WO2022194213A1 - 传输脑电信号的方法及设备 - Google Patents

传输脑电信号的方法及设备 Download PDF

Info

Publication number
WO2022194213A1
WO2022194213A1 PCT/CN2022/081213 CN2022081213W WO2022194213A1 WO 2022194213 A1 WO2022194213 A1 WO 2022194213A1 CN 2022081213 W CN2022081213 W CN 2022081213W WO 2022194213 A1 WO2022194213 A1 WO 2022194213A1
Authority
WO
WIPO (PCT)
Prior art keywords
eeg
charging
related data
signal acquisition
acquisition device
Prior art date
Application number
PCT/CN2022/081213
Other languages
English (en)
French (fr)
Inventor
陈磊
朱为然
陈晶华
常月妍
Original Assignee
苏州景昱医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州景昱医疗器械有限公司 filed Critical 苏州景昱医疗器械有限公司
Priority to EP22770566.2A priority Critical patent/EP4311364A1/en
Publication of WO2022194213A1 publication Critical patent/WO2022194213A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/015Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/20The network being internal to a load
    • H02J2310/23The load being a medical device, a medical implant, or a life supporting device

Definitions

  • the present application relates to the technical field of medical devices, for example, to a method and device for transmitting EEG signals.
  • the implantable neurostimulation system consists of a neurostimulator and stimulation electrodes implanted deep in the brain, and is set to treat neurological disorders such as Parkinson's and epilepsy, and mental diseases such as addiction and obsessive-compulsive disorder.
  • neurological disorders such as Parkinson's and epilepsy
  • mental diseases such as addiction and obsessive-compulsive disorder.
  • Medtronic's Percept implantable neurostimulator can collect and record the patient's EEG characteristic signals for a long time and continuously after surgery, and can be set for long-term monitoring of the disease.
  • the long-term acquisition of deep brain electrical signals after surgery is mainly in a non-programmed state, that is, continuous acquisition of EEG signals during daily stimulation of patients, recording of abnormal fluctuation signals and storage in the memory of the neurostimulator.
  • the limitations of neurostimulators The volume of the neurostimulator determines that a large-capacity memory chip cannot be placed inside the neurostimulator, so the storage space of the neurostimulator is limited, and it is impossible to continuously and periodically monitor the patient's EEG signals. When abnormal, the neurostimulator cannot take timely measures.
  • the present application provides a method and device for transmitting EEG signals, which overcomes the defect in the related art that the neurostimulator cannot continuously and periodically collect the EEG signals of patients.
  • the present application provides a method for transmitting an EEG signal, which is applied to an EEG signal acquisition device associated with a patient, and the method includes:
  • Two-way communication is formed with the charging device
  • the EEG signal acquisition device receive an EEG-related data acquisition instruction sent by the charging device, and transmit the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the collected EEG-related data of the patient receives an EEG-related data acquisition instruction sent by the charging device, and transmits the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the collected EEG-related data of the patient receive an EEG-related data acquisition instruction sent by the charging device, and transmit the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the collected EEG-related data of the patient receive an EEG-related data acquisition instruction sent by the charging device, and transmit the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the interaction with the charging device to perform charging according to the charging instruction includes:
  • the transmitting the EEG-related data of the patient collected by the EEG signal acquisition device to the charging device according to the EEG-related data acquisition instruction includes:
  • the EEG related data stored in the EEG signal acquisition device is transmitted to the charging device according to the EEG related data acquisition instruction, wherein the EEG related data is before the EEG signal acquisition device is charged , the data obtained after the EEG signal acquisition device converts and stores the collected EEG-related signals of the patient; or,
  • the EEG signal acquisition device When the EEG signal acquisition device is charged, the EEG related signals of the patient are collected and converted into EEG related data, and the EEG related data is transmitted to the charging device.
  • converting and storing the collected EEG-related signals of the patient by the EEG signal acquisition device includes:
  • Collect the EEG related signals of the patient according to the set sampling parameters convert the EEG related signals into the EEG related data, compress the EEG related data and store it in the EEG signal
  • the sampling parameters include sampling duration, sampling rate, sampling channel, sampling data and compression ratio.
  • the present application provides a method for transmitting EEG signals, which is applied to charging equipment, and the method includes:
  • the EEG-related data is transmitted to the server.
  • the transmitting the EEG-related data to the server includes:
  • the storage capacity of the charging device is at least 10 times the storage capacity of the EEG signal acquisition device times.
  • the present application provides a method for transmitting EEG signals, which is applied to a wireless communication system.
  • the wireless communication system includes an EEG signal acquisition device and a charging device, and the method includes:
  • Two-way communication is formed between the EEG signal acquisition device associated with the patient and the charging device;
  • the charging device sends a charging signal to the EEG signal acquisition device
  • the EEG signal acquisition device receives the charging instruction sent by the charging device, and interacts with the charging device to perform charging according to the charging instruction;
  • the charging device generates an EEG-related data acquisition instruction and sends it to the EEG signal acquisition device in a charging state;
  • the EEG signal acquisition device receive the EEG-related data acquisition instruction sent by the charging device, and transmit the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the charging device transmits the EEG-related data to the server.
  • the present application provides an EEG signal acquisition device, the EEG signal acquisition device is associated with a patient, including:
  • a communication module configured to form two-way communication with the charging device
  • a charging instruction receiving module configured to receive a charging instruction sent by the charging device, and interact with the charging device to perform charging according to the charging instruction
  • the transmission module is configured to receive an EEG-related data acquisition instruction sent by the charging device when the EEG signal acquisition device is charged, and transmit the EEG-related data acquisition instruction to the charging device according to the EEG-related data acquisition instruction.
  • the EEG-related data of the patient collected by the EEG signal acquisition device.
  • the present application provides a charging device, including:
  • a charging instruction sending module configured to send a charging signal to the EEG signal acquisition device, and interact with the EEG signal acquisition device to charge the EEG signal acquisition device;
  • a first transmission module configured to generate an EEG-related data acquisition instruction and send it to the EEG signal acquisition device in a charging state, and to receive EEG-related data sent by the EEG signal acquisition device;
  • the second transmission module is configured to transmit the EEG-related data to the server.
  • FIG. 1 is a schematic flowchart of a bidirectional communication between an EEG signal acquisition device and a charging device provided by an embodiment of the present application;
  • FIG. 2 is a schematic flowchart of an EEG signal transmission provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a bidirectional communication between another EEG signal acquisition device and a charging device provided by an embodiment of the present application;
  • FIG. 4 is a schematic flowchart of a bidirectional communication between another EEG signal acquisition device and a charging device provided by an embodiment of the present application;
  • FIG. 5 is a schematic flowchart of an EEG signal transmission provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an EEG signal acquisition device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a charging device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another charging device provided by an embodiment of the present application.
  • EEG signal acquisition equipment 101, communication module; 102, acquisition and storage module; 103, charging instruction receiving module; 104, transmission module; 105, stimulation module;
  • a charging device 201, a charging instruction sending module; 202, a first transmission module; 203, a second storage module; 204, a second transmission module;
  • the wireless communication system in the present application is widely deployed in order to provide various communication services such as charging.
  • the wireless communication system includes an EEG signal acquisition device and a charging device.
  • the EEG signal acquisition device in this application is, for example, a rechargeable implantable neurostimulator, and the rechargeable implantable neurostimulator needs to be charged regularly and on time according to power consumption .
  • FIG. 1 is a schematic flowchart of a bidirectional communication between an EEG signal acquisition device 100 and a charging device 200 provided by an embodiment of the present application.
  • the EEG signal acquisition device 100 associated with the patient may form two-way communication with the charging device 200 , and the EEG signal acquisition device 100 may transmit information bidirectionally with the charging device 200 .
  • the EEG signal acquisition device 100 associated with the patient and the charging device 200 are wirelessly transmitted, wherein there are at least two communication channels between the EEG signal acquisition device 100 and the charging device 200, and one of the communication channels is used for the charging device 200 charges the EEG signal collection device 100, and another communication channel is used for the EEG signal collection device 100 to transmit the EEG-related data collected and stored to the charging device 200, so as to store the EEG signal collection device 100 itself. space is freed up.
  • FIG. 2 is a schematic flowchart of an EEG signal transmission provided by an embodiment of the present application.
  • this embodiment provides a method for transmitting an EEG signal applied to the EEG signal acquisition device 100, including:
  • S402 Collect the EEG-related signals of the associated patient and convert the EEG-related signals into EEG-related data for storage.
  • the EEG-related signals of the associated patient are collected according to the set sampling parameters, the EEG-related signals are converted into EEG-related data, and the EEG-related data is compressed and stored in the EEG signal acquisition device.
  • the sampling parameters include sampling duration, sampling rate, sampling channel, sampling data and compression ratio.
  • the sampling time per day is 24 hours
  • the sampling rate is 200hz
  • the sampling channel is 1
  • the sampling data is 2 bytes
  • the EEG-related data is compressed and stored using a lossless compression ratio of 1:2. It is about 132Mbit and can be stored in the 1Gbit external random access memory (RAM) of the neurostimulator. If the size of the EEG-related data exceeds the storage space of the RAM, the storage method of cyclic coverage can be used.
  • S403 Receive a charging instruction sent by the charging device 200, and interact with the charging device 200 to perform charging according to the charging instruction.
  • the charging device 200 sends a charging instruction to the EEG signal acquisition device 100.
  • the EEG signal acquisition device 100 interacts with the charging device 200 to adjust the charging parameters, and performs charging according to the charging parameters. , so that the charging rate of the EEG signal acquisition device 100 reaches the set requirement.
  • S404 Receive an EEG-related data acquisition instruction sent by the charging device 200, and transmit the EEG-related data to the charging device 200 according to the EEG-related data acquisition instruction.
  • the charging device 200 charges the EEG signal acquisition device 100
  • the charging device 200 generates an EEG related data acquisition instruction and sends it to the EEG signal acquisition device 100
  • the EEG signal acquisition device 100 receives the EEG related data.
  • the instruction is acquired
  • the EEG-related data is transmitted, and the EEG-related data is wirelessly transmitted to the charging device 200 .
  • the present application adopts a communication method capable of simultaneous bidirectional transmission, and the EEG-related data stored in the EEG signal acquisition device 100 is transmitted to the charging device 200 while the EEG signal acquisition device 100 is charged, so as to transmit the EEG signal acquisition device 100 to the charging device 200 .
  • the storage space is released, and the patient's EEG signal can be continuously and periodically collected without adding additional patient operations, effectively overcoming the unsustainable and periodic EEG signal acquisition device 100 in the related art due to limited storage space.
  • the defect of collecting patients' EEG signals has strong operability and is easy to popularize.
  • FIG. 3 is a schematic flowchart of a bidirectional communication between another EEG signal acquisition device 100 and a charging device 200 provided by an embodiment of the present application.
  • the electroencephalographic signal acquisition device 100 associated with the patient may form bidirectional communication with the charging device 200 .
  • the EEG signal acquisition device 100 associated with the patient and the charging device 200 are wirelessly transmitted, wherein there are at least two communication channels between the EEG signal acquisition device 100 and the charging device 200, and one of the communication channels is used for the charging device 200 charges the EEG signal collection device 100, and another communication channel is used for the EEG signal collection device 100 to transmit the EEG related data collected while charging to the charging device 200 in real time, so that the EEG signal collection device 100 collects The obtained EEG-related data does not occupy its storage space.
  • the following describes the method for transmitting an EEG signal provided by the EEG signal acquisition device 100 provided in this embodiment.
  • the second embodiment is implemented based on the above-mentioned first embodiment, and is expanded on the basis of the first embodiment.
  • the EEG signal collection device 100 collects EEG-related signals associated with the patient, converts them into EEG-related data, and transmits the EEG-related data to the charging device 200 .
  • the EEG signal collection device 100 collects the EEG-related data of the patient while charging, and directly transmits the collected EEG-related data to the charging device 200 , so that the EEG-related data collected by the EEG signal collection device 100 It does not occupy its storage space, so that the EEG signal acquisition and data transmission operations are synchronously completed during the charging process of the EEG signal acquisition device 100, and the subsequent transmission of the EEG-related data in the EEG signal acquisition device 100 to Operation of the charging device 200 .
  • FIG. 4 is a schematic flowchart of a bidirectional communication between another EEG signal acquisition device 100 and a charging device 200 provided by an embodiment of the present application.
  • the electroencephalographic signal acquisition device 100 associated with the patient may form two-way communication with the charging device 200, and the charging device 200 and the server 300 form two-way communication.
  • the EEG signal acquisition device 100 can transmit information bidirectionally with the charging device 200
  • the charging device 200 can transmit information bidirectionally with the server 300 .
  • the EEG signal collection device 100, the charging device 200 and the server 300 associated with the patient may be wirelessly transmitted, wherein there are at least two communication channels between the EEG signal collection device 100 and the charging device 200, one of which is The communication channel is used for the charging device 200 to charge the EEG signal acquisition device 100, and another communication channel is used for the EEG signal acquisition device 100 to transmit the EEG-related data collected and stored to the charging device 200, so as to transmit the EEG-related data collected and stored by the EEG signal acquisition device 100 to the charging device 200.
  • the storage space of the signal acquisition device 100 is released.
  • there may be a communication channel between the charging device 200 and the server 300 and the communication channel is used for the charging device 200 to transmit the EEG-related data received by the charging device 200 to the server 300 .
  • the method for transmitting an EEG signal provided by the present embodiment and applied to the EEG signal acquisition device 100 will be described below.
  • the third embodiment is implemented based on the above-mentioned first embodiment, and is expanded on the basis of the first embodiment.
  • the charging device 200 transmits the EEG related data to the server 300 .
  • the charging device 200 transmits the EEG-related data to the server 300 in real time.
  • the server 300 can decode the data according to the set compression ratio, so as to facilitate subsequent statistical analysis.
  • the charging device 200 transmits the EEG-related data to the server 300 to release the storage space of the charging device 200, so that the EEG signal acquisition device can be received continuously and for a long time.
  • the EEG-related data sent by 100 will not affect other data storage of the charging device 200; and the EEG-related data is transmitted from the EEG signal acquisition device 100 to the server 300 while the EEG signal acquisition device 100 is being charged. It is only necessary to process the EEG-related data in the server 300, no additional operation of the patient is required, and it is convenient to use.
  • FIG. 5 is a schematic flowchart of an EEG signal transmission provided by an embodiment of the present application.
  • this embodiment provides a method for transmitting EEG signals applied to a charging device 200, including:
  • S501 Send a charging instruction to the EEG signal collection device 100 , and interact with the EEG signal collection device 100 to charge the EEG signal collection device 100 .
  • the content that the charging device 200 charges the EEG signal collecting device 100 has been described in detail in the above embodiments, and will not be repeated in this embodiment.
  • S502 Generate an EEG related data acquisition instruction and send it to the EEG signal acquisition device 100 in a charging state, and receive EEG related data sent by the EEG signal acquisition device 100 .
  • the content that the EEG signal acquisition device 100 transmits the EEG-related data to the charging device 200 has been described in detail in the above embodiments, and will not be repeated in this embodiment.
  • S503 Transmit EEG-related data to the server 300.
  • This embodiment provides a method for transmitting an EEG signal applied to a wireless communication system.
  • the wireless communication system includes an EEG signal acquisition device 100 and a charging device 200 , wherein the steps performed by the EEG signal acquisition device 100 are shown in FIG. 2 . , this embodiment will not repeat them here; in addition, the steps performed by the charging device 200 are shown in FIG. 5 , which will not be repeated here in this embodiment.
  • FIG. 6 is a schematic structural diagram of an EEG signal acquisition device 100 provided by an embodiment of the present application.
  • the EEG signal acquisition device 100 provided in this embodiment includes:
  • the communication module 101 is configured to form two-way communication with the charging device 200;
  • the collection storage module 102 is configured to collect the EEG related signals associated with the patient and convert the EEG related signals into EEG related data for storage;
  • the charging instruction receiving module 103 set to receive the charging command sent by the charging device 200, and interact with the charging device 200 to charge according to the charging command;
  • the transmission module 104 set to receive the charging device 200 when the EEG signal acquisition device 100 is charging The EEG-related data acquisition instruction is sent, and the EEG-related data is transmitted to the charging device 200 according to the EEG-related data acquisition instruction.
  • the acquisition and storage module 102 includes an amplifier module, an analog-to-digital conversion (Analogue-to-Digital Conversion, ADC) module and a first storage module.
  • the amplifier module is configured to collect weak EEG related signals
  • the ADC module is configured to convert the EEG related signals.
  • the first storage module is configured to store EEG related data.
  • the charging command receiving module 103 includes a charging receiving circuit and a digital signal modulation circuit, and the digital signal modulation circuit can be configured to transmit charging related parameters.
  • the charging device 200 sends a charging instruction to the EEG signal acquisition device 100, and the EEG signal acquisition device 100 receives the charging instruction through the charging instruction receiving module 103 and adjusts the charging parameters, and exchanges the charging parameters with the charging device 200, so that the EEG signals When the collection device 100 performs charging according to the charging parameter, the charging rate reaches the set requirement.
  • the transmission module 104 may be a wireless module configured to transmit EEG-related data.
  • the charging device 200 sends an EEG related data acquisition instruction to the EEG signal acquisition device 100 , and after receiving the instruction, the EEG signal acquisition device 100 sends the EEG related data to the charging device 200 through the transmission module 104 .
  • the transmission module 104 is also configured to transmit program control instructions bidirectionally.
  • the EEG signal acquisition device 100 further includes a stimulation module 105, and the stimulation module 105 can receive the stimulation parameters set by the doctor, and make it output the set value.
  • FIG. 7 is a schematic structural diagram of a charging device 200 provided by an embodiment of the present application.
  • the charging device 200 in this embodiment includes:
  • the charging instruction sending module 201 is configured to send a charging signal to the EEG signal acquisition device 100, and interact with the EEG signal acquisition device 100 to charge the EEG signal acquisition device 100; the first transmission module 202 is configured to generate an EEG signal The relevant data acquisition instruction is sent to the EEG signal acquisition device 100 in the charging state, and the EEG related data sent by the EEG signal acquisition device 100 is received.
  • the charging command sending module 201 includes a charging sending circuit and a digital signal modulation circuit, and the digital signal modulation circuit can be configured to set and obtain charging related parameters.
  • the charging device 200 charges the EEG signal acquisition device 100 through the charging instruction sending module 201, and the EEG signal acquisition device 100 receives the charging instruction through the charging instruction receiving module 103 and adjusts the charging parameters, and exchanges the charging parameters with the charging device 200,
  • the charging rate of the EEG signal acquisition device 100 in the case of charging according to the charging parameter can meet the set requirement.
  • the first transmission module 202 may be a wireless module configured to transmit EEG related data.
  • the charging device 200 sends an EEG related data acquisition instruction to the EEG signal acquisition device 100 , and after receiving the instruction, the EEG signal acquisition device 100 transmits the EEG related data to the first transmission module 202 of the charging device 200 through the transmission module 104 .
  • the charging device 200 further includes a second storage module 203.
  • the second storage module 203 is configured to store the EEG-related data.
  • the storage capacity of the second storage module 203 included in the charging device 200 is
  • the storage capacity of the first storage module included in the EEG signal acquisition device 100 is at least 10 times, which ensures that the charging device 200 can continuously receive EEG-related data from the EEG signal acquisition device 100 .
  • FIG. 8 is a schematic structural diagram of another charging device 200 provided by an embodiment of the present application.
  • the charging device 200 provided in this embodiment is described below.
  • the eighth embodiment is implemented based on the seventh embodiment, and is expanded on the basis of the seventh embodiment.
  • the charging device 200 in this embodiment includes a second transmission module 204, which is configured to transmit EEG-related data to the server 300. Therefore, at least one-way transmission is performed between the first transmission module 202 and the second transmission module 204, that is, the first transmission module 202 The information is transmitted to the second transmission module 204 .
  • the first transmission module 202 and the second transmission module 204 may be wireless modules, such as a Bluetooth module or a wifi module or a fourth generation mobile communication technology (the 4th Generation mobile communication technology, 4G) module, etc., of course, other module, which is not limited in this embodiment. Therefore, the real-time transmission of EEG-related data between the first transmission module 202 and the second transmission module 204 can be completed while charging the EEG signal acquisition device 100 , no additional operation is required, and the operability is strong and easy to use. promotion.
  • An embodiment of the present application provides a storage medium, which is configured as a computer-readable storage medium, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the above-mentioned Embodiments provide methods for transmitting EEG signals.
  • Storage media may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may employ one or more computer-usable storage media (including, but not limited to, magnetic disk storage, Compact Disc Read-Only Memory (CD ROM), optical storage, etc.) having computer-usable program code embodied therein. in the form of a computer program product implemented thereon.
  • CD ROM Compact Disc Read-Only Memory
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

本文公开传输脑电信号的方法及设备。传输脑电信号的方法,应用于与患者关联的脑电信号采集设备,包括:与充电设备之间构成双向通信;接收充电设备发送的充电指令,并根据充电指令与充电设备交互以进行充电;在脑电信号采集设备充电的情况下,接收充电设备发送的脑电相关数据获取指令,并根据所述脑电相关数据获取指令向充电设备传输由脑电信号采集设备采集到的患者的脑电相关数据。

Description

传输脑电信号的方法及设备
本申请要求在2021年03月19日提交中国专利局、申请号为202110296316.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗设备技术领域,例如涉及一种传输脑电信号的方法及设备。
背景技术
植入式神经刺激系统由神经刺激器、以及植入大脑深部的刺激电极组成,设置为治疗帕金森、癫痫等神经系统障碍性疾病和成瘾、强迫症等精神性疾病。临床上美敦力公司的Percept型号的植入式神经刺激器可在术后长期、持续性的采集并记录患者脑电特征信号,可设置为疾病的长期监测。
术后长期采集脑深部电信号的方式主要是在非程控状态下,即患者日常刺激时持续的采集脑电信号,记录异常波动信号并存储在神经刺激器的存储器中,神经刺激器的局限性在于神经刺激器的体积决定了神经刺激器的内部无法放置大容量的存储芯片,因此神经刺激器的存储空间是有限的,无法持续且周期性的对患者的脑电信号进行监测,并在出现异常时神经刺激器无法及时采取措施。
发明内容
本申请提供传输脑电信号的方法及设备,克服了相关技术中神经刺激器无法持续且周期性的采集患者脑电信号的缺陷。
本申请提供一种传输脑电信号的方法,应用于与患者关联的脑电信号采集设备,所述方法包括:
与充电设备之间构成双向通信;
接收所述充电设备发送的充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
在所述脑电信号采集设备充电的情况下,接收所述充电设备发送的脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所述充电设备传输由上述脑电信号采集设备采集到的所述患者的脑电相关数据。
在本申请的一个实施例中,所述根据所述充电指令与所述充电设备交互以进行充电,包括:
根据所述充电指令与所述充电设备交互以调整充电参数,根据所述充电参数进行充电,其中,所述充电参数用于使所述脑电信号采集设备的充电速率达到设定要求。
在本申请的一个实施例中,所述根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据,包括:
根据所述脑电相关数据获取指令向所述充电设备传输存储在所述脑电信号采集设备内的脑电相关数据,其中,所述脑电相关数据是在所述脑电信号采集设备充电之前,所述脑电信号采集设备将采集到的所述患者的脑电相关信号转换并存储后得到的数据;或者,
在所述脑电信号采集设备充电的情况下,采集所述患者的脑电相关信号并将所述脑电相关信号转换为脑电相关数据,向所述充电设备传输所述脑电相关数据。
在本申请的一个实施例中,所述脑电信号采集设备将采集到的所述患者的脑电相关信号转换并存储包括:
根据设定的采样参数采集所述患者的脑电相关信号,并将所述脑电相关信号转换为所述脑电相关数据,将所述脑电相关数据进行压缩并存储在所述脑电信号采集设备的存储器内,其中,所述采样参数包括采样时长、采样速率、采样通道、采样数据和压缩比。
本申请提供一种传输脑电信号的方法,应用于充电设备,所述方法包括:
向脑电信号采集设备发送充电指令,并与所述脑电信号采集设备交互以对所述脑电信号采集设备进行充电;
生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备,以及接收所述脑电信号采集设备发送的脑电相关数据;
向服务器传输所述脑电相关数据。
在本申请的一个实施例中,所述向服务器传输所述脑电相关数据,包括:
与服务器之间建立通信连接,并判断所述通信连接是否正常;
响应于所述通信连接正常,将接收到的所述脑电相关数据传输至所述服务器;
响应于所述通信连接不正常,将接收到的所述脑电相关数据存储在所述充电设备内,其中,所述充电设备的存储容量为所述脑电信号采集设备的存储容量的至少10倍。
本申请提供一种传输脑电信号的方法,应用于无线通信系统,所述无线通信系统包括脑电信号采集设备和充电设备,所述方法包括:
与患者关联的所述脑电信号采集设备和所述充电设备之间构成双向通信;
所述充电设备向所述脑电信号采集设备发送充电信号;
所述脑电信号采集设备接收所述充电设备发送的所述充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
所述充电设备生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备;
在所述脑电信号采集设备充电的情况下,接收所述充电设备发送的所述脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据;
所述充电设备向服务器传输所述脑电相关数据。
本申请提供一种脑电信号采集设备,所述脑电信号采集设备与患者关联,包括:
通信模块,设置为在与充电设备之间构成双向通信;
充电指令接收模块,设置为接收所述充电设备发送的充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
传输模块,设置为在所述脑电信号采集设备充电的情况下,接收所述充电设备发送的脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据。
本申请提供一种充电设备,包括:
充电指令发送模块,设置为向脑电信号采集设备发送充电信号,并与所述脑电信号采集设备交互以对所述脑电信号采集设备进行充电;
第一传输模块,设置为生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备,以及接收所述脑电信号采集设备发送的脑电相关数据;
第二传输模块,设置为向服务器传输所述脑电相关数据。
附图说明
图1是本申请实施例提供的一种脑电信号采集设备与充电设备构成双向通信的流程示意图;
图2是本申请实施例提供的一种传输脑电信号的流程示意图;
图3是本申请实施例提供的另一种脑电信号采集设备与充电设备构成双向通信的流程示意图;
图4是本申请实施例提供的另一种脑电信号采集设备与充电设备构成双向通信的流程示意图;
图5是本申请实施例提供的一种传输脑电信号的流程示意图;
图6是本申请实施例提供的一种脑电信号采集设备的结构示意图;
图7是本申请实施例提供的一种充电设备的结构示意图;
图8是本申请实施例提供的另一种充电设备的结构示意图。
其中,
100、脑电信号采集设备;101、通信模块;102、采集存储模块;103、充电指令接收模块;104、传输模块;105、刺激模块;
200、充电设备;201、充电指令发送模块;202、第一传输模块;203、第二存储模块;204、第二传输模块;
300、服务器。
具体实施方式
下面结合附图和具体实施例对本申请进行说明,以使本领域的技术人员可以理解本申请并能予以实施。
本申请中的无线通信系统为了提供充电等多种通信服务而被广泛布置。无线通信系统包括脑电信号采集设备和充电设备,本申请中的脑电信号采集设备例如为可充电植入式神经刺激器,可充电植入式神经刺激器需要根据耗电量定期按时进行充电。
实施例一
图1是本申请实施例提供的一种脑电信号采集设备100与充电设备200构成双向通信的流程示意图。
参考图1,与患者关联的脑电信号采集设备100可以与充电设备200构成双向通信,脑电信号采集设备100可以与充电设备200双向传输信息。
与患者关联的脑电信号采集设备100和充电设备200之间为无线传输,其中,脑电信号采集设备100与充电设备200之间有至少两路通讯频道,其中一种通讯频道用于充电设备200给脑电信号采集设备100充电,另一种通讯频道 用于脑电信号采集设备100将其采集并存储的脑电相关数据传输给充电设备200,以将脑电信号采集设备100自身的存储空间释放出来。
下面对本实施例提供的应用于脑电信号采集设备100的传输脑电信号的方法进行说明。
图2是本申请实施例提供的一种传输脑电信号的流程示意图。
参考图2,本实施例提供一种应用于脑电信号采集设备100的传输脑电信号的方法,包括:
S401:与患者关联的脑电信号采集设备100和充电设备200之间构成双向通信。
S402:采集关联患者的脑电相关信号并将脑电相关信号转换为脑电相关数据进行存储。
示例地,根据设定的采样参数采集关联患者的脑电相关信号,并将所述脑电相关信号转换为脑电相关数据,将所述脑电相关数据进行压缩并存储在脑电信号采集设备100的存储器内,其中,采样参数包括采样时长、采样速率、采样通道、采样数据和压缩比。例如,每天采样时长为24小时,采样速率为200hz,采样通道为1,采样数据为2个字节,采用1:2的无损压缩比对脑电相关数据进行压缩并存储,脑电相关数据量约为132Mbit,可存放在神经刺激器1Gbit的外部随机存取存储器(Random Access Memory,RAM)中,若脑电相关数据的大小超出RAM的存储空间,可采用循环覆盖的存储方式。
S403:接收充电设备200发送的充电指令,并根据充电指令与充电设备200交互以进行充电。
示例地,充电设备200向脑电信号采集设备100发送充电指令,脑电信号采集设备100在接收充电指令后,脑电信号采集设备100与充电设备200交互以调整充电参数,根据充电参数进行充电,使脑电信号采集设备100的充电速率达到设定要求。
S404:接收充电设备200发送的脑电相关数据获取指令,并根据脑电相关数据获取指令向充电设备200传输所述脑电相关数据。
示例地,充电设备200在给脑电信号采集设备100进行充电时,充电设备200生成脑电相关数据获取指令并发送至脑电信号采集设备100,脑电信号采集设备100接收到脑电相关数据获取指令后进行脑电相关数据的传输,将脑电相关数据无线传输至充电设备200。
本申请采用可同时双向传输的通信方式,在给脑电信号采集设备100充电 的同时将脑电信号采集设备100中存储的脑电相关数据传输至充电设备200,以将脑电信号采集设备100的存储空间释放出来,在无需增加患者额外操作的同时能够持续且周期性的采集患者脑电信号,有效克服相关技术中脑电信号采集设备100因存储空间有限而导致的无法持续且周期性的采集患者脑电信号的缺陷,可操作性强,易于推广。
实施例二
图3是本申请实施例提供的另一种脑电信号采集设备100与充电设备200构成双向通信的流程示意图。
参考图3,与患者关联的脑电信号采集设备100可以与充电设备200构成双向通信。
与患者关联的脑电信号采集设备100和充电设备200之间为无线传输,其中,脑电信号采集设备100与充电设备200之间有至少两路通讯频道,其中一种通讯频道用于充电设备200给脑电信号采集设备100充电,另一种通讯频道用于脑电信号采集设备100将其在充电同时采集到的脑电相关数据实时传输至充电设备200,使得脑电信号采集设备100采集到的脑电相关数据不占用其存储空间。
下面对本实施例提供的应用于脑电信号采集设备100的传输脑电信号的方法进行说明,实施例二基于上述实施例一实现,并在实施例一的基础上进行了拓展。
本实施例二与本实施例一的区别在于:
在实施例二中,脑电信号采集设备100在充电的同时,脑电信号采集设备100采集关联患者的脑电相关信号并转换为脑电相关数据,向充电设备200传输脑电相关数据。
本实施例中脑电信号采集设备100一边充电一边采集患者的脑电相关数据,并将采集的脑电相关数据直接传输至充电设备200,使得脑电信号采集设备100采集到的脑电相关数据不占用其存储空间,如此在脑电信号采集设备100充电的过程中同步完成了脑电信号采集以及数据传输的操作,省去了后续将脑电信号采集设备100中的脑电相关数据传输至充电设备200的操作。
实施例三
图4是本申请实施例提供的另一种脑电信号采集设备100与充电设备200构成双向通信的流程示意图。
参考图4,与患者关联的脑电信号采集设备100可以与充电设备200构成双 向通信,且充电设备200与服务器300构成双向通信。
脑电信号采集设备100可以与充电设备200双向传输信息,充电设备200可以与服务器300双向传输信息。与患者关联的脑电信号采集设备100、充电设备200和服务器300两两之间可以为无线传输,其中,脑电信号采集设备100与充电设备200之间有至少两路通讯频道,其中一种通讯频道用于充电设备200给脑电信号采集设备100充电,另一种通讯频道用于脑电信号采集设备100将其采集并存储的脑电相关数据传输给充电设备200,用以将脑电信号采集设备100自身的存储空间释放出来。另外充电设备200与服务器300之间可以有一路通讯频道,该通讯频道用于充电设备200将其接收到的脑电相关数据传输至服务器300。
下面对本实施例提供的应用于脑电信号采集设备100的传输脑电信号的方法进行说明,实施例三基于上述实施例一实现,并在实施例一的基础上进行了拓展。
本实施例三与本实施例一的区别在于:
在实施例三中,在充电设备200接收到脑电相关数据后,由充电设备200将脑电相关数据传输至服务器300。在充电设备200与服务器300之间建立通信连接,并判断通信连接是否正常,若判断结果为通信连接正常,则将充电设备200接收到的脑电相关数据传输至服务器300;若判断结果为通信连接不正常,则将充电设备200接收到的脑电相关数据存储在充电设备200内,充电设备200的存储容量是脑电信号采集设备100的存储容量的至少10倍,其用于存储脑电信号采集设备100充电时未能及时传输至服务器300的脑电相关数据,当然存储在充电设备200内的脑电相关数据在通信连接正常后,充电设备200实时将脑电相关数据传输至服务器300,服务器300接收到脑电相关数据后,可以根据设定的压缩比对数据进行解码,便于进行后续的统计分析。
本申请在充电设备200接收到脑电相关数据后,由充电设备200将脑电相关数据传输至服务器300,以将充电设备200的存储空间释放出来,能够持续且长期的接收脑电信号采集设备100发送的脑电相关数据,同时也不会影响充电设备200其他数据存储;而且在脑电信号采集设备100充电的同时完成脑电相关数据从脑电信号采集设备100到服务器300的传输,后期只需对服务器300中的脑电相关数据进行处理即可,无需增加患者额外的操作,使用方便。
实施例四
图5是本申请实施例提供的一种传输脑电信号的流程示意图。
参考图5,本实施例提供一种应用于充电设备200的传输脑电信号的方法, 包括:
S501:向脑电信号采集设备100发送充电指令,并与脑电信号采集设备100交互以对脑电信号采集设备100进行充电。
充电设备200给脑电信号采集设备100进行充电的内容已经在上述实施例中作出了详尽的阐述,本实施例在这里不做赘述。
S502:生成脑电相关数据获取指令并发送至在充电状态下的脑电信号采集设备100,以及接收脑电信号采集设备100发送的脑电相关数据。
脑电信号采集设备100将脑电相关数据传输至充电设备200的内容已经在上述实施例中作出了详尽的阐述,本实施例在这里不做赘述。
S503:向服务器300传输脑电相关数据。
向服务器300传输脑电相关数据的内容已经在上述实施例中作出了详尽的阐述,本实施例在这里不做赘述。
并且本实施例的效果详见上述实施例,本实施例在这里不做赘述。
实施例五
本实施例提供一种应用于无线通信系统的传输脑电信号的方法,无线通信系统包括脑电信号采集设备100和充电设备200,其中,脑电信号采集设备100执行的步骤如图2所示,本实施例在这里不做赘述;另外充电设备200执行的步骤如图5所示,本实施例在这里不做赘述。
实施例六
图6是本申请实施例提供的一种脑电信号采集设备100的结构示意图。
参考图6,本实施例提供的脑电信号采集设备100,包括:
通信模块101,设置为与充电设备200之间构成双向通信;采集存储模块102,设置为采集关联患者的脑电相关信号并将脑电相关信号转换为脑电相关数据进行存储;充电指令接收模块103,设置为接收充电设备200发送的充电指令,并根据所述充电指令与充电设备200交互以进行充电;传输模块104,设置为在脑电信号采集设备100充电的情况下,接收充电设备200发送的脑电相关数据获取指令,并根据脑电相关数据获取指令向充电设备200传输脑电相关数据。
采集存储模块102包括放大器模块、模数转换(Analogue-to-Digital Conversion,ADC)模块和第一存储模块,放大器模块设置为采集微弱的脑电相关信号,ADC模块设置为将脑电相关信号转换为脑电相关数据,第一存储模块设置为存储脑电相关数据。
充电指令接收模块103包括充电接收电路及数字信号调制电路,数字信号调制电路可设置为传输充电相关参数。充电设备200给脑电信号采集设备100发送充电指令,脑电信号采集设备100通过充电指令接收模块103接收充电指令并对充电参数进行调整,并与充电设备200交互该充电参数,使得脑电信号采集设备100在根据该充电参数进行充电的情况下充电速率达到设定要求。
传输模块104可以为无线模块,设置为传输脑电相关数据。充电设备200给脑电信号采集设备100发送脑电相关数据获取指令,脑电信号采集设备100接收到指令后,通过传输模块104将脑电相关数据发送至充电设备200。当然传输模块104还设置为双向传输程控指令。
脑电信号采集设备100还包括刺激模块105,刺激模块105可接收医生设定的刺激参数,使其输出设定值。
实施例七
图7是本申请实施例提供的一种充电设备200的结构示意图。
参考图7,本实施例充电设备200包括:
充电指令发送模块201,设置为向脑电信号采集设备100发送充电信号,并与脑电信号采集设备100交互以对脑电信号采集设备100进行充电;第一传输模块202,设置为生成脑电相关数据获取指令并发送至在充电状态下的脑电信号采集设备100,以及接收脑电信号采集设备100发送的脑电相关数据。
充电指令发送模块201包括充电发送电路和数字信号调制电路,数字信号调制电路可设置为设定及获取充电相关参数。充电设备200通过充电指令发送模块201给脑电信号采集设备100充电,脑电信号采集设备100通过充电指令接收模块103接收充电指令并对充电参数进行调整,并与充电设备200交互该充电参数,使得脑电信号采集设备100在根据该充电参数进行充电的情况下的充电速率达到其设定要求。
第一传输模块202可以为无线模块,设置为传输脑电相关数据。充电设备200给脑电信号采集设备100发送脑电相关数据获取指令,脑电信号采集设备100接收到指令后,通过传输模块104将脑电相关数据传输至充电设备200的第一传输模块202。
充电设备200还包括第二存储模块203,在第一传输模块202接收脑电相关数据后,第二存储模块203设置为存储脑电相关数据,充电设备200包含的第二存储模块203的存储容量为脑电信号采集设备100包含的第一存储模块的存储容量的至少10倍,保证充电设备200能够持续的接收来自脑电信号采集设备100的脑电相关数据。
实施例八
图8是本申请实施例提供的另一种充电设备200的结构示意图。
下面对本实施例提供的充电设备200进行说明,实施例八基于上述实施例七实现,并在实施例七的基础上进行了拓展。
本实施例七与本实施例八的区别在于:
本实施例充电设备200包括第二传输模块204,设置为向服务器300传输脑电相关数据,因此第一传输模块202和第二传输模块204之间至少为单向传输,即第一传输模块202向第二传输模块204传输信息。这里第一传输模块202和第二传输模块204可以为无线模块,例如可为蓝牙模块或wifi模块或第四代移动通信技术(the 4th Generation mobile communication technology,4G)模块等,当然还可以是其他模块,本实施例不以此为限制。因此在给脑电信号采集设备100充电的同时,即可完成脑电相关数据在第一传输模块202和第二传输模块204之间的实时传输,无需增加额外的操作,可操作性强,易于推广。
实施例九
本申请实施例提供了一种存储介质,设置为计算机可读存储,所述存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现上述实施例提供的传输脑电信号的方法。
存储介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。
本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、只读光盘(Compact Disc Read-Only Memory,CD ROM)、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生设置为实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备 以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (10)

  1. 一种传输脑电信号的方法,应用于与患者关联的脑电信号采集设备,所述方法包括:
    与充电设备之间构成双向通信;
    接收所述充电设备发送的充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
    在所述脑电信号采集设备充电的情况下,接收所述充电设备发送的脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据。
  2. 根据权利要求1所述的传输脑电信号的方法,其中,所述根据所述充电指令与所述充电设备交互以进行充电,包括:
    根据所述充电指令与所述充电设备交互以调整充电参数,根据所述充电参数进行充电,其中,所述充电参数用于使所述脑电信号采集设备的充电速率达到设定要求。
  3. 根据权利要求1所述的传输脑电信号的方法,其中,所述根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据,包括:
    根据所述脑电相关数据获取指令向所述充电设备传输存储在所述脑电信号采集设备内的脑电相关数据,其中,所述脑电相关数据是在所述脑电信号采集设备充电之前,所述脑电信号采集设备将采集到的所述患者的脑电相关信号转换并存储后得到的数据;或者,
    在所述脑电信号采集设备充电的情况下,采集所述患者的脑电相关信号并将所述脑电相关信号转换为脑电相关数据,向所述充电设备传输所述脑电相关数据。
  4. 根据权利要求3所述的传输脑电信号的方法,其中,所述脑电信号采集设备将采集到的所述患者的脑电相关信号转换并存储,包括:
    根据设定的采样参数采集所述患者的脑电相关信号,并将所述脑电相关信号转换为所述脑电相关数据,将所述脑电相关数据进行压缩并存储在所述脑电信号采集设备的存储器内,其中,所述采样参数包括采样时长、采样速率、采样通道、采样数据和压缩比。
  5. 一种传输脑电信号的方法,应用于充电设备,所述方法包括:
    向脑电信号采集设备发送充电指令,并与所述脑电信号采集设备交互以对 所述脑电信号采集设备进行充电;
    生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备,以及接收所述脑电信号采集设备发送的脑电相关数据;
    向服务器传输所述脑电相关数据。
  6. 根据权利要求5所述的传输脑电信号的方法,其中,所述向服务器传输所述脑电相关数据,包括:
    与服务器之间建立通信连接,并判断所述通信连接是否正常;
    响应于所述通信连接正常,将接收到的所述脑电相关数据传输至所述服务器;
    响应于所述通信连接不正常,将接收到的所述脑电相关数据存储在所述充电设备内,其中,所述充电设备的存储容量为所述脑电信号采集设备的存储容量的至少10倍。
  7. 一种传输脑电信号的方法,应用于无线通信系统,所述无线通信系统包括脑电信号采集设备和充电设备,所述方法包括:
    与患者关联的所述脑电信号采集设备和所述充电设备之间构成双向通信;
    所述充电设备向所述脑电信号采集设备发送充电信号;
    所述脑电信号采集设备接收所述充电设备发送的所述充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
    所述充电设备生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备;
    在所述脑电信号采集设备充电的的情况下,接收所述充电设备发送的所述脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据;
    所述充电设备向服务器传输所述脑电相关数据。
  8. 一种脑电信号采集设备,所述脑电信号采集设备与患者关联,包括:
    通信模块,设置为与充电设备之间构成双向通信;
    充电指令接收模块,设置为接收所述充电设备发送的充电指令,并根据所述充电指令与所述充电设备交互以进行充电;
    传输模块,设置为在所述脑电信号采集设备充电的的情况下,接收所述充电设备发送的脑电相关数据获取指令,并根据所述脑电相关数据获取指令向所 述充电设备传输由所述脑电信号采集设备采集到的所述患者的脑电相关数据。
  9. 一种充电设备,包括:
    充电指令发送模块,设置为向脑电信号采集设备发送充电信号,并与所述脑电信号采集设备交互以对所述脑电信号采集设备进行充电;
    第一传输模块,设置为生成脑电相关数据获取指令并发送至在充电状态下的所述脑电信号采集设备,以及接收所述脑电信号采集设备发送的脑电相关数据;
    第二传输模块,设置为向服务器传输所述脑电相关数据。
  10. 一种存储介质,设置为计算机可读存储,其中,所述存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现权利要求1-7任一项所述的传输脑电信号的方法。
PCT/CN2022/081213 2021-03-19 2022-03-16 传输脑电信号的方法及设备 WO2022194213A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22770566.2A EP4311364A1 (en) 2021-03-19 2022-03-16 Method for transmitting brain electrical signal, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110296316.XA CN113115474B (zh) 2021-03-19 2021-03-19 在充电同时传输脑电信号的方法及设备
CN202110296316.X 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022194213A1 true WO2022194213A1 (zh) 2022-09-22

Family

ID=76712044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081213 WO2022194213A1 (zh) 2021-03-19 2022-03-16 传输脑电信号的方法及设备

Country Status (3)

Country Link
EP (1) EP4311364A1 (zh)
CN (1) CN113115474B (zh)
WO (1) WO2022194213A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113115474B (zh) * 2021-03-19 2022-07-19 苏州景昱医疗器械有限公司 在充电同时传输脑电信号的方法及设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160031A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 电子设备及信息处理方法
CN106921194A (zh) * 2017-03-17 2017-07-04 中国农业大学 采集器无线充电方法、采集器、控制终端及系统
US20180060520A1 (en) * 2016-08-26 2018-03-01 Sequana Medical Ag Systems and methods for managing and analyzing data generated by an implantable device
CN108784689A (zh) * 2018-06-19 2018-11-13 苏州修普诺斯医疗器械有限公司 省电的移动脑电信号传输系统及方法
US20200054284A1 (en) * 2017-02-10 2020-02-20 Nihon Kohden Corporation Brain-machine interface system capable of changing amount of communication data from internal device, and control method therefor
CN111224453A (zh) * 2020-04-16 2020-06-02 锐迪科微电子(上海)有限公司 基于充电线的通信方法、充电设备、智能设备及存储介质
CN111696333A (zh) * 2020-06-28 2020-09-22 上海明略人工智能(集团)有限公司 一种数据传输的方法、系统及装置
CN113115474A (zh) * 2021-03-19 2021-07-13 苏州景昱医疗器械有限公司 在充电同时传输脑电信号的方法及设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345467B2 (en) * 2017-04-07 2022-05-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, and sending end device
CN109995117B (zh) * 2019-04-24 2021-07-20 北京极智嘉科技股份有限公司 基于机器人的充电系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160031A (zh) * 2015-03-25 2016-11-23 联想(北京)有限公司 电子设备及信息处理方法
US20180060520A1 (en) * 2016-08-26 2018-03-01 Sequana Medical Ag Systems and methods for managing and analyzing data generated by an implantable device
US20200054284A1 (en) * 2017-02-10 2020-02-20 Nihon Kohden Corporation Brain-machine interface system capable of changing amount of communication data from internal device, and control method therefor
CN106921194A (zh) * 2017-03-17 2017-07-04 中国农业大学 采集器无线充电方法、采集器、控制终端及系统
CN108784689A (zh) * 2018-06-19 2018-11-13 苏州修普诺斯医疗器械有限公司 省电的移动脑电信号传输系统及方法
CN111224453A (zh) * 2020-04-16 2020-06-02 锐迪科微电子(上海)有限公司 基于充电线的通信方法、充电设备、智能设备及存储介质
CN111696333A (zh) * 2020-06-28 2020-09-22 上海明略人工智能(集团)有限公司 一种数据传输的方法、系统及装置
CN113115474A (zh) * 2021-03-19 2021-07-13 苏州景昱医疗器械有限公司 在充电同时传输脑电信号的方法及设备

Also Published As

Publication number Publication date
CN113115474B (zh) 2022-07-19
EP4311364A1 (en) 2024-01-24
CN113115474A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN102462891B (zh) 植入式医疗器械远程监控系统及方法
US10452143B2 (en) Apparatus and method of implantable bidirectional wireless neural recording and stimulation
US7779153B2 (en) Automated collection of operational data from distributed medical devices
US20180178010A1 (en) Distributed processing of electrophysiological signals
US20200352441A1 (en) Efficient Monitoring, Recording, and Analyzing of Physiological Signals
Brunelli et al. Design considerations for wireless acquisition of multichannel sEMG signals in prosthetic hand control
US20180078137A1 (en) Wireless Implantable Data Communication System, Method and Sensing Device
WO2022194213A1 (zh) 传输脑电信号的方法及设备
JP2018524120A (ja) ブルートゥース付き、脈拍を診断するブレスレット及び脈拍データを伝送する方法
US20120275292A1 (en) Wireless eeg data recovery
WO2016181321A1 (en) Wire-free monitoring device for acquiring, processing and transmitting physiological signals
US20210383922A1 (en) Method for Initiating a Data Transfer from an Implantable Medical Device
US20190059803A1 (en) Ambulatory seizure monitoring system and method
US20220111212A1 (en) Brain monitoring and stimulation devices and methods
US20170347209A1 (en) Mechanical prosthesis with recipient physiological and prosthesis status acquisition capabilities
EP3387794B1 (fr) Procede et systeme de recuperation de donnees de fonctionnement d'un dispositif de mesure des ondes cerebrales
CN110382044A (zh) 减轻与失速遥测会话相关联的植入式设备功耗
CN101690657A (zh) 患者监护系统和患者监护方法
CN102467610A (zh) 一种植入式医疗器械远程监控系统及方法
CN105975758A (zh) 一种医疗设备的远程辅助系统终端
CN201897794U (zh) 一种植入式医疗器械远程监控系统
WO2022227312A1 (zh) 高精度的同步操作控制系统、方法及存储介质
US20210196980A1 (en) Kinetic intelligent wireless implant/neurons on augmented human
CN201921317U (zh) 一种远程医生程控器及植入式医疗系统
CN210990286U (zh) 一种麻醉深度监测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282757

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022770566

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022770566

Country of ref document: EP

Effective date: 20231019