WO2022194076A1 - 智能手表、交互方法及交互装置 - Google Patents

智能手表、交互方法及交互装置 Download PDF

Info

Publication number
WO2022194076A1
WO2022194076A1 PCT/CN2022/080590 CN2022080590W WO2022194076A1 WO 2022194076 A1 WO2022194076 A1 WO 2022194076A1 CN 2022080590 W CN2022080590 W CN 2022080590W WO 2022194076 A1 WO2022194076 A1 WO 2022194076A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
bezel
capacitance
capacitance value
smart watch
Prior art date
Application number
PCT/CN2022/080590
Other languages
English (en)
French (fr)
Inventor
周伟
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022194076A1 publication Critical patent/WO2022194076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving

Definitions

  • the present application belongs to the technical field of electronic equipment, and specifically relates to a smart watch, an interaction method and an interaction device.
  • the purpose of the embodiments of the present application is to provide a smart watch, an interaction method and an interaction device, which can solve the problems of low touch screen recognition accuracy and poor controllability of the smart watch.
  • an embodiment of the present application provides a smart watch, the smart watch includes: a casing, a bezel, and a position detection component;
  • the bezel is arranged on the casing and can move or rotate relative to the casing;
  • the position detection assembly includes a first electrode plate and a second electrode plate, the first electrode plate is arranged on the surface of the bezel opposite to the casing, and the second electrode plate is arranged on the casing On the surface opposite to the bezel, the position detection component determines the relative movement information between the bezel and the casing according to the capacitance between the first electrode plate and the second electrode plate , and trigger the function corresponding to the relative motion information.
  • an embodiment of the present application provides an interaction method, including: acquiring a capacitance value between the first electrode plate and the second electrode plate in the position detection component, where the capacitance value includes a first electrode plate. a first capacitance value in a state and a second capacitance value in a second state;
  • a corresponding function is triggered according to the relative motion information.
  • an embodiment of the present application further provides an interaction device, including:
  • Capacitance detection unit for acquiring the capacitance value between the first electrode plate and the second electrode plate in the position detection component, the capacitance value including the first capacitance value in the first state and the second capacitance in the second state value;
  • an information determination unit configured to determine relative motion information between the bezel and the casing according to the first capacitance value and the second capacitance value
  • a function triggering unit configured to trigger a corresponding function according to the relative motion information.
  • the bezel since the bezel is disposed on the casing and can move or rotate relative to the casing, and because the first electrode plate is disposed on the surface of the bezel opposite to the casing, the second electrode plate is disposed on the casing
  • a voltage value can be detected at both ends of the first electrode plate and the second electrode plate.
  • the capacitance value or the voltage value between the first electrode plate and the second electrode plate will also change.
  • the difference between the bezel and the casing can be determined according to the change in the voltage value between the first electrode plate and the second electrode plate. the relative motion information, and trigger the corresponding function.
  • the capacitive sensing principle is used to detect the position change between the bezel and the casing, and then trigger the corresponding function, which not only has high recognition accuracy, but also has good maneuverability, which can effectively improve the user experience.
  • FIG. 1 is one of the schematic structural diagrams of the smart watch according to the embodiment of the present application.
  • FIG. 2 is a schematic cross-sectional view of the smart watch shown in FIG. 1 along one direction;
  • FIG. 3 is a schematic cross-sectional view of the smart watch shown in FIG. 1 along another direction;
  • FIG. 4 is the second schematic structural diagram of the smart watch according to the embodiment of the present application.
  • Fig. 5 is the enlarged view of C position in Fig. 4;
  • FIG. 6 is a schematic diagram of the displacement change of the bezel described in the embodiment of the present application.
  • FIG. 7 is a schematic diagram of various functions of the smart watch according to the embodiment of the present application.
  • FIG. 9 is a structural block diagram of an interaction apparatus according to an embodiment of the present application.
  • 10 bezel; 20: shell; 30: position detection assembly; 40: watchband; 50: display screen; 31: first electrode plate; 32: second electrode plate; 11: accommodating part; 21: accommodating groove .
  • FIG. 1 one of the schematic structural diagrams of the smart watch according to the embodiment of the present application is shown.
  • FIG. 2 a schematic cross-sectional view of the smart watch shown in FIG. 1 along one direction is shown.
  • FIG. 3 a schematic cross-sectional view of the smart watch shown in FIG. 1 along another direction is shown.
  • the smart watch may specifically include: a casing 20, a bezel 10 and a position detection assembly 30; the bezel 10 is disposed on the casing 20 and can move or rotate relative to the casing 20; the position detection assembly 30 includes a first An electrode plate 31 and a second electrode plate 32.
  • the first electrode plate 31 is disposed on the surface of the bezel 10 opposite to the case 20, and the second electrode plate 32 is disposed on the opposite surface of the case 20 and the bezel 10.
  • the detection component 30 determines the relative movement information between the bezel 10 and the case 20 according to the capacitance between the first electrode plate 31 and the second electrode plate 32 , and triggers a function corresponding to the relative movement information.
  • the bezel 10 can be the rotatable dial of the smart watch
  • the case 20 can be the lower dial (or the lower case) of the smart watch, and it can be understood that the bezel 10 can move or rotate relative to the case 20
  • the dial can be rotated 360° relative to the lower dial, or it can be moved in a small range in any direction (or understood as sliding, translation, etc.).
  • the relative motion information includes: relative position information and/or time information; the relative motion information between the bezel 10 and the casing 20 may specifically include: the relative position between the bezel 10 and the casing 20 information, and/or information on the time taken for the bezel 10 to rotate or move to the current position of the case 20 .
  • the relative movement information between the bezel 10 and the casing 20 can be corresponding to various functions of the smart watch.
  • the relative motion information only includes relative position information, it can be set that when the bezel 10 rotates 90° clockwise relative to the casing 20 , the camera of the smart watch is turned on, and then the bezel 10 is counterclockwise 90 degrees relative to the casing 20 . °Camera is off.
  • the relative motion information includes relative position information and time information
  • it can also be set as follows: when the bezel 10 rotates 90° clockwise relative to the casing 20 and the rotation time is less than 3s, the camera of the smart watch is turned on, and when the bezel When the 10 is rotated 90° clockwise relative to the housing 20 and the rotation time is longer than 3s, the smart watch will issue a warning to remind the user to confirm whether to turn on the smart watch camera.
  • the bezel 10 rotates 90° clockwise relative to the casing 20 and the rotation time is longer than 3s, because the rotation time is long, it may be the user's misoperation during the exercise process. Therefore, the smart watch can send out Reminders and other actions to prevent misuse.
  • the relative motion information includes relative position information and time information
  • misoperation can be effectively avoided, and the accuracy of function triggering of the smart watch can be further improved.
  • the time information can be acquired in various ways.
  • the processor in a smart watch can detect the duration of the rotation or movement of the bezel through the time detection circuit.
  • the manner of acquiring the time information may be the same as that in the prior art, which is not repeated in this embodiment of the present application.
  • the relative position between the bezel 10 and the case 20 is determined by the capacitance information between the first electrode plate 31 and the second electrode plate 32 through specific embodiments and application scenarios with reference to the accompanying drawings. information is explained in detail.
  • the first electrode plate 31 may be a non-charged metal plate, that is, a non-energized state
  • the second electrode plate 32 may be a normally-charged metal plate, that is, a long-energized state. Since the first electrode plate 31 and the second electrode plate 32 is opposite, then under the action of the voltage of the second electrode plate 32, the position of the first electrode plate 31 opposite to the second electrode plate 32 accumulates charges, and there is a potential difference between the first electrode plate 31 and the second electrode plate 32, The first electrode plate 31 and the second electrode plate 32 form a capacitor and have a voltage at both ends. In practical applications, when the relative distance, the facing area, etc.
  • the capacitance value (or the capacitance value between the first electrode plate 31 and the second electrode plate 32) Therefore, when the bezel 10 drives the first electrode plate 31 to rotate or move on the housing 20, the voltage value between the first electrode plate 31 and the second electrode plate 32 can be adjusted according to the voltage value. changes, determine the relative movement information between the bezel 10 and the case 20, and trigger the corresponding function.
  • the capacitive sensing principle is used to detect the position change between the bezel 10 and the casing 20, and then trigger the corresponding function, which not only has high recognition accuracy, but also has good controllability, which can effectively improve the user experience.
  • the corresponding smart watch also has the advantages of small size and low cost.
  • an active connection between the bezel 10 and the housing 20 may be implemented as follows: the bezel 10 and the housing 20 are connected by a ball shaft. Since the ball shaft can rotate 360°, the The bezel 10 connected by the ball shaft can rotate 360° relative to the housing 20 or translate in a small range.
  • the housing 20 may be provided with an accommodating groove 21 ;
  • the bezel 10 is provided with a accommodating portion 11 , and the accommodating portion 11 is rotatably disposed in the accommodating groove 21 , and/or the accommodating portion 11 is movable It is arranged in the accommodating groove 21, and the accommodating portion 11 has a first side wall opposite to the groove wall of the accommodating groove 21, and a gap is formed between the first side wall and the groove wall of the accommodating groove 21;
  • the first electrode plate 31 is arranged on the On the first side wall, the second electrode plate 32 is arranged on the groove wall of the accommodating groove 21 .
  • the first electrode plate 31 and the second electrode plate 32 are equivalently disposed in the accommodating groove 21, which can make the connection and wiring of the first electrode plate 31 and the second electrode plate 32 simpler, and also It avoids the exposure of the first electrode plate 31 and the second electrode plate 32 to be affected by dust and water vapor in the environment, which can effectively improve the stability of the voltage formed between the first electrode plate 31 and the second electrode plate 32, thereby improving the The recognition accuracy of smart watches.
  • the accommodating slot 21 may be a cavity for accommodating electronic devices on the smart watch.
  • the accommodating groove 21 may be circular or approximately circular.
  • the accommodating portion 11 of the bezel 10 may be a portion of the rotatable dial extending into the accommodating groove 21 .
  • the accommodating portion 11 may be an annular structure, the first side wall is the side wall of the accommodating portion 11 opposite to the groove wall of the accommodating groove 21, The gap formed between the side walls is annular.
  • the accommodating portion 11 can be movably disposed in the accommodating groove 21 , which may specifically include: the accommodating portion 11 is rotatably disposed in the accommodating groove 21 , and/or the accommodating portion 11 is movably disposed in the accommodating groove 21 . in the accommodating groove 21 .
  • a rotatable dial can be set on the smart watch. The rotatable dial can be rotated 360°, and can be pushed or pressed in parallel in a certain direction, so that the rotatable dial can move or translate slightly relative to the lower dial of the smart watch. In this way, It will not increase the volume of the smart watch, but also can make the structure of the smart watch easier to realize, and can also effectively improve the user's manipulation and entertainment, and improve the user experience.
  • the accommodating portion 11 rotates in the accommodating groove 21 , the relative area between the first electrode plate 31 and the second electrode plate 32 can change, which can be simply understood as the first electrode plate 31 can change relative to the second electrode plate 32 with the rotation of the accommodating portion 11
  • a capacitor is formed, and there is a voltage at both ends, and when the first electrode plate 31 and the second electrode plate 32 are not opposite (displaced), the first electrode plate 31 and the second electrode plate A capacitor cannot be formed between the second electrode plates 32, and the voltage between the first electrode plate 31 and the second electrode plate 32 can be understood as 0.
  • the relative positions of the first electrode plate 31 and the second electrode plate 32 can be judged by the voltage values across the first electrode plate 31 and the second electrode plate 32 (the first electrode plate 31 and the second electrode plate 32 are opposite or not relative) and the time taken for the first electrode plate 31 to move to the current position, thereby determining the relative movement information between the bezel 10 and the case 20, and triggering the function corresponding to the relative movement information.
  • the smart watch may also include: a processor, which is respectively connected with the first electrode plate 31 and the second electrode plate 32;
  • the second electrode plates 32 opposite to the first electrode plates 31 are switched one by one, and the processor is used to determine, according to the capacitance value between the first electrode plate 31 and the second electrode plate 32, that the accommodating portion 11 is in the accommodating groove 21
  • the rotation angle and rotation direction within the accommodating portion 11 and the corresponding function are triggered; when the accommodating portion 11 moves in the accommodating groove 21, the first electrode plate 31 approaches or moves away from the second electrode plate 32 opposite to it, and the processor uses Therefore, according to the capacitance values of the first electrode plate 31 and the second electrode plate 32 before and after the
  • the first electrode plate 31 may be opposite to one or more second electrode plates 32, and the plurality of second electrode plates 32 are evenly distributed along the circumference of the accommodating portion 11 on the groove wall of the accommodating groove 21, so that , when the accommodating portion 11 rotates in the accommodating groove 21, the first electrode plate 31 rotates with the accommodating portion 11, then the second electrode plates 32 opposite to the first electrode plate 31 are switched one by one, and the first electrode plate 31 switches from the One second electrode plate 32 is switched to be opposite to another second electrode plate 32 , which is equivalent to switching one by one of the second electrode plates 32 forming a capacitor with the first electrode plate 31 .
  • the rotation angle of the accommodating portion 11 is positively related to the number of the second electrode plates 32 to be switched.
  • the structure is simple, and the rotation angle and direction of rotation.
  • the voltage between the plates 32 can be used to locate the rotation angle and rotation direction of the accommodating portion 11 , which can effectively improve the accuracy of positioning the rotation angle and rotation direction of the accommodating portion 11 .
  • the rotation angle and rotation direction of the accommodating portion 11 in the accommodating groove 21 can be determined by detecting the position of the second electrode plate 32 that generates a voltage between the first electrode plate 31 and the first electrode plate 31 , which is simple, fast, and positioning. Precise.
  • the number of the first electrode plates 31 is multiple, and each first electrode plate 31 is opposite to at least one second electrode plate 32 .
  • the position of the first electrode plate 31 opposite to the second electrode plate 32 can be determined by detecting the voltage change between each first electrode plate 31 and the plurality of second electrode plates 32, and then the table can be judged.
  • the relative positional relationship between the ring 10 and the housing 20 (rotation angle and rotation direction, movement distance and movement direction).
  • the number of the first electrode plates 31 can also be set to multiple. The voltage across the second electrode plate 32 can more accurately determine the relative positional relationship between the bezel 10 and the case 20 .
  • the embodiment of the present application takes the case where one first electrode plate 31 is opposite to three second electrode plates 32 at the same time as an example.
  • the variation of the voltage (or capacitance) between the second electrode plates 32 will be described in detail.
  • each first electrode plate 31 and a plurality of second electrode plates 32 may form a set of capacitor terminal arrays.
  • the capacitance terminal array composed of each first electrode plate and a plurality of second electrode plates can be encoded.
  • FIG. 4 a second schematic structural diagram of the smart watch according to the embodiment of the present application is shown.
  • the first electrode plates 31 are denoted by a1, a2, . . . a6, the second electrode plates 32 are denoted by b1, b2, b3, .
  • the first electrode plate a1 is opposite to the second electrode plates b1, b2 and b3 at the same time.
  • a capacitor is formed between the first electrode plate and the second electrode plate, and a voltage can be detected at both ends, and the reading is recorded as 1, otherwise it is recorded as 0.
  • the readings of one grid counterclockwise and one grid clockwise are shown in Table 1 below:
  • the corresponding voltage codes when the bezel 10 is rotated counterclockwise (or clockwise) by 2 grids, 3 grids, etc. can be inferred in turn.
  • the rotation angle of the bezel 10 can be set to be 5° for each clockwise rotation of one grid, and the rotation angle of the bezel 10 to rotate counterclockwise by one grid is -5°.
  • the voltage across the second electrode plate 32 can be easily obtained from the rotation angle and rotation direction of the bezel 10 according to the variation law of the codes shown in Table 1.
  • the voltage change between the first electrode plate 31 and the plurality of second electrode plates 32 can satisfy the first change law.
  • FIG. 5 an enlarged view of position C in Figure 4 is shown.
  • the accommodating portion 11 moves within the accommodating groove 21 under the action of the thrust F, and the first side wall and the groove wall of the accommodating groove 21 form a The gap becomes smaller, that is, the distance d between the first electrode plate 31 and the second electrode plate 32 becomes smaller. Since the first electrode plate 31 is opposite to the second electrode plate 32, a capacitance is formed between the first electrode plate 31 and the second electrode plate 32. According to the general formula of capacitance:
  • The dielectric constant of the medium between the plates, the dielectric in this application is air, and this constant can be regarded as a fixed value;
  • k is the electrostatic force constant
  • the voltage U is proportional to the distance d, that is, if it is detected that the voltage between the electrode plates becomes smaller, the first electrode plate 31 and the second electrode plate 31 and the second electrode plate after the thrust F
  • the distance of 32 also becomes smaller, otherwise it becomes larger, that is, the voltage between the plates is positively related to the distance between the plates. Therefore, in practical applications, it is possible to determine the direction and moving distance of the thrust force F received by the accommodating portion 11 by detecting the change in the capacitance value between each first electrode plate 31 and the three opposite second electrode plates 32 , That is, the movement direction and movement distance of the bezel 10 relative to the case 20 .
  • the energization voltage of each second electrode plate 32 may be the same or different.
  • the first electrode plate 31 may be a non-charged metal plate, that is, the first electrode plate 31 may not be electrified, and the second electrode plate 32 may be long electrified.
  • Table 2 Readings of the bezel at rest, 1 counterclockwise, 1 clockwise
  • the energization voltages of the plurality of second electrode plates 32 when the energization voltages of the plurality of second electrode plates 32 are all different, the energization voltages of the plurality of second electrode plates 32 may increase or decrease sequentially along the circumferential direction of the accommodating portion. In the embodiments of the present application, the energization voltages of the plurality of second electrode plates 32 are arranged in a counterclockwise direction in a decreasing order as an example for description.
  • each second electrode plate 32 has a definite voltage value.
  • the bezel 10 drives the first electrode plate 31 to rotate, the corresponding capacitance value of the capacitor formed between the second electrode plate 32 and the second electrode plate 32 is generated. changes, that is, the voltage values across the first electrode plate 31 and the second electrode plate 32 change.
  • the voltage of the second electrode plate 32 changes as shown in Table 3, and the changes are sequential. Table 3 shows the readings of the voltage codes at both ends of the first electrode plate and the second electrode plate when the bezel 10 is at rest, rotated 1 grid counterclockwise, and rotated 1 grid clockwise.
  • the plurality of first electrode plates 31 may be symmetrically arranged on the first side wall.
  • the distances between the two symmetrically arranged first electrode plates 31 and the corresponding second electrode plates 32 change the same.
  • the capacitance of the two symmetrical electrode plates changes, thereby improving the accuracy of the position detection of the smart watch.
  • A1 represents the position of the case 20
  • A2 represents the position after the bezel 10 is pushed and moved
  • A3 represents the initial position of the bezel 10 (default state/position at rest)
  • B1 represents the first electrode plate
  • B2 represents the second electrode plate facing B1
  • d 01 , d 02 represent the distance between the first electrode plate and the second electrode plate at the initial position
  • d 11 , d 12 represent the first electrode plate after being pushed
  • U 01 Q4 ⁇ kd 01 / ⁇ S
  • U 02 Q4 ⁇ kd 02 / ⁇ S
  • U 11 Q4 ⁇ kd 11 / ⁇ S
  • U 12 Q4 ⁇ kd 12 / ⁇ S
  • different displacement thresholds can also be set for different scenario applications, thereby increasing the operability and entertainment of the smartwatch. For example, when it is detected that the displacement of the bezel 10 from the initial position to one side is greater than a certain threshold, the incoming call is regarded as an answering action, and when the displacement from the initial position to the opposite direction of the answering action is greater than a certain threshold, The incoming call is regarded as a rejection action.
  • the smart watch may further include: a display screen 50; the display screen 50 is disposed on the bezel 10 and is electrically connected to the processor, and the display screen 50 is used to display a function interface corresponding to the function.
  • the display screen 50 displays the function interface corresponding to the operation of the bezel 10, which can effectively improve the intuitiveness of the user's operation.
  • FIG. 7 a schematic diagram of various functions of the smart watch according to the embodiment of the present application is shown.
  • the following functions can be identified by using the capacitance value between the first electrode plate and the second electrode plate: determine 70 , previous page 71 , next page 72 , previous bar 73 , and next bar 74 .
  • the bezel 10 moves relative to the housing 20, it can be set: the function corresponding to the original position (or the default position) is OK 70, the function corresponding to moving to the left is selecting the previous item 73, and the corresponding function moving to the right The function is to select the next item 74 , the corresponding function to move up is to select the previous page 71 , and the corresponding function to move down is to select the next page 72 .
  • the principle of capacitive sensing is used to realize the control of the smart watch by rotating and pushing, which can be applied to various application scenarios, such as answering calls, reading WeChat/SMS, reading software, and map navigation. and many more.
  • it not only enhances the interestingness of the operation of the smart watch, but also enriches the control methods, which can make up for the defect that the touch screen does not sense or has low sensing sensitivity when swimming underwater, and can also improve the intuitiveness of control during map navigation.
  • the bezel 10 is further provided with a rotating portion, the rotating portion at least partially protrudes from the notch of the accommodating groove 21 , and is provided with a roughening structure along the circumferential direction of the rotating portion.
  • the rotating portion by disposing the rotating portion on the bezel 10 , it is more beneficial for the user to perform a rotation or push operation on the bezel 10 . Moreover, by arranging the roughened structure in the circumferential direction of the rotating part, the frictional force between the human hand and the rotating part can be effectively improved, and the problem of poor operability caused by hand slippage can be avoided.
  • the roughening structure provided on the rotating part may specifically be a plurality of concave parts arranged along the circumferential direction of the rotating part. It can be understood that, the roughened structure can also be formed by corrosion, grinding, etc., which can be set by those skilled in the art according to actual conditions.
  • the smart watch also includes functional devices such as a watch strap 40 , a camera, and a heart rate detector.
  • the watch strap 40 is used to be detachably connected to a ring structure so as to be worn on a human hand.
  • the settings of functional devices such as cameras and heart rate detection can effectively improve the functions of smart watches and improve user experience.
  • the smart watch described in the embodiments of the present application at least includes the following advantages:
  • the bezel is disposed on the casing and can move or rotate relative to the casing, and because the first electrode plate is disposed on the surface of the bezel opposite to the casing, the second electrode plate is disposed on the casing
  • the two ends of the first electrode plate and the second electrode plate have a voltage.
  • the capacitance value or the voltage value between the first electrode plate and the second electrode plate will also change.
  • the relative relationship between the bezel and the casing can be determined according to the change in the voltage value between the first electrode plate and the second electrode plate. motion information and trigger the corresponding function.
  • the principle of capacitive sensing is used to detect the position change between the bezel and the casing, and then trigger the corresponding function, which not only has high recognition accuracy, but also has good controllability, which can effectively improve the user experience.
  • the embodiment of the present application also provides an interaction method, which is applied to the above smart watch.
  • FIG. 8 a flowchart of steps of an interaction method described in an embodiment of the present application is shown, which may specifically include the following steps:
  • Step 801 Obtain the capacitance value between the first electrode plate and the second electrode plate in the position detection component, where the capacitance value includes the first capacitance value in the first state and the capacitance value in the second state. second capacitance value.
  • the first state and the second state may respectively indicate that the bezel is in different positions of the housing.
  • the first capacitance value in the first state may represent the capacitance value between the first electrode plate and the second electrode plate when the bezel is in the initial state, or it may represent the first capacitance value when the bezel rotates or moves to a certain position.
  • the capacitance value between an electrode plate and the second electrode plate; the second capacitance value in the second state can be expressed as when the bezel rotates or moves from the position of the first state to the position of the second state, the first electrode plate and the The capacitance value between the second electrode plates.
  • both the first state and the second state may be an intermediate state in which the bezel rotates or moves to a certain position of the case.
  • the relative positions of the ring and the housing in the first state and the second state may be the same or different.
  • the capacitance value between the first electrode plate and the second electrode plate can be the first capacitance value in the first state, and continue to rotate the bezel until the bezel rotates three grids clockwise. At this time, the capacitance value between the first electrode plate and the second electrode plate can be the second capacitance value in the second state. If the bezel continues to rotate, the second capacitance value in the second state can continue to be recorded as the next The first capacitance value in the first state, and then when the bezel continues to rotate to the next position, the capacitance value between the first electrode plate and the second electrode plate is the second capacitance value in the second state. That is to say, in the embodiment of the present application, the capacitance value between the corresponding first electrode plate and the second electrode plate when the bezel is in any position can be recorded as the first capacitance value in the first state or the second state the second capacitor value below.
  • the first capacitance value in the first state transitioning to the second capacitance value in the second state may also be acquired simultaneously.
  • the time information used by the second capacitance value can also trigger different functions according to the speed of the rotation of the bezel.
  • Step 803 Determine relative motion information between the bezel and the casing according to the first capacitance value and the second capacitance value.
  • the relative movement information between the bezel and the housing may include relative position information, or relative position information and time information.
  • the capacitance value between the first electrode plate and the second electrode plate when the bezel is in the initial position can be recorded as the first capacitance value in the first state.
  • the first electrode plate and the The capacitance value between the second electrode plates may be recorded as the second capacitance value in the second state.
  • the time it takes for the bezel to move from the initial position by the distance d can also be obtained synchronously, and then, according to the three technical parameters of the first capacitance value in the first state, the second capacitance value in the second state and the translation time , identify and trigger different functions.
  • the step of determining relative motion information between the bezel and the housing according to the first capacitance value and the second capacitance value may specifically include: When the change of the first capacitance satisfies the first preset rule, it is determined that the bezel rotates; the rotation direction and rotation of the bezel are determined according to the change value of the second capacitance relative to the first capacitance angle; or, when the change of the second capacitance relative to the first capacitance satisfies a second preset law, it is determined that the bezel moves; according to the change of the second capacitance relative to the first capacitance The value determines the direction and distance of movement of the bezel.
  • the bezel moves, for example, the bezel translates relative to the housing, since the second electrode plate facing the first electrode plate does not change, it is only the distance between the first electrode plate and the second electrode plate If there is a change, the voltage that can be detected by the second electrode plate opposite the first electrode plate, that is, its voltage reading is still recorded as 1 unchanged, that is, when the bezel is translated relative to the case, the above The code value does not change, and the second law of change is that the code does not change.
  • Step 805 Trigger a corresponding function according to the relative motion information.
  • various functions can be set correspondingly according to the different directions and angles of rotation of the bezel relative to the casing, or, according to the different distances and directions of movement of the bezel relative to the casing Various functions can be set accordingly.
  • the time when the bezel rotates or moves can also be detected by the processor of the smart watch.
  • the bezel rotates or moves relative to the casing it can also be set that when the time of rotation or movement is different, the corresponding The functions are also different.
  • the principle of capacitive sensing can be used to realize the control of the smart watch by rotating or pushing, which enhances the operability and fun of the smart watch, and also enriches the control methods, which can make up for the touch screen when swimming underwater. Flaws that the display doesn't sense, or the intuitiveness of controls when navigating the map.
  • the embodiment of the present application also provides an interaction device.
  • FIG. 9 a structural block diagram of an interaction apparatus according to an embodiment of the present application is shown, and the interaction apparatus 90 specifically includes:
  • the capacitance detection unit 901 is used to acquire the capacitance value between the first electrode plate and the second electrode plate in the position detection component, the capacitance value includes the first capacitance value in the first state and the second capacitance value in the second state Capacitance value;
  • an information determination unit 902 configured to determine relative motion information between the bezel and the casing according to the first capacitance value and the second capacitance value;
  • the function triggering unit 903 is configured to trigger a corresponding function according to the relative motion information.
  • the interaction device provided by the embodiment of the present application first obtains the capacitance value between the first electrode plate and the second electrode plate, and then determines the bezel and the case according to the first capacitance value and the second capacitance value The relative motion information between them, and finally trigger the corresponding function according to the relative motion information.
  • the principle of capacitive sensing is used to detect the position change between the first electrode plate and the second electrode plate, and then trigger the corresponding function, which not only has high recognition accuracy, but also has good controllability, which can effectively improve user usage. experience.
  • the interaction apparatus in this embodiment of the present application may be an electronic device, or may be a component in the electronic device, such as an integrated circuit or a chip.
  • the electronic device may be a terminal, or may be other devices other than the terminal.
  • the electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted electronic device, a Mobile Internet Device (MID), an augmented reality (AR)/virtual reality (VR) ) device, robot, wearable device, ultra-mobile personal computer (UMPC), netbook or personal digital assistant (PDA), etc.
  • MID Mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • the interaction device in this embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.

Abstract

本申请公开了一种智能手表,涉及电子设备技术领域。所述智能手表具体包括:壳体,表圈和位置检测组件;表圈设置于壳体上且可相对壳体移动或者转动;位置检测组件包括第一电极板和第二电极板,第一电极板设置于表圈与壳体相对的表面上,第二电极板设置于壳体与表圈相对的表面上,位置检测组件根据第一电极板与第二电极板之间的电容,确定表圈与壳体之间的相对运动信息,并触发相对运动信息对应的功能。

Description

智能手表、交互方法及交互装置
相关申请的交叉引用
本申请要求于2021年3月16日提交的申请号为202110283161.6,发明名称为“智能手表、交互方法及交互装置”的中国专利申请的优先权,其通过引用方式全部并入本申请。
技术领域
本申请属于电子设备技术领域,具体涉及一种智能手表、交互方法及交互装置。
背景技术
随着电子产业的发展,智能手表的结构越来越紧凑,也更加精致化。为了使智能手表的体积更加小巧,智能手表上的机械按键也越来越多的被触屏功能所替代。
然而,在智能手表的触屏尺寸较小或者屏幕上有水或者灰尘时,利用触屏来实现功能按键操作,就会出现触摸不准、识别精度较低的问题,而且触屏的可操控性较差,导致用户体验较差。
发明内容
本申请实施例的目的是提供一种智能手表、交互方法及交互装置,能够解决智能手表的触屏识别精度低、可操控性差的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种智能手表,所述智能手表包括:壳体,表圈和位置检测组件;
所述表圈设置于所述壳体上且可相对所述壳体移动或者转动;
所述位置检测组件包括第一电极板和第二电极板,所述第一电极板设置于所述表圈与所述壳体相对的表面上,所述第二电极板设置于所述壳体与所述表圈相对的表面上,所述位置检测组件根据所述第一电极板与所述第二电极板之间的电容,确定所述表圈与所述壳体之间的相对运动信息,并触发所述相对运动信息对应的功能。
第二方面,本申请实施例提供了一种交互方法,包括:获取所述位置检测组件中的所述第一电极板和所述第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值;
根据所述第一电容值和所述第二电容值确定所述表圈与所述壳体之间的相对运动信息;
根据所述相对运动信息触发对应的功能。
第三方面,本申请实施例还提供了一种交互装置,包括:
电容检测单元,用于获取位置检测组件中的第一电极板和第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值;
信息确定单元,用于根据所述第一电容值和所述第二电容值确定表圈与壳体之间的相对运动信息;
功能触发单元,用于根据所述相对运动信息触发对应的功能。
在本申请实施例中,由于表圈设置于壳体上且可相对壳体移动或者转动,又由于第一电极板设置于表圈与壳体相对的表面上,第二电极板设置于壳体与表圈相对的表面上,在第一电极板与第二电极板之间形成电容器时,第一电极板与第二电极板两端可以检测到电压值。在实际应用中,当第一电极板与第二电极板之间的相对距离、正对面积等发生变化时,第一电极板与第二电极板之间的电容值或者说是电压值也会随之改变,因此,当表圈带动第一电极板在壳体上转动或移动时,可以根据第一电极板与第二电极板之间的电压值的变化,确定表圈与壳体之间的相对运动信息,并触发对应的功能。本申请实施例中,利用电容感应原理,检测表圈与壳体之间的位置变化,进而 触发对应的功能,不但识别精度高,而且可操控性较好,可以有效提升用户使用体验。
附图说明
图1是本申请实施例所述智能手表的结构示意图之一;
图2是图1所示智能手表沿一个方向的剖面示意图;
图3是图1所示智能手表沿另一个方向的剖面示意图;
图4是本申请实施例所述智能手表的结构示意图之二;
图5是图4中C位置的放大图;
图6是本申请实施例所述表圈的位移变化示意图;
图7是本申请实施例所述智能手表的多种功能的示意图;
图8是本申请实施例所述的一种交互方法的步骤流程图;
图9是本申请实施例的一种交互装置的结构框图。
附图标记说明:
10:表圈;20:壳体;30:位置检测组件;40:表带;50:显示屏;31:第一电极板;32:第二电极板;11:容置部;21:容纳槽。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或” 的关系。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的智能手表进行详细地说明。
参照图1,示出了本申请实施例所述智能手表的结构示意图之一。参照图2,示出了图1中所示智能手表沿一个方向的剖面示意图。参照图3,示出了图1中所示智能手表沿另一个方向的剖面示意图。
本申请实施例中,智能手表具体可以包括:壳体20,表圈10和位置检测组件30;表圈10设置于壳体20上且可相对壳体20移动或者转动;位置检测组件30包括第一电极板31和第二电极板32,第一电极板31设置于表圈10与壳体20相对的表面上,第二电极板32设置于壳体20与表圈10相对的表面上,位置检测组件30根据第一电极板31与第二电极板32之间的电容,确定表圈10与壳体20之间的相对运动信息,并触发相对运动信息对应的功能。
在实际应用中,表圈10可以为智能手表的可转动表盘,壳体20可以为智能手表的下表盘(或者说是下壳体),表圈10可以相对壳体20移动或转动上可以理解为可转动表盘可以相对下表盘进行360°转动,或可以沿任意方位进行小幅度移动(或者理解为滑动、平移等)。
本申请实施例中,相对运动信息包括:相对位置信息,和/或时间信息;表圈10与壳体20之间的相对运动信息具体可以包括:表圈10与壳体20之间的相对位置信息,和/或表圈10转动或移动至壳体20当前位置所耗费的时间信息。
在实际应用中,可以将表圈10与壳体20之间的相对运动信息与智能手表的多种功能相对应。例如,在相对运动信息只包括相对位置信息的情况下,可以设置在表圈10相对壳体20顺时针转动90°时,智能手表的摄像头开启,然后表圈10相对壳体20再逆时针90°摄像头关闭。再或者,还可以在来电时,通过向左推动表圈10,使表圈10相对壳体20向左小幅度移动,则设置为接听电话,在通话结束后,向右推动表圈10,使表圈10相对壳体20 向右小幅度移动,则设置为挂断通话等等。在相对运动信息包括相对位置信息和时间信息的情况下,还可以设置为:在表圈10相对壳体20顺时针转动90°且转动时长小于3s时,则智能手表的摄像头开启,当表圈10相对壳体20顺时针转动90°且转动时长大于3s时,则智能手表发出提醒警示,提醒用户确认是否开启智能手表摄像头。在实际应用中,当表圈10相对壳体20顺时针转动90°且转动时长大于3s时,由于转动时长较长,有可能是用户在运动过程中的误操作,因此,可以使智能手表发出提醒警示等动作,以防止误操作。本申请实施例中,相对运动信息包括相对位置信息和时间信息时,可以有效避免误操作,进一步提升智能手表的功能触发的准确性。
本申请实施例中,时间信息的获取可以通过多种方式。例如,智能手表内的处理器可以通过时间检测电路检测表圈转动或移动所用的时长信息。本申请实施例中,时间信息的获取方式可以与现有技术相同,本申请实施例对此不作赘述。
本申请实施例中,以下结合附图,通过具体实施例及应用场景,对通过第一电极板31和第二电极板32之间电容信息,确定表圈10与壳体20之间的相对位置信息进行详细解释。
本申请实施例中,第一电极板31可以为不带电金属板即不通电状态,第二电极板32可以为常带电的金属板即长通电状态,由于第一电极板31与第二电极板32相对,则在第二电极板32的电压的作用下,第一电极板31上与第二电极板32相对的位置聚集电荷,第一电极板31与第二电极板32之间存在电势差,第一电极板31与第二电极板32形成电容器且两端具有电压。在实际应用中,当第一电极板31与第二电极板32之间的相对距离、正对面积等发生变化时,第一电极板31与第二电极板32之间的电容值(或者说是电压值)也会随之改变,因此,当表圈10带动第一电极板31在壳体20上转动或移动时,可以根据第一电极板31与第二电极板32之间的电压值的变化,确定表圈10与壳体20之间的相对运动信息,并触发对应的功能。本申请实施例中,利用电容感应原理,检测表圈10与壳体20之间的位置变化, 进而触发对应的功能,不但识别精度高,而且可操控性较好,可以有效提升用户使用体验。
在实际应用中,由于第一电极板31与第二电极板32还具有体积小、成本低的优点,因此,其对应的智能手表也兼具体积小、成本低的优势。
在本申请实施例中,表圈10与壳体20的一种活动连接的实现方式可以为:表圈10与壳体20之间通过球轴连接,由于球轴可以360°转动,进而可以使通过球轴相连的表圈10相对壳体20实现360°角度转动或者沿小幅度平移。
可选的,壳体20上可以设有容纳槽21;表圈10设有容置部11,容置部11可转动地设置于容纳槽21内,和/或,容置部11可移动地设置于容纳槽21内,且容置部11具有与容纳槽21的槽壁相对的第一侧壁,第一侧壁与容纳槽21的槽壁之间形成间隙;第一电极板31设置于第一侧壁上,第二电极板32设置于容纳槽21的槽壁上。
本申请实施例中,第一电极板31和第二电极板32相当于均设置于容纳槽21内,这样既可以使第一电极板31和第二电极板32的连接走线更加简单,也避免了第一电极板31和第二电极板32外露设置导致受环境中灰尘水汽等的影响,可以有效提升第一电极板31和第二电极板32之间形成的电压的稳定性,进而提升智能手表的识别精度。
在实际应用中,容纳槽21可以为智能手表上容纳电子器件的腔体。具体的,容纳槽21可以为圆形或近似圆形。表圈10的容置部11可以为可转动表盘伸入容纳槽21内的部分。在容纳槽21为圆形的情况下,容置部11可以为环形结构,第一侧壁即容置部11与容纳槽21的槽壁相对的侧壁,容纳槽21的槽壁与第一侧壁之间形成的间隙为环形。
在本申请实施例中,容置部11可活动设置于容纳槽21内,具体的可以包括:容置部11可转动设置于容纳槽21内,和/或,容置部11可移动设置于容纳槽21内。例如,智能手表上可以设置可转动表盘,可转动表盘既可以进行360°转动,又可以沿某一方向平行推动或按压,实现可转动表盘相 对智能手表下表盘发生小幅度移动或平移,这样,既不会增加智能手表的体积,又可以使智能手表的结构上更容易实现,且还可以有效提升用户的操控性和娱乐性,提升用户使用体验。
在实际应用中,由于第一电极板31设置于容置部11的第一侧壁,第二电极板32设置于容纳槽21的槽壁上,容置部11在容纳槽21内转动的情况下,第一电极板31与第二电极板32之间的相对面积可以发生变化,可以简单的理解为第一电极板31随着容置部11的转动可以由与第二电极板32相对转变为不相对,第一电极板31与第二电极板32相对时形成电容器其两端具有电压,而第一电极板31与第二电极板32不相对(错位)时,第一电极板31与第二电极板32之间无法形成电容器,第一电极板31与第二电极板32之间电压可以理解为0。这样,就可以通过第一电极板31与第二电极板32两端的电压值判断第一电极板31与第二电极板32的相对位置(第一电极板31与第二电极板32相对或不相对)以及第一电极板31移动至当前位置所用时长,进而确定表圈10与壳体20之间的相对运动信息,并触发相对运动信息对应的功能。
在本申请实施例中,为了更加精准定位表圈10与壳体20之间的相对运动信息,即表圈10相对壳体20的转动角度以及转动方向,和/或,表圈10相对壳体20的移动距离以及移动方向,第二电极板32的数量可以设置为多个,多个第二电极板32在容纳槽21的槽壁上沿容置部11的周向均匀分布;第一电极板31与至少一个第二电极板32相对;智能手表还可以包括:处理器,处理器分别与第一电极板31和第二电极板32相连;在容置部11在容纳槽21内转动的情况下,与第一电极板31相对的第二电极板32逐个切换,处理器用于,根据第一电极板31与第二电极板32之间的电容值,确定容置部11在容纳槽21内的转动角度和转动方向,并触发与其相对应的功能;在容置部11在容纳槽21内移动的情况下,第一电极板31靠近或远离与其相对的第二电极板32,处理器用于,根据第一电极板31与第二电极板32移动前和移动后的电容值,确定容置部11在容纳槽21内的移动距离和移动方向, 并触发其对应的功能。
在实际应用中,第一电极板31可以与一个或者多个第二电极板32相对,多个第二电极板32在容纳槽21的槽壁上沿容置部11的周向均匀分布,这样,容置部11在容纳槽21内转动时,第一电极板31随容置部11转动,则与第一电极板31相对的第二电极板32逐个切换,第一电极板31从与其中一个第二电极板32相对切换到与另一个第二电极板32相对,也就相当于与第一电极板31之间形成电容器的第二电极板32逐个切换。在第二电极板32与第一电极板31相对时,则其两端可以检测到电压,与第一电极板31不相对则其两端不具有电势差,则电压可以理解为0。可以理解的是,容置部11的转动角度与其切换的第二电极板32的数量成正相关。当一个第一电极板31与一个第二电极板32相对时,结构简单,仅通过判断与第一电极板31产生电压的第二电极板32的位置即可定位容置部11的转动角度和转动方向。当每一个第一电极板31同时与两个或者多个第二电极板32相对时,可以通过同时检测第一电极板31,以及与第一电极板31相对的两个或多个第二电极板32之间的电压,从而定位容置部11的转动角度和转动方向,这样可以有效提升定位容置部11转动角度和转动方向的精准性。本申请实施例中,可以通过检测与第一电极板31之间产生电压的第二电极板32的位置,从而确定容置部11在容纳槽21内的转动角度和转动方向,简单快捷、定位精准。
可选的,第一电极板31的数量为多个,每个第一电极板31与至少一个第二电极板32相对。
本申请实施例中,可以通过检测每一个第一电极板31和多个第二电极板32之间的电压变化,从而确定第一电极板31相对的第二电极板32的位置,进而判断表圈10相对壳体20之间的相对位置关系(转动角度和转动方向、移动距离和移动方向)。在实际应用中,为了提升表圈10和壳体20之间相对位置关系定位的精准性,第一电极板31的数量也可以设置为多个,通过检测多个第一电极板31和多个第二电极板32两端的电压,从而更为精准的判断表圈10与壳体20之间的相对位置关系。
下面结合附图,本申请实施例以一个第一电极板31同时与三个第二电极板32相对的情况为例,在表圈相对壳体发生转动时,对第一电极板31其与多个第二电极板32之间电压(或电容)的变化情况进行详细地说明。
本申请实施例中,每一个第一电极板31与多个第二电极板32可以组成一组电容端子阵列。在实际应用中,可以将每一个第一电极板与多个第二电极板组成的电容端子阵列进行编码,在第一电极板31随表圈10转动或移动时,通过检测编码的变化情况,从而确定表圈10与壳体20的相对位置关系。
参照图4,示出了本申请实施例所述智能手表的结构示意图之二。如图4所示,第一电极板31以a1、a2、……a6表示,第二电极板32分别以b1、b2、b3……b10表示,多个第二电极板32在容纳槽21的槽壁上依次排列。初始位置时,第一电极板a1同时与第二电极板b1、b2和b3相对。当第一电极板与第二电极板正对时,第一电极板与第二电极板之间形成电容器,则其两端可以检测有电压,读数记为1,否则记为0。表圈10在静置时(初始位置)、逆时针转动一格、顺时针转动一格的读数如下表1中所示:
Figure PCTCN2022080590-appb-000001
如表1所示,可以根据上表的变化规律,依次推断表圈10逆时针(或顺时针)转2格、3格……时对应的电压编码。在实际应用中,可以设定表圈10每顺时针转动一格的转动角度为5°,表圈10每逆时针转动一格的转动角度为-5°,通过测量第一电极板31和多个第二电极板32两端的电压,根据表1所示编码的变化规律就可以很容易得出表圈10的转动角度和转动方向。显然,在表圈10相对壳体20产生转动时,第一电极板31与多个第二电极板32之间的电压变化可以满足第一变化规律,因此,在检测到第一电极板31和多个第二电极板32两端的电压具有第一变化规律时,就可以得出表圈10相对壳体20产生转动,进而根据表1的变化规律推断表圈10的转动方向和转动后的位置,简单方便。
可以理解的是,本领域技术人员可以根据实际情况设定表圈10每转动一格所对应的角度值,本申请实施例对此不作具体限定。
下面结合附图,以一个第一电极板31同时与三个第二电极板32相对的情况为例,对第一电极板与其相对的三个第二电极板之间电压(或电容)的变化情况,确定表圈10相对壳体20产生的移动方向和移动距离的原理进行详细地说明。
参照图5,示出了图4中C位置的放大图。如图5所示,表圈10受到推力F的作用力的情况下,容置部11在容纳槽21内在推力F的作用下发生移动,第一侧壁与容纳槽21的槽壁之间形成的间隙变小,即第一电极板31与第二电极板32之间的距离d变小。由于第一电极板31与第二电极板32相对,第一电极板31与第二电极板32之间形成电容,根据电容的通用公式:
Q=CU
C=εS/4πkd
Q:电容器极板所存的电荷,在智能手表中第一电极板的电荷量始终保持为固定量;
C:电容器的电容值;
U:电容两个极板(第一电极板和第二电极板)之间的电压;
ε:极板间介质的介电常数,本申请中的介电质为空气,此常数可以视为固定值;
S:第一电极板和第二电极板的正对面积,本申请中的面积是固定值;
k:是静电力常量;
d:极板间的距离,收到推力F后第一电极板与第二电极板之间的距离变化,因此这个值是变化的;
本申请实施例中,U=Q/C=Q4πkd/εS,电压U与距离d成正比,即如果检测到极板间的电压变小,则推力F后第一电极板31和第二电极板32的距离也变小,反之则变大,即极板间的电压与极板间的距离正相关。因此,在实际应用中,可以通过检测每个第一电极板31与其相对的三个第二电极 板32之间的电容值的变化,从而判断容置部11受到推力F的方向和移动距离,也即表圈10相对壳体20的移动方向和移动距离。
在本申请实施例中,第二电极板32的数量为多个的情况下,多个第二电极板32中,每个第二电极板32的通电电压还可以均相同或均不相同。其中,第一电极板31可以为不带电金属板即第一电极板31可以不通电,第二电极板32为长带电。以下针对上述两种方案,对其原理进行详细解释说明。
本申请实施例中,在多个第二电极板32的通电电压均相同的情况下,多个第二电极板32在容纳槽21的槽壁上沿容置部11的周向均匀分布,则第一电极板a1与其相对的第二电极板b1、b2和b3之间形成的电容器的电容值在默认状态下具有同等电压,第一电极板a1随着容置部11在容纳槽21内转动时,可以按照下表2中的变化判断其转动方向和转动角度。其中,第二电极板与第一电极板相对,则其两端有电压形成,读数为1,否则读数为0。
表2:表圈在静置、逆时针转1格、顺时针转1格的读数
Figure PCTCN2022080590-appb-000002
在实际应用中,通过表2中两个极板的板间电压的读数,可以很快速的得出每个电容值的变化,进而判断容置部的转动方向和转动角度(也可以理解为第一表盘的转动方向和转动停止后的位置)。
如图5所示,当表圈10(容置部)受到推力F的作用,在容纳槽21内发生移动的情况下,按照U=Q/C=Q4πkd/Εs的计算公式,由于U和d为正相关,当检测到某个电容器对应的电压U发生的变化最大,则其对应的移动的位移d最大,进而,可以推断表圈10的移动方向和移动距离。
本申请实施例中,在多个第二电极板32的通电电压均不相同的情况下,沿容置部的周向,多个第二电极板32的通电电压可以依次递增或递减。本申请实施例中,以沿逆时针方向,多个第二电极板32的通电电压依次递减 排布为例进行说明。
假设沿逆时针方向,多个第二电极板32的带电量依次为:b1=b2+q=b3+2q=……=bx+(x-1)q;其中,q表示电量,x表示第二电极板32的数量,x越大其检测精度越低。a1对应的b1、b2和b3电压为U1,a2对应b4、b5和b6电压为U2,以此类推,按照U1,U2,U3……Ux进行量化采样,例如量化采样为8位,则其二进制表示为:
U1=00000001
U2=00000010
U3=00000011
采用十进制表示,则为Ux=x;
在实际应用中,每个第二电极板32都有明确的电压数值,在表圈10带动第一电极板31发生转动时,对应的与第二电极板32之间形成的电容器的电容值发生了变化,即第一电极板31与第二电极板32两端的电压值发生了变化。在表圈10带动第一电极板31发生转动时,第二电极板32的电压变化如表3所示,其变化是有顺序的。如表3为表圈10在静置、逆时针转1格、顺时针转1格三种情况下,第一电极板和第二电极板两端电压编码的读数。
Figure PCTCN2022080590-appb-000003
如表3所示,当第二电极板32侧的电压值发生的变化具有上述规律的情况下,则判断表圈10发生转动,根据第二电极板32具体的电压值的变化,可以得出表圈10相对壳体20的转动角度和转动方向。而当第二电极板32侧的电压值发生的变化没有规律的情况下,则判断此时表圈10相对壳体20发生移动,此时,假设第二电极板32的电压由默认状态U 0=Q/C=Q4πkd 0/ εS变化为U 1=Q/C=Q4πkd 1/εS,此时由于U 1/U 0=d 1/d 0,由于默认状态的d 0是相同的,因此,当其中第二电极板的U 1/U 0=d 1/d 0值最大时,则可以判断此时在这一个第二电极板对应的位置上,表圈10发生了最大的位移,进而判断表圈10相对壳体20发生移动方向和移动距离。
本申请实施例中,为了进一步提升表圈10和壳体20之间相对位置关系检测的准确度,多个第一电极板31在第一侧壁上可以两两对称设置。在实际应用中,表圈10相对壳体20发生移动时,对称设置的两个第一电极板31分别和其对应的第二电极板32之间距离发生变化相同,因此,可以通过同时检测上述对称的两个电极板的电容变化,从而提升智能手表位置检测的准确度。
以下结合附图,对同时检测对称的两个电极板的电容变化的情况进行详细的解释说明。
参照图6,示出了本申请实施例中表圈的位移变化示意图。如图6中,A1表示壳体20的位置,A2表示表圈10受到推力发生移动之后的位置,A3表示表圈10的初始位置(默认状态/静置时的位置),B1表示第一电极板,B2表示与B1正对的第二电极板,d 01、d 02表示初始位置时第一电极板与第二电极板之间的距离;d 11、d 12表示受推动后第一电极板与第二电极板之间的距离,则,表圈处于初始位置时,U 01=Q4πkd 01/εS,U 02=Q4πkd 02/εS;表圈受到推力发生移动后,U 11=Q4πkd 11/εS,U 12=Q4πkd 12/εS;此时,可计算出左右两边位移变化分别是:D 1=d 01-d 11=(U 01-U 11)εS/Q4πk,D 2=d 12–d 02=(U 12-U 02)εS/Q4πk。本申请实施例中,由于第一电极板两两对称设置,则可以通过D 1=D 2两个数据的检测,从而有效提升位置检测精确度。
在实际应用中,还可以针对不同的情景应用设置不同的位移阈值(转动方向和转动角度,移动方向和移动距离),从而增加智能手表的可操作性和娱乐性。例如,可以设置当检测到表圈10由初始位置向一侧的位移大于某个阈值时,来电通话时视为接听动作,由初始位置移动至与接听动作相反方向的位移大于某个阈值时,则来电通话视为拒接动作。
在本申请实施例中,智能手表还可以包括:显示屏50;显示屏50设置于表圈10上且与处理器电连接,显示屏50用于显示功能对应的功能界面。本申请实施例中,通过显示屏50显示对应表圈10操作的功能界面,可以有效提升用户操作的直观性。
参照图7,示出了本申请实施例所述智能手表的多种功能的示意图。
如图7所示,利用第一电极板和第二电极板之间电容值可以识别如下功能:确定70、上一页71、下一页72、上一条73、下一条74。在表圈10相对壳体20发生移动的情况下,则可以设置:处于原始位置(或默认位置)对应的功能为确定70,向左移动对应的功能为选择上一条73,向右移动对应的功能为选择下一条74,向上移动对应的功能为选择上一页71,向下移动对应的功能为选择下一页72。在表圈10相对壳体20发生转动的情况下,则表圈10相对壳体20发生顺时针转动时,依次可以实现如下功能选择:确定70-下一条74-下一页72-上一条73-上一页71-确定70-下一条74…依次顺时针循环,直至用户选择需要操作的动作;逆时针转动时,依次可实现选择:确定70-上一条73-下一页72-下一条74-上一页71-确定70-上一条73…依次逆时针循环,直至用户选择需要操作的动作。
本申请实施例中,利用电容感应的原理,通过转动和推动的方式,实现对智能手表的控制,可以应用于多种应用场景,例如,接听来电、读取微信/短信、读书软件、地图导航等等。这样,不但增强了智能手表可操作的趣味性,同时也丰富了控制方式,可弥补触屏在水下游泳时不感应或感应灵敏度低的缺陷,还可以提升在地图导航时控制的直观性。
可选的,表圈10上还设有转动部,转动部至少部分凸出于容纳槽21的槽口,且沿转动部的周向设有粗化结构。
在本申请实施例中,通过在表圈10上设置转动部,从而更为有利于用户在表圈10上施加转动或者推动操作。而且,通过在转动部的周向设置粗化结构,可以有效提升人手与转动部之间的摩擦力,避免手滑导致操作性差的问题。
在实际应用中,转动部上设有的粗化结构具体可以为沿转动部的周向设置的多个凹陷部,通过人手凹至凹陷部从而提升人手与转动部之间的摩擦力。可以理解的是,粗化结构还可以通过腐蚀、磨砂等方式形成的螺纹,本领域技术人员可以根据实际情况设置。
可以理解的是,智能手表还包括:表带40、摄像头、心率检测件等功能器件。在实际应用中,表带40用于可拆卸连接为环状结构,从而佩戴于人手上。摄像头、心率检测性等功能器件的设置可以有效提升智能手表的功能,提升用户使用体验。
综上,本申请实施例所述的智能手表至少包括以下优点:
在本申请实施例中,由于表圈设置于壳体上且可相对壳体移动或者转动,又由于第一电极板设置于表圈与壳体相对的表面上,第二电极板设置于壳体与表圈相对的表面上上,第一电极板与第二电极板之间可以形成电容器时,第一电极板与第二电极板两端具有电压。在实际应用中,当第一电极板与第二电极板之间的相对距离、正对面积等发生变化时,第一电极板与第二电极板之间的电容值或者说是电压值也会随之改变,因此,当表圈带动第一电极板在壳体上活动时,可以根据第一电极板与第二电极板之间的电压值的变化,确定表圈与壳体之间的相对运动信息,并触发对应的功能。本申请实施例中,利用电容感应原理,检测表圈与壳体之间的位置变化,进而触发对应的功能,不但识别精度高,而且可操控性较好,可以有效提升用户使用体验。
本申请实施例还提供了一种交互方法,应用于上述智能手表。参照图8,示出了本申请实施例所述的一种交互方法的步骤流程图,具体可以包括以下步骤:
步骤801,获取所述位置检测组件中的所述第一电极板和所述第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值。
具体的,位置检测组件中第一电极和第二电极在智能手表中的位置关系, 在可以参照上述智能手表的实施例,此处不再赘述。
本申请实施例中,第一状态和第二状态可以分别表示表圈处于壳体的不同位置。例如,第一状态下的第一电容值可以表示表圈处于初始状态下,第一电极板和第二电极板之间的电容值,也可以表示表圈转动或移动至某一位置时,第一电极板和第二电极板之间的电容值;第二状态下的第二电容值可以表示为表圈由第一状态所在位置转动或移动至第二状态所在位置时,第一电极板与第二电极板之间的电容值。在本申请实施例中,第一状态和第二状态均可以为表圈转动或移动至壳体的某一位置的中间状态。在实际应用中,第一状态和第二状态下表圈与壳体的相对位置可以相同或不同。
例如,表圈顺时针转动一格时,第一电极板和第二电极板之间的电容值可以为第一状态下的第一电容值,继续转动表圈直至表圈顺时针转动三格,此时第一电极板和第二电极板之间的电容值可以为第二状态下的第二电容值,如果表圈继续转动,上述第二状态下的第二电容值可以继续记为下一个第一状态下的第一电容值,然后表圈继续转动至下一个位置时,第一电极板和第二电极板之间的电容值作为第二状态下的第二电容值。也就是说,本申请实施例中,表圈处于任意位置时对应的第一电极板和第二电极板之间的电容值,均可以记为第一状态下的第一电容值或第二状态下的第二电容值。
本申请实施例中,获取第一状态下的第一电容值和第二状态下的第二电容值时,还可以同步获取由第一状态下的第一电容值转变至第二状态下的第二电容值所用的时间信息,进而还可以根据表圈转动的快慢对应触发不同的功能。
步骤803,根据所述第一电容值和所述第二电容值确定所述表圈与所述壳体之间的相对运动信息。
本申请实施例中,表圈与壳体之间的相对运动信息可以包括相对位置信息,或,相对位置信息和时间信息。例如,表圈处于初始位置时的第一电极板和第二电极板之间的电容值可以记为第一状态下的第一电容值,表圈向左平移距离d时,第一电极板和第二电极板之间的电容值可以记为第二状态的 第二电容值。在实际应用中,还可以同步获取表圈由初始位置平移距离d所用的时间,然后,根据第一状态下的第一电容值,第二状态下的第二电容值和平移时间三个技术参数,确定并触发不同的功能。
可选的,所述根据所述第一电容值和所述第二电容值确定所述表圈与所述壳体之间的相对运动信息的步骤,具体可以包括:在所述第二电容相对所述第一电容的变化满足第一预设规律的情况下,确定所述表圈发生转动;根据所述第二电容相对所述第一电容的变化值确定所述表圈的转动方向和转动角度;或者,在所述第二电容相对所述第一电容的变化满足第二预设规律的情况下,确定所述表圈发生移动;根据所述第二电容相对所述第一电容的变化值确定所述表圈的移动方向和移动距离。
本申请实施例中,以一个第一电极板正对三个第二电极板为例,沿顺时针方向,选择8个第二电极板作为一组进行编码,在第一电极板与第二电极板正对时,其形成电容器,两端有电势差可以检测到电压,读数记为1,否则记为0,以第一电极板正对的三个第二电极板为初始位置,表圈在静置时(初始位置)、逆时针转动一格、顺时针转动一格的读数如下表4中所示:
Figure PCTCN2022080590-appb-000004
如表4所示,在表圈发生转动时,由于第一电极板正对的第二电极板逐个进行切换,因此其每组编码的变化是有一定规律的,即只有与第一电极板正对时,其电压读数记为1,否则为零。因此,在实际应用中,当检测到第二电容值相对第一电容值具有上述变化规律时,则可以判断表圈相对壳体发生了转动,进而根据上述变化规律即可得出表圈的转动方向和转动角度。而在表圈发生移动时,例如表圈相对壳体发生平移,由于与第一电极板正对的第二电极板没有发生变化,其仅仅是第一电极板与第二电极板之间的距离发生变化,则与第一电极板相对的第二电极板还可以检测出的电压,即其电压读数还记为1不变,也就是说,在表圈相对壳体发生平移的情况下,上述编 码值是没有变化的,第二变化规律即编码不发生变化。
在实际应用中,检测到第二电容值对应的电压编码相对第一电容值对应的电压编码没有发生变化时,则可以得出表圈相对壳体发生了移动(平移),则根据电容的通用公式Q=CU,C=εS/4πkd,分别计算表圈发生的位移距离和位移方向。具体的,根据上述公式计算表圈发生的位移距离和位移方向,可以参考上述实施例,此处不再赘述。
步骤805,根据所述相对运动信息触发对应的功能。
本申请实施例中,可以根据表圈相对壳体发生转动的方向和转动的角度的不同,对应设定多种功能,或,还可以根据表圈相对壳体发生移动的距离和移动的方向不同对应设定多种功能。此外,还可以通过智能手表的处理器对表圈发生上述转动或移动的时间进行检测,在表圈相对壳体发生转动或移动时,还可以设定其转动或移动的时间不同时,对应的功能也不相同。这样就可以利用电容感应的原理,通过转动或推动的方式,实现对智能手表的控制,增强了智能手表的可操作的趣味性,同时也丰富了控制方式,可弥补触屏在水下游泳时显示屏不感应的缺陷,或者在地图导航时控制的直观性。
本申请实施例还提供了一种交互装置。参照图9,示出了本申请实施例的一种交互装置的结构框图,该交互装置90具体包括:
电容检测单元901,用于获取位置检测组件中的第一电极板和第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值;
信息确定单元902,用于根据所述第一电容值和所述第二电容值确定表圈与壳体之间的相对运动信息;
功能触发单元903,用于根据所述相对运动信息触发对应的功能。
综上所述,本申请实施例提供的交互装置,首先通过获取第一电极板和第二电极板之间的电容值,然后再根据第一电容值和第二电容值确定表圈与壳体之间的相对运动信息,最后根据相对运动信息触发对应的功能。本申请 实施例中,利用电容感应原理,检测第一电极板与第二电极板之间的位置变化,进而触发对应的功能,不但识别精度高,而且可操控性较好,可以有效提升用户使用体验。
本申请实施例中的交互装置可以是电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,还可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的交互装置可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (10)

  1. 一种智能手表,包括:壳体,表圈和位置检测组件;
    所述表圈设置于所述壳体上且可相对所述壳体移动或者转动;
    所述位置检测组件包括第一电极板和第二电极板,所述第一电极板设置于所述表圈与所述壳体相对的表面上,所述第二电极板设置于所述壳体与所述表圈相对的表面上,所述位置检测组件根据所述第一电极板与所述第二电极板之间的电容,确定所述表圈与所述壳体之间的相对运动信息,并触发所述相对运动信息对应的功能。
  2. 根据权利要求1所述的智能手表,其中,所述壳体上设有容纳槽;
    所述表圈设有容置部,所述容置部可转动设置于所述容纳槽内,和/或,所述容置部可移动设置于所述容纳槽内,且所述容置部具有与所述容纳槽的槽壁相对的第一侧壁,所述第一侧壁与所述容纳槽的槽壁之间形成间隙;
    所述第一电极板设置于所述第一侧壁上,所述第二电极板设置于所述容纳槽的槽壁上。
  3. 根据权利要求2所述的智能手表,其中,所述第二电极板的数量为多个,多个所述第二电极板在所述容纳槽的槽壁上沿所述容置部的周向均匀分布;
    所述第一电极板与至少一个所述第二电极板相对;
    所述智能手表还包括:处理器,所述处理器分别与所述第一电极板和所述第二电极板相连;
    在所述容置部在所述容纳槽内转动的情况下,与所述第一电极板相对的所述第二电极板逐个切换,所述处理器用于,根据所述第一电极板与所述第二电极板之间的电容值,确定所述容置部在所述容纳槽内的转动角度和转动方向,并触发与其相对应的功能;
    在所述容置部在所述容纳槽内移动的情况下,所述第一电极板靠近或远离与其相对的所述第二电极板,所述处理器用于,根据所述第一电极板与所 述第二电极板移动前和移动后的电容值,确定所述容置部在所述容纳槽内的移动距离和移动方向,并触发其对应的功能。
  4. 根据权利要求3所述的智能手表,其中,多个所述第二电极板中,每个所述第二电极板的通电电压均相同。
  5. 根据权利要求3所述的智能手表,其中,沿所述容置部的周向,多个所述第二电极板的通电电压依次递增或递减。
  6. 根据权利要求3所述的智能手表,其中,所述第一电极板的数量为多个,每个所述第一电极板与至少一个所述第二电极板相对。
  7. 根据权利要求6所述的智能手表,其中,多个所述第一电极板在所述第一侧壁上两两对称设置。
  8. 一种交互方法,应用于如权利要求1至7中任一项所述的智能手表,所述方法包括:
    获取所述位置检测组件中的所述第一电极板和所述第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值;
    根据所述第一电容值和所述第二电容值确定所述表圈与所述壳体之间的相对运动信息;
    根据所述相对运动信息触发对应的功能。
  9. 根据权利要求8所述的方法,其中,所述根据所述第一电容值和所述第二电容值确定所述表圈与所述壳体之间的相对运动信息,包括:
    在所述第二电容相对所述第一电容的变化满足第一预设规律的情况下,确定所述表圈发生转动;
    根据所述第二电容相对所述第一电容的变化值确定所述表圈的转动方向和转动角度;
    或者,
    在所述第二电容相对所述第一电容的变化满足第二预设规律的情况下,确定所述表圈发生移动;
    根据所述第二电容相对所述第一电容的变化值确定所述表圈的移动方向 和移动距离。
  10. 一种交互装置,包括:
    电容检测单元,用于获取位置检测组件中的第一电极板和第二电极板之间的电容值,所述电容值包括第一状态下的第一电容值和第二状态下的第二电容值;
    信息确定单元,用于根据所述第一电容值和所述第二电容值确定表圈与壳体之间的相对运动信息;
    功能触发单元,用于根据所述相对运动信息触发对应的功能。
PCT/CN2022/080590 2021-03-16 2022-03-14 智能手表、交互方法及交互装置 WO2022194076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110283161.6 2021-03-16
CN202110283161.6A CN113010052A (zh) 2021-03-16 2021-03-16 智能手表、交互方法及交互装置

Publications (1)

Publication Number Publication Date
WO2022194076A1 true WO2022194076A1 (zh) 2022-09-22

Family

ID=76408671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080590 WO2022194076A1 (zh) 2021-03-16 2022-03-14 智能手表、交互方法及交互装置

Country Status (2)

Country Link
CN (1) CN113010052A (zh)
WO (1) WO2022194076A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113010052A (zh) * 2021-03-16 2021-06-22 维沃移动通信有限公司 智能手表、交互方法及交互装置
CN113985965A (zh) * 2021-10-26 2022-01-28 维沃移动通信有限公司 穿戴设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977845A (zh) * 2015-08-06 2015-10-14 惠州Tcl移动通信有限公司 一种表壳组件、智能手表及智能手表的控制方法
CN106094499A (zh) * 2016-06-18 2016-11-09 惠州Tcl移动通信有限公司 旋转交互式智能手表
US20180059809A1 (en) * 2016-08-30 2018-03-01 Garmin Switzerland Gmbh Dynamic watch user interface
CN109074030A (zh) * 2017-10-26 2018-12-21 深圳市隐秀科技有限公司 一种交互式智能手表及其交互控制方法
CN111352559A (zh) * 2020-02-27 2020-06-30 维沃移动通信有限公司 一种电子设备及控制方法
CN111796732A (zh) * 2020-06-28 2020-10-20 广东乐芯智能科技有限公司 一种手表输入数字和手表解绑的方法
CN113010052A (zh) * 2021-03-16 2021-06-22 维沃移动通信有限公司 智能手表、交互方法及交互装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329875A (ja) * 1999-05-17 2000-11-30 Citizen Watch Co Ltd デジタルウオッチの入力手段
EP3007013A1 (en) * 2014-10-07 2016-04-13 The Swatch Group Research and Development Ltd. Position sensor for a timepiece setting stem
CN108733294A (zh) * 2017-04-21 2018-11-02 比亚迪股份有限公司 触按压力检测装置和终端设备
CN112416185B (zh) * 2020-11-19 2023-01-13 维沃移动通信有限公司 穿戴式设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977845A (zh) * 2015-08-06 2015-10-14 惠州Tcl移动通信有限公司 一种表壳组件、智能手表及智能手表的控制方法
CN106094499A (zh) * 2016-06-18 2016-11-09 惠州Tcl移动通信有限公司 旋转交互式智能手表
US20180059809A1 (en) * 2016-08-30 2018-03-01 Garmin Switzerland Gmbh Dynamic watch user interface
CN109074030A (zh) * 2017-10-26 2018-12-21 深圳市隐秀科技有限公司 一种交互式智能手表及其交互控制方法
CN111352559A (zh) * 2020-02-27 2020-06-30 维沃移动通信有限公司 一种电子设备及控制方法
CN111796732A (zh) * 2020-06-28 2020-10-20 广东乐芯智能科技有限公司 一种手表输入数字和手表解绑的方法
CN113010052A (zh) * 2021-03-16 2021-06-22 维沃移动通信有限公司 智能手表、交互方法及交互装置

Also Published As

Publication number Publication date
CN113010052A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
WO2022194076A1 (zh) 智能手表、交互方法及交互装置
US11307718B2 (en) Gesture-based small device input
TWI539363B (zh) 行動裝置、按壓偵測方法與電腦可讀取記錄媒體
US9977518B2 (en) Scrolling based on rotational movement
EP2573650A1 (en) Portable information processing terminal
EP3051390B1 (en) Rotational element enabling touch-like gestures
US9176578B2 (en) Control apparatus, control method, program, input signal receiving apparatus, operation input apparatus, and input system for performing processing with input units on different surfaces
CN108351616B (zh) 电子设备和操作这种电子设备的方法
US20150109221A1 (en) Method, device, and electronic terminal for unlocking
KR20090084784A (ko) 휴대용 전자 장치의 메뉴 항목 선택 제어 방법과 사용자 식별 방법 및 휴대용 전자 장치
CN109361794B (zh) 移动终端的变焦控制方法、装置、存储介质及移动终端
WO2017161827A1 (zh) 一种调节相机焦距的方法和终端
KR100664963B1 (ko) 슬라이드 방식의 입력 장치, 이를 구비한 휴대용 장치 및입력 방법
KR20060072085A (ko) 마우스 입력 디바이스 및 방법
KR100936046B1 (ko) 촉각 센서를 이용한 마우스 기능을 갖는 터치패드 구현방법
WO2019017153A1 (ja) 情報処理装置、情報処理方法及びプログラム
US9582141B2 (en) Three dimensional user interface for watch device
CN215268253U (zh) 智能指环以及指环和眼镜配合的穿戴设备
CN111221405A (zh) 一种手势控制方法及设备
WO2018157460A1 (zh) 一种针对人体运动的计数方法及装置
US20190094811A1 (en) Magnetic sensor array for crown rotation
CN104951363A (zh) 一种信息处理方法及电子设备
US11262856B2 (en) Interaction method, device and equipment for operable object
CN111314520B (zh) 一种终端设备
Kumar et al. Watch360: A Device to Enable and Detect Tilt, Translation and Rotation of a Watch Bezel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770431

Country of ref document: EP

Kind code of ref document: A1