WO2022193374A1 - 可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用 - Google Patents

可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用 Download PDF

Info

Publication number
WO2022193374A1
WO2022193374A1 PCT/CN2021/084881 CN2021084881W WO2022193374A1 WO 2022193374 A1 WO2022193374 A1 WO 2022193374A1 CN 2021084881 W CN2021084881 W CN 2021084881W WO 2022193374 A1 WO2022193374 A1 WO 2022193374A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronavirus
plastic film
copper
surface layer
film
Prior art date
Application number
PCT/CN2021/084881
Other languages
English (en)
French (fr)
Inventor
陈仲璜
Original Assignee
珠海高先手术用品科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海高先手术用品科技有限公司 filed Critical 珠海高先手术用品科技有限公司
Publication of WO2022193374A1 publication Critical patent/WO2022193374A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • A41D31/30Antimicrobial, e.g. antibacterial
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/23Solid substances, e.g. granules, powders, blocks, tablets
    • A61L2/232Solid substances, e.g. granules, powders, blocks, tablets layered or coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65FGATHERING OR REMOVAL OF DOMESTIC OR LIKE REFUSE
    • B65F1/00Refuse receptacles; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/02Gloves, shoes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • B32B2437/04Caps, helmets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • B32B2439/06Bags, sacks, sachets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2479/00Furniture

Definitions

  • the present invention relates to an anti-coronavirus plastic film, a production process and its application in personal protective products and other industries for individuals, health care facilities, food processing plants, restaurants and other industries that can most effectively reduce costs.
  • PPE personal protective products
  • Products include: masks, face shields, surgical caps, shoe covers, medical gloves, surgical gowns, etc.
  • COVID-19 coronavirus can remain active on most surfaces for up to 4 days, when the hands of people wearing conventional PPE products touch the surface of the protective equipment they are wearing that has been contaminated with coronavirus, and then go to They can get infected without knowing it when they touch their nose, eyes or mouth.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the purpose of the present invention is to propose an anti-coronavirus plastic film, production process and application thereof that can most effectively reduce costs.
  • the anti-coronavirus plastic film that can most effectively reduce the cost according to the embodiment of the present invention includes:
  • At least one antiviral surface layer on the base layer at least one antiviral surface layer on the base layer
  • the thickness of the antiviral surface layer is 8 ⁇ m to 20 ⁇ m, and the antiviral surface layer contains a copper-based reagent, the thickness of the base layer is 20 to 500 ⁇ m, and the base layer is made of polymer material.
  • the antiviral surface layer and the base layer are both selected from low density polyethylene, high density polyethylene, chlorinated polyethylene, ethylene-vinyl acetate, polypropylene, polyvinyl chloride, polyethylene Made of either terephthalate or nylon.
  • the antiviral surface layer is made of high density polyethylene.
  • the copper-based reagent is pure copper powder, copper-zinc alloy powder or copper-nickel alloy powder, and the size of the pure copper powder, copper-zinc alloy powder or copper-nickel alloy powder is below 500 nm.
  • the anti-coronavirus copper-based reagent further includes a silver ion agent with a weight ratio of less than 50%.
  • the anti-coronavirus plastic film production process according to the embodiment of the present invention comprises the following three steps:
  • the present invention also provides the application of above-mentioned anti-coronavirus plastic film in making following coronavirus protection product:
  • Surgical supplies including surgical gowns, drapes, doctor's caps and shoe covers;
  • the anti-coronavirus plastic film, the production process and the application thereof are provided according to the embodiments of the present invention, wherein the anti-coronavirus plastic film adopts at least one anti-virus surface layer, and the thickness of the anti-virus surface layer is 8 ⁇ m to 20 ⁇ m , and contains a copper-based agent, so that the plastic film can have an antiviral effect, and the control of the thickness can make the cost of the plastic film most effectively reduced, so as to facilitate popularization and use.
  • the antiviral plastic film can be widely used in the manufacture of many protective products, such as: masks, respirators, gloves, covers, bags and many other surgical and self-protection accessories and clothing, making a variety of safer and more economical of personal protection products are available for personal, healthcare, residential and commercial use.
  • the anti-coronavirus plastic film provided according to the embodiment of the present invention which can most effectively reduce the cost, includes a base layer and at least one anti-virus surface layer, and the anti-virus surface layer is located on the base layer, wherein the thickness of the anti-virus surface layer is relatively It is thin, with a thickness of 8 ⁇ m to 20 ⁇ m, which is the thinnest thickness that can be achieved by the current film-making process, and the anti-viral surface layer contains a copper-based reagent, which acts as an anti-coronavirus agent and can kill the coronavirus.
  • the thickness of the base layer is thicker than that of the antiviral surface layer, and its thickness is 20 to 500 ⁇ m, and the base layer is made of polymer material.
  • the anti-coronavirus surface layer is relatively thin, and its thickness can be controlled to 8 ⁇ m at its thinnest.
  • the anti-coronavirus surface layer reaches the thinnest thickness of 8um that can be achieved by the current film-making process, and contains a sufficient dose of copper
  • the antiviral surface layer is the thinnest, and the dose of the copper-based agent is minimized within the scope of effectively killing the coronavirus, so that the cost of the anti-coronavirus plastic film of the present invention is most effectively minimized.
  • the anti-coronavirus plastic film can achieve the effect of killing the coronavirus while ensuring that the amount of expensive copper-based reagents is minimized, thereby most effectively reducing and controlling its cost.
  • the base layer can be made of various polymer materials with a thickness between 20 ⁇ m and 500 ⁇ m to provide different physical properties of the plastic film.
  • the inventors developed a technology that uses a minimum dose of expensive anti-coronavirus agents to make plastic films achieve anti-coronavirus effects.
  • the best technology to use is a plastic film with at least two layers; where the anti-coronavirus agent is limited to the surface layer, the anti-coronavirus surface layer. If desired, only one or two surface layers of plastic film contain anti-coronavirus agents.
  • the surface layer of the plastic film can be as thin as 8 ⁇ m. Note that for such thin thicknesses, the film is too fragile to be a freestanding film and needs to be supported by a base layer.
  • the thickness of the anti-coronavirus surface layer is 10% of the total thickness of the plastic film
  • the price of the anti-coronavirus agent is 30 times that of the plastic film
  • the price of the plastic film is $1 a piece
  • the anti-coronavirus plastic film adopts at least one anti-virus surface layer, the thickness of the anti-virus surface layer is 8 ⁇ m to 20 ⁇ m, and contains a copper-based reagent , in this way, the plastic film can be made to have anti-virus effect, and the control of the thickness can make the cost of the plastic film lower, so as to facilitate the popularization and use.
  • the manufacture of the anti-coronavirus plastic film includes the following three steps:
  • the most commonly used techniques are cast film and blown film technology.
  • the cast film technology has a high production speed, and most of the multilayer plastic films are currently produced by the cast film process.
  • blown film technology is typically used to make thinner films, but also films with more specific properties. Both blown film technology and cast film technology can be made into single-layer or multi-layer plastic films with more than 10 layers.
  • the antiviral surface layer and the base layer are both selected from low density polyethylene (LDPE), high density polyethylene (HDPE), chlorinated polyethylene (CPE), ethylene vinyl acetate (EVA), polypropylene ( PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and nylon materials are made of any one, due to the difference in molecular structure and basic properties of these polymer materials
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • CPE chlorinated polyethylene
  • EVA ethylene vinyl acetate
  • PP polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • nylon materials are made of any one, due to the difference in molecular structure and basic properties of these polymer materials.
  • the physical properties of the finished anti-coronavirus plastic film are also different, so appropriate materials can be selected according to the specific application of the anti-coronavirus plastic film.
  • polymer materials described above can be used in blown film and cast film technology manufacturing, and Table 1 below lists typical properties of these polymers.
  • polyethylene is known for its flexibility and is the most commonly used plastic film due to its versatility.
  • polyethylene is available in two versions with different strengths and flexibility: low density polyethylene (LDPE) and high density polyethylene (HDPE).
  • Ethylene-vinyl acetate (EVA) is slightly more expensive, but more elastic than polyethylene.
  • Chlorinated polyethylene (CPE) is slightly cheaper, but harder than polyethylene.
  • Polypropylene (PP) is stronger than polyethylene, but not as elastic as polyethylene.
  • Polyvinyl chloride (PVC) is cheaper than polyethylene, but more environmentally friendly than polyethylene.
  • the antiviral surface layer can be made of high density polyethylene (HDPE).
  • HDPE high density polyethylene
  • the copper-based reagent is pure copper powder, copper-zinc alloy powder or copper-nickel alloy powder, and the size of the pure copper powder, copper-zinc alloy powder or copper-nickel alloy powder is below 500 nm.
  • copper-based agents are the most suitable because it has been well-documented to be effective against coronaviruses and a broad spectrum of bacteria and fungi.
  • copper-zinc and copper-nickel alloys are also considered to be effective anti-coronavirus agents.
  • copper metal-based reagents kill and/or inactivate coronaviruses by oxidizing or forming complexes, thereby damaging them.
  • the following requirements for anti-coronavirus agents must be considered: (1) In the mixing tank of a plastic film production line, the melting point and its correlation with The ability of the plastic particles to mix well, (2) the evaporation temperature and degradation temperature of the anti-coronavirus agent relative to the processing temperature of the plastic film, and (3) the particle size of the copper agent was determined to be nanometers due to the ultra-thin anti-coronavirus surface layer. Powder, the target particle size is below 500 nanometers. Based on extensive research and test results, the inventors found that the use of copper metal-based reagents does not cause any problems in the film-making process. According to published data, copper has a melting point of about 1080°C, while ordinary polymer particles used to make plastic films have a melting point in the range of 100 to 280°C.
  • the inventors conducted the following four studies to better understand various parameters of the multilayer plastic film. Because the COVID-19 coronavirus is highly transmissible, testing can only be done by government-controlled laboratories. Therefore, the following studies must be carried out using some common bacteria in order to better understand the basic properties of copper agents in plastic films.
  • the effectiveness of the anti-coronavirus plastic film against common bacteria was tested in accordance with the ISO 22196 procedure, which states that after a 24-hour challenge, 99.99% of both bacteria (Escherichia coli and Staphylococcus) were killed by the plastic film. It is worth noting that the molecular structure of ordinary bacteria and coronaviruses is very different.
  • the objectives of these studies are as follows: (1) to ensure that the copper agent is active on the surface layer of the plastic film, (2) to determine the minimum thickness of the surface layer of the plastic film that can be prepared, (3) the polymeric material that can be used to prepare the anti-coronavirus surface layer and (4) copper-based agents that can be used.
  • Example 1 Ensure that the copper agent is chemically active in the surface layer of the film.
  • the inventors prepared two single-layer low-density polyethylene film samples (sample 1 and sample 2) with a thickness of 30 ⁇ m, and loaded with 2 concentrations of copper nanopowder. Subsequently, two additional bilayer film samples (Sample 3 and Sample 4) with a surface layer of 10 ⁇ m and a substrate layer of 20 ⁇ m thickness were prepared. The two groups were challenged with Escherichia coli and Staphylococcus according to ISO22196. Table 2 below summarizes the test results. The test results show that the copper agent is chemically active in both the thinner surface layer and the thicker substrate layer.
  • Study 2 Determining the minimum thickness to make a very thin anti-coronavirus surface layer.
  • the inventors prepared 4 plastic film samples with surface layers of different thicknesses and substrate layers of 100 ⁇ m thickness. The four samples were challenged with Escherichia coli and Staphylococcus in accordance with ISO 22196. The test results summarized in Table 3 below show that thinner surface layers can be as low as 8 ⁇ m. According to research, it is infeasible to use cast film and blown film preparation technology to manufacture copper-based plastic films with a thickness of less than 8 ⁇ m, that is, the thinnest thickness that can be achieved by the current film-making process is 8 ⁇ m. But with the development of technology in the future, the thin anti-coronavirus surface layer should be thinner and as thin as possible.
  • Study 4 Effects of different types of copper-based nanopowders. Below are three experimental samples to determine the effect of three copper-based nanopowders: copper, copper-zinc alloy, and copper-nickel alloy. In this study, the inventors conducted 3 experiments using 3 copper-based nanopowders. The samples are all 3-layer PE films. The base layer of the plastic film is 30 ⁇ m, and the thickness of the surface layer is 10 ⁇ m. The concentration of the nano copper powder is 1% by weight of the surface layer. The test parameters and results are listed in Table 6. In summary, the Iso22196 test results show that the three copper-based materials have good antibacterial effects on common bacteria and can be used to prepare the expected anti-coronavirus and antibacterial multilayer films .
  • the anti-coronavirus copper-based reagent can also include a silver ion agent with a weight ratio of less than 50%, and the silver ion agent also has a disinfecting effect on bacteria and viruses.
  • the objects of the present invention can be achieved by using cost-effective anti-coronavirus plastic films comprising at least one relatively thin anti-coronavirus surface layer and a A thicker base layer; wherein the surface layer can be controlled to be as thin as 8 ⁇ m and minimizes the amount of expensive drugs required for the plastic film to have anti-coronavirus activity.
  • the anti-coronavirus agent is nano-powder of pure copper, copper-zinc alloy or copper-nickel alloy; the base layer can be made of various polymer materials, and its thickness is 20-500 ⁇ m, which can provide plastic films with different physical properties. characteristic.
  • Plastic films are made using a co-extruded cast or blown film process so that the anti-coronavirus surface layer and base layer are bonded together when making a multilayer film.
  • the film material used to make either layer must be compatible with the two-layer film fabrication process. From earlier research, the inventors found that the following materials are suitable: Low Density Polyethylene (LDPE), High Density Polyethylene (HDPE), Chlorinated Polyethylene (CPE), Ethylene Vinyl Acetate (EVA), Polypropylene (PP) ), polyvinyl chloride (PVC), polyethylene terephthalate (PET) and nylon. Due to their different molecular structures, the choice of any one polymer affects the physical properties of the final product made from the multilayer film.
  • LDPE Low Density Polyethylene
  • HDPE High Density Polyethylene
  • CPE Chlorinated Polyethylene
  • EVA Ethylene Vinyl Acetate
  • PP Polypropylene
  • PVC polyvinyl chloride
  • PET polyethylene
  • the cost of multilayer anti-coronavirus plastic films is much lower than that of monolayer films, which require copper-based nanopowders to be contained throughout the film . Therefore, the anti-coronavirus membrane is cheaper than traditional monolayer membranes, which require more copper-based nanopowders to be incorporated throughout the membrane.
  • the thickness and physical properties of the base layer of the film can be varied by using different kinds of polymeric materials.
  • the combination of low cost and variable physical properties enables plastic films to be used to manufacture a variety of affordable and safer protective products that are more effective at containing the coronavirus than conventional protective products.
  • Such products include, but are not limited to, the following protective and medical products:
  • Surgical supplies including surgical gowns, drapes, doctor's caps and shoe covers;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明公开了一种可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用,该冠状病毒塑料膜包括基底层及至少一个抗病毒表面层,所述抗病毒表面层位于所述基底层上,其中,抗病毒表面层的厚度为8μm至20μm,且所述抗病毒表面层含有高价铜基试剂,所述基底层的厚度为20至500μm,且所述基底层为聚合物材料制成。根据本发明实施例提供的可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用,具有抗冠状病毒的效果,且厚度的控制可以使得该塑料膜的成本得到最有效的降低,以利于推广使用。此外,使用该抗病毒塑料薄膜可以被广泛地用于制造许多防护产品,使多种更安全和更经济的个人防护产品可供个人、医疗保健、住宅和商业场所使用。

Description

可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用 技术领域
本发明涉及一种可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其在个人防护产品和其他用于个人、医疗保健机构、食品加工厂、餐馆及其他行业中的应用。
背景技术
自2020年初以来,COVID-19(新型冠状病毒)已成为一种全球流行性疾病。冠状病毒在许多国家已经感染了数百万人,造成很高的死亡人数。为了避免感染冠状病毒,许多类型的个人防护产品(PPE)和其他防护产品已广泛应用于大多数公共和私人场所,包括医疗机构、办公室、餐厅、工厂、超市、公共汽车、飞机等。产品包括:口罩、面罩、手术帽、鞋套、医用手套、手术服等。
目前,大多数个人防护用品是由塑料材料和无纺布制成的,它们通过形成一道防止冠状病毒进入人体的屏障来保护使用者。传统的PPE材料没有任何能够摧毁冠状病毒的活性剂。当个人防护用品佩戴者与其他感染者接触时,感染者身上的冠状病毒颗粒或飞沫无法进入佩戴者体内,但它们可以在个人防护用品表面长时间沉淀。最近的一项研究表明,COVID-19冠状病毒可以在大多数表面保持活性长达4天,当佩戴常规PPE产品的人的手接触到自己穿戴的已被冠状病毒污染的防护用品表面,再去接触自己的鼻子、眼睛或嘴巴时,他们可能会在不知不觉中被感染。
除了使用者所佩戴的防护用品表面,众所周知,还有一些表面由于经常被人触摸而导致很高传染可能性的有:电梯按钮和门把手、餐厅和酒吧的桌面和椅子、出租车和飞机的座位、商场和公共汽车的扶手、医院的柜台和窗帘、超市的水果和蔬菜,等等。由于知道被这些表面传染的可能性很高,现在一般建议每隔2到4小时用酒精或其他消毒剂喷洒和擦拭这些表面。擦拭肯定会提高这些表面的安全性,但这样还不足够可靠,因为这些表面可能会在擦拭的间隔期间被人污染。
为了提高防护用品对冠状病毒的安全防护性能,一些公司已经尝试用含有可破坏冠状病毒的药剂材料来制造个人防护用品。2020年第二季度,美国、澳大利亚、日本和韩国的一些公司已经开始生产和推广这类产品,包括面罩、呼吸器和塑料薄膜。然而,由于含铜药剂的成本远远高于防护用品的原材料成本,使抗冠状病毒防护用品的生产成本很高,因而在市场上的使用仍然非常有限,并未普及。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的目的在于提出一种可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用。
为实现上述目的,一方面,根据本发明实施例的可最有效降低成本的抗冠状病毒塑料膜,包括:
基底层;
至少一个抗病毒表面层,所述抗病毒表面层位于所述基底层上;
其中,所述抗病毒表面层的厚度为8μm至20μm,且所述抗病毒表面层含有铜基试剂,所述基底层的厚度为20至500μm,且所述基底层为聚合物材料制成。
根据本发明的一个实施例,所述抗病毒表面层和基底层均选自低密度聚乙烯、高密度聚乙烯、氯化聚乙烯、乙烯-醋酸乙烯酯、聚丙烯、聚氯乙烯、聚乙烯对苯二甲酸酯及尼龙材料中的任意一种制成。
根据本发明的一个实施例,所述抗病毒表面层由高密度聚乙烯制成。
根据本发明的一个实施例,所述铜基试剂为纯铜粉、铜锌合金粉或铜镍合金粉,所述纯铜粉、铜锌合金粉或铜镍合金粉的尺寸在500nm以下。
根据本发明的一个实施例,所述抗冠状病毒的铜基试剂还包括重量占比小于50%的银离子药剂。
另一方面,根据本发明实施例的抗冠状病毒塑料膜生产工艺包括以下三个步骤:
(i)抗病毒表面层的形成,涉及在送入共挤头之前将预定浓度比例的铜基试剂与处于熔点以上温度条件下的第一塑料母粒彻底混合;
(ii)基底层的形成,涉及将熔化的、规则的第二塑料母粒送入共挤头中;
(iii)抗冠状病毒塑料薄膜的形成,涉及抗病毒表面层与基底层的共挤以及随后的薄膜吹塑或流延薄膜的制造过程。
再一方面,本发明还提供了上述抗冠状病毒塑料膜在制作如下冠状病毒防护产品中的应用:
(a)用于储存和丢弃废物的袋子和包装物;
(b)用于医院病床、推车、椅子、柜台、家具和电梯按钮的盖布;
(c)用于对病人和医院入口进行隔离的窗帘和帐篷;
(d)手术用品,包括手术衣、洞巾、医生帽和鞋套;
(e)用于餐厅、公共汽车和飞机上的桌布和座位套;
(f)用于医疗和处理食品用的手套;
(g)个人防护口罩和呼吸器。
根据本发明实施例提供的可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用,其中,抗冠状病毒塑料膜采用至少一个抗病毒表面层,抗病毒表面层的厚度为8μm至20μm,且含有铜基药剂,如此,可以使得该塑料膜具有抗病毒的效果,并且,厚度的控制可以使得该塑料膜的成本能够得到最有效地降低,以利于推广使用。此外,该抗病毒塑料薄膜可以被广泛地用于制造许多防护产品,例如:口罩、呼吸器、手套、盖单、袋子等许多手术和自我防护的配件和服装,使多种更安全和更经济的个人防护产品可供个人、医疗保健、住宅和商业场所使用。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
具体实施方式
下面详细描述本发明的实施例,所述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制,基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面详细描述本发明实施例的可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用。
根据本发明实施例提供的可最有效降低成本的抗冠状病毒塑料膜,包括基底层及至少一个抗病毒表面层,抗病毒表面层位于所述基底层上,其中,抗病毒表面层的厚度较薄,其厚度为8μm至20μm,为当前制膜工艺能做到的最薄厚度,且所述抗病毒表面层含有铜基试剂,该铜基试剂作为抗冠状病毒药剂,可以杀死冠状病毒。所述基底层的厚度相对于抗病毒表面层较厚,其厚度为20至500μm,且所述基底层为聚合物材料制成。
需要说明的是,抗冠状病毒表面层较薄,其厚度最薄可控制到8μm,当该抗冠状病毒表面层达到当前制膜工艺所能做到的最薄厚度8um,且含有足够剂量的铜基药剂时,使该抗病毒表面层达到最薄,铜基药剂在有效杀死冠状病毒的范围内剂量达到最小,从而使本发明的抗冠状病毒塑料膜成本最有效地降到最低。换言之,该抗冠状病毒塑料膜能够在达到杀死冠状病毒效果的同时,确保昂贵的铜基试剂的用量达到最小化,从而最有效地降低和控制其成本。而基底层可以采用各种聚合物材料制成,其厚度在20μm到500μm之间,以提供所述塑料膜的不同物理性能。
为了控制抗冠状病毒塑料膜的制造成本,一个主要考虑因素是抗冠状病毒表面层中 铜基试剂价格很高,可能是塑料膜材料价格的数倍。对于传统的单层塑料薄膜,整个薄膜中都需要加入抗冠状病毒药剂。由于抗冠状病毒表面层中铜基试剂相对于塑料原料的价格较高,即使少量的铜基试剂也会大大增加成品的成本。举例说明抗冠状病毒药剂的高成本影响:假设要求在塑料膜中加入10%的抗冠状病毒药剂,其成本是塑料膜的30倍。如果塑料膜的价格为1美元,添加0.1%的铜基试剂将使其成本增加3美元(=0.1x 30美元)。因此,抗冠状病毒膜的原材料成本增加了300%。
为了降低抗冠状病毒塑料膜的原材料成本,发明人开发了一种使用最少剂量的昂贵抗冠状病毒药剂使塑料膜达到抗冠状病毒效果的技术。通过广泛的研究,发明者发现最好的使用技术是至少有两层的塑料薄膜;其中抗冠状病毒药剂仅限于表层,也即是抗冠状病毒表面层。如果需要,塑料薄膜只有一个或两个表面层含有抗冠状病毒药剂。塑料膜的表面层可以薄至8μm。注意,对于如此薄的厚度,薄膜太脆弱,无法成为独立的薄膜,需要由基底层支撑。举例说明使用两层膜可节省的成本:抗冠状病毒表面层的厚度为塑料薄膜总厚度的10%,抗冠状病毒药剂的价格是塑料膜的30倍,塑料膜的价格是1美元一片,而且需要10%的抗冠状病毒药剂,成本增加0.3美元(=0.1x 30 x0.1美元)。相比之下,如前一段所述,在相同条件下用于塑料膜的单层的成本增加为3美元(=1×30×0.1),因此,当抗冠状病毒表面层厚度与塑料膜的原始厚度成比例地减小时,成本的增加可以减少10倍。
根据本发明实施例提供的可最有效降低成本的抗冠状病毒塑料膜,其中,抗冠状病毒塑料膜采用至少一个抗病毒表面层,抗病毒表面层的厚度为8μm至20μm,且含有铜基试剂,如此,可以使得该塑料膜具有抗病毒的效果,并且,厚度的控制可以使得该塑料膜的成本较低,以利于推广使用。
在本发明的一些实施例中,所述抗冠状病毒塑料膜的制成包括以下三个步骤:
(i)抗病毒表面层的形成,涉及在送入共挤头之前将预定浓度比例的铜基试剂与处于熔点以上温度条件下的第一塑料母粒彻底混合;
(ii)基底层的形成,涉及将熔化的、规则的第二塑料母粒送入共挤头中;
(iii)抗冠状病毒塑料薄膜的形成,涉及抗病毒表面层与基底层的共挤以及随后的薄膜吹塑或流延薄膜的制造过程。
对于本发明的可最有效降低成本的抗冠状病毒塑料膜的生产工艺,最常用的是流延膜和吹膜技术。一般来说,流延膜技术具有较高的生产速度,目前大多数多层塑料薄膜都是用流延膜工艺生产的。相比之下,吹膜技术通常用于制造更薄的薄膜,也用于制造具有更特殊性能的薄膜。吹膜技术和流延膜技术均可制成单层或10层以上多层结构的塑料薄膜。
较佳地,抗病毒表面层和基底层均选自低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、氯化聚乙烯(CPE)、乙烯-醋酸乙烯酯(EVA)、聚丙烯(PP)、聚氯乙烯(PVC)、聚乙烯对苯二甲酸酯(PET)及尼龙材料中的任意一种制成,由于这些聚合物材料的分子结构和基本性能的不同,用上述材料制成的抗冠状病毒塑料膜的物理性能也不同,如此,可以根据该抗冠状病毒塑料膜具体应用选择合适的材料。
此外,上述聚合物材料可以用于吹塑膜和流延膜技术制造,下表1列出了这些聚合物的典型性能。
表1
Figure PCTCN2021084881-appb-000001
如上表所示,由上述聚合物制成的塑料膜的性能具有不同的性能。一般来说,聚乙烯(PE)以其柔韧性而闻名,并且由于其多功能性而成为最常用的塑料膜。此外,聚乙烯有两种具有不同强度和柔韧性的版本:低密度聚乙烯(LDPE)和高密度聚乙烯(HDPE)。乙烯-醋酸乙烯酯(EVA)稍微贵一些,但比聚乙烯更有弹性。氯化聚乙烯(CPE)稍微便宜,但比聚乙烯更硬。聚丙烯(PP)比聚乙烯更结实,但弹性不如聚乙烯。聚氯乙烯(PVC)比聚乙烯便宜,但比聚乙烯环保。聚对苯二甲酸乙二酯(PET)比聚乙烯更结实,也更贵。尼龙比聚乙烯更硬更结实,但也比聚乙烯贵得多。作为优选地,抗病毒表面层可以采用高密度聚乙烯(HDPE)制成。至于膜的厚度,发明人发现使用流延膜或吹膜工艺制造的塑料膜的基底层的厚度可以在20到500μm之间,并且表面层厚度可以低到8μm。
在本发明的一个实施例中,铜基试剂为纯铜粉、铜锌合金粉或铜镍合金粉,所述纯铜粉、铜锌合金粉或铜镍合金粉的尺寸在500nm以下。
对潜在的可用于塑料膜的抗冠状病毒药剂,广泛的研究发现,铜基试剂是最合适的,因为它已被充分证明对冠状病毒和广谱细菌和真菌有效。除了纯铜,铜锌和铜镍合金也被认为是有效的抗冠状病毒药剂。注意,基于铜金属的试剂通过氧化或形成复合物来杀死和/或使冠状病毒失活,从而对其造成损害。
为了确定铜基试剂是否适用于制备具有较薄的抗冠状病毒表面层的塑料膜制造工艺,必须考虑抗冠状病毒剂的以下要求:(1)在塑料薄膜生产线的混合槽中,熔点及其与塑料颗粒充分混合的能力,(2)相对于塑料薄膜加工温度,抗冠状病毒剂的蒸发温度和降解温度,以及(3)由于抗冠状病毒表面层超薄,将铜试剂的粒径定为纳米粉体,目标粒径在500纳米以下。基于广泛的研究和测试结果,发明人发现使用铜金属基试剂不会对制膜过程产生任何问题。根据公布的数据,铜的熔点约为1080℃,而用于制作塑料薄膜的普通聚合物颗粒的熔点范围为100至280℃。
除上述信息外,发明人还进行了以下四项研究,以更好地了解多层塑料膜的各种参数。由于COVID-19冠状病毒具有高度可传播性,因此只能由政府控制的实验室进行检测。因此,必须利用一些常见的细菌进行以下研究,以便更好地了解塑料薄膜中铜剂的基本性质。抗冠状病毒塑料薄膜对常见细菌的有效性测试符合ISO 22196的程序,该程序规定,在24小时的挑战后,99.99%的两种细菌(大肠杆菌和葡萄球菌)被塑料薄膜杀死。值得注意的是,普通细菌和冠状病毒的分子结构有很大的不同。然而,许多已发表的研究报告表明,由于铜的特殊化学结构,铜能有效地破坏大多数常见细菌以及冠状病毒。一个普遍接受的理论是,铜离子很容易与细菌和冠状病毒发生化学反应,很可能是通过氧化。对于细菌来说,被铜离子氧化并破坏细胞壁,从而被杀死。对于冠状病毒,铜离子氧化病毒分子,使其蛋白质分子变性,使病毒失活。
这些研究的目的如下:(1)确保铜药剂在塑料膜的表面层具有活性,(2)确定可制备的塑料薄膜表面层的最小厚度,(3)可用于制备抗冠状病毒表面层的聚合材料和(4)可使用的铜基药剂。
研究1:确保铜剂在薄膜表面层具有化学活性。对于本发明中的塑料膜,发明人制备了两个厚度为30μm的单层低密度聚乙烯膜样品(样本1和样本2),并装载了2种浓度的铜纳米粉末。随后,制备另外两个具有10μm的表面层和20μm厚度的衬底层的双层膜样品(样本3和样本4)。根据ISO22196对两组进行了大肠杆菌和葡萄球菌的激发试验。下表2总结了试验结果。试验结果表明,铜剂在较薄的表面层和较厚的基体层都具有化学活性。
表2
Figure PCTCN2021084881-appb-000002
研究2:确定可制造很薄的抗冠状病毒表面层的最小厚度。对于本发明中感兴趣的塑料膜,发明人制备了4个具有不同厚度的表面层和100μm厚度的衬底层的塑料膜样品。这四个样本按照ISO 22196进行了大肠杆菌和葡萄球菌的激发试验。下表3中总结的试验结果表明,较薄的表面层可低至8μm。根据研究,当前使用流延膜和吹膜制备工艺技术制造厚度低于8μm的铜剂塑料膜是不可行的,也即是,当前制膜工艺能做到的最薄厚度为8um。但随着将来的技术发展,该很薄的抗冠状病毒表面层应该还能做到更薄,尽量的薄。
表3
Figure PCTCN2021084881-appb-000003
研究3:不同类型塑料膜材料的效果。本研究采用8种高分子薄膜材料:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、氯化聚乙烯(CPE)、乙烯-醋酸乙烯酯(EVA)、聚丙 烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)和尼龙制备了8个样品。所有样品均为三层结构,三层材料相同。总膜厚为100μm,表层厚度为15μm。纳米铜粉的浓度为表层重量的1%。试验参数和结果列在两个表4、表5中,综上所述,Iso22196测试结果表明:这8种高分子材料均与制膜工艺兼容,可用于制备预定的抗冠状病毒塑料薄膜。
表4
Figure PCTCN2021084881-appb-000004
表5
Figure PCTCN2021084881-appb-000005
研究四:不同类型铜基纳米粉末的效果。以下是三个实验样品来测定三种铜基纳米粉末的效果:铜、铜锌合金和铜镍合金。在这项研究中,发明人使用3种铜基纳米粉末进行了3个实验。样品均为3层PE膜。所述塑料薄膜的基底层为30μm,表面层厚度为10μm。所述纳米铜粉的浓度为所述表面层的重量的1%。表6中列出了试验参数和结果,综上所述,Iso22196测试结果表明:3种铜基材料对常见细菌都有很好的抗菌效果,可用于制备预期的 抗冠状病毒和抗菌多层膜。
表6
Figure PCTCN2021084881-appb-000006
此外,抗冠状病毒的铜基试剂还可以包括重量占比小于50%的银离子药剂,银离子药剂也对于细菌及病毒也具有消杀效果。
上述研究和其他广泛研究的主要结论是,本发明的目的可以通过使用具有成本效益的抗冠状病毒塑料膜来实现,所述抗冠状病毒塑料膜包括至少一个较薄的抗冠状病毒表面层和一个较厚的基底层;其中所述表面层可控制为薄至8μm并使塑料薄膜具有抗冠状病毒活性所需的昂贵药剂量最小化。所述抗冠状病毒药剂为纯铜、铜锌合金或铜镍合金的纳米粉末;所述基底层可由多种聚合物材料制成,其厚度为20~500μm,可为塑料薄膜提供不同物理性能的特性。
塑料膜是用共挤流延膜或吹塑膜工艺制成的,这样抗冠状病毒表面层和基底层在制成多层膜时会结合在一起。用于制作任何一层的薄膜材料必须与两层薄膜的制作工艺兼容。从早期的研究中,发明人发现以下材料适用:低密度聚乙烯(LDPE)、高密度聚乙烯(HDPE)、氯化聚乙烯(CPE)、乙烯-醋酸乙烯酯(EVA)、聚丙烯(PP)、聚氯乙烯(PVC)、聚对苯二甲酸乙二酯(PET)和尼龙。由于它们的分子结构不同,任何一种聚合物的选择都会影响由多层膜制成的最终产品的物理性能。
通过将昂贵的铜基纳米粉末限制在较薄的表面层,多层抗冠状病毒塑料膜的成本远低于单层膜的成本,单层抗冠状病毒膜要求铜基纳米粉末包含在整个膜中。因此,抗冠状病毒膜比传统的单层膜更便宜,因为单层膜需要在整个膜中加入更多的铜基纳米粉末。
此外,可以通过使用不同种类的聚合材料来改变膜的基底层的厚度和物理性质。低成本和可变物理性能的结合,使塑料薄膜能够用于制造各种价格合理并更安全的防护产品, 这些产品比常规防护产品更有效地防控冠状病毒。此类产品包括但不限于以下防护和医疗产品:
(a)用于储存和丢弃废物的袋子和包装物;
(b)用于医院病床、推车、椅子、柜台、家具和电梯按钮的盖布;
(c)用于对病人和医院入口进行隔离的窗帘和帐篷;
(d)手术用品,包括手术衣、洞巾、医生帽和鞋套;
(e)用于餐厅、公共汽车和飞机上的桌布和座位套;
(f)用于医疗和处理食品用的手套;
(g)个人防护口罩和呼吸器。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (7)

  1. 一种可最有效降低成本的抗冠状病毒塑料膜,其特征在于,包括:
    基底层;
    至少一个抗病毒表面层,所述抗病毒表面层位于所述基底层上;
    其中,所述抗病毒表面层的厚度为8μm至20μm,且所述抗病毒表面层含有铜基试剂,所述基底层的厚度为20至500μm,且所述基底层为聚合物材料制成。
  2. 根据权利要求1所述的可最有效降低成本的抗冠状病毒塑料膜,其特征在于,所述抗病毒表面层和基底层均选自低密度聚乙烯、高密度聚乙烯、氯化聚乙烯、乙烯-醋酸乙烯酯、聚丙烯、聚氯乙烯、聚乙烯对苯二甲酸酯及尼龙材料中的任意一种制成。
  3. 根据权利要求2所述的一种可最有效降低成本的抗冠状病毒塑料膜,其特征在于,所述抗病毒表面层由高密度聚乙烯制成。
  4. 根据权利要求1所述的可最有效降低成本的抗冠状病毒塑料膜,其特征在于,所述铜基试剂为纯铜粉、铜锌合金粉或铜镍合金粉,所述纯铜粉、铜锌合金粉或铜镍合金粉的尺寸在500nm以下。
  5. 根据权利要求1所述的可最有效降低成本的抗冠状病毒塑料膜,其特征在于,所述抗冠状病毒的铜基试剂还包括重量占比小于50%的银离子药剂。
  6. 一种抗冠状病毒塑料膜生产工艺,其特征在于,包括以下三个步骤:
    (i)抗病毒表面层的形成,涉及在送入共挤头之前将预定浓度比例的铜基试剂与处于熔点以上温度条件下的第一塑料母粒彻底混合;
    (ii)基底层的形成,涉及将熔化的、规则的第二塑料母粒送入共挤头中;
    (iii)抗冠状病毒塑料薄膜的形成,涉及抗病毒表面层与基底层的共挤以及随后的薄膜吹塑或流延薄膜的制造过程。
  7. 一种如权利要求1至5中的可最有效降低成本的抗冠状病毒塑料膜在制作如下冠状病毒防护产品中的应用:
    (a)用于储存和丢弃废物的袋子和包装物;
    (b)用于医院病床、推车、椅子、柜台、家具和电梯按钮的盖布;
    (c)用于对病人和医院入口进行隔离的窗帘和帐篷;
    (d)手术用品,包括手术衣、洞巾、医生帽和鞋套;
    (e)用于餐厅、公共汽车和飞机上的桌布和座位套;
    (f)用于医疗和处理食品用的手套;
    (g)个人防护口罩和呼吸器。
PCT/CN2021/084881 2021-03-17 2021-04-01 可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用 WO2022193374A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110283972.6A CN112976742A (zh) 2021-03-17 2021-03-17 可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用
CN202110283972.6 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193374A1 true WO2022193374A1 (zh) 2022-09-22

Family

ID=76332642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084881 WO2022193374A1 (zh) 2021-03-17 2021-04-01 可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用

Country Status (2)

Country Link
CN (1) CN112976742A (zh)
WO (1) WO2022193374A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072338A (zh) * 2012-10-19 2013-05-01 大连富利达塑料制品有限公司 低迁移/无污染复合高阻隔包装材料
CN109016762A (zh) * 2018-08-20 2018-12-18 珠海高先手术用品科技有限公司 抗菌塑料薄膜及其应用
JP2020040935A (ja) * 2018-09-07 2020-03-19 イビデン株式会社 抗微生物組成物及び抗微生物部材
JP2020040267A (ja) * 2018-09-10 2020-03-19 イビデン株式会社 機能性部材
JP2020040933A (ja) * 2018-09-06 2020-03-19 イビデン株式会社 抗微生物部材

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103072338A (zh) * 2012-10-19 2013-05-01 大连富利达塑料制品有限公司 低迁移/无污染复合高阻隔包装材料
CN109016762A (zh) * 2018-08-20 2018-12-18 珠海高先手术用品科技有限公司 抗菌塑料薄膜及其应用
JP2020040933A (ja) * 2018-09-06 2020-03-19 イビデン株式会社 抗微生物部材
JP2020040935A (ja) * 2018-09-07 2020-03-19 イビデン株式会社 抗微生物組成物及び抗微生物部材
JP2020040267A (ja) * 2018-09-10 2020-03-19 イビデン株式会社 機能性部材

Also Published As

Publication number Publication date
CN112976742A (zh) 2021-06-18

Similar Documents

Publication Publication Date Title
Govind et al. Antiviral properties of copper and its alloys to inactivate covid-19 virus: a review
Spirescu et al. Inorganic nanoparticles and composite films for antimicrobial therapies
CA2970030C (en) Antimicrobial transparent plastic in the form of film or extruded shape
US20050267233A1 (en) Anti-microbial handle system
CN100399893C (zh) 抗微生物的覆体物品
US20220290038A1 (en) Resin coated proppants with antimicrobial additives
US20100021710A1 (en) Antimicrobial coatings
EP2649878A1 (en) Methods for increasing effectiveness of antimicrobial agents in polymeric films
EP2730621A1 (en) Antiviral resin member
CN103113693B (zh) 一种纳米银pvc片膜及其制备方法
US20200306400A1 (en) Silver nanoparticles impregnated covers for electronic devices to combat nosocomial infections
Teirumnieks et al. Antibacterial and anti-viral effects of silver nanoparticles in medicine against COVID-19—A review
Ahmed et al. Silver nanoparticles against SARS-CoV-2 and its potential application in medical protective clothing–a review
Bello-Lopez et al. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver–copper nanofilm
US20220080705A1 (en) Cost effective antiviral plastic film, its method of making and applications
CA3157901A1 (en) Antimicrobial and antiviral, biologically active polymer composites effective against sars-cov-2 and other viral, bacterial and fungal targets, and related methods, materials, coatings and device
EP3074024B1 (en) Antimicrobial compositions for use in products for petroleum extraction, personal care, wound care and other applications
Palza et al. An overview for the design of antimicrobial polymers: From standard antibiotic-release systems to topographical and smart materials
WO2022193374A1 (zh) 可最有效降低成本的抗冠状病毒塑料膜、生产工艺及其应用
Alkarri et al. On antimicrobial polymers: development, mechanism of action, international testing procedures, and applications
CN103358637A (zh) 一种抗菌自洁净药用包装薄膜及其制备方法
Feuillolay et al. Antimicrobial activity of metal oxide microspheres: an innovative process for homogeneous incorporation into materials
Izadi et al. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review
WO2010015801A2 (en) Biocidal composition
CN109016762A (zh) 抗菌塑料薄膜及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930962

Country of ref document: EP

Kind code of ref document: A1