the reflecting surface of the movable mirror 16, the emission direction of the pulsed light emitted from the measuring device 10 can be changed.
  • the movable mirror 16 is a biaxially movable MEMS mirror, by biaxially driving the movable mirror 16, raster scanning can be performed within a predetermined range with pulsed light.
  • the measurement device 10 further includes a generation unit 12 that generates point cloud data including measurement results using a plurality of pulsed lights. For example, when raster scanning is performed within the scanning range 160 , linear scanning is performed by changing the light emission direction to the first direction 161 . By performing a plurality of linear scans while changing the light emission direction in the second direction 162, point cloud data including a plurality of measurement results within the scanning range 160 can be generated.
  • the first direction 161 and the second direction 162 are orthogonal.
  • a unit of point cloud data generated by a single raster scan is called a frame. After the measurement of one frame is completed, the direction of light emission returns to the initial position, and the next frame is measured. Thus, repeating frames are generated.
  • distances measured by pulsed light are associated with information indicating the emission direction of the pulsed light.
  • the point cloud data may include three-dimensional coordinates indicating reflection points of the pulsed light.
  • the generator 12 generates point cloud data using the calculated distance and information indicating the angle of the movable mirror 16 when each pulsed light is emitted.
  • the generated point cloud data may be output to the outside of 10 or may be held in a storage device accessible from the generation unit 12 .
  • the measuring device 10 further comprises a mirror 15 with a hole and a condenser lens 13 .
  • the pulsed light output from the output unit 14 passes through the hole of the mirror 15 with a hole, and is output from the measuring device 10 after being reflected by the movable mirror 16 .
  • the reflected light incident on the measuring device 10 is reflected by the movable mirror 16 and the holed mirror 15 , and then enters the light receiving section 18 via the condenser lens 13 .
  • the measuring device 10 may further include a collimating lens, a mirror, and the like.
  • the control section 17 can control the light receiving section 18 and the movable mirror 16 in addition to the emitting section 14 . Also, the control unit 17 receives a light receiving signal from the light receiving unit 18 and calculates the distance from the measuring device 10 to the object within the scanning range as described above.
  • FIG. 4 is a diagram illustrating the hardware configuration of the control unit 17 and generation unit 12 according to this embodiment.
  • the controller 17 is implemented using an integrated circuit 80 and an electronic circuit.
  • the integrated circuit 80 is, for example, an SoC (System On Chip).
  • the electronic circuit includes, for example, drive circuit 163 for movable mirror 16 .
  • the generator 12 is implemented using an integrated circuit 80 .
  • the integrated circuit 80 has a bus 802 , a processor 804 , a memory 806 , a storage device 808 , an input/output interface 810 and a network interface 812 .
  • a bus 802 is a data transmission path for the processor 804, memory 806, storage device 808, input/output interface 810, and network interface 812 to transmit and receive data to and from each other.
  • the processor 804 is an arithmetic processing device implemented using a microprocessor or the like.
  • a memory 806 is a memory implemented using a RAM (Random Access Memory) or the like.
  • the storage device 808 is a storage device implemented using ROM (Read Only Memory), flash memory, or the like.
  • the input/output interface 810 is an interface for connecting the integrated circuit 80 with peripheral devices.
  • an input/output interface 810 is connected to a drive circuit 141 for a light emitting element 142, a detection circuit 181 for a light receiving element 182, and a drive circuit 163 for a movable mirror 16.
  • a network interface 812 is an interface for connecting the integrated circuit 80 to a communication network.
  • This communication network is, for example, a CAN (Controller Area Network) communication network.
  • a method for connecting the network interface 812 to the communication network may be a wireless connection or a wired connection.
  • the storage device 808 stores program modules for realizing the functions of the control unit 17 and the generation unit 12.
  • the processor 804 implements the functions of the control unit 17 and the generation unit 12 by reading this program module into the memory 806 and executing it.
  • the hardware configuration of the integrated circuit 80 is not limited to the configuration shown in this figure.
  • program modules may be stored in memory 806 .
  • integrated circuit 80 may not include storage device 808 .
  • FIG. 2 shows an example of a timing chart of emitted pulses and a corresponding timing chart of received light signals.
  • the control unit 17 causes the emission unit 14 to emit the first pulsed light 21, and within a predetermined time T1, the light receiving unit 18 reflects the light from the target 30.
  • the second pulsed light 22 is not emitted from the emission section 14 .
  • the control unit 17 first causes the emission unit 14 to emit the first pulsed light 21.
  • the control unit 17 can cause the emission unit 14 to emit the first pulsed light 21 by inputting a trigger signal for emitting the first pulsed light 21 to the drive circuit 141 .
  • the first pulsed light 21 is emitted at time t1a. Then, not a little internal reflection occurs in the measuring device 10 , and the internal reflected light is detected as a received light pulse 31 by the light receiving section 18 immediately after the first pulsed light 21 is emitted.
  • the control unit 17 monitors the light receiving signal of the light receiving unit 18, and the light receiving unit 18 receives the pulsed light reflected by the target 30 within a predetermined time T1. Determine whether or not A method for determining whether or not the light receiving unit 18 receives the pulsed light reflected by the object 30 within the predetermined time T1 will be described later in detail.
  • the control unit 17 calculates the distance to the object 30 based on the emission timing of the first pulsed light 21 and the light reception timing of the light reception pulse 33 . Further, the control unit 17 causes the emission unit 14 to emit the next first pulsed light 21 at time t1b without emitting the second pulsed light 22 .
  • the angular interval of emission of the first pulsed light 21 can be made constant regardless of whether the second pulsed light 22 is emitted. That is, the time T2 is set so that the first pulsed light 21 is emitted at predetermined angular intervals according to the movement of the movable mirror 16.
  • FIG. T2 is, for example, 3.0 ⁇ s or more and 10.0 ⁇ s or less.
  • the control unit 17 monitors the light receiving signal of the light receiving unit 18, and the light receiving unit 18 receives the pulsed light reflected by the target 30 within a predetermined time T1. Determine whether or not
  • the control unit 17 next causes the emission unit 14 to emit the second pulsed light 22 at time t4b.
  • the control unit 17 can cause the emission unit 14 to emit the second pulsed light 22 by inputting a trigger signal for emitting the second pulsed light 22 to the drive circuit 141 .
  • the control section 17 monitors the received light signal of the light receiving section 18 to detect the received light pulse 34 generated when the second pulsed light 22 is reflected by the target 30 . Then, the control unit 17 calculates the distance to the target 30 based on the emission timing of the second pulsed light 22 and the light reception timing of the light reception pulse 34 .
  • the control unit 17 repeats the above process while changing the emission direction of the pulsed light while the frame is being generated.
  • the pulsed light reflected by the target 30 is received by the light receiving unit 18 within the predetermined time period T1
  • determine whether The period P1 can be, for example, the period after the internally reflected light is received.
  • the period P1 is a period starting from time t2 (for example, t2a and t2b) after the internal reflection light (light receiving pulse 31) is received and ending at time t3 after time T3 has passed from time t2. is.
  • the time from the time t1 when the first pulsed light 21 is emitted to the time t2, which is the starting point of the period P1, is, for example, 2 nanoseconds or more and 10 nanoseconds or less.
  • the time from when the pulsed light is emitted to when the internally reflected light is received is determined by the configuration of the measurement apparatus 10, and the starting point of the period P1 can be determined by grasping this time in advance.
  • a time T3, which is the length of the period P1, is, for example, 10 nanoseconds or more and 200 nanoseconds or less.
  • the control unit 17 determines that the pulsed light reflected by the target 30 has been received by the light receiving unit 18 within the predetermined time T1. Further, the control unit 17 identifies the pulsed light received within the period P1 as the pulsed light reflected by the target 30 . On the other hand, if the pulsed light is not received within the period P1, the control unit 17 determines that the light receiving unit 18 did not receive the pulsed light reflected by the target 30 within the predetermined time T1.
  • a predetermined time after the first pulsed light 21 is emitted. It is determined whether or not two or more pulsed lights are received within T1.
  • the time T1 is, for example, 100 nanoseconds or more and 200 nanoseconds or less.
  • At least the internally reflected light (the light receiving pulse 31) is received until the time T1 elapses after the first pulsed light 21 is emitted.
  • the received light pulse 33 generated by the reflection of the first pulsed light 21 from the target 30 is detected, the received light pulse 33 is detected after the received light pulse 31 .
  • the controller 17 controls the light receiving part 18 within the predetermined time T1 to It is determined that the pulsed light has been received. Further, the control unit 17 identifies the pulsed light received second among the pulsed lights received within the time T1 as the pulsed light reflected by the target 30 . On the other hand, if two or more pulsed lights are not received within the time T1, the controller 17 determines that the light receiving part 18 did not receive the pulsed light reflected by the target 30 within the predetermined time T1.
  • the predetermined time after the first pulsed light 21 is emitted. It is determined whether or not pulsed light is received within T1.
  • the pulsed light received within the predetermined period P2 is regarded as internally reflected light and ignored.
  • the period P2 is a period including a timing at which there is a high possibility that internally reflected light will be received.
  • the time from when the pulsed light is emitted to when the internally reflected light is received is determined by the configuration of the measurement apparatus 10, and the period P2 can be determined by grasping this time in advance.
  • the control unit 17 detects the pulse reflected by the target 30 at the light receiving unit 18 within the predetermined time T1. It is determined that light has been received. Further, the control unit 17 identifies the pulsed light received outside the period P2 among the pulsed lights received within the time T1 as the pulsed light reflected by the target 30 . On the other hand, when the pulsed light is not received within the time T1 and outside the period P2 after the first pulsed light 21 is emitted, the control unit 17 causes the light receiving unit 18 to reflect off the object 30 within the predetermined time T1. determined that the received pulsed light was not received.
  • FIG. 5 is a flowchart showing the operation flow of the measuring device 10 according to this embodiment.
  • the control unit 17 causes the emission unit 14 to emit the first pulsed light 21 (S101).
  • the control unit 17 determines whether or not the light receiving unit 18 has received a reflected pulse from the target 30 within a predetermined time T1 after the first pulsed light 21 is emitted. If it is determined that the light receiving unit 18 has received the reflected pulse from the object 30 within the predetermined time T1 from the emission of the first pulsed light 21 (Y in S102), the control unit 17 outputs the first pulsed light 21.
  • the distance to the target 30 is calculated using the emission timing and the reception timing of the reflected pulse (S103).
  • the control unit 17 causes the emission unit 14 , and the distance to the object 30 is measured by the second pulsed light 22 (S104).
  • the control unit 17 determines whether or not to end the measurement of the measuring device 10 (S105). For example, when an operation for ending the measurement is performed on the measuring device 10, the control unit 17 determines to end the measurement by the measuring device 10 (Y in S105), and ends the process. If it is not determined to end the measurement of the measuring device 10 (N of S105), the control section 17 performs the processing of S101 again.
  • FIG. 6 is a diagram for explaining point cloud data generated by the measuring device 10 according to this embodiment.
  • the point cloud data generated by the generation unit 12 according to this embodiment includes the results of measurement with the first pulsed light 21 and the results of measurement with the second pulsed light 22 . That is, the point cloud data according to this embodiment includes information indicating the distance measured in S103 and information indicating the distance measured in S104.
  • This figure exemplifies the emission directions of multiple pulsed lights.
  • This figure shows a state in which the scanning range 160 is viewed from the position of the measuring device 10.
  • FIG. In the example of this figure, a plurality of pulsed lights are emitted so as to draw a sine wave from top to bottom in the figure.
  • the point cloud data reflects the emission direction of each pulse.
  • black circles indicate the emission direction of the second pulsed light 22 that acquires the data points included in the point cloud data.
  • a white circle drawn with a solid line indicates the emission direction of the first pulsed light 21 that acquires the data points included in the point cloud data.
  • a white circle drawn with a dashed line indicates the emission direction of the first pulsed light 21 for which distance measurement was not performed (that is, the first pulsed light 21 for which no short-range reflection from the target 30 was detected). That is, the data by this first pulsed light 21 is not included in the point cloud data.
  • the emitting directions of the plurality of data points included in the point cloud data obtained by the measuring device 10 according to the present embodiment are not regularly arranged.
  • the emission directions of a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to the present embodiment are not at constant angular intervals on at least one scanning line.
  • one or more emission directions of a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to the present embodiment are deviated from the grid point.
  • the emission directions of the plurality of data points included in the point cloud data obtained by the measuring device 10 may be arranged regularly.
  • the emission intensity of the first pulsed light 21 is set so as not to saturate the light receiving section 18 even when the target 30 is near the measuring device 10 .
  • the emission intensity of the first pulsed light 21 is 10 6 times or less the saturation level of the light receiving section 18 .
  • the saturation level of the light receiving section 18 means, for example, the maximum amount of received light that can be detected without the light receiving element 182 saturating.
  • the saturation level of the light receiving section 18 may mean the maximum amount of received light that can output the detection signal without the detection circuit 181 saturating.
  • the emission intensity of the second pulsed light 22 is set so as to be sufficient for long-distance measurement.
  • the emission intensity of the second pulsed light 22 is 100 times or more and 2000 times or less the emission intensity of the first pulsed light 21 .
  • the emission interval of the first pulsed light 21 and the second pulsed light 22 is sufficiently short, it can be considered that they are emitted in substantially the same direction. Therefore, if the light receiving pulse 33 of the first pulsed light 21 is not detected within the predetermined time T1, it can be determined that there is a high possibility that even if the second pulsed light 22 is emitted, it will not be reflected at a short distance.
  • the emission interval T4 between the second pulsed light 22 and the first pulsed light 21 emitted immediately before is 60 nanoseconds or more and 200 nanoseconds or less.
  • the difference in emission direction between the second pulsed light 22 and the first pulsed light 21 emitted immediately before is 0.01 deg or more and 0.05 deg or less.
  • the drive circuit 141 of the emission section 14 may include a plurality of capacitive elements.
  • the first pulsed light 21 and the second pulsed light 22 can be separately emitted at short intervals regardless of the charging time of the capacitive element.
  • the capacitance of the first capacitive element and the capacitance of the second capacitative element different from each other, the emission intensity of the first pulsed light 21 and the emission intensity of the second pulsed light 22 can be made different.
  • the number of first capacitive elements to be discharged when the first pulsed light 21 is emitted and the number of second capacitive elements to be discharged when the second pulsed light 22 is emitted are determined. may be different from each other.
  • the emission section 14 may include two drive circuits 141 and two light emitting elements 142 .
  • the first pulsed light 21 is emitted by the first driving circuit 141 driving the first light emitting element 142 .
  • the second pulsed light 22 is emitted by the second drive circuit 141 driving the second light emitting element 142 .
  • the driving circuit 141 and the light emitting element 142 for emitting the first pulsed light 21 and the driving circuit 141 and the light emitting element 142 for emitting the second pulsed light 22
  • the second pulsed light 21 can be emitted at short intervals.
  • the first pulsed light 21 and the second pulsed light 22 can be separately emitted.
  • the emission intensity of the first pulsed light 21 and the second pulsed light 22 can be freely set.
  • FIG. 7 is a diagram showing another example of emitted pulses and received light signals in this embodiment.
  • FIG. 2 shows an example in which the reflected light from the target 30 of the first pulsed light 21 emitted at time t1b is not detected by the light receiving section 18 .
  • This shows a case where the object 30 was far enough away, and therefore the light receiving section 18 could not detect the reflected light as a light receiving pulse with the first pulsed light 21 having a low intensity.
  • the example of FIG. 7 shows an example in which the received light pulse 33, which is the reflected light of the first pulsed light 21, is detected after the second pulsed light 22 is emitted. An example of processing in such a case will be described below.
  • the control unit 17 next causes the emission unit 14 to emit the second pulsed light 22 at time t4c. Even after the second pulsed light 22 is emitted at time t4b, the light receiving section 18 detects the internally reflected light of the second pulsed light 22 as the light receiving pulse 32.
  • the light receiving section 18 detects a light receiving pulse 33 generated by reflecting the first pulsed light 21 from the target 30 and a light receiving pulse 34 generated by reflecting the second pulsed light 22 from the target 30 .
  • a situation can occur, for example, when the distant object 30 has a relatively high reflectance.
  • the difference ⁇ 1 between the emission timing of the first pulsed light 21 and the light reception timing of the light reception pulse 33 and the 2 the difference ⁇ 2 between the emission timing of the pulsed light 22 and the light reception timing of the light pulse 34 should be substantially the same. Therefore, it can be determined that the pulsed light received later is the reflected light of the second pulsed light 22 .
  • the light receiving unit 18 is reflected by the target 30 after the second pulsed light 22 is emitted until the next first pulsed light 21 is emitted.
  • the control unit 17 uses the light receiving timing of the pulsed light received later among the two pulsed lights and the emission timing of the second pulsed light 22 to control the distance to the target 30. Calculate the distance. That is, the control unit 17 calculates the distance using the emission timing of the second pulsed light 22 and the light reception timing of the light reception pulse 34 .
  • the control unit 17 causes the light receiving unit 18 to emit the pulsed light reflected by the target 30 within the predetermined time T1 after causing the emitting unit 14 to emit the first pulsed light 21.
  • the second pulsed light 22 having a higher intensity than the first pulsed light 21 is emitted from the emitting portion 14 . Therefore, it is possible to avoid emitting the second pulsed light 22 to the nearby target 30 . As a result, it is possible to avoid saturation of the light receiving section 18 and continue highly accurate distance measurement.
  • FIG. 8 is a flow chart showing the operation flow of the measuring device 10 according to the second embodiment.
  • the measuring device 10 according to this embodiment is the same as the measuring device 10 according to the first embodiment except for the points described below.
  • the control section 17 controls the light receiving section 18 .
  • the controller 17 controls the multiplication factor of the light receiver 18 .
  • the control unit 17 controls the light receiving unit 18 to The multiplication factor is lowered and the second pulsed light 22 is emitted from the emission section 14 .
  • the flowchart of FIG. 8 is obtained by replacing S103 of the flowchart of FIG. 5 with S113, and S101, S102, S104, and S105 are as described in the first embodiment. If the control unit 17 according to the present embodiment determines that the reflected pulse from the target 30 has been received by the light receiving unit 18 within the predetermined time T1 from the emission of the first pulsed light 21 (Y in S102), S113 3, the multiplication factor of the light receiving section 18 is lowered and the second pulsed light 22 is emitted from the emission section 14 to perform the measurement. That is, in S ⁇ b>113 , the control unit 17 calculates the distance to the target 30 based on the emission timing of the second pulsed light 22 and the light reception timing of the light reception pulse 34 .
  • control unit 17 reduces the multiplication factor of the light receiving unit 18 to such an extent that the light receiving unit 18 is not saturated even if the second pulsed light 22 is reflected by the target 30 located nearby. For example, the control unit 17 controls the light receiving unit 18 so as to lower the multiplication factor to a predetermined level. After receiving the light receiving pulse 34 , the control unit 17 restores the multiplication factor of the light receiving unit 18 before emitting the next first pulsed light 21 .
  • the multiplication factor of the light receiving section 18 is, for example, the multiplication factor of the light receiving element 182 and can be controlled by changing the voltage applied to the light receiving element 182 .
  • the second pulse is generated with a lower multiplication factor than when the light receiving pulse 33 is received within the predetermined time T1 after the first pulsed light 21 is emitted.
  • Reflected light (light receiving pulse 34) of light 22 can be received.
  • the multiplication factor of the light receiving section 18 in S113 should be 0.01 to 0.1 times the multiplication factor of the light receiving section 18 within the predetermined time T1 after the first pulsed light 21 is emitted. can be done.
  • the measuring device 10 emits the second pulsed light 22 to measure the distance even if the object 30 is nearby.
  • distance measurement can be performed with a high S/N ratio while avoiding saturation of the light receiving section 18.
  • the control unit 17 further performs The distance to the target 30 may or may not be calculated based on the emission timing of the first pulsed light 21 and the light reception timing of the light reception pulse 33 .
  • the generation unit 12 can generate point cloud data including all the distances calculated by the control unit 17 .
  • FIG. 9 is a diagram for explaining a first example of point cloud data generated by the measuring device 10 according to this embodiment.
  • This figure shows an example in which the control unit 17 further calculates the distance to the target 30 based on the emission timing of the first pulsed light 21 and the light reception timing of the light reception pulse 33 in S113.
  • FIG. 10 is a diagram for explaining a second example of point cloud data generated by the measuring device 10 according to this embodiment. This figure shows an example in which the control unit 17 does not calculate the distance to the target 30 based on the emission timing of the first pulsed light 21 and the light reception timing of the light reception pulse 33 in S113.
  • 9 and 10 like FIG. 6, exemplify the emission directions of a plurality of pulsed lights.
  • 9 and 10 show the scanning range 160 viewed from the position of the measuring apparatus 10, and a plurality of pulsed lights are emitted from top to bottom in a sine wave.
  • black circles indicate the emission direction of the second pulsed light 22 that acquires the data points included in the point cloud data.
  • a white circle drawn with a solid line indicates the emission direction of the first pulsed light 21 that acquires the data points included in the point cloud data.
  • a white circle drawn with a dashed line indicates the emission direction of the first pulsed light 21 for which distance measurement was not performed (that is, the first pulsed light 21 for which no short-range reflection from the target 30 was detected). That is, the data by this first pulsed light 21 is not included in the point cloud data.
  • the emitting directions of the plurality of data points included in the point cloud data obtained by the measuring device 10 are not arranged regularly.
  • the emission directions of a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to this example do not have constant angular intervals on at least one scanning line.
  • one or more emission directions of a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to this example are deviated from the grid point.
  • a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to this example includes a set of two data points having substantially the same emitting direction.
  • the emission directions of the plurality of data points included in the point cloud data obtained by the measuring device 10 may be arranged regularly.
  • the emitting directions of the plurality of data points included in the point cloud data obtained by the measuring device 10 are regularly arranged.
  • the emission directions of a plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to this example have substantially constant angular intervals on at least one scanning line.
  • the emitting directions of the plurality of data points included in the point cloud data obtained by the measuring apparatus 10 according to this example are all on the lattice points.
  • the control unit 17 causes the light receiving unit 18 to detect the pulsed light reflected by the target 30 within the predetermined time T1 after the light emitting unit 14 emits the first pulsed light 21. is received, the multiplication factor of the light receiving section 18 is lowered and the second pulsed light 22 is emitted from the emitting section 14 . Therefore, it is possible to measure a nearby object 30 with a high S/N ratio while avoiding saturation of the light receiving section 18 .
  • Measurement device 12 Measurement device 12
  • Generation unit 13 Condensing lens 14
  • Output unit 15 Mirror with hole 16 Movable mirror 17
  • Control unit 18 Light receiving unit 21 First pulsed light 22
  • Second pulsed light Object 160 Scanning range

Abstract

測定装置(10)は、出射部(14)、受光部(18)、および制御部(17)を備える。出射部(14)は、パルス光を出射する。受光部(18)は、対象(30)で反射されたパルス光を受光する。制御部(17)は、出射部(14)を制御する。そして制御部(17)は、出射部(14)に第1のパルス光を出射させてから所定の時間内に、受光部(18)で、対象(30)で反射されたパルス光が受光されなかった場合、出射部(14)に第1のパルス光よりも高強度の第2のパルス光を出射させる。

Description

測定装置
 本発明は、測定装置に関する。
 近年、自動車の自動運転等に用いることができる距離測定装置の開発が行われている。距離測定装置の一例としては、出射した光が物体に反射されて戻るまでの時間を測定して、周囲の物体との距離を測定するものが挙げられる。
 このように光を検出する測定装置では、近くにある物体からの強い反射光が受光素子に入射すると信号が飽和する。このような信号飽和が起きると、近くにある物体に対する測定精度が低下したり、次の測定に影響したりする。
 特許文献1には、レーザレーダ装置において、画像の一部の画素に対応する受信信号が飽和した場合、次回の測定において対象となる画素の測定が飽和しないようにレーザ光のピークパワーを低下させることが記載されている。また、飽和が生じた場合、その際の距離信号を無視することが記載されている。
 特許文献2には、送信器の送信強度または受信器の受信増幅率を動的に変化させて複数の測定を行い、受信波が飽和せず、かつ受信波の強度の高い距離値を測距距離として出力することが記載されている。
特開2016-205884号公報 特開2008-275331号公報
 しかし、特許文献1および2の技術は、飽和を検出した上でそれに対する対処が行われるため、元々の飽和を避けられない。
 本発明が解決しようとする課題としては、光を検出する測定装置において受光部の飽和を避けることが一例として挙げられる。
 請求項1に記載の発明は、
 パルス光を出射する出射部と、
 対象で反射された前記パルス光を受光する受光部と、
 前記出射部を制御する制御部とを備え、
 前記制御部は、前記出射部に第1の前記パルス光を出射させてから所定の時間内に、前記受光部で、前記対象で反射された前記パルス光が受光されなかった場合、前記出射部に前記第1のパルス光よりも高強度の第2の前記パルス光を出射させる
測定装置である。
第1の実施形態に係る測定装置の構成を例示するブロック図である。 第1の実施形態における出射パルスと受光信号を例示する図である。 第1の実施形態に係る測定装置の構成を例示する図である。 第1の実施形態に係る制御部のハードウエア構成を例示する図である。 第1の実施形態に係る測定装置の動作の流れを示すフローチャートである。 第1の実施形態に係る測定装置で生成される点群データについて説明するための図である。 第1の実施形態における出射パルスと受光信号の他の例を示す図である。 第2の実施形態に係る測定装置の動作の流れを示すフローチャートである。 第2実施形態に係る測定装置で生成される点群データの第1例について説明するための図である。 第2実施形態に係る測定装置で生成される点群データの第2例について説明するための図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
(第1の実施形態)
 図1は、第1の実施形態に係る測定装置10の構成を例示するブロック図である。本図中、パルス光の経路を破線矢印で模式的に示している。図2は、本実施形態における出射パルスと受光信号を例示する図である。本実施形態に係る測定装置10は、出射部14、受光部18、および制御部17を備える。出射部14は、パルス光を出射する。受光部18は、対象30で反射されたパルス光を受光する。制御部17は、出射部14を制御する。そして制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光されなかった場合、出射部14に第1のパルス光21よりも高強度の第2のパルス光22を出射させる。以下に詳しく説明する。
 本実施形態に係る測定装置10では、遠距離まで測定可能な第2のパルス光22を出射する前に、第2のパルス光22よりも出射強度が低い第1のパルス光21を出射する。その際、第1のパルス光21が所定の時間T1内に測定装置10の外部の対象30で反射して測定装置10へ戻ってきた場合、測定装置10の近くに対象30があると判断して第2のパルス光22を打たない。そうすることで、第2のパルス光22を近くにある対象30に対して出射することを避けられる。結果として、近くにある物体(対象30)からの反射光を受光することによる受光部18の飽和を避ける事ができる。
 図3は、本実施形態に係る測定装置10の構成を例示する図である。本図を参照し、測定装置10の構成について詳しく説明する。
 測定装置10は、たとえばパルス光の出射タイミングと反射光(反射したパルス光)の受光タイミングとの差に基づいて、測定装置10から走査範囲160内にある物体(対象30)までの距離を測定する装置である。パルス光はたとえば赤外光等の光である。また、パルス光はたとえばレーザパルスである。測定装置10に備えられた出射部14から出力され、測定装置10の外部へ出射されたパルス光は物体で反射されて少なくとも一部が測定装置10に向かって戻る。そして、反射光が測定装置10に入射する。測定装置10に入射した反射光は受光部18で受光され、強度が検出される。ここで、測定装置10では出射部14からパルス光が出射されてから反射光が受光部18で検出されるまでの時間が測定される。そして、制御部17は、測定された時間とパルス光の伝搬速さを用いて測定装置10と物体との距離を算出する。測定装置10はたとえばライダー(LIDAR:Laser Imaging Detection and Ranging, Laser Illuminated Detection and Ranging またはLiDAR:Light Detection and Ranging)装置やレーダー装置等である。
 出射部14はパルス光を出射する。後述する図4に示すように、出射部14は発光素子142および駆動回路141を含む。発光素子142は、たとえばレーザーダイオードである。駆動回路141は、制御部17からの制御信号に基づき発光素子142を発光させるための回路であり、たとえばスイッチング回路や容量素子を含んで構成される。
 受光部18は測定装置10に入射したパルス光を受光する。後述する図4に示すように、受光部18は受光素子182および検出回路181を含む。受光素子182は、たとえばアバランシェフォトダイオード(APD)等のフォトダイオードである。検出回路181は、I-Vコンバータや増幅器を含み、受光素子182による光の検出強度を示す信号を出力する。
 図3の例において、測定装置10は、可動ミラー16をさらに備える。可動ミラー16は、たとえば一軸可動または二軸可動のMEMSミラーである。可動ミラー16の反射面の向きを変えることにより、測定装置10から出射されるパルス光の出射方向を変化させることができる。可動ミラー16が二軸可動のMEMSミラーである場合、可動ミラー16を二軸駆動する事により、所定の範囲内をパルス光でラスタスキャンすることができる。
 測定装置10は、複数のパルス光による測定結果を含む点群データを生成する生成部12をさらに備える。たとえば、走査範囲160内をラスタスキャンする場合、第1の方向161に光の出射方向を変化させる事によりライン状の走査を行う。そして、第2の方向162に光の出射方向を変化させながら複数のライン状走査を行う事により、走査範囲160内の複数の測定結果を含む点群データを生成する事ができる。本図の例において、第1の方向161と第2の方向162とは直交している。
 一度のラスタスキャンで生成される点群データの単位をフレームと呼ぶ。ひとつのフレームについて測定が終わると、光の出射方向は初期位置に戻り、次のフレームの測定が行われる。こうして、繰り返しフレームが生成される。点群データにおいては、パルス光で測定された距離と、そのパルス光の出射方向を示す情報とが関連付けられている。または、点群データは、パルス光の反射点を示す三次元座標を含んでもよい。生成部12は、算出された距離と、各パルス光を出射する時の可動ミラー16の角度を示す情報とを用いて点群データを生成する。生成された点群データは10の外部に出力されても良いし、生成部12からアクセス可能な記憶装置に保持されても良い。
 本図の例において、測定装置10は孔付きミラー15、および集光レンズ13をさらに備える。出射部14から出力されたパルス光は孔付きミラー15の孔を通過し、可動ミラー16で反射された後に測定装置10から出射される。また、測定装置10に入射した反射光は可動ミラー16および孔付きミラー15で反射された後、集光レンズ13を介して受光部18に入射する。なお、測定装置10は、コリメートレンズやミラー等をさらに含んでもよい。
 制御部17は、出射部14の他、受光部18および可動ミラー16を制御することができる。また、制御部17は、受光部18から受光信号を受信し、上述したように測定装置10から走査範囲内の物体までの距離を算出する。
 図4は、本実施形態に係る制御部17および生成部12のハードウエア構成を例示する図である。制御部17は、集積回路80および電子回路を用いて実装されている。集積回路80は、例えば SoC(System On Chip)である。電子回路はたとえば可動ミラー16の駆動回路163を含む。生成部12は、集積回路80を用いて実装されている。
 集積回路80は、バス802、プロセッサ804、メモリ806、ストレージデバイス808、入出力インタフェース810、及びネットワークインタフェース812を有する。バス802は、プロセッサ804、メモリ806、ストレージデバイス808、入出力インタフェース810、及びネットワークインタフェース812が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ804などを互いに接続する方法は、バス接続に限定されない。プロセッサ804は、マイクロプロセッサなどを用いて実現される演算処理装置である。メモリ806は、RAM(Random Access Memory)などを用いて実現されるメモリである。ストレージデバイス808は、ROM(Read Only Memory)やフラッシュメモリなどを用いて実現されるストレージデバイスである。
 入出力インタフェース810は、集積回路80を周辺デバイスと接続するためのインタフェースである。本図において、入出力インタフェース810には発光素子142の駆動回路141、受光素子182の検出回路181、および可動ミラー16の駆動回路163が接続されている。
 ネットワークインタフェース812は、集積回路80を通信網に接続するためのインタフェースである。この通信網は、例えば CAN(Controller Area Network)通信網である。なお、ネットワークインタフェース812が通信網に接続する方法は、無線接続であってもよいし、有線接続であってもよい。
 ストレージデバイス808は、制御部17および生成部12の機能を実現するためのプログラムモジュールを記憶している。プロセッサ804は、このプログラムモジュールをメモリ806に読み出して実行することで、制御部17および生成部12の機能を実現する。
 集積回路80のハードウエア構成は本図に示した構成に限定されない。例えば、プログラムモジュールはメモリ806に格納されてもよい。この場合、集積回路80は、ストレージデバイス808を備えていなくてもよい。
 図2に戻り、制御部17が出射部14を制御する方法について詳しく説明する。本図では、出射パルスのタイミングチャートと、それに対応する受光信号のタイミングチャートとの例を示している。
 上述した通り、制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光されなかった場合、出射部14に第1のパルス光21よりも高強度の第2のパルス光22を出射させる。また、本実施形態に係る測定装置10において、制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光された場合、出射部14に第2のパルス光22を出射させない。
 測定装置10による測定において、制御部17はまず出射部14に第1のパルス光21を出射させる。制御部17は、駆動回路141に対し第1のパルス光21を出射させるためのトリガ信号を入力することで、出射部14に第1のパルス光21を出射させることができる。本図の例では、時点t1aにおいて第1のパルス光21が出射される。すると、少なからず測定装置10内での内部反射が生じ、第1のパルス光21の出射直後に受光部18にて内部反射光が受光パルス31として検出される。また、制御部17は第1のパルス光21を出射させると受光部18の受光信号をモニタして、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する。所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する方法については詳しく後述する。
 本図の例では、時点t1aにおいて第1のパルス光21が出射された後、所定の時間T1の終点であるt3aまでの間に、受光パルス33が検出されている。受光パルス33は、第1のパルス光21が対象30で反射された反射光である。したがって、制御部17は、第1のパルス光21の出射タイミングと受光パルス33の受光タイミングに基づいて、対象30までの距離を算出する。また制御部17は、出射部14に第2のパルス光22を出射させずに、次の第1のパルス光21を時点t1bで出射させる。
 測定装置10において、第1のパルス光21の出射の角度間隔は第2のパルス光22の出射の有無に関わらず一定とする事ができる。すなわち、可動ミラー16の動きに応じ、第1のパルス光21が所定の角度間隔で出射されるよう、時間T2が設定される。T2はたとえば3.0μ秒以上10.0μ秒以下である。
 時点t1bにおいて第1のパルス光21が出射された後においても、少なからず測定装置10内での内部反射が生じ、第1のパルス光21の出射直後に受光部18にて内部反射光が受光パルス31として検出される。また、制御部17は第1のパルス光21を出射させると受光部18の受光信号をモニタして、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する。
 本図の例では、時点t1bにおいて第1のパルス光21が出射された後、所定の時間T1の終点であるt3bまでの間に、対象30での反射による受光パルスが検出されていない。したがって、制御部17は、次に時点t4bにおいて、出射部14に第2のパルス光22を出射させる。制御部17は、駆動回路141に対し第2のパルス光22を出射させるためのトリガ信号を入力することで、出射部14に第2のパルス光22を出射させることができる。
 時点t4bにおいて第2のパルス光22が出射された後においても、少なからず測定装置10内での内部反射が生じ、第2のパルス光22の出射直後に受光部18にて、第2のパルス光22の内部反射光が受光パルス32として検出される。また、制御部17は第2のパルス光22を出射させると受光部18の受光信号をモニタして、第2のパルス光22が対象30によって反射されて生じた受光パルス34を検出する。そして、制御部17は、第2のパルス光22の出射タイミングと、受光パルス34の受光タイミングに基づいて、対象30までの距離を算出する。
 制御部17は、フレームが生成される間、パルス光の出射方向を変えながら上記の処理を繰り返す。
 所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する方法(すなわち後述するS102における判定方法)の第1例から第3例について以下に詳しく説明する。
<第1例>
 所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する方法の第1例では、所定の期間P1内でパルス光が受光されるか否かを判定する。期間P1はたとえば内部反射光が受光された後の期間とすることができる。本図の例において期間P1は、内部反射光(受光パルス31)が受光された後の時点t2(たとえばt2aおよびt2b)を始点とし、時点t2から時間T3が経過した時点t3を終点とする期間である。この場合、第1のパルス光21が出射された時点t1から、期間P1の始点である時点t2までは、たとえば2ナノ秒以上10ナノ秒以下である。パルス光を出射してから内部反射光が受光されるまでの時間は測定装置10の構成によって定まっており、予めこの時間を把握して期間P1の始点を決める事ができる。また、期間P1の長さである時間T3はたとえば10ナノ秒以上200ナノ秒以下である。
 期間P1内でパルス光が受光された場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されたと判定する。また、制御部17は、期間P1内で受光されたパルス光を、対象30で反射されたパルス光であると特定する。一方、期間P1内でパルス光が受光されなかった場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されなかったと判定する。
<第2例>
 所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する方法の第2例では、第1のパルス光21が出射されてから所定の時間T1内にパルス光が二つ以上受光されるか否かを判定する。時間T1はたとえば100ナノ秒以上200ナノ秒以下である。第1のパルス光21が出射されてから時間T1が経過するまでには、少なくとも内部反射光(受光パルス31)が受光される。そして、第1のパルス光21が対象30で反射されて生じた受光パルス33が検出される場合、受光パルス33は受光パルス31の後に検出される。したがって、第1のパルス光21が出射されてから時間T1内にパルス光が二つ以上受光された場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されたと判定する。また、制御部17は、時間T1内に受光されたパルス光のうち二つ目に受光されたパルス光を、対象30で反射されたパルス光であると特定する。一方、時間T1内でパルス光が二つ以上受光されなかった場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されなかったと判定する。
<第3例>
 所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されるか否かを判定する方法の第3例では、第1のパルス光21が出射されてから所定の時間T1内にパルス光が受光されるか否かを判定する。ただし、この判定においては所定の期間P2内に受光したパルス光を内部反射光であるとみなして無視する。期間P2は内部反射光が受光される可能性が高いタイミングを含む期間である。パルス光を出射してから内部反射光が受光されるまでの時間は測定装置10の構成によって定まっており、予めこの時間を把握して期間P2を定める事ができる。
 第1のパルス光21が出射されてから時間T1内かつ期間P2外でパルス光が受光された場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されたと判定する。また、制御部17は、時間T1内に受光されたパルス光のうち期間P2外で受光されたパルス光を、対象30で反射されたパルス光であると特定する。一方、第1のパルス光21が出射されてから時間T1内かつ期間P2外でパルス光が受光されなかった場合、制御部17は、所定の時間T1内に受光部18で、対象30で反射されたパルス光が受光されなかったと判定する。
 図5は、本実施形態に係る測定装置10の動作の流れを示すフローチャートである。測定装置10の測定が開始されると、制御部17は、出射部14に第1のパルス光21を出射させる(S101)。次いで、S102において、制御部17は、第1のパルス光21の出射から所定の時間T1内に対象30からの反射パルスが受光部18で受光されたか否かを判定する。第1のパルス光21の出射から所定の時間T1内に対象30からの反射パルスが受光部18で受光されたと判定された場合(S102のY)、制御部17は第1のパルス光21の出射タイミングとその反射パルスの受光タイミングとを用いて対象30までの距離を算出する(S103)。
 一方、第1のパルス光21の出射から所定の時間T1内に対象30からの反射パルスが受光部18で受光されなかったと判定された場合(S102のN)、制御部17は、出射部14に第2のパルス光22を出射させ、第2のパルス光22によって対象30までの距離を測定する(S104)。
 S103およびS104の処理に次いで制御部17は、測定装置10の測定を終了させるか否かを判定する(S105)。たとえば測定装置10に対して測定を終了させるための操作が行われた場合、制御部17は測定装置10の測定を終了させると判定し(S105のY)、処理を終了する。測定装置10の測定を終了させると判定しない場合(S105のN)、制御部17は再度S101の処理を行う。
 図6は、本実施形態に係る測定装置10で生成される点群データについて説明するための図である。本実施形態に係る生成部12で生成される点群データは、第1のパルス光21で測定された結果と第2のパルス光22で測定された結果とを含む。すなわち、本実施形態にかかる点群データは上述したS103で測定された距離を示す情報と、S104で測定された距離を示す情報とを含む。
 本図は複数のパルス光の出射方向を例示している。本図は測定装置10の位置から走査範囲160を見た状態を示している。本図の例では、複数のパルス光が、図中の上から下へ正弦波を描くように出射されている。点群データには、このような各パルスの出射方向が反映される。本図において、黒丸は点群データに含まれるデータ点を取得した、第2のパルス光22の出射方向を示す。実線で描かれた白丸は点群データに含まれるデータ点を取得した、第1のパルス光21の出射方向を示す。破線で描かれた白丸は、距離測定が行われなかった第1のパルス光21(すなわち対象30による近距離での反射が検出されなかった第1のパルス光21)の出射方向を示す。すなわち、この第1のパルス光21によるデータは点群データには含まれない。
 本図に例示するように、本実施形態に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、規則正しく配列されていない。たとえば、本実施形態に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、少なくとも一の走査線上において角度間隔が一定ではない。また、本実施形態に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、一つ以上が格子点から外れている。ただし、対象30による近距離での反射が全く生じなかった場合には、測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は規則正しく配列されていてもよい。
 第1のパルス光21の出射強度は、測定装置10の近くに対象30がある場合でも受光部18を飽和させない程度に設定されている。たとえば第1のパルス光21の出射強度は受光部18の飽和レベルの10倍以下である。受光部18の飽和レベルとはたとえば受光素子182が飽和せずに検出できる最大の受光量を意味する。また、受光部18の飽和レベルは、検出回路181が飽和せずに検出信号を出力できる最大の受光量を意味してもよい。一方、第2のパルス光22の出射強度は、遠距離の測定を十分行えるように設定されている。たとえば第2のパルス光22の出射強度は、第1のパルス光21の出射強度の100倍以上2000倍以下である。
 第1のパルス光21と第2のパルス光22の出射間隔は十分短いため、ほぼ同じ方向へ出射しているとみなすことができる。したがって、第1のパルス光21の受光パルス33が所定の時間T1内に検出されない場合は、第2のパルス光22を出射しても近距離での反射は生じない可能性が高いと判断できる。たとえば第2のパルス光22と、その直前に出射された第1のパルス光21との出射間隔T4は60ナノ秒以上200ナノ秒以下である。たとえば、第2のパルス光22と、その直前に出射された第1のパルス光21との出射方向の差は、0.01deg以上0.05deg以下である。
 本実施形態において、出射部14の駆動回路141は複数の容量素子を含んでもよい。出射部14が第1のパルス光21を出射する際に放電する第1の容量素子と、第2のパルス光22を出射する際に放電する第2の容量素子とを別々に設ける事により、容量素子の充電時間に関わらず、短い間隔で第1のパルス光21と第2のパルス光22とを打ち分ける事ができる。この際、第1の容量素子の容量と第2の容量素子の容量とを互いに異ならせておくことにより、第1のパルス光21の出射強度と第2のパルス光22の出射強度とを異ならせる事ができる。また、同様の目的で、第1のパルス光21を出射させる際に放電させる第1の容量素子の数と、第2のパルス光22を出射させる際に放電させる第2の容量素子の数とを互いに異ならせておいても良い。
 出射部14は、二つの駆動回路141と二つの発光素子142を含んでいても良い。この場合、第1の駆動回路141が第1の発光素子142を駆動することにより第1のパルス光21を出射する。そして、第2の駆動回路141が第2の発光素子142を駆動することにより第2のパルス光22を出射する。第1のパルス光21を出射するための駆動回路141および発光素子142と、第2のパルス光22を出射するための駆動回路141および発光素子142とを別々に設ける事により、短い間隔で第1のパルス光21と第2のパルス光22とを打ち分ける事ができる。また、第1のパルス光21および第2のパルス光22の出射強度を自由に設定する事ができる。
 図7は、本実施形態における出射パルスと受光信号の他の例を示す図である。図2では、時点t1bで出射された第1のパルス光21の対象30による反射光が受光部18において検出されない例を示していた。これは、対象30が十分遠方にあったため、強度の低い第1のパルス光21では、反射光を受光部18で受光パルスとして検出することができなかった場合を示している。一方、図7の例では、第2のパルス光22の出射後に第1のパルス光21の反射光である受光パルス33が検出される例を示している。このような場合の処理の例について、以下に説明する。
 本図の例では、時点t1cにおいて第1のパルス光21が出射された後、時点t2cより前に受光部18にて内部反射光が受光パルス31として検出される。一方、時点t1cにおいて第1のパルス光21が出射された後、所定の時間T1の終点である時点t3cまでの間に、対象30での反射による受光パルスが検出されていない。したがって、制御部17は、次に時点t4cにおいて、出射部14に第2のパルス光22を出射させる。時点t4bにおいて第2のパルス光22が出射された後においても、受光部18にて第2のパルス光22の内部反射光が受光パルス32として検出される。さらにその後、第1のパルス光21が対象30で反射されて生じた受光パルス33、と、第2のパルス光22が対象30で反射されて生じた受光パルス34とが受光部18で検出される。たとえば遠方の対象30の反射率がある程度高い場合に、このような状態が生じうる。
 この場合、第1のパルス光21と第2のパルス光22とが同じ対象30で反射されたとすると、第1のパルス光21の出射タイミングと受光パルス33の受光タイミングとの差Δ1と、第2のパルス光22の出射タイミングと受光パルス34の受光タイミングとの差Δ2とは略同一になるはずである。したがって、後に受光したパルス光が第2のパルス光22の反射光であると判定できる。
 本実施形態に係る測定装置10では、第2のパルス光22が出射されてから、次の第1のパルス光21が出射されるまでの間に、受光部18が、対象30で反射されたパルス光を二つ受光した場合、制御部17はこの二つのパルス光の内、後に受光したパルス光の受光タイミングと、その第2のパルス光22の出射タイミングとを用いて、対象30までの距離を算出する。すなわち、制御部17は、第2のパルス光22の出射タイミングと、受光パルス34の受光タイミングとを用いて距離を算出する。
 以上、本実施形態によれば、制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光されなかった場合、出射部14に第1のパルス光21よりも高強度の第2のパルス光22を出射させる。したがって、第2のパルス光22を近くにある対象30に対して出射することを避けられる。結果として、受光部18の飽和を避け、高精度な距離測定を継続する事ができる。
(第2の実施形態)
 図8は、第2の実施形態に係る測定装置10の動作の流れを示すフローチャートである。本実施形態に係る測定装置10は、以下に説明する点を除いて第1の実施形態に係る測定装置10と同じである。
 本実施形態に係る測定装置10において、制御部17は受光部18を制御する。具体的には、制御部17は受光部18の増倍率を制御する。制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光された場合、受光部18の増倍率を下げ、かつ出射部14に第2のパルス光22を出射させる。以下に詳しく説明する。
 図8のフローチャートは、図5のフローチャートのS103がS113に入れ替わったものであり、S101、S102、S104、およびS105は第1の実施形態で説明した通りである。本実施形態に係る制御部17は、第1のパルス光21の出射から所定の時間T1内に対象30からの反射パルスが受光部18で受光されたと判定された場合(S102のY)、S113において、受光部18の増倍率を下げ、かつ出射部14に第2のパルス光22を出射させて測定を行う。すなわちS113では、制御部17は、第2のパルス光22の出射タイミングと受光パルス34の受光タイミングに基づいて、対象30までの距離を算出する。ただし、制御部17は、近くにある対象30で第2のパルス光22が反射されたとしても受光部18が飽和しない程度に受光部18の増倍率を下げる。たとえば制御部17は、予め定められたレベルまで増倍率を下げるよう、受光部18を制御する。また制御部17は、受光パルス34の受光後、次の第1のパルス光21を出射する前に受光部18の増倍率を元に戻す。受光部18の増倍率はたとえば受光素子182の増倍率であり、受光素子182に印加する電圧を変化させることで制御する事ができる。
 こうすることで、本実施形態に係る受光部18では、第1のパルス光21が出射されてから所定の時間T1内に受光パルス33を受光する時よりも低い増倍率で、第2のパルス光22の反射光(受光パルス34)を受光することができる。たとえば、S113における受光部18の増倍率は、第1のパルス光21が出射されてから所定の時間T1内の、受光部18の増倍率の0.01倍以上0.1倍以下とすることができる。
 本実施形態に係る測定装置10では、近くに対象30があったとしても第2のパルス光22を出射して距離の測定を行う。ここで、受光部18の増倍率を下げることで受光部18の飽和を避けつつ、高いS/N比で距離測定を行える。
 なお、制御部17は、第1のパルス光21の出射から所定の時間T1内に対象30からの反射パルスが受光部18で受光されたと判定された場合(S102のY)、S113において、さらに第1のパルス光21の出射タイミングと受光パルス33の受光タイミングに基づいて、対象30までの距離を算出してもよいし、しなくてもよい。なお生成部12は、制御部17で算出された距離を全て含む点群データを生成することができる。
 図9は、本実施形態に係る測定装置10で生成される点群データの第1例について説明するための図である。本図は、S113において、制御部17がさらに第1のパルス光21の出射タイミングと受光パルス33の受光タイミングに基づいて、対象30までの距離を算出する場合の例を示している。図10は、本実施形態に係る測定装置10で生成される点群データの第2例について説明するための図である。本図は、S113において、制御部17が第1のパルス光21の出射タイミングと受光パルス33の受光タイミングに基づいて、対象30までの距離を算出しない場合の例を示している。
 図9および図10は図6と同様、複数のパルス光の出射方向を例示している。図9および図10は測定装置10の位置から走査範囲160を見た状態を示しており、複数のパルス光が、図中の上から下へ正弦波を描くように出射されている。図9および図10において、黒丸は点群データに含まれるデータ点を取得した、第2のパルス光22の出射方向を示す。実線で描かれた白丸は点群データに含まれるデータ点を取得した、第1のパルス光21の出射方向を示す。破線で描かれた白丸は、距離測定が行われなかった第1のパルス光21(すなわち対象30による近距離での反射が検出されなかった第1のパルス光21)の出射方向を示す。すなわち、この第1のパルス光21によるデータは点群データには含まれない。
 図9の例では、測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、規則正しく配列されていない。たとえば、本例に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、少なくとも一の走査線上において角度間隔が一定ではない。また、本例に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、一つ以上が格子点から外れている。本例に係る測定装置10で得られる点群データに含まれる複数のデータ点には、出射方向がほぼ等しい二つのデータ点による組が含まれる。ただし、対象30による近距離での反射が全く生じなかった場合には、測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は規則正しく配列されていてもよい。
 一方、図10の例では、測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、規則正しく配列されている。たとえば、本例に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、少なくとも一の走査線上において角度間隔が略一定である。また、本例に係る測定装置10で得られる点群データに含まれる複数のデータ点の出射方向は、全てが格子点上にある。
 本実施形態によれば、第1の実施形態と同様の作用および効果が得られる。くわえて、本実施形態によれば、制御部17は、出射部14に第1のパルス光21を出射させてから所定の時間T1内に、受光部18で、対象30で反射されたパルス光が受光された場合、受光部18の増倍率を下げ、かつ出射部14に第2のパルス光22を出射させる。したがって、近くにある対象30についても受光部18の飽和を避けつつ、高いS/N比で測定が行える。
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
10 測定装置
12 生成部
13 集光レンズ
14 出射部
15 孔付きミラー
16 可動ミラー
17 制御部
18 受光部
21 第1のパルス光
22 第2のパルス光
30 対象
160 走査範囲

Claims (8)

  1.  パルス光を出射する出射部と、
     対象で反射された前記パルス光を受光する受光部と、
     前記出射部を制御する制御部とを備え、
     前記制御部は、前記出射部に第1の前記パルス光を出射させてから所定の時間内に、前記受光部で、前記対象で反射された前記パルス光が受光されなかった場合、前記出射部に前記第1のパルス光よりも高強度の第2の前記パルス光を出射させる
    測定装置。
  2.  請求項1に記載の測定装置において、
     前記制御部は、前記出射部に前記第1のパルス光を出射させてから前記所定の時間内に、前記受光部で、前記対象で反射された前記パルス光が受光された場合、前記出射部に前記第2のパルス光を出射させない
    測定装置。
  3.  請求項1に記載の測定装置において、
     前記制御部は、
      前記受光部をさらに制御し、
      前記出射部に前記第1のパルス光を出射させてから前記所定の時間内に、前記受光部で、前記対象で反射された前記パルス光が受光された場合、前記受光部の増倍率を下げ、かつ前記出射部に前記第2のパルス光を出射させる
    測定装置。
  4.  請求項1~3のいずれか一項に記載の測定装置において、
     複数の前記パルス光による測定結果を含む点群データを生成する生成部をさらに備え、
     前記点群データは、前記第1のパルス光で測定された結果と前記第2のパルス光で測定された結果とを含む
    測定装置。
  5.  請求項1~4のいずれか一項に記載の測定装置において、
     前記第2のパルス光の出射強度は、前記第1のパルス光の出射強度の100倍以上2000倍以下である
    測定装置。
  6.  請求項1~5のいずれか一項に記載の測定装置において、
     前記第2のパルス光と、その直前に出射された前記第1のパルス光との出射間隔は60ナノ秒以上200ナノ秒以下である
    測定装置。
  7.  請求項1~6のいずれか一項に記載の測定装置において、
     前記第2のパルス光が出射されてから、次の前記第1のパルス光が出射されるまでの間に、前記受光部が、前記対象で反射された前記パルス光を二つ受光した場合、前記制御部は前記二つのパルス光の内、後に受光したパルス光の受光タイミングと、当該第2のパルス光の出射タイミングとを用いて、前記対象までの距離を算出する
    測定装置。
  8.  請求項1~7のいずれか一項に記載の測定装置において、
     前記第1のパルス光は所定の角度間隔で出射される
    測定装置。
PCT/JP2021/010360 2021-03-15 2021-03-15 測定装置 WO2022195669A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010360 WO2022195669A1 (ja) 2021-03-15 2021-03-15 測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010360 WO2022195669A1 (ja) 2021-03-15 2021-03-15 測定装置

Publications (1)

Publication Number Publication Date
WO2022195669A1 true WO2022195669A1 (ja) 2022-09-22

Family

ID=83320054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010360 WO2022195669A1 (ja) 2021-03-15 2021-03-15 測定装置

Country Status (1)

Country Link
WO (1) WO2022195669A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288515A (ja) * 1992-04-08 1993-11-02 Mitsubishi Electric Corp 距離測定装置
JPH10227857A (ja) * 1997-02-14 1998-08-25 Nikon Corp 光波測距装置
JPH10253759A (ja) * 1997-03-10 1998-09-25 Omron Corp 距離測定装置
JP2007198911A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 距離計測装置
JP2008275331A (ja) * 2007-04-25 2008-11-13 Ihi Corp レーザレーダ装置とその測距方法
US20110096320A1 (en) * 2005-01-20 2011-04-28 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle ranging and display
US20140063482A1 (en) * 2012-08-29 2014-03-06 Trimble A.B. Distance Measurement Methods and Apparatus
JP2016205884A (ja) * 2015-04-17 2016-12-08 三菱電機株式会社 レーザレーダ装置
WO2019082700A1 (ja) * 2017-10-26 2019-05-02 パイオニア株式会社 制御装置、制御方法、プログラム及び記憶媒体
JP2019512705A (ja) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. 可変照射強度を有するlidarに基づく三次元撮像

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288515A (ja) * 1992-04-08 1993-11-02 Mitsubishi Electric Corp 距離測定装置
JPH10227857A (ja) * 1997-02-14 1998-08-25 Nikon Corp 光波測距装置
JPH10253759A (ja) * 1997-03-10 1998-09-25 Omron Corp 距離測定装置
US20110096320A1 (en) * 2005-01-20 2011-04-28 Elbit Systems Electro-Optics Elop Ltd. Laser obstacle ranging and display
JP2007198911A (ja) * 2006-01-26 2007-08-09 Matsushita Electric Works Ltd 距離計測装置
JP2008275331A (ja) * 2007-04-25 2008-11-13 Ihi Corp レーザレーダ装置とその測距方法
US20140063482A1 (en) * 2012-08-29 2014-03-06 Trimble A.B. Distance Measurement Methods and Apparatus
JP2016205884A (ja) * 2015-04-17 2016-12-08 三菱電機株式会社 レーザレーダ装置
JP2019512705A (ja) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. 可変照射強度を有するlidarに基づく三次元撮像
WO2019082700A1 (ja) * 2017-10-26 2019-05-02 パイオニア株式会社 制御装置、制御方法、プログラム及び記憶媒体

Similar Documents

Publication Publication Date Title
CN110609293B (zh) 一种基于飞行时间的距离探测系统和方法
CN110749898B (zh) 一种激光雷达测距系统及其测距方法
CN111448474B (zh) 全波形多脉冲光学测距仪仪器
WO2020145035A1 (ja) 距離測定装置及び距離測定方法
CN111337903B (zh) 一种多线激光雷达
US11650299B2 (en) Calibration method for solid-state LiDAR system
JP6804949B2 (ja) 制御装置、測定装置、およびコンピュータプログラム
JP2012122951A (ja) 距離測定装置および距離測定プログラム
JP2018109560A (ja) 走査式距離測定装置
US10859681B2 (en) Circuit device, object detecting device, sensing device, mobile object device and object detecting device
CN113567952B (zh) 激光雷达控制方法及装置、电子设备及存储介质
JP2018155649A (ja) 電磁波検出装置、プログラム、および電磁波検出システム
WO2022195669A1 (ja) 測定装置
US20200292667A1 (en) Object detector
JPH07198845A (ja) 距離・画像測定装置
JP7003949B2 (ja) 光測距装置
WO2021107036A1 (ja) 測距撮像装置
WO2019188639A1 (ja) 制御装置、照射装置、制御方法、およびコンピュータプログラム
WO2023090415A1 (ja) 測距装置
WO2023090414A1 (ja) 測距装置、モデル生成装置、情報生成装置、情報生成方法、およびプログラム
WO2023112884A1 (ja) 測距装置、判定装置、判定方法、およびプログラム
CN114859328B (zh) 一种mems扫描镜的停摆检测方法、装置及激光雷达
JP2022142177A (ja) 測定装置
JP2001317935A (ja) 測距装置
WO2022226984A1 (zh) 扫描视场的控制方法、测距装置和可移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931425

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931425

Country of ref document: EP

Kind code of ref document: A1