WO2022227312A1 - 高精度的同步操作控制系统、方法及存储介质 - Google Patents

高精度的同步操作控制系统、方法及存储介质 Download PDF

Info

Publication number
WO2022227312A1
WO2022227312A1 PCT/CN2021/109115 CN2021109115W WO2022227312A1 WO 2022227312 A1 WO2022227312 A1 WO 2022227312A1 CN 2021109115 W CN2021109115 W CN 2021109115W WO 2022227312 A1 WO2022227312 A1 WO 2022227312A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
synchronous operation
vivo
external
voltage
Prior art date
Application number
PCT/CN2021/109115
Other languages
English (en)
French (fr)
Inventor
沈蔚
胥红来
刘伟祥
刘涛
Original Assignee
博睿康科技(常州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博睿康科技(常州)股份有限公司 filed Critical 博睿康科技(常州)股份有限公司
Publication of WO2022227312A1 publication Critical patent/WO2022227312A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0602Systems characterised by the synchronising information used
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation

Definitions

  • the present invention relates to the technical field of electrical communication, in particular to a high-precision synchronous operation control system/device between an external device and an internal device.
  • SEPs somatosensory evoked potentials
  • This type of physiological electrical signal needs to be collected and the physiological electrical signal generated by the stimulus is configured to judge the response of the human body to the stimulus (the response time of the physiological electrical signal generally requires within 5ms), so in practical applications, how to combine the collected physiological signal with the
  • the synchronization and alignment of stimulation signals is an extremely important part of the entire physiological acquisition system.
  • Chips for synchronizing signal transmission are set in both the external electronic device and the internal electronic device, and a synchronization signal is sent to the external electronic device and the internal electronic device simultaneously through a master controller. After the external electronic device and the internal electronic device receive the synchronization signal Performing a synchronous operation, although this method can also achieve synchronous signal transmission, but due to the large power consumption of the chip, the power consumption is relatively fast, and the battery of the electronic device in the body needs to be replaced frequently.
  • the power supply of the electronic device in the body is powered by the battery, which leads to the large volume of the electronic device in the body.
  • the life of the battery is limited (usually a few years), and secondary damage may be caused to the patient when the battery is replaced, and the battery is equivalent to a "time bomb". Once damaged, it will cause irreparable damage to the human body.
  • the technical problem to be solved by the present invention is: in order to solve the technical problem in the prior art that the power consumption of the synchronization signal transmission is large and the power consumption of the electronic device in the body is fast, the present invention provides a high-precision synchronous operation control system, which passes the synchronous operation signal through The transmission is carried out in the way of voltage change, the structure is simple, the power consumption is small, and the synchronization accuracy of the evoked event and the physiological signal in the evoked potential examination can be satisfied.
  • a high-precision synchronous operation control system comprising: an in-vivo electronic device, which is suitable for being arranged in a patient's body; an in-vitro electronic device, which is suitable for being arranged in the patient's body. , which is wirelessly connected with the in-vivo electronic device; wherein, when a synchronous operation needs to be performed, the in-vitro electronic device changes the supply voltage; after the in-vivo electronic device senses a sudden change in the supply voltage, the in-vivo electronic device and the in-vivo electronic device The extracorporeal electronics simultaneously perform synchronizing operations.
  • the high-precision synchronous operation control system of the present invention transmits the sudden change of the power supply voltage of the external electronic device as a synchronous signal, so that an additional chip for synchronous signal transmission in the electronic device can be omitted, power consumption can be reduced, and the power consumption can be reduced.
  • the volume of the electronic device in the body (the volume can be reduced to 1/8-1/6 of the volume of the existing device), when it is placed in the patient's body, it can be minimally invasive, reduce the damage to the patient, and can meet the requirements of evoked potential inspection. Synchronization accuracy of evoked events and physiological signals.
  • the high-precision synchronous operation control system further includes a stimulation module configured to apply stimulation to the patient, wherein, when the stimulation module applies stimulation to the patient, the stimulation module
  • the external electronic device changes the power supply voltage; after the internal electronic device senses the sudden change of the power supply voltage, the internal electronic device and the external electronic device simultaneously perform a synchronous operation.
  • the stimulation applied by the stimulation module can be in vitro stimulation or in vivo stimulation.
  • the synchronous operation can keep the clocks of the in vivo electronic device and the in vitro electronic device on the same reference, so that the collected signals In terms of time, it can be precisely aligned with the time point when the stimulus occurs, and the impact of a stimulus on the EEG signal can be better analyzed.
  • the external electronic device sends a synchronization operation request to the internal electronic device, and after the internal electronic device responds to the external electronic device, the external electronic device changes the power supply voltage, and the internal electronic device changes the power supply voltage. After sensing a sudden change in the power supply voltage, the in-vivo electronic device and the in-vitro electronic device perform synchronous operations at the same time. Before the external electronic device changes the power supply voltage, a synchronization operation request is sent to the internal electronic device, and the internal electronic device responds before changing the power supply voltage. This can prevent the system from receiving interference signals and cause misjudgment of the synchronization signal. recognition accuracy.
  • the external electronic device includes an external coil module
  • the internal electronic device includes an internal coil module
  • the external coil module and the internal coil module are inductively connected, wherein when the external coil module is When the output voltage changes abruptly, the AC voltage of the in-body coil module changes with the change of the output voltage.
  • the synchronization signal be transmitted between the external coil module and the internal coil module
  • the external coil module can obtain electrical energy from the external electronic device and transmit it to the internal coil module.
  • the internal electronic device of the present invention does not need a battery module, and can obtain electrical energy through the wireless coupling of the internal coil module and the external coil module, the volume of the internal electronic device can be greatly reduced, and the safety of the internal electronic device can be improved.
  • the external coil module includes a transmitting coil and an external magnet
  • the transmitting coil is disposed around the external magnet
  • the internal coil module includes a receiving coil and an internal magnet
  • the receiving coil is disposed around the internal magnet , the external magnet and the internal magnet are connected by adsorption.
  • the internal coil module and the external coil module can be adsorbed and fixed by the mutual attraction between the internal magnet and the external magnet, the power supply voltage is converted into electromagnetic radiation through the transmitting coil, and the receiving coil receives the electromagnetic radiation and converts it into a power supply suitable for internal electronic devices
  • the wireless coupling of the voltage, the receiving coil and the transmitting coil can not only carry out energy transmission, the transmission efficiency is higher, and due to the real-time nature of the coil induction, it can be transmitted as a synchronization signal.
  • the external electronic device further includes an external controller
  • the internal electronic device further includes an internal controller
  • the external controller is electrically connected to the transmitting coil
  • the internal controller is connected to the receiving coil. electrical connection.
  • the external controller can change the power supply voltage transmitted to the transmitting coil, so that the voltage of the transmitting coil will change abruptly, and the voltage will also change after the receiving coil is inductively coupled, and the sudden change of voltage will be transmitted to the internal control system.
  • the in-vivo controller recognizes the sudden change of voltage (ie, the synchronous operation signal), and the in-vivo controller and the in-vitro controller perform synchronous operation.
  • the transmission time of the entire synchronization signal is within 5ms, which can meet the synchronization accuracy of evoked events and physiological signals in the evoked potential examination.
  • the in-vivo electronic device includes an in-vivo Bluetooth module
  • the in-vivo Bluetooth module is electrically connected to the in-vivo controller
  • the in-vitro electronic device includes an in-vitro Bluetooth module
  • the in-vitro Bluetooth module is connected to the in-vitro controller
  • the in vivo Bluetooth module and the in vitro Bluetooth module are wirelessly connected through Bluetooth.
  • the power consumption of Bluetooth transmission is small, the transmission distance is long, and the signal transmission is stable, which is not easy to be interfered.
  • the internal electronic device can give a response to the external electronic device through Bluetooth, and the external electronic device then transmits the synchronization operation signal.
  • the Bluetooth module can also perform data transmission.
  • the in-vivo electronic device includes a voltage detection module, and the voltage detection module is configured to monitor the change of the voltage signal of the receiving coil and send it to the in-vivo controller.
  • the external electronic device includes a power amplifier circuit
  • the external controller transmits a voltage value to the power amplifier circuit
  • the power amplifier circuit is configured to amplify the voltage value and send it to the transmitter coil.
  • the tiny voltage signal output by the external controller can be amplified by the power amplifier circuit, so as to facilitate the identification of the transmitting coil.
  • the synchronization operation includes: the in-vivo electronic device and the in-vitro electronic device clearing their own time stamps.
  • the in-vivo electronic device and the in-vitro electronic device clear their own time stamps at the same time, and then collect physiological signals, which can improve the accuracy of signal data collection, and is more representative in clinical analysis.
  • the present invention also provides a high-precision synchronous operation control method, using the above-mentioned high-precision synchronous operation control system, which includes the following steps:
  • the external electronic device changes the power supply voltage, and after the internal electronic device senses a sudden change in the power supply voltage, the internal electronic device and the external electronic device simultaneously perform a synchronous operation.
  • the high-precision synchronous operation control method of the present invention transmits the sudden change of the output voltage of the external electronic device as a synchronous signal, thereby eliminating the need to arrange an additional synchronous signal transmission chip in the electronic device, reducing power consumption and reducing
  • the volume of the electronic device in the body can meet the synchronization accuracy of evoked events and physiological signals in the examination of evoked potentials.
  • the method also includes:
  • S2-1 Apply stimulation to the patient through the stimulation module
  • the step S2-1 is between the steps S1 and S2.
  • the synchronous operation can keep the clocks of the electronic device in the body and the electronic device in the body on the same reference, so that the collected signal can be precisely aligned with the time point when the stimulus occurs. , to better analyze the influence of a stimulus on EEG signals.
  • the method further includes: the external electronic device sends a synchronization operation request to the internal electronic device, and the internal electronic device gives a response to the external electronic device, and then executes the step S2.
  • the step S2 specifically includes: changing the power supply voltage through the external controller and transmitting it to the transmitting coil, and the alternating voltage of the transmitting coil undergoes a sudden change; after the receiving coil is inductively coupled to the alternating voltage of the transmitting coil, The AC voltage of the receiving coil also undergoes a sudden change; the receiving coil transmits the sudden voltage signal to the in-vivo controller, and the in-vivo controller recognizes the sudden voltage signal as a synchronous operation signal, and the in-vivo controller and the in-vivo controller The external controllers simultaneously perform synchronous operations.
  • the power supply voltage is converted into electromagnetic radiation through the transmitting coil, and the receiving coil receives the electromagnetic radiation and converts it into a power supply voltage suitable for electronic devices in the body.
  • the wireless coupling between the internal coil and the external coil can not only transmit energy, but also has higher transmission efficiency , and because the real-time induction of the coil can be transmitted as a synchronization signal; when the synchronization operation is to be performed, the external controller can change the power supply voltage transmitted to the transmitter coil, so that the voltage of the transmitter coil changes abruptly, and the voltage of the receiver coil after inductive coupling also changes.
  • a mutation occurs, and the mutated voltage is transmitted to the in vivo controller, the in vivo controller recognizes the mutation of the voltage (ie, a synchronous operation signal), and the in vivo controller and the in vitro controller perform synchronous operation.
  • the transmission time of the entire synchronization signal is within 5ms, which can meet the synchronization accuracy of evoked events and physiological signals in the evoked potential examination.
  • the method further includes: monitoring the change of the voltage signal of the receiving coil through a voltage detection module, and sending the change to the in-vivo controller.
  • the method further includes: transmitting the voltage value to a power amplifier circuit through the external controller, and amplifying the voltage value through the power amplifier circuit and sending it to the transmitting coil.
  • the external electronic device and the internal electronic device are connected through Bluetooth communication.
  • the present invention also provides a computer-readable storage medium on which computer instructions are stored, and when the computer instructions are executed, the above-mentioned high-precision synchronous operation control method is implemented.
  • the beneficial effect of the present invention is that the high-precision synchronous operation control system and method of the present invention utilizes the real-time nature of the coil voltage signal transmission, and uses the sudden change of the power supply voltage signal as the transmission signal of the synchronous operation, eliminating the need for arranging in the electronic device.
  • the additional chip for synchronous signal transmission can reduce power consumption and reduce the volume of electronic devices in the body. When placed in the patient's body, it can be minimally invasive, reduce the damage to the patient, and can meet the requirements of evoked events and physiological events in evoked potential examinations.
  • Synchronization accuracy of the signal by transmitting the voltage induction between the transmitting coil and the receiving coil as the signal of the synchronous operation, it is intuitive and simple, and the voltage of the receiving coil has not been filtered by the system, and only changes with the voltage of the transmitting coil. , it will not interfere with the voltage of other parts of the electronic device in the body; when the synchronous operation is not required, the voltage of the transmitting coil remains unchanged at a reference voltage, and when the synchronous operation is required, the reference voltage is increased by 20%. -50% power supply voltage realizes the voltage mutation of the transmitting coil, and the receiving coil senses the voltage mutation and transmits the signal to the in-vivo controller, and the in-vivo controller can recognize it as a synchronous operation signal and perform synchronous operation.
  • the transmitting coil and the receiving coil not only supply power to the electronic device in the body, but also serve as a transmission path for the synchronous operation signal.
  • the receiving coil can immediately sense the voltage change and use the change as a transmission signal for the synchronous operation.
  • the response speed is fast and can meet the synchronization accuracy of evoked events and physiological signals in evoked potential examination.
  • FIG. 1 is a schematic structural diagram of a high-precision synchronous operation control system of the present invention.
  • FIG. 2 is a schematic structural diagram of the external electronic device and the internal electronic device of the present invention.
  • FIG. 3 is a schematic structural diagram of the internal coil module and the external coil module of the present invention.
  • FIG. 4 is a schematic diagram of a waveform diagram of the voltage signal mutation transmission of the present invention.
  • FIG. 5 is a schematic diagram of the second structure of the high-precision synchronous operation control system of the present invention.
  • FIG. 6 is a schematic diagram of the third structure of the high-precision synchronous operation control system of the present invention.
  • FIG. 7 is a flow chart of the high-precision synchronous operation control method of the present invention.
  • FIG. 8 is another flowchart of the high-precision synchronous operation control method of the present invention.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • a high-precision synchronous operation control system includes an in-vivo electronic device 1, which is suitable for being placed in a patient's body; an in-vitro electronic device 2, which is suitable for being placed outside the patient's body, which is compatible with the in vivo electronic device 1.
  • the electronic device 1 is wirelessly connected; wherein, the external electronic device 2 changes the power supply voltage when a synchronous operation needs to be performed; after the internal electronic device 1 senses a sudden change in the supply voltage, the internal electronic device 1 and the external electronic device 2 simultaneously perform a synchronous operation.
  • the synchronization operation may be the time stamp of the in-vivo electronic device 1 and the in-vitro electronic device 2 clearing their own time stamps, but it is not limited to this, and other operations are also possible.
  • the external electronic device 2 before the external electronic device 2 changes the power supply voltage, the external electronic device 2 can send a synchronous operation request to the internal electronic device 1. After the internal electronic device 1 responds to the external electronic device 2, the external electronic device 2 changes the power supply voltage. , so that the interference of other factors can be excluded, and the accuracy of synchronization signal transmission can be improved.
  • the patient is not limited to a human body, but can also be an animal body, which is used for scientific research.
  • the external electronic device 2 includes an external coil module 21, and the internal electronic device 1 includes an internal coil module 11, and the external coil module 21 and the internal coil module 11 are inductively connected, wherein when the output voltage of the external coil module 21 changes suddenly, the internal coil The AC voltage of the module 11 varies with the output voltage.
  • the external coil module 21 and the internal coil module 11 can not only transmit synchronous signals, but also the external coil module 21 can obtain electrical energy from the external electronic device 2 and transmit it to the internal coil module 11, and the internal coil module 11 converts the electrical energy into suitable electrical energy.
  • the voltage for powering the in-vivo electronic device 1, the in-vivo electronic device 1 of the present invention does not need a battery module, and electric energy can be obtained through the wireless coupling of the in-vivo coil module 11 and the external coil module 21, and the volume of the in-vivo electronic device 1 can be greatly reduced. It is as small as 1/8-1/6 of the volume of the existing in-vivo electronic device, and can improve the safety of the in-vivo electronic device 1 .
  • the external coil module 21 includes a transmitting coil 211 and an external magnet 212.
  • the transmitting coil 211 is disposed around the external magnet 212.
  • the internal coil module 11 includes a receiving coil 111 and an internal magnet 112.
  • the receiving coil 111 is disposed around the internal magnet 112.
  • the external magnet 212 and the internal magnet 112 are connected by adsorption.
  • the number of turns of the transmitting coil 211 may be 8-10 turns
  • the number of turns of the receiving coil 111 may be 6-8 turns, which can not only meet the demand for power supply, but also not increase the volume of the electronic device in the body , while making the signal transmission more stable.
  • the internal coil module 11 and the external coil module 21 can be adsorbed and fixed by the mutual attraction between the internal magnet 112 and the external magnet 212, the power supply voltage is converted into electromagnetic radiation by the transmitting coil 211, and the receiving coil 111 receives the electromagnetic radiation and converts it into suitable electromagnetic radiation. Due to the power supply voltage of the electronic device 1 in the body, the wireless coupling of the receiving coil 111 and the transmitting coil 211 can not only perform energy transmission, but also have higher transmission efficiency, and can transmit as a synchronization signal due to the real-time nature of coil induction.
  • the voltage at the receiving coil 111 is the most direct voltage, and only changes with the voltage of the transmitting coil 211 , and the voltage at the receiving coil 111 has not been filtered by the system and will not be disturbed by other factors.
  • both the transmitting coil 211 and the receiving coil 111 are kept at a reference voltage.
  • the output voltage of the transmitting coil 211 is changed, for example, the reference voltage is increased by 20%-50% , if the output voltage changes too little, it may be recognized as a normal voltage fluctuation, and the synchronization signal cannot be accurately recognized.
  • the in vitro electronic device 2 further includes an in vitro controller 22
  • the in vivo electronic device 1 further includes an in vivo controller 12 .
  • the external controller 22 and the internal controller 12 are both single-chip microcomputers, but are not limited thereto, and may also be other types of controllers.
  • the in vivo electronic device 1 includes an in vivo Bluetooth module 13, which is electrically connected to the in vivo controller 12, the in vitro electronic device 2 includes an in vitro Bluetooth module 23, the in vitro Bluetooth module 23 is electrically connected to the in vitro controller 22, and the in vivo Bluetooth module 13 is connected to the in vitro Bluetooth module 23.
  • the Bluetooth module 23 is wirelessly connected via Bluetooth.
  • the in vitro Bluetooth module 23 establishes a Bluetooth connection with the in vivo Bluetooth module 13.
  • the in vitro controller 22 and the in vivo controller 12 can realize communication connection through Bluetooth.
  • the in vitro controller 22 sends a synchronous operation request to the in vivo controller 12, the in vivo controller 12
  • the controller 12 can respond via Bluetooth.
  • Bluetooth transmission has low power consumption, long transmission distance, stable signal transmission, and is not easily interfered.
  • other wireless communication methods such as wifi and sub-1G may also be used.
  • the in-vivo electronic device 1 includes a voltage detection module 14 , and the voltage detection module 14 is configured to monitor the change of the voltage signal of the receiving coil 111 and send it to the in-vivo controller 12 .
  • the voltage detection module 14 may be an AD converter.
  • the voltage received by the voltage detection module 14 will also change, and it is detected whether the change exceeds the normal change range.
  • the in-vivo controller 12 recognizes the signal as a synchronous operation, and executes the synchronous operation.
  • the external electronic device 2 includes a power amplifier circuit 24 , the external controller 22 transmits the voltage value to the power amplifier circuit 24 , and the power amplifier circuit 24 is configured to amplify the voltage value and send it to the transmitting coil 211 . Since the voltage signal output by the external controller 22 is relatively small, the voltage signal is amplified by the power amplifier circuit 24 and is easily received by the transmitting coil 211 .
  • the in vitro controller 22 When a synchronous operation needs to be performed (for example, an evoked event in an evoked potential check), the in vitro controller 22 establishes a wireless communication connection with the in vivo controller 12, the in vitro controller 22 sends a synchronous operation request to the in vivo controller 12, and the in vivo controller 12 gives After the external controller 22 responds, the external controller 22 changes the power supply voltage and sends the signal to the power amplifier circuit 24. The power supply voltage of the power amplifier circuit 24 changes abruptly at time t1, and transmits the signal to the transmitting coil 211.
  • the AC voltage of the transmitting coil 211 A sudden change also occurs at time t1, the receiving coil 111 senses a sudden change in the AC voltage of the transmitting coil 211, and the AC voltage of the receiving coil 111 also changes suddenly at time t1, and the receiving coil 111 transmits the sudden change of the AC voltage to the voltage detection module 14.
  • the voltage detection module 14 rectifies and filters the abrupt AC voltage and detects that the voltage exceeds the normal variation range at time t3.
  • the in-vivo controller 12 recognizes that the rectified and filtered voltage still has a sudden change, and judges that it is a synchronous operation signal.
  • the time point of the voltage mutation is analyzed, and the time stamp is cleared.
  • the in-vivo controller 12 takes time t3 as the zero time for physiological signal acquisition.
  • the time difference between the time t1 and the time t3 can be controlled within 5 ms, which can satisfy the synchronization accuracy of the evoked event and the physiological signal in the evoked potential examination.
  • the synchronous operation control system of the present invention can align the signal acquisition time lines of the in-vivo electronic device and the in-vitro electronic device, thereby improving the accuracy of physiological signal acquisition.
  • a high-precision synchronous operation control system includes an in-vivo electronic device 1, which is suitable for being placed in a patient's body, such as a human brain; an in-vitro electronic device 2, which is suitable for being placed outside the patient's body, It is wirelessly connected with the in vivo electronic device 1; the stimulation module 3 is configured to apply stimulation (which may be in vivo stimulation or in vitro stimulation) to the patient; wherein, when the stimulation module 3 applies stimulation to the patient, the in vitro electronic device 2 changes Supply voltage; after the in-vivo electronic device 1 senses a sudden change in the supply voltage, the in-vivo electronic device 1 and the in-vitro electronic device 2 perform synchronous operations at the same time.
  • stimulation which may be in vivo stimulation or in vitro stimulation
  • the external electronic device 2 before the external electronic device 2 changes the power supply voltage, the external electronic device 2 can send a synchronous operation request to the internal electronic device 1. After the internal electronic device 1 responds to the external electronic device 2, the external electronic device 2 changes the power supply voltage. , which can eliminate the interference of other factors and improve the accuracy of synchronization signal transmission.
  • the synchronization operation may be the in vivo electronic device 1 and the in vitro electronic device 2 clearing their own time stamps, but it is not limited to this, and other operations are also possible.
  • the synchronization signal is transmitted while the stimulation is applied, and the synchronization operation is performed, so that the clocks of the in-vivo electronic device and the in-vitro electronic device can be on the same reference, so that the collected signal can be accurately matched with the time point when the stimulation occurs. Aligned to better analyze the effect of a stimulus on EEG signals.
  • the external electronic device 2 includes an external coil module 21, and the internal electronic device 1 includes an internal coil module 11, and the external coil module 21 and the internal coil module 11 are inductively connected, wherein when the output voltage of the external coil module 21 changes suddenly, the internal coil The AC voltage of the module 11 varies with the output voltage.
  • the external coil module 21 includes a transmitting coil 211 and an external magnet 212.
  • the transmitting coil 211 is disposed around the external magnet 212.
  • the internal coil module 11 includes a receiving coil 111 and an internal magnet 112.
  • the receiving coil 111 is disposed around the internal magnet 112.
  • the external magnet 212 and the internal magnet 112 are connected by adsorption.
  • the in vitro electronic device 2 further includes an in vitro controller 22
  • the in vivo electronic device 1 further includes an in vivo controller 12 .
  • the in vivo electronic device 1 includes an in vivo Bluetooth module 13, which is electrically connected to the in vivo controller 12, the in vitro electronic device 2 includes an in vitro Bluetooth module 23, the in vitro Bluetooth module 23 is electrically connected to the in vitro controller 22, and the in vivo Bluetooth module 13 is connected to the in vitro Bluetooth module 23.
  • the Bluetooth module 23 is wirelessly connected through Bluetooth.
  • other wireless communication methods such as wifi and sub-1G may also be used.
  • the in-vivo electronic device 1 includes a voltage detection module 14 , and the voltage detection module 14 is configured to monitor the change of the voltage signal of the receiving coil 111 and send it to the in-vivo controller 12 .
  • the external electronic device 2 includes a power amplifier circuit 24 , the external controller 22 transmits the voltage value to the power amplifier circuit 24 , and the power amplifier circuit 24 is configured to amplify the voltage value and send it to the transmitting coil 211 .
  • a high-precision synchronous operation control method adopts the high-precision synchronous operation control system of Embodiment 1, which includes the following steps:
  • the external electronic device changes the power supply voltage. After the internal electronic device senses a sudden change in the power supply voltage, the internal electronic device and the external electronic device simultaneously perform a synchronous operation.
  • step S2 the external electronic device first sends a synchronization operation request to the internal electronic device, and after the internal electronic device responds to the external electronic device, step S2 is performed.
  • the synchronization operation may be, for example, the in-vivo electronic device and the in-vitro electronic device clearing their own time stamps, but not limited to this, and other synchronization operations are also possible.
  • the wireless communication connection may be, for example, a Bluetooth connection, a WiFi connection, a sub-1G, or the like.
  • the external controller When a synchronous operation needs to be performed, the external controller establishes a communication connection with the internal controller through Bluetooth, the external controller sends a synchronous operation request to the internal controller, and after the internal controller responds to the external controller, the external controller changes the power supply voltage and transmits it to the external controller.
  • the AC voltage of the transmitting coil and the transmitting coil has a sudden change. After the receiving coil inductively couples the AC voltage of the transmitting coil, the AC voltage of the receiving coil also changes abruptly.
  • the receiving coil transmits the mutated voltage signal to the internal controller, and the internal controller recognizes the sudden change.
  • the voltage signal is a synchronous operation signal, and the in-vivo controller and the in-vitro controller perform synchronous operation at the same time.
  • the voltage detection module monitors the change of the voltage signal of the receiving coil and sends it to the in-body controller, and the in-vitro controller transmits the voltage value to the power amplifier circuit, and the power amplifier circuit amplifies the voltage value and sends it to the transmitter coil .
  • the real-time transmission of the coil voltage signal is used, and the voltage change of the transmitting coil is sensed in real time by the receiving coil, and the voltage detection module detects whether the voltage signal of the receiving coil changes in real time.
  • the controller recognizes the signal as a synchronous operation signal, the in-vivo controller and the in-vitro controller perform synchronous operation, and the transmission time of the entire synchronization signal is within 5ms, which can meet the synchronization accuracy of evoked events and physiological signals in evoked potential inspection.
  • a high-precision synchronous operation control method when using the high-precision synchronous operation control system of Embodiment 2, includes the following steps:
  • S2-1 Apply stimulation to the patient through the stimulation module
  • the external electronic device changes the power supply voltage, and after the internal electronic device senses a sudden change in the power supply voltage, the internal electronic device and the external electronic device simultaneously perform a synchronous operation.
  • the in vitro electronic device may first send a synchronization operation request to the in vivo electronic device, and the in vivo electronic device responds to the in vitro electronic device After that, step S2 is performed again.
  • the external controller establishes a communication connection with the internal controller, the external controller sends a synchronous operation request to the internal controller, and after the internal controller responds to the external controller, the external controller changes the power supply voltage and transmits it to the transmitter coil.
  • the AC voltage of the receiving coil After the AC voltage of the receiving coil is inductively coupled to the AC voltage of the transmitting coil, the AC voltage of the receiving coil also changes abruptly, and the receiving coil transmits the abrupt voltage signal to the internal controller, and the internal controller recognizes the sudden voltage signal as synchronization
  • the operation signal, the in-body controller and the in-vitro controller perform synchronous operation at the same time.
  • the voltage detection module monitors the change of the voltage signal of the receiving coil and sends it to the in-body controller, and the in-vitro controller transmits the voltage value to the power amplifier circuit, and the power amplifier circuit amplifies the voltage value and sends it to the transmitter coil .
  • the real-time transmission of the coil voltage signal is used, and the voltage change of the transmitting coil is sensed in real time by the receiving coil, and the voltage detection module detects whether the voltage signal of the receiving coil changes in real time.
  • the controller recognizes the signal as a synchronous operation signal, the in-vivo controller and the in-vitro controller perform synchronous operation, and the transmission time of the entire synchronization signal is within 5ms, which can meet the synchronization accuracy of evoked events and physiological signals in evoked potential inspection.
  • the synchronization signal is transmitted while the stimulation is applied, so that the clocks of the in-vivo electronic device and the in-vitro electronic device can be on the same reference, so that the collected signal can be accurately aligned with the time point when the stimulation occurs, Better analysis of the effect of a stimulus on EEG signals.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center over a wire (e.g.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • the available media can be magnetic media (eg: floppy disk, hard disk, magnetic tape), optical media (eg: Digital Versatile Disc (DVD)), or semiconductor media (eg: Solid State Disk (SSD)), etc. .
  • the storage medium can be a read-only memory, a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Medical Informatics (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明公开了一种高精度的同步操作控制系统,包括体内电子装置和体外电子装置,其与体内电子装置无线连接;其中,当需要执行同步操作时,体外电子装置更改自身的输出电压;体内电子装置感应到输出电压发生突变后,体内电子装置和体外电子装置同时执行同步操作。本发明通过将体外电子装置的输出电压的突变作为同步信号进行传输,可以省去在电子装置内布置额外的同步信号传输的芯片,可以降低功耗,减小体内电子装置的体积布置在患者体内时,可以现实微创,减小对患者的伤害,且能够满足诱发电位检查中诱发事件和生理信号的同步精度。

Description

高精度的同步操作控制系统、方法及存储介质 技术领域
本发明涉及电通信技术领域,尤其涉及体外设备与体内设备之间的高精度的同步操作控制系统/装置。
背景技术
神经电生理学检查方法作为检查神经系统功能的重要手段,在现代医学中已经广泛应用于神经系统疾病的诊断、术中监护和预后估计。例如,体感诱发电位(SEP),SEP中央沟回反向的特征,可以有效评估大脑功能区,SEP的幅度也可以有效的评估生理刺激的有效性。此类生理电信号需要采集刺激产生后的生理电信号被配置为判断人体对于该刺激的响应(生理电信号的响应时间一般要求5ms以内),所以在实际应用中,如何将采集的生理信号与刺激信号进行同步对齐,是整个生理采集系统中极其重要的一环。
然而,现有的同步操作控制装置还存在以下问题:
1、在体外电子装置和体内电子装置均设置用于同步信号传输的芯片,通过一个主控器同时向体外电子装置和体内电子装置发送同步信号,体外电子装置和体内电子装置接收该同步信号之后执行同步操作,虽然这种方法也能实现信号同步传输,但是由于该种芯片的功耗较大,导致耗电比较快,导致体内电子装置的电池需要经常更换。
2、体内电子装置的供电通过电池进行供电,导致体内电子装置的体积较大,将体内电子装置设置在颅内时,需要切除部分颅骨才能安装体内电子装置,对患者的伤害较大,并且电池的寿命有限(一般为几年时间),更换电池时可能会对患者造成二次伤害,并且电池相当于一个“定时炸弹”,一旦发生损坏,会对人体造成不可挽回的伤害。
发明内容
本发明要解决的技术问题是:为了解决现有技术中同步信号传输功耗大导致体内电子装置耗电快的技术问题,本发明提供一种高精度的同步操作控制系统,将同步操作信号通过电压变化的方式进行传输,结构简单,功耗小,且能够满足诱发电位检查中诱发事件和生理信号的同步精度。
本发明解决其技术问题所采用的技术方案是:一种高精度的同步操作控制系统,包括:体内电子装置,其适于布置在患者的体内;体外电子装置,其适于布置在患者的体外,其与所述体内电子装置无线连接;其中,当需要执行同步操作时,所述体外电子装置更改供电电压;所述体内电子装置感应到供电电压发生突变后,所述体内电子装置和所述体外电子装置同时执行同步操作。
本发明的高精度的同步操作控制系统,通过将体外电子装置的供电电压的突变作为同步信号进行传输,可以省去在电子装置内布置额外的同步信号传输的芯片,可以降低功耗,减小体内电子装置的体积(体积可以减小至现有装置体积的1/8-1/6),布置在患者体内时,可以现实微创,减小对患者的伤害,且能够满足诱发电位检查中诱发事件和生理信号的同步精度。
进一步,具体的,所述高精度的同步操作控制系统还包括刺激模块,所述刺激模块被配置为施加刺激于所述患者,其中,当所述刺激模块施加刺激于所述患者时,所述体外电子装置更改供电电压;所述体内电子装置感应到供电电压发生突变后,所述体内电子装置和所述体外电子装置同时执行同步操作。刺激模块施加的刺激可以是体外刺激或者体内刺激,通过在施加刺激的同时,进行同步操作信号的传输,同步的操作可以让体内电子设备和体外电子设备的时钟处于同一个基准,使得采集的信号在时间上能够精准的与刺激发生的时间点对齐,更好的分析一个刺激对于脑电信号的影响。
进一步,具体的,所述体外电子装置发送同步操作请求给所述体内电子装置,所述体内电子装置给予所述体外电子装置应答后,所述体外电子装置再更改供电电压,所述体内电子装置感应到供电电压发生突变后,所述体内电子装置和所述体外电子装置同时执行同步操作。在体外电子装置更改供电电压之前先发送同步操作请求给体内电子装置,体内电子装置给予应答后再进行供电电压更改,这样可以防止系统收到干扰信号导致同步信号误判的情况出现,提高同步信号识别的准确性。
进一步,具体的,所述体外电子装置包括体外线圈模块,所述体内电子装置包括体内线圈模块,所述体外线圈模块和所述体内线圈模块之间感应连接,其中,当所述体外线圈模块的输出电压发生突变时,所述体内线圈模块的交流电压随着所述输出电压的变化而变化。体外线圈模块和体内线圈模块之间不仅能够进行同步信号的传输,而且体外线圈模块可以从体外电子装置获取电能传输给体内线圈模块,体内线圈模块将该电能转化为适于为体内电子装置供电的电压,本发明的体内电子装置不用设置电池模块,通过体内线圈模块和体外线圈模块的无线耦合即可获得电能,体内电子装置的体积可以大大缩小,且能够提高体内电子装置的安全性。
进一步,具体的,所述体外线圈模块包括发射线圈和体外磁铁,所述发射线圈环绕所述体外磁铁设置,所述体内线圈模块包括接收线圈和体内磁铁,所述接收线圈环绕所述体内磁铁设置,所述体外磁铁与所述体内磁铁之间通过吸附连接。通过体内磁体与体外磁体相互吸引可以将体内线圈模块与体外线圈模块吸附固定,通过发射线圈将供电电压转换为电磁辐射发射出去,接收线圈接收电磁辐射并将其转换为适于体内电子装置的供电电压,接收线圈和发射线圈的无线耦合不仅可以进行能量传输,传输效率更高,并且由于线圈感应的实时 性可以作为同步信号传输。
进一步,具体的,所述体外电子装置还包括体外控制器,所述体内电子装置还包括体内控制器,所述体外控制器与所述发射线圈电连接,所述体内控制器与所述接收线圈电连接。当要进行同步操作时,体外控制器可以更改传输给发射线圈的供电电压,使得发射线圈的电压发生突变,接收线圈进行感应耦合后电压也会发生突变,并把该突变的电压传输给体内控制器,体内控制器识别到电压发生突变(即同步操作信号),体内控制器与体外控制器执行同步操作。整个同步信号的传输过程的时间在5ms内,可以满足诱发电位检查中诱发事件和生理信号的同步精度。
进一步,优选的,所述体内电子装置包括体内蓝牙模块,所述体内蓝牙模块与所述体内控制器电连接,所述体外电子装置包括体外蓝牙模块,所述体外蓝牙模块与所述体外控制器电连接,所述体内蓝牙模块与所述体外蓝牙模块通过蓝牙无线连接。蓝牙传输的功耗小,传输距离长且信号传输稳定,不易受到干扰。当体外电子装置发送同步操作请求给体内电子装置时,体内电子装置可以通过蓝牙给予体外电子装置应答,体外电子装置再进行同步操作信号传输。同时,蓝牙模块也可以进行数据传输。
进一步,具体的,所述体内电子装置包括电压检测模块,所述电压检测模块被配置为监测所述接收线圈电压信号的变化,并发送给所述体内控制器。
进一步,具体的,所述体外电子装置包括功放电路,所述体外控制器将电压值传输给所述功放电路,所述功放电路被配置为将所述电压值进行放大处理并发送给所述发射线圈。通过功放电路可以将体外控制器输出的微小的电压信号进行放大,便于发射线圈识别。
进一步,具体的,所述同步操作包括:所述体内电子装置和所述体外电子 装置清零自身的时间戳。体内电子装置和体外电子装置同时清零自身的时间戳,再进行生理信号的采集,可以提高信号数据采集的准确性,在进行临床分析时更具有代表性。
本发明还提供了一种高精度的同步操作控制方法,采用上所述的高精度的同步操作控制系统,其包括以下步骤:
S1:将体外电子装置与体内电子装置建立无线通信连接;
S2:所述体外电子装置更改供电电压,所述体内电子装置感应供电电压发生突变后,所述体内电子装置与所述体外电子装置同时执行同步操作。
本发明的高精度的同步操作控制方法,通过将体外电子装置的输出电压的突变作为同步信号进行传输,可以省去在电子装置内布置额外的同步信号传输的芯片,可以降低功耗,减小体内电子装置的体积,能够满足诱发电位检查中诱发事件和生理信号的同步精度。
进一步,具体的,所述方法还包括:
S2-1:通过刺激模块施加刺激于患者;
所述步骤S2-1介于所述步骤S1和S2之间。通过在施加刺激的同时,进行同步操作信号的传输,同步的操作可以让体内电子设备和体外电子设备的时钟处于同一个基准,使得采集的信号在时间上能够精准的与刺激发生的时间点对齐,更好的分析一个刺激对于脑电信号的影响。
进一步,具体的,所述方法还包括:所述体外电子装置发送同步操作请求给所述体内电子装置,所述体内电子装置给予所述体外电子装置应答后,再执行所述步骤S2。
进一步,具体的,所述步骤S2具体包括:通过体外控制器更改供电电压并传输给发射线圈,所述发射线圈的交流电压发生突变;所述接收线圈感应耦合 所述发射线圈的交流电压后,所述接收线圈的交流电压也发生突变;所述接收线圈将突变的电压信号传输给体内控制器,所述体内控制器识别该突变的电压信号为同步操作信号,所述体内控制器与所述体外控制器同时执行同步操作。通过发射线圈将供电电压转换为电磁辐射发射出去,接收线圈接收电磁辐射并将其转换为适于体内电子装置的供电电压,体内线圈和体外线圈的无线耦合不仅可以进行能量传输,传输效率更高,并且由于线圈感应的实时性可以作为同步信号传输;当要进行同步操作时,体外控制器可以更改传输给发射线圈的供电电压,使得发射线圈的电压发生突变,接收线圈进行感应耦合后电压也会发生突变,并把该突变的电压传输给体内控制器,体内控制器识别到电压发生突变(即同步操作信号),体内控制器与体外控制器执行同步操作。整个同步信号的传输过程的时间在5ms内,可以满足诱发电位检查中诱发事件和生理信号的同步精度。
进一步,具体的,所述方法还包括:通过电压检测模块监测所述接收线圈电压信号的变化,并发送给所述体内控制器。
进一步,具体的,所述方法还包括:通过所述体外控制器将电压值传输给功放电路,通过所述功放电路将所述电压值进行放大处理并发送给所述发射线圈。
进一步,具体的,所述体外电子装置与所述体内电子装置通过蓝牙通信连接。
本发明还提供了一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令被执行时实现如上所述的高精度的同步操作控制方法。
本发明的有益效果是,本发明的高精度的同步操作控制系统及方法,利用线圈电压信号传递的实时性,将供电电压信号的突变作为同步操作的传输信号, 省去了在电子装置内布置额外的同步信号传输的芯片,可以降低功耗,减小体内电子装置的体积,布置在患者体内时,可以现实微创,减小对患者的伤害,并且可以满足诱发电位检查中诱发事件和生理信号的同步精度;通过将发射线圈和接收线圈之间的电压感应作为同步操作的信号传递,直观简单,并且接收线圈部分的电压还没有经过系统的过滤处理,仅跟随发射线圈的电压变化而变化,不会和体内电子装置的其他部件的电压发生干扰;不需要同步操作的时候,发射线圈的电压保持在一个基准电压不变,当需要同步操作时,在基准电压的基础上,提高20%-50%的供电电压实现发射线圈的电压突变,接收线圈感应到该电压突变并将信号传递给体内控制器,体内控制器即可识别为是同步操作信号,执行同步操作。发射线圈和接收线圈在给体内电子装置供电的同时,还作为同步操作信号的传递途径,当发射线圈输出电压改变时,接收线圈可以立即感应到电压变化,将该变化作为同步操作的传输信号,响应速度快且可以满足诱发电位检查中诱发事件和生理信号的同步精度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的高精度的同步操作控制系统的一种结构示意图。
图2是本发明的体外电子装置和体内电子装置的结构示意图。
图3是本发明体内线圈模块和体外线圈模块的结构示意图。
图4是本发明的电压信号突变传递的波形图示意图。
图5是本发明的高精度的同步操作控制系统的第二种结构示意图。
图6是本发明的高精度的同步操作控制系统的第三种结构示意图。
图7是本发明的高精度的同步操作控制方法的一种流程图。
图8是本发明的高精度的同步操作控制方法的另一种流程图。
图中:1、体内电子装置,2、体外电子装置,3、刺激模块,11、体内线圈模块,111、接收线圈,112、体内磁铁,12、体内控制器,13、体内蓝牙模块,14、电压检测模块,21、体外线圈模块,211、发射线圈,212、体外磁铁,22、体外控制器,23、体外蓝牙模块,24、功放电路。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
实施例1
如图1-3所示,一种高精度的同步操作控制系统,包括体内电子装置1,其适于布置在患者的体内;体外电子装置2,其适于布置在患者的体外,其与体内电子装置1无线连接;其中,当需要执行同步操作时,体外电子装置2更改供电电压;体内电子装置1感应到供电电压发生突变后,体内电子装置1和体外电子装置2同时执行同步操作。在本实施例中,同步操作可以是体内电子装置1和体外电子装置2清零自身的时间戳,但不限于此,也可以是其他操作。在本实施例中,体外电子装置2更改供电电压之前,体外电子装置2可以发送同步操作请求给体内电子装置1,体内电子装置1给予体外电子装置2应答后,体外电子装置2再更改供电电压,这样可以排除其他因素的干扰,提高同步信号传输的准确性。在本实施例中,患者并不限定于是人体,也可以是动物体,作为科学研究。
体外电子装置2包括体外线圈模块21,体内电子装置1包括体内线圈模块11,体外线圈模块21和体内线圈模块11之间感应连接,其中,当体外线圈模块21的输出电压发生突变时,体内线圈模块11的交流电压随着输出电压的变化而变化。体外线圈模块21和体内线圈模块11之间不仅能够进行同步信号的传输,而且体外线圈模块21可以从体外电子装置2获取电能传输给体内线圈模块11,体内线圈模块11将该电能转化为适于为体内电子装置1供电的电压,本发明的体内电子装置1不用设置电池模块,通过体内线圈模块11和体外线圈模块21的无线耦合即可获得电能,体内电子装置1的体积可以大大缩小可以减小至现有体内电子装置体积的1/8-1/6,且能够提高体内电子装置1的安全性。
体外线圈模块21包括发射线圈211和体外磁铁212,发射线圈211环绕体外磁铁212设置,体内线圈模块11包括接收线圈111和体内磁铁112,接收线圈111环绕体内磁铁112设置,体外磁铁212与体内磁铁112之间通过吸附连 接。在本实施例中,发射线圈211的匝数可以是8-10圈,接收线圈111的匝数可以是6-8圈,这样既能够满足供电的需求,也不会增大体内电子装置的体积,同时使得信号传输更加稳定。通过体内磁铁112与体外磁铁212相互吸引可以将体内线圈模块11与体外线圈模块21吸附固定,通过发射线圈211将供电电压转换为电磁辐射发射出去,接收线圈111接收电磁辐射并将其转换为适于体内电子装置1的供电电压,接收线圈111和发射线圈211的无线耦合不仅可以进行能量传输,传输效率更高,并且由于线圈感应的实时性可以作为同步信号传输。接收线圈111处的电压是最直接的电压,仅跟随发射线圈211的电压变化而变化,并且接收线圈111处的电压还未经过系统滤波处理,不会受其他因素的干扰。当不需要同步操作时,发射线圈211和接收线圈111均保持在一个基准电压,当需要同步操作时,发射线圈211的输出电压被更改,例如,在基准电压的基础上提高20%-50%,如果输出电压更改的太少,可能会被识别为是正常的电压波动,同步信号无法准确被识别。
体外电子装置2还包括体外控制器22,体内电子装置1还包括体内控制器12,体外控制器22与发射线圈211电连接,体内控制器12与接收线圈111电连接。在本实施例中,体外控制器22和体内控制器12均为单片机,但不限于此,也可以是其他类型的控制器。
体内电子装置1包括体内蓝牙模块13,体内蓝牙模块13与体内控制器12电连接,体外电子装置2包括体外蓝牙模块23,体外蓝牙模块23与体外控制器22电连接,体内蓝牙模块13与体外蓝牙模块23通过蓝牙无线连接。通过体外蓝牙模块23与体内蓝牙模块13建立蓝牙连接,此时,体外控制器22与体内控制器12可以通过蓝牙实现通信连接,当体外控制器22发送同步操作请求给体内控制器12时,体内控制器12可以通过蓝牙给予应答。蓝牙传输的功耗小, 传输距离长且信号传输稳定,不易受到干扰,当然,在其他实施例中,也可以采用wifi、sub-1G等其他无线通讯方式。
体内电子装置1包括电压检测模块14,电压检测模块14被配置为监测接收线圈111电压信号的变化,并发送给体内控制器12。在本实施例中,电压检测模块14可以是AD转换器,当接收线圈111的电压发生变化时,电压检测模块14接收到的电压也会发生变化,并检测该变化是否超过了正常变化的范围,如果电压变化超过了正常范围,则体内控制器12识别为是同步操作的信号,执行同步操作。
体外电子装置2包括功放电路24,体外控制器22将电压值传输给功放电路24,功放电路24被配置为将电压值进行放大处理并发送给发射线圈211。由于体外控制器22输出的电压信号是比较微小的,经过功放电路24将该电压信号进行放大,易于被发射线圈211接收。
下面结合图4对高精度的同步操作控制系统的工作过程进行说明。当需要执行同步操作(例如是诱发电位检查中诱发事件),体外控制器22与体内控制器12通过无线建立通信连接,体外控制器22发送同步操作请求给体内控制器12,体内控制器12给予体外控制器22应答后,体外控制器22更改供电电压并将信号发送给功放电路24,功放电路24的供电电压在t1时刻发生突变,并将信号传输给发射线圈211,发射线圈211的交流电压在t1时刻也发生突变,接收线圈111感应到发射线圈211的交流电压发生突变,接收线圈111的交流电压也在t1时刻发生突变,接收线圈111将该突变的交流电压传输给电压检测模块14,电压检测模块14对该突变的交流电压进行整流滤波后检测到在t3时刻电压超过了正常变化的范围,体内控制器12识别到整流滤波后的电压仍发生了突变,判断为是同步操作信号,并对电压突变的时间点进行分析,执行清零时 间戳,例如,t3时刻电压发生了突变,体内控制器12将t3时刻作为生理信号采集的零时刻。本实施例中,t1时刻与t3时刻的时间差可以控制在5ms内,能够满足诱发电位检查中诱发事件和生理信号的同步精度。本发明的同步操作控制系统可以使得体内电子装置和体外电子装置的信号采集时间线进行对齐,提高生理信号采集的准确性。
实施例2
如图2-6所示,一种高精度的同步操作控制系统,包括体内电子装置1,其适于布置在患者的体内例如人脑;体外电子装置2,其适于布置在患者的体外,其与体内电子装置1无线连接;刺激模块3,刺激模块3被配置为施加刺激(可以是体内刺激或者体外刺激)于患者;其中,当刺激模块3施加刺激于患者时,体外电子装置2更改供电电压;体内电子装置1感应到供电电压发生突变后,体内电子装置1和体外电子装置2同时执行同步操作。在本实施例中,体外电子装置2更改供电电压之前,体外电子装置2可以发送同步操作请求给体内电子装置1,体内电子装置1给予体外电子装置2应答后,体外电子装置2再更改供电电压,这样可以排除其他因素的干扰,提高同步信号传输的准确性,同步操作可以是体内电子装置1和体外电子装置2清零自身的时间戳,但不限于此,也可以是其他操作。本实施例在施加刺激的同时进行同步信号的传输,执行同步操作,可以让体内电子设备和体外电子设备的时钟处于同一个基准,使得采集的信号在时间上能够精准的与刺激发生的时间点对齐,更好的分析一个刺激对于脑电信号的影响。
体外电子装置2包括体外线圈模块21,体内电子装置1包括体内线圈模块11,体外线圈模块21和体内线圈模块11之间感应连接,其中,当体外线圈模块21的输出电压发生突变时,体内线圈模块11的交流电压随着输出电压的变 化而变化。
体外线圈模块21包括发射线圈211和体外磁铁212,发射线圈211环绕体外磁铁212设置,体内线圈模块11包括接收线圈111和体内磁铁112,接收线圈111环绕体内磁铁112设置,体外磁铁212与体内磁铁112之间通过吸附连接。
体外电子装置2还包括体外控制器22,体内电子装置1还包括体内控制器12,体外控制器22与发射线圈211电连接,体内控制器12与接收线圈111电连接。
体内电子装置1包括体内蓝牙模块13,体内蓝牙模块13与体内控制器12电连接,体外电子装置2包括体外蓝牙模块23,体外蓝牙模块23与体外控制器22电连接,体内蓝牙模块13与体外蓝牙模块23通过蓝牙无线连接,当然,在其他实施例中,也可以采用wifi、sub-1G等其他无线通讯方式。
体内电子装置1包括电压检测模块14,电压检测模块14被配置为监测接收线圈111电压信号的变化,并发送给体内控制器12。
体外电子装置2包括功放电路24,体外控制器22将电压值传输给功放电路24,功放电路24被配置为将电压值进行放大处理并发送给发射线圈211。
本实施例与实施例1对应部分的工作原理和技术效果相同,此处不再赘述。
实施例3
如图7所示,一种高精度的同步操作控制方法,采用实施例1的高精度的同步操作控制系统,其包括以下步骤:
S1:将体外电子装置与体内电子装置建立无线通信连接;
S2:体外电子装置更改供电电压,体内电子装置感应供电电压发生突变后,体内电子装置与体外电子装置同时执行同步操作。
需要说明的是,在执行步骤S2之前,体外电子装置先发送同步操作请求给体内电子装置,体内电子装置给予体外电子装置应答后,再执行步骤S2。同步操作例如可以是体内电子装置和体外电子装置清零自身的时间戳,但不限于此,也可以是其他同步操作。无线通信连接例如可以是蓝牙连接、WiFi连接、sub-1G等。当需要执行同步操作,体外控制器通过蓝牙与体内控制器建立通信连接,体外控制器发送同步操作请求给体内控制器,体内控制器给予体外控制器应答后,体外控制器更改供电电压并传输给发射线圈,发射线圈的交流电压发生突变,接收线圈感应耦合发射线圈的交流电压后,接收线圈的交流电压也发生突变,接收线圈将突变的电压信号传输给体内控制器,体内控制器识别该突变的电压信号为同步操作信号,体内控制器与体外控制器同时执行同步操作。本实施例中,通过电压检测模块监测接收线圈电压信号的变化,并发送给体内控制器,通过体外控制器将电压值传输给功放电路,通过功放电路将电压值进行放大处理并发送给发射线圈。
本实施例利用线圈电压信号传递的实时性,通过接收线圈实时感应发射线圈的电压变化,电压检测模块实时检测接收线圈电压信号是否发生突变,如果发生突变且超过了正常变化的范围,则体内控制器识别该信号为同步操作信号,体内控制器与体外控制器执行同步操作,整个同步信号的传输过程的时间在5ms内,可以满足诱发电位检查中诱发事件和生理信号的同步精度。
实施例4
如图8所示,一种高精度的同步操作控制方法,采用实施例2的高精度的同步操作控制系统时,其包括以下步骤:
S1:将体外电子装置与体内电子装置建立无线通信连接;
S2-1:通过刺激模块施加刺激于患者;
S2:所述体外电子装置更改供电电压,所述体内电子装置感应供电电压发生突变后,所述体内电子装置与所述体外电子装置同时执行同步操作。
在本实施例中,当刺激模块施加刺激于患者时,被认为需要执行同步操作,在执行步骤S2之前,体外电子装置可以先发送同步操作请求给体内电子装置,体内电子装置给予体外电子装置应答后,再执行步骤S2。具体地,体外控制器与体内控制器建立通信连接,体外控制器发送同步操作请求给体内控制器,体内控制器给予体外控制器应答后,体外控制器更改供电电压并传输给发射线圈,发射线圈的交流电压发生突变,接收线圈感应耦合发射线圈的交流电压后,接收线圈的交流电压也发生突变,接收线圈将突变的电压信号传输给体内控制器,体内控制器识别该突变的电压信号为同步操作信号,体内控制器与体外控制器同时执行同步操作。本实施例中,通过电压检测模块监测接收线圈电压信号的变化,并发送给体内控制器,通过体外控制器将电压值传输给功放电路,通过功放电路将电压值进行放大处理并发送给发射线圈。
本实施例利用线圈电压信号传递的实时性,通过接收线圈实时感应发射线圈的电压变化,电压检测模块实时检测接收线圈电压信号是否发生突变,如果发生突变且超过了正常变化的范围,则体内控制器识别该信号为同步操作信号,体内控制器与体外控制器执行同步操作,整个同步信号的传输过程的时间在5ms内,可以满足诱发电位检查中诱发事件和生理信号的同步精度。并且,本实施例在施加刺激的同时进行同步信号的传输,可以让体内电子设备和体外电子设备的时钟处于同一个基准,使得采集的信号在时间上能够精准的与刺激发生的时间点对齐,更好的分析一个刺激对于脑电信号的影响。
实施例5
一种计算机可读存储介质,其上存储有计算机指令,计算机指令被执行时 实现实施例3或4的高精度的同步操作控制方法。
需要说明的是,在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要如权利要求范围来确定其技术性范围。

Claims (18)

  1. 一种高精度的同步操作控制系统,其特征在于,包括:
    体内电子装置(1),其适于布置在患者的体内;
    体外电子装置(2),其适于布置在患者的体外,其与所述体内电子装置(1)无线连接;
    其中,当需要执行同步操作时,所述体外电子装置(2)更改供电电压;所述体内电子装置(1)感应到供电电压发生突变后,所述体内电子装置(1)和所述体外电子装置(2)同时执行同步操作。
  2. 如权利要求1所述的高精度的同步操作控制系统,其特征在于,所述高精度的同步操作控制系统还包括刺激模块(3),所述刺激模块(3)被配置为施加刺激于所述患者,
    其中,当所述刺激模块(3)施加刺激于所述患者时,所述体外电子装置(2)更改供电电压,所述体内电子装置(1)感应到供电电压发生突变后,所述体内电子装置(1)和所述体外电子装置(2)同时执行同步操作。
  3. 如权利要求1或2所述的高精度的同步操作控制系统,其特征在于,所述体外电子装置(2)发送同步操作请求给所述体内电子装置(1),所述体内电子装置(1)给予所述体外电子装置(2)应答后,所述体外电子装置(2)再更改供电电压,所述体内电子装置(1)感应到供电电压发生突变后,所述体内电子装置(1)和所述体外电子装置(2)同时执行同步操作。
  4. 如权利要求3所述的高精度的同步操作控制系统,其特征在于,所述体外电子装置(2)包括体外线圈模块(21),所述体内电子装置(1)包括体内线圈模块(11),所述体外线圈模块(21)和所述体内线圈模块(11)之间感应连接,其中,当所述体外线圈模块(21)的输出电压发生突变时,所述体内线圈模块(11)的交流电压随着所述输出电压的变化而变化。
  5. 如权利要求4所述的高精度的同步操作控制系统,其特征在于,所述体外线圈模块(21)包括发射线圈(211)和体外磁铁(212),所述发射线圈(211)环绕所述体外磁铁(212)设置,所述体内线圈模块(11)包括接收线圈(111)和体内磁铁(112),所述接收线圈(111)环绕所述体内磁铁(112)设置,所述体外磁铁(212)与所述体内磁铁(112)之间通过吸附连接。
  6. 如权利要求5所述的高精度的同步操作控制系统,其特征在于,所述体外电子装置(2)还包括体外控制器(22),所述体内电子装置(1)还包括体内控制器(12),所述体外控制器(22)与所述发射线圈(211)电连接,所述体内控制器(12)与所述接收线圈(111)电连接。
  7. 如权利要求6所述的高精度的同步操作控制系统,其特征在于,所述体内电子装置(1)包括体内蓝牙模块(13),所述体内蓝牙模块(13)与所述体内控制器(12)电连接,所述体外电子装置(2)包括体外蓝牙模块(23),所述体外蓝牙模块(23)与所述体外控制器(22)电连接,所述体内蓝牙模块(13)与所述体外蓝牙模块(23)通过蓝牙无线连接。
  8. 如权利要求6所述的高精度的同步操作控制系统,其特征在于,所述体内电子装置(1)包括电压检测模块(14),所述电压检测模块(14)被配置为监测所述接收线圈(111)电压信号的变化,并发送给所述体内控制器(12)。
  9. 如权利要求6所述的高精度的同步操作控制系统,其特征在于,所述体外电子装置(2)包括功放电路(24),所述体外控制器(22)将电压值传输给所述功放电路(24),所述功放电路(24)被配置为将所述电压值进行放大处理并发送给所述发射线圈(211)。
  10. 如权利要求1所述的高精度的同步操作控制系统,其特征在于,所述同步操作包括:所述体内电子装置(1)和所述体外电子装置(2)清零自身的 时间戳。
  11. 一种高精度的同步操作控制方法,采用如权利要求1-10任一项所述的高精度的同步操作控制系统,其特征在于,包括以下步骤:
    S1:将体外电子装置与体内电子装置建立无线通信连接;
    S2:所述体外电子装置更改供电电压,所述体内电子装置感应供电电压发生突变后,所述体内电子装置与所述体外电子装置同时执行同步操作。
  12. 如权利要求11所述的高精度的同步操作控制方法,其特征在于,所述方法还包括:
    S2-1:通过刺激模块施加刺激于患者;
    所述步骤S2-1介于所述步骤S1和S2之间。
  13. 如权利要求11或12所述的高精度的同步操作控制方法,其特征在于,所述方法还包括:所述体外电子装置发送同步操作请求给所述体内电子装置,所述体内电子装置给予所述体外电子装置应答后,再执行所述步骤S2。
  14. 如权利要求13所述的高精度的同步操作控制方法,其特征在于,所述步骤S2具体包括:
    通过体外控制器更改供电电压并传输给发射线圈,所述发射线圈的交流电压发生突变;所述接收线圈感应耦合所述发射线圈的交流电压后,所述接收线圈的交流电压也发生突变;所述接收线圈将突变的电压信号传输给体内控制器,所述体内控制器识别该突变的电压信号为同步操作信号,所述体内控制器与所述体外控制器同时执行同步操作。
  15. 如权利要求14所述的高精度的同步操作控制方法,其特征在于,所述方法还包括:
    通过电压检测模块监测所述接收线圈电压信号的变化,并发送给所述体内 控制器。
  16. 如权利要求14所述的高精度的同步操作控制方法,其特征在于,所述方法还包括:
    通过所述体外控制器将电压值传输给功放电路,通过所述功放电路将所述电压值进行放大处理并发送给所述发射线圈。
  17. 如权利要求11所述的高精度的同步操作控制方法,其特征在于,所述体外电子装置与所述体内电子装置通过蓝牙通信连接。
  18. 一种计算机可读存储介质,其上存储有计算机指令,其特征在于,所述计算机指令被执行时实现如权利要求11-17任一项所述的高精度的同步操作控制方法。
PCT/CN2021/109115 2021-04-29 2021-07-29 高精度的同步操作控制系统、方法及存储介质 WO2022227312A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110472249.2A CN112994263B (zh) 2021-04-29 2021-04-29 高精度的同步操作控制系统、方法及存储介质
CN202110472249.2 2021-04-29

Publications (1)

Publication Number Publication Date
WO2022227312A1 true WO2022227312A1 (zh) 2022-11-03

Family

ID=76336541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109115 WO2022227312A1 (zh) 2021-04-29 2021-07-29 高精度的同步操作控制系统、方法及存储介质

Country Status (2)

Country Link
CN (1) CN112994263B (zh)
WO (1) WO2022227312A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994263B (zh) * 2021-04-29 2021-08-03 博睿康科技(常州)股份有限公司 高精度的同步操作控制系统、方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464029A (zh) * 2014-04-15 2017-02-22 哈特威尔公司 经皮能量传输系统的改进
CN109069052A (zh) * 2016-03-18 2018-12-21 奥斯瓦道·科鲁兹基金会 用于脑电图与振荡电光相关事件和运动行为的模拟同步的模块化装置和方法
US20190207424A1 (en) * 2016-04-22 2019-07-04 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
CN110433397A (zh) * 2019-08-20 2019-11-12 国家康复辅具研究中心 一种与经颅磁刺激同步的动态脑功能检测方法及系统
CN112994263A (zh) * 2021-04-29 2021-06-18 博睿康科技(常州)股份有限公司 高精度的同步操作控制系统、方法及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2870934C (en) * 2008-09-10 2017-08-15 Barry Yomtov Tet system for implanted medical device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464029A (zh) * 2014-04-15 2017-02-22 哈特威尔公司 经皮能量传输系统的改进
CN109069052A (zh) * 2016-03-18 2018-12-21 奥斯瓦道·科鲁兹基金会 用于脑电图与振荡电光相关事件和运动行为的模拟同步的模块化装置和方法
US20190207424A1 (en) * 2016-04-22 2019-07-04 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
CN110433397A (zh) * 2019-08-20 2019-11-12 国家康复辅具研究中心 一种与经颅磁刺激同步的动态脑功能检测方法及系统
CN112994263A (zh) * 2021-04-29 2021-06-18 博睿康科技(常州)股份有限公司 高精度的同步操作控制系统、方法及存储介质

Also Published As

Publication number Publication date
CN112994263A (zh) 2021-06-18
CN112994263B (zh) 2021-08-03

Similar Documents

Publication Publication Date Title
US11980759B2 (en) System for wireless recording and stimulating bioelectric events
US20210327576A1 (en) Common display unit for a plurality of cableless medical sensors
EP2644087A1 (en) Sleep management system and sleep monitor
EP2836115B1 (en) Sensor and circuitry for wireless intracranial pressure monitoring
US20140275849A1 (en) System and method for monitoring and diagnosing a patient condition based on wireless sensor monitoring data
US20090247835A1 (en) Method and a device for adapting eeg measurement signals
CN103230268B (zh) 一种可以进行远程监控的人体检测装置
TWI768152B (zh) 生理訊號無線傳輸系統及其運作方法
WO2022227312A1 (zh) 高精度的同步操作控制系统、方法及存储介质
CN105832327B (zh) 一种植入式无线无源颅内压监测系统
CN104287728A (zh) 采用光纤传输的有源表面肌电检测探头
WO2013006693A2 (en) Method and apparatus for enabling continuous data acquisition across multiple stages of care
CN107233094A (zh) 一种肌电图诱发电位仪
CN101828907A (zh) 植入式微型生理参数检测系统
US20190274570A1 (en) Electroencephalogram detection device and equipment
CN112203584A (zh) 一种基于运动传感器的生理参数优化方法及监护装置
CN202505346U (zh) 无线心电监护系统
US20080281163A1 (en) Apparatus and method for acquiring medical data
US11172819B2 (en) Single point wireless biopotential monitoring systems and methods
CN103690159A (zh) 一种便携式心电监护仪
CN106983497A (zh) 监测系统
CN107007258A (zh) 监测系统
CN107684418A (zh) 一种心电智能检测系统
CN205849450U (zh) 一种有创颅内无线检测装置
CN208610847U (zh) 睡眠监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938778

Country of ref document: EP

Kind code of ref document: A1