WO2022194155A1 - 天线及通讯设备 - Google Patents

天线及通讯设备 Download PDF

Info

Publication number
WO2022194155A1
WO2022194155A1 PCT/CN2022/080969 CN2022080969W WO2022194155A1 WO 2022194155 A1 WO2022194155 A1 WO 2022194155A1 CN 2022080969 W CN2022080969 W CN 2022080969W WO 2022194155 A1 WO2022194155 A1 WO 2022194155A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
antenna
radio frequency
switch
feed source
Prior art date
Application number
PCT/CN2022/080969
Other languages
English (en)
French (fr)
Inventor
蔡晓涛
周大为
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112023017455A priority Critical patent/BR112023017455A2/pt
Priority to EP22770508.4A priority patent/EP4283782A1/en
Priority to JP2023557219A priority patent/JP2024511041A/ja
Priority to US18/550,574 priority patent/US20240154295A1/en
Publication of WO2022194155A1 publication Critical patent/WO2022194155A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna and a communication device.
  • the present application provides an antenna including a first radiator, a second radiator, a first feed source, a first feed line and a second feed line.
  • the first feed source is used to connect the radio frequency front end, the first feed source is electrically connected to the first radiator through the first feeder, and is electrically connected to the second radiator through the second feeder.
  • the first feed source feeds the radio frequency signal to the first radiator and the second radiator, the first radiator and the second radiator receive the radio frequency signal of the same phase, and the first radiator and the second radiator receive the radio frequency signal of the same phase.
  • the two radiators are coupled to each other, and a single resonance occurs.
  • the current distribution near the first radiator and the second radiator is relatively uniform, and the first radiator and the second radiator can be fully excited, which is beneficial to reduce the SAR value of the antenna, improve the efficiency of the antenna and improve the efficiency of the antenna. mold performance.
  • the antenna further includes a switch, which is arranged on the second feeder and connected between the first feeder and the second radiator.
  • the antenna is in the first operating mode.
  • the antenna When the switch is turned off, the antenna is in the second working mode, the first feed source feeds the radio frequency signal to the first radiator, and the first radiator couples and excites the second radiator.
  • the second radiator acts as a parasitic radiator of the first radiator, the current near the first radiator is strong, and the current near the second radiator is weak, that is, the current near the first radiator and the second radiator uneven distribution.
  • the switching control can also change the current distribution of the current near the first radiator and the second radiator, which is beneficial to improve the efficiency of the antenna, the performance of the antenna side head hand mode, and optimize the specific absorption rate characteristics of the antenna.
  • the antenna further includes a plurality of phase shifters, the plurality of phase shifters are connected in parallel to the second feeder, and are connected between the switch and the second radiator, and the phase adjustment values of the plurality of phase shifters are different,
  • the switches are switchably connected to different phase shifters to adjust the phase of the radio frequency signal fed by the first feed into the second radiator.
  • the phase shifters with different phase adjustment values can be connected to the second feeder, so as to adjust the phase difference of the radio frequency signals fed by the first feeder into the first radiator and the second radiator.
  • the switching control of the working mode of the antenna is beneficial to improve the efficiency of the antenna, the performance of the hand mode of the side head of the antenna, and optimize the specific absorption rate characteristics of the antenna.
  • the number of phase shifters is three, the phase adjustment value of one phase shifter is 0 degrees, the phase adjustment value of one phase shifter is 90 degrees, and the phase adjustment value of one phase shifter is 180 degrees. .
  • the antenna further includes a phase adjuster, and the phase adjuster is arranged on the second feeder and connected between the switch and the second radiator.
  • the phase adjuster adjusts the phase of the radio frequency signal fed by the first feed source into the second radiator.
  • the phase adjuster can be connected to the second feeder, so as to adjust the phase difference of the radio frequency signals fed by the first feeder into the first radiator and the second radiator, and realize the adjustment of the antenna.
  • the switching control of the working mode is beneficial to improve the efficiency of the antenna, the performance of the hand mode of the antenna side head, and optimize the specific absorption rate characteristics of the antenna.
  • the first feed is a full-band feed. That is, the first feed source is a feed source covering three frequency bands of the intermediate frequency, the intermediate frequency and the high frequency.
  • the first feed source is a medium and high frequency feed source
  • the antenna further includes a second feed source and a third feed line
  • the second feed source is used to connect the radio frequency front end
  • the second feed source is electrically connected to the second feed source through the third feed line.
  • the radiator, the second feed source is a low frequency feed source.
  • mid- and high-frequency RF signals have a greater impact on the SAR value of the antenna.
  • the use of mid-high frequency and low-frequency feeds to feed the antenna is more conducive to adjusting the mid-high frequency RF signals and optimizing the antenna. Specific absorption rate characteristics.
  • the antenna further includes a first filter and a second filter.
  • the first filter is arranged on the second feed line, and is connected between the first feed source and the second radiator, and is used for filtering low-frequency radio frequency signals.
  • the second filter is arranged on the third feed line, and is connected between the second feed source and the second radiator, and is used for filtering medium and high frequency radio frequency signals.
  • the antenna further includes a first tuning circuit, one end of the first tuning circuit is grounded, and the other end is connected to the first radiator, and the first tuning circuit is used to adjust the electrical length of the first radiator to change the first radiator.
  • the resonant frequency of the radiator enables the first radiator to switch between different working frequency bands according to actual needs, so that the antenna can cover different working frequency bands.
  • the first tuning circuit includes a plurality of different first tuning elements and a first switch, the plurality of different first tuning elements are all connected to the first radiator, one end of the first switch is grounded, and the other is connected to the ground. One end is switchably connected to different first tuning elements, and different first tuning elements are connected to the first radiator to adjust the electrical length of the first radiator.
  • the first tuning element is a tuning element such as capacitance, inductance or resistance.
  • the antenna further includes a second tuning circuit, one end of the second tuning circuit is grounded, and the other end is connected to the second radiator, and the second tuning circuit is used to adjust the electrical length of the second radiator to change the second radiator.
  • the resonant frequency of the radiator enables the second radiator to switch between different working frequency bands according to actual needs, so that the antenna can cover different working frequency bands.
  • the second tuning circuit includes a plurality of different second tuning elements and a second switch, the plurality of different second tuning elements are all connected to the second radiator, one end of the second switch is grounded, and the other is connected to the ground. One end is switchably connected to different second tuning elements, and different second tuning elements are connected to the second radiator to adjust the electrical length of the second radiator.
  • the second tuning element is a tuning element such as capacitance, inductance or resistance.
  • the present application provides a communication device, including a radio frequency front end and any of the above antennas, where the radio frequency front end is connected to a first feed source for feeding radio frequency signals to the antenna, and/or receiving radio frequency signals received by the antenna Signal.
  • the first feed source feeds the radio frequency signal to the first radiator and the second radiator, and the first radiator and the second radiator receive the radio frequency of the same phase Signal, the first radiator and the second radiator are coupled to each other, and a single resonance occurs.
  • the current distribution near the first radiator and the second radiator is relatively uniform, and the first radiator and the second radiator can be fully excited, which is beneficial to reduce the SAR value of the antenna, improve the efficiency of the antenna and improve the efficiency of the antenna.
  • Modular performance thereby improving the antenna performance of the communication device, improving the wireless performance of the user in the actual use scenario, and improving the user experience.
  • the communication device includes a frame including a first metal segment and a second metal segment spaced apart from each other, the first metal segment forming a first radiator, and the second metal segment forming a second radiator. That is, part of the frame can be used as the first radiator and the second radiator of the antenna, which can reduce the space occupied by the antenna in the communication device.
  • the communication device includes a frame, the frame is made of non-metallic material, the first radiator and the second radiator are spaced apart from each other, and are arranged against the frame to reduce the space occupied by the antenna in the communication device.
  • FIG. 1 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 2 is the partial structure schematic diagram of the communication equipment shown in Fig. 1;
  • FIG. 3 is a partial structural schematic diagram of a second communication device provided by an embodiment of the present application.
  • FIG. 4 is a partial structural schematic diagram of a third communication device provided by an embodiment of the present application.
  • FIG. 5 is a partial structural schematic diagram of a fourth communication device provided by an embodiment of the present application.
  • FIG. 6 is a partial structural schematic diagram of a fifth communication device provided by an embodiment of the present application.
  • FIG. 7 is a graph of the return loss coefficient of the antenna in a free state and an efficiency graph in different states when the third switch in the communication device shown in FIG. 6 is turned off;
  • FIG. 8 is a schematic diagram of the current distribution when the third switch in the communication device shown in FIG. 6 is turned off;
  • FIG. 9 is a graph of the return loss coefficient of the antenna in a free state and a graph of the efficiency in different states when the first SPST switch in the communication device shown in FIG. 6 is closed;
  • FIG. 10 is a current distribution diagram at 2.2 GHz when the first SPST switch in the communication device shown in FIG. 6 is closed;
  • FIG. 11 is a radiation pattern of the antenna at 2.2 GHz when the first SPST switch in the communication device shown in FIG. 6 is closed;
  • Fig. 12 is the return loss coefficient curve diagram and the efficiency curve diagram of the antenna in the free state when the second SPST switch in the communication device shown in Fig. 6 is closed;
  • FIG. 13 is a current distribution diagram at 1.8 GHz when the second SPST switch in the communication device shown in FIG. 6 is closed;
  • FIG. 14 is a current distribution diagram at 2.55 GHz when the second SPST switch in the communication device shown in FIG. 6 is closed;
  • Fig. 15 is the radiation pattern of the antenna at 1.8GHz when the second SPST switch in the communication device shown in Fig. 6 is closed;
  • Fig. 16 is the radiation pattern of the antenna at 2.55GHz when the second SPST switch in the communication device shown in Fig. 6 is closed;
  • 17 is a graph of the return loss coefficient of the antenna in a free state and a graph of the efficiency of the antenna in different states when the third SPST switch in the communication device shown in FIG. 6 is closed;
  • FIG. 18 is a current distribution diagram at 1.9 GHz when the third SPST switch in the communication device shown in FIG. 6 is closed;
  • Fig. 19 is the radiation pattern of the antenna at 1.9 GHz when the third SPST switch in the communication device shown in Fig. 6 is closed;
  • FIG. 20 is a schematic partial structural diagram of a sixth communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 may be an electronic product with a wireless communication function, such as a handheld device, a vehicle-mounted device, a wearable device, a computer device, a wireless local area network (WLAN) device, or a router.
  • the communication device 1000 may also be called by different names, such as: user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless Communication device 1000, user agent or user device, cellular phone, wireless phone, session initiation protocol (SIP) phone, wireless local loop (WLL) station, personal digital assistant (PDA) ), terminal equipment in 5G network or future evolution network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the communication device 1000 includes a casing 100, a display screen 200, a receiver (not shown), a speaker 300, a connector 400 and a card tray 500.
  • the display screen 200 is mounted on the casing 100, the receiver, the speaker 300, the connector 400 and the card tray 500 are installed on the inner side of the casing 100 .
  • the casing 100 may include a frame 110 and a back cover 120 , and the back cover 120 is fixed to one side of the frame 110 .
  • the frame 110 and the back cover 120 may be integrally formed to ensure the structural stability of the casing 100 .
  • the frame 110 and the back cover 120 may also be fixed to each other by means of assembly.
  • the frame 110 includes a left frame 110a and a right frame 110b disposed opposite to each other, and a top frame 110c and a bottom frame 110d connected between the left frame 110a and the right frame 110b.
  • the left side frame 110a , the lower side frame 110a , the right side frame 110b and the top side frame 110c are connected end to end to form a square frame 110 .
  • the frame 110 may have chamfered corners to enhance the appearance of the frame 110 , thereby increasing the appearance of the communication device 1000 .
  • the casing 100 is provided with a speaker hole 1001 , an insertion hole 1002 and a mounting hole 1003 .
  • the speaker hole 1001 , the insertion hole 1002 and the installation hole 1003 are all provided on the frame 110 .
  • the speaker hole 1001 , the insertion hole 1002 and the installation hole 1003 are all provided on the bottom frame 110d.
  • the number of the speaker holes 1001 may be one or more. Exemplarily, the number of speaker holes 1001 is multiple, and each speaker hole 1001 communicates between the inner side of the casing 100 and the outer side of the casing 100 .
  • the insertion hole 1002 and the speaker hole 1001 are spaced apart from each other.
  • the installation hole 1003 is located on the side of the insertion hole 1002 away from the speaker hole 1001 and is spaced apart from the insertion hole 1002 .
  • the insertion hole 1002 and the installation hole 1003 are both connected to the inner side and the outer side of the housing 100 .
  • the "hole” described in the embodiments of the present application refers to a hole with a complete hole wall, and the description of the "hole” will be understood in the same way hereinafter.
  • orientation terms such as “left”, “right”, “up” and “down” used in the description of the communication device 1000 in the embodiments of the present application are mainly based on the orientation of the user when using the communication device 1000 by hand.
  • the user uses the communication device 1000 by hand, it is “top” when facing the top, “bottom” when facing the bottom, “left” when facing the left, and “right” when facing the right, which is not an indication or an implied meaning.
  • the devices or elements described above must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be construed as a limitation on the orientation of the communication device 1000 in an actual application scenario.
  • the display screen 200 is fixed on the other side of the frame 110 for displaying information such as images and videos. That is, the display screen 200 and the back cover 120 are respectively fixed to two sides of the frame 110 .
  • the display screen 200 is placed toward the user, and the back cover 120 is placed away from the user.
  • the display screen 200 is provided with a receiving hole 2001 , and the receiving hole 2001 is a through hole passing through the display screen 200 .
  • a speech hole may be formed between the edge of the display screen 200 and the casing 100 .
  • a receiving hole 2001 is formed between the display screen 200 and the edge of the top frame 110c.
  • the housing 100 is provided with a receiving hole 2001 .
  • the top frame 110c of the housing 100 is provided with a receiving hole 2001 . It should be understood that the embodiment of the present application does not strictly limit the specific formation structure and position of the receiving hole 2001 .
  • the display screen 200 may be a flexible display screen or a rigid display screen.
  • the display screen 200 may be an organic light-emitting diode (organic light-emitting diode, OLED) display screen, an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light-emitting diode, AMOLED) display, mini organic light-emitting diode (mini organic light-emitting diode) display, micro light-emitting diode (micro organic light-emitting diode) display, micro organic light-emitting diode (micro organic light-emitting diode) display, quantum dots Light-emitting diode (quantum dot light emitting diodes, QLED) display or liquid crystal display (Liquid Crystal Display, LCD).
  • OLED organic light-emitting diode
  • AMOLED active-matrix organic light-emitting diode
  • the receiver is located on the top of the communication device 1000 , and the sound from the receiver is transmitted to the outside of the communication device 1000 through the speech hole 2001 , so as to realize the sound playing function of the communication device 1000 .
  • the speaker 300 , the connector 400 and the card tray 500 are all located at the bottom of the communication device 1000 .
  • the sound emitted by the speaker 300 is transmitted to the outside of the communication device 1000 through the speaker hole 1001 , so as to realize the sound playing function of the communication device 1000 .
  • the connector 400 corresponds to the insertion hole 1002 , and the opposite connector (not shown) can be electrically connected to the connector 400 through the insertion hole 1002 to realize data transmission or charging of the communication device 1000 .
  • the card tray 500 passes through the mounting hole 1003 for loading the SIM card. Wherein, the outer surface of the card tray 500 and the outer surface of the frame 110 may be located on the same surface, so as to enhance the appearance of the communication device 1000 .
  • FIG. 2 is a partial structural diagram of the communication device 1000 shown in FIG. 1 .
  • the communication device 1000 further includes an antenna module 600 .
  • the antenna module 600 includes an antenna 610 and a radio frequency front end 620 .
  • the antenna 610 is used to radiate radio frequency signals to the outside world or receive radio frequency signals from the outside world, so that the communication device 1000 can communicate with the outside world through the antenna.
  • the antenna may be an inverted F-shaped antenna (IFA), a monopole antenna (monopole antenna), a composite right and left hands antenna (CRLH antenna), a loop antenna (Loop antenna).
  • the radio frequency front end 620 is electrically connected to the antenna 610 , and is used for feeding radio frequency signals to the antenna 610 or receiving external radio frequency signals received by the antenna 610 . It can be understood that, according to different forms of the antenna 610 , the RF front-end 620 can selectively feed the antenna 610 in a low-impedance feeding manner or a large-impedance feeding manner, which is not specifically limited in this application.
  • the RF front end 620 may include a transmit path and a receive path (not shown).
  • the transmit path may include devices such as power amplifiers and filters. Devices such as power amplifiers and filters can perform processing such as power amplification and filtering on the radio frequency signal, and transmit it to the antenna 610 , and then transmit it to the outside world through the antenna 610 .
  • the receiving path may include devices such as low noise amplifiers and filters. Devices such as low noise amplifiers and filters can perform low noise amplification and filtering processing on the external radio frequency signals received by the antenna 610, and transmit them to the radio frequency chip to enable communication.
  • the device 1000 communicates with the outside world through the radio frequency front end 620 and the antenna 610 .
  • the antenna 610 includes a first radiator 10 and a second radiator 20 .
  • the first radiator 10 and the second radiator 20 may be coupled to each other.
  • the mutual coupling between the first radiator 10 and the second radiator 20 means that when the first radiator 10 feeds a radio frequency signal, the second radiator 20 can be coupled, and when the second radiator 10 feeds a radio frequency signal When a radio frequency signal is fed into the 20, the first radiator 10 can be coupled.
  • the first radiator 10 and the second radiator 20 are both L-shaped. It should be understood that the shapes of the first radiator 10 and the second radiator 20 are not limited to the L-shape shown in FIG. 2 , but may also be in-line or other special shapes. The shape of the radiator 20 is not particularly limited.
  • the frame 110 includes a first metal segment 110e and a second metal segment 110f spaced apart from each other, the first metal segment 110e forms the first radiator 10 , and the second metal segment 110f forms the second radiator 20 .
  • the frame 110 may be made of a metal material, and the frame 110 is grounded. Part of the frame 110 can be used as the first radiator 10 , and part of the frame 110 can be used as the second radiator 20 , so as to reduce the space occupied by the antenna 610 .
  • the bottom frame 110d is provided with a first slit 111 and a second slit 112 spaced apart from each other, the first metal segment 110e is located on the side of the first slit 111 away from the second slit 112 , and the second metal segment 110f is located away from the second slit 112 One side of the first slit 111 .
  • other parts of the frame 110 except the first metal segment 110e and the second metal segment 110f can also be used as radiators for other antennas of the communication device 1000 (eg, a WIFI antenna or a GPS antenna, etc.).
  • the frame 110 may also be provided with one slit or more than three slits, as long as the first radiator 10 and the second radiator 20 can be coupled to each other.
  • a portion of the frame 110 located between the first slit 111 and the second slit 112 forms a suspended metal portion 113 .
  • the first radiator 10 and the second radiator 20 may be coupled to each other through the first slit 111 , the suspended metal portion 113 and the second slit 112 .
  • the widths of the first slit 111 and the second slit 112 are both between 0.5 mm and 0.8 mm.
  • the first slit 111 and the second slit 112 may be filled with a dielectric material to enhance the electrical isolation effect between the first radiator 10 and the second radiator 20 and other parts of the frame 110 .
  • the frame 110 may also be made of non-metallic materials. At this time, the frame 110 cannot serve as the first radiator 10 and the second radiator 20 of the antenna 610 .
  • the first radiator 10 and the second radiator 20 may be disposed inside the frame 110. Exemplarily, the first radiator 10 and the second radiator 20 are spaced apart from each other and disposed against the frame 110 to reduce the space occupied by the antenna 610 . At this time, the first radiator 10 and the second radiator 20 are closer to the outside of the communication device 1000 , which is beneficial to improve the signal transmission efficiency of the antenna 610 .
  • first radiator 10 and the second radiator 20 are arranged adjacent to the frame 110 in this application, it means that the first radiator 10 and the second radiator 20 can be arranged close to the frame 110 or close to the frame 110 .
  • the frame 110 is provided, that is, there may be a certain small gap between the first radiator 10 and the second radiator 20 and the frame 110 .
  • the frame 110 does not need to be provided with the first slot 111 and the second slot 112, and the radio frequency signals output or received by the first radiator 10 and the second radiator 20 can be transmitted through the frame 110, avoiding the frame 110 to radio frequency
  • the antenna 610 may be in the form of a flexible printed circuit (FPC) antenna, a laser-direct-structuring (LDS) antenna, or a microstrip disk antenna (MDA), etc. Antenna form.
  • the first radiator 10 has a first feed point 101 , a first ground point 102 and a first connection point 103 .
  • the first feeding point 101 is disposed at one end of the first radiator 10 close to the first slot 111 .
  • the first feeding point 101 is used for electrical connection with the RF front end 620 to feed the RF signal of the RF front end 620 into the first radiator 10 , or transmit the RF signal received by the first radiator 10 to the RF front end 620 .
  • the second ground point 103 is disposed at one end of the first radiator 10 away from the first slot 111 and is grounded.
  • the first connection point 103 is disposed at one end of the first feeding point 101 away from the first slot 111 and close to the first feeding point 101 .
  • the antenna 610 further includes a first feeding member 11 , a first grounding member 12 and a first tuning circuit 13 .
  • one end of the first feeding member 11 is connected to the radio frequency front end 620 , and the other end is connected to the first radiator 10 .
  • the other end of the first feeding element 11 is connected to the first feeding point 101 . That is, the RF front end 620 can be connected to the first feeding point 101 of the first radiator 10 through the first feeding element 11 .
  • the first feeding member 11 may be a feeding member such as a feeding elastic sheet or a feeding wire.
  • the first feeding point 101 described in the embodiments of the present application is not an actual existing point, and the position where the first radiator 10 and the first feeding element 11 are connected is the first feeding point 101 .
  • the antenna 610 may also not include the first ground member 12 .
  • first ground member 12 One end of the first ground member 12 is connected to the first radiator 10, and the other end is grounded. Specifically, one end of the first ground member 12 is connected to the first connection point 103 . That is, the first radiator 10 can be grounded through the first grounding member 12 .
  • the first grounding member 12 may be a grounding member such as a grounding spring or a grounding wire. It should be noted that the first connection point 103 described in the embodiments of the present application is not an actual existing point, and the position of the first radiator 10 and the first grounding member 12 is the first connection point 103 .
  • the first tuning circuit 13 includes a first switch 14 and a plurality of different first tuning elements 15 .
  • a plurality of different first tuning elements 15 are each connected to the first radiator 10 .
  • One end of the first switch 14 is grounded, and the other end is switchably connected to different first tuning elements 15 to adjust the electrical length of the first radiator 10 .
  • the first tuning element 15 may be a capacitor, an inductor or a resistor or other device.
  • the number of the first tuning elements 15 is four.
  • the first switch 14 includes four SPST switches 141, and the four SPST switches 141 are connected in parallel. Specifically, one end of each SPST switch 141 is grounded. The other ends of the two SPST switches 141 are connected to the first feeder 11 through two different first tuning elements 15 , and the other ends of the two SPST switches 141 are connected through the other two first tuning elements 15 to the first ground member 12 .
  • the electrical length of the first radiator 10 can be adjusted, thereby changing the resonant frequency of the first radiator 10, so that the A radiator 10 can be switched between different working frequency bands according to actual needs, so that the antenna 610 can cover different working frequency bands.
  • the number of the first tuning elements 15 may be two, three, or more than five, and the first switch 14 may correspondingly include two, three, or more than five single-pole single-throw switch, or the first switch 14 may be other types of switches, for example, may include physical switches such as a single-pole multi-throw switch or a multi-pole multi-throw switch, or may be a mobile industry processor interface (MIPI) ) or general-purpose input/output (GPIO) and other switchable interfaces.
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • the second radiator 20 has a second feed point 201 and a second ground point 202 .
  • the second feeding point 201 is disposed at one end of the second radiator 20 close to the second slot 112 .
  • the second feeding point 201 is used for electrical connection with the RF front end 620 to feed the RF signal of the RF front end 620 into the second radiator 20 , or transmit the RF signal received by the second radiator 20 to the RF front end 620 .
  • the second ground point 202 is disposed at one end of the second radiator 20 away from the second slot 112 and is grounded.
  • the antenna 610 further includes a second feeding member 21 , a second grounding member 22 and a second tuning circuit 23 .
  • one end of the second feeding member 21 is connected to the radio frequency front end 620 , and the other end is connected to the second radiator 20 .
  • the other end of the second feeding element 21 is connected to the second feeding point 201 .
  • the second feeding member 21 may be a feeding member such as a feeding elastic sheet or a feeding wire. It should be noted that the second feeding point 201 described in the embodiments of the present application is not an actual existing point, and the position where the second radiator 20 and the second feeding element 21 are connected is the second feeding point 201 .
  • the second ground member 22 is connected to the second radiator 20, and the other end is grounded. Specifically, one end of the second ground member 22 is connected to the second ground point 202 . That is, the second radiator 20 can be grounded through the second ground member 22 .
  • the second grounding member 22 may be a grounding member such as a grounding spring sheet or a grounding wire.
  • the antenna 610 may not include the second ground member 22, and the second ground point 202 is directly grounded. It should be noted that the second grounding point 202 described in the embodiment of the present application is not an actual existing point, and the grounded position in the second radiator 20 is the second grounding point 202 .
  • the second tuning circuit 23 is connected to the second radiator 20 and the other end is grounded, and is used for adjusting the electrical length of the second radiator 20 .
  • one end of the second tuning circuit 23 is connected to the second feeding element 21 .
  • the second tuning circuit 23 includes a second switch 24 and a plurality of different second tuning elements 25 .
  • a plurality of different second tuning elements 25 are each connected to the second radiator 20 .
  • One end of the second switch 24 is grounded, and the other end is switchably connected to different second tuning elements 25 to adjust the electrical length of the second radiator 20 .
  • the second tuning element 25 may be a capacitor, an inductor or a resistor.
  • the number of the second tuning elements 25 is four.
  • the second switch 24 includes four SPST switches 241, and the four SPST switches 241 are connected in parallel. Specifically, one end of the four SPST switches 241 is grounded, and the other end is connected to the second feeding element 21 through different second tuning elements 25 .
  • the electrical length of the second radiator 20 can be adjusted, thereby changing the resonant frequency of the second radiator 20, so that the first The two radiators 20 can be switched between different working frequency bands according to actual needs, so that the antenna 620 can cover different working frequency bands.
  • the number of the second tuning elements 25 may be one, two, three or more than five, in which case the second switch 24 may correspondingly include one, two, three or five
  • the above single-pole single-throw switch, or the second switch 24 may be various types of switches, for example, may include physical switches such as a single-pole-multi-throw switch or a multi-pole-multi-throw switch, or may be a mobile industry processor interface (mobile Industry processor interface, MIPI) or general-purpose input/output interface (general-purpose input/output, GPIO) and other switchable interfaces.
  • MIPI mobile Industry processor interface
  • GPIO general-purpose input/output
  • the antenna 610 may further include a third ground member (not shown), one end of the third ground member is connected to the second radiator 20, and the other end is grounded. At this time, part of the second tuning element 25 is connected to the second feeding part 21, and part of the second tuning element 25 is connected to the third ground part. One end of the second switch 24 is grounded, and the other end is switchably connected to different second tuning elements 25 to adjust the electrical length of the second radiator 20 .
  • the antenna 610 further includes a first feed source (FEED) 31 , a first feed line 40 and a second feed line 50 .
  • the first feed 31 is electrically connected to the radio frequency front end 620 .
  • the first feed source 31 is a full-band feed source. That is, the first feed source 31 is a feed source covering three frequency bands of low frequency (low band, LB), intermediate frequency (middle band, MB) and high frequency (high band, HB). That is, the RF front end 620 feeds the antenna 610 in a common feeding manner.
  • the low frequency band shown in the embodiments of the present application refers to the frequency between 700MHz and 1000MHz
  • the intermediate frequency band refers to the frequency between 1500MHz and 2200MHz
  • the high frequency band refers to the frequency between 2300MHz and 2700MHz.
  • the first feed line 40 is electrically connected between the first feed source 31 and the first radiator 10 . That is, the first feed source 31 is electrically connected to the first radiator 10 via the first feed line 40 .
  • the first feed line 40 is electrically connected to the first radiator 10 via the first feed element 11 .
  • the first feed source 31 is electrically connected to the first feed point 101 via the first feed line 40 and the first feed element 11 , that is, the first radiator 10 can be fed to the first radiator 10 through the first feed line 40 and the first feed element 11 .
  • the radio frequency signal is fed in, and the external radio frequency signal received by the first radiator 10 is received through the first feeder 40 and the first feeder 11 .
  • the second feed line 50 is electrically connected between the first feed source 31 and the second radiator 20 . That is, the first feed source 31 is electrically connected to the second radiator 20 via the second feed line 50 .
  • the second feed line 50 is electrically connected to the second radiator 20 via the second feed element 21 .
  • the first feed source 31 can feed the radio frequency signal to the second radiator 20 through the second feed line 50 and the second feed element 21 , and receive the second radiator through the second feed line 50 and the second feed element 21 20 The received external radio frequency signal.
  • the antenna 610 further includes a switch 60 , and the switch 60 is arranged on the second feed line 50 and connected between the first feed source 31 and the second radiator 20 .
  • the switch 60 is electrically connected to the second radiator 20 via the second feeder 21 .
  • the switch 60 may also be provided on the first feeder 40 and connected to the first feeder 31 and the first radiator 10 .
  • the RF front end 620 includes two switches 60, one switch 60 is arranged on the first feeder 40 and connected between the first feeder 31 and the first radiator 10, and the other switch 60 is arranged on the second feeder 50, and connected between the first feed source 31 and the second radiator 20.
  • switch 60 includes a single pole single throw switch.
  • the switch 60 includes a movable end 60a and a stationary end 60b, one end of the movable end 60a away from the stationary end 60b is electrically connected to the first feed source 31, and one end of the stationary end 60b away from the movable end 60a It is electrically connected to the second feeding member 21 .
  • the end of the movable end portion 60a away from the stationary end portion 60b may also be electrically connected to the second feeding member 21, and the end of the stationary end portion 60b away from the movable end portion 60a may also be electrically connected to the first power feeder 21.
  • the feed source 31 is electrically connected.
  • the first feed source 31 feeds radio frequency signals to the first radiator 10 and the second radiator 20 .
  • the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the first feed 31 can simultaneously excite the first radiator 10 and the second radiator 20 .
  • the first feeder 31 can also receive external radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive external radio frequency signals received by the second radiator 20 through the second feeder 50 .
  • the antenna 610 may not include the switch 60, and the antenna 610 is always in the first working mode, which can also reduce the SAR value of the antenna 610 and optimize the specific absorption rate characteristic of the antenna 610.
  • the radio frequency signal of the radio frequency front-end 620 may be divided into two paths with equal power by a power divider (not shown), one radio frequency signal is fed into the first radiator 10 through the first feeder 40, and the other radio frequency signal is fed into the first radiator 10 through the first feeder 40.
  • the second feeder 50 feeds the second radiator 20 .
  • the radio frequency signal of the radio frequency front end 620 can also be divided into two channels by the power divider at an unequal rate.
  • the first radiator 10 and the second radiator 20 receive radio frequency signals of the same phase (ie, the phase difference is 0), and the first radiator 10 and the second radiator 20 pass through the first slot 111 and the second slot 112 Coupled with each other, the electrical lengths of the first radiator 10 and the second radiator 20 are the same, the first radiator 10 and the second radiator 20 work at the same frequency, and a single resonance occurs.
  • the current distribution in the vicinity of the first radiator 10 and the second radiator 20 is relatively uniform, and the first radiator 10 and the second radiator 20 can be more fully excited, which is beneficial to reduce the SAR value of the antenna 610 and improve the efficiency of the antenna and the antenna.
  • Beside head and hand (BHH) die performance.
  • the first feed source 31 feeds a radio frequency signal to the first radiator 10 .
  • the first feed source 31 feeds a radio frequency signal to the first radiator 10 through the first feed line 40 .
  • the first feed 31 can only excite the first radiator 10 but cannot excite the second radiator 20 .
  • the first feed source 31 can also receive external radio frequency signals received by the first radiator 10 through the first feed line 40 .
  • the second radiator 20 acts as a parasitic radiator of the first radiator 10 , and the first radiator 10 couples and excites the second radiator 20 through the first slot 111 and the second slot 112 .
  • the current near the first radiator 10 is stronger, while the current near the second radiator 20 is weak. That is, the current distribution in the vicinity of the first radiator 10 and the second radiator 20 is not uniform.
  • the individual excitation of the first radiator 10 or the simultaneous excitation of the first radiator 10 and the second radiator 20 can be realized, so as to realize the simultaneous excitation of the first radiator 10 and the second radiator 20 .
  • the switching control between the first working mode and the second working mode of the antenna 610 can also change the current distribution of the current in the vicinity of the first radiator 10 and the second radiator 20, which is beneficial to improve the efficiency of the antenna and improve the efficiency of the antenna.
  • the mode performance is optimized, and the specific absorption rate characteristic of the antenna 610 is optimized, thereby improving the antenna performance of the communication device 1000, improving the wireless performance of the user in the actual use scenario, and improving the user's use experience.
  • FIG. 3 is a schematic partial structural diagram of a second communication device 1000 provided by an embodiment of the present application.
  • the antenna 610 further includes a plurality of phase shifters 70 , and the plurality of phase shifters 70 are arranged in parallel on the second feeder 50 and connected to between the switch 60 and the second radiator 20 .
  • the phase adjustment values of the plurality of phase shifters 70 are different, and the switch 60 is switchably connected to different phase shifters 70 to adjust the phase of the radio frequency signal fed by the first feed source 31 to the second radiator 20 .
  • the number of phase shifters 70 is three, and for ease of understanding, the three phase shifters 70 are named as a first phase shifter 71 , a second phase shifter 72 and a third phase shifter 73 respectively.
  • the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 are all arranged on the second feeder 50 and arranged in parallel.
  • the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 are all connected between the switch 60 and the second feeding element 21 for changing the feeding of the first feeding source 31 into the second radiator 20 phase of the RF signal.
  • the number of phase shifters 70 may also be one, two, or more than four phase shifters, which are not specifically limited in this application.
  • phase adjustment value of the first phase shifter 71 is 0°
  • the phase adjustment value of the second phase shifter 72 is 90°
  • the phase adjustment value of the third phase shifter 73 is 180°. It should be noted that, in some other embodiments, the phase adjustment values of the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 may also be other values, which are not specifically limited in this application.
  • the switch 60 includes a first SPST switch 61 , a second SPST switch 62 and a third SPST switch 63 .
  • the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 are all disposed on the second feeder 50 and are connected in parallel. Specifically, the movable ends (not shown) of the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 are all connected to the first feed source 31 .
  • the stationary end (not shown) of the first SPST switch 61 is connected to the first phase shifter 71
  • the stationary end (not shown) of the second SPST switch 62 is connected to the second phase shifter 72
  • the stationary end (not shown) of the third SPST switch 63 is connected to the third phase shifter 73 .
  • the fixed ends (not shown) of the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 may all be connected to the first feed source 31 .
  • the movable end (not shown) of the first SPST switch 61 can be connected to the first phase shifter 71
  • the movable end (not shown) of the second SPST switch 62 can be connected to
  • the second phase shifter 72 and the movable end (not shown) of the third SPST switch 63 can be connected to the third phase shifter 73 .
  • the first feed source 31 feeds radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40, and feeds the radio frequency signal to the second radiator 20 through the second feed line 50.
  • the first feeder 31 can also receive external radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive external radio frequency signals received by the second radiator 20 through the second feeder 50 .
  • the first phase shifter 71 is connected to the second feed line 50 , and the first phase shifter 71 adjusts the phase of the radio frequency signal fed by the first feed source 31 into the second radiator 20 by 0°. That is, the first phase shifter 71 does not adjust the phase of the radio frequency signal fed by the first feed source 31 to the second feed point 201 . That is, the phases of the radio frequency signals received by the first radiator 10 and the second radiator 20 are the same, and the phase difference is 0°. It can be understood that the state of the communication device 1000 at this time is the same as the state of the communication device 1000 when the switch 60 is closed in the above embodiment, and the description is not repeated here.
  • the first SPST switch 61, the second SPST switch 62 and the third SPST switch 63 are all off, the first SPST switch 61, the second SPST switch 62 and the third SPST switch 63 are all off, the first SPST switch 61, the second SPST switch 62 and the third SPST switch The movable ends of the three SPST switches 63 are not connected to the stationary ends, and the antenna 610 is in the second working mode.
  • the first feeder 31 can feed the first radiator 10 through the first feeder 40 , but cannot feed the second radiator 20 through the second feeder 50 . It can be understood that the state of the communication device 1000 at this time is the same as the state of the communication device 1000 when the switch 60 is turned off in the above embodiment, and the description is not repeated here.
  • the first feed source 31 feeds radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the first feeder 31 can also receive external radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive external radio frequency signals received by the second radiator 20 through the second feeder 50 .
  • the second phase shifter 72 is connected to the second feed line 50 , and the second phase shifter 72 adjusts the phase of the radio frequency signal fed from the first feed source 31 to the second radiator 20 by 90°. That is, the first radiator 10 and the second radiator 20 receive radio frequency signals of different phases, and the phase difference is 90°.
  • the first radiator 10 and the second radiator 20 are coupled to each other through the first slot 111 and the second slot 112 , the electrical lengths of the first radiator 10 and the second radiator 20 are different, and the first radiator 10 and the second radiator 20 work at different frequencies and double resonance occurs.
  • the first feed source 31 feeds radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the first feeder 31 can also receive external radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive external radio frequency signals received by the second radiator 20 through the second feeder 50 .
  • the third phase shifter 73 is connected to the second feed line 50 , and the third phase shifter 73 adjusts the phase of the radio frequency signal fed by the first feed source 31 into the second radiator 20 by 180°. That is, the first radiator 10 and the second radiator 20 receive radio frequency signals of different phases, and the phase difference is 180°.
  • the first radiator 10 and the second radiator 20 are coupled to each other through the first slot 111 and the second slot 112 , the electrical lengths of the first radiator 10 and the second radiator 20 are the same, and the first radiator 10 and the second radiator 20 work at the same frequency, and a single resonance occurs.
  • switch 60 may also comprise a single-pole, multi-throw switch.
  • the switch 60 includes a movable end and three stationary ends, one end of the movable end away from the stationary end is connected to the first feed source 31, and one end of the three stationary ends away from the movable end Connected to the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 , respectively.
  • the first phase shifter 71, the second phase shifter 72 or the third phase shifter 73 is connected to the second feeder 50, so as to realize the first phase shifter 71, the second phase shifter 72 or the third phase shifter 73.
  • Different phases of the radio frequency signals fed by the feed source 31 to the second feed point 201 are adjusted.
  • the communication device 1000 shown in this embodiment by controlling the closing and opening of the first SPST switch 61, the second SPST switch 62 and the third SPST switch 63, the first phase shifter 71, The second phase shifter 72 or the third phase shifter 73 is connected to the second feeder line 50, which can not only realize the separate excitation of the first radiator 10 or the simultaneous excitation of the first radiator 10 and the second radiator 20, but also The phase difference of the radio frequency signals fed by the first feed source 31 into the first radiator 10 and the second radiator 20 can be adjusted, so as to realize the switching control of the working mode of the antenna 610, and at the same time, the current in the first radiator 10 can be changed.
  • FIG. 4 is a partial structural schematic diagram of a third communication device 1000 provided by an embodiment of the present application.
  • the antenna 710 includes a phase adjuster 70
  • the phase adjuster 70 is provided on the second feeder 50 .
  • the phase adjuster 70 is connected between the switch 60 and the second radiator 20 for changing the phase of the radio frequency signal fed by the first feed source 31 to the second feed point 201 .
  • One end of the phase adjuster 70 is connected to the stationary end portion 60 b of the switch 60 , and the other end is connected to the second feeding member 21 .
  • there are multiple phase adjustment values of the phase adjuster 70 such as 0°, 90°, and 180°.
  • the switch 60 When the switch 60 is turned off, the movable end 60a of the switch 60 is not connected to the stationary end 60b, and the antenna 610 is in the second operation mode. At this time, the first feeder 31 can feed the first radiator 10 through the first feeder 40 , but cannot feed the second radiator 20 through the second feeder 50 . It can be understood that the state of the communication device 1000 at this time is the same as the state of the communication device 1000 when the switch 60 is turned off in the above embodiment, and the description is not repeated here.
  • the movable end 60a of the switch 60 is connected to the stationary end 60b, and the first feed source 31 feeds the radio frequency signal to the first radiator 10 and the second radiator 20 .
  • the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the phase adjuster 70 is connected to the second feed line 50 , and the phase adjuster 70 adjusts the phase of the radio frequency signal fed from the first feed source 31 to the second radiator 20 .
  • the state of the communication device 100 is the same as that of the first single-pole single-pole single-pole single-pole signal in the above-mentioned second embodiment.
  • the throw switch 61 is closed (that is, when the antenna 610 is in the first working mode), the state is the same.
  • the communication equipment The state of 100 is the same as the state when the second SPST switch 62 is closed (ie, when the antenna 610 is in the second working mode) in the second embodiment described above.
  • the state of the communication device 100 is the same as when the third SPST switch 63 in the second embodiment is closed. (that is, when the antenna 610 is in the third working mode), the state is the same, and the description is not repeated here.
  • the phase adjuster 70 can be connected to the second feeder 50, which can not only realize the independent excitation of the first radiator 10 or the first radiator
  • the phase difference of the radio frequency signals fed into the first radiator 10 and the second radiator 20 by the first feed source 31 can also be adjusted, so as to realize the adjustment of the working mode of the antenna 610.
  • Switching control can change the current distribution of the current near the first radiator 10 and the second radiator 20 at the same time, which is beneficial to improve the efficiency of the antenna, the performance of the hand mode of the antenna side, and optimize the specific absorption rate characteristics of the antenna 610, thereby improving communication.
  • the antenna performance of the device 1000 improves the wireless performance of the user in the actual use scenario, and improves the user's use experience.
  • FIG. 5 is a partial schematic structural diagram of a fourth communication device 1000 provided by an embodiment of the present application.
  • the first feed source 31 is a medium and high frequency feed source (MHB FEED). That is, the first feed source 31 is a feed source covering two frequency bands of the intermediate frequency and the high frequency.
  • the antenna 610 also includes a second feed 32 , a third feed 80 , a first filter 91 and a second filter 92 .
  • the second feed 32 is electrically connected to the RF front end 620 .
  • the second feed 32 is a low frequency feed (LB FEED). That is, the second feed source 32 is a feed source covering a frequency band of low frequencies.
  • the RF front-end 620 feeds the antenna 610 by means of low-frequency and mid-high frequency splitting.
  • the first feed source 31 may also be a low frequency feed source
  • the second feed source 32 may also be a medium and high frequency feed source.
  • the first feeder 31 is electrically connected to the first radiator 10 through the first feeder 40 , and can feed mid-to-high frequency radio frequency signals to the first radiator 10 through the first feeder 40 , and receive the first radiator through the first feeder 40 .
  • the first feeder 31 is electrically connected to the second radiator 20 through the second feeder 50 , and can feed mid-to-high frequency radio frequency signals to the second radiator 20 through the second feeder 50 , and receive the second radiator 20 through the second feeder 50 . to the external medium and high frequency radio frequency signals.
  • the third feed line 80 is electrically connected between the second feed source 32 and the second radiator 20 . That is, the second feed source 32 is electrically connected to the second radiator 20 via the third feed source 80 .
  • the third feed line 80 is electrically connected to the second radiator 20 via the second feed element 21 .
  • the second feed source 32 can feed the low-frequency radio frequency signal to the second radiator 20 through the third feed line 80 and the second feed element 21 , and receive the second radiation through the third feed line 80 and the second feed element 21 The external low-frequency radio frequency signal received by the body 20.
  • the third feed line 80 may also be electrically connected between the second feed source 32 and the first radiator 10 . That is, the second feed source 32 is electrically connected to the first radiator 10 via the third feed line 80 . The third feed line 80 is electrically connected to the first radiator 10 via the first feed element 11 . At this time, the second feed source 32 can feed the low-frequency radio frequency signal to the first radiator 10 through the third feed line 80 and the first feed element 11 , and receive the first radiation through the third feed line 80 and the first feed element 11 The external low-frequency radio frequency signal received by the body 10.
  • the second filter 92 is arranged on the third feeder 80 and is connected between the second feeder 32 and the second radiator 20 to filter out the medium and high frequency radio frequencies circulating between the second feeder 32 and the second radiator 20 Signal.
  • the second filter 92 is used to allow low frequency radio frequency signals to pass through, and to block mid-high frequency radio frequency signals from passing through.
  • the second feed source 32 excites the second radiator 20 alone.
  • the second feed source 32 may feed the second radiator 20 through the third feed line 80 .
  • the second feed source 32 can feed low-frequency radio frequency signals to the second radiator 20 through the third feed line 80 , and can also receive external low-frequency radio frequency signals received by the second radiator 20 through the third feed line 80 .
  • the second filter 92 can filter out the external medium and high frequency radio frequency signals received by the second radiator 20 .
  • the first radiator 10 can serve as a parasitic radiator of the second radiator 20
  • the second radiator 20 can also couple and excite the first radiator 10 through the first slot 111 and the second slot 112 .
  • the first filter 91 is arranged on the second feed line 50 and connected between the first feed source 31 and the second radiator 20 to filter out the second feed point 201 between the first feed source 31 and the second radiator 20 low-frequency radio frequency signals that circulate between them.
  • the first filter 91 is used for allowing mid-high frequency radio frequency signals to pass through, and blocking low frequency radio frequency signals from passing through.
  • the first filter 91 is connected between the switch 60 and the second radiator 20 .
  • the switch 60 includes a single-pole single-throw switch.
  • the switch 60 includes a movable end 60a and a stationary end 60b, one end of the movable end 60a away from the stationary end 60b is electrically connected to the first feed source 31, and one end of the stationary end 60b away from the movable end 60a It is electrically connected to the first filter 91 .
  • the end of the movable end 60a away from the stationary end 60b may also be electrically connected to the first filter 91
  • the end of the stationary end 60b away from the movable end 60a may also be electrically connected to the first filter 91
  • the source 31 is electrically connected.
  • the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 through the first feed line 40 , and feeds the medium and high frequency radio frequency signals to the second radiator 20 through the second feed line 50 . In other words, the first feed 31 can excite the first radiator 10 and the second radiator 20 at the same time.
  • the first feeder 31 can also receive the external medium and high frequency radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive the external medium and high frequency signals received by the second radiator 20 through the second feeder 50 . radio frequency signal.
  • the first filter 91 is connected to the second feeder 50 to filter out the external low-frequency radio frequency signal received by the second radiator 20 .
  • the medium and high frequency radio frequency signals of the radio frequency front end 620 can be divided into two channels with equal power by a power divider (not shown), one medium and high frequency radio frequency signal is fed into the first radiator 10 through the first feeder 40, and the other channel is fed into the first radiator 10 through the first feeder 40.
  • the medium and high frequency radio frequency signal is transmitted to the second radiator 20 through the second feeder 50 .
  • the mid-to-high frequency radio frequency signal of the radio frequency front end 620 may also be divided into two channels by the power divider at an unequal rate.
  • the phases of the medium and high frequency radio frequency signals received by the first radiator 10 and the second radiator 20 are the same (ie, the phase difference is 0), and the first radiator 10 and the second radiator 20 can pass through the first slot 111 and The second slots 112 are coupled to each other, the electrical lengths of the first radiator 10 and the second radiator 20 are the same, the first radiator 10 and the second radiator 20 work at the same frequency, and a single resonance occurs.
  • the current distribution in the vicinity of the first radiator 10 and the second radiator 20 is relatively uniform, and the first radiator 10 and the second radiator 20 can be more fully excited, which is beneficial to reduce the SAR value of the antenna 610 and improve the efficiency of the antenna and the antenna. Side head hand mold performance.
  • the medium and high frequency radio frequency signal has a great influence on the SAR value of the antenna 610.
  • the antenna 610 is fed by means of low frequency and medium and high frequency sub-feeding, which is more conducive to the adjustment of the medium and high frequency radio frequency signal. It is beneficial to optimize the specific absorption rate characteristic of the antenna 610 .
  • the first feed source 31 feeds the medium and high frequency radio frequency signal to the first radiator 10 .
  • the first feed source 31 feeds a mid-to-high frequency radio frequency signal to the first radiator 10 through the first feed line 40 .
  • the first feed 31 can only excite the first radiator 10 but cannot excite the second radiator 20 .
  • the first feed source 31 can also receive external medium and high frequency radio frequency signals received by the first radiator 10 through the first feed line 40 .
  • the second radiator 20 acts as a parasitic radiator of the first radiator 10 , and the first radiator 10 couples and excites the second radiator 20 through the first slot 111 and the second slot 112 .
  • the current near the first radiator 10 is stronger, while the current near the second radiator 20 is weak. That is, the current distribution in the vicinity of the first radiator 10 and the second radiator 20 is not uniform.
  • the first feed source 31 can individually excite the first radiator 10, or the first radiator 10 and the second radiator 20 can be excited. At the same time, it is excited to realize the switching control of the working mode of the antenna 610, and at the same time, the current distribution of the current in the vicinity of the first radiator 10 and the second radiator 20 can be changed, which is beneficial to improve the efficiency of the antenna and the performance of the hand mode of the antenna side head.
  • the specific absorption rate characteristic of the antenna 610 is optimized, thereby improving the antenna performance of the communication device 1000, improving the wireless performance of the user in the actual use scenario, and improving the user's use experience.
  • FIG. 6 is a partial schematic structural diagram of a fifth communication device 1000 provided by an embodiment of the present application.
  • the antenna 610 further includes a plurality of phase shifters 70 , and the plurality of phase shifters 70 are connected to the second feeder 50 in parallel. , and is connected between the switch 60 and the second radiator 20 .
  • the phase adjustment values of the plurality of phase shifters 70 are different, and the switch 60 is switchably connected to different phase shifters 70 to adjust the phase of the radio frequency signal fed by the first feed source 31 to the second radiator 20 .
  • the number of phase shifters 70 is three, and for ease of understanding, the three phase shifters 70 are named as a first phase shifter 71 , a second phase shifter 72 and a third phase shifter 73 respectively.
  • the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 are all arranged on the second feeder 50 and arranged in parallel.
  • the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 are all connected between the switch 60 and the second feeding element 21 for changing the feeding of the first feeding source 31 into the second radiator 20 phase of the RF signal.
  • the number of phase shifters 70 may also be one, two, or more than four phase shifters, which are not specifically limited in this application.
  • phase adjustment value of the first phase shifter 71 is 0°
  • the phase adjustment value of the second phase shifter 72 is 90°
  • the phase adjustment value of the third phase shifter 73 is 180°. It should be noted that, in some other embodiments, the phase adjustment values of the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 may also be other values, which are not specifically limited in this application.
  • the switch 60 includes a first SPST switch 61 , a second SPST switch 62 and a third SPST switch 63 .
  • the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 are all disposed on the second feeder 50 and are connected in parallel. Specifically, the movable ends (not shown) of the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 are all connected to the first feed source 31 .
  • the stationary end (not shown) of the first SPST switch 61 is connected to the first phase shifter 71
  • the stationary end (not shown) of the second SPST switch 62 is connected to the second phase shifter 72
  • the stationary end (not shown) of the third SPST switch 63 is connected to the third phase shifter 73 .
  • the fixed ends (not shown) of the first SPST switch 61 , the second SPST switch 62 and the third SPST switch 63 may all be connected to the first feed source 31 .
  • the movable end (not shown) of the first SPST switch 61 can be connected to the first phase shifter 71
  • the movable end (not shown) of the second SPST switch 62 can be connected to
  • the second phase shifter 72 and the movable end (not shown) of the third SPST switch 63 can be connected to the third phase shifter 73 .
  • the first feed source 31 feeds a radio frequency signal to the first radiator 10 .
  • the first feed source 31 feeds a radio frequency signal to the first radiator 10 through the first feed line 40 .
  • the first feed 31 can only excite the first radiator 10 but cannot excite the second radiator 20 .
  • the first feed source 31 can also receive external radio frequency signals received by the first radiator 10 through the first feed line 40 .
  • FIG. 7 is a return loss coefficient ( S11 ) graph of the antenna 610 in a free state and an efficiency graph in different states when the switch 60 of the communication device 1000 shown in FIG. 6 is turned off.
  • the S11 graph is obtained by performing a simulation test when the first feed source 31 is fed and the second feed source 32 is not fed.
  • the abscissa is frequency (unit is GHz), and the ordinate is return loss coefficient and efficiency (unit is dB).
  • the antenna 610 in the free state (free space, FS), the antenna 610 generates double resonance, that is, the antenna 610 has two resonance modes. Among them, the resonant frequencies are around 1.9GHz and 2.2GHz, respectively.
  • the radiation efficiency of the antenna 610 is -2.1204dB when the frequency point is 1.9GHz.
  • the radiation efficiency of the antenna 610 is -9.8664dB at a frequency of 1.9 GHz. That is, compared with the free state, the radiation efficiency of the antenna 610 is reduced by 7.746 dB in the side-to-side state.
  • FIG. 8 is a schematic diagram of current distribution when the switch 60 in the communication device 1000 shown in FIG. 6 is turned off.
  • Figure 8 shows the current distribution at the frequency point of 1.9 GHz.
  • the current is strong at the position where the arrows are dense, and the current is weak at the position where the arrows are sparse. It can be seen from FIG. 8 that the current flows substantially in the direction of the second radiator 20 toward the first radiator 10 .
  • the second radiator 20 serves as a parasitic radiator of the first radiator 10 , and the first radiator 10 couples and excites the second radiator 20 through the first slot 111 and the second slot 112 .
  • the current near the first radiator 10 is relatively strong, and the current near the second radiator 20 is relatively weak. That is, the current distribution in the vicinity of the first radiator 10 and the second radiator 20 is very uneven.
  • the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 and the second radiator 20 .
  • the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 through the first feed line 40 , and feeds the medium and high frequency radio frequency signals to the second radiator 20 through the second feed line 50 .
  • the first feeder 31 can also receive the external medium and high frequency radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive the external medium and high frequency signals received by the second radiator 20 through the second feeder 50 . radio frequency signal.
  • the first phase shifter 71 is connected to the second feed line 50 , and the first phase shifter 71 adjusts the phase of the mid-high frequency radio frequency signal fed by the first feed source 31 into the second radiator 20 by 0°. That is, the first phase shifter 71 does not adjust the phase of the medium and high frequency radio frequency signal fed from the first feed source 31 to the second feed point 201 . That is, the phases of the mid-high frequency radio frequency signals received by the first radiator 10 and the second radiator 20 are the same, and the phase difference is 0°.
  • FIG. 9 is a return loss coefficient ( S11 ) graph and an efficiency graph of the antenna 610 in a free state when the first SPST switch 61 in the communication device 1000 shown in FIG. 6 is closed.
  • the S11 graph is obtained by performing a simulation test when the first feed source 31 is feeding and the second feed source 32 is not feeding.
  • the abscissa of the graph shown in FIG. 9 is frequency (unit is GHz), and the ordinate is efficiency and return loss coefficient (unit is dB). It can be seen from FIG. 9 that when the first SPST switch 61 is closed, the electrical lengths of the first radiator 10 and the second radiator 20 are the same, the first radiator 10 and the second radiator 20 operate at the same frequency, and the antenna 610 generates A single resonance is achieved, and the resonance frequency is around 2.2 GHz. At this time, the antenna 610 forms a slot differential mode (slot DM). At the frequency point of 2.2249 GHz, the return loss coefficient of the antenna 610 is -6.97 dB, and the radiation efficiency of the antenna 610 is greater than -6 dB.
  • slot DM slot differential mode
  • FIG. 10 is a current distribution diagram at 2.2 GHz when the first SPST switch 61 in the communication device 1000 shown in FIG. 6 is closed.
  • the current is strong at the position where the arrows are dense, and the current is weak at the position where the arrows are sparse. It can be seen from FIG. 10 that the current generally flows in a direction in which the first radiator 10 and the second radiator 20 approach each other and move away from each other, and the antenna 610 forms a slot differential mode.
  • the currents near the first radiator 10 and the second radiator 20 are both relatively strong, that is, the current distribution near the first radiator 10 and the second radiator 20 is relatively uniform. Among them, the maximum current density is 235.515A/m.
  • FIG. 11 is a radiation pattern of the antenna 610 at 2.2 GHz when the first SPST switch 61 in the communication device 1000 shown in FIG. 6 is closed.
  • the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the medium and high frequency radio frequency signals to the first radiator 10 through the first feed line 40 , and feeds the medium and high frequency radio frequency signals to the second radiator 20 through the second feed line 50 .
  • the first feeder 31 can also receive the external medium and high frequency radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive the external medium and high frequency signals received by the second radiator 20 through the second feeder 50 . radio frequency signal.
  • the second phase shifter 72 is connected to the second feed line 50 , and the second phase shifter 72 adjusts the phase of the medium and high frequency radio frequency signal fed from the first feed source 31 to the second radiator 20 by 90°. That is, the first radiator 10 and the second radiator 20 receive medium and high frequency radio frequency signals of different phases, and the phase difference is 90°.
  • FIG. 12 is a return loss coefficient ( S11 ) curve and an efficiency curve of the antenna 610 in a free state when the second SPST switch 62 in the communication device 1000 shown in FIG. 6 is closed.
  • the S11 graph is obtained by performing a simulation test when the first feed source 31 is fed and the second feed source 32 is not fed.
  • the abscissa of FIG. 12 is frequency (unit is GHz), and the ordinate is return loss coefficient and efficiency (unit is dB). It can be seen from FIG. 12 that when the second SPST switch 62 is closed, the first radiator 10 and the second radiator 20 are coupled to each other through the first slot 111 and the second slot 112 , and the first radiator 10 and the second radiator The electrical length of the body 20 is different, the first radiator 10 and the second radiator 20 work at different frequencies, the first radiator 10 and the second radiator 20 generate double resonance, and the resonance frequencies are around 1.8GHz and 2.55GHz.
  • the antenna 610 forms a slot common mode (slot CM) and a slot differential mode (slot DM).
  • the antenna 610 forms a slot common mode, and the return loss coefficient of the antenna 610 is -6.97 dB.
  • the antenna 610 forms a slot differential mode, and the return loss coefficient of the antenna 610 is -16.91 dB.
  • the radiation efficiency of the antenna 610 in the slot common mode is higher than the radiation efficiency of the antenna 610 in the slot differential mode.
  • FIG. 13 is a current distribution diagram at 1.8 GHz when the second SPST switch 62 in the communication device 1000 shown in FIG. 6 is closed, and FIG. Current profile at 2.55GHz with SPST switch 62 closed.
  • the current is strong at the position where the arrows are dense, and the current is weak at the position where the arrows are sparse. It can be seen from FIG. 13 that the current flows substantially in the direction of the second radiator 20 toward the first radiator 10 .
  • the currents near the first radiator 10 and the second radiator 20 are strong, that is, the current distribution near the first radiator 10 and the second radiator 20 is relatively uniform, and the antenna 610 forms a slot common mode.
  • the current is strong at the positions where the arrows are dense, and the current is weak at the positions where the arrows are sparse.
  • the current flows substantially in a direction in which the first radiator 10 and the second radiator 20 move away from each other and approach each other.
  • the current near the first radiator 10 and the second radiator 20 is strong, that is, the current distribution near the first radiator 10 and the second radiator 20 is relatively uniform, and the antenna 610 forms a slot differential mode at this time.
  • FIG. 15 is the radiation pattern of the antenna 610 at 1.8 GHz when the second SPST switch 62 in the communication device 1000 shown in FIG. 6 is closed
  • FIG. 16 is the radiation pattern of the communication device 1000 shown in FIG. 6 .
  • the radiation pattern of the antenna 610 at 2.55 GHz when the second SPST switch 62 is closed.
  • the first feed source 31 feeds radio frequency signals to the first radiator 10 and the second radiator 20 . Specifically, the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the first feeder 31 can also receive the external medium and high frequency radio frequency signals received by the first radiator 10 through the first feeder 40 , and can also receive the external medium and high frequency signals received by the second radiator 20 through the second feeder 50 . radio frequency signal.
  • the third phase shifter 73 is connected to the second feed line 50 , and the third phase shifter 73 adjusts the phase of the radio frequency signal fed by the first feed source 31 into the second radiator 20 by 180°. That is, the first radiator 10 and the second radiator 20 receive radio frequency signals of different phases, and the phase difference is 180°.
  • FIG. 17 is a graph of the return loss coefficient ( S11 ) of the antenna 610 in a free state and an efficiency graph in different states when the third SPST switch 63 in the communication device 1000 shown in FIG. 6 is closed .
  • the S11 graph is obtained by performing a simulation test when the first feed source 31 is fed and the second feed source 32 is not fed.
  • the abscissa of FIG. 17 is frequency (unit is GHz), and the ordinate is return loss coefficient and efficiency (unit is dB). It can be seen from FIG. 17 that in the free state, when the third SPST switch 63 is closed, the first radiator 10 and the second radiator 20 are coupled to each other through the first slot 111 and the second slot 112, and the first radiation The electrical lengths of the body 10 and the second radiator 20 are the same, the first radiator 10 and the second radiator 20 work at the same frequency, the antenna 610 generates a single resonance, the resonance frequency is around 1.9GHz, and the antenna 610 forms a slot differential mode. At the frequency point of 1.9 GHz, the callback loss coefficient of the antenna 610 is -14.148 dB.
  • the radiation efficiency of the antenna 610 is -1.406dB at the frequency point of 1.9GHz. Compared with when the switch 60 is turned off, when the third SPST switch 63 is turned on, the radiation efficiency of the antenna 610 is improved by 0.7 dB.
  • the radiation efficiency of the antenna 610 is -7.8508 dB.
  • the radiation efficiency of the antenna 610 is reduced by 6.452 dB.
  • the radiation efficiency of the antenna 610 is improved by about 2dB.
  • FIG. 18 is a current distribution diagram at 1.9 GHz when the third SPST switch 63 in the communication device 1000 shown in FIG. 6 is closed.
  • the current is strong at the position where the arrows are dense, and the current is weak at the position where the arrows are sparse. It can be seen from FIG. 18 that the current generally flows in the direction from the second radiator 20 to the first radiator 10, and the antenna 610 forms a slot common mode.
  • the currents near the first radiator 10 and the second radiator 20 are strong, that is, the current distribution near the first radiator 10 and the second radiator 20 is relatively uniform, and the first radiator 10 and the second radiator 20 can be Fully motivated.
  • FIG. 19 is a radiation pattern of the antenna 610 at 1.9 GHz when the third SPST switch 63 in the communication device 1000 shown in FIG. 6 is closed.
  • Table 1 is a comparison table of bottom surface SAR (bottom body SAR) at the bottom of the communication device 1000 of 5 mm and 0 mm at the same frequency when the antenna 610 shown in FIG. 6 is in two states. It should be understood that the bottom surface of the bottom of the communication device 1000 refers to the outer surface of the lower frame 110d of the frame 110 , that is, the surface of the lower surface 110d away from the upper frame 110c (see FIG. 1 ).
  • the experimental group 1 is in the open state of the switch 60, and the experimental group 2 is in the closed state of the third SPST switch 63.
  • the data shown in Table 1 are the data obtained by normalizing the free state efficiency under the premise that the input power is 24dBm and the normalized efficiency is -4. It can be seen from Table 1 that when the third SPST switch 63 is closed, the SAR value at the bottom of the communication device 1000 is significantly reduced compared to when the switch 60 is open. It can be seen from this that when the third SPST switch 63 is closed, it is more beneficial to optimize the SAR characteristic of the antenna 610 .
  • switch 60 may also comprise a single-pole, multi-throw switch.
  • the switch 60 includes a movable end and three stationary ends, one end of the movable end away from the stationary end is connected to the first feed source 31, and one end of the three stationary ends away from the movable end Connected to the first phase shifter 71 , the second phase shifter 72 and the third phase shifter 73 , respectively.
  • the first phase shifter 71, the second phase shifter 72 or the third phase shifter 73 is connected to the second feeder 50, so as to realize the first phase shifter 71, the second phase shifter 72 or the third phase shifter 73.
  • Different phases of the mid- and high-frequency radio frequency signals fed into the second feed point 201 by the feed source 31 are adjusted.
  • the communication device 1000 shown in this embodiment by controlling the closing and opening of the first SPST switch 61, the second SPST switch 62 and the third SPST switch 63, the first phase shifter 71, The second phase shifter 72 or the third phase shifter 73 is connected to the second feed line 50 , which can not only realize the separate excitation of the first radiator 10 by the first feed source 31 or the first radiator 10 and the second radiator 20
  • the phase difference of the medium and high frequency radio frequency signals fed by the first feed source 31 to the first radiator 10 and the second radiator 20 can also be adjusted, so as to realize the switching control of the working mode of the antenna 610, and at the same time, it can be changed
  • the current distribution of the current in the vicinity of the first radiator 10 and the second radiator 20 is beneficial to improve the efficiency of the antenna, the performance of the antenna side head, optimize the specific absorption rate characteristics of the antenna 610, and further improve the antenna performance of the communication device 1000, Improve the wireless performance of users in actual usage scenarios and improve the user experience.
  • FIG. 20 is a partial schematic structural diagram of a sixth communication device 1000 provided by an embodiment of the present application.
  • the radio frequency front end 620 includes a phase adjuster 70 , and the phase adjuster 70 is provided on the second feeder 50 .
  • the phase adjuster 70 is connected between the switch 60 and the first filter 91 to adjust the phase of the medium and high frequency radio frequency signal fed from the first feed source 31 to the second feed point 201 .
  • One end of the phase adjuster 70 is connected to the stationary end 60 b of the switch 60 , and the other end is connected to the first filter 91 .
  • there are multiple phase adjustment values of the phase adjuster 70 such as 0°, 90°, and 180°.
  • the switch 60 When the switch 60 is turned off, the movable end 60a of the switch 60 is not connected to the stationary end 60b, and the antenna 610 is in the second operation mode. At this time, the first feeder 31 can feed the first radiator 10 through the first feeder 40 , but cannot feed the second radiator 20 through the second feeder 50 . It can be understood that the state of the communication device 1000 at this time is the same as the state of the communication device 1000 when the switch 60 is turned off in the fifth embodiment, and the description is not repeated here.
  • the movable end 60a of the switch 60 is connected to the stationary end 60b, and the first feeder 31 can simultaneously feed the first radiator 10 and the second radiator 20 through the first feeder 40 and the second feeder 50 to feed.
  • the first feed source 31 feeds the radio frequency signal to the first radiator 10 through the first feed line 40 , and feeds the radio frequency signal to the second radiator 20 through the second feed line 50 .
  • the phase adjuster 70 is connected to the second feed line 50 , and the phase adjuster 70 can adjust the phase of the mid-high frequency radio frequency signal fed from the first feed source 31 to the second feed point 201 . It can be understood that when the phase adjuster 70 adjusts the phase of the medium and high frequency radio frequency signal fed from the first feed source 31 to the second radiator 20 by 0°, the state of the communication device 100 is the same as that of the first one in the fifth embodiment above. When the single-pole single-throw switch 61 is closed (that is, when the antenna 610 is in the first working mode), the state is the same.
  • the state of the communication device 100 is the same as when the second SPST switch 62 is closed (ie, when the antenna 610 is in the second working mode) in the fifth embodiment.
  • the state of the communication device 100 is the same as that of the third SPST switch 63 in the fifth embodiment described above.
  • the state when the antenna 610 is closed (ie, when the antenna 610 is in the third working mode) is the same, and the description is not repeated here.
  • the phase adjuster 70 can be connected to the first radiator 70.
  • the two feed lines 50 can not only realize the separate excitation of the first radiator 10 or the simultaneous excitation of the first radiator 10 and the second radiator 20, but also can feed the first feeder 31 into the first radiator 10 and the second radiator 20 at the same time.
  • the phase difference of the radio frequency signals of the two radiators 20 is adjusted to realize the switching control of the working mode of the antenna 610, and at the same time, the current distribution of the current in the vicinity of the first radiator 10 and the second radiator 20 can be changed, which is beneficial to improve the antenna.
  • Efficiency and hand-mode performance of the antenna side head optimize the specific absorption rate characteristics of the antenna 610, thereby improving the antenna performance of the communication device 1000, improving the wireless performance of users in actual use scenarios, and improving user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本申请实施例提供一种天线及通讯设备。天线包括第一辐射体、第二辐射体、第一馈源、第一馈线和第二馈线。第一馈源用于连接射频前端,第一馈源经第一馈线电连接第一辐射体,且经第二馈线电连接第二辐射体。天线处于第一工作模式时,第一馈源向第一辐射体和第二辐射体馈入射频信号,第一辐射体和第二辐射体接收到相同相位的射频信号,第一辐射体和第二辐射体相互耦合,且发生单谐振。本申请实施例所示天线可以获得较低的SAR值,对人体的影响较小。

Description

天线及通讯设备
本申请要求于2021年03月16日提交中国专利局、申请号为202110283470.3、申请名称为“天线及通讯设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及涉及通信技术领域,尤其涉及一种天线及通讯设备。
背景技术
随着无线通讯技术的迅速发展,人们对通讯设备的依赖性越来越大。然而,当通讯设备靠近人体时,天线的电磁辐射比吸收率(specific absorption rate,SAR)较大,人体吸收或消耗的电磁功率较大,对人体会产生较大的影响。
发明内容
第一方面,本申请提供一种天线,包括第一辐射体、第二辐射体、第一馈源、第一馈线和第二馈线。第一馈源用于连接射频前端,第一馈源经第一馈线电连接第一辐射体,且经第二馈线电连接第二辐射体。
天线处于第一工作模式时,第一馈源向第一辐射体和第二辐射体馈入射频信号,第一辐射体和第二辐射体接收到相同相位的射频信号,第一辐射体和第二辐射体相互耦合,且发生单谐振。此时,第一辐射体和第二辐射体附近的电流分布较为均匀,第一辐射体和第二辐射体可被充分地激励,有利于降低天线的SAR值,提高天线效率和天线侧头手模性能。
一种实施方式中,天线还包括开关,开关设于第二馈线,且连接于第一馈源和第二辐射体之间。
开关闭合时,天线处于第一工作模式。
开关断开时,天线处于第二工作模式,第一馈源向第一辐射体馈入射频信号,第一辐射体耦合激励第二辐射体。此时,第二辐射体作为第一辐射体的寄生辐射体,第一辐射体附近的电流较强,第二辐射体附近的电流较弱,即第一辐射体和第二辐射体附近的电流分布不均匀。
通过控制开关的断开或闭合,可实现对第一辐射体的单独激励、或第一辐射体和第二辐射体的同时激励,实现对天线的第一工作模式和第二工作模式之间的切换控制,还可以改变电流在第一辐射体和第二辐射体附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线的比吸收率特性。
一种实施方式中,天线还包括多个移相器,多个移相器并联设于第二馈线,且连接于开关和第二辐射体之间,多个移相器的相位调节值不同,开关可切换地连接至不同的移相器,以调节第一馈源馈入第二辐射体的射频信号的相位。
通过控制开关的切换,可将不同相位调节值的移相器接入第二馈线,实现对第一馈源馈入第一辐射体和第二辐射体的射频信号的相位差进行调节,实现对天线的工作模式的切换控制,有利于提高天线效率、天线侧头手模性能,优化天线的比吸收率特性。
一种实施方式中,移相器的数量为三个,一个移相器的相位调节值为0度,一个移相器的相位调节值为90度,一个移相器的相位调节值为180度。
一种实施方式中,天线还包括相位调节器,相位调节器设于第二馈线,且连接于开关和 第二辐射体之间。
开关闭合时,相位调节器调节第一馈源馈入第二辐射体的射频信号的相位。
通过控制开关的断开或闭合,可将相位调节器接入第二馈线,实现对第一馈源馈入第一辐射体和第二辐射体的射频信号的相位差进行调节,实现对天线的工作模式的切换控制,有利于提高天线效率、天线侧头手模性能,优化天线的比吸收率特性。
一种实施方式中,第一馈源为全频段馈源。即第一馈源为覆盖中频、中频和高频三个频段的馈源。
一种实施方式中,第一馈源为中高频馈源,天线还包括第二馈源和第三馈线,第二馈源用于连接射频前端,第二馈源经第三馈线电连接第二辐射体,第二馈源为低频馈源。
应当理解的是,中高频的射频信号对天线的SAR值影响较大,采用中高频和低频分馈的方式对天线进行馈电,更有利于对中高频射频信号进行调整,有利于优化天线的比吸收率特性。
一种实施方式中,天线还包括第一滤波器和第二滤波器。第一滤波器设于第二馈线,且连接于第一馈源与第二辐射体之间,用于过滤低频射频信号。第二滤波器设于第三馈线,且连接于第二馈源与第二辐射体之间,用于过滤中高频射频信号。
一种实施方式中,天线还包括第一调谐电路,第一调谐电路的一端接地,另一端连接于第一辐射体,第一调谐电路用于调整第一辐射体的电长度,以改变第一辐射体的谐振频率,使得第一辐射体能够依据实际需要在不同的工作频段之间切换,使得天线可覆盖不同的工作频段。
一种实施方式中,第一调谐电路包括多个不同的第一调谐元件和第一切换开关,多个不同的第一调谐元件均连接至第一辐射体,第一切换开关的一端接地,另一端可切换地连接至不同的第一调谐元件,将不同的第一调谐元件接入第一辐射体,以调整第一辐射体的电长度。
其中,第一调谐元件为电容、电感或电阻等调谐元件。
一种实施方式中,天线还包括第二调谐电路,第二调谐电路的一端接地,另一端连接至第二辐射体,第二调谐电路用于调整第二辐射体的电长度,以改变第二辐射体的谐振频率,使得第二辐射体能够依据实际需要在不同的工作频段之间切换,使得天线可覆盖不同的工作频段。
一种实施方式中,第二调谐电路包括多个不同的第二调谐元件和第二切换开关,多个不同的第二调谐元件均连接至第二辐射体,第二切换开关的一端接地,另一端可切换地连接至不同的第二调谐元件,将不同的第二调谐元件接入第二辐射体,以调整第二辐射体的电长度。
其中,第二调谐元件为电容、电感或电阻等调谐元件。
第二方面,本申请提供一种通讯设备,包括射频前端和上述任一种天线,射频前端连接至第一馈源,用于向天线馈入射频信号,和/或,接收天线收到的射频信号。
本申请所示通讯设备中,天线处于第一工作模式时,第一馈源向第一辐射体和第二辐射体馈入射频信号,第一辐射体和第二辐射体接收到相同相位的射频信号,第一辐射体和第二辐射体相互耦合,且发生单谐振。此时,第一辐射体和第二辐射体附近的电流分布较为均匀,第一辐射体和第二辐射体可被充分地激励,有利于降低天线的SAR值,提高天线效率和天线侧头手模性能,进而提高了通讯设备的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
一种实施方式中,通讯设备包括边框,边框包括彼此间隔的第一金属段和第二金属段,第一金属段形成第一辐射体,第二金属段形成第二辐射体。即部分边框可作为天线的第一辐 射体和第二辐射体,可以减小天线在通讯设备的占用空间。
一种实施方式中,通讯设备包括边框,边框采用非金属材料制成,第一辐射体和第二辐射体彼此间隔,且均贴靠边框设置,以减小天线在通讯设备的占用空间。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通讯设备的结构示意图;
图2是图1所示通讯设备的部分结构示意图;
图3是本申请实施例提供的第二种通讯设备的部分结构示意图;
图4是本申请实施例提供的第三种通讯设备的部分结构示意图;
图5是本申请实施例提供的第四种通讯设备的部分结构示意图;
图6是本申请实施例提供的第五种通讯设备的部分结构示意图;
图7是图6所示通讯设备中第三开关断开时天线在自由状态下的回波损耗系数曲线图和在不同状态下的效率曲线图;
图8是图6所示通讯设备中第三开关断开时的电流分布示意图;
图9是图6所示通讯设备中第一单刀单掷开关闭合时天线在自由状态下的回波损耗系数曲线图和在不同状态下的效率曲线图;
图10是图6所示通讯设备中第一单刀单掷开关闭合时在2.2GHz下的电流分布图;
图11是图6所示通讯设备中第一单刀单掷开关闭合时天线在2.2GHz下的辐射方向图;
图12是图6所示通讯设备中第二单刀单掷开关闭合时天线在自由状态下的回波损耗系数曲线图和效率曲线图;
图13是图6所示通讯设备中第二单刀单掷开关闭合时在1.8GHz下的电流分布图;
图14是图6所示通讯设备中第二单刀单掷开关闭合时在2.55GHz下的电流分布图;
图15是图6所示通讯设备中第二单刀单掷开关闭合时天线在1.8GHz下的辐射方向图;
图16是图6所示通讯设备中第二单刀单掷开关闭合时天线在2.55GHz下的辐射方向图;
图17是图6所示通讯设备中第三单刀单掷开关闭合时天线在自由状态下的回波损耗系数曲线图以及天线在不同状态下的效率曲线图;
图18是图6所示通讯设备中第三单刀单掷开关闭合时在1.9GHz下的电流分布图;
图19是图6所示通讯设备中第三单刀单掷开关闭合时天线在1.9GHz下的辐射方向图;
图20是本申请实施例提供的第六种通讯设备的部分结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,图1是本申请实施例提供的一种通讯设备1000的结构示意图。
通讯设备1000可以是手持设备、车载设备、可穿戴设备、计算机设备、无线局域网(wireless local area network,WLAN)设备或路由器等具有无线通信功能的电子产品。在一些应用场景下,通讯设备1000也可以叫做不同的名称,例如:用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通讯设备1000、用户代理或用户装置、蜂窝电话、无线电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、5G网 络或未来演进网络中的终端设备等。本申请实施例以通讯设备1000是手机为例进行说明。
通讯设备1000包括壳体100、显示屏200、受话器(图未示)、扬声器300、连接器400和卡托500,显示屏200安装于壳体100,受话器、扬声器300、连接器400和卡托500均安装于壳体100的内侧。
壳体100可包括边框110和后盖120,后盖120固定于边框110的一侧。边框110与后盖120可以为一体成型的结构,以保证壳体100的结构稳定性。或者,边框110与后盖120也可以通过组装方式彼此固定。
其中,边框110包括相对设置的左边框110a和右侧边框110b、以及连接于左侧边框110a和右侧边框110b之间的顶部边框110c和底部边框110d。左侧边框110a、下边框110a、右侧边框110b和顶部边框110c首尾相连形成方形的边框110。此外,边框110可具有倒角,以增加边框110的外观精美度,进而增加通讯设备1000的外观精美度。
壳体100设有扬声孔1001、插接孔1002和安装孔1003。本实施例中,扬声孔1001、插接孔1002和安装孔1003均设于边框110。具体的,扬声孔1001、插接孔1002和安装孔1003均设于底部边框110d。扬声孔1001的数量可以为一个或多个。示例性的,扬声孔1001的数量为多个,每一扬声孔1001均连通壳体100的内侧与壳体100的外侧。插接孔1002与扬声孔1001彼此间隔排布,安装孔1003位于插接孔1002背离扬声孔1001的一侧,且与插接孔1002彼此间隔。其中,插接孔1002和安装孔1003均连通壳体100的内侧和外侧。需要说明的是,本申请实施例所描述的“孔”是指具有完整孔壁的孔,后文中对“孔”的描述作相同理解。
需要说明的是,本申请实施例描述通讯设备1000所采用的“左”、“右”、“上”和“下”等方位词主要是依据用户手持使用通讯设备1000时的方位进行的描述,用户手持使用通讯设备1000时,以朝向顶部为“顶”,以朝向底部为“底”,以朝向左侧为“左”,以朝向右侧为“右”,并不是指示或暗指所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对通讯设备1000于实际应用场景中的方位的限定。
显示屏200固定于边框110的另一侧,用于显示图像和视频等信息。即显示屏200和后盖120分别固定于边框110的两侧。用户手持使用通讯设备1000时,显示屏200朝向用户放置,后盖120背离用户放置。显示屏200设有受话孔2001,受话孔2001为贯穿显示屏200的通孔。
在其他一些实施例中,显示屏200的边缘可与壳体100之间形成受话孔。例如,显示屏200与顶部边框110c的边缘之间形成受话孔2001。或者,壳体100设有受话孔2001。例如,壳体100的顶部边框110c设有受话孔2001。应当理解的是,本申请实施例不对受话孔2001的具体形成结构及位置做严格限定。
本实施例中,显示屏200可以采用柔性显示屏,也可以采用刚性显示屏。示例性的,显示屏200可以为有机发光二极管(organic light-emitting diode,OLED)显示屏、有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏、迷你发光二极管(mini organic light-emitting diode)显示屏、微型发光二极管(micro organic light-emitting diode)显示屏、微型有机发光二极管(micro organic light-emitting diode)显示屏、量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏或液晶显示屏(Liquid Crystal Display,LCD)。
受话器位于通讯设备1000的顶部,受话器发出的声音经受话孔2001传输至通讯设备1000的外部,以实现通讯设备1000的声音播放功能。扬声器300、连接器400和卡托500均位于通讯设备1000的底部。扬声器300发出的声音经扬声孔1001传输至通讯设备1000的外部, 以实现通讯设备1000的声音播放功能。连接器400对应于插接孔1002,对端连接器(图未示)可穿过插接孔1002与连接器400电连接,以实现通讯设备1000的数据传输或充电。卡托500穿设于安装孔1003,用于装载SIM卡。其中,卡托500的外表面与边框110的外表面可位于同一表面,以增加通讯设备1000的外观精美度。
请一并参阅图2,图2是图1所示通讯设备1000的部分结构示意图。
通讯设备1000还包括天线模组600。天线模组600包括天线610和射频前端620。天线610用于向外界辐射射频信号或者接收外界的射频信号,以使通讯设备1000能够通过天线实现与外界的通讯。示例性的,天线可以是倒F型天线(inverted f-shaped antenna,IFA)、单极天线(monopole antenna)、复合左右手(composite right and left hands antenna,CRLH antenna)、环形天线(Loop antenna)。射频前端620与天线610电连接,用于向天线610馈入射频信号或者接收天线610接收到的外界的射频信号。可以理解的是,依据天线610的不同形式,射频前端620可选择性地采用小阻抗馈电方式或大阻抗馈电方式对天线610进行馈电,本申请对此不作具体限定。
一些实施例中,射频前端620可包括发射通路以及接收通路(图未示)。发射通路可包括功率放大器和滤波器等器件。功率放大器和滤波器等器件可将射频信号进行功率放大和滤波等处理,并传输至天线610,经天线610传输至外界。接收通路可包括低噪声放大器和滤波器等器件,低噪声放大器和滤波器等器件可将天线610接收到的外界的射频信号进行低噪声放大和滤波等处理,并传输至射频芯片,以使通讯设备1000通过射频前端620和天线610实现与外界的通讯。
天线610包括第一辐射体10和第二辐射体20。具体的,第一辐射体10和第二辐射体20之间可相互耦合。需要说明的是,第一辐射体10和第二辐射体20之间可相互耦合是指,当第一辐射体10馈入射频信号时,可耦合第二辐射体20,且当第二辐射体20馈入射频信号时,可耦合第一辐射体10。示例性的,第一辐射体10和第二辐射体20均呈L型。应当理解的是,第一辐射体10和第二辐射体20的形状并不仅限于图2所示的L型,也可以呈一字型或其他异型,本申请对第一辐射体10和第二辐射体20的形状不作具体限定。
一些实施例中,边框110包括彼此间隔的第一金属段110e和第二金属段110f,第一金属段110e形成第一辐射体10,第二金属段110f形成第二辐射体20。具体的,边框110可采用金属材料制成,且边框110接地。部分边框110可作为第一辐射体10,部分边框110可作为第二辐射体20,以减小天线610占用的空间。其中,底部边框110d设有彼此间隔的第一缝隙111和第二缝隙112,第一金属段110e位于第一缝隙111远离第二缝隙112的一侧,第二金属段110f位于第二缝隙112远离第一缝隙111的一侧。可以理解的是,边框110除第一金属段110e和第二金属段110f以外的其他部分也可以作为通讯设备1000的其他天线(如WIFI天线或GPS天线等)的辐射体。在其他一些实施例中,边框110也可以设有一个缝隙或三个以上缝隙,只要第一辐射体10和第二辐射体20之间可彼此耦合即可。
此外,边框110中位于第一缝隙111和第二缝隙112之间的部分形成悬浮金属部分113。第一辐射体10和第二辐射体20之间可通过第一缝隙111、悬浮金属部分113和第二缝隙112彼此耦合。其中,第一缝隙111和第二缝隙112的宽度均在0.5mm~0.8mm之间。示例性的,第一缝隙111和第二缝隙112内可以填充介电材料,以增强第一辐射体10和第二辐射体20与边框110其他部分的电隔离效果。
在其他一些实施例中,边框110也可以采用非金属材料。此时,边框110不能作为天线610的第一辐射体10和第二辐射体20。第一辐射体10和第二辐射体20可设置于边框110的 内侧。示例性的,第一辐射体10和第二辐射体20彼此间隔,且贴靠边框110设置,以减少天线610占用的空间。此时,第一辐射体10和第二辐射体20更加靠近通讯设备1000的外部,有利于提高天线610的信号传输效率。需要说明的是,本申请所说的第一辐射体10和第二辐射体20贴靠边框110设置是指第一辐射体10和第二辐射体20可以紧贴边框110设置,也可以为靠近边框110设置,即第一辐射体10和第二辐射体20与边框110之间可具有一定的微小缝隙。
此时,边框110也不需要设置第一缝隙111及第二缝隙112,第一辐射体10和第二辐射体20输出或接收的射频信号能够穿过边框110进行传输,避免了边框110对射频信号的传输进行限制。示例性的,天线610的形式可以为柔性主板(flexible printed circuit,FPC)的天线形式,激光直接成型(laser-direct-structuring,LDS)的天线形式或者微带天线(microstrip disk antenna,MDA)等天线形式。
第一辐射体10具有第一馈电点101、第一接地点102和第一连接点103。第一馈电点101设于第一辐射体10靠近第一缝隙111的一端。第一馈电点101用于与射频前端620电连接,以将射频前端620的射频信号馈入第一辐射体10,或者,将第一辐射体10接收到的射频信号传输至射频前端620。第二接地点103设于第一辐射体10远离第一缝隙111的一端,且接地。第一连接点103设于第一馈电点101远离第一缝隙111的一端,且靠近第一馈电点101。
一些实施例中,天线610还包括第一馈电件11、第一接地件12和第一调谐电路13。具体的,第一馈电件11的一端连接至射频前端620,另一端连接至第一辐射体10。其中,第一馈电件11的另一端连接至第一馈电点101。即射频前端620可通过第一馈电件11连接至第一辐射体10的第一馈电点101。示例性的,第一馈电件11可为馈电弹片或馈电导线等馈电件。需要说明的是,本申请实施例所描述的第一馈电点101并非为实际存在点,第一辐射体10与第一馈电件11连接的位置即为第一馈电点101。在其他一些实施例中,天线610也可以不包括第一接地件12。
第一接地件12的一端连接至第一辐射体10,另一端接地。具体的,第一接地件12的一端连接至第一连接点103。即第一辐射体10可通过第一接地件12接地。示例性的,第一接地件12可为接地弹片或接地导线等接地器件。需要说明的是,本申请实施例所描述的第一连接点103并非为实际存在点,第一辐射体10中与第一接地件12的位置即为第一连接点103。
第一调谐电路13的一端连接至第一辐射体10,另一端接地,用于调整第一辐射体10的电长度。其中,第一调谐电路13的一端同时连接于第一馈电件11和第一接地件12。本实施例中,第一调谐电路13包括第一切换开关14和多个不同的第一调谐元件15。多个不同的第一调谐元件15均连接至第一辐射体10。第一切换开关14的一端接地,另一端可切换地连接至不同的第一调谐元件15,以调整第一辐射体10的电长度。其中,第一调谐元件15可为电容、电感或电阻等器件。
示例性的,第一调谐元件15的数量为四个。第一切换开关14包括四个单刀单掷开关141,四个单刀单掷开关141并联连接。具体的,每一单刀单掷开关141的一端接地。两个单刀单掷开关141的另一端通过两个不同的第一调谐元件15连接至第一馈电件11,两个单刀单掷开关141的另一端通过该另外两个第一调谐元件15连接至第一接地件12。通过调节第一切换开关14的状态,即通过控制四个单刀单掷开关141的断开或闭合,可以调节第一辐射体10的电长度,进而改变第一辐射体10的谐振频率,使得第一辐射体10能够依据实际需要在不同的工作频段之间切换,使得天线610可覆盖不同的工作频段。
在其他一些实施例中,第一调谐元件15的数量可以有两个、三个或五个以上,此时第一 切换开关14可以相对应地包括两个、三个或五个以上单刀单掷开关,或者,第一切换开关14可以为其他类型的切换开关,例如,可以包括单刀多掷开关或多刀多掷开关等物理开关,也可以为移动行业处理器接口(mobile industry processor interface,MIPI)或通用型之输入输出接口(general-purpose input/output,GPIO)等可切换接口。
第二辐射体20具有第二馈电点201和第二接地点202。第二馈电点201设于第二辐射体20靠近第二缝隙112的一端。第二馈电点201用于与射频前端620电连接,以将射频前端620的射频信号馈入第二辐射体20,或者,将第二辐射体20接收到的射频信号传输至射频前端620。第二接地点202设于第二辐射体20远离第二缝隙112的一端,且接地。
一些实施例中,天线610还包括第二馈电件21、第二接地件22和第二调谐电路23。具体的,第二馈电件21的一端连接至射频前端620,另一端连接至第二辐射体20。其中,第二馈电件21的另一端连接至第二馈电点201。示例性的,第二馈电件21可为馈电弹片或馈电导线等馈电件。需要说明的是,本申请实施例所描述的第二馈电点201并非为实际存在点,第二辐射体20与第二馈电件21连接的位置即为第二馈电点201。
第二接地件22的一端连接至第二辐射体20,另一端接地。具体的,第二接地件22的一端连接至第二接地点202。即第二辐射体20可通过第二接地件22接地。示例性的,第二接地件22可为接地弹片或接地导线等接地器件。在其他一些实施例中,天线610可不包括第二接地件22,第二接地点202直接接地。需要说明的是,本申请实施例所描述的第二接地点202并非为实际存在点,第二辐射体20中接地的位置即为第二接地点202。
第二调谐电路23的一端连接至第二辐射体20,另一端接地,用于调整第二辐射体20的电长度。其中,第二调谐电路23的一端连接至第二馈电件21。本实施例中,第二调谐电路23包括第二切换开关24和多个不同的第二调谐元件25。多个不同的第二调谐元件25均连接至第二辐射体20。第二切换开关24的一端接地,另一端可切换地连接至不同的第二调谐元件25,以调整第二辐射体20的电长度。其中,第二调谐元件25可为电容、电感或电阻等器件。
示例性的,第二调谐元件25的数量为四个。第二切换开关24包括四个单刀单掷开关241,四个单刀单掷开关241并联连接。具体的,四个单刀单掷开关241的一端接地,另一端通过不同的第二调谐元件25连接至第二馈电件21。通过调节第二切换开关24的状态,即通过控制四个单刀单掷开关241的断开或闭合,可以调节第二辐射体20的电长度,进而改变第二辐射体20的谐振频率,使得第二辐射体20能够依据实际需要在不同的工作频段之间切换,使得天线620可覆盖不同的工作频段。
在其他一些实施例中,第二调谐元件25的数量可以有一个、两个、三个或五个以上,此时第二切换开关24可以相对应地包括一个、两个、三个或五个以上单刀单掷开关,或者,第二切换开关24可以为多种类型的切换开关,例如,可以包括单刀多掷开关或多刀多掷开关等物理开关,也可以为移动行业处理器接口(mobile industry processor interface,MIPI)或通用型之输入输出接口(general-purpose input/output,GPIO)等可切换接口。
此外,天线610还可以包括第三接地件(图未示),第三接地件的一端连接第二辐射体20,另一端接地。此时,部分第二调谐元件25连接至第二馈电件21,部分第二调谐元件25连接至第三接地件。第二切换开关24的一端接地,另一端可切换地连接至不同的第二调谐元件25,以调整第二辐射体20的电长度。
本实施例中,天线610还包括第一馈源(FEED)31、第一馈线40和第二馈线50。第一馈源31与射频前端620电连接。本实施例中,第一馈源31为全频段馈源。即第一馈源31是 覆盖低频(low band,LB)、中频(middle band,MB)和高频(high band,HB)三个频段的馈源。也即射频前端620采用共馈的方式对天线610进行馈电。应当理解的是,本申请实施例所示低频频段是指频率在700MHz~1000MHz之间,中频频段是指频率在1500MHz~2200MHz之间,高频频段是指频率在2300MHz~2700MHz之间。
第一馈线40电连接于第一馈源31与第一辐射体10之间。即第一馈源31经第一馈线40电连接第一辐射体10。其中,第一馈线40经第一馈电件11电连接第一辐射体10。此时,第一馈源31经第一馈线40和第一馈电件11与第一馈电点101电连接,即可通过第一馈线40和第一馈电件11向第一辐射体10馈入射频信号,并通过第一馈线40和第一馈电件11接收第一辐射体10收到的外界的射频信号。
第二馈线50电连接于第一馈源31与第二辐射体20之间。即第一馈源31经第二馈线50电连接第二辐射体20。其中,第二馈线50经第二馈电件21电连接第二辐射体20。此时,第一馈源31可通过第二馈线50和第二馈电件21向第二辐射体20馈入射频信号,并通过第二馈线50和第二馈电件21接收第二辐射体20收到的外界的射频信号。
此外,天线610还包括开关60,开关60设于第二馈线50,并连接于第一馈源31和第二辐射体20之间。其中,开关60经第二馈电件21电连接第二辐射体20在其他一些实施例中,开关60也可以设于第一馈线40,并连接于第一馈源31和第一辐射体10之间,或者,射频前端620包括两个开关60,一个开关60设于第一馈线40,并连接于第一馈源31和第一辐射体10之间,另一个开关60设于第二馈线50,并连接于第一馈源31和第二辐射体20之间。
示例性的,开关60包括一个单刀单掷开关。开关60包括可动端部60a和不动端部60b,可动端部60a远离不动端部60b的一端与第一馈源31电连接,不动端部60b远离可动端部60a的一端与第二馈电件21电连接。在其他一些实施例中,可动端部60a远离不动端部60b的一端也可与第二馈电件21电连接,不动端部60b远离可动端部60a的一端也可与第一馈源31电连接。
开关60闭合时,可动端部60a连接至不动端部60b,天线610处于第一工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。换言之,第一馈源31可同时激励第一辐射体10和第二辐射体20。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的射频信号。在其他一些实施例中,天线610也可以不包括开关60,此时天线610始终处于第一工作模式,同样可以降低天线610的SAR值,优化天线610的比吸收率特性。
示例性的,射频前端620的射频信号可被功率分配器(图未示)等功率地分配成两路,一路射频信号经第一馈线40馈入第一辐射体10,另一路射频信号经第二馈线50馈入第二辐射体20。在其他一些实施例中,射频前端620的射频信号也可被功率分配器不等率地分配成两路。
此时,第一辐射体10和第二辐射体20接收到相同相位的射频信号(即相位差为0),第一辐射体10和第二辐射体20通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度相同,第一辐射体10和第二辐射体20同频工作,发生单谐振。第一辐射体10和第二辐射体20附近的电流分布较为均匀,第一辐射体10和第二辐射体20可被更加充分地激励,有利于降低天线610的SAR值,提高天线效率和天线侧头手(beside head and hand,BHH)模性能。
开关60断开时,可动端部60a未连接至不动端部60b,天线610处于第二工作模式。第一馈源31向第一辐射体10馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号。换言之,第一馈源31仅可激励第一辐射体10,而无法激励第二辐射体20。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号。
此时,第二辐射体20作为第一辐射体10的寄生辐射体,第一辐射体10通过第一缝隙111和第二缝隙112耦合激励第二辐射体20。第一辐射体10附近的电流较强,而第二辐射体20附近的电流较弱。即第一辐射体10和第二辐射体20附近的电流分布不均匀。
本实施例所示通讯设备1000中,通过控制开关60的断开或闭合,可实现对第一辐射体10的单独激励、或第一辐射体10和第二辐射体20的同时激励,实现对天线610的第一工作模式和第二工作模式之间的切换控制,还可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
请参阅图3,图3是本申请实施例提供的第二种通讯设备1000的部分结构示意图。
本实施例所示通讯设备1000与上述实施例所示通讯设备1000的不同之处在于,天线610还包括多个移相器70,多个移相器70并联设于第二馈线50,且连接于开关60和第二辐射体20之间。多个移相器70的相位调节值不同,开关60可切换地连接至不同的移相器70,以调节第一馈源31馈入第二辐射体20的射频信号的相位。
示例性的,移相器70的数量为三个,为了便于理解,将三个移相器70分别命名为第一移相器71、第二移相器72和第三移相器73。具体的,第一移相器71、第二移相器72和第三移相器73均设于第二馈线50,且并联设置。第一移相器71、第二移相器72和第三移相器73均连接于开关60和第二馈电件21之间,用于改变第一馈源31馈入第二辐射体20的射频信号的相位。可以理解的是,在其他一些实施例中,移相器70的数量也可以为一个、两个或四个以上移相器,本申请对此不作具体限定。
其中,第一移相器71的相位调节值为0°,第二移相器72的相位调节值为90°,第三移相器73的相位调节值为180°。需要说明的是,在其他一些实施例中,第一移相器71、第二移相器72和第三移相器73的相位调节值也可以为其他值,本申请对此不作具体限定。
本实施例中,开关60包括第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63。第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63均设于第二馈线50,且并联设置。具体的,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的可动端部(图未标)均连接至第一馈源31。第一单刀单掷开关61的不动端部(图未标)连接至第一移相器71,第二单刀单掷开关62的不动端部(图未标)连接至第二移相器72,第三单刀单掷开关63的不动端部(图未标)连接至第三移相器73。
在其他一些实施例中,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的不动端部(图未标)可均连接至第一馈源31。此时,第一单刀单掷开关61的可动端部(图未标)可连接至第一移相器71,第二单刀单掷开关62的可动端部(图未标)可连接至第二移相器72,第三单刀单掷开关63的可动端部(图未标)可连接至第三移相器73。
第一单刀单掷开关61闭合,且第二单刀单掷开关62和第三单刀单掷开关63均断开时,第一单刀单掷开关61的可动端部连接至不动端部,第二单刀单掷开关62和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第一工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射 体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的射频信号。
此时,第一移相器71接入第二馈线50中,第一移相器71将第一馈源31馈入第二辐射体20的射频信号的相位调整0°。即第一移相器71不对第一馈源31馈入第二馈点201的射频信号的相位进行调整。也即第一辐射体10和第二辐射体20接收到的射频信号的相位相同,相位差为0°。可以理解的是,此时通讯设备1000的状态与上述实施例中开关60闭合时通讯设备1000的状态相同,在此不再重复描述。
开关60断开时,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63均断开,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第二工作模式。此时,第一馈源31可通过第一馈线40向第一辐射体10馈电,而无法通过第二馈线50向第二辐射体20馈电。可以理解的是,此时通讯设备1000的状态与上述实施例中开关60断开时通讯设备1000的状态相同,在此不再重复描述。
第二单刀单掷开关62闭合,且第一单刀单掷开关61和第三单刀单掷开关63均断开时,第二单刀单掷开关62的可动端部连接至不动端部,第一单刀单掷开关61和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第三工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的射频信号。
此时,第二移相器72接入第二馈线50中,第二移相器72将第一馈源31馈入第二辐射体20的射频信号的相位调整90°。即第一辐射体10和第二辐射体20接收到不同相位的射频信号,相位差为90°。第一辐射体10和第二辐射体20通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度不同,第一辐射体10和第二辐射体20不同频工作,发生双谐振。
第三单刀单掷开关63闭合,且第一单刀单掷开关61和第二单刀单掷开关62均断开时,第三单刀单掷开关63的可动端部连接至不动端部,第一单刀单掷开关61和第二单刀单掷开关62的可动端部均未连接至不动端部,天线610处于第四工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的射频信号。
此时,第三移相器73接入第二馈线50中,第三移相器73将第一馈源31馈入第二辐射体20的射频信号的相位调整180°。即第一辐射体10和第二辐射体20接收到不同相位的射频信号,相位差为180°。第一辐射体10和第二辐射体20通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度相同,第一辐射体10和第二辐射体20同频工作,发生单谐振。
在其他一些实施例中,开关60也可以包括一个单刀多掷开关。此时,开关60包括可动端部和三个不动端部,可动端部远离不动端部的一端连接至第一馈源31,三个不动端部远离可动端部的一端分别连接至第一移相器71、第二移相器72和第三移相器73。可动端部切换 连接至不同的不动端部时,将第一移相器71、第二移相器72或第三移相器73接入至第二馈线50中,从而实现对第一馈源31馈入第二馈点201的射频信号的不同相位调整。
本实施例所示通讯设备1000中,通过控制第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的闭合和断开,可将第一移相器71、第二移相器72或第三移相器73接入第二馈线50,不仅可实现对第一辐射体10的单独激励或对第一辐射体10和第二辐射体20的同时激励,还可对第一馈源31馈入第一辐射体10和第二辐射体20的射频信号的相位差进行调节,实现对天线610的工作模式的切换控制,同时可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
请参阅图4,图4是本申请实施例提供的第三种通讯设备1000的部分结构示意图。
本实施例所示通讯设备1000与上述第一种实施例所示通讯设备1000的不同之处在于,天线710包括相位调节器70,相位调节器70设于第二馈线50。相位调节器70连接于开关60和第二辐射体20之间,用于改变第一馈源31馈入第二馈点201的射频信号的相位。其中,相位调节器70的一端连接至开关60的不动端部60b,另一端连接至第二馈电件21。示例性的,相位调节器70的相位调节值有多个,比如0°、90°和180°等。
开关60断开时,开关60的可动端部60a未连接至不动端部60b,天线610处于第二工作模式。此时,第一馈源31可通过第一馈线40向第一辐射体10馈电,而无法通过第二馈线50向第二辐射体20馈电。可以理解的是,此时通讯设备1000的状态与上述实施例中开关60断开时通讯设备1000的状态相同,在此不再重复描述。
开关60闭合时,开关60的可动端部60a连接至不动端部60b,第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。
此时,相位调节器70接入第二馈线50中,相位调节器70将第一馈源31馈入第二辐射体20的射频信号的相位进行调整。可以理解的是,当相位调节器70将第一馈源31馈入第二辐射体20的射频信号的相位调整0°时,通讯设备100的状态与上述第二种实施例中第一单刀单掷开关61闭合时(即天线610处于第一工作模式时)的状态相同,当相位调节器70将第一馈源31馈入第二辐射体20的射频信号的相位调整90°时,通讯设备100的状态与上述第二种实施例中第二单刀单掷开关62闭合时(即天线610处于第二工作模式时)的状态相同。当相位调节器70将第一馈源31馈入第二辐射体20的射频信号的相位调整180°时,通讯设备100的状态与上述第二种实施例中第三单刀单掷开关63闭合时(即天线610处于第三工作模式时)的状态相同,在此不再重复描述。
本实施例所示通讯设备1000中,通过控制开关60的闭合和断开,可将相位调节器70接入第二馈线50,不仅可实现对第一辐射体10的单独激励或对第一辐射体10和第二辐射体20的同时激励,还可对第一馈源31馈入第一辐射体10和第二辐射体20的射频信号的相位差进行调节,实现对天线610的工作模式的切换控制,同时可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
请参阅图5,图5是本申请实施例提供的第四种通讯设备1000的部分结构示意图。
本实施例所示通讯设备1000与上述第一种实施例所示通讯设备1000的不同之处在于, 第一馈源31为中高频馈源(MHB FEED)。即第一馈源31是覆盖中频和高频两个频段的馈源。天线610还包括第二馈源32、第三馈线80、第一滤波器91和第二滤波器92。第二馈源32与射频前端620电连接。第二馈源32为低频馈源(LB FEED)。即第二馈源32是覆盖低频一个频段的馈源。换言之,射频前端620采用低频和中高频分馈的方式对天线610进行馈电。在其他一些实施例中,第一馈源31也可以为低频馈源,第二馈源32也可以为中高频馈源。
本实施例中,第一馈源31经第一馈线40电连接第一辐射体10,可通过第一馈线40向第一辐射体10馈入中高频射频信号,并通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号。第一馈源31经第二馈线50电连接第二辐射体20,可通过第二馈线50向第二辐射体20馈入中高频射频信号,并通过第二馈线50接收第二辐射体20收到的外界的中高频射频信号。
第三馈线80电连接于第二馈源32与第二辐射体20之间。即第二馈源32经第三馈源80电连接第二辐射体20。其中,第三馈线80经第二馈电件21电连接第二辐射体20。此时,第二馈源32可通过第三馈线80和第二馈电件21向第二辐射体20馈入低频射频信号,并通过第三馈线80和第二馈电件21接收第二辐射体20收到的外界的低频射频信号。
需要说明的是,在其他一些实施例中,第三馈线80也可以电连接于第二馈源32与第一辐射体10之间。即第二馈源32经第三馈线80电连接第一辐射体10。其中,第三馈线80经第一馈电件11电连接第一辐射体10。此时,第二馈源32可通过第三馈线80和第一馈电件11向第一辐射体10馈入低频射频信号,并通过第三馈线80和第一馈电件11接收第一辐射体10收到的外界的低频射频信号。
第二滤波器92设于第三馈线80,并连接于第二馈源32和第二辐射体20之间,以过滤掉第二馈源32和第二辐射体20之间流通的中高频射频信号。换言之,第二滤波器92用于允许低频射频信号通过,并阻挡中高频射频信号通过。
本实施例中,第二馈源32单独激励第二辐射体20。第二馈源32可通过第三馈线80对第二辐射体20进行馈电。具体的,第二馈源32可通过第三馈线80向第二辐射体20馈入低频射频信号,还可通过第三馈线80接收第二辐射体20收到的外界的低频射频信号。其中,第二过滤器92可过滤掉第二辐射体20接收的外界的中高频射频信号。此时,第一辐射体10可作为第二辐射体20的寄生辐射体,第二辐射体20也可通过第一缝隙111和第二缝隙112耦合激励第一辐射体10。
第一滤波器91设于第二馈线50,并连接于第一馈源31和第二辐射体20之间,以过滤掉在第一馈源31和第二辐射体20的第二馈点201之间流通的低频射频信号。换言之,第一滤波器91用于允许中高频射频信号通过,并阻挡低频射频信号通过。具体的,第一滤波器91连接于开关60和第二辐射体20之间。
本实施例中,开关60包括一个单刀单掷开关。开关60包括可动端部60a和不动端部60b,可动端部60a远离不动端部60b的一端与第一馈源31电连接,不动端部60b远离可动端部60a的一端与第一滤波器91电连接。在其他一些实施例中,可动端部60a远离不动端部60b的一端也可与第一滤波器91电连接,不动端部60b远离可动端部60a的一端也可与第一馈源31电连接。
开关60闭合时,开关60的可动端部60a连接至不动端部60b,天线610处于第一工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入中高频射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入中高频射频信号,并通过第二馈线50向第二辐射体20馈入中高频射频信号。换言之,第一馈源31可同时激励第一辐射体10和第二辐射体 20。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的中高频射频信号。此时,第一过滤器91接入第二馈线50,可过滤掉第二辐射体20收到的外界的低频射频信号。
示例性的,射频前端620的中高频射频信号可被功率分配器(图未示)等功率地分配成两路,一路中高频射频信号经第一馈线40馈入第一辐射体10,另一路中高频射频信号经第二馈线50传输至第二辐射体20。在其他一些实施例中,射频前端620的中高频射频信号也可被功率分配器不等率地分配成两路。
此时,第一辐射体10和第二辐射体20接收到的中高频射频信号的相位相同(即相位差为0),第一辐射体10和第二辐射体20可通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度相同,第一辐射体10和第二辐射体20同频工作,发生单谐振。第一辐射体10和第二辐射体20附近的电流分布较为均匀,第一辐射体10和第二辐射体20可被更加充分地激励,有利于降低天线610的SAR值,提高天线效率和天线侧头手模性能。
需要说明的是,中高频射频信号对天线610的SAR值影响较大,本实施例采用低频和中高频分馈的方式对天线610进行馈电,更有利于对中高频射频信号进行调整,有利于优化天线610的比吸收率特性。
开关60断开时,开关60的可动端部60a未连接至不动端部60b,天线610处于第二工作模式。第一馈源31向第一辐射体10馈入中高频射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入中高频射频信号。换言之,第一馈源31仅可激励第一辐射体10,而无法激励第二辐射体20。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号。
此时,第二辐射体20作为第一辐射体10的寄生辐射体,第一辐射体10通过第一缝隙111和第二缝隙112耦合激励第二辐射体20。第一辐射体10附近的电流较强,而第二辐射体20附近的电流较弱。即第一辐射体10和第二辐射体20附近的电流分布不均匀。
本实施例所示通讯设备1000中,通过控制开关60的断开或闭合,可实现第一馈源31对第一辐射体10的单独激励、或对第一辐射体10和第二辐射体20的同时激励,实现对天线610的工作模式的切换控制,同时可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
请参阅图6,图6是本申请实施例提供的第五种通讯设备1000的部分结构示意图。
本实施例所示通讯设备1000与上述第四种实施例所示通讯设备1000的不同之处在于,天线610还包括多个移相器70,多个移相器70并联设于第二馈线50,且连接于开关60和第二辐射体20之间。多个移相器70的相位调节值不同,开关60可切换地连接至不同的移相器70,以调节第一馈源31馈入第二辐射体20的射频信号的相位。
示例性的,移相器70的数量为三个,为了便于理解,将三个移相器70分别命名为第一移相器71、第二移相器72和第三移相器73。具体的,第一移相器71、第二移相器72和第三移相器73均设于第二馈线50,且并联设置。第一移相器71、第二移相器72和第三移相器73均连接于开关60和第二馈电件21之间,用于改变第一馈源31馈入第二辐射体20的射频信号的相位。可以理解的是,在其他一些实施例中,移相器70的数量也可以为一个、两个或四个以上移相器,本申请对此不作具体限定。
其中,第一移相器71的相位调节值为0°,第二移相器72的相位调节值为90°,第三移相器73的相位调节值为180°。需要说明的是,在其他一些实施例中,第一移相器71、第二移相器72和第三移相器73的相位调节值也可以为其他值,本申请对此不作具体限定。
本实施例中,开关60包括第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63。第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63均设于第二馈线50,且并联设置。具体的,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的可动端部(图未标)均连接至第一馈源31。第一单刀单掷开关61的不动端部(图未标)连接至第一移相器71,第二单刀单掷开关62的不动端部(图未标)连接至第二移相器72,第三单刀单掷开关63的不动端部(图未标)连接至第三移相器73。
在其他一些实施例中,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的不动端部(图未标)可均连接至第一馈源31。此时,第一单刀单掷开关61的可动端部(图未标)可连接至第一移相器71,第二单刀单掷开关62的可动端部(图未标)可连接至第二移相器72,第三单刀单掷开关63的可动端部(图未标)可连接至第三移相器73。
开关60断开时,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63均断开,第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第二工作模式。第一馈源31向第一辐射体10馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号。换言之,第一馈源31仅可激励第一辐射体10,而无法激励第二辐射体20。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的射频信号。
请参阅图7,图7是图6所示通讯设备1000中开关60断开时天线610在自由状态下的回波损耗系数(S11)曲线图和在不同状态下的效率曲线图。其中,S11曲线图是在第一馈源31馈电,而第二馈源32未馈电时进行仿真测试得到。
图7所示曲线图中横坐标为频率(单位为GHz),纵坐标为回波损耗系数和效率(单位为dB)。从图7可以看出,在自由状态(free space,FS)下,天线610产生了双谐振,即天线610有两个谐振模式。其中,谐振频率分别在1.9GHz和2.2GHz附近。当通讯设备1000处于自由状态时,在频率点为1.9GHz下,天线610的辐射效率为-2.1204dB。当通讯设备1000处于侧头手状态(用户手握住通讯设备1000且放置于头侧)时,在频率点为1.9GHz下,天线610的辐射效率为-9.8664dB。即相比于自由状态,侧头手状态时,天线610的辐射效率下降了7.746dB。
请参阅图8,图8是图6所示通讯设备1000中开关60断开时的电流分布示意图。
图8所示为频率点在1.9GHz下的电流分布图,箭头密集的位置电流强,箭头稀疏的位置电流弱。从图8可以看出,电流大致沿第二辐射体20向第一辐射体10的方向流动。第二辐射体20作为第一辐射体10的寄生辐射体,第一辐射体10通过第一缝隙111和第二缝隙112耦合激励第二辐射体20。第一辐射体10附近的电流较强,第二辐射体20附近的电流较弱。即第一辐射体10和第二辐射体20附近的电流分布很不均匀。
第一单刀单掷开关61闭合,且第二单刀单掷开关62和第三单刀单掷开关63均断开时,第一单刀单掷开关61的可动端部连接至不动端部,第二单刀单掷开关62和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第一工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入中高频射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入中高频射频信号,并通过第二馈线50向第二辐射体20馈入中高频射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号, 还可通过第二馈线50接收第二辐射体20收到的外界的中高频射频信号。
此时,第一移相器71接入第二馈线50中,第一移相器71将第一馈源31馈入第二辐射体20的中高频射频信号的相位调整0°。即第一移相器71不对第一馈源31馈入第二馈点201的中高频射频信号的相位进行调整。也即第一辐射体10和第二辐射体20接收到的中高频射频信号的相位相同,相位差为0°。
请参阅图9,图9是图6所示通讯设备1000中第一单刀单掷开关61闭合时天线610在自由状态下的回波损耗系数(S11)曲线图和效率曲线图。其中,S11曲线图是在第一馈源31进行馈电,而第二馈源32未进行馈电时进行仿真测试得到。
图9所示曲线图中横坐标为频率(单位为GHz),纵坐标为效率和回波损耗系数(单位为dB)。从图9可出,第一单刀单掷开关61闭合时,第一辐射体10和第二辐射体20的电长度相同,第一辐射体10和第二辐射体20同频工作,天线610产生了单谐振,谐振频率在2.2GHz附近,此时天线610形成了缝隙差模(slot differential mode,slot DM)。在频率点2.2249GHz下,天线610的回波损耗系数为-6.97dB,天线610的辐射效率大于-6dB。
请参阅图10,图10是图6所示通讯设备1000中第一单刀单掷开关61闭合时在2.2GHz下的电流分布图。
图10所示箭头密集的位置电流强,箭头稀疏的位置电流弱。从图10可以看出,电流大致沿第一辐射体10和第二辐射体20彼此靠近向彼此远离的方向流动,天线610形成了缝隙差模。第一辐射体10和第二辐射体20附近的电流均较强,即第一辐射体10和第二辐射体20附近的电流分布较为均匀。其中,最大电流密度为235.515A/m。
请参阅图11,图11是图6所示通讯设备1000中第一单刀单掷开关61闭合时天线610在2.2GHz下的辐射方向图。
图11所示灰度比较深的区域代表辐射比较强。白色的区域代表辐射比较弱。从图11可以看出,第一单刀单掷开关61闭合时,天线610形成了缝隙差模。
第二单刀单掷开关62闭合,且第一单刀单掷开关61和第三单刀单掷开关63均断开时,第二单刀单掷开关62的可动端部连接至不动端部,第一单刀单掷开关61和第三单刀单掷开关63的可动端部均未连接至不动端部,天线610处于第三工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入中高频射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入中高频射频信号,并通过第二馈线50向第二辐射体20馈入中高频射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的中高频射频信号。
此时,第二移相器72接入第二馈线50中,第二移相器72将第一馈源31馈入第二辐射体20的中高频射频信号的相位调整90°。即第一辐射体10和第二辐射体20接收到不同相位的中高频射频信号,相位差为90°。
请参阅图12,图12是图6所示通讯设备1000中第二单刀单掷开关62闭合时天线610在自由状态下的回波损耗系数(S11)曲线图和效率曲线图。其中,S11曲线图是在第一馈源31馈电,而第二馈源32未馈电时进行仿真测试得到。
图12的横坐标为频率(单位为GHz),纵坐标为回波损耗系数和效率(单位为dB)。从图12可以看出,第二单刀单掷开关62闭合时,第一辐射体10和第二辐射体20通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度不同,第一辐射体10和第二辐射体20不同频工作,第一辐射体10和第二辐射体20产生了双谐振,谐振频率在1.8GHz和2.55GHz附近,此时天线610形成了缝隙共模(slot common mode,slot CM) 和缝隙差模(slot differential mode,slot DM)。在频率点1.8GHz下,天线610形成了缝隙共模,天线610的回波损耗系数为-6.97dB。在频率点2.5401GHz下,天线610形成了缝隙差模,天线610的回波损耗系数为-16.91dB。此外,天线610在缝隙共模下的辐射效率高于天线610在缝隙差模下的辐射效率。
请参阅图13和图14,图13是图6所示通讯设备1000中第二单刀单掷开关62闭合时在1.8GHz下的电流分布图,图14是图6所示通讯设备1000中第二单刀单掷开关62闭合时在2.55GHz下的电流分布图。
图13所示箭头密集的位置电流强,箭头稀疏的位置电流弱。从图13可以看出,电流大致沿第二辐射体20向第一辐射体10的方向流动。第一辐射体10和第二辐射体20附近的电流均较强,即第一辐射体10和第二辐射体20附近的电流分布较为均匀,此时天线610形成了缝隙共模。
图14所示箭头密集的位置电流强,箭头稀疏的位置电流弱。从图14可以看出,电流大致沿第一辐射体10和第二辐射体20彼此远离向彼此靠近的方向流动。第一辐射体10和第二辐射体20附近的电流均较强,即第一辐射体10和第二辐射体20附近的电流分布较为均匀,此时天线610形成了缝隙差模。
请参阅图15和图16,图15是图6所示通讯设备1000中第二单刀单掷开关62闭合时天线610在1.8GHz下的辐射方向图,图16是图6所示通讯设备1000中第二单刀单掷开关62闭合时天线610在2.55GHz下的辐射方向图。
图15所示灰度比较深的区域代表辐射比较强。白色的区域代表辐射比较弱。从图15可以看出,第二单刀单掷开关62闭合时,在1.8GHz下,天线610形成了缝隙共模。
图16所示灰度比较深的区域代表辐射比较强。白色的区域代表辐射比较弱。从图16可以看出,第二单刀单掷开关62闭合时,在2.55GHz下,天线610形成了缝隙差模。
第三单刀单掷开关63闭合,且第一单刀单掷开关61和第二单刀单掷开关62均断开时,第三单刀单掷开关63的可动端部连接至不动端部,第一单刀单掷开关61和第二单刀单掷开关62的可动端部均未连接至不动端部,天线610处于第四工作模式。第一馈源31向第一辐射体10和第二辐射体20馈入射频信号。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。此外,第一馈源31还可通过第一馈线40接收第一辐射体10收到的外界的中高频射频信号,还可通过第二馈线50接收第二辐射体20收到的外界的中高频射频信号。
此时,第三移相器73接入第二馈线50中,第三移相器73将第一馈源31馈入第二辐射体20的射频信号的相位调整180°。即第一辐射体10和第二辐射体20接收到不同相位的射频信号,相位差为180°。
请参阅图17,图17是图6所示通讯设备1000中第三单刀单掷开关63闭合时天线610在自由状态下的回波损耗系数(S11)曲线图和在不同状态下的效率曲线图。其中,S11曲线图是在第一馈源31馈电,而第二馈源32未馈电时进行仿真测试得到。
图17的横坐标为频率(单位为GHz),纵坐标为回波损耗系数和效率(单位为dB)。从图17可以看出,在自由状态下,当第三单刀单掷开关63闭合时,第一辐射体10和第二辐射体20通过第一缝隙111和第二缝隙112相互耦合,第一辐射体10和第二辐射体20的电长度相同,第一辐射体10和第二辐射体20同频工作,天线610产生了单谐振,谐振频率在1.9GHz附近,天线610形成了缝隙差分模式。在频率点1.9GHz下,天线610的回拨损耗系数为-14.148dB。
当通讯设备1000处于自由状态时,在频率点为1.9GHz下,天线610的辐射效率为-1.406dB。相比于开关60断开时,第三单刀单掷开关63闭合时,天线610的辐射效率提升了0.7dB。
当通讯设备1000处于侧头手状态时,在频率点为1.9GHz下,天线610的辐射效率为-7.8508dB。相比于处于侧头手状态下,通讯设备1000处于侧头手状态下,天线610的辐射效率下降了6.452dB。相比于开关60断开时,第三单刀单掷开关63闭合时,天线610的辐射效率提升了2dB左右。
请参阅图18,图18是图6所示通讯设备1000中第三单刀单掷开关63闭合时在1.9GHz下的电流分布图。
图18所示箭头密集的位置电流强,箭头稀疏的位置电流弱。从图18可以看出,电流大致沿第二辐射体20向第一辐射体10的方向流动,天线610形成了缝隙共模。第一辐射体10和第二辐射体20附近的电流均较强,即第一辐射体10和第二辐射体20附近的电流分布较为均匀,第一辐射体10和第二辐射体20能被充分地激励。
请参阅图19,图19是图6所示通讯设备1000中第三单刀单掷开关63闭合时天线610在1.9GHz下的辐射方向图。
图19所示灰度比较深的区域代表辐射比较强。白色的区域代表辐射比较弱。从图19可以看出,第三单刀单掷开关63闭合时,在1.9GHz下,天线610形成了缝隙共模。
请参阅表1,表1是图6所示天线610在两种状态时,在相同频率下的5mm和0mm的通讯设备1000底部的底面SAR(bottom body SAR)对比表。应当理解的是,通讯设备1000底部的底面是指边框110中下边框110d的外表面,即下表面110d远离上边框110c的表面(参见图1)。
表1中,实验组一是在开关60断开状态下,实验组二是在第三单刀单掷开关63闭合状态下。表1所示数据均在输入功率为24dBm,归一化效率为-4的前提下,对自由状态效率归一化后得到的数据。从表1可以看出,相比于开关60断开,第三单刀单掷开关63闭合时,通讯设备1000底部的SAR值明显降低。由此可知,第三单刀单掷开关63闭合时,更有利于优化天线610的SAR特性。
表1 天线在不同状态下通讯设备底部的底面SAR值对比表
Figure PCTCN2022080969-appb-000001
在其他一些实施例中,开关60也可以包括一个单刀多掷开关。此时,开关60包括可动端部和三个不动端部,可动端部远离不动端部的一端连接至第一馈源31,三个不动端部远离可动端部的一端分别连接至第一移相器71、第二移相器72和第三移相器73。可动端部切换连接至不同的不动端部时,将第一移相器71、第二移相器72或第三移相器73接入至第二馈线50中,从而实现对第一馈源31馈入第二馈点201的中高频射频信号的不同相位调整。
本实施例所示通讯设备1000中,通过控制第一单刀单掷开关61、第二单刀单掷开关62和第三单刀单掷开关63的闭合和断开,可将第一移相器71、第二移相器72或第三移相器73接入第二馈线50,不仅可实现第一馈源31对第一辐射体10的单独激励或对第一辐射体10和第二辐射体20的同时激励,还可对第一馈源31馈入第一辐射体10和第二辐射体20的中 高频射频信号的相位差进行调节,实现对天线610的工作模式的切换控制,同时可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
请参阅图20,图20是本申请实施例提供的第六种通讯设备1000的部分结构示意图。
本实施例所示通讯设备1000与上述第四种实施例所示通讯设备1000的不同之处在于,射频前端620包括相位调节器70,相位调节器70设于第二馈线50。相位调节器70连接于开关60和第一滤波器91之间,以对改变第一馈源31馈入第二馈点201的中高频射频信号的相位进行调整。其中,相位调节器70的一端连接至开关60的不动端部60b,另一端连接至第一滤波器91。示例性的,相位调节器70的相位调节值有多个,比如0°、90°和180°等。
开关60断开时,开关60的可动端部60a未连接至不动端部60b,天线610处于第二工作模式。此时,第一馈源31可通过第一馈线40向第一辐射体10馈电,而无法通过第二馈线50向第二辐射体20馈电。可以理解的是,此时通讯设备1000的状态与上述第五种实施例中开关60断开时通讯设备1000的状态相同,在此不再重复描述。
开关60闭合时,开关60的可动端部60a连接至不动端部60b,第一馈源31可通过第一馈线40和第二馈线50同时向第一辐射体10和第二辐射体20进行馈电。具体的,第一馈源31通过第一馈线40向第一辐射体10馈入射频信号,并通过第二馈线50向第二辐射体20馈入射频信号。
此时,相位调节器70接入第二馈线50中,相位调节器70可将第一馈源31馈入第二馈点201的中高频射频信号的相位进行调整。可以理解的是,当相位调节器70将第一馈源31馈入第二辐射体20的中高频射频信号的相位调整0°时,通讯设备100的状态与上述第五种实施例中第一单刀单掷开关61闭合时(即天线610处于第一工作模式时)的状态相同,当相位调节器70将第一馈源31馈入第二辐射体20的中高频射频信号的相位调整90°时,通讯设备100的状态与上述第五种实施例中第二单刀单掷开关62闭合时(即天线610处于第二工作模式时)的状态相同。当相位调节器70将第一馈源31馈入第二辐射体20的中高频射频信号的相位调整180°时,通讯设备100的状态与上述第五种实施例中第三单刀单掷开关63闭合时(即天线610处于第三工作模式时)的状态相同,在此不再重复描述。
本实施例所示通讯设备1000中,在天线610的第一辐射体10和第二辐射体20彼此耦合的前提下,通过控制开关60的闭合和断开,可将相位调节器70接入第二馈线50,不仅可实现对第一辐射体10的单独激励或对第一辐射体10和第二辐射体20的同时激励,还可对第一馈源31馈入第一辐射体10和第二辐射体20的射频信号的相位差进行调节,实现对天线610的工作模式的切换控制,同时可以改变电流在第一辐射体10和第二辐射体20附近的电流分布情况,有利于提高天线效率、天线侧头手模性能,优化天线610的比吸收率特性,进而提高通讯设备1000的天线性能,提高用户在实际使用场景下的无线性能,提高用户的使用体验。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种天线,其特征在于,包括第一辐射体、第二辐射体、第一馈源、第一馈线和第二馈线,所述第一馈源用于连接射频前端,所述第一馈源经所述第一馈线电连接所述第一辐射体,且经第二馈线电连接所述第二辐射体;
    所述天线处于第一工作模式时,所述第一馈源向所述第一辐射体和所述第二辐射体馈入射频信号,所述第一辐射体和所述第二辐射体接收到相同相位的射频信号,所述第一辐射体和所述第二辐射体相互耦合,且发生单谐振。
  2. 根据权利要求1所述的天线,其特征在于,所述天线还包括开关,所述开关设于所述第二馈线,且连接于所述第一馈源和所述第二辐射体之间;
    所述开关断开时,所述天线处于第二工作模式,所述第一馈源向所述第一辐射体馈入射频信号,所述第一辐射体耦合激励所述第二辐射体。
  3. 根据权利要求2所述的天线,其特征在于,所述天线还包括多个移相器,多个所述移相器并联设于所述第二馈线,且连接于所述开关和所述第二辐射体之间,多个所述移相器的相位调节值不同,所述开关可切换地连接至不同的所述移相器,以调节所述第一馈源馈入所述第二辐射体的射频信号的相位。
  4. 根据权利要求3所述的天线,其特征在于,所述移相器的数量为三个,一个所述移相器的相位调节值为0度,一个所述移相器的相位调节值为90度,一个所述移相器的相位调节值为180度。
  5. 根据权利要求2所述的天线,其特征在于,所述天线还包括相位调节器,所述相位调节器设于所述第二馈线,且连接于所述开关和所述第二辐射体之间;
    所述开关闭合时,所述相位调节器调节所述第一馈源馈入所述第二辐射体的射频信号的相位。
  6. 根据权利要求1-5中任一项所述的天线,其特征在于,所述第一馈源为全频段馈源。
  7. 根据权利要求1-4中任一项所述的天线,其特征在于,所述第一馈源为中高频馈源,所述天线还包括第二馈源和第三馈线,所述第二馈源用于连接所述射频前端,所述第二馈源经所述第三馈线电连接所述第二辐射体,所述第二馈源为低频馈源。
  8. 根据权利要求7所述的天线,其特征在于,所述天线还包括第一滤波器和第二滤波器,所述第一滤波器设于所述第二馈线,且连接于所述第一馈源与所述第二辐射体之间,用于过滤低频射频信号,所述第二滤波器设于所述第三馈线,且连接于所述第二馈源与所述第二辐射体之间,用于过滤中高频射频信号。
  9. 根据权利要求1-8中任一项所述的天线,其特征在于,所述天线还包括第一调谐电路,所述第一调谐电路的一端接地,另一端连接于所述第一辐射体,所述第一调谐电路用于调整 所述第一辐射体的电长度。
  10. 根据权利要求9所述的天线,其特征在于,所述第一调谐电路包括多个不同的第一调谐元件和第一切换开关,多个不同的所述第一调谐元件均连接至所述第一辐射体,所述第一切换开关的一端接地,另一端可切换地连接至不同的所述第一调谐元件,以调整所述第一辐射体的电长度。
  11. 根据权利要求1-10中任一项所述的天线,其特征在于,所述天线还包括第二调谐电路,所述第二调谐电路的一端接地,另一端连接至所述第二辐射体,所述第二调谐电路用于调整所述第二辐射体的电长度。
  12. 根据权利要求11所述的天线,其特征在于,所述第二调谐电路包括多个不同的第二调谐元件和第二切换开关,多个不同的所述第二调谐元件均连接至所述第二辐射体,所述第二切换开关的一端接地,另一端可切换地连接至不同的所述第二调谐元件,以调整所述第二辐射体的电长度。
  13. 一种通讯设备,其特征在于,包括射频前端和如权利要求1-12中任一项所述的天线,所述射频前端连接至所述第一馈源,用于向所述天线馈入射频信号,和/或,接收所述天线收到的射频信号。
  14. 根据权利要求13所述的通讯设备,其特征在于,所述通讯设备包括边框,所述边框包括彼此间隔的第一金属段和第二金属段,所述第一金属段形成所述第一辐射体,所述第二金属段形成所述第二辐射体。
  15. 根据权利要求13所述的通讯设备,其特征在于,所述通讯设备包括边框,所述边框采用非金属材料制成,所述第一辐射体和所述第二辐射体彼此间隔,且均贴靠所述边框设置。
PCT/CN2022/080969 2021-03-16 2022-03-15 天线及通讯设备 WO2022194155A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112023017455A BR112023017455A2 (pt) 2021-03-16 2022-03-15 Antena e dispositivo de comunicação
EP22770508.4A EP4283782A1 (en) 2021-03-16 2022-03-15 Antenna and communication device
JP2023557219A JP2024511041A (ja) 2021-03-16 2022-03-15 アンテナおよび通信デバイス
US18/550,574 US20240154295A1 (en) 2021-03-16 2022-03-15 Antenna and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110283470.3A CN115084854A (zh) 2021-03-16 2021-03-16 天线及通讯设备
CN202110283470.3 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022194155A1 true WO2022194155A1 (zh) 2022-09-22

Family

ID=83245732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080969 WO2022194155A1 (zh) 2021-03-16 2022-03-15 天线及通讯设备

Country Status (6)

Country Link
US (1) US20240154295A1 (zh)
EP (1) EP4283782A1 (zh)
JP (1) JP2024511041A (zh)
CN (1) CN115084854A (zh)
BR (1) BR112023017455A2 (zh)
WO (1) WO2022194155A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115528420A (zh) * 2022-09-30 2022-12-27 Oppo广东移动通信有限公司 一种电子设备
CN117810677A (zh) * 2023-04-28 2024-04-02 华为技术有限公司 一种电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118073836A (zh) * 2022-11-11 2024-05-24 荣耀终端有限公司 一种天线系统和可折叠电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661857A (zh) * 2004-02-23 2005-08-31 启碁科技股份有限公司 可调整的无线通讯装置与天线模组及其控制方法
CN102510295A (zh) * 2011-10-12 2012-06-20 中兴通讯股份有限公司 降低sar峰值的无线终端及其降低sar峰值的方法
CN105098362A (zh) * 2015-07-03 2015-11-25 上海华为技术有限公司 一种多波束天线馈电网络以及多波束天线阵列
CN107706548A (zh) * 2017-09-27 2018-02-16 青岛海信移动通信技术股份有限公司 一种用于可穿戴设备的天线装置和可穿戴设备
CN108461895A (zh) * 2018-03-19 2018-08-28 广东欧珀移动通信有限公司 天线组件、电子设备及天线切换方法
CN111029750A (zh) * 2019-12-30 2020-04-17 维沃移动通信有限公司 一种天线结构和电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811918B2 (en) * 2010-11-26 2014-08-19 Broadcom Corporation Distribution of transmit signal to multiple transmit antennas for reduction of measured specific absorption rate
CN103609026B (zh) * 2011-06-21 2016-09-21 谷歌公司 控制mtd天线vswr和用于sar控制的耦合
CN111628298B (zh) * 2019-02-27 2022-03-11 华为技术有限公司 共体天线及电子设备
CN112018494B (zh) * 2019-05-31 2022-02-25 华为技术有限公司 一种天线及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661857A (zh) * 2004-02-23 2005-08-31 启碁科技股份有限公司 可调整的无线通讯装置与天线模组及其控制方法
CN102510295A (zh) * 2011-10-12 2012-06-20 中兴通讯股份有限公司 降低sar峰值的无线终端及其降低sar峰值的方法
CN105098362A (zh) * 2015-07-03 2015-11-25 上海华为技术有限公司 一种多波束天线馈电网络以及多波束天线阵列
CN107706548A (zh) * 2017-09-27 2018-02-16 青岛海信移动通信技术股份有限公司 一种用于可穿戴设备的天线装置和可穿戴设备
CN108461895A (zh) * 2018-03-19 2018-08-28 广东欧珀移动通信有限公司 天线组件、电子设备及天线切换方法
CN111029750A (zh) * 2019-12-30 2020-04-17 维沃移动通信有限公司 一种天线结构和电子设备
CN113690570A (zh) * 2021-08-23 2021-11-23 Oppo广东移动通信有限公司 天线装置、电子设备及天线装置的设计方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115528420A (zh) * 2022-09-30 2022-12-27 Oppo广东移动通信有限公司 一种电子设备
CN117810677A (zh) * 2023-04-28 2024-04-02 华为技术有限公司 一种电子设备

Also Published As

Publication number Publication date
US20240154295A1 (en) 2024-05-09
BR112023017455A2 (pt) 2023-09-26
JP2024511041A (ja) 2024-03-12
CN115084854A (zh) 2022-09-20
EP4283782A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2022194155A1 (zh) 天线及通讯设备
US11309628B2 (en) Multiple-input and multiple-output antenna structures
KR101205196B1 (ko) 슬롯화된 다중 대역 안테나
US9917346B2 (en) Chassis-excited antenna apparatus and methods
EP2498337B1 (en) Tunable loop antennas
US9673507B2 (en) Chassis-excited antenna apparatus and methods
KR101208772B1 (ko) 핸드헬드 전자장치용 안테나
CN102684722B (zh) 具有接收器分集的可调谐天线系统
EP2100375B1 (en) Handheld electronic devices with isolated antennas
US8860623B2 (en) Antenna system with high isolation characteristics
CN113013593A (zh) 天线组件和电子设备
CN109216885B (zh) 移动装置
CN104064865A (zh) 具有基于隙缝的寄生部件的可调谐天线
US20190006764A1 (en) Mobile device
WO2018148973A1 (zh) 一种支持多进多出技术的通信设备
CN114258612A (zh) 天线及电子设备
US9601825B1 (en) Mobile device
WO2023020023A1 (zh) 终端天线及移动终端设备
CN108879099A (zh) 移动装置和天线结构
US20230246335A1 (en) Antenna apparatus and electronic device
WO2023103735A1 (zh) 天线装置及电子设备
US11322826B2 (en) Antenna structure
CN112952341A (zh) 行动装置和可拆卸天线结构
WO2023124887A1 (zh) 天线结构、封装天线、芯片和电子设备
WO2024041357A1 (zh) 一种天线系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770508

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022770508

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022770508

Country of ref document: EP

Effective date: 20230825

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023017455

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18550574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023557219

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 112023017455

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230829

NENP Non-entry into the national phase

Ref country code: DE