WO2022193422A1 - 一种综合能源虚拟电厂多设备选址方法 - Google Patents

一种综合能源虚拟电厂多设备选址方法 Download PDF

Info

Publication number
WO2022193422A1
WO2022193422A1 PCT/CN2021/092824 CN2021092824W WO2022193422A1 WO 2022193422 A1 WO2022193422 A1 WO 2022193422A1 CN 2021092824 W CN2021092824 W CN 2021092824W WO 2022193422 A1 WO2022193422 A1 WO 2022193422A1
Authority
WO
WIPO (PCT)
Prior art keywords
power plant
virtual power
energy
equipment
distribution
Prior art date
Application number
PCT/CN2021/092824
Other languages
English (en)
French (fr)
Inventor
喻洁
张新森
李扬
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US17/633,343 priority Critical patent/US12118483B2/en
Publication of WO2022193422A1 publication Critical patent/WO2022193422A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q10/043Optimisation of two dimensional placement, e.g. cutting of clothes or wood
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2639Energy management, use maximum of cheap power, keep peak load low
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • the invention relates to the field of virtual power plants, in particular to a multi-equipment site selection method for an integrated energy virtual power plant.
  • the virtual power plant integrates distributed energy sources such as gas-fired units, intermittent renewable energy generating units, and controllable loads for unified management through advanced communication technology and software systems. Due to the inherently good properties of these distributed energy sources, virtual power plants can obtain economic or environmental benefits through rational dispatching of them by the power system. At the same time, in order to better realize the complementary coordination among energies in the comprehensive energy network and improve the energy utilization efficiency, the gas boilers, cogeneration equipment and refrigeration equipment in the virtual power plant couple the electric load, heating load and cooling load in the area. , which strengthens the connection between multiple energy sources, so that the virtual power plant gradually develops from a single electric power to an integrated energy virtual power plant.
  • distributed energy sources such as gas-fired units, intermittent renewable energy generating units, and controllable loads for unified management through advanced communication technology and software systems. Due to the inherently good properties of these distributed energy sources, virtual power plants can obtain economic or environmental benefits through rational dispatching of them by the power system.
  • the present invention proposes a multi-equipment site selection method for an integrated energy virtual power plant.
  • a multi-equipment site selection method for an integrated energy virtual power plant comprising:
  • Step 1 Construct a calculation method for calculating the entropy of the comprehensive energy flow distribution through the power flow distribution in the distribution network and the flow distribution in the heat distribution network to reflect the energy distribution balance in the energy network.
  • Step 2 Under the condition that the capacity of each equipment is known, with the goal of maximizing the entropy index of the comprehensive energy flow distribution, a multi-equipment site selection optimization planning model of the comprehensive energy virtual power plant is established;
  • Step 3 Determine the installation position of each device of the integrated energy virtual power plant in the energy network, and determine the operation status of each device.
  • the multi-equipment site selection optimization planning model of the virtual power plant uses equipment site selection status and equipment operation status as decision variables.
  • the calculation method is:
  • E t represents the entropy of the comprehensive energy flow distribution of the distribution network and the heat distribution network at time t; Represents the energy flow distribution entropy in the distribution network at time t; Represents the energy flow distribution entropy in the heat distribution network at time t.
  • Nl represents the total number of branches in the distribution network; l represents the branch serial number; ⁇ P l,t represents the active power transmitted on branch l at time t; Represents the active power transmitted in the entire distribution network at time t;
  • Np represents the total number of pipelines in the heat distribution network
  • p represents the branch serial number
  • ⁇ m p,t represents the flow transmitted on the pipeline p at time t
  • It represents the flow transmitted in the entire heat distribution network at time t.
  • the typical daily load in the planning period is selected, and the final planning scheme is determined according to the state of the typical daily load.
  • the multi-equipment site selection optimization planning model of the integrated energy virtual power plant includes equipment operation constraints, energy storage operation constraints, electric load demand constraints, heat load demand constraints, equipment location state constraints, equivalent load state constraints, and support constraints.
  • the objective function of the multi-equipment site selection optimization planning model of the integrated energy virtual power plant described in the step 2 is:
  • a computer-readable storage medium stores instructions, and when the instructions are executed, any one of the above-mentioned address selection methods is implemented.
  • FIG. 1 is a flowchart of the site selection method of the present application.
  • a multi-equipment site selection decision method for a comprehensive energy virtual power plant considering the comprehensive energy flow distribution entropy of the present invention includes the following steps:
  • P ESS,t represents the charging and discharging power of the energy storage at time t, if the value is positive, it means charging, if the value is negative, it means discharging; Represents the upper limit of the charging and discharging power of the energy storage; SOC t is the storage capacity of the energy storage at time t, SOC min is the minimum value of the storage capacity of the energy storage, and SOC max is the maximum value of the storage capacity of the energy storage;
  • P ele,t represents the purchased power at time t
  • P i,t represents the electrical load power of node i of the distribution network at time t
  • Ni is the total number of load nodes in the distribution network
  • represents the comprehensive loss rate of the distribution network
  • H heat,t represents the power purchase at time t
  • H CHP,t represents the heat output of the CHP unit at time t
  • H j,t represents the thermal load power of node j of the heat distribution network at time t
  • N j is the load in the heat distribution network
  • the total number of nodes ⁇ represents the comprehensive loss rate of the distribution network
  • represents the electricity-heat proportional coefficient of the CHP unit
  • ⁇ GT,i , ⁇ ESS,i , ⁇ GB,i , ⁇ CHP,n-ij are the installation position state variables of the four types of equipment, and they are all binary variables. Taking ⁇ GT,i as an example, if the value If it is 1, it means that the GT equipment is installed at the position of node i; it should be noted that n is the serial number of the distribution network-distribution heat network coupling node, and i and j in n-ij indicate that the coupling node is in the distribution network, Node serial number in the heat distribution network;
  • H′ j,t H j,t - ⁇ GB,i H GB,t - ⁇ CHP,n-ij H CHP,t (20)
  • P′ i,t represents the equivalent load of node i of the distribution network at time t after equipment installation is considered
  • H′ j,t represents the equivalent load of node j of distribution heating network at time t after equipment installation is considered;
  • P l is the maximum transmission capacity of line l; represents the power transmission distribution factor of the electrical load at the node i to the line l, which is a pre-approved value;
  • m p is the maximum transmission flow of the pipeline p; Represents the heat load at node j to the flow transmission distribution factor of pipeline p, which is a pre-approved value;
  • N l is the total number of distribution network lines
  • N p is the total number of pipes in the heat distribution network
  • step 2 Taking the optimization solution of the optimization model in step 2 as a reference, a decision-making scheme for multi-equipment location selection of an integrated energy virtual power plant is obtained.
  • the present invention also provides a computer-readable storage medium storing computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种综合能源虚拟电厂多设备选址方法,属于虚拟电厂领域。一种综合能源虚拟电厂多设备选址方法,包括以下步骤:构建通过配电网中的潮流分布以及配热网中的流量分布计算综合能流分布熵的计算方法,以反映能源网络中能量分布均衡性。在各设备容量已知的条件下,以最大化综合能流分布熵指标为目标,建立综合能源虚拟电厂多设备选址优化规划模型;确定综合能源虚拟电厂的各设备在能源网络中的安装位置,同时确定各设备的运行状态。

Description

一种综合能源虚拟电厂多设备选址方法 技术领域
本发明涉及虚拟电厂领域,具体涉及一种综合能源虚拟电厂多设备选址方法。
背景技术
虚拟电厂通过先进的通信技术和软件系统将燃气机组、间歇性可再生能源发电机组、可控负荷等分布式能源聚合在一起进行统一管理。由于这些分布式能源的固有优良性质,虚拟电厂可以通过电力系统对其的合理调度获得经济或环境收益。同时,为了更好地实现综合能源网络中能源间互补协调,提升能源利用效率,虚拟电厂中的燃气锅炉、热电联产设备、制冷设备将该区域内的电负荷、热负荷、冷负荷耦合起来,加强了多种能源之间的联络,从而使得虚拟电厂从单一的电能逐渐发展为综合能源虚拟电厂。
目前,针对虚拟电厂的研究内容,多集中于优化调度与交易竞价方面,而在虚拟电厂优化规划方面所做的工作相对较少。此外,现有的关于虚拟电厂优化规划的研究,涉及到设备选址问题大多以降低损耗为目标,即考虑的经济性问题。然而,虚拟电厂作为一种实际运行的物理系统,以单一经济性为目标的规划在一定程度上忽视了安全性的考虑。
现有的关于虚拟电厂优化规划的研究大多未考虑改善能源网络的运行状态,事实上,虚拟电厂存在于实际的能源网络中,整个能源网络中的能量分布越均匀,则代表系统越稳定。如何在虚拟电厂规划时考虑能源网络中的能量分布均衡性是虚拟电厂规划时一个值得思考的问题。
发明内容
针对现有技术的不足,本发明提出了一种综合能源虚拟电厂多设备选址方法。
本发明的目的可以通过以下技术方案实现:
一种综合能源虚拟电厂多设备选址方法,包括:
步骤1:构建通过配电网中的潮流分布以及配热网中的流量分布计算综合能流分布熵的计算方法,以反映能源网络中能量分布均衡性。
步骤2:在各设备容量已知的条件下,以最大化综合能流分布熵指标为目标,建立综合能源虚拟电厂多设备选址优化规划模型;
步骤3:确定综合能源虚拟电厂的各设备在能源网络中的安装位置,同时确定各设备的运行状态。
可选地,所述虚拟电厂多设备选址优化规划模型以设备选址状态、设备运行状态为决策变量。
可选地,所述计算方法为:
Figure PCTCN2021092824-appb-000001
式中,E t表示t时刻配电网、配热网综合能流分布熵;
Figure PCTCN2021092824-appb-000002
表示t时刻配电网中的能流分布熵;
Figure PCTCN2021092824-appb-000003
表示t时刻配热网中的能流分布熵。
Figure PCTCN2021092824-appb-000004
式中,Nl表示配电网的总支路数量;l表示支路序号;ΔP l,t表示t时刻支路l上传输的有功功率;
Figure PCTCN2021092824-appb-000005
表示t时刻整个配电网中传输的有功功率;
Figure PCTCN2021092824-appb-000006
式中,Np表示配热网的总管道数量;p表示支路序号;Δm p,t表示t时刻管 道p上传输的流量;
Figure PCTCN2021092824-appb-000007
表示t时刻整个配热网中传输的流量。
可选地,选取规划周期内典型日负荷,根据典型日负荷状态确定最终的规划方案。
可选地,所述综合能源虚拟电厂多设备选址优化规划模型包括设备运行约束、储能运行约束、电负荷需求约束、热负荷需求约束、设备选址状态约束、等效负荷状态约束、支路功率传输约束、管道流量传输约束、配电网功率传输总量约束中的一种或多种。
可选地,所述步骤2中所述的综合能源虚拟电厂多设备选址优化规划模型的目标函数为:
Figure PCTCN2021092824-appb-000008
式中,
Figure PCTCN2021092824-appb-000009
表示整个调度周期内综合能流分布熵的平均值。
一种计算机可读的存储介质,存储有指令,所述指令运行时实现上述的任一选址方法。
附图说明
下面结合附图对本发明作进一步的说明。
图1为本申请的选址方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
本发明的一种考虑综合能流分布熵的综合能源虚拟电厂多设备选址决策方法,包括以下步骤:
(1)针对能源网络中能量分布的均衡性问题,基于热力学领域反映系统无序和混乱状态的“熵”的概念,提出反映能源网络中能量分布均衡性的综合能流分布熵的指标计算方法。
(2)以改善能量分布的均衡性为目标,即最大化综合能流分布熵指标为目标,建立虚拟电厂多设备选址优化规划模型,该优化模型以设备选址状态、设备运行状态为决策变量,其目标函数为:
Figure PCTCN2021092824-appb-000010
式中,
Figure PCTCN2021092824-appb-000011
表示整个调度周期内综合能流分布熵的平均值;
其包含的约束条件为:
(21)设备运行约束:
Figure PCTCN2021092824-appb-000012
Figure PCTCN2021092824-appb-000013
Figure PCTCN2021092824-appb-000014
(22)储能运行约束:
Figure PCTCN2021092824-appb-000015
SOC min≤SOC t≤SOC max       (9)
其中,P ESS,t表示t时刻储能的充放电功率,若该值为正,表示充电,若该值为负,表示放电;
Figure PCTCN2021092824-appb-000016
表示储能的充放电功率上限;SOC t为储能t时刻的存储容量,SOC min为储能存储容量最小值,SOC max为储能存储容量最大值;
(23)电负荷需求约束:
Figure PCTCN2021092824-appb-000017
其中,P ele,t表示t时刻购电功率;P i,t表示t时刻配电网节点i的电负荷功率;N i为配电网内负荷节点总数;α表示配电网综合损耗率;
(24)热负荷需求约束:
Figure PCTCN2021092824-appb-000018
H CHP,t=ηP CHP,t     (12)
其中,H heat,t表示t时刻购电功率;H CHP,t表示t时刻CHP机组的热出力;H j,t表示t时刻配热网节点j的热负荷功率;N j为配热网内负荷节点总数;β表示配电网综合损耗率;η表示CHP机组的电-热比例系数;
(25)设备选址状态约束:
Figure PCTCN2021092824-appb-000019
Figure PCTCN2021092824-appb-000020
Figure PCTCN2021092824-appb-000021
Figure PCTCN2021092824-appb-000022
其中,γ GT,i、γ ESS,i、γ GB,i、γ CHP,n-ij分别四种设备的安装位置状态变量,且均为二进制变量,以γ GT,i为例,若该值为1,则代表GT设备安装在节点i的位置上;需要注意的是,n为配电网-配热网耦合节点的序号,n-ij中的i、j表示耦合节点在配电网、配热网中的节点序号;
(25)等效负荷状态约束:
对于独立配电网节点i有:
P′ i,t=P i,tGT,iP WT,tESS,iP ESS,t    (17)
对于耦合节点i有:
P′ i,t=P i,tGT,iP WT,tESS,iP ESS,tCHP,n-ijP CHP,t   (18)
对于独立配热网节点j有:
H′ j,t=H j,tGB,iH GB,t    (19)
对于耦合节点j有:
H′ j,t=H j,tGB,iH GB,tCHP,n-ijH CHP,t   (20)
其中,P′ i,t表示考虑设备安装后t时刻配电网节点i的等效负荷;H′ j,t表示考虑设备安装后t时刻配热网节点j的等效负荷;
(26)支路功率传输约束:
Figure PCTCN2021092824-appb-000023
其中,P l为线路l的最大传输容量;
Figure PCTCN2021092824-appb-000024
表示节点i处的电负荷对线路l的功率传输分布因子,为事先核定值;
(27)管道流量传输约束:
Figure PCTCN2021092824-appb-000025
其中,m p为管道p的最大传输流量;
Figure PCTCN2021092824-appb-000026
表示节点j处的热负荷对管道p的流量传输分布因子,为事先核定值;
(28)配电网功率传输总量约束:
Figure PCTCN2021092824-appb-000027
其中,N l为配电网线路总数;
(29)配热网流量传输总量约束:
Figure PCTCN2021092824-appb-000028
其中,N p为配热网管道总数;
(3)以步骤2中的优化模型的优化解为参考,得到综合能源虚拟电厂多设备选址决策方案。
另外,本发明还提出了一种计算机可读的存储介质,存储有计算机指令。
综上所述,本发明的上述示例中,首先基于热力学领域反映系统无序和混乱状态的“熵”的概念,提出反映能源网络中能量分布均衡性的综合能流分布熵的指标计算方法,通过配电网中的潮流分布以及配热网中的流量分布计算综合能流分布熵。其次,在各设备容量已知的条件下,以最大化综合能流分布熵指标为目标,建立虚拟电厂多设备选址优化规划模型,从而确定综合能源虚拟电厂多设备选址优化规划模型以设备选址状态、设备运行状态。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (7)

  1. 一种综合能源虚拟电厂多设备选址方法,其特征在于,包括:
    步骤1:构建通过配电网中的潮流分布以及配热网中的流量分布计算综合能流分布熵的计算方法,以反映能源网络中能量分布均衡性;
    步骤2:在各设备容量已知的条件下,以最大化综合能流分布熵指标为目标,建立综合能源虚拟电厂多设备选址优化规划模型;
    步骤3:确定综合能源虚拟电厂的各设备在能源网络中的安装位置,同时确定各设备的运行状态。
  2. 根据权利要求1所述的综合能源虚拟电厂多设备选址方法,其特征在于,所述综合能源虚拟电厂多设备选址优化规划模型以设备选址状态、设备运行状态为决策变量。
  3. 根据权利要求1所述的综合能源虚拟电厂多设备选址方法,其特征在于,所述计算方法为:
    Figure PCTCN2021092824-appb-100001
    式中,E t表示t时刻配电网、配热网综合能流分布熵;
    Figure PCTCN2021092824-appb-100002
    表示t时刻配电网中的能流分布熵;
    Figure PCTCN2021092824-appb-100003
    表示t时刻配热网中的能流分布熵。
    Figure PCTCN2021092824-appb-100004
    式中,Nl表示配电网的总支路数量;l表示支路序号;ΔP l,t表示t时刻支路l上传输的有功功率;
    Figure PCTCN2021092824-appb-100005
    表示t时刻整个配电网中传输的有功功率;
    Figure PCTCN2021092824-appb-100006
    式中,Np表示配热网的总管道数量;p表示支路序号;Δm p,t表示t时刻管道p上传输的流量;
    Figure PCTCN2021092824-appb-100007
    表示t时刻整个配热网中传输的流量。
  4. 根据权利要求1所述的综合能源虚拟电厂多设备选址方法,其特征在于, 选取规划周期内典型日负荷,根据典型日负荷状态确定最终的规划方案。
  5. 根据权利要求1所述的综合能源虚拟电厂多设备选址方法,其特征在于,所述综合能源虚拟电厂多设备选址优化规划模型包括设备运行约束、储能运行约束、电负荷需求约束、热负荷需求约束、设备选址状态约束、等效负荷状态约束、支路功率传输约束、管道流量传输约束、配电网功率传输总量约束中的一种或多种。
  6. 根据权利要求1所述的综合能源虚拟电厂多设备选址方法,其特征在于,所述步骤2中所述的综合能源虚拟电厂多设备选址优化规划模型模型的目标函数为:
    Figure PCTCN2021092824-appb-100008
    式中,
    Figure PCTCN2021092824-appb-100009
    表示整个调度周期内综合能流分布熵的平均值。
  7. 一种计算机可读的存储介质,存储有指令,其特征在于,所述指令运行时实现权利要求1~6中任一所述的选址方法。
PCT/CN2021/092824 2021-03-17 2021-05-10 一种综合能源虚拟电厂多设备选址方法 WO2022193422A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/633,343 US12118483B2 (en) 2021-03-17 2021-05-10 Multi-device site selection method for integrated energy virtual power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110338284.5A CN112949940A (zh) 2021-03-17 2021-03-17 一种综合能源虚拟电厂多设备选址方法
CN202110338284.5 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193422A1 true WO2022193422A1 (zh) 2022-09-22

Family

ID=76227359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092824 WO2022193422A1 (zh) 2021-03-17 2021-05-10 一种综合能源虚拟电厂多设备选址方法

Country Status (3)

Country Link
US (1) US12118483B2 (zh)
CN (1) CN112949940A (zh)
WO (1) WO2022193422A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112561201A (zh) * 2020-12-23 2021-03-26 华北电力大学 一种园区供热站规划选址的方法
CN116070801A (zh) * 2023-04-03 2023-05-05 杭州轻舟科技有限公司 一种负荷聚合平台多站点最优运行策略生成方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113642879B (zh) * 2021-08-09 2024-05-24 东南大学 一种面向综合能效提升的虚拟电厂容量规划方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048610A (ko) * 2012-10-16 2014-04-24 한국전기연구원 직렬형 유연 송전 시스템의 위치 선정을 위한 시뮬레이션 방법
CN105576710A (zh) * 2016-02-18 2016-05-11 东南大学 一种综合能源系统中的分布式电源的配置方法
CN108197768A (zh) * 2018-04-02 2018-06-22 厦门大学 一种能源系统与管网布局联合优化方法
CN111539599A (zh) * 2020-04-03 2020-08-14 国网浙江省电力有限公司经济技术研究院 区域综合能源系统协调规划方法
CN111931977A (zh) * 2020-06-23 2020-11-13 国网江苏省电力有限公司经济技术研究院 一种考虑电—热能传输价值投入的虚拟电厂扩展规划模型构建方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401709B2 (en) * 2009-11-03 2013-03-19 Spirae, Inc. Dynamic distributed power grid control system
US9536021B1 (en) * 2012-01-19 2017-01-03 Northrop Grumman Systems Corporation System and method for providing a renewable energy network optimization tool
CN107276076B (zh) * 2017-06-23 2018-09-04 国网江苏省电力公司 一种统一潮流控制器的两阶段多目标选址方法
CN109063379A (zh) * 2018-09-11 2018-12-21 东北电力大学 基于最大熵原理的电-气综合能源系统概率能流计算方法
US11637446B2 (en) * 2018-09-14 2023-04-25 Commonwealth Edison Company Methods and systems for determining a linear power flow for a distribution network
CN109617065B (zh) * 2019-01-02 2020-09-15 清华大学 一种考虑海量运行场景的电力系统输电网线路规划方法
CN111241479B (zh) * 2020-01-10 2024-03-01 河海大学 基于交叉熵及客观熵权法的电-热互联综合能源系统风险评估方法
CN112271724B (zh) * 2020-10-13 2024-07-23 国网上海市电力公司 一种基于电压调控的虚拟电厂分区构建模型及构建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140048610A (ko) * 2012-10-16 2014-04-24 한국전기연구원 직렬형 유연 송전 시스템의 위치 선정을 위한 시뮬레이션 방법
CN105576710A (zh) * 2016-02-18 2016-05-11 东南大学 一种综合能源系统中的分布式电源的配置方法
CN108197768A (zh) * 2018-04-02 2018-06-22 厦门大学 一种能源系统与管网布局联合优化方法
CN111539599A (zh) * 2020-04-03 2020-08-14 国网浙江省电力有限公司经济技术研究院 区域综合能源系统协调规划方法
CN111931977A (zh) * 2020-06-23 2020-11-13 国网江苏省电力有限公司经济技术研究院 一种考虑电—热能传输价值投入的虚拟电厂扩展规划模型构建方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112561201A (zh) * 2020-12-23 2021-03-26 华北电力大学 一种园区供热站规划选址的方法
CN112561201B (zh) * 2020-12-23 2024-05-14 华北电力大学 一种园区供热站规划选址的方法
CN116070801A (zh) * 2023-04-03 2023-05-05 杭州轻舟科技有限公司 一种负荷聚合平台多站点最优运行策略生成方法
CN116070801B (zh) * 2023-04-03 2023-08-08 杭州轻舟科技有限公司 一种负荷聚合平台多站点最优运行策略生成方法

Also Published As

Publication number Publication date
US20230245006A1 (en) 2023-08-03
US12118483B2 (en) 2024-10-15
CN112949940A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022193422A1 (zh) 一种综合能源虚拟电厂多设备选址方法
CN110245878B (zh) 智能楼宇群体的分布式综合能源需求响应协同优化方法
CN111445090B (zh) 一种离网型综合能源系统双层规划方法
CN108123492B (zh) 一种考虑火电电蓄热联合调峰的日前发电计划优化方法
CN109167363B (zh) 能源互联网系统
CN109102104B (zh) 一种基于碳排放流的多能源系统协同低碳规划方法
CN108154309A (zh) 计及冷热电多负荷动态响应的能源互联网经济调度方法
CN108053104A (zh) 区域电力-天然气-热力综合能源系统能量流优化方法
CN116341881B (zh) 计及热网灵活性的电-热系统鲁棒超前调度方法及系统
CN114139958A (zh) 一种计及管存和热惯性的综合能源系统运行优化方法
CN111724045A (zh) 基于数据驱动的综合能源系统能效评价与提升方法
CN114139837B (zh) 一种考虑双层碳排放优化分配模型的区域多系统双层分散优化调度方法
CN114865713A (zh) 一种考虑可再生能源消纳能力的配电网协调优化方法和系统
CN112862157A (zh) 一种考虑耦合度的综合能源系统优化调度方法及系统
CN111047069A (zh) 一种考虑热网储能特性的热电联合调度灵活性评估方法
CN111523792A (zh) 综合能源系统调度参数计算、设备控制方法及相关装置
CN112366697B (zh) 一种多能流配电网日前能量管理模型的管理方法
CN118521138B (zh) 基于ga-apso算法的多类型资源的协同调度控制方法
CN117634994B (zh) 一种考虑数据中心和氢能系统余热回收的城市综合能源系统规划方法
CN117709689B (zh) 一种计及整体效能与能量阻抗的风电场功率分配优化方法
CN117634364B (zh) 基于全生命周期运行能耗的供水管网系统的能耗评估方法
CN117744296B (zh) 基于Floyd算法的管网能量富余比最小的设计方法
CN117439130A (zh) 百兆瓦级工业制硅园区源网荷储一体化日前协调控制优化策略、系统、设备及介质
Miao et al. Frequency Response Strategies Considering Gas-thermal Inertia in the Integrated Energy System
Wang et al. Electricity-gas Integrated Energy System Equipment Capacity Allocation Based on Multi-scale Interval Planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931007

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21931007

Country of ref document: EP

Kind code of ref document: A1