WO2022191329A1 - Hard coat film, method for producing same, and display - Google Patents

Hard coat film, method for producing same, and display Download PDF

Info

Publication number
WO2022191329A1
WO2022191329A1 PCT/JP2022/011070 JP2022011070W WO2022191329A1 WO 2022191329 A1 WO2022191329 A1 WO 2022191329A1 JP 2022011070 W JP2022011070 W JP 2022011070W WO 2022191329 A1 WO2022191329 A1 WO 2022191329A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
group
layer
coat film
scratch
Prior art date
Application number
PCT/JP2022/011070
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 田口
寛人 高麗
文康 石黒
聡子 小松
里香 森
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202280020859.1A priority Critical patent/CN116981963A/en
Priority to JP2023505660A priority patent/JPWO2022191329A1/ja
Publication of WO2022191329A1 publication Critical patent/WO2022191329A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • B05D1/38Successively applying liquids or other fluent materials, e.g. without intermediate treatment with intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • B05D7/04Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber to surfaces of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to a hard coat film and its manufacturing method. Furthermore, the present invention relates to a display comprising a hardcoat film.
  • Curved displays and foldable displays are being developed, and consideration is being given to replacing the glass materials used for display cover windows and substrates with highly flexible plastic film materials.
  • Cover windows of flexible displays such as foldable displays are required to have various properties such as transparency, hardness, and bending resistance.
  • Acrylic resins are widely used as hard coating materials, but because acrylic hard coating materials have a large curing shrinkage, if the thickness is increased to increase hardness, curling and cracking are likely to occur.
  • Patent Document 1 proposes the use of a hard coat film in which a siloxane-based hard coat layer is provided on a film substrate as a cover window material for displays.
  • Patent Document 2 discloses a polysiloxane-based hard coat material containing a specific surface modifier (leveling agent). Polysiloxane-based hard coat materials have the advantage of less curing shrinkage than acrylic materials.
  • the hard coat film used as the cover window material for foldable displays requires specific properties such as flexibility in addition to hardness.
  • mobile terminals are required to be resistant to dirt such as finger oil due to touch operation (antifouling property), and to be resistant to scratching due to contact with touch pens, nails, clothing, etc. (scratch resistance). Less degradation of antifouling properties due to abrasion (abrasion resistance) is required.
  • an object of the present invention is to provide a hard coat film that has excellent antifouling properties and scratch resistance in addition to the various properties required for general hard coat films.
  • a hard coat film according to one embodiment of the present invention comprises a hard coat layer and a scratch-resistant layer in this order on a transparent resin film.
  • the thickness of the hard coat layer is, for example, 2 to 100 ⁇ m.
  • a primer layer may be provided between the hard coat layer and the scratch resistant layer.
  • Materials for the transparent resin film include transparent resin materials such as polyester, polycarbonate, polyamide, polyimide, cyclic polyolefin, acrylic resin and cellulose resin.
  • the hard coat layer is a cured product layer of a composition containing a polyorganosiloxane compound that is a condensate of a silane compound represented by the following general formula (1).
  • R 1 is a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • R 3 is a hydrogen atom; or a monovalent hydrocarbon group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms and an aralkyl group having 7 to 12 carbon atoms
  • x is an integer of 2 or 3
  • Y is a glycidyloxy group or an alicyclic epoxy group.
  • Examples of preferred silane compounds include compounds of general formula (1) in which R 1 is a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms and Y is an alicyclic epoxy group; and general formula (1) in which R 1 is a substituted or unsubstituted alkylene group having 4 to 16 carbon atoms and Y is a glycidyloxy group.
  • the polyorganosiloxane compound may be a condensate of multiple types of silane compounds.
  • the scratch-resistant layer contains a perfluoro compound.
  • a scratch-resistant layer containing a perfluoro compound is formed, for example, by coating and condensing a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule. It is preferable to heat at 100° C. or higher during the condensation.
  • the water contact angle of the scratch resistant layer is preferably 100° or more.
  • the thickness of the scratch-resistant layer is, for example, about 5 to 30 nm.
  • the thickness of the primer layer is, for example, about 1 to 1000 nm.
  • materials for the primer layer include inorganic materials such as silicon oxide, organic-inorganic hybrid materials produced by condensation of silane compounds, and the like.
  • Silane compounds used for forming organic-inorganic hybrid materials include silane compounds in which an alkoxy group and an organic group are bonded to one Si atom.
  • the organic group of the silane compound may have an amino group.
  • a hard coat film having a scratch-resistant layer on a hard coat layer is formed by, for example, forming a hard coat layer on a transparent resin film and then applying a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule. and condensing the compound to form a scratch-resistant layer.
  • heating may be performed at 100° C. or higher after applying the composition.
  • the surface of the hard coat layer may be corona-treated.
  • a primer layer may be formed on the hard coat layer, and a scratch resistant layer may be formed thereon.
  • the above hard coat film has excellent scratch resistance and antifouling properties, and can be suitably used as a cover window material or the like placed on the display surface.
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • FIG. 1 is a cross-sectional view of a hard coat film of one embodiment
  • the hard coat film 10 has a hard coat layer 3 on the transparent resin film 1 and a scratch resistant layer 5 on the hard coat layer 3 .
  • a primer layer 4 may be provided between the hard coat layer 3 and the scratch resistant layer 5 like the hard coat film 11 shown in FIG.
  • the hard coat layer 3 and the scratch-resistant layer 5 are provided on one side of the transparent resin film 1, but the hard coat layer and the scratch-resistant layer are provided on both sides of the transparent resin film. may be provided.
  • the hard coat layer 3 and the scratch-resistant layer 5 may be provided on one surface of the transparent resin film 1 and only the hard coat layer may be provided on the other surface of the transparent resin film 1 .
  • the transparent resin film 1 is a film substrate that serves as a base for forming the hard coat layer 3 .
  • the total light transmittance of the transparent resin film is preferably 80% or higher, more preferably 85% or higher, even more preferably 88% or higher.
  • the haze of the transparent resin film is preferably 2% or less, more preferably 1% or less.
  • the resin material that constitutes the transparent resin film is not particularly limited as long as it is a transparent resin.
  • the transparent resin film may contain two or more resin materials.
  • the transparent resin film may contain a stabilizer such as an ultraviolet absorber and a radical trapping agent for the purpose of imparting weather resistance, and a dye or pigment such as a bluing agent for the purpose of adjusting color tone.
  • transparent resins examples include polyester-based resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), cyclic olefin-based resins, polyolefin-based resins, polyamide-based resins, polyimide-based resins such as polyimide and polyamide-imide, urethane-based resins, Examples include (meth)acrylic resins such as polymethyl methacrylate (PMMA), polycarbonate resins, cellulose resins such as triacetyl cellulose (TAC), and silicone resins.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • cyclic olefin-based resins examples include polyolefin-based resins, polyamide-based resins, polyimide-based resins such as polyimide and polyamide-imide, urethane-based resins
  • PMMA polymethyl methacrylate
  • TAC triacetyl cellulose
  • polyester-based resins From the viewpoint of transparency, polyester-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, cyclic polyolefin-based resins, (meth)acrylic-based resins, and cellulose-based resins are preferable. From the viewpoint of , polyethylene phthalate or polyimide is preferred, and from the viewpoint of surface hardness and durability against repeated bending, polyimide is particularly preferred.
  • Polyimide is obtained by dehydrating and cyclizing polyamic acid obtained by reacting tetracarboxylic dianhydride (hereinafter sometimes simply referred to as "acid dianhydride”) and diamine. That is, polyimide has a dianhydride-derived structure and a diamine-derived structure.
  • acid dianhydride tetracarboxylic dianhydride
  • General wholly aromatic polyimides are colored yellow or brown, but transparent polyimides with high visible light transmittance have been created by introducing alicyclic structures, bending structures, fluorine substituents, etc. is obtained.
  • the composition of the polyimide is not particularly limited, but from the viewpoint of mechanical properties and transparency, at least one of the acid dianhydride and the diamine preferably contains an alicyclic structure or a fluorine atom, and both the acid dianhydride and the diamine may contain an alicyclic structure or a fluorine atom.
  • the transparent polyimide may contain one or more of the following acid dianhydride group and one or more of the following diamine group.
  • Acid dianhydride group 2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 2,2-bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride (BPADA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 4,4′-oxydiphthalic dianhydride (ODPA), 2,2-bis(3,4-dicarboxyphenyl )-1,1,1,3,3,3-hexafluoropropanoic dianhydride (6FDA), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 1,2,4 ,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride (H-BPDA), p-phenylene bis(trimellitate) dianhydr
  • Diamine group 2,2'-bis(trifluoromethyl)benzidine, 2,2'-dimethylbenzidine, isophoronediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 9,9-bis (4-aminophenyl)fluorene, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 2,2-bis(4-(4-aminophenoxy)phenyl)propane .
  • the transparent polyimide may be a polyimide that is soluble in a low boiling point solvent such as methylene chloride, as disclosed in WO2020/004236.
  • the transparent resin film 1 may have a single-layer structure or a multi-layer structure.
  • the transparent resin film may be a laminate in which a plurality of films are bonded together, and the surface of the film (the surface on which the hard coat layer 3 is formed and/or the surface on which the hard coat layer is not formed) is provided with an easy-adhesion layer, an antistatic layer, A functional layer such as an antireflection layer may be provided.
  • the thickness of the transparent resin film is, for example, about 5 to 500 ⁇ m.
  • the thickness of the transparent resin film is preferably 10-100 ⁇ m, more preferably 20-80 ⁇ m, and may be 30 ⁇ m or more. If the thickness is too small, the hardness tends to be insufficient, and if the thickness is too large, the flexibility tends to be poor.
  • a hard coat layer 3 is formed by applying a hard coat composition onto the transparent resin film 1 and curing the composition.
  • the hard coat composition contains a polyorganosiloxane compound containing epoxy groups as a curable resin component.
  • a polyorganosiloxane compound containing epoxy groups as a curable resin component.
  • Such hard coat compositions are disclosed in WO2014/204010, WO2016/098596, WO2018/096729, WO2020/040209, JP-A-2016-193956, JP-A-2017-8142, and the like. , these descriptions can be referred to and incorporated.
  • the hard coat composition preferably contains a cationic polymerization initiator in addition to the polyorganosiloxane compound as a curable resin component.
  • a polyorganosiloxane compound having an epoxy group is obtained by condensation of a silane compound having an epoxy group.
  • silane compound A silane compound having an epoxy group is represented by the following general formula (1). YR 1 -(Si(OR 2 ) x R 3 3-x ) (1)
  • R 1 is a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms.
  • R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 3 is a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms and an aralkyl group having 7 to 12 carbon atoms.
  • x is an integer of 2 or 3;
  • Y is a monovalent organic group containing an epoxy group.
  • the silane compound represented by general formula (1) has two or three (--OR 2 ) in one molecule, and Si--OR 2 is hydrolyzable. After hydrolysis of Si--OR 2 , it is condensed to form a polyorganosiloxane compound which is a condensate of a silane compound.
  • R 1 examples include methylene, diethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, and hexadecamethylene.
  • Examples include unsubstituted linear alkylene such as methylene group.
  • R 1 may further have a substituent having 1 to 6 carbon atoms. Examples of substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, phenyl group and the like. From the viewpoint of the flexibility of the hard coat layer, R 1 is preferably unsubstituted linear alkylene.
  • the carbon number (alkylene chain length) of R 1 may affect the hardness and bending resistance of the hard coat layer, and if the carbon number is 17 or more, the surface hardness tends to decrease. From the viewpoint of increasing surface hardness such as pencil hardness, R 1 preferably has 1 to 3 carbon atoms. On the other hand, from the viewpoint of enhancing bending resistance, R 1 preferably has 4 to 16 carbon atoms.
  • R 2 is preferably an alkyl group, specific examples of which include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, isopropyl, isobutyl group, cyclohexyl group, ethylhexyl group, and the like.
  • R2 is preferably a methyl group, an ethyl group or a propyl group, most preferably a methyl group.
  • R 3 is a hydrocarbon group
  • specific examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, isopropyl, and isobutyl. group, cyclohexyl group, ethylhexyl group, benzyl group, phenyl group, tolyl group, xylyl group, naphthyl group, phenethyl group and the like.
  • x is 3 in the general formula (1), the silane compound does not have R3.
  • organic group Y containing an epoxy group examples include a glycidyloxy group represented by the following formula and an alicyclic epoxy group.
  • a 3,4-epoxycyclohexyl group is preferred as the alicyclic epoxy group.
  • the hard coat layer tends to have high surface hardness.
  • the hard coat layer tends to have excellent flexibility.
  • R 1 in general formula (1) is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of increasing the surface hardness of the hard coat layer.
  • silane compounds in which R 1 is an alkylene group having 1 to 3 carbon atoms and Y is a 3,4-epoxycyclohexyl group include (3,4-epoxycyclohexyl)methyldimethoxy Silane, (3,4-epoxycyclohexyl)dimethylmethoxysilane, (3,4-epoxycyclohexyl)triethoxysilane, (3,4-epoxycyclohexyl)methyldiethoxysilane, (3,4-epoxycyclohexyl)dimethylethoxysilane , ⁇ (3,4-epoxycyclohexyl)methyl ⁇ trimethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ methyldimethoxysilane, ⁇ (3,4-epoxycyclohexyl)methyl ⁇ dimethylmethoxysilane, ⁇ (3, 4-epoxycyclo
  • R 1 in general formula (1) is preferably an alkylene group having 4 to 16 carbon atoms from the viewpoint of enhancing the bending resistance of the hard coat layer.
  • R 1 is preferably an alkylene group having 4 to 16 carbon atoms from the viewpoint of enhancing the bending resistance of the hard coat layer.
  • the number of carbon atoms in R 1 may be 6 or more or 8 or more. As described above, when the number of carbon atoms in R1 is excessively large, the surface hardness of the hard coat layer tends to decrease.
  • the number of carbon atoms in R 1 is preferably 14 or less, more preferably 12 or less.
  • silane compounds in which R 1 is an alkylene group having 4 to 16 carbon atoms and Y is a glycidyloxy group include 4-glycidyloxybutyltrimethoxysilane and 4-glycidyloxybutyl methyldimethoxysilane, 4-glycidyloxybutyltriethoxysilane, 4-glycidyloxybutylmethyldiethoxysilane, 5-glycidyloxypentyltrimethoxysilane, 5-glycidyloxypentylmethyldimethoxysilane, 5-glycidyloxypentyltriethoxysilane, 5-glycidyloxypentylmethyldiethoxysilane, 6-glycidyloxyhexyltrimethoxysilane, 6-glycidyloxyhexylmethyldimethoxysilane, 6-glycidyloxyhexyltriethoxysilane, 6-glycidyloxyhex
  • Si--O--Si bonds are formed by hydrolysis and condensation of the Si--OR 2 moieties of the above-mentioned silane compounds to produce condensates of the silane compounds (polyorganosiloxane compounds). From the viewpoint of suppressing ring-opening of epoxy groups, it is preferable to carry out the reaction under neutral or basic conditions.
  • the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. Also from the viewpoint of suppressing volatilization, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively high, cloudiness may occur due to, for example, a decrease in compatibility with other components in the composition. Therefore, the weight average molecular weight of the polyorganosiloxane compound is preferably 20,000 or less.
  • the molecular weight of the polyorganosiloxane compound can be controlled by appropriately selecting the amount of water used in the reaction and the type and amount of catalyst. For example, the molecular weight can be increased by increasing the amount of water initially charged.
  • a structure forming a Si—O—Si bond (referred to as “SiO 3/2 body” or “T3 body”) and two of the three alkoxy groups undergo a condensation reaction to Si—O— It may include structures forming Si bonds (referred to as “SiO 2/2 bodies” or “T2 bodies”).
  • the polyorganosiloxane compound has a molar ratio of SiO 3/2 bodies to SiO 2/2 bodies: [SiO 3/2 bodies]/[SiO 2/2 bodies] of less than 5.
  • [SiO 3/2 body]/[SiO 2/2 body] may be 4 or less, 3 or less, or 2 or less, or may be 0.
  • neutral salt catalysts include salts composed of acids and bases, and salts composed of cations of alkali metals or alkaline earth metals and anions of halogens are preferred.
  • neutral salt catalysts include lithium chloride, sodium chloride, potassium chloride, beryllium chloride, magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, beryllium bromide, magnesium bromide, bromide.
  • a plurality of silane compounds may be condensed.
  • a silane compound in which Y in general formula (1) is an alicyclic epoxy group and a silane compound in which Y in general formula (1) is a glycidyloxy group may be condensed.
  • a silane compound containing no epoxy group may be used. From the viewpoint of improving the mechanical strength of the hard coat layer, it is preferable that the number of epoxy groups contained in one molecule of the polyorganosiloxane compound is as large as possible.
  • the molar ratio of the silane compound having no epoxy group to the silane compound having an epoxy group is preferably 2 or less, more preferably 1 or less, further preferably 0.4 or less, and 0.2.
  • the following are particularly preferable, and 0 is acceptable.
  • the hard coat composition contains the above polyorganosiloxane compound as a curable resin component.
  • the hard coat composition preferably contains a polymerization initiator in addition to the polyorganosiloxane compound as the curable resin, and further includes a leveling agent, a reactive diluent, a photosensitizer, It may contain particles and other additives.
  • the content of the polyorganosiloxane compound in the hard coat composition is preferably 40 parts by weight or more, more preferably 50 parts by weight or more, relative to the total solid content of 100 parts by weight. Preferably, 60 parts by weight or more is more preferable.
  • the hard coat composition preferably contains a thermal cationic polymerization initiator or a photocationic polymerization initiator.
  • a thermal cationic polymerization initiator is a compound (thermal acid generator) that generates an acid upon heating
  • a photocationic polymerization initiator is a compound (photoacid generator) that generates an acid upon irradiation with an active energy ray.
  • the acid generated from the acid generator causes the epoxy groups of the polyorganosiloxane compound to react and cure through intermolecular cross-linking.
  • the cationic polymerization initiator is preferably a photocationic polymerization initiator (photoacid generator).
  • Photoacid generators include strong acids such as toluenesulfonic acid or boron tetrafluoride; onium salts such as sulfonium salts, ammonium salts, phosphonium salts, iodonium salts, and selenium salts; iron-allene complexes; silanol-metal chelate complexes.
  • sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, and benzoinsulfonates; and organic halogen compounds.
  • the content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 0.2 to 2 parts by weight is more preferable.
  • the hard coat composition may contain a leveling agent.
  • leveling agents include acrylic leveling agents, silicone leveling agents, and fluorine leveling agents. Among them, silicone-based leveling agents and fluorine-based leveling agents are preferred. Inclusion of a leveling agent is expected to reduce the surface tension of the hard coat composition and improve the surface smoothness.
  • the content of the leveling agent in the hard coat composition is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and 0.05 to 10 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 1 part by weight or less is more preferable.
  • the hardcoat composition may contain a reactive diluent.
  • reactive diluents include cationically polymerizable compounds other than the above polyorganosiloxane compounds.
  • Polymerizable functional groups of the reactive diluent include epoxy groups, vinyl ether groups, oxetane groups, alkoxysilyl groups, and the like.
  • the content of the reactive diluent in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator).
  • a photosensitizer that can absorb light in a wavelength range that the photoacid generator itself cannot absorb is more efficient.
  • Photosensitizers include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives and the like.
  • the content of the photosensitizer in the hard coat composition is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less relative to 100 parts by weight of the photoacid generator.
  • the hard coat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance, and suppressing curing shrinkage.
  • the particles organic particles, inorganic particles, organic-inorganic composite particles, etc. may be appropriately selected and used.
  • the particles may be surface-modified, and polymerizable functional groups may be introduced by surface modification.
  • the average particle diameter of the particles is, for example, about 5 nm to 10 ⁇ m.
  • the content of the particles in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may be solventless or may contain a solvent. When a solvent is included, it is preferable that the solvent does not dissolve the polyimide film.
  • the content of the solvent in the hard coat composition is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and even more preferably 100 parts by weight or less based on 100 parts by weight of the polyorganosiloxane compound.
  • the hard coat composition may contain additives such as inorganic pigments, organic pigments, surface conditioners, surface modifiers, plasticizers, dispersants, wetting agents, thickeners and antifoaming agents.
  • the hard coat composition may also contain a thermoplastic, thermosetting or photocurable resin material other than the above polyorganosiloxane compound.
  • the hard coat composition may contain a radical polymerization initiator in addition to the photocationic polymerization initiator.
  • the hard coat composition After applying the hard coat composition onto the substrate 1 and removing the solvent by drying if necessary, the hard coat composition is irradiated with active energy rays (heated in the case of thermal cationic polymerization) to cure the hard coat composition. A hard coat layer 3 is formed on the substrate 1 .
  • Examples of the method of applying the hard coat composition include roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating and dip coating.
  • the surface of the transparent resin film may be subjected to surface treatment such as corona treatment or plasma treatment.
  • an easy-adhesion layer or the like may be provided on the surface of the transparent resin film.
  • Ultraviolet rays are preferable as active energy rays.
  • the cumulative irradiation dose of active energy rays is, for example, about 50 to 10000 mJ/cm 2 , and may be set according to the type and amount of the cationic photopolymerization initiator, the thickness of the film, and the like.
  • the curing temperature is not particularly limited, it is usually 150° C. or lower, and may be 100° C. or lower or 90° C. or lower.
  • the curing temperature is preferably 30° C. or higher, and may be 70° C. or higher or 80° C. or higher.
  • the thickness of the hard coat layer 3 is, for example, 2 to 100 ⁇ m. From the viewpoint of mechanical strength such as surface hardness, the hard coat layer preferably has a thickness of 5 ⁇ m or more, more preferably 10 ⁇ m or more, even more preferably 15 ⁇ m or more, and may have a thickness of 20 ⁇ m or more, 30 ⁇ m or more, or 40 ⁇ m or more. From the viewpoint of bending resistance, the thickness of the hard coat layer is preferably 80 ⁇ m or less, and may be 60 ⁇ m or less or 50 ⁇ m or less.
  • the total thickness of the transparent resin film 1 and hard coat layer 3 is preferably 10 ⁇ m or more, preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more, and may be 60 ⁇ m or more or 70 ⁇ m or more.
  • the total thickness is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, even more preferably 150 ⁇ m or less, and may be 120 ⁇ m or less, 100 ⁇ m or less, or 80 ⁇ m or less. If the thickness is too small, the mechanical strength may be insufficient, and if the thickness is too large, the transparency and flexibility may be insufficient.
  • the ratio of the thickness D 1 of the transparent resin film 1 to the thickness D 3 of the hard coat layer: D 3 /D 1 is about 0.02 to 5, for example.
  • a scratch-resistant layer 5 containing a perfluoro compound is provided on the surface of the hard coat layer 3 .
  • the scratch resistant layer 3 By providing the scratch resistant layer 3 on the outermost surface of the hard coat film, the scratch resistance and antifouling properties are improved.
  • the perfluoro compound constituting the scratch-resistant layer is preferably a condensate of a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule, and the alkoxysilyl group is hydrolyzed and condensed to increase the molecular weight to form a film. be done.
  • a perfluoroalkyl group is an alkyl group in which all hydrogen atoms are replaced with fluorine atoms, and is represented by CF 3 (CF 2 ) n —.
  • the alkoxysilyl group is preferably a trialkoxysilyl group, more preferably a triethoxysilyl group or a trimethoxysilyl group, and particularly preferably a trimethoxysilyl group.
  • a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule preferably has a fluoroalkyl ether structure, and is preferably an oligomer having a fluoroalkyl ether repeating unit.
  • fluoroalkyl ether structure examples include -(OC 4 F 8 )-, -(OC 3 F 6 )-, -(OC 2 F 4 )-, -(OCF 2 )- and the like.
  • the perfluoroalkyl group of the fluoroalkyl ether may be linear or branched, but is preferably linear from the viewpoint of scratch resistance.
  • the number average molecular weight of the oligomer is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, even more preferably 5,000 to 10,000. If the number average molecular weight is too small, the scratch resistance may be poor, and if it is more than 50,000, it may be difficult to apply the composition.
  • the perfluoroalkyl group-containing compound may contain substituents other than perfluoroalkyl groups and repeating units other than fluoroalkyl ethers.
  • substituents include alkyl groups and fluoroalkyl groups obtained by substituting fluorine atoms for some of the hydrogen atoms of alkyl groups (that is, fluoroalkyl groups other than perfluoroalkyl groups).
  • the perfluoroalkyl group-containing compound preferably has a higher ratio of hydrogen atoms in the alkyl group substituted with fluorine.
  • the method of forming the scratch-resistant layer is not particularly limited, and includes roll coating such as bar coating, gravure coating, and comma coating, die coating such as slot die coating and fountain die coating, wet methods such as spin coating, spray coating, and dip coating; Dry methods such as sputtering and CVD can be used.
  • roll coating such as bar coating, gravure coating, and comma coating
  • die coating such as slot die coating and fountain die coating
  • wet methods such as spin coating, spray coating, and dip coating
  • Dry methods such as sputtering and CVD can be used.
  • a wet method is preferred from the viewpoint of promoting hydrolysis.
  • the scratch-resistant layer 5 Before forming the scratch-resistant layer 5 on the hard coat layer 3, surface treatments such as corona treatment, plasma treatment, and ion beam treatment may be performed. Further, as will be described later, the primer layer 4 may be provided on the hard coat layer 3, and the scratch resistant layer 5 may be formed thereon.
  • corona treatment is preferable because the treatment can be easily performed at atmospheric pressure.
  • the corona treatment density is preferably 1 W ⁇ min/m 2 or more, more preferably 10 W ⁇ min/m 2 or more, 30 W ⁇ min/m 2 or more, 100 W ⁇ min/m 2 or more, or 500 W ⁇ min/m 2 or more. 3000 W ⁇ min/m 2 or less is preferable, and 600 W ⁇ min/m 2 or less is more preferable. If the treatment density is too low, the effect of surface treatment on improving adhesion may be insufficient, and if the treatment density is too high, the hard coat layer may deteriorate.
  • the water contact angle of the surface of the hard coat layer 3 after surface treatment such as corona treatment is preferably 100° or less, more preferably 90° or less, still more preferably 60° or less, 50° or less, and 40° or less. , 30° or less, 20° or less, or 10° or less. As the surface treatment density is increased, the wettability is improved, the water contact angle is decreased, and the adhesion of the scratch resistant layer 5 tends to be improved.
  • the scratch-resistant layer is formed by a wet method
  • a composition obtained by diluting a compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule with a solvent are perfluoroaliphatic hydrocarbons having 5 to 12 carbon atoms such as perfluorohexane, perfluoromethylcyclohexane and perfluoro-1,3-dimethylcyclohexane.
  • polyfluoroaromatic hydrocarbons such as bis(trifluoromethyl)benzene; perfluoropropylmethyl ether ( C3F7OCH3 ) , perfluorobutylmethylether ( C4F9OCH3 ) , perfluorobutylethylether (C 4 F 9 OC 2 H 5 ), perfluorohexylmethyl ether (C 2 F 5 CF(OCH 3 )C 3 F 7 ) and other hydrofluoroethers (HFE).
  • the perfluoroalkyl group and alkyl group of the hydrofluoroether may be linear or branched.
  • hydrofluoroether is preferred, and perfluorobutyl methyl ether ( C4F9OCH3 ) and perfluorobutylethyl ether ( C4F9OC2H5 ) are preferred.
  • the solvent may be a mixed solvent of two or more.
  • the composition contains perfluoroalkyl group-containing compounds typified by fluoroalkyl ether oligomers having no alkoxysilyl groups in the molecule, fluorine-based oils, and other additives such as silicone-based oils.
  • fluorine-based oils typified by fluorine-based oils, and other additives such as silicone-based oils.
  • silicone-based oils may contain The inclusion of fluorine oil or silicone oil may improve scratch resistance and antifouling properties.
  • the composition may contain catalysts such as acids, bases, and metal organic compounds. Inclusion of a catalyst promotes the reaction between the alkoxysilyl groups and the functional groups on the surface of the hard coat layer, which may improve the adhesion of the scratch resistant layer 5 to the hard coat layer 3 .
  • the composition may contain water. Since the presence of water hydrolyzes the alkoxysilyl groups, the reaction with the functional groups on the surface of the hard coat layer is promoted, and the adhesion of the scratch resistant layer 5 to the hard coat layer 3 may be improved.
  • scratch resistant coating composition commercially available products such as "OPTOOL UD509" and “OPTOOL DSX-E” manufactured by Daikin Industries may be used. Solvents and additives may be added to commercially available coating compositions.
  • the solid content concentration of the compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule in the composition is not particularly limited, but from the viewpoint of coating properties, it is preferably 20% by weight or less, more preferably 10% by weight or less. , more preferably 5% by weight or less, and may be 1% by weight or less or 0.5% by weight or less. If the solid content concentration is excessively high, the coating film may become cloudy.
  • Heating promotes condensation of the compound having an alkoxysilyl group and a perfluoroalkyl group in the alkoxysilyl group molecule.
  • the heating temperature is preferably 30° C. or higher, more preferably 60° C. or higher, still more preferably 100° C. or higher, and may be 130° C. or higher.
  • the condensation is also promoted by adding water and adding a catalyst.
  • the thickness of the scratch-resistant layer is not particularly limited, it is preferably 1 nm or more, more preferably 5 nm or more, even more preferably 6 nm or more, and particularly preferably 10 nm or more.
  • the thickness of the scratch resistant layer is preferably 1000 nm or less, more preferably 100 nm or less, and may be 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, or 30 nm or less. If the thickness of the scratch-resistant layer is too small, the scratch resistance and antifouling property may be insufficient, and if the thickness is too large, the coating film may become cloudy and the transparency may be lowered.
  • the alkoxysilyl group of the perfluoroalkyl compound is preferably hydrolyzed and condensed. If the hydrolysis and condensation are accelerated by heating or the like after application of the composition, the hydroxyl groups generated by hydrolysis of the alkoxysilyl groups are only the alkoxysilyl groups of other perfluoro compounds (hydroxyl groups generated by the hydrolysis thereof). It is possible to form a covalent bond through a condensation reaction with the functional group on the surface of the hard coat layer 3 . Therefore, it is considered that the perfluoroalkyl compound is firmly fixed to the hard coat layer 3 and the scratch resistance is improved.
  • a hard coat layer formed by curing a polyorganosiloxane compound having an epoxy group has a hydroxyl group (silanol group) generated by hydrolysis during condensation of a silane compound, and furthermore, the epoxy group during curing. It has a hydroxyl group generated with ring opening.
  • These hydroxyl groups are capable of a condensation reaction with alkoxysilyl groups of perfluoroalkyl compounds.
  • Polyorganosiloxane like the alkoxysilyl group of the perfluoro compound, is an organic compound containing Si atoms, and has a high affinity with each other. Since it can be condensed with a silyl group, it is thought that the adhesion between the hard coat layer and the scratch resistant layer is improved.
  • the polysiloxane-based hard coat layer has high affinity and condensability with the perfluoro compound having an alkoxysilyl group, even if the hard coat layer 3 is not surface-treated, the perfluoroalkyl group-containing compound is It is presumed to be immobilized on the surface of the hard coat layer.
  • surface treatment such as corona treatment, a large number of functional groups such as hydroxyl groups and silanol groups are generated on the surface of the hard coat layer, so that the perfluoroalkyl group-containing compound can be more firmly fixed. Conceivable.
  • the perfluoroalkyl group-containing compound is an oligomer having a perfluoroalkyl ether structural unit, it has a long-chain structure with high mobility, so it has a high stress relaxation function and prevents damage to the hard coat layer. It is thought that it is reduced and high scratch resistance is imparted.
  • the proportion of the component derived from the perfluoro compound in the scratch-resistant layer is preferably 20% by weight or more, preferably 50% by weight or more, preferably 80% by weight or more, preferably 90% by weight or more, even if it is 100% by weight. good. If the proportion of the perfluoro compound is too low, the scratch resistance and antifouling properties may become insufficient.
  • the ratio of fluorine atoms to atoms present on the surface of the scratch-resistant layer is preferably 30% or more, more preferably 35% or more, even more preferably 40% or more, and particularly preferably 45% or more.
  • the proportion of fluorine atoms can be measured by X-ray photoelectron spectroscopy. There is a tendency that the higher the ratio of the component derived from the perfluoro compound in the scratch-resistant layer, the higher the ratio of fluorine atoms on the surface.
  • the ratio of the peak top height I A in the range of binding energy 280 to 290 eV and the peak top height I B in the range of 290 to 300 eV I B / IA is preferably 0.28 or more.
  • the peak top heights IA and IB are values excluding the background.
  • the peak ratio I B / IA is more preferably 0.40 or more, more preferably 0.80 or more, particularly preferably 1.00 or more, and may be 1.10 or more. There is a tendency that the greater the IB / IA , the higher the scratch resistance.
  • the peaks in the range 290-300 eV in the C1s narrow spectrum correspond to C-(F) 2 and C-(F) 3 bonds, and the peaks in the range 280-290 eV to carbon atoms with other bonds. handle. Since the carbon atoms constituting the perfluoroalkyl group have a structure of C-(F) 2 or C-(F) 3 , the peak top height I B in the range of 290 to 300 eV is relatively large, and I B A large value of /IA means that many perfluoroalkyl groups are present on the surface of the scratch-resistant layer located on the outermost surface of the hard coat film.
  • Primer layer As described above, the polysiloxane-based hard coat layer 3 and the scratch-resistant layer 5 containing a perfluoro compound exhibit high adhesion.
  • a primer layer 4 may be provided between the layer 3 and the scratch resistant layer 5 .
  • the material of the primer layer is not particularly limited, but a material having high adhesion (bonding property) with the polysiloxane-based hard coat layer 3 and with the alkoxysilyl group of the perfluoro compound, which is the material of the scratch-resistant layer 5. is preferred.
  • Specific examples of materials for the primer layer include metal oxides such as silicon oxide, titanium oxide, aluminum oxide and zirconium oxide; and organic/inorganic hybrid materials that are hydrolytic condensates of alkoxysilanes.
  • Preferred examples of alkoxysilanes include silane compounds having an amino group.
  • silicon oxide As the metal oxide, silicon oxide (SiOx) is preferable from the viewpoint of adhesion to the hard coat layer and the scratch-resistant layer and refractive index.
  • the oxidation number x (ratio of oxygen atoms to silicon atoms) in silicon oxide is not particularly limited, but x is preferably 1.1 to 2.0, more preferably 1.5 to 2.0. If x is too small, the strength of the primer layer may be insufficient. From the viewpoint of adhesion with the perfluoro compound, x is preferably close to 2.0.
  • the method for forming the silicon oxide primer layer is not particularly limited, and may be either a wet method or a dry method.
  • Methods for forming a silicon oxide layer by a wet method include hydrolytic condensation of a silicon compound having a hydrolyzable group typified by tetraethoxysilane (TEOS): Si(OCH 2 CH 3 ) 4 , hydrolysis of polysilazane, and A method of generating silicon oxide by a deammonification reaction or the like can be mentioned.
  • TEOS tetraethoxysilane
  • Examples of silicon compounds having hydrolyzable groups include trialkoxysilanes in addition to tetraalkoxysilanes typified by TEOS. From the viewpoint of hydrolytic condensation reactivity, the alkoxy group of the alkoxysilane is preferably an ethoxy group or a methoxy group.
  • Examples of polysilazanes include inorganic polysilazanes (perhydropolysilazanes).
  • Examples of commercially available silicon compounds with hydrolyzable groups include “Colcoat PX”, “Colcoat N-103X”, and “Colcoat PX” manufactured by Colcoat.
  • Examples of commercially available polysilazanes include “Durazane 2200”, “Durazane 2400”, “Durazane 2600” and “Durazane 2800” manufactured by Merck.
  • the material of the primer layer may be an organic/inorganic hybrid material (organopolysiloxane) having oxygen atoms bonded to Si atoms and carbon atoms bonded to Si atoms.
  • the material of the primer layer may be an organopolysiloxane having less than one organic group with 10 or less carbon atoms per Si atom.
  • the presence of the organic group may improve the adhesion between the primer layer 4 and the hard coat layer 5 .
  • the organic group having 10 or less carbon atoms may be a hydrocarbon (alkyl group) or an organic group having a functional group such as an epoxy group, a hydroxyl group, an amino group, or the like.
  • the organopolysiloxane used as the material for the primer layer may have one or more organic groups per Si atom.
  • condensation of a silane compound having an alkoxy group and an organic group bonded to one Si atom produces an organopolysiloxane having one or more organic groups per Si atom.
  • hydrolytic condensation of alkoxysilane in which one alkoxy group of tetraalkoxysilane is substituted with an organic group three siloxane bonds (Si—O) and one Si—C bond are formed per Si atom.
  • An organopolysiloxane having The organopolysiloxane may be a hydrolytic condensate of alkoxysilane in which two alkoxy groups of tetraalkoxysilane are substituted with organic groups. Hydrolysis and deammonification of organopolysilazanes also yield organopolysiloxanes.
  • the primer layer contains a hydrolytic condensate of alkoxysilane represented by the following general formula (2). Si(OR 12 ) 4-zR 13 z ) (2)
  • z is 1 or 2.
  • R 12 is an alkyl group having 1 to 10 carbon atoms, and R 13 is an organic group optionally having an amino group.
  • the compound represented by general formula (2) is an alkoxysilane in which one or two alkoxy groups of tetraalkoxysilane are substituted with an organic group R13.
  • the primer layer may contain a condensate of a silane compound having an amino group.
  • a silane compound having an amino group a compound having one or more amino groups and alkoxysilyl groups in the molecule is used.
  • An amino group-containing organopolysiloxane is obtained by condensation of the amino group-containing silane compound. Adhesion between the primer layer 4 and the hard coat layer 5 may be improved by having the amino group in the primer layer.
  • the silane compound having an amino group preferably has two or more amino groups in the molecule because of its high effect of improving adhesion.
  • the amino group includes a primary amino group represented by —NH2 , a secondary amino group in which one or two hydrogen atoms of —NH2 are substituted with another substituent such as an alkyl group, and a secondary amino group. Includes tertiary amino groups.
  • the amino group is preferably a primary amino group or a secondary amino group, particularly preferably a primary amino group.
  • at least one amino group is preferably a primary amino group.
  • the amino group-containing silane compound used for forming the primer layer is preferably a compound in which at least one R 13 is an amino group-containing organic group in general formula (2).
  • R 12 is preferably an ethyl group or a methyl group, particularly preferably a methyl group.
  • silane compounds having an amino group include silane coupling agents having an alkoxysilyl group and an amino group.
  • Silane compounds having two amino groups in the molecule include silane compounds in which at least one of R 13 is an organic group represented by —R 14 —NH—R 15 —NH 2 in general formula (2). mentioned. R 14 and R 15 are each independently an alkylene group having 1 to 10 carbon atoms and may have a branch. R 14 is typically a propylene group.
  • silane compounds include 3-(2-aminoethylamino)propyltrimethoxysilane, 3-(2-aminoethylamino)propylmethyldimethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, ethoxysilane, 3-(2-aminoethylamino)propylmethyldiethoxysilane, [3-(6-aminohexylamino)propyl]trimethoxysilane, [3-(6-aminohexylamino)propyl]methyldimethoxysilane, [3-(6-aminohexylamino)propyl]triethoxysilane, [3-(6-aminohexylamino)propyl]methyldiethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, 3-( 2-aminoeth
  • Silane compounds having one amino group in the molecule include silane compounds in which at least one of R 13 is an organic group represented by —R 16 —NH 2 in general formula (2).
  • R 16 is an alkylene group having 1 to 10 carbon atoms and may be branched.
  • R 16 is typically a propylene group.
  • silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrioxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3- Aminopropyltrimethoxysilane, N-phenyl-3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropylmethyldiethoxysilane.
  • a primer layer using a silane compound it is preferable to apply a solution containing the silane compound onto the hard coat layer by a wet method, and then hydrolyze and condense the alkoxysilyl groups.
  • a catalyst or water may be added to the composition, if necessary.
  • catalysts include acids, bases, organometallic compounds, and the like.
  • examples of coating methods include roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating and dip coating.
  • the surface of the hard coat layer 3 is subjected to corona treatment, plasma treatment, or ion beam treatment. You may implement surface treatments, such as.
  • the heating temperature is preferably 30° C. or higher, preferably 60° C. or higher, preferably 100° C. or higher, and preferably 130° C. or higher.
  • the thickness of the primer layer is not particularly limited, it is preferably 1 to 1000 nm, more preferably 5 to 300 nm. If the thickness of the primer layer is too small, the effect of improving adhesion may be insufficient. On the other hand, if the thickness of the primer layer is excessively large, the flex resistance of the hard coat film may decrease.
  • the thickness of the inorganic primer layer containing metal oxide such as silicon oxide is preferably 5 to 250 nm. From the viewpoint of improving adhesion, the thickness of the inorganic primer layer may be 10 nm or more. Although the inorganic primer layer has high hardness, it is prone to breakage and cracks when the thickness is large. good. In particular, since silicon oxide has a high affinity for both the polysiloxane-based hard coat layer and the scratch-resistant layer formed by the perfluoro compound having an alkoxysilyl group, it exhibits excellent adhesion even with a thickness of 50 nm or less. .
  • the primer layer containing an organic-inorganic hybrid material formed by hydrolytic condensation of alkoxysilane has higher adhesion to the hard coat layer etc. than the inorganic primer layer, and even with a smaller thickness, the hard coat film contributes greatly to the improvement of scratch resistance and wear resistance.
  • organic/inorganic hybrid materials have lower hardness than inorganic materials, and if the primer layer is thick, the primer layer is likely to break due to friction and rubbing, and scratch resistance and abrasion resistance may decrease. be. Therefore, the thickness of the primer layer formed by hydrolytic condensation of alkoxysilane such as a silane compound having an amino group is preferably 3 to 30 nm, particularly preferably 5 to 20 nm.
  • the hard coat film having the scratch resistant layer 5 on the hard coat layer 3 is excellent in scratch resistance and antifouling properties.
  • the polysiloxane-based hard coat layer 3 since the polysiloxane-based hard coat layer 3 is provided, it has properties such as hardness, bending resistance, transparency, and low curling property.
  • the hard coat film has no scratches or whitening after a scratch resistance test (steel wool test) of 1500 reciprocations under a load of 500 g with #0000 steel wool. Also, the hard coat film preferably has no scratches or whitening after being subjected to a wear resistance test (eraser test) of 1500 reciprocations under a load of 500 g with an eraser having a diameter of 6 mm.
  • the hard coat film preferably has a water contact angle of 100° or more on the surface (scratch resistant layer 5).
  • the water contact angle is more preferably 105° or more, and may be 108° or more or 110° or more.
  • a high water contact angle means high water repellency, and is also excellent in resistance to dirt such as finger oil (stain resistance).
  • the hard coat film has a high water contact angle because the scratch-resistant layer 5 containing a perfluoroalkyl compound is provided on the outermost surface.
  • the scratch-resistant layer 5 has excellent scratch resistance and abrasion resistance, and since scratches and abrasion caused by rubbing are small, it maintains excellent antifouling properties even after the abrasion resistance test and the abrasion resistance test. is doing.
  • the hard coat film preferably has a water contact angle of 90° or more on the surface (scratch resistant layer) after 1500 reciprocating steel wool tests.
  • the water contact angle after the steel wool test is more preferably 100° or more, still more preferably 105° or more, and may be 110° or more.
  • the hard coat film preferably has a water contact angle of 70° or more on the surface (scratch resistant layer) after 1500 reciprocating eraser tests.
  • the water contact angle after the eraser test is more preferably 80° or more, and may be 90° or more, 100°, 105° or more, or 110° or more.
  • the total light transmittance of the hard coat film is preferably 80% or higher, more preferably 88% or higher, even more preferably 89% or higher.
  • the yellowness index (YI) of the hard coat film is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.5 or less. High total light transmittance and small YI mean that the film is colorless and transparent.
  • the hard coat film preferably has a hardness of H or higher in a pencil hardness test based on JIS-K5600.
  • the pencil hardness is preferably 2H or higher, and may be 3H or higher, 4H or higher, or 5H or higher.
  • the mandrel radius is 1 mm or less (that is, the bending resistance radius is 1 mm or less and the mandrel can be bent with a bending radius of 1 mm or less).
  • the bend resistance radius is preferably 3 mm or less, preferably 2.5 mm or less, and may be 2 mm or less.
  • the hard coat film When the hard coat film is subjected to a repeated bending test with a radius of 2.5 mm with the hard coat layer forming surface as the inner surface, it is preferable that no cracks occur in the hard coat layer after repeated bending of 50,000 times. More preferably, it can be repeatedly bent 100,000 times or more.
  • the hard coat film has the above polysiloxane-based hard coat layer 3 on the transparent resin film 1, it is possible to achieve both the above high hardness and excellent bending resistance. Further, since the adhesion between the hard coat layer 3 and the scratch resistant layer 5 is high, even after the scratch resistant layer 5 is provided on the hard coat layer 3, it has excellent hardness and bending resistance.
  • the hard coat film may be provided with various functional layers on the surface of the transparent resin film 1 on which the hard coat layer is not formed.
  • functional layers include antireflection layers, antiglare layers, antistatic layers, transparent electrodes, and the like.
  • a transparent pressure-sensitive adhesive layer may be attached to the surface of the transparent resin film 1 on which the hard coat layer is not formed.
  • the above hard coat film has high hardness, excellent antifouling properties, and excellent scratch resistance and abrasion resistance, so it is suitable as a cover window material arranged on the outermost surface of an image display device. Available. Since the hard coat film is also excellent in bending resistance, it can be suitably used as a cover window for a foldable display (foldable display).
  • ⁇ Polyimide film 2> A transparent polyimide film (thickness: 50 ⁇ m) of Example 13 of WO2020/004236 was used.
  • the polyimide contains 2,2'-bis(trifluoromethyl)benzidine and 3,3'-diaminodiphenylsulfone in a molar ratio of 70:30 as diamine components, and p-phenylene as tetracarboxylic dianhydride components.
  • the polystyrene-equivalent weight average molecular weight Mn measured with a GPC apparatus "HLC-8220GPC" manufactured by Tosoh (columns: TSKgel GMH XL x 2, TSKgel G3000H XL , TSKgel G2000H XL ) was 3,000.
  • the ratio of [SiO 3/2 body]/[SiO 2/2 body] calculated from 29 Si-NMR measurement using a 600 MHz-NMR manufactured by Agilent was 2.3.
  • the residual rate of epoxy groups calculated from the 1 H-NMR spectrum measured with heavy acetone as a solvent using a 400 MHz-NMR manufactured by Bruker was 95% or more.
  • Polyorganosiloxane compound 2 had a weight average molecular weight Mn of 4500, a ratio of [SiO 3/2 bodies]/[SiO 2/2 bodies] of 2.1, and a residual epoxy group rate of 95% or more.
  • Polyorganosiloxane compound 3 had a number average molecular weight Mn of 4200, a ratio of [SiO 3/2 bodies]/[SiO 2/2 bodies] of 2.1, and a residual epoxy group rate of 95% or more.
  • a photocationic polymerization initiator and a leveling agent were added to the above polysiloxane compound and diluted with PGME to prepare hard coat compositions A to I having the formulations and solid content concentrations shown in Table 1.
  • the numerical values in Table 1 are parts by weight, and the blending amounts of the photopolymerization initiator and the leveling agent are the weight of the solid content of each component with respect to 100 parts by weight of the polysiloxane compound.
  • Example 1 The hard coat composition A was applied to the polyimide film 1 with a bar coater so that the film thickness after drying was 20 ⁇ m, and heated at 120° C. to volatilize the solvent. After that, using a high-pressure mercury lamp, the hard coat composition was cured by irradiating ultraviolet rays so that the integrated light amount was 1950 mJ/cm 2 .
  • a 20% hydrofluoroether solution of a fluoroalkyl ether oligomer having a trialkoxysilyl group (“OPTOOL UD509” manufactured by Daikin Industries, Ltd.) was diluted with hydrofluoroether ("Novec7200” manufactured by 3M) to give a solid content of 0.3% by weight.
  • a solution was prepared. This solution was applied onto the hard coat layer and heated to 130° C. to remove the solvent to form a scratch resistant layer on the hard coat layer.
  • Examples 2 and 3> After forming a hard coat layer in the same manner as in Example 1, the surface of the hard coat layer was subjected to corona treatment under the conditions shown in Table 2. A scratch-resistant layer was formed on the surface of the hard coat layer after the corona treatment in the same manner as in Example 1 to obtain a hard coat film.
  • Example 4 After corona-treating the surface of the hard coat layer in the same manner as in Example 3, 3-(2-aminoethylamino)propyltrimethoxysilane (“A0774” manufactured by Tokyo Chemical Industry Co., Ltd.) was applied to the surface of the hard coat layer after the corona treatment. A solution diluted to 6% by weight with acetone was applied, heated to 130° C. to remove the solvent, and a primer layer having a thickness of 35 nm was formed on the hard coat layer. Thereafter, in the same manner as in Example 1, a scratch-resistant layer was formed on the primer layer to obtain a hard coat film having a scratch-resistant layer on the hard coat layer via the primer layer.
  • A0774 manufactured by Tokyo Chemical Industry Co., Ltd.
  • Example 5 The concentration of the silane compound solution during formation of the primer layer was changed to 1% by weight. Other than that, in the same manner as in Example 4, a hard coat film having a scratch resistant layer on the hard coat layer via a primer layer was obtained.
  • Example 6 The thickness of the hard coat layer and the conditions of the corona treatment were changed as shown in Table 2, and the solid content concentration of the solution when forming the scratch resistant layer was changed to 0.1% by weight, and the heating temperature was changed to 150°C. A hard coat film having a scratch resistant layer on the hard coat layer via a primer layer was obtained in the same manner as in Example 5 except for these changes.
  • Example 1 In the same manner as in Example 1, the hard coat composition A was applied onto the polyimide film 1 to form a hard coat layer. Thereafter, a hard coat film having a hard coat layer on a polyimide film without forming a scratch resistant layer was obtained.
  • Hard coat compositions B, C, and D were used in place of hard coat composition A to obtain hard coat films having a hard coat layer on a polyimide film in the same manner as in Comparative Example 1.
  • Example 7 The hard coat composition E was applied to the polyimide film 2 with a bar coater so that the dry film thickness was 50 ⁇ m, and heated at 120° C. for 10 minutes. After that, using a conveying type ultraviolet irradiation device equipped with a high-pressure mercury lamp with an emission dose of 120 W / cm placed at a distance of 200 mm from the coating film, ultraviolet rays were irradiated while conveying at a conveying speed of 4 m / min to hard coat. The composition was allowed to cure. The temperature during ultraviolet irradiation was 90°C.
  • a scratch-resistant layer was formed on the hard coat layer under the same conditions as in Example 3, except that the heating temperature was changed to 150°C, to obtain a hard coat film.
  • Example 8> A hard coat film was obtained in the same manner as in Example 7, except that the hard coat composition F was used instead of the hard coat composition E, and the temperature during the ultraviolet irradiation was changed to 80°C.
  • Example 9 A hard coat layer was formed on a polyimide film in the same manner as in Example 8, except that hard coat composition I was used. "Durazane 2400") diluted with xylene to a solid concentration of 5% by weight was applied, allowed to stand at room temperature for 5 minutes, and then heated at 150° C. for 1 hour. After that, it was allowed to stand at room temperature for 24 hours to cure the polysilazane and form a primer layer with a thickness of 225 nm on the hard coat layer. After the surface of the primer layer was corona-treated at 6 J/cm 2 , a scratch-resistant layer was formed on the hard coat layer under the same conditions as in Example 3 to obtain a hard coat film.
  • “Durazane 2400” diluted with xylene to a solid concentration of 5% by weight was applied, allowed to stand at room temperature for 5 minutes, and then heated at 150° C. for 1 hour. After that, it was allowed to stand at room temperature for 24 hours to cure the polysilazane and
  • Example 5 In the same manner as in Example 7, the hard coat composition E was applied onto the polyimide film 2 to form a hard coat layer. Thereafter, a hard coat film having a hard coat layer on a polyimide film without forming a scratch resistant layer was obtained.
  • Hard coat compositions G and H were used in place of hard coat composition E to obtain a hard coat film having a hard coat layer on a polyimide film in the same manner as in Comparative Example 5.
  • ⁇ Pencil hardness> The pencil hardness of the hard coat layer surface was measured with a load of 750 g according to JIS K5600.
  • ⁇ Water contact angle> The contact angle of pure water (droplet volume: 2 ⁇ L) on the surface of the hard coat film was measured using a contact angle meter (“PCA-11” manufactured by Kyowa Interface Science Co., Ltd.). In Examples 1 to 6, the contact angle on the surface of the hard coat layer was also measured before forming the primer layer and the scratch resistant layer (after corona treatment in Examples 3 to 6).
  • the peak ratio I B /I A of the C1s spectrum is the ratio of the peak top height I A in the range of binding energy 280 to 290 eV and the peak top height I B in the range of 290 to 300 eV in the C1s narrow spectrum. be.
  • the peak top heights IA and IB are values excluding the background.
  • ⁇ Scratch resistance test (steel wool test)> Steel wool #0000 is set on an indenter with a diameter of 27 mm, and a reciprocating abrasion tester (Shinto Kagaku TYPE: 30S) is used under the conditions of a load of 500 g, a stroke of 50 mm, and 1 cycle/second to test the surface of the hard coat film. was subjected to a scratch resistance test. After 500 reciprocations or 1500 reciprocations, the surface fluorine atom ratio was measured by XPS, the water contact angle was measured, and the appearance was visually observed. Appearance was evaluated according to the following criteria. A: Those with no scratches or whitening B: Those with visible scratches of less than 10 mm or whitening (fine scratches) C: Those with scratches of 10 mm or more
  • ⁇ Abrasion resistance test (eraser test)> An eraser with a diameter of 6 mm manufactured by Minoan was set on the indenter, and an abrasion resistance test (eraser test) of the surface of the hard coat film was conducted using a reciprocating abrasion tester under the same conditions as the above abrasion resistance test. After 1,500 reciprocating tests, XPS measurement of the fluorine atom ratio on the surface, measurement of the water contact angle, and visual observation of the appearance were carried out. Appearance was evaluated according to the following criteria. A: 1 or less scratches and no whitening B: 2 to 5 scratches or whitening C: 6 or more scratches
  • the hard coat film was subjected to a cylindrical mandrel test using a type 1 testing machine, and the bending radius at which cracks occurred in the hard coat layer and/or the scratch resistant layer was determined.
  • Each of the hard coat films of Examples 1 to 8 and Comparative Examples 1 to 7 had a bending resistance radius of 1 mm or less when the hard coat layer forming surface was bent on the inside, and the hard coat layer forming surface was bent on the outside. The bend resistance radius was 3 mm or less.
  • the hard coat film of Example 9 had a bending resistance radius of 1 mm or less when the hard coat layer-formed surface was bent on the inside (no cracks or cracks occurred even when the film was bent along a mandrel with a radius of 1 mm). However, when it was bent with the hard coat layer forming surface facing outward, cracking occurred when it was bent along a mandrel with a radius of 3 mm.
  • ⁇ Repeated bending test> A sample was prepared by cutting the hard coat film into a rectangle having a short side of 25 mm and a long side of 110 mm.
  • a planar no-load U-shaped expansion test jig (manufactured by Yuasa System Equipment Co., Ltd.) was attached to the short side of the test piece.
  • DMLHB with the hard coat layer forming surface facing inside, a bending radius of 2.5 mm and a bending test of 100,000 times at a speed of 1 time/second were performed. No cracks occurred in any of the coated films after the bending test of 100,000 times.
  • the hard coat films of Examples 1 to 6 have large water contact angles and excellent antifouling properties. These hard coat films have hardness, bending resistance, and transparency in addition to antifouling properties, and can be suitably used as cover windows for flexible displays.
  • the hard coat film of Comparative Example 1 in which the hard coat layer containing a silicone-based leveling agent is the outermost layer, had a small initial water contact angle and poor antifouling properties. The same was true for Comparative Example 4 in which the hard coat layer containing a fluorine-based leveling agent was the outermost layer.
  • the hard coat films of Examples 1 to 6 which have a scratch-resistant layer on the hard coat layer, tend to have larger water contact angles after the steel wool test and after the eraser test than in Comparative Examples 1 to 4. was seen.
  • Example 1 Focusing on the antifouling property (water contact angle) after the eraser test, in Examples 1 to 3, compared to Example 1 in which the hard coat layer was not subjected to corona treatment, a scratch resistant layer was formed after corona treatment. In Examples 2 and 3, the greater the water contact angle after the eraser test, and the higher the corona treatment density, the better the abrasion resistance. Further, in Examples 4 to 6 in which a primer layer was formed on the hard coat layer and a scratch-resistant layer was formed thereon, wear resistance was further improved compared to Examples 1 to 3.
  • Example 4 which provided a primer layer with a thickness of 35 nm, had a smaller water contact angle and scratch resistance than the other examples. was inferior to In addition, in Example 4, scratches were observed on the hard coat film after the steel wool test and after the eraser test.
  • the primer layer of an organic-inorganic hybrid material formed by condensation of a silane compound has a low hardness and a large thickness. This is considered to be one of the reasons why the scratch resistance is not sufficient despite the provision.
  • Examples 7 to 9 having a scratch-resistant layer on the hard coat layer have a better appearance after the steel wool test than Comparative Examples 5 to 7 that do not have a scratch-resistant layer. It can be seen that it has excellent scratch resistance.
  • the fluorine atom ratio on the surface after the scratch resistance test was high, so the abrasion of the scratch-resistant layer was small and the scratch resistance was excellent. I know there is.
  • Example 9 in which a primer layer with a thickness of 225 nm was provided between the hard coat layer and the scratch-resistant layer, had an appearance evaluation of A even after the steel wool test of 1500 reciprocations, which was the best resistance among Examples 7-9. It showed scratching properties. This is probably because the adhesion of the scratch resistant layer was improved by providing the primer layer.
  • the primer layer of Example 9 is thicker than the primer layer of Example 4, the thickness of the primer layer of Example 9 is greater because it is a SiO inorganic film formed by curing perhydropolysilazane. Even in this case, the hardness of the film was high, which is considered to have contributed to the improvement of scratch resistance.
  • the hard coat film of Example 9 was bent with the hard coat layer forming surface facing outward, cracks occurred at a radius of 3 mm. Conceivable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

This hard coat film (10) sequentially comprises, on a transparent resin film (1), a hard coat layer (3) and a scratch resistance layer (5). The scratch resistance layer contains a perfluoro compound. The hard coat layer is a layer of a cured product of a composition which contains a polyorganosiloxane compound that is a condensation product of a silane compound represented by general formula (1). In general formula (1), R1 represents a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms; R2 represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; x represents an integer of 2 or 3; and Y represents a glycidyloxy group or an alicyclic epoxy group. (1): Y-R1-(Si(OR2)xR3 3-x)

Description

ハードコートフィルムおよびその製造方法、ならびにディスプレイHARD COAT FILM, METHOD FOR MANUFACTURING SAME, AND DISPLAY
 本発明は、ハードコートフィルムおよびその製造方法に関する。さらに、本発明はハードコートフィルムを備えるディスプレイに関する。 The present invention relates to a hard coat film and its manufacturing method. Furthermore, the present invention relates to a display comprising a hardcoat film.
 曲面ディスプレイや折り畳み可能なディスプレイ(フォルダブルディスプレイ)が開発されており、ディスプレイのカバーウインドウや基板等に用いられてきたガラス材料を、柔軟性に優れたプラスチックフィルム材料に置き換える検討がなされている。フォルダブルディスプレイをはじめとするフレキシブルディスプレイのカバーウインドウには、透明性、硬度、耐屈曲性等の諸特性が要求される。 Curved displays and foldable displays (foldable displays) are being developed, and consideration is being given to replacing the glass materials used for display cover windows and substrates with highly flexible plastic film materials. Cover windows of flexible displays such as foldable displays are required to have various properties such as transparency, hardness, and bending resistance.
 ハードコート材料としてはアクリル系樹脂が広く用いられているが、アクリル系のハードコート材料は、硬化収縮が大きいため、硬度を高めるために厚みを大きくすると、カールやクラックが発生しやすいとの課題がある。 Acrylic resins are widely used as hard coating materials, but because acrylic hard coating materials have a large curing shrinkage, if the thickness is increased to increase hardness, curling and cracking are likely to occur. There is
 特許文献1では、フィルム基材上にシロキサン系のハードコート層を設けたハードコートフィルムを、ディスプレイのカバーウインドウ材料に用いることが提案されている。特許文献2では、特定の表面改質剤(レベリング剤)を含むポリシロキサン系のハードコート材料が開示されている。ポリシロキサン系のハードコート材料は、アクリル系材料に比べて硬化収縮が少ないとの利点を有する。 Patent Document 1 proposes the use of a hard coat film in which a siloxane-based hard coat layer is provided on a film substrate as a cover window material for displays. Patent Document 2 discloses a polysiloxane-based hard coat material containing a specific surface modifier (leveling agent). Polysiloxane-based hard coat materials have the advantage of less curing shrinkage than acrylic materials.
国際公開第2020/040209号WO2020/040209 国際公開第2019/235108号WO2019/235108
 上記の様に、フォルダブルディスプレイのカバーウインドウ材としてのハードコートフィルムは、硬度に加えて耐屈曲性等の特定が要求される。また、モバイル端末では、タッチ操作による指脂等の汚れが付着しにくいこと(防汚性)が要求され、さらに、タッチペン、爪、衣類等との接触により傷がつき難く(耐擦傷性)、摩耗による防汚性の低下が少ないこと(耐摩耗性)が要求される。 As described above, the hard coat film used as the cover window material for foldable displays requires specific properties such as flexibility in addition to hardness. In addition, mobile terminals are required to be resistant to dirt such as finger oil due to touch operation (antifouling property), and to be resistant to scratching due to contact with touch pens, nails, clothing, etc. (scratch resistance). Less degradation of antifouling properties due to abrasion (abrasion resistance) is required.
 上記に鑑み、本発明は、一般的なハードコートフィルムに要求される諸特性に加えて、防汚性および耐擦傷性に優れるハードコートフィルムを提供することを目的とする。 In view of the above, an object of the present invention is to provide a hard coat film that has excellent antifouling properties and scratch resistance in addition to the various properties required for general hard coat films.
 本発明の一実施形態にかかるハードコートフィルムは、透明樹脂フィルム上に、ハードコート層および耐擦傷層をこの順に備える。ハードコート層の厚みは、例えば、2~100μmである。ハードコート層と耐擦傷層の間には、プライマー層が設けられていてもよい。 A hard coat film according to one embodiment of the present invention comprises a hard coat layer and a scratch-resistant layer in this order on a transparent resin film. The thickness of the hard coat layer is, for example, 2 to 100 μm. A primer layer may be provided between the hard coat layer and the scratch resistant layer.
 透明樹脂フィルムの材料としては、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、環状ポリオレフィン、アクリル樹脂およびセルロース系樹脂等の透明樹脂材料が挙げられる。 Materials for the transparent resin film include transparent resin materials such as polyester, polycarbonate, polyamide, polyimide, cyclic polyolefin, acrylic resin and cellulose resin.
 ハードコート層は、下記一般式(1)で表されるシラン化合物の縮合物であるポリオルガノシロキサン化合物を含む組成物の硬化物層である。
    Y-R-(Si(OR 3-x) …(1)
The hard coat layer is a cured product layer of a composition containing a polyorganosiloxane compound that is a condensate of a silane compound represented by the following general formula (1).
YR 1 -(Si(OR 2 ) x R 3 3-x ) (1)
 一般式(1)において、Rは炭素数1~16の置換または無置換のアルキレン基であり;Rは水素原子または炭素数1~10のアルキル基であり;Rは、水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基であり;xは2または3の整数であり;Yはグリシジルオキシ基または脂環式エポキシ基である。 In general formula (1), R 1 is a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms; R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; R 3 is a hydrogen atom; or a monovalent hydrocarbon group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms and an aralkyl group having 7 to 12 carbon atoms; x is an integer of 2 or 3; Y is a glycidyloxy group or an alicyclic epoxy group.
 好ましいシラン化合物の例として、一般式(1)において、Rが炭素数1~3の置換または無置換のアルキレン基であり、Yが脂環式エポキシ基である化合物;および一般式(1)において、Rが炭素数4~16の置換または無置換のアルキレン基であり、Yがグリシジルオキシ基である化合物が挙げられる。ポリオルガノシロキサン化合物は、複数種のシラン化合物の縮合物であってもよい。 Examples of preferred silane compounds include compounds of general formula (1) in which R 1 is a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms and Y is an alicyclic epoxy group; and general formula (1) in which R 1 is a substituted or unsubstituted alkylene group having 4 to 16 carbon atoms and Y is a glycidyloxy group. The polyorganosiloxane compound may be a condensate of multiple types of silane compounds.
 耐擦傷層は、パーフルオロ化合物を含む。パーフルオロ化合物を含む耐擦傷層は、例えば、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物を塗布し、縮合させることにより形成される。縮合に際しては、100℃以上で加熱することが好ましい。 The scratch-resistant layer contains a perfluoro compound. A scratch-resistant layer containing a perfluoro compound is formed, for example, by coating and condensing a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule. It is preferable to heat at 100° C. or higher during the condensation.
 耐擦傷層の水接触角は100°以上が好ましい。耐擦傷層の厚みは、例えば5~30nm程度である、 The water contact angle of the scratch resistant layer is preferably 100° or more. The thickness of the scratch-resistant layer is, for example, about 5 to 30 nm.
 ハードコートフィルムが、ハードコート層と耐擦傷層の間にプライマー層を備える場合、プライマー層の厚みは、例えば、1~1000nm程度である。プライマー層の材料としては、酸化ケイ素等の無機材料、シラン化合物の縮合により生成する有機・無機ハイブリッド材料等が挙げられる。有機・無機ハイブリッド材料の形成に用いられるシラン化合物としては、1つのSi原子にアルコキシ基および有機基が結合しているシラン化合物が挙げられる。シラン化合物の有機基はアミノ基を有していてもよい。 When the hard coat film has a primer layer between the hard coat layer and the scratch-resistant layer, the thickness of the primer layer is, for example, about 1 to 1000 nm. Examples of materials for the primer layer include inorganic materials such as silicon oxide, organic-inorganic hybrid materials produced by condensation of silane compounds, and the like. Silane compounds used for forming organic-inorganic hybrid materials include silane compounds in which an alkoxy group and an organic group are bonded to one Si atom. The organic group of the silane compound may have an amino group.
 ハードコート層上に耐擦傷層を備えるハードコートフィルムは、例えば、透明樹脂フィルム上にハードコート層を形成した後、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物を塗布し、当該化合物を縮合させて耐擦傷層を形成することにより製造できる。耐擦傷層の形成においては、組成物を塗布した後に100℃以上で加熱を行ってもよい。 A hard coat film having a scratch-resistant layer on a hard coat layer is formed by, for example, forming a hard coat layer on a transparent resin film and then applying a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule. and condensing the compound to form a scratch-resistant layer. In the formation of the scratch-resistant layer, heating may be performed at 100° C. or higher after applying the composition.
 ハードコート層を形成後、ハードコート層の表面をコロナ処理してもよい。ハードコート層を形成後、ハードコート層上にプライマー層を形成し、その上に耐擦傷層を形成してもよい。 After forming the hard coat layer, the surface of the hard coat layer may be corona-treated. After forming the hard coat layer, a primer layer may be formed on the hard coat layer, and a scratch resistant layer may be formed thereon.
 上記のハードコートフィルムは、耐擦傷性および防汚性に優れ、ディスプレイ表面に配置されるカバーウインドウ材等として好適に使用できる。 The above hard coat film has excellent scratch resistance and antifouling properties, and can be suitably used as a cover window material or the like placed on the display surface.
一実施形態のハードコートフィルムの断面図である。1 is a cross-sectional view of a hard coat film of one embodiment; FIG. 一実施形態のハードコートフィルムの断面図である。1 is a cross-sectional view of a hard coat film of one embodiment; FIG.
 図1および図2は、本発明の一実施形態にかかるハードコートフィルムの断面図である。ハードコートフィルム10は、透明樹脂フィルム1にハードコート層3を備え、ハードコート層3上に耐擦傷層5を備える。図2に示すハードコートフィルム11のように、ハードコート層3と耐擦傷層5の間にプライマー層4が設けられていてもよい。 1 and 2 are cross-sectional views of a hard coat film according to one embodiment of the present invention. The hard coat film 10 has a hard coat layer 3 on the transparent resin film 1 and a scratch resistant layer 5 on the hard coat layer 3 . A primer layer 4 may be provided between the hard coat layer 3 and the scratch resistant layer 5 like the hard coat film 11 shown in FIG.
 図1および図2では、透明樹脂フィルム1の一方の面にハードコート層3および耐擦傷層5が設けられた形態を示しているが、透明樹脂フィルムの両面にハードコート層および耐擦傷層が設けられていてもよい。また、透明樹脂フィルム1の一方の面にハードコート層3および耐擦傷層5が設けられ、透明樹脂フィルム1の他方の面にはハードコート層のみが設けられていてもよい。 1 and 2 show a mode in which the hard coat layer 3 and the scratch-resistant layer 5 are provided on one side of the transparent resin film 1, but the hard coat layer and the scratch-resistant layer are provided on both sides of the transparent resin film. may be provided. Alternatively, the hard coat layer 3 and the scratch-resistant layer 5 may be provided on one surface of the transparent resin film 1 and only the hard coat layer may be provided on the other surface of the transparent resin film 1 .
[透明樹脂フィルム]
 透明樹脂フィルム1は、ハードコート層3を形成する際の土台となるフィルム基材である。透明樹脂フィルムの全光線透過率は80%以上が好ましく、85%以上がより好ましく、88%以上がさらに好ましい。透明樹脂フィルムのヘイズは、2%以下が好ましく、1%以下がより好ましい。
[Transparent resin film]
The transparent resin film 1 is a film substrate that serves as a base for forming the hard coat layer 3 . The total light transmittance of the transparent resin film is preferably 80% or higher, more preferably 85% or higher, even more preferably 88% or higher. The haze of the transparent resin film is preferably 2% or less, more preferably 1% or less.
 透明樹脂フィルムを構成する樹脂材料は、透明樹脂であれば特に限定されない。透明樹脂フィルムは、2種以上の樹脂材料を含んでいてもよい。透明樹脂フィルムは、耐候性付与を目的とした紫外線吸収剤、ラジカルトラップ剤等の安定剤、色調調整を目的としたブルーイング材等の色素や顔料を含んでいてもよい。 The resin material that constitutes the transparent resin film is not particularly limited as long as it is a transparent resin. The transparent resin film may contain two or more resin materials. The transparent resin film may contain a stabilizer such as an ultraviolet absorber and a radical trapping agent for the purpose of imparting weather resistance, and a dye or pigment such as a bluing agent for the purpose of adjusting color tone.
 透明樹脂としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル系樹脂、環状オレフィン系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、ポリイミド、ポリアミドイミド等のポリイミド系樹脂、ウレタン系樹脂、ポリメチルメタアクリレート(PMMA)等の(メタ)アクリル系樹脂、ポリカーボネート系樹脂、トリアセチルセルロース(TAC)等のセルロース系樹脂、シリコーン系樹脂、等が挙げられる。透明性の観点から、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、環状ポリオレフィン系樹脂、(メタ)アクリル系樹脂、セルロース系樹脂が好ましく、中でも、透明性、耐湿熱性および耐候性の観点から、ポリエチレンフタレートまたはポリイミドが好ましく、表面硬度および繰り返し曲げに対する耐久性の観点からポリイミドが特に好ましい。 Examples of transparent resins include polyester-based resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), cyclic olefin-based resins, polyolefin-based resins, polyamide-based resins, polyimide-based resins such as polyimide and polyamide-imide, urethane-based resins, Examples include (meth)acrylic resins such as polymethyl methacrylate (PMMA), polycarbonate resins, cellulose resins such as triacetyl cellulose (TAC), and silicone resins. From the viewpoint of transparency, polyester-based resins, polycarbonate-based resins, polyamide-based resins, polyimide-based resins, cyclic polyolefin-based resins, (meth)acrylic-based resins, and cellulose-based resins are preferable. From the viewpoint of , polyethylene phthalate or polyimide is preferred, and from the viewpoint of surface hardness and durability against repeated bending, polyimide is particularly preferred.
 ポリイミドは、テトラカルボン酸二無水物(以下、単に「酸二無水物」と記載する場合がある)とジアミンとの反応により得られるポリアミド酸を脱水環化することにより得られる。すなわち、ポリイミドは、酸二無水物由来構造とジアミン由来構造とを有する。一般的な全芳香族ポリイミドは黄色または褐色に着色しているのに対して、脂環式構造の導入、屈曲構造の導入、フッ素置換基の導入等により、可視光透過率が高い透明なポリイミドが得られる。 Polyimide is obtained by dehydrating and cyclizing polyamic acid obtained by reacting tetracarboxylic dianhydride (hereinafter sometimes simply referred to as "acid dianhydride") and diamine. That is, polyimide has a dianhydride-derived structure and a diamine-derived structure. General wholly aromatic polyimides are colored yellow or brown, but transparent polyimides with high visible light transmittance have been created by introducing alicyclic structures, bending structures, fluorine substituents, etc. is obtained.
 ポリイミドの組成は特に限定されないが、機械特性および透明性の観点から、酸二無水物およびジアミンの少なくとも一方に、脂環式構造またはフッ素原子を含むことが好ましく、酸二無水物およびジアミンの両方に、脂環式構造またはフッ素原子を含んでいてもよい。透明ポリイミドは、下記の酸二無水物群からなる1種以上、および下記のジアミン群からなる1種以上を含むものであってもよい。 The composition of the polyimide is not particularly limited, but from the viewpoint of mechanical properties and transparency, at least one of the acid dianhydride and the diamine preferably contains an alicyclic structure or a fluorine atom, and both the acid dianhydride and the diamine may contain an alicyclic structure or a fluorine atom. The transparent polyimide may contain one or more of the following acid dianhydride group and one or more of the following diamine group.
 酸二無水物群:2,3,4-シクロブタンテトラカルボン酸二無水物(CBDA)、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物(BPADA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(s-BPDA)、4,4’-オキシジフタル酸二無水物(ODPA)、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物(6FDA)、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)、ジシクロヘキシル-3,4,3’,4’-テトラカルボン酸二無水物(H-BPDA)、p-フェニレンビス(トリメリテート)二無水物(TAHQ)、およびビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(TAHMBP)。 Acid dianhydride group: 2,3,4-cyclobutanetetracarboxylic dianhydride (CBDA), 2,2-bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride (BPADA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA), 4,4′-oxydiphthalic dianhydride (ODPA), 2,2-bis(3,4-dicarboxyphenyl )-1,1,1,3,3,3-hexafluoropropanoic dianhydride (6FDA), 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 1,2,4 ,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), dicyclohexyl-3,4,3',4'-tetracarboxylic dianhydride (H-BPDA), p-phenylene bis(trimellitate) dianhydride (TAHQ), and bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)-2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′ Diyl (TAHMBP).
 ジアミン群:2,2’-ビス(トリフルオロメチル)ベンジジン、2,2’-ジメチルベンジジン、イソホロンジアミン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、9,9-ビス(4-アミノフェニル)フルオレン、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、および2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン。 Diamine group: 2,2'-bis(trifluoromethyl)benzidine, 2,2'-dimethylbenzidine, isophoronediamine, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 9,9-bis (4-aminophenyl)fluorene, 3,3′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, and 2,2-bis(4-(4-aminophenoxy)phenyl)propane .
 透明ポリイミドは、WO2020/004236号等に開示されている、塩化メチレン等の低沸点溶媒に可溶のポリイミドであってもよい。 The transparent polyimide may be a polyimide that is soluble in a low boiling point solvent such as methylene chloride, as disclosed in WO2020/004236.
 透明樹脂フィルム1は、単層でもよく、多層の構成でもよい。例えば、透明樹脂フィルムは、複数のフィルムが貼り合わせられた積層体でもよく、フィルムの表面(ハードコート層3形成面および/またはハードコート層非形成面)に、易接着層、帯電防止層、反射防止層等の機能層が設けられたものであってもよい。 The transparent resin film 1 may have a single-layer structure or a multi-layer structure. For example, the transparent resin film may be a laminate in which a plurality of films are bonded together, and the surface of the film (the surface on which the hard coat layer 3 is formed and/or the surface on which the hard coat layer is not formed) is provided with an easy-adhesion layer, an antistatic layer, A functional layer such as an antireflection layer may be provided.
 透明樹脂フィルムの厚みは、例えば、5~500μm程度である。透明樹脂フィルムの厚みは、10~100μmが好ましく、20~80μmがより好ましく、30μm以上であってもよい。厚みが過度に小さい場合は硬度が不足し、厚みが過度に大きい場合は屈曲性に劣る傾向がある。 The thickness of the transparent resin film is, for example, about 5 to 500 μm. The thickness of the transparent resin film is preferably 10-100 μm, more preferably 20-80 μm, and may be 30 μm or more. If the thickness is too small, the hardness tends to be insufficient, and if the thickness is too large, the flexibility tends to be poor.
[ハードコート層]
 透明樹脂フィルム1上にハードコート組成物を塗布し、硬化することにより、ハードコート層3が形成される。
[Hard coat layer]
A hard coat layer 3 is formed by applying a hard coat composition onto the transparent resin film 1 and curing the composition.
<ハードコート組成物>
 ハードコート組成物は、硬化性樹脂成分として、エポキシ基を含むポリオルガノシロキサン化合物を含む。このようなハードコート組成物は、WO2014/204010号、WO2016/098596号、WO2018/096729号、WO2020/040209号、特開2016-193956号公報、特開2017-8142号公報等に開示されており、これらの記載を参照・援用できる。ハードコート組成物は、硬化性樹脂成分としてのポリオルガノシロキサン化合物に加えて、カチオン重合開始剤を含むものが好ましい。
<Hard coat composition>
The hard coat composition contains a polyorganosiloxane compound containing epoxy groups as a curable resin component. Such hard coat compositions are disclosed in WO2014/204010, WO2016/098596, WO2018/096729, WO2020/040209, JP-A-2016-193956, JP-A-2017-8142, and the like. , these descriptions can be referred to and incorporated. The hard coat composition preferably contains a cationic polymerization initiator in addition to the polyorganosiloxane compound as a curable resin component.
<ポリオルガノシロキサン化合物>
 エポキシ基を有するポリオルガノシロキサン化合物は、エポキシ基を有するシラン化合物の縮合により得られる。
<Polyorganosiloxane compound>
A polyorganosiloxane compound having an epoxy group is obtained by condensation of a silane compound having an epoxy group.
(シラン化合物)
 エポキシ基を有するシラン化合物は、下記の一般式(1)で表される。
    Y-R-(Si(OR 3-x) …(1)
(Silane compound)
A silane compound having an epoxy group is represented by the following general formula (1).
YR 1 -(Si(OR 2 ) x R 3 3-x ) (1)
 Rは炭素数1~16の置換または無置換のアルキレン基である。Rは水素原子または炭素数1~10のアルキル基である。Rは水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基である。xは2または3の整数である。Yはエポキシ基を含む1価の有機基である。 R 1 is a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms. R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 3 is a hydrogen atom or a monovalent hydrocarbon group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms and an aralkyl group having 7 to 12 carbon atoms. x is an integer of 2 or 3; Y is a monovalent organic group containing an epoxy group.
 一般式(1)で表されるシラン化合物は、一分子中に2個または3個の(-OR)を有し、Si-ORが加水分解性を有する。Si-ORが加水分解した後、縮合することにより、シラン化合物の縮合物であるポリオルガノシロキサン化合物が生成する。 The silane compound represented by general formula (1) has two or three (--OR 2 ) in one molecule, and Si--OR 2 is hydrolyzable. After hydrolysis of Si--OR 2 , it is condensed to form a polyorganosiloxane compound which is a condensate of a silane compound.
 Rの具体例として、メチレン基、ジエチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、デカメチレン基、ドデカメチレン基、テトラデカメチレン基、ヘキサデカメチレン基等の無置換の直鎖アルキレンが挙げられる。Rは、さらに、炭素数1~6の置換基を有していてもよい。置換基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、フェニル基等が挙げられる。ハードコート層の柔軟性の観点から、Rは無置換の直鎖アルキレンが好ましい。 Specific examples of R 1 include methylene, diethylene, trimethylene, tetramethylene, pentamethylene, hexamethylene, heptamethylene, octamethylene, decamethylene, dodecamethylene, tetradecamethylene, and hexadecamethylene. Examples include unsubstituted linear alkylene such as methylene group. R 1 may further have a substituent having 1 to 6 carbon atoms. Examples of substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, cyclohexyl group, phenyl group and the like. From the viewpoint of the flexibility of the hard coat layer, R 1 is preferably unsubstituted linear alkylene.
 Rの炭素数(アルキレンの鎖長)は、ハードコート層の硬度や耐屈曲性に影響する場合があり、炭素数が17以上であると、表面硬度が低下する傾向がある。鉛筆硬度等の表面硬度を高める観点において、Rの炭素数は1~3が好ましい。一方、耐屈曲性を高める観点において、Rの炭素数は4~16が好ましい。 The carbon number (alkylene chain length) of R 1 may affect the hardness and bending resistance of the hard coat layer, and if the carbon number is 17 or more, the surface hardness tends to decrease. From the viewpoint of increasing surface hardness such as pencil hardness, R 1 preferably has 1 to 3 carbon atoms. On the other hand, from the viewpoint of enhancing bending resistance, R 1 preferably has 4 to 16 carbon atoms.
 Rは好ましくはアルキル基であり、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基等が挙げられる。加水分解性の観点から、Rは、メチル基、エチル基またはプロピル基が好ましく、最も好ましくはメチル基である。 R 2 is preferably an alkyl group, specific examples of which include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, isopropyl, isobutyl group, cyclohexyl group, ethylhexyl group, and the like. From the viewpoint of hydrolyzability, R2 is preferably a methyl group, an ethyl group or a propyl group, most preferably a methyl group.
 Rが炭化水素基である場合、その具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、イソプロピル基、イソブチル基、シクロヘキシル基、エチルヘキシル基、ベンジル基、フェニル基、トリル基、キシリル基、ナフチル基、フェネチル基等が挙げられる。なお、一般式(1)においてxが3である場合、シラン化合物はRを有さない。 When R 3 is a hydrocarbon group, specific examples thereof include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, isopropyl, and isobutyl. group, cyclohexyl group, ethylhexyl group, benzyl group, phenyl group, tolyl group, xylyl group, naphthyl group, phenethyl group and the like. In addition, when x is 3 in the general formula (1), the silane compound does not have R3.
 エポキシ基を含む有機基Yの具体例としては、下記式で表されるグリシジルオキシ基、および脂環式エポキシ基が挙げられる。脂環式エポキシ基としては、3,4-エポキシシクロヘキシル基が好ましい。 Specific examples of the organic group Y containing an epoxy group include a glycidyloxy group represented by the following formula and an alicyclic epoxy group. A 3,4-epoxycyclohexyl group is preferred as the alicyclic epoxy group.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 Yが脂環式エポキシ基である場合、ハードコート層が高い表面硬度を有する傾向がある。Yがグリシジルオキシ基である場合、ハードコート層が柔軟性に優れる傾向がある。 When Y is an alicyclic epoxy group, the hard coat layer tends to have high surface hardness. When Y is a glycidyloxy group, the hard coat layer tends to have excellent flexibility.
 Yが脂環式エポキシ基である場合、ハードコート層の表面硬度を高める観点から、一般式(1)におけるRは炭素数1~3のアルキレン基であることが好ましい。 When Y is an alicyclic epoxy group, R 1 in general formula (1) is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of increasing the surface hardness of the hard coat layer.
 一般式(1)において、Rが炭素数1~3のアルキレン基であり、Yが3,4-エポキシシクロヘキシル基であるシラン化合物の具体例としては、(3,4-エポキシシクロヘキシル)メチルジメトキシシラン、(3,4-エポキシシクロヘキシル)ジメチルメトキシシラン、(3,4-エポキシシクロヘキシル)トリエトキシシラン、(3,4-エポキシシクロヘキシル)メチルジエトキシシラン、(3,4-エポキシシクロヘキシル)ジメチルエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}トリメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}メチルジメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}ジメチルメトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}トリエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}メチルジエトキシシラン、{(3,4-エポキシシクロヘキシル)メチル}ジメチルエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}トリメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}メチルジメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}ジメチルメトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}トリエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}メチルジエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}ジメチルエトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}トリメトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}メチルジメトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}ジメチルメトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}トリエトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}メチルジエトキシシラン、{3-(3,4-エポキシシクロヘキシル)プロピル}ジメチルエトキシシラン、が挙げられる。 In general formula (1), specific examples of silane compounds in which R 1 is an alkylene group having 1 to 3 carbon atoms and Y is a 3,4-epoxycyclohexyl group include (3,4-epoxycyclohexyl)methyldimethoxy Silane, (3,4-epoxycyclohexyl)dimethylmethoxysilane, (3,4-epoxycyclohexyl)triethoxysilane, (3,4-epoxycyclohexyl)methyldiethoxysilane, (3,4-epoxycyclohexyl)dimethylethoxysilane , {(3,4-epoxycyclohexyl)methyl}trimethoxysilane, {(3,4-epoxycyclohexyl)methyl}methyldimethoxysilane, {(3,4-epoxycyclohexyl)methyl}dimethylmethoxysilane, {(3, 4-epoxycyclohexyl)methyl}triethoxysilane, {(3,4-epoxycyclohexyl)methyl}methyldiethoxysilane, {(3,4-epoxycyclohexyl)methyl}dimethylethoxysilane, {2-(3,4- Epoxycyclohexyl)ethyl}trimethoxysilane, {2-(3,4-epoxycyclohexyl)ethyl}methyldimethoxysilane, {2-(3,4-epoxycyclohexyl)ethyl}dimethylmethoxysilane, {2-(3,4 -epoxycyclohexyl)ethyl}triethoxysilane, {2-(3,4-epoxycyclohexyl)ethyl}methyldiethoxysilane, {2-(3,4-epoxycyclohexyl)ethyl}dimethylethoxysilane, {3-(3 ,4-epoxycyclohexyl)propyl}trimethoxysilane, {3-(3,4-epoxycyclohexyl)propyl}methyldimethoxysilane, {3-(3,4-epoxycyclohexyl)propyl}dimethylmethoxysilane, {3-( 3,4-epoxycyclohexyl)propyl}triethoxysilane, {3-(3,4-epoxycyclohexyl)propyl}methyldiethoxysilane, {3-(3,4-epoxycyclohexyl)propyl}dimethylethoxysilane, be done.
 Yがグリシジルオキシ基である場合、ハードコート層の耐屈曲性を高める観点から、一般式(1)におけるRは炭素数4~16のアルキレン基であることが好ましい。Rの炭素数が4以上であることにより、エポキシ基とケイ素原子との距離が長いため、エポキシ基の反応によりポリオルガノシロキサン化合物が硬化した後も、分子構造が柔軟性を有し、ハードコート層が優れた耐屈曲性を示す。 When Y is a glycidyloxy group, R 1 in general formula (1) is preferably an alkylene group having 4 to 16 carbon atoms from the viewpoint of enhancing the bending resistance of the hard coat layer. When the number of carbon atoms in R 1 is 4 or more, the distance between the epoxy group and the silicon atom is long, so even after the polyorganosiloxane compound is cured due to the reaction of the epoxy group, the molecular structure is flexible and hard. The coating layer exhibits excellent bending resistance.
 Si原子とエポキシ基との距離が大きいほど、すなわちスペーサであるアルキレン基Rの炭素数が大きく鎖長が長いほど、ハードコート層の耐屈曲性が向上する傾向がある。Rの炭素数は、6以上または8以上であってもよい。前述のように、Rの炭素数が過度に大きい場合は、ハードコート層の表面硬度が低下する傾向がある。Rの炭素数は、14以下が好ましく、12以下がより好ましい。 The greater the distance between the Si atom and the epoxy group, that is, the greater the number of carbon atoms and the longer the chain length of the alkylene group R1 , which is a spacer, the more the hard coat layer tends to have improved flex resistance. The number of carbon atoms in R 1 may be 6 or more or 8 or more. As described above, when the number of carbon atoms in R1 is excessively large, the surface hardness of the hard coat layer tends to decrease. The number of carbon atoms in R 1 is preferably 14 or less, more preferably 12 or less.
 一般式(1)において、Rが炭素数4~16のアルキレン基であり、Yがグリシジルオキシ基であるシラン化合物の具体例としては、4-グリシジルオキシブチルトリメトキシシラン、4-グリシジルオキシブチルメチルジメトキシシラン、4-グリシジルオキシブチルトリエトキシシラン、4-グリシジルオキシブチルメチルジエトキシシラン、5-グリシジルオキシペンチルトリメトキシシラン、5-グリシジルオキシペンチルメチルジメトキシシラン、5-グリシジルオキシペンチルトリエトキシシラン、5-グリシジルオキシペンチルメチルジエトキシシラン、6-グリシジルオキシヘキシルトリメトキシシラン、6-グリシジルオキシヘキシルメチルジメトキシシラン、6-グリシジルオキシヘキシルトリエトキシシラン、6-グリシジルオキシヘキシルメチルジエトキシシラン、7-グリシジルオキシヘプチルトリメトキシシラン、7-グリシジルオキシヘプチルメチルジメトキシシラン、7-グリシジルオキシヘプチルトリエトキシシラン、7-グリシジルオキシヘプチルメチルジエトキシシラン、8-グリシジルオキシオクチルトリメトキシシラン、8-グリシジルオキシオクチルメチルジメトキシシラン、8-グリシジルオキシオクチルトリエトキシシラン、8-グリシジルオキシオクチルメチルジエトキシシラン、9-グリシジルオキシノニルトリメトキシシラン、9-グリシジルオキシノニルメチルジメトキシシラン、9-グリシジルオキシノニルトリエトキシシラン、9-グリシジルオキシノニルメチルジエトキシシラン、10-グリシジルオキシデシルトリメトキシシラン、10-グリシジルオキシデシルメチルジメトキシシラン、10-グリシジルオキシデシルトリエトキシシラン、10-グリシジルオキシデシルメチルジエトキシシラン、11-グリシジルオキシウンデシルトリメトキシシラン、11-グリシジルオキシウンデシルメチルジメトキシシラン、11-グリシジルオキシウンデシルトリエトキシシラン、11-グリシジルオキシウンデシルメチルジエトキシシラン、12-グリシジルオキシドデシルトリメトキシシラン、12-グリシジルオキシドデシルメチルジメトキシシラン、12-グリシジルオキシドデシルトリエトキシシラン、12-グリシジルオキシドデシルメチルジエトキシシラン、13-グリシジルオキシトリデシルトリメトキシシラン、13-グリシジルオキシトリデシルメチルジメトキシシラン、13-グリシジルオキシトリデシルトリエトキシシラン、13-グリシジルオキシトリデシルメチルジエトキシシラン、14-グリシジルオキシテトラデシルトリメトキシシラン、14-グリシジルオキシテトラデシルメチルジメトキシシラン、14-グリシジルオキシテトラデシルトリエトキシシラン、14-グリシジルオキシテトラデシルメチルジエトキシシラン、15-グリシジルオキシペンタデシルトリメトキシシラン、15-グリシジルオキシペンタデシルメチルジメトキシシラン、15-グリシジルオキシペンタデシルトリエトキシシラン、15-グリシジルオキシペンタデシルメチルジエトキシシラン、16-グリシジルオキシヘキサデシルトリメトキシシラン、16-グリシジルオキシヘキサデシルメチルジメトキシシラン、16-グリシジルオキシヘキサデシルトリエトキシシラン、16-グリシジルオキシヘキサデシルメチルジエトキシシラン、が挙げられる。 In general formula (1), specific examples of silane compounds in which R 1 is an alkylene group having 4 to 16 carbon atoms and Y is a glycidyloxy group include 4-glycidyloxybutyltrimethoxysilane and 4-glycidyloxybutyl methyldimethoxysilane, 4-glycidyloxybutyltriethoxysilane, 4-glycidyloxybutylmethyldiethoxysilane, 5-glycidyloxypentyltrimethoxysilane, 5-glycidyloxypentylmethyldimethoxysilane, 5-glycidyloxypentyltriethoxysilane, 5-glycidyloxypentylmethyldiethoxysilane, 6-glycidyloxyhexyltrimethoxysilane, 6-glycidyloxyhexylmethyldimethoxysilane, 6-glycidyloxyhexyltriethoxysilane, 6-glycidyloxyhexylmethyldiethoxysilane, 7-glycidyl oxyheptyltrimethoxysilane, 7-glycidyloxyheptylmethyldimethoxysilane, 7-glycidyloxyheptyltriethoxysilane, 7-glycidyloxyheptylmethyldiethoxysilane, 8-glycidyloxyoctyltrimethoxysilane, 8-glycidyloxyoctylmethyldimethoxysilane Silane, 8-glycidyloxyoctyltriethoxysilane, 8-glycidyloxyoctylmethyldiethoxysilane, 9-glycidyloxynonyltrimethoxysilane, 9-glycidyloxynonylmethyldimethoxysilane, 9-glycidyloxynonyltriethoxysilane, 9- glycidyloxynonylmethyldiethoxysilane, 10-glycidyloxydecyltrimethoxysilane, 10-glycidyloxydecylmethyldimethoxysilane, 10-glycidyloxydecyltriethoxysilane, 10-glycidyloxydecylmethyldiethoxysilane, 11-glycidyloxyun Decyltrimethoxysilane, 11-glycidyloxyundecylmethyldimethoxysilane, 11-glycidyloxyundecyltriethoxysilane, 11-glycidyloxyundecylmethyldiethoxysilane, 12-glycidyloxyundecyltrimethoxysilane, 12-glycidyloxydecyl methyldimethoxysilane, 12-glycidyloxydodecyltriethoxysilane, 12-glycidyloxydodecylmethyldiethoxysilane, 13-glycidyloxytridecyltrimethoxysilane, 13-glycidyl oxytridecylmethyldimethoxysilane, 13-glycidyloxytridecyltriethoxysilane, 13-glycidyloxytridecylmethyldiethoxysilane, 14-glycidyloxytetradecyltrimethoxysilane, 14-glycidyloxytetradecylmethyldimethoxysilane, 14- glycidyloxytetradecyltriethoxysilane, 14-glycidyloxytetradecylmethyldiethoxysilane, 15-glycidyloxypentadecyltrimethoxysilane, 15-glycidyloxypentadecylmethyldimethoxysilane, 15-glycidyloxypentadecyltriethoxysilane, 15 -glycidyloxypentadecylmethyldiethoxysilane, 16-glycidyloxyhexadecyltrimethoxysilane, 16-glycidyloxyhexadecylmethyldimethoxysilane, 16-glycidyloxyhexadecyltriethoxysilane, 16-glycidyloxyhexadecylmethyldiethoxysilane , are mentioned.
(シラン化合物の縮合)
 上記のシラン化合物のSi-OR部分の加水分解および縮合により、Si-O-Si結合が形成されてシラン化合物の縮合物(ポリオルガノシロキサン化合物)が生成する。エポキシ基の開環を抑制する観点から、中性または塩基性条件下で反応を実施することが好ましい。
(Condensation of silane compound)
Si--O--Si bonds are formed by hydrolysis and condensation of the Si--OR 2 moieties of the above-mentioned silane compounds to produce condensates of the silane compounds (polyorganosiloxane compounds). From the viewpoint of suppressing ring-opening of epoxy groups, it is preferable to carry out the reaction under neutral or basic conditions.
 ハードコート層の硬度を高める観点から、ポリオルガノシロキサン化合物の重量平均分子量は、500以上が好ましい。揮発を抑制する観点からも、ポリオルガノシロキサン化合物の重量平均分子量は500以上が好ましい。一方、分子量が過度に大きいと、組成物中の他の成分との相溶性の低下等に起因して白濁が生じる場合がある。そのため、ポリオルガノシロキサン化合物の重量平均分子量は20000以下が好ましい。 From the viewpoint of increasing the hardness of the hard coat layer, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. Also from the viewpoint of suppressing volatilization, the weight average molecular weight of the polyorganosiloxane compound is preferably 500 or more. On the other hand, if the molecular weight is excessively high, cloudiness may occur due to, for example, a decrease in compatibility with other components in the composition. Therefore, the weight average molecular weight of the polyorganosiloxane compound is preferably 20,000 or less.
 ポリオルガノシロキサン化合物の分子量は、反応に用いる水の量、触媒の種類および量を適切に選択することにより、制御することができる。例えば、最初に仕込む水の量を増やすことにより、分子量を高くすることができる。 The molecular weight of the polyorganosiloxane compound can be controlled by appropriately selecting the amount of water used in the reaction and the type and amount of catalyst. For example, the molecular weight can be increased by increasing the amount of water initially charged.
 シラン化合物の加水分解および縮合により生成するポリオルガノシロキサン化合物は、一般式(1)においてx=3であるT単位構造を有するシラン化合物の3つのアルコキシ基(Si-OR)が、全て縮合反応して、Si-O-Si結合を形成している構造(「SiO3/2体」または「T3体」と称される)と、3つのアルコキシ基のうち2つが縮合反応しSi-O-Si結合を形成している構造(「SiO2/2体」または「T2体」と称される)を含み得る。 In the polyorganosiloxane compound produced by hydrolysis and condensation of the silane compound, the three alkoxy groups (Si—OR 2 ) of the silane compound having a T unit structure where x=3 in general formula (1) are all subjected to a condensation reaction. As a result, a structure forming a Si—O—Si bond (referred to as “SiO 3/2 body” or “T3 body”) and two of the three alkoxy groups undergo a condensation reaction to Si—O— It may include structures forming Si bonds (referred to as “SiO 2/2 bodies” or “T2 bodies”).
 ポリオルガノシロキサン化合物は、SiO3/2体とSiO2/2体のモル比:[SiO3/2体]/[SiO2/2体]が、5未満であることが好ましい場合がある。[SiO3/2体]/[SiO2/2体]は、4以下、3以下または2以下であってもよく、0でもよい。中性塩触媒の存在下で反応を実施することにより、[SiO3/2体]/[SiO2/2体]が小さくなる傾向がある。中性塩触媒としては、酸と塩基からなる塩が挙げられ、アルカリ金属またはアルカリ土類金属のカチオンとハロゲンのアニオンからなる塩が好ましい。中性塩触媒の具体例としては、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化ベリリウム、塩化マグネシウム、塩化カルシウム、臭化リチウム、臭化ナトリウム、臭化カリウム、臭化ベリリウム、臭化マグネシウム、臭化カルシウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化ベリリウム、ヨウ化マグネシウム、ヨウ化カルシウム等が挙げられる。 It may be preferable that the polyorganosiloxane compound has a molar ratio of SiO 3/2 bodies to SiO 2/2 bodies: [SiO 3/2 bodies]/[SiO 2/2 bodies] of less than 5. [SiO 3/2 body]/[SiO 2/2 body] may be 4 or less, 3 or less, or 2 or less, or may be 0. By carrying out the reaction in the presence of a neutral salt catalyst, [SiO 3/2 form]/[SiO 2/2 form] tends to be smaller. Neutral salt catalysts include salts composed of acids and bases, and salts composed of cations of alkali metals or alkaline earth metals and anions of halogens are preferred. Specific examples of neutral salt catalysts include lithium chloride, sodium chloride, potassium chloride, beryllium chloride, magnesium chloride, calcium chloride, lithium bromide, sodium bromide, potassium bromide, beryllium bromide, magnesium bromide, bromide. Calcium, lithium iodide, sodium iodide, potassium iodide, beryllium iodide, magnesium iodide, calcium iodide and the like.
 シラン化合物の縮合によりポリオルガノシロキサン化合物を得る場合、複数種のシラン化合物を縮合させてもよい。例えば、一般式(1)におけるYが脂環式エポキシ基であるシラン化合物と、一般式(1)におけるYがグリシジルオキシ基であるシラン化合物を縮合してもよい。また、一般式(1)で表されるエポキシ基を有するシラン化合物に加えて、エポキシ基を含有しないシラン化合物を用いてもよい。ハードコート層の機械強度を向上する観点から、ポリオルガノシロキサン化合物の1分子中に含まれるエポキシ基の数は多いほど好ましい。そのため、シラン化合物の縮合に際して、エポキシ基を有するシラン化合物に対するエポキシ基を有さないシラン化合物のモル比は、2以下が好ましく、1以下がより好ましく、0.4以下がさらに好ましく、0.2以下が特に好ましく、0でもよい。 When obtaining a polyorganosiloxane compound by condensation of silane compounds, a plurality of silane compounds may be condensed. For example, a silane compound in which Y in general formula (1) is an alicyclic epoxy group and a silane compound in which Y in general formula (1) is a glycidyloxy group may be condensed. In addition to the epoxy group-containing silane compound represented by formula (1), a silane compound containing no epoxy group may be used. From the viewpoint of improving the mechanical strength of the hard coat layer, it is preferable that the number of epoxy groups contained in one molecule of the polyorganosiloxane compound is as large as possible. Therefore, in the condensation of the silane compound, the molar ratio of the silane compound having no epoxy group to the silane compound having an epoxy group is preferably 2 or less, more preferably 1 or less, further preferably 0.4 or less, and 0.2. The following are particularly preferable, and 0 is acceptable.
<ポリオルガノシロキサン化合物以外の成分>
 ハードコート組成物は、上記のポリオルガノシロキサン化合物を硬化性樹脂成分として含有する。ハードコート組成物は、硬化性樹脂としてのポリオルガノシロキサン化合物に加えて、重合開始剤を含むことが好ましく、さらに固形分(不揮発分)として、レベリング剤、反応性希釈剤、光増感剤、粒子およびその他の添加剤を含み得る。機械強度に優れるフィルムを形成する観点から、ハードコート組成物中のポリオルガノシロキサン化合物の含有量は、固形分の合計100重量部に対して、40重量部以上が好ましく、50重量部以上がより好ましく、60重量部以上がさらに好ましい。
<Ingredients other than the polyorganosiloxane compound>
The hard coat composition contains the above polyorganosiloxane compound as a curable resin component. The hard coat composition preferably contains a polymerization initiator in addition to the polyorganosiloxane compound as the curable resin, and further includes a leveling agent, a reactive diluent, a photosensitizer, It may contain particles and other additives. From the viewpoint of forming a film with excellent mechanical strength, the content of the polyorganosiloxane compound in the hard coat composition is preferably 40 parts by weight or more, more preferably 50 parts by weight or more, relative to the total solid content of 100 parts by weight. Preferably, 60 parts by weight or more is more preferable.
(カチオン重合開始剤)
 ハードコート組成物は、熱カチオン重合開始剤または光カチオン重合開始剤を含むことが好ましい。熱カチオン重合開始剤は、加熱により酸を発生する化合物(熱酸発生剤)であり、光カチオン重合開始剤は、活性エネルギー線の照射により酸を発生する化合物(光酸発生剤)である。酸発生剤から生成した酸により、上記のポリオルガノシロキサン化合物のエポキシ基が反応して、分子間架橋により硬化する。
(Cationic polymerization initiator)
The hard coat composition preferably contains a thermal cationic polymerization initiator or a photocationic polymerization initiator. A thermal cationic polymerization initiator is a compound (thermal acid generator) that generates an acid upon heating, and a photocationic polymerization initiator is a compound (photoacid generator) that generates an acid upon irradiation with an active energy ray. The acid generated from the acid generator causes the epoxy groups of the polyorganosiloxane compound to react and cure through intermolecular cross-linking.
 硬化性の観点から、カチオン重合開始剤としては光カチオン重合開始剤(光酸発生剤)が好ましい。光酸発生剤としては、トルエンスルホン酸または四フッ化ホウ素等の強酸;スルホニウム塩、アンモニウム塩、ホスホニウム塩、ヨードニウム塩、セレニウム塩等のオニウム塩類;鉄-アレン錯体類;シラノール-金属キレート錯体類;ジスルホン類、ジスルホニルジアゾメタン類、ジスルホニルメタン類、スルホニルベンゾイルメタン類、イミドスルホネート類、ベンゾインスルホネート類等のスルホン酸誘導体;有機ハロゲン化合物類等が挙げられる。 From the viewpoint of curability, the cationic polymerization initiator is preferably a photocationic polymerization initiator (photoacid generator). Photoacid generators include strong acids such as toluenesulfonic acid or boron tetrafluoride; onium salts such as sulfonium salts, ammonium salts, phosphonium salts, iodonium salts, and selenium salts; iron-allene complexes; silanol-metal chelate complexes. sulfonic acid derivatives such as disulfones, disulfonyldiazomethanes, disulfonylmethanes, sulfonylbenzoylmethanes, imidosulfonates, and benzoinsulfonates; and organic halogen compounds.
 ハードコート組成物中の光カチオン重合開始剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.05~10重量部が好ましく、0.1~5重量部がより好ましく、0.2~2重量部がさらに好ましい。 The content of the photocationic polymerization initiator in the hard coat composition is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 0.2 to 2 parts by weight is more preferable.
(レベリング剤)
 ハードコート組成物は、レベリング剤を含んでいてもよい。レベリング剤としては、アクリル系レベリング剤、シリコーン系レベリング剤、フッ素系レベリング剤等が挙げられる。中でも、シリコーン系レベリング剤、フッ素系レベリング剤が好ましい。レベリング剤を含むことにより、ハードコート組成物の表面張力の低下や、表面平滑性の向上が期待できる。
(leveling agent)
The hard coat composition may contain a leveling agent. Examples of leveling agents include acrylic leveling agents, silicone leveling agents, and fluorine leveling agents. Among them, silicone-based leveling agents and fluorine-based leveling agents are preferred. Inclusion of a leveling agent is expected to reduce the surface tension of the hard coat composition and improve the surface smoothness.
 ハードコート組成物におけるレベリング剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、0.001~10重量部が好ましく、0.01~5重量部がより好ましく、0.05~1重量部以下がさらに好ましい。 The content of the leveling agent in the hard coat composition is preferably 0.001 to 10 parts by weight, more preferably 0.01 to 5 parts by weight, and 0.05 to 10 parts by weight, based on 100 parts by weight of the polyorganosiloxane compound. 1 part by weight or less is more preferable.
(反応性希釈剤)
 ハードコート組成物は、反応性希釈剤を含んでいてもよい。反応性希釈剤の例としては、上記のポリオルガノシロキサン化合物以外のカチオン重合性化合物が挙げられる。反応性希釈剤の重合性官能基としては、エポキシ基、ビニルエーテル基、オキセタン基、およびアルコキシシリル基等が挙げられる。
(reactive diluent)
The hardcoat composition may contain a reactive diluent. Examples of reactive diluents include cationically polymerizable compounds other than the above polyorganosiloxane compounds. Polymerizable functional groups of the reactive diluent include epoxy groups, vinyl ether groups, oxetane groups, alkoxysilyl groups, and the like.
 ハードコート組成物中の反応性希釈剤の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。 The content of the reactive diluent in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
(光増感剤)
 ハードコート組成物は、光カチオン重合開始剤(光酸発生剤)の感光性向上等の目的で、光増感剤を含んでいてもよい。光増感剤は、光酸発生剤が、それ自体では吸収できない波長域の光を吸収できるものがより効率的であるため、光酸発生剤の吸収波長域との重なりが少ないものが好ましい。光増感剤としては、アントラセン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体、アントラキノン誘導体、ベンゾイン誘導体等が挙げられる。
(photosensitizer)
The hard coat composition may contain a photosensitizer for the purpose of improving the photosensitivity of the photocationic polymerization initiator (photoacid generator). A photosensitizer that can absorb light in a wavelength range that the photoacid generator itself cannot absorb is more efficient. Photosensitizers include anthracene derivatives, benzophenone derivatives, thioxanthone derivatives, anthraquinone derivatives, benzoin derivatives and the like.
 ハードコート組成物中の光増感剤の含有量は、上記の光酸発生剤100重量部に対して50重量部以下が好ましく、30重量部以下がより好ましく、10重量部以下がさらに好ましい。 The content of the photosensitizer in the hard coat composition is preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and even more preferably 10 parts by weight or less relative to 100 parts by weight of the photoacid generator.
(粒子)
 ハードコート組成物は、表面硬度や耐屈曲性等の膜特性の調整や、硬化収縮の抑制等を目的として粒子を含んでいてもよい。粒子としては、有機粒子、無機粒子、有機無機複合粒子等を適宜選択して用いればよい。粒子は表面修飾されていてもよく、表面修飾により重合性官能基が導入されていてもよい。粒子の平均粒子径は、例えば5nm~10μm程度である。
(particle)
The hard coat composition may contain particles for the purpose of adjusting film properties such as surface hardness and bending resistance, and suppressing curing shrinkage. As the particles, organic particles, inorganic particles, organic-inorganic composite particles, etc. may be appropriately selected and used. The particles may be surface-modified, and polymerizable functional groups may be introduced by surface modification. The average particle diameter of the particles is, for example, about 5 nm to 10 μm.
 ハードコート組成物における粒子の含有量は、上記のポリオルガノシロキサン化合物100重量部に対して、100重量部以下が好ましく、50重量部以下がより好ましい。 The content of the particles in the hard coat composition is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, relative to 100 parts by weight of the polyorganosiloxane compound.
(溶媒)
 ハードコート組成物は、無溶媒型でもよく、溶媒を含んでいてもよい。溶媒を含む場合は、ポリイミドフィルムを溶解させないものが好ましい。ハードコート組成物中の溶媒の含有量は、ポリオルガノシロキサン化合物100重量部に対して500重量部以下が好ましく、300重量部以下がより好ましく、100重量部以下がさらに好ましい。
(solvent)
The hard coat composition may be solventless or may contain a solvent. When a solvent is included, it is preferable that the solvent does not dissolve the polyimide film. The content of the solvent in the hard coat composition is preferably 500 parts by weight or less, more preferably 300 parts by weight or less, and even more preferably 100 parts by weight or less based on 100 parts by weight of the polyorganosiloxane compound.
(その他の成分)
 ハードコート組成物は、無機顔料や有機顔料、表面調整剤、表面改質剤、可塑剤、分散剤、湿潤剤、増粘剤、消泡剤等の添加剤を含んでいてもよい。また、ハードコート組成物は、上記のポリオルガノシロキサン化合物以外の熱可塑性、熱硬化性または光硬化性の樹脂材料を含んでいてもよい。ポリオルガノシロキサン化合物および/またはポリオルガノシロキサン化合物以外の樹脂材料がラジカル重合性を有する場合、ハードコート組成物は、光カチオン重合開始剤に加えてラジカル重合開始剤を含んでいてもよい。
(other ingredients)
The hard coat composition may contain additives such as inorganic pigments, organic pigments, surface conditioners, surface modifiers, plasticizers, dispersants, wetting agents, thickeners and antifoaming agents. The hard coat composition may also contain a thermoplastic, thermosetting or photocurable resin material other than the above polyorganosiloxane compound. When the polyorganosiloxane compound and/or the resin material other than the polyorganosiloxane compound has radical polymerizability, the hard coat composition may contain a radical polymerization initiator in addition to the photocationic polymerization initiator.
<ハードコート層の形成>
 基材1上にハードコート組成物を塗布し、必要に応じて溶媒を乾燥除去した後、活性エネルギー線を照射(熱カチオン重合の場合は加熱)してハードコート組成物を硬化することにより、基材1上にハードコート層3が形成される。
<Formation of hard coat layer>
After applying the hard coat composition onto the substrate 1 and removing the solvent by drying if necessary, the hard coat composition is irradiated with active energy rays (heated in the case of thermal cationic polymerization) to cure the hard coat composition. A hard coat layer 3 is formed on the substrate 1 .
 ハードコート組成物を塗布する方法としては、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等が挙げられる。ハードコート組成物を塗布する前に、透明樹脂フィルムの表面に、コロナ処理やプラズマ処理等の表面処理を行ってもよい。また、透明樹脂フィルムの表面に易接着層等を設けてもよい。 Examples of the method of applying the hard coat composition include roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating and dip coating. Before applying the hard coat composition, the surface of the transparent resin film may be subjected to surface treatment such as corona treatment or plasma treatment. Also, an easy-adhesion layer or the like may be provided on the surface of the transparent resin film.
 活性エネルギー線の照射または熱により、カチオン重合開始剤から酸が生成し、ポリオルガノシロキサン化合物のエポキシ基が開環およびカチオン重合して、硬化が進行する。ハードコート組成物に含まれる反応性希釈剤や粒子等の添加剤がエポキシ基を含んでいる場合は、ポリオルガノシロキサン化合物同士の重合反応に加えて、シロキサン化合物と添加剤との重合反応も生じる。 By irradiation with active energy rays or heat, an acid is generated from the cationic polymerization initiator, and the epoxy group of the polyorganosiloxane compound undergoes ring-opening and cationic polymerization, and curing proceeds. When additives such as reactive diluents and particles contained in the hard coat composition contain epoxy groups, in addition to polymerization reactions between polyorganosiloxane compounds, polymerization reactions between siloxane compounds and additives also occur. .
 活性エネルギー線としては紫外線が好ましい。活性エネルギー線の積算照射量は、例えば50~10000mJ/cm程度であり、光カチオン重合開始剤の種類および配合量、フィルムの厚み等に応じて設定すればよい。硬化温度は特に限定されないが、通常150℃以下であり、100℃以下または90℃以下であってもよい。硬化温度は、30℃以上が好ましく、70℃以上または、80℃以上であってもよい。また、活性エネルギー線照射後に加熱を行ってもよい。加熱により、ハードコート層(組成物)に残存する未反応のエポキシ基の反応が促進され、ハードコート層の機械強度が向上する場合がある。 Ultraviolet rays are preferable as active energy rays. The cumulative irradiation dose of active energy rays is, for example, about 50 to 10000 mJ/cm 2 , and may be set according to the type and amount of the cationic photopolymerization initiator, the thickness of the film, and the like. Although the curing temperature is not particularly limited, it is usually 150° C. or lower, and may be 100° C. or lower or 90° C. or lower. The curing temperature is preferably 30° C. or higher, and may be 70° C. or higher or 80° C. or higher. Moreover, you may heat after active-energy-ray irradiation. Heating accelerates the reaction of unreacted epoxy groups remaining in the hard coat layer (composition), and may improve the mechanical strength of the hard coat layer.
 ハードコート層3の厚みは、例えば2~100μmである。表面硬度等の機械強度の観点から、ハードコート層5μm以上が好ましく、10μm以上がより好ましく、15μm以上がさらに好ましく、20μm以上、30μm以上または40μm以上であってもよい。耐屈曲性の観点から、ハードコート層の厚みは、80μm以下が好ましく、60μm以下または50μm以下であってもよい。 The thickness of the hard coat layer 3 is, for example, 2 to 100 μm. From the viewpoint of mechanical strength such as surface hardness, the hard coat layer preferably has a thickness of 5 μm or more, more preferably 10 μm or more, even more preferably 15 μm or more, and may have a thickness of 20 μm or more, 30 μm or more, or 40 μm or more. From the viewpoint of bending resistance, the thickness of the hard coat layer is preferably 80 μm or less, and may be 60 μm or less or 50 μm or less.
 透明樹脂フィルム1とハードコート層3の合計厚みは、10μm以上が好ましく、40μm以上が好ましく、50μm以上がより好ましく、60μm以上または70μm以上であってもよい。合計厚みは、500μm以下が好ましく、300μm以下がより好ましく、150μm以下がさらに好ましく、120μm以下、100μm以下または80μm以下であってもよい。厚みが過度に小さいと機械強度が不足する場合があり、厚みが過度に大きいと透明性や屈曲性が不足する場合がある。透明樹脂フィルム1の厚みDとハードコート層の厚みDとの比:D/Dは、例えば、0.02~5程度である。 The total thickness of the transparent resin film 1 and hard coat layer 3 is preferably 10 μm or more, preferably 40 μm or more, more preferably 50 μm or more, and may be 60 μm or more or 70 μm or more. The total thickness is preferably 500 μm or less, more preferably 300 μm or less, even more preferably 150 μm or less, and may be 120 μm or less, 100 μm or less, or 80 μm or less. If the thickness is too small, the mechanical strength may be insufficient, and if the thickness is too large, the transparency and flexibility may be insufficient. The ratio of the thickness D 1 of the transparent resin film 1 to the thickness D 3 of the hard coat layer: D 3 /D 1 is about 0.02 to 5, for example.
[耐擦傷層]
 ハードコート層3の表層には、パーフルオロ化合物を含む耐擦傷層5が設けられている。ハードコートフィルムの最表面に耐擦傷層3を備えることにより、耐擦傷性および防汚性が向上する。
[Scratch resistant layer]
A scratch-resistant layer 5 containing a perfluoro compound is provided on the surface of the hard coat layer 3 . By providing the scratch resistant layer 3 on the outermost surface of the hard coat film, the scratch resistance and antifouling properties are improved.
<パーフルオロ化合物>
 耐擦傷層を構成するパーフルオロ化合物は、好ましくは、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物の縮合物であり、アルコキシシリル基の加水分解および縮合により高分子量化して膜が形成される。
<Perfluoro compound>
The perfluoro compound constituting the scratch-resistant layer is preferably a condensate of a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule, and the alkoxysilyl group is hydrolyzed and condensed to increase the molecular weight to form a film. be done.
 パーフルオロアルキル基は、アルキル基の全ての水素原子をフッ素原子に置き換えたものであり、CF(CF-で表される。アルコキシシリル基としては、縮合反応性の観点から、トリアルコキシシリル基が好ましく、中でもトリエトキシシリル基またはトリメトキシシリル基が好ましく、トリメトキシシリル基が特に好ましい。 A perfluoroalkyl group is an alkyl group in which all hydrogen atoms are replaced with fluorine atoms, and is represented by CF 3 (CF 2 ) n —. From the viewpoint of condensation reactivity, the alkoxysilyl group is preferably a trialkoxysilyl group, more preferably a triethoxysilyl group or a trimethoxysilyl group, and particularly preferably a trimethoxysilyl group.
 分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物は、フルオロアルキルエーテル構造を有することが好ましく、フルオロアルキルエーテルの繰り返し単位を有するオリゴマーが好ましい。 A compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule preferably has a fluoroalkyl ether structure, and is preferably an oligomer having a fluoroalkyl ether repeating unit.
 フルオロアルキルエーテル構造としては、-(OC)-、-(OC)-、-(OC)-、-(OCF)-等が例示できる。フルオロアルキルエーテルのパーフルオロアルキル基は、直鎖でも分枝を有していてもよいが、耐擦傷性の観点からは直鎖であることが好ましい。 Examples of the fluoroalkyl ether structure include -(OC 4 F 8 )-, -(OC 3 F 6 )-, -(OC 2 F 4 )-, -(OCF 2 )- and the like. The perfluoroalkyl group of the fluoroalkyl ether may be linear or branched, but is preferably linear from the viewpoint of scratch resistance.
 オリゴマーの数平均分子量は、1000~50000が好ましく、3000~20000がより好ましく、5000~10000がさらに好ましい。数平均分子量が小さいと耐擦傷性が劣る場合があり、50000より大きいと組成物の塗布が困難となる場合がある。 The number average molecular weight of the oligomer is preferably 1,000 to 50,000, more preferably 3,000 to 20,000, even more preferably 5,000 to 10,000. If the number average molecular weight is too small, the scratch resistance may be poor, and if it is more than 50,000, it may be difficult to apply the composition.
 パーフルオロアルキル基含有化合物は、パーフルオロアルキル基以外の置換基や、フルオロアルキルエーテル以外の繰り返し単位を含んでいてもよい。置換基としては、アルキル基や、アルキル基の水素原子の一部をフッ素原子に置換したフルオロアルキル基(すなわち、パーフルオロアルキル基以外のフルオロアルキル基)が挙げられる。耐擦傷性の観点において、パーフルオロアルキル基含有化合物は、アルキル基の水素原子のフッ素への置換割合が高いほど好ましい。 The perfluoroalkyl group-containing compound may contain substituents other than perfluoroalkyl groups and repeating units other than fluoroalkyl ethers. Examples of substituents include alkyl groups and fluoroalkyl groups obtained by substituting fluorine atoms for some of the hydrogen atoms of alkyl groups (that is, fluoroalkyl groups other than perfluoroalkyl groups). From the viewpoint of scratch resistance, the perfluoroalkyl group-containing compound preferably has a higher ratio of hydrogen atoms in the alkyl group substituted with fluorine.
<耐擦傷層の形成>
 耐擦傷層の形成方法は特に限定されず、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等の湿式法;真空蒸着、スパッタリング、CVD等の乾式法を使用できる。分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を縮合させて膜を形成する場合は、加水分解の促進等の観点から、湿式法が好ましい。
<Formation of scratch-resistant layer>
The method of forming the scratch-resistant layer is not particularly limited, and includes roll coating such as bar coating, gravure coating, and comma coating, die coating such as slot die coating and fountain die coating, wet methods such as spin coating, spray coating, and dip coating; Dry methods such as sputtering and CVD can be used. When a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule is condensed to form a film, a wet method is preferred from the viewpoint of promoting hydrolysis.
 ハードコート層3上に耐擦傷層5を形成する前に、コロナ処理、プラズマ処理、イオンビーム処理等の表面処理を実施してもよい。また、後述のように、ハードコート層3上にプライマー層4を設け、その上に耐擦傷層5を形成してもよい。 Before forming the scratch-resistant layer 5 on the hard coat layer 3, surface treatments such as corona treatment, plasma treatment, and ion beam treatment may be performed. Further, as will be described later, the primer layer 4 may be provided on the hard coat layer 3, and the scratch resistant layer 5 may be formed thereon.
 ハードコート層3の表面処理により、水酸基、カルボキシル基、カルボニル基、シラノール基等が生成し、分子内にアルコキシシリル基およびパーフルオロアルキル基含有化合物(耐擦傷層5の構成材料)との密着性が向上し、耐擦傷性や防汚性が向上する傾向がある。 Surface treatment of the hard coat layer 3 generates hydroxyl groups, carboxyl groups, carbonyl groups, silanol groups, etc., and adhesion with compounds containing alkoxysilyl groups and perfluoroalkyl groups (constituent materials of the scratch-resistant layer 5) in the molecule. is improved, and scratch resistance and antifouling properties tend to be improved.
 表面処理としては、大気圧中で簡便に処理が可能であることから、コロナ処理が好ましい。コロナ処理密度は、1W・min/m以上が好ましく、10W・min/m以上がより好ましく、30W・min/m以上、100W・min/m以上または500W・min/m以上であってもよく、3000W・min/m以下が好ましく、600W・min/m以下がより好ましい。処理密度が過度に低い場合は、表面処理による密着性向上効果が不足する場合があり、処理密度が過度に高い場合はハードコート層が劣化する場合がある。 As the surface treatment, corona treatment is preferable because the treatment can be easily performed at atmospheric pressure. The corona treatment density is preferably 1 W·min/m 2 or more, more preferably 10 W·min/m 2 or more, 30 W·min/m 2 or more, 100 W·min/m 2 or more, or 500 W·min/m 2 or more. 3000 W·min/m 2 or less is preferable, and 600 W·min/m 2 or less is more preferable. If the treatment density is too low, the effect of surface treatment on improving adhesion may be insufficient, and if the treatment density is too high, the hard coat layer may deteriorate.
 コロナ処理等の表面処理を行った後のハードコート層3の表面の水接触角は、100°以下が好ましく、90°以下がより好ましく、60°以下がさらに好ましく、50°以下、40°以下、30°以下、20°以下または10°以下であってもよい。表面処理密度を高めるほど濡れ性が向上して水接触角が小さくなり、耐擦傷層5の密着性が向上する傾向がある。 The water contact angle of the surface of the hard coat layer 3 after surface treatment such as corona treatment is preferably 100° or less, more preferably 90° or less, still more preferably 60° or less, 50° or less, and 40° or less. , 30° or less, 20° or less, or 10° or less. As the surface treatment density is increased, the wettability is improved, the water contact angle is decreased, and the adhesion of the scratch resistant layer 5 tends to be improved.
 湿式法により耐擦傷層を形成する場合は、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物(オリゴマー)を溶媒で希釈した組成物を用いることが好ましい。化合物の溶解性および溶媒の揮発性の観点から、好ましい溶剤としては、パーフルオロヘキサン、パーフルオロメチルシクロヘキサンおよびパーフルオロ-1,3-ジメチルシクロヘキサン等の炭素数5~12のパーフルオロ脂肪族炭化水素;ビス(トリフルオロメチル)ベンゼン等のポリフルオロ芳香族炭化水素;パーフルオロプロピルメチルエーテル(COCH)、パーフルオロブチルメチルエーテル(COCH)、パーフルオロブチルエチルエーテル(COC)、パーフルオロヘキシルメチルエーテル(CCF(OCH)C)等のハイドロフルオロエーテル(HFE)が挙げられる。ハイドロフルオロエーテルのパーフルオロアルキル基およびアルキル基は、直鎖状でもよく分枝を有していてもよい。溶媒としては、ハイドロフルオロエーテルが好ましく、パーフルオロブチルメチルエーテル(COCH)、パーフルオロブチルエチルエーテル(COC)が好ましい。溶媒は、2種以上の混合溶媒でもよい。 When the scratch-resistant layer is formed by a wet method, it is preferable to use a composition obtained by diluting a compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule with a solvent. Preferred solvents from the viewpoint of compound solubility and solvent volatility are perfluoroaliphatic hydrocarbons having 5 to 12 carbon atoms such as perfluorohexane, perfluoromethylcyclohexane and perfluoro-1,3-dimethylcyclohexane. polyfluoroaromatic hydrocarbons such as bis(trifluoromethyl)benzene; perfluoropropylmethyl ether ( C3F7OCH3 ) , perfluorobutylmethylether ( C4F9OCH3 ) , perfluorobutylethylether (C 4 F 9 OC 2 H 5 ), perfluorohexylmethyl ether (C 2 F 5 CF(OCH 3 )C 3 F 7 ) and other hydrofluoroethers (HFE). The perfluoroalkyl group and alkyl group of the hydrofluoroether may be linear or branched. As the solvent, hydrofluoroether is preferred, and perfluorobutyl methyl ether ( C4F9OCH3 ) and perfluorobutylethyl ether ( C4F9OC2H5 ) are preferred. The solvent may be a mixed solvent of two or more.
 組成物は、上記のパーフルオロ化合物以外に、分子内にアルコキシシリル基を有さないフルオロアルキルエーテルオリゴマーに代表されるパーフルオロアルキル基含有化合物、フッ素系オイルや、シリコーン系オイル等他の添加剤を含んでいてもよい。フッ素系オイルや、シリコーン系オイルを含むことで耐擦傷性や防汚性が向上する場合がある。 In addition to the above perfluoro compounds, the composition contains perfluoroalkyl group-containing compounds typified by fluoroalkyl ether oligomers having no alkoxysilyl groups in the molecule, fluorine-based oils, and other additives such as silicone-based oils. may contain The inclusion of fluorine oil or silicone oil may improve scratch resistance and antifouling properties.
 組成物は、酸、塩基、金属有機化合物等の触媒を含んでいてもよい。触媒を含むことにより、アルコキシシリル基とハードコート層表面の官能基との反応が促進され、ハードコート層3上への耐擦傷層5の密着性が向上する場合がある。組成物は水を含んでいてもよい。水の存在によって、アルコキシシリル基が加水分解するため、ハードコート層表面の官能基との反応が促進され、ハードコート層3上への耐擦傷層5の密着性が向上する場合がある。 The composition may contain catalysts such as acids, bases, and metal organic compounds. Inclusion of a catalyst promotes the reaction between the alkoxysilyl groups and the functional groups on the surface of the hard coat layer, which may improve the adhesion of the scratch resistant layer 5 to the hard coat layer 3 . The composition may contain water. Since the presence of water hydrolyzes the alkoxysilyl groups, the reaction with the functional groups on the surface of the hard coat layer is promoted, and the adhesion of the scratch resistant layer 5 to the hard coat layer 3 may be improved.
 耐擦傷コーティング組成物として、ダイキン工業製の「OPTOOL UD509」、「OPTOOL DSX-E」等の市販品を用いてもよい。市販のコーティング組成物に溶媒や添加剤を添加して使用してもよい。 As the scratch resistant coating composition, commercially available products such as "OPTOOL UD509" and "OPTOOL DSX-E" manufactured by Daikin Industries may be used. Solvents and additives may be added to commercially available coating compositions.
 組成物における分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物(オリゴマー)の固形分濃度は特に限定されないが、塗布性の観点から、20重量%以下が好ましく、10重量%以下がより好ましく、5重量%以下がさらに好ましく、1重量%以下または0.5重量%以下であってもよい。固形分濃度が過度に高いと、塗膜が白濁する場合がある。 The solid content concentration of the compound (oligomer) having an alkoxysilyl group and a perfluoroalkyl group in the molecule in the composition is not particularly limited, but from the viewpoint of coating properties, it is preferably 20% by weight or less, more preferably 10% by weight or less. , more preferably 5% by weight or less, and may be 1% by weight or less or 0.5% by weight or less. If the solid content concentration is excessively high, the coating film may become cloudy.
 ハードコート層3上(またはプライマー層4上)に組成物を塗布した後、加熱を行うことが好ましい。加熱により、アルコキシシリル基分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物の縮合が促進される。加熱温度は、30℃以上が好ましく、60℃以上がより好ましく、100℃以上がさらに好ましく、130℃以上であってもよい。上記の様に、縮合は、水分の添加、触媒の添加によっても促進される。 It is preferable to heat after applying the composition on the hard coat layer 3 (or on the primer layer 4). Heating promotes condensation of the compound having an alkoxysilyl group and a perfluoroalkyl group in the alkoxysilyl group molecule. The heating temperature is preferably 30° C. or higher, more preferably 60° C. or higher, still more preferably 100° C. or higher, and may be 130° C. or higher. As mentioned above, the condensation is also promoted by adding water and adding a catalyst.
 耐擦傷層の厚みは特に限定されないが、1nm以上が好ましく、5nm以上がより好ましく、6nm以上がさらに好ましく、10nm以上が特に好ましい。耐擦傷層の厚みは、1000nm以下が好ましく、100nm以下がより好ましく、50nm以下、45nm以下、40nm以下、35nm以下または30nm以下であってもよい。耐擦傷層の厚みが過度に小さい場合は耐擦傷性や防汚性が不足することがあり、厚みが過度に大きいと塗膜が白濁等により透明性が低下する場合がある。 Although the thickness of the scratch-resistant layer is not particularly limited, it is preferably 1 nm or more, more preferably 5 nm or more, even more preferably 6 nm or more, and particularly preferably 10 nm or more. The thickness of the scratch resistant layer is preferably 1000 nm or less, more preferably 100 nm or less, and may be 50 nm or less, 45 nm or less, 40 nm or less, 35 nm or less, or 30 nm or less. If the thickness of the scratch-resistant layer is too small, the scratch resistance and antifouling property may be insufficient, and if the thickness is too large, the coating film may become cloudy and the transparency may be lowered.
 分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物により形成した耐擦傷層において、当該パーフルオロアルキル化合物は、アルコキシシリル基が加水分解して縮合していることが好ましい。組成物を塗布後の加熱等により加水分解および縮合を促進させると、アルコキシシリル基の加水分解により生成した水酸基は、他のパーフルオロ化合物のアルコキシシリル基(その加水分解により生成した水酸基)だけでなく、ハードコート層3の表面の官能基とも縮合反応して共有結合を形成可能である。そのため、パーフルオロアルキル化合物は、ハードコート層3に強固に固定化され、耐擦傷性が向上すると考えられる。 In the scratch-resistant layer formed from a composition containing a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule, the alkoxysilyl group of the perfluoroalkyl compound is preferably hydrolyzed and condensed. If the hydrolysis and condensation are accelerated by heating or the like after application of the composition, the hydroxyl groups generated by hydrolysis of the alkoxysilyl groups are only the alkoxysilyl groups of other perfluoro compounds (hydroxyl groups generated by the hydrolysis thereof). It is possible to form a covalent bond through a condensation reaction with the functional group on the surface of the hard coat layer 3 . Therefore, it is considered that the perfluoroalkyl compound is firmly fixed to the hard coat layer 3 and the scratch resistance is improved.
 特に、エポキシ基を有するポリオルガノシロキサン化合物の硬化により形成されたハードコート層は、シラン化合物の縮合時の加水分解により生じた水酸基(シラノール基)を有し、さらに、硬化の際のエポキシ基の開環に伴って生成した水酸基を有する。これらの水酸基は、パーフルオロアルキル化合物のアルコキシシリル基と縮合反応が可能である。また、ポリオルガノシロキサンは、パーフルオロ化合物のアルコキシシリル基と同様、Si原子を含む有機化合物であり、互いに親和性が高く、かつポリオルガノシロキサンのアルコキシシリル基、シラノール基等がパーフルオロ化合物のアルコキシシリル基と縮合可能であるため、ハードコート層と耐擦傷層との密着性が向上すると考えられる。 In particular, a hard coat layer formed by curing a polyorganosiloxane compound having an epoxy group has a hydroxyl group (silanol group) generated by hydrolysis during condensation of a silane compound, and furthermore, the epoxy group during curing. It has a hydroxyl group generated with ring opening. These hydroxyl groups are capable of a condensation reaction with alkoxysilyl groups of perfluoroalkyl compounds. Polyorganosiloxane, like the alkoxysilyl group of the perfluoro compound, is an organic compound containing Si atoms, and has a high affinity with each other. Since it can be condensed with a silyl group, it is thought that the adhesion between the hard coat layer and the scratch resistant layer is improved.
 このように、ポリシロキサン系のハードコート層は、アルコキシシリル基を有するパーフルオロ化合物との親和性および縮合性が高いため、ハードコート層3を表面処理しない場合でも、パーフルオロアルキル基含有化合物がハードコート層表面に固定化されると推定される。また、コロナ処理等の表面処理を実施することにより、ハードコート層の表面に、水酸基およびシラノール基等の官能基が多数生成するため、パーフルオロアルキル基含有化合物がより強固に固定化されると考えられる。さらに、パーフルオロアルキル基含有化合物が、パーフルオロアルキルエーテルの構造単位を有するオリゴマーである場合は、運動性の高い長鎖の構造を有するために応力緩和機能が高く、ハードコート層へのダメージを軽減して、高い耐擦傷性が付与されると考えられる。 Thus, since the polysiloxane-based hard coat layer has high affinity and condensability with the perfluoro compound having an alkoxysilyl group, even if the hard coat layer 3 is not surface-treated, the perfluoroalkyl group-containing compound is It is presumed to be immobilized on the surface of the hard coat layer. In addition, by performing surface treatment such as corona treatment, a large number of functional groups such as hydroxyl groups and silanol groups are generated on the surface of the hard coat layer, so that the perfluoroalkyl group-containing compound can be more firmly fixed. Conceivable. Furthermore, when the perfluoroalkyl group-containing compound is an oligomer having a perfluoroalkyl ether structural unit, it has a long-chain structure with high mobility, so it has a high stress relaxation function and prevents damage to the hard coat layer. It is thought that it is reduced and high scratch resistance is imparted.
 耐擦傷層におけるパーフルオロ化合物に由来する成分の割合は、20重量%以上が好ましく、50重量%以上が好ましく、80重量%以上が好ましく、90重量%以上が好ましく、100重量%であってもよい。パーフルオロ化合物の割合が過度に少ないと、耐擦傷性や防汚性が不十分となる場合がある。 The proportion of the component derived from the perfluoro compound in the scratch-resistant layer is preferably 20% by weight or more, preferably 50% by weight or more, preferably 80% by weight or more, preferably 90% by weight or more, even if it is 100% by weight. good. If the proportion of the perfluoro compound is too low, the scratch resistance and antifouling properties may become insufficient.
 耐擦傷層の表面に存在する原子に対するフッ素原子の割合は、30%以上が好ましく、35%以上がより好ましく、40%以上がさらに好ましく、45%以上が特に好ましい。フッ素原子の割合は、X線光電子分光分析により測定できる。耐擦傷層におけるパーフルオロ化合物に由来する成分の割合が多いほど、表面のフッ素原子比率が大きくなる傾向がある。 The ratio of fluorine atoms to atoms present on the surface of the scratch-resistant layer is preferably 30% or more, more preferably 35% or more, even more preferably 40% or more, and particularly preferably 45% or more. The proportion of fluorine atoms can be measured by X-ray photoelectron spectroscopy. There is a tendency that the higher the ratio of the component derived from the perfluoro compound in the scratch-resistant layer, the higher the ratio of fluorine atoms on the surface.
 耐擦傷層の表面のX線光電子分光分析によるC1sナロースペクトルにおいて、結合エネルギー280~290eVの範囲でのピークトップ高さIと、290~300eVの範囲でのピークトップ高さIの比I/Iは、0.28以上が好ましい。なお、ピークトップ高さIおよびIは、バックグラウンドを除いた値である。ピーク比I/Iは、0.40以上がより好ましく、0.80以上がさらに好ましく、1.00以上が特に好ましく、1.10以上であってもよい。I/Iが大きいほど、耐擦傷性が高くなる傾向がある。 In the C1s narrow spectrum by X-ray photoelectron spectroscopy of the surface of the scratch-resistant layer, the ratio of the peak top height I A in the range of binding energy 280 to 290 eV and the peak top height I B in the range of 290 to 300 eV I B / IA is preferably 0.28 or more. The peak top heights IA and IB are values excluding the background. The peak ratio I B / IA is more preferably 0.40 or more, more preferably 0.80 or more, particularly preferably 1.00 or more, and may be 1.10 or more. There is a tendency that the greater the IB / IA , the higher the scratch resistance.
 C1sナロースペクトルにおける290~300eVの範囲のピークは、C-(F)結合およびC-(F)結合に対応し、280~290eVの範囲のピークは、それ以外の結合を有する炭素原子に対応する。パーフルオロアルキル基を構成する炭素原子は、C-(F)またはC-(F)の構造を取るため、290~300eVの範囲のピークトップ高さIが相対的に大きく、I/Iが大きいことは、ハードコートフィルムの最表面に位置する耐擦傷層の表面に、パーフルオロアルキル基が多く存在することを意味する。上記の様に、耐擦傷層を形成するための組成物として、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を用いることにより、耐擦傷層の表面に多くのパーフルオロアルキル基が存在するため、I/Iが大きく、優れた耐擦傷性および防汚性を実現できる。 The peaks in the range 290-300 eV in the C1s narrow spectrum correspond to C-(F) 2 and C-(F) 3 bonds, and the peaks in the range 280-290 eV to carbon atoms with other bonds. handle. Since the carbon atoms constituting the perfluoroalkyl group have a structure of C-(F) 2 or C-(F) 3 , the peak top height I B in the range of 290 to 300 eV is relatively large, and I B A large value of /IA means that many perfluoroalkyl groups are present on the surface of the scratch-resistant layer located on the outermost surface of the hard coat film. As described above, by using a compound having an alkoxysilyl group and a perfluoroalkyl group in the molecule as the composition for forming the scratch-resistant layer, many perfluoroalkyl groups are present on the surface of the scratch-resistant layer. Therefore, I B / IA is large, and excellent scratch resistance and antifouling property can be realized.
[プライマー層]
 上記の通り、ポリシロキサン系のハードコート層3とパーフルオロ化合物を含む耐擦傷層5は、高い密着性を示すが、さらなる密着性の向上等を目的として、図2に示す様に、ハードコート層3と耐擦傷層5の間にプライマー層4を設けてもよい。
[Primer layer]
As described above, the polysiloxane-based hard coat layer 3 and the scratch-resistant layer 5 containing a perfluoro compound exhibit high adhesion. A primer layer 4 may be provided between the layer 3 and the scratch resistant layer 5 .
 プライマー層の材料は特に限定されないが、ポリシロキサン系のハードコート層3との密着性、および耐擦傷層5の材料であるパーフルオロ化合物のアルコキシシリル基との密着性(結合性)が高い材料が好ましい。プライマー層の材料の具体例としては、酸化ケイ素、酸化チタン、酸化アルミニウム、酸化ジルコニウム等の金属酸化物;およびアルコキシシランの加水分解縮合物である、有機・無機ハイブリッド材料が挙げられる。アルコキシシランの好ましい例として、アミノ基を有するシラン化合物が挙げられる。 The material of the primer layer is not particularly limited, but a material having high adhesion (bonding property) with the polysiloxane-based hard coat layer 3 and with the alkoxysilyl group of the perfluoro compound, which is the material of the scratch-resistant layer 5. is preferred. Specific examples of materials for the primer layer include metal oxides such as silicon oxide, titanium oxide, aluminum oxide and zirconium oxide; and organic/inorganic hybrid materials that are hydrolytic condensates of alkoxysilanes. Preferred examples of alkoxysilanes include silane compounds having an amino group.
 金属酸化物としては、ハードコート層および耐擦傷層との密着性および屈折率の観点から、酸化ケイ素(SiOx)が好ましい。酸化ケイ素における酸化数x(ケイ素原子に対する酸素原子の比率)は特に限定されないが、xは1.1~2.0が好ましく、1.5~2.0がより好ましい。xが過度に小さい場合は、プライマー層の強度が不足する場合がある。パーフルオロ化合物との密着性の観点から、xは2.0に近い方が好ましい。 As the metal oxide, silicon oxide (SiOx) is preferable from the viewpoint of adhesion to the hard coat layer and the scratch-resistant layer and refractive index. The oxidation number x (ratio of oxygen atoms to silicon atoms) in silicon oxide is not particularly limited, but x is preferably 1.1 to 2.0, more preferably 1.5 to 2.0. If x is too small, the strength of the primer layer may be insufficient. From the viewpoint of adhesion with the perfluoro compound, x is preferably close to 2.0.
 酸化ケイ素プライマー層の形成方法は特に限定されず、湿式法でも乾式法でもよいが、密着性向上効果に優れることから、湿式法が好ましい。湿式法により酸化ケイ素層を形成する方法としては、テトラエトキシシラン(TEOS):Si(OCHCHに代表される加水分解性基を有するケイ素化合物の加水分解縮合、ポリシラザンの加水分解および脱アンモニア反応等により、酸化ケイ素を生成させる方法が挙げられる。 The method for forming the silicon oxide primer layer is not particularly limited, and may be either a wet method or a dry method. Methods for forming a silicon oxide layer by a wet method include hydrolytic condensation of a silicon compound having a hydrolyzable group typified by tetraethoxysilane (TEOS): Si(OCH 2 CH 3 ) 4 , hydrolysis of polysilazane, and A method of generating silicon oxide by a deammonification reaction or the like can be mentioned.
 加水分解性基を有するケイ素化合物としては、上記のTEOSに代表されるテトラアルコキシシランの他に、トリアルコキシシランが挙げられる。加水分解縮合の反応性の観点から、アルコキシシランのアルコキシ基としては、エトキシ基、メトキシ基が好ましい。ポリシラザンとしては、無機ポリシラザン(パーヒドロポリシラザン)が挙げられる。 Examples of silicon compounds having hydrolyzable groups include trialkoxysilanes in addition to tetraalkoxysilanes typified by TEOS. From the viewpoint of hydrolytic condensation reactivity, the alkoxy group of the alkoxysilane is preferably an ethoxy group or a methoxy group. Examples of polysilazanes include inorganic polysilazanes (perhydropolysilazanes).
 加水分解性基を有するケイ素化合物の市販品の例としては、コルコート製の「コルコートPX」、「コルコートN-103X」、「コルコートPX」が挙げられる。ポリシラザンの市販品の例としては、メルク製の「Durazane 2200」、「Durazane 2400」、「Durazane 2600」、「Durazane 2800」が挙げられる。 Examples of commercially available silicon compounds with hydrolyzable groups include "Colcoat PX", "Colcoat N-103X", and "Colcoat PX" manufactured by Colcoat. Examples of commercially available polysilazanes include "Durazane 2200", "Durazane 2400", "Durazane 2600" and "Durazane 2800" manufactured by Merck.
 プライマー層の材料は、Si原子に結合した酸素原子とSi原子に結合した炭素原子を有する有機・無機ハイブリッド材料(オルガノポリシロキサン)であってもよい。例えば、プライマー層の材料は、Si原子1個あたり、炭素数10以下の有機基を1個未満有するオルガノポリシロキサンであってもよい。有機基が存在することにより、プライマー層4とハードコート層5との密着性が向上する場合がある。炭素数10以下の有機基は、炭化水素(アルキル基)でもよく、エポキシ基、水酸基、アミノ基等の官能基を有する有機基であってもよい。 The material of the primer layer may be an organic/inorganic hybrid material (organopolysiloxane) having oxygen atoms bonded to Si atoms and carbon atoms bonded to Si atoms. For example, the material of the primer layer may be an organopolysiloxane having less than one organic group with 10 or less carbon atoms per Si atom. The presence of the organic group may improve the adhesion between the primer layer 4 and the hard coat layer 5 . The organic group having 10 or less carbon atoms may be a hydrocarbon (alkyl group) or an organic group having a functional group such as an epoxy group, a hydroxyl group, an amino group, or the like.
 プライマー層の材料としてのオルガノポリシロキサンは、Si原子1個あたり、1以上の有機基を有していてもよい。例えば、1つのSi原子にアルコキシ基および有機基が結合しているシラン化合物の縮合により、Si原子1個あたり、1以上の有機基を有するオルガノポリシロキサンが生成する。例えば、テトラアルコキシシランの1つのアルコキシ基が有機基で置換されたアルコキシシランの加水分解縮合により、Si原子1個あたり、3個のシロキサン結合(Si-O)と1個のSi-C結合を有するオルガノポリシロキサンが生成する。オルガノポリシロキサンは、テトラアルコキシシランの2つのアルコキシ基が有機基で置換されたアルコキシシランの加水分解縮合物であってもよい。オルガノポリシラザンの加水分解および脱アンモニア反応によっても、オルガノポリシロキサンが得られる。 The organopolysiloxane used as the material for the primer layer may have one or more organic groups per Si atom. For example, condensation of a silane compound having an alkoxy group and an organic group bonded to one Si atom produces an organopolysiloxane having one or more organic groups per Si atom. For example, by hydrolytic condensation of alkoxysilane in which one alkoxy group of tetraalkoxysilane is substituted with an organic group, three siloxane bonds (Si—O) and one Si—C bond are formed per Si atom. An organopolysiloxane having The organopolysiloxane may be a hydrolytic condensate of alkoxysilane in which two alkoxy groups of tetraalkoxysilane are substituted with organic groups. Hydrolysis and deammonification of organopolysilazanes also yield organopolysiloxanes.
 一実施形態において、プライマー層は、下記一般式(2)で表されるアルコキシシランの加水分解縮合物を含む。
    Si(OR124-z13 ) …(2)
In one embodiment, the primer layer contains a hydrolytic condensate of alkoxysilane represented by the following general formula (2).
Si(OR 12 ) 4-zR 13 z ) (2)
 一般式(2)において、zは1または2である。R12は炭素数1~10のアルキル基であり、R13はアミノ基を有していてもよい有機基である。一般式(2)で表される化合物は、テトラアルコキシシランの1つまたは2つのアルコキシ基が有機基R13で置換されたアルコキシシランである。zは好ましくは1である。一般式(2)においてz=1であるアルコキシシランとしては、シランカップリング剤として知られている各種材料が挙げられる。Si-OR12の加水分解性の観点から、R12としては、エチル基またはメチル基が好ましい。 In general formula (2), z is 1 or 2. R 12 is an alkyl group having 1 to 10 carbon atoms, and R 13 is an organic group optionally having an amino group. The compound represented by general formula (2) is an alkoxysilane in which one or two alkoxy groups of tetraalkoxysilane are substituted with an organic group R13. z is preferably 1; Examples of the alkoxysilane where z=1 in the general formula (2) include various materials known as silane coupling agents. From the viewpoint of hydrolyzability of Si—OR 12 , R 12 is preferably an ethyl group or a methyl group.
 プライマー層は、アミノ基を有するシラン化合物の縮合物を含んでいてもよい。アミノ基を有するシラン化合物としては、分子内に1個以上のアミノ基とアルコキシシリル基を有する化合物が用いられる。アミノ基を有するシラン化合物の縮合により、アミノ基を有するオルガノポリシロキサンが得られる。プライマー層がアミノ基を有することにより、プライマー層4とハードコート層5との密着性が向上する場合がある。 The primer layer may contain a condensate of a silane compound having an amino group. As the silane compound having an amino group, a compound having one or more amino groups and alkoxysilyl groups in the molecule is used. An amino group-containing organopolysiloxane is obtained by condensation of the amino group-containing silane compound. Adhesion between the primer layer 4 and the hard coat layer 5 may be improved by having the amino group in the primer layer.
 密着性向上効果が高いことから、アミノ基を有するシラン化合物は、分子内に2個以上のアミノ基を有するものが好ましい。ここで、アミノ基は、-NHで示される第一級アミノ基、-NHの水素原子の1つまたは2つがアルキル基等の他の置換基で置換された第二級アミノ基および第三級アミノ基を包含する。アミノ基は、第一級アミノ基または第二級アミノ基が好ましく、第一級アミノ基が特に好ましい。シラン化合物が分子内に2個以上のアミノ基を有する場合、少なくとも1つのアミノ基が第一級アミノ基であることが好ましい。 The silane compound having an amino group preferably has two or more amino groups in the molecule because of its high effect of improving adhesion. Here, the amino group includes a primary amino group represented by —NH2 , a secondary amino group in which one or two hydrogen atoms of —NH2 are substituted with another substituent such as an alkyl group, and a secondary amino group. Includes tertiary amino groups. The amino group is preferably a primary amino group or a secondary amino group, particularly preferably a primary amino group. When the silane compound has two or more amino groups in the molecule, at least one amino group is preferably a primary amino group.
 縮合反応性の観点から、プライマー層の形成に用いられるアミノ基を有するシラン化合物は、一般式(2)において、少なくとも1つのR13がアミノ基を含む有機基である化合物が好ましい。Si-OR12の加水分解性の観点から、R12としては、エチル基またはメチル基が好ましく、メチル基が特に好ましい。アミノ基を有するシラン化合物の例としては、アルコキシシリル基とアミノ基を有するシランカップリング剤が挙げられる。 From the viewpoint of condensation reactivity, the amino group-containing silane compound used for forming the primer layer is preferably a compound in which at least one R 13 is an amino group-containing organic group in general formula (2). From the viewpoint of the hydrolyzability of Si—OR 12 , R 12 is preferably an ethyl group or a methyl group, particularly preferably a methyl group. Examples of silane compounds having an amino group include silane coupling agents having an alkoxysilyl group and an amino group.
 分子内に2個のアミノ基を有するシラン化合物としては、一般式(2)において、R13の少なくとも1つが-R14-NH-R15-NHで表される有機基であるシラン化合物が挙げられる。R14およびR15は、それぞれ独立に炭素数1~10のアルキレン基であり、分枝を有していてもよい。R14は典型的にはプロピレン基である。このようなシラン化合物の具体例としては、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシラン、[3-(6-アミノヘキシルアミノ)プロピル]トリメトキシシラン、[3-(6-アミノヘキシルアミノ)プロピル]メチルジメトキシシラン、[3-(6-アミノヘキシルアミノ)プロピル]トリエトキシシラン、[3-(6-アミノヘキシルアミノ)プロピル]メチルジエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジメトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルメチルジエトキシシランが挙げられる。 Silane compounds having two amino groups in the molecule include silane compounds in which at least one of R 13 is an organic group represented by —R 14 —NH—R 15 —NH 2 in general formula (2). mentioned. R 14 and R 15 are each independently an alkylene group having 1 to 10 carbon atoms and may have a branch. R 14 is typically a propylene group. Specific examples of such silane compounds include 3-(2-aminoethylamino)propyltrimethoxysilane, 3-(2-aminoethylamino)propylmethyldimethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, ethoxysilane, 3-(2-aminoethylamino)propylmethyldiethoxysilane, [3-(6-aminohexylamino)propyl]trimethoxysilane, [3-(6-aminohexylamino)propyl]methyldimethoxysilane, [3-(6-aminohexylamino)propyl]triethoxysilane, [3-(6-aminohexylamino)propyl]methyldiethoxysilane, 3-(2-aminoethylamino)propyltrimethoxysilane, 3-( 2-aminoethylamino)propylmethyldimethoxysilane, 3-(2-aminoethylamino)propyltriethoxysilane, 3-(2-aminoethylamino)propylmethyldiethoxysilane.
 分子内に1個のアミノ基を有するシラン化合物としては、一般式(2)において、R13の少なくとも1つが-R16-NHで表される有機基であるシラン化合物が挙げられる。R16は炭素数1~10のアルキレン基であり、分枝を有していてもよい。R16は典型的にはプロピレン基である。このようなシラン化合の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリエキシシラン、3-アミノプロピルメチルジエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルメチルジエトキシシランが挙げられる。 Silane compounds having one amino group in the molecule include silane compounds in which at least one of R 13 is an organic group represented by —R 16 —NH 2 in general formula (2). R 16 is an alkylene group having 1 to 10 carbon atoms and may be branched. R 16 is typically a propylene group. Specific examples of such silane compounds include 3-aminopropyltrimethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropyltrioxysilane, 3-aminopropylmethyldiethoxysilane, N-phenyl-3- Aminopropyltrimethoxysilane, N-phenyl-3-aminopropylmethyldimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropylmethyldiethoxysilane.
 シラン化合物を用いてプライマー層を形成する場合、ハードコート層上に湿式法によりシラン化合物を含む溶液を塗布した後に、アルコキシシリル基を加水分解反応させることにより、縮合する方法が好ましい。縮合反応を促進する目的で、必要に応じて、組成物に触媒や水を添加してもよい。触媒としては酸、塩基、有機金属化合物等が挙げられる。 When forming a primer layer using a silane compound, it is preferable to apply a solution containing the silane compound onto the hard coat layer by a wet method, and then hydrolyze and condense the alkoxysilyl groups. For the purpose of promoting the condensation reaction, a catalyst or water may be added to the composition, if necessary. Examples of catalysts include acids, bases, organometallic compounds, and the like.
 プライマー層を湿式法により形成する場合、塗布方法としては、バーコート、グラビアコート、コンマコート等のロールコート、スロットダイコート、ファウンテンダイコート等のダイコート、スピンコート、スプレーコート、ディップコート等が挙げられる。 When the primer layer is formed by a wet method, examples of coating methods include roll coating such as bar coating, gravure coating and comma coating, die coating such as slot die coating and fountain die coating, spin coating, spray coating and dip coating.
 ハードコート層3上に接する耐擦傷層5を形成する場合と同様、ハードコート層3上にプライマー層4を形成する場合も、ハードコート層3の表面に、コロナ処理、プラズマ処理、イオンビーム処理等の表面処理を実施してもよい。 When forming the primer layer 4 on the hard coat layer 3 as in the case of forming the scratch resistant layer 5 in contact with the hard coat layer 3, the surface of the hard coat layer 3 is subjected to corona treatment, plasma treatment, or ion beam treatment. You may implement surface treatments, such as.
 ポリシラザンやアルコキシシラン等を用いて湿式法によりプライマー層を形成する場合、加水分解、縮合等の反応を促進するために加熱することが好ましい。加熱温度は、30℃以上が好ましく、60℃以上が好ましく、100℃以上が好ましく、130℃以上が好ましい。 When forming a primer layer by a wet method using polysilazane, alkoxysilane, etc., it is preferable to heat to promote reactions such as hydrolysis and condensation. The heating temperature is preferably 30° C. or higher, preferably 60° C. or higher, preferably 100° C. or higher, and preferably 130° C. or higher.
 プライマー層の厚みは特に限定されないが、1~1000nmが好ましく、5~300nmがより好ましい。プライマー層の厚みが過度に小さいと、密着性向上効果が不十分な場合がある。一方、プライマー層の厚みが過度に大きいと、ハードコートフィルムの耐屈曲性が低下する場合がある。 Although the thickness of the primer layer is not particularly limited, it is preferably 1 to 1000 nm, more preferably 5 to 300 nm. If the thickness of the primer layer is too small, the effect of improving adhesion may be insufficient. On the other hand, if the thickness of the primer layer is excessively large, the flex resistance of the hard coat film may decrease.
 酸化ケイ素等の金属酸化物を含む無機プライマー層の厚みは、5~250nmが好ましい。密着性向上の観点から、無機プライマー層の厚みは10nm以上であってもよい。無機プライマー層は硬度が高い反面、厚みが大きい場合は割れやクラックを生じやすいため、無機プライマー層の厚みは、200nm以下がより好ましく、150nm以下がさらに好ましく、100nm以下または50nm以下であってもよい。特に、酸化ケイ素は、ポリシロキサン系のハードコート層およびアルコキシシリル基を有するパーフルオロ化合物により形成される耐擦傷層の両方に対する親和性が高いため、50nm以下の厚みでも、優れた密着性を示す。 The thickness of the inorganic primer layer containing metal oxide such as silicon oxide is preferably 5 to 250 nm. From the viewpoint of improving adhesion, the thickness of the inorganic primer layer may be 10 nm or more. Although the inorganic primer layer has high hardness, it is prone to breakage and cracks when the thickness is large. good. In particular, since silicon oxide has a high affinity for both the polysiloxane-based hard coat layer and the scratch-resistant layer formed by the perfluoro compound having an alkoxysilyl group, it exhibits excellent adhesion even with a thickness of 50 nm or less. .
 アルコキシシランの加水分解縮合の加水分解縮合等により形成される有機・無機ハイブリッド材料を含むプライマー層は、無機プライマー層よりもハードコート層等への密着性が高く、より小さな厚みでも、ハードコートフィルムの耐擦傷性や耐摩耗性の向上への寄与が大きい。一方、有機・無機ハイブリッド材料は無機材料に比べて硬度が低く、プライマー層の厚みが大きい場合は、摩擦や擦れによってプライマー層の破壊が生じやすく、耐擦傷性や耐摩耗性が低下する場合がある。そのため、アミノ基を有するシラン化合物等のアルコキシシランの加水分解縮合等により形成されるプライマー層の厚みは、3~30nmが好ましく、5~20nmが特に好ましい。 The primer layer containing an organic-inorganic hybrid material formed by hydrolytic condensation of alkoxysilane has higher adhesion to the hard coat layer etc. than the inorganic primer layer, and even with a smaller thickness, the hard coat film contributes greatly to the improvement of scratch resistance and wear resistance. On the other hand, organic/inorganic hybrid materials have lower hardness than inorganic materials, and if the primer layer is thick, the primer layer is likely to break due to friction and rubbing, and scratch resistance and abrasion resistance may decrease. be. Therefore, the thickness of the primer layer formed by hydrolytic condensation of alkoxysilane such as a silane compound having an amino group is preferably 3 to 30 nm, particularly preferably 5 to 20 nm.
[ハードコートフィルムの特性]
 ハードコート層3上に耐擦傷層5を備えるハードコートフィルムは、耐擦傷性と防汚性に優れている。また、ポリシロキサン系のハードコート層3が設けられているために、硬度、耐屈曲性、透明性、低カール性等の特性を兼ね備えている。
[Characteristics of hard coat film]
The hard coat film having the scratch resistant layer 5 on the hard coat layer 3 is excellent in scratch resistance and antifouling properties. In addition, since the polysiloxane-based hard coat layer 3 is provided, it has properties such as hardness, bending resistance, transparency, and low curling property.
 ハードコートフィルムは、♯0000のスチールウールで500gの荷重をかけて1500往復の耐擦傷性試験(スチールウール試験)を実施した後に、傷や白化がないことが好ましい。また、ハードコートフィルムは、直径6mmの消しゴムで500gの荷重をかけて1500往復の耐摩耗性試験(消しゴム試験)を実施した後に、傷や白化がないことが好ましい。 It is preferable that the hard coat film has no scratches or whitening after a scratch resistance test (steel wool test) of 1500 reciprocations under a load of 500 g with #0000 steel wool. Also, the hard coat film preferably has no scratches or whitening after being subjected to a wear resistance test (eraser test) of 1500 reciprocations under a load of 500 g with an eraser having a diameter of 6 mm.
 ハードコートフィルムは、表面(耐擦傷層5)の水接触角が、100°以上であることが好ましい。水接触角は105°以上がより好ましく、108°以上または110°以上であってもよい。水接触角が高いことは、撥水性が高いことを意味し、指脂等の汚れへの耐性(防汚性)にも優れる。 The hard coat film preferably has a water contact angle of 100° or more on the surface (scratch resistant layer 5). The water contact angle is more preferably 105° or more, and may be 108° or more or 110° or more. A high water contact angle means high water repellency, and is also excellent in resistance to dirt such as finger oil (stain resistance).
 ハードコートフィルムは、最表面にパーフルオロアルキル化合物を含む耐擦傷層5が設けられているため、高い水接触角を有する。また、耐擦傷層5は、耐擦傷性および耐摩耗性に優れており、擦れによる傷の発生や摩耗が少ないため、耐擦傷性試験や耐摩耗性試験後にも、優れた防汚性を維持している。 The hard coat film has a high water contact angle because the scratch-resistant layer 5 containing a perfluoroalkyl compound is provided on the outermost surface. In addition, the scratch-resistant layer 5 has excellent scratch resistance and abrasion resistance, and since scratches and abrasion caused by rubbing are small, it maintains excellent antifouling properties even after the abrasion resistance test and the abrasion resistance test. is doing.
 ハードコートフィルムは、1500往復のスチールウール試験後の表面(耐擦傷層)の水接触角が90°以上であることが好ましい。スチールウール試験後の水接触角は、100°以上がより好ましく、105°以上がさらに好ましく、110°以上であってもよい。 The hard coat film preferably has a water contact angle of 90° or more on the surface (scratch resistant layer) after 1500 reciprocating steel wool tests. The water contact angle after the steel wool test is more preferably 100° or more, still more preferably 105° or more, and may be 110° or more.
 ハードコートフィルムは、1500往復の消しゴム試験後の表面(耐擦傷層)の水接触角が70°以上であることが好ましい。消しゴム試験後の水接触角は、80°以上がより好ましく、90°以上、100°、105°以上または110°以上であってもよい。 The hard coat film preferably has a water contact angle of 70° or more on the surface (scratch resistant layer) after 1500 reciprocating eraser tests. The water contact angle after the eraser test is more preferably 80° or more, and may be 90° or more, 100°, 105° or more, or 110° or more.
 ハードコートフィルムの全光線透過率は80%以上が好ましく、88%以上がより好ましく、89%以上がさらに好ましい。ハードコートフィルムの黄色度(YI)は、4.0以下が好ましく、YIは3.0以下がより好ましく、2.5以下がさらに好ましい。全光線透過率が高く、YIが小さいことは、フィルムが無色透明であることを意味する。透明樹脂フィルム1上に、上記のポリシロキサン系ハードコート層3を形成することにより、光透過率が高く無色透明のハードコートフィルムが得られる。ポリシロキサン系のハードコート層を備えるハードコートフィルムは、ハードコート層3上に耐擦傷層5を設けた後も高い透明性を有している。 The total light transmittance of the hard coat film is preferably 80% or higher, more preferably 88% or higher, even more preferably 89% or higher. The yellowness index (YI) of the hard coat film is preferably 4.0 or less, more preferably 3.0 or less, and even more preferably 2.5 or less. High total light transmittance and small YI mean that the film is colorless and transparent. By forming the polysiloxane-based hard coat layer 3 on the transparent resin film 1, a colorless and transparent hard coat film having high light transmittance can be obtained. A hard coat film having a polysiloxane-based hard coat layer has high transparency even after the scratch-resistant layer 5 is provided on the hard coat layer 3 .
 ハードコートフィルムは、JIS-K5600に準拠した鉛筆硬度試験においてH以上の硬度を有することが好ましい。鉛筆硬度は、2H以上が好ましく、3H以上、4H以上または5H以上であってもよい。 The hard coat film preferably has a hardness of H or higher in a pencil hardness test based on JIS-K5600. The pencil hardness is preferably 2H or higher, and may be 3H or higher, 4H or higher, or 5H or higher.
 ハードコートフィルムは、ハードコート層(および耐擦傷層)の形成面を内面にして、JIS-K5600に準拠した円筒マンドレル試験を実施した際に、ハードコート層(および耐擦傷層)にクラックが生じるマンドレル半径が1mm以下であること(すなわち、耐屈曲半径が1mm以下であり、屈曲半径1mm以下で折り曲げ可能であること)が好ましい。ハードコート層形成面を外側にした円筒マンドレル試験での耐屈曲半径は、3mm以下が好ましく、2.5mm以下が好ましく、2mm以下であってもよい。 When the hard coat film is subjected to a cylindrical mandrel test in accordance with JIS-K5600 with the surface on which the hard coat layer (and the scratch-resistant layer) is formed as the inner surface, cracks occur in the hard coat layer (and the scratch-resistant layer). It is preferable that the mandrel radius is 1 mm or less (that is, the bending resistance radius is 1 mm or less and the mandrel can be bent with a bending radius of 1 mm or less). In a cylindrical mandrel test with the hard coat layer forming surface facing outward, the bend resistance radius is preferably 3 mm or less, preferably 2.5 mm or less, and may be 2 mm or less.
 ハードコートフィルムは、ハードコート層形成面を内面にして、半径2.5mmで繰り返し屈曲試験を実施した際に、5万回の繰り返し曲げで、ハードコート層にクラックが生じていないことが好ましく、10万回以上の繰り返し曲げが可能であることがより好ましい。 When the hard coat film is subjected to a repeated bending test with a radius of 2.5 mm with the hard coat layer forming surface as the inner surface, it is preferable that no cracks occur in the hard coat layer after repeated bending of 50,000 times. More preferably, it can be repeatedly bent 100,000 times or more.
 ハードコートフィルムは、透明樹脂フィルム1上に、上記のポリシロキサン系ハードコート層3を備えるため、上記の高い硬度と優れた耐屈曲性を両立可能である。また、ハードコート層3と耐擦傷層5の密着性が高いため、ハードコート層3上に耐擦傷層5を設けた後も、優れた硬度および耐屈曲性を有している。 Since the hard coat film has the above polysiloxane-based hard coat layer 3 on the transparent resin film 1, it is possible to achieve both the above high hardness and excellent bending resistance. Further, since the adhesion between the hard coat layer 3 and the scratch resistant layer 5 is high, even after the scratch resistant layer 5 is provided on the hard coat layer 3, it has excellent hardness and bending resistance.
[ハードコートフィルムの応用]
 ハードコートフィルムは、透明樹脂フィルム1のハードコート層非形成面に、各種の機能層を設けてもよい。機能層としては、反射防止層、防眩層、帯電防止層、透明電極等が挙げられる。また、透明樹脂フィルム1のハードコート層非形成面には、透明粘着剤層が付設されてもよい。
[Application of hard coat film]
The hard coat film may be provided with various functional layers on the surface of the transparent resin film 1 on which the hard coat layer is not formed. Examples of functional layers include antireflection layers, antiglare layers, antistatic layers, transparent electrodes, and the like. A transparent pressure-sensitive adhesive layer may be attached to the surface of the transparent resin film 1 on which the hard coat layer is not formed.
 上記のハードコートフィルムは、高い硬度を有し、防汚性に優れ、かつ耐擦傷性および耐摩耗性に優れていることから、画像表示装置の最表面に配置されるカバーウインドウ材料として好適に使用できる。ハードコートフィルムが耐屈曲性にも優れていることから、折り畳み可能なディスプレイ(フォルダブルディスプレイ)のカバーウインドウとしても好適に使用できる。 The above hard coat film has high hardness, excellent antifouling properties, and excellent scratch resistance and abrasion resistance, so it is suitable as a cover window material arranged on the outermost surface of an image display device. Available. Since the hard coat film is also excellent in bending resistance, it can be suitably used as a cover window for a foldable display (foldable display).
 以下、実施例および比較例に基づき、本発明についてさらに具体的に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail below based on examples and comparative examples, but the present invention is not limited to the following examples.
[透明ポリイミドフィルム]
<ポリイミドフィルム1>
 反応容器に、2,2’-ビス(トリフルオロメチル)ベンジジン(44.2g;138.1mmol)、3,3’-ジアミノジフェニルスルホン(3.8g;15.3mmol)、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)-2,2’,3,3’,5,5’-ヘキサメチルビフェニル-4,4’ジイル(47.4g;76.7mmol)、1,2,3,4-シクロブタンテトラカルボン酸二無水物(9.0g;46.0mmol)、4,4’-オキシジフタル酸二無水物(9.5g;30.7mmol)、およびN,N-ジメチルホルムアミド800gを投入し、窒素雰囲気下で12時間攪拌してポリアミド酸溶液を得た。ポリアミド酸溶液に、イミド化触媒としてピリジン(36.4g;460mmol)と無水酢酸(47.0g;460mmol)を添加し、90℃で4時間攪拌した。室温まで冷却した溶液を攪拌しながら、2-プロピルアルコール(IPA)を2000g添加し、吸引ろ過を行った。得られた固体を1000gのIPAで6回洗浄した後、120℃に設定した真空オーブンで8時間乾燥させて、ポリイミドを得た。
[Transparent polyimide film]
<Polyimide film 1>
A reaction vessel was charged with 2,2′-bis(trifluoromethyl)benzidine (44.2 g; 138.1 mmol), 3,3′-diaminodiphenylsulfone (3.8 g; 15.3 mmol), bis(1,3- dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)-2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′diyl (47.4 g; 76.7 mmol), 1,2,3,4-cyclobutanetetracarboxylic dianhydride (9.0 g; 46.0 mmol), 4,4′-oxydiphthalic dianhydride (9.5 g; 30.7 mmol), and N,N- 800 g of dimethylformamide was added and stirred for 12 hours under a nitrogen atmosphere to obtain a polyamic acid solution. Pyridine (36.4 g; 460 mmol) and acetic anhydride (47.0 g; 460 mmol) were added as imidization catalysts to the polyamic acid solution and stirred at 90° C. for 4 hours. While stirring the solution cooled to room temperature, 2000 g of 2-propyl alcohol (IPA) was added, followed by suction filtration. The obtained solid was washed with 1000 g of IPA six times and then dried in a vacuum oven set at 120° C. for 8 hours to obtain polyimide.
 上記のポリイミド100重量部、紫外線吸収剤として、ADEKA製「アデカスタブ LA-31RGを2重量部、およびADEKA製「アデカスタブLA-F70」を0.8重量部、ブルーイング剤として有本化学工業製「Plast Blue8590」0.004重量部を、塩化メチレンに溶解し、固形分濃度10重量%のポリイミド溶液を得た。バーコーターを用いて、ポリイミド溶液を無アルカリガラス板に塗布し、40℃で60分、80℃で30分、150℃で30分、170℃で30分間、200℃で60分間、大気雰囲気下で加熱して溶媒を除去して、厚み50μmのポリイミドフィルムを得た。 100 parts by weight of the above polyimide, 2 parts by weight of ADEKA's "ADEKA STAB LA-31RG" as a UV absorber, and 0.8 parts by weight of ADEKA's "ADEKA STAB LA-F70", and a bluing agent by Arimoto Chemical Industry Co., Ltd. 0.004 parts by weight of "Plast Blue 8590" was dissolved in methylene chloride to obtain a polyimide solution with a solid concentration of 10% by weight. Using a bar coater, apply the polyimide solution to a non-alkali glass plate, 40 ° C. for 60 minutes, 80 ° C. for 30 minutes, 150 ° C. for 30 minutes, 170 ° C. for 30 minutes, 200 ° C. for 60 minutes, in an air atmosphere. The solvent was removed by heating to obtain a polyimide film having a thickness of 50 μm.
<ポリイミドフィルム2>
 WO2020/004236号の実施例13の透明ポリイミドフィルム(厚み50μm)を用いた。ポリイミドは、ジアミン成分として、2,2’-ビス(トリフルオロメチル)ベンジジンと3,3’-ジアミノジフェニルスルホンを70:30のモル比で含み、テトラカルボン酸二無水物成分として、p-フェニレンビス(トリメリット酸モノエステル酸無水物)と、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン酸二無水物と、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を、50:25:25のモル比で含んでいた。
<Polyimide film 2>
A transparent polyimide film (thickness: 50 μm) of Example 13 of WO2020/004236 was used. The polyimide contains 2,2'-bis(trifluoromethyl)benzidine and 3,3'-diaminodiphenylsulfone in a molar ratio of 70:30 as diamine components, and p-phenylene as tetracarboxylic dianhydride components. bis(trimellitic monoester acid anhydride), 2,2-bis(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropanoic acid dianhydride, and 3 ,3′,4,4′-biphenyltetracarboxylic dianhydride in a molar ratio of 50:25:25.
[ポリオルガノシロキサン化合物の合成]
<合成例1>
 温度計、撹拌装置、還流冷却管を取り付けた反応容器に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(モメンティブ・パフォーマンス・マテリアルズ製「SILQUEST A-186」)66.5g(270mmol)、および1-メトキシ-2-プロパノール(PGME)16.5gを仕込み、均一に撹拌した。この混合液に、触媒としての塩化マグネシウム0.039g(0.405mmol)を、水9.7g(539mmol)とメタノール5.8gとの混合液に溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、ポリオルガノシロキサン化合物1を得た。
[Synthesis of polyorganosiloxane compound]
<Synthesis Example 1>
66.5 g (270 mmol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane ("SILQUEST A-186" manufactured by Momentive Performance Materials) was placed in a reaction vessel equipped with a thermometer, a stirrer, and a reflux condenser. ), and 16.5 g of 1-methoxy-2-propanol (PGME) were charged and uniformly stirred. A solution prepared by dissolving 0.039 g (0.405 mmol) of magnesium chloride as a catalyst in a mixture of 9.7 g (539 mmol) of water and 5.8 g of methanol was added dropwise to this mixture over 5 minutes to obtain a homogeneous mixture. Stir until . After that, the temperature was raised to 80° C., and the polycondensation reaction was carried out for 6 hours while stirring. After completion of the reaction, the solvent and water were distilled off using a rotary evaporator to obtain polyorganosiloxane compound 1.
 東ソー製のGPC装置「HLC-8220GPC」(カラム:TSKgel GMHXL×2本、TSKgel G3000HXL,TSKgel G2000HXL)により測定したポリスチレン換算の重量平均分子量Mnは3000であった。アジレント製600MHz-NMRを用いた29Si-NMR測定から算出した[SiO3/2体]/[SiO2/2体]の比は2.3であった。ブルカー製400MHz-NMRを用いて、重アセトンを溶媒として測定したH-NMRスペクトルから算出したエポキシ基の残存率は95%以上であった。 The polystyrene-equivalent weight average molecular weight Mn measured with a GPC apparatus "HLC-8220GPC" manufactured by Tosoh (columns: TSKgel GMH XL x 2, TSKgel G3000H XL , TSKgel G2000H XL ) was 3,000. The ratio of [SiO 3/2 body]/[SiO 2/2 body] calculated from 29 Si-NMR measurement using a 600 MHz-NMR manufactured by Agilent was 2.3. The residual rate of epoxy groups calculated from the 1 H-NMR spectrum measured with heavy acetone as a solvent using a 400 MHz-NMR manufactured by Bruker was 95% or more.
<合成例2>
 温度計、撹拌装置、還流冷却管を取り付けた反応容器に、8-グリシジルオキシオクチルトリメトキシシラン(信越化学工業社製;KBM-4803)67.4g(220mmol)およびメタノール11.6gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム0.010g(0.11mmol)を水11.9g(660mmol)とメタノール4.7gの混合液に溶解した溶液を5分かけて滴下し、均一になるまで撹拌した。その後、70℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、ポリオルガノシロキサン化合物2を得た。ポリオルガノシロキサン化合物2の重量平均分子量Mnは4500、[SiO3/2体]/[SiO2/2体]の比は2.1、エポキシ基の残存率は95%以上であった。
<Synthesis Example 2>
A reaction vessel equipped with a thermometer, a stirrer, and a reflux condenser was charged with 67.4 g (220 mmol) of 8-glycidyloxyoctyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.; KBM-4803) and 11.6 g of methanol and stirred uniformly. was stirred to A solution prepared by dissolving 0.010 g (0.11 mmol) of magnesium chloride in a mixture of 11.9 g (660 mmol) of water and 4.7 g of methanol was added dropwise to this mixture over 5 minutes, and the mixture was stirred until uniform. After that, the temperature was raised to 70° C., and a polycondensation reaction was carried out for 6 hours while stirring. After completion of the reaction, the solvent and water were distilled off using a rotary evaporator to obtain polyorganosiloxane compound 2. Polyorganosiloxane compound 2 had a weight average molecular weight Mn of 4500, a ratio of [SiO 3/2 bodies]/[SiO 2/2 bodies] of 2.1, and a residual epoxy group rate of 95% or more.
<合成例3>
 温度計、撹拌装置および還流冷却管を取り付けた反応容器に、8-グリシジルオキシオクチルトリメトキシシラン61.3g(200mmol)、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン12.3g(50mmol)、およびPGME15.3gを仕込み、均一に撹拌した。この混合液に、塩化マグネシウム0.012g(0.125mmol)を水13.5g(750mmol)とメタノール5.4gの混合液に溶解した溶液を、5分かけて滴下し、均一になるまで撹拌した。その後、80℃に昇温し、撹拌しながら6時間重縮合反応を行った。反応終了後、反応終了後、ロータリーエバポレーターにより溶媒および水を留去して、ポリオルガノシロキサン化合物3を得た。ポリオルガノシロキサン化合物3の数平均分子量Mnは4200、[SiO3/2体]/[SiO2/2体]の比は2.1、エポキシ基の残存率は95%以上であった。
<Synthesis Example 3>
61.3 g (200 mmol) of 8-glycidyloxyoctyltrimethoxysilane and 12.3 g (50 mmol) of 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane were placed in a reaction vessel equipped with a thermometer, stirrer and reflux condenser. ), and 15.3 g of PGME were charged and uniformly stirred. To this mixture, a solution of 0.012 g (0.125 mmol) of magnesium chloride dissolved in a mixture of 13.5 g (750 mmol) of water and 5.4 g of methanol was added dropwise over 5 minutes and stirred until uniform. . After that, the temperature was raised to 80° C., and the polycondensation reaction was carried out for 6 hours while stirring. After completion of the reaction, the solvent and water were distilled off using a rotary evaporator to obtain a polyorganosiloxane compound 3. Polyorganosiloxane compound 3 had a number average molecular weight Mn of 4200, a ratio of [SiO 3/2 bodies]/[SiO 2/2 bodies] of 2.1, and a residual epoxy group rate of 95% or more.
[ハードコート組成物の調製]
 上記のポリシロキサン化合物に、光カチオン重合開始剤、およびレベリング剤を添加し、PGMEにより希釈して、表1に示す配合および固形分濃度を有するハードコート組成物A~Iを調製した。表1の数値は重量部であり、光重合開始剤およびレベリング剤の配合量は、ポリシロキサン化合物100重量部に対する、各成分の固形分の重量である。
[Preparation of hard coat composition]
A photocationic polymerization initiator and a leveling agent were added to the above polysiloxane compound and diluted with PGME to prepare hard coat compositions A to I having the formulations and solid content concentrations shown in Table 1. The numerical values in Table 1 are parts by weight, and the blending amounts of the photopolymerization initiator and the leveling agent are the weight of the solid content of each component with respect to 100 parts by weight of the polysiloxane compound.
 表1において、各成分は以下の略称により記載している。
<光重合開始剤>
 CPI-101A:フェニル(4-フェニルチオフェニル)スルホニウム・SbFのプロピレンカーボネート50%溶液(サンアプロ製「CPI-101A」)
 CPI-200K:トリアリールスルホニウム・P(Rf)6-n塩のプロピレンカーボネート50%溶液(サンアプロ製「CPI-200K」)
<レベリング剤>
 BYK-300:ポリエーテル変性ポリジメチルシロキサンのキシレン/イソブタノール52%溶液(BYK製「BYK-300」)
 RS-90:分子内に二重結合を有するフッ素化合物のベンゼン/メチルエチルケトン10%溶液(DIC製「メガファック RS-90」)
 S-243」分子内に水酸基を有するフッ素化合物(AGCセイミケミカル製「サーフロン S-243」)
In Table 1, each component is described by the following abbreviations.
<Photoinitiator>
CPI-101A: 50% solution of phenyl(4-phenylthiophenyl)sulfonium SbF6 in propylene carbonate (“CPI-101A” manufactured by Sun-Apro)
CPI-200K: 50% propylene carbonate solution of triarylsulfonium P(Rf) n F6 -n salt ("CPI-200K" manufactured by San-Apro)
<Leveling agent>
BYK-300: 52% xylene/isobutanol solution of polyether-modified polydimethylsiloxane (manufactured by BYK “BYK-300”)
RS-90: 10% benzene/methyl ethyl ketone solution of a fluorine compound having a double bond in the molecule (manufactured by DIC "Megafac RS-90")
S-243" Fluorine compound having a hydroxyl group in the molecule ("Surflon S-243" manufactured by AGC Seimi Chemical)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[ハードコートフィルムの作製]
<実施例1>
 ポリイミドフィルム1に、ハードコート組成物Aを乾燥後膜厚が20μmとなるようにバーコーターで塗布し、120℃で加熱して溶媒を揮発させた。その後、高圧水銀ランプを用いて、積算光量が1950mJ/cmとなるように紫外線を照射して、ハードコート組成物を硬化させた。
[Preparation of hard coat film]
<Example 1>
The hard coat composition A was applied to the polyimide film 1 with a bar coater so that the film thickness after drying was 20 μm, and heated at 120° C. to volatilize the solvent. After that, using a high-pressure mercury lamp, the hard coat composition was cured by irradiating ultraviolet rays so that the integrated light amount was 1950 mJ/cm 2 .
 トリアルコキシシリル基を有するフルオロアルキルエーテルオリゴマーのハイドロフルオロエーテル20%溶液(ダイキン工業製「OPTOOL UD509」)を、ハイドロフルオロエーテル(スリーエム製「Novec7200」)で希釈し、固形分0.3重量%の溶液を調製した。この溶液を、ハードコート層上に塗布し、130℃に加熱して溶媒を除去し、ハードコート層上に耐擦傷層を形成した。 A 20% hydrofluoroether solution of a fluoroalkyl ether oligomer having a trialkoxysilyl group ("OPTOOL UD509" manufactured by Daikin Industries, Ltd.) was diluted with hydrofluoroether ("Novec7200" manufactured by 3M) to give a solid content of 0.3% by weight. A solution was prepared. This solution was applied onto the hard coat layer and heated to 130° C. to remove the solvent to form a scratch resistant layer on the hard coat layer.
<実施例2,3>
 実施例1と同様にハードコート層を形成した後、ハードコート層の表面を表2に示す条件でコロナ処理を行った。コロナ処理後のハードコート層の表面に、実施例1と同様にして耐擦傷層を形成し、ハードコートフィルムを得た。
<Examples 2 and 3>
After forming a hard coat layer in the same manner as in Example 1, the surface of the hard coat layer was subjected to corona treatment under the conditions shown in Table 2. A scratch-resistant layer was formed on the surface of the hard coat layer after the corona treatment in the same manner as in Example 1 to obtain a hard coat film.
<実施例4>
 実施例3と同様にハードコート層の表面をコロナ処理した後、コロナ処理後のハードコート層の表面に、3-(2-アミノエチルアミノ)プロピルトリメトキシシラン(東京化成製「A0774」)をアセトンで6重量%に希釈した溶液を塗布し、130℃に加熱して溶媒を除去し、ハードコート層上に厚み35nmのプライマー層を形成した。その後、実施例1と同様にして、プライマー層上に耐擦傷層を形成して、ハードコート層上にプライマー層を介して耐擦傷層を備えるハードコートフィルムを得た。
<Example 4>
After corona-treating the surface of the hard coat layer in the same manner as in Example 3, 3-(2-aminoethylamino)propyltrimethoxysilane (“A0774” manufactured by Tokyo Chemical Industry Co., Ltd.) was applied to the surface of the hard coat layer after the corona treatment. A solution diluted to 6% by weight with acetone was applied, heated to 130° C. to remove the solvent, and a primer layer having a thickness of 35 nm was formed on the hard coat layer. Thereafter, in the same manner as in Example 1, a scratch-resistant layer was formed on the primer layer to obtain a hard coat film having a scratch-resistant layer on the hard coat layer via the primer layer.
<実施例5>
 プライマー層形成時のシラン化合物溶液の濃度を1重量%に変更した。それ以外は実施例4と同様にして、ハードコート層上にプライマー層を介して耐擦傷層を備えるハードコートフィルムを得た。
<Example 5>
The concentration of the silane compound solution during formation of the primer layer was changed to 1% by weight. Other than that, in the same manner as in Example 4, a hard coat film having a scratch resistant layer on the hard coat layer via a primer layer was obtained.
<実施例6>
 ハードコート層の厚みおよびコロナ処理の条件を表2に示すように変更し、耐擦傷層形成時の溶液の固形分濃度を0.1重量%、加熱温度を150℃に変更した。これらの変更以外は実施例5と同様にして、ハードコート層上にプライマー層を介して耐擦傷層を備えるハードコートフィルムを得た。
<Example 6>
The thickness of the hard coat layer and the conditions of the corona treatment were changed as shown in Table 2, and the solid content concentration of the solution when forming the scratch resistant layer was changed to 0.1% by weight, and the heating temperature was changed to 150°C. A hard coat film having a scratch resistant layer on the hard coat layer via a primer layer was obtained in the same manner as in Example 5 except for these changes.
<比較例1>
 実施例1と同様に、ポリイミドフィルム1上に、ハードコート組成物Aを塗布して、ハードコート層を形成した。その後、耐擦傷層を形成せず、ポリイミドフィルム上にハードコート層を備えるハードコートフィルムを得た。
<Comparative Example 1>
In the same manner as in Example 1, the hard coat composition A was applied onto the polyimide film 1 to form a hard coat layer. Thereafter, a hard coat film having a hard coat layer on a polyimide film without forming a scratch resistant layer was obtained.
<比較例2~5>
 ハードコート組成物Aに代えて、ハードコート組成物B,C,Dを用い、比較例1と同様に、ポリイミドフィルム上にハードコート層を備えるハードコートフィルムを得た。
<Comparative Examples 2 to 5>
Hard coat compositions B, C, and D were used in place of hard coat composition A to obtain hard coat films having a hard coat layer on a polyimide film in the same manner as in Comparative Example 1.
<実施例7>
 ポリイミドフィルム2に、ハードコート組成物Eを乾燥膜厚が50μmとなるようにバーコーターで塗布し、120℃で10分間加熱した。その後、塗膜からの距離200mmの位置に配置した発光線量120W/cmの高圧水銀ランプを備える搬送式紫外線照射装置を用いて、搬送速度4m/分で搬送しながら紫外線を照射して、ハードコート組成物を硬化させた。紫外線照射時の温度は90℃とした。
<Example 7>
The hard coat composition E was applied to the polyimide film 2 with a bar coater so that the dry film thickness was 50 μm, and heated at 120° C. for 10 minutes. After that, using a conveying type ultraviolet irradiation device equipped with a high-pressure mercury lamp with an emission dose of 120 W / cm placed at a distance of 200 mm from the coating film, ultraviolet rays were irradiated while conveying at a conveying speed of 4 m / min to hard coat. The composition was allowed to cure. The temperature during ultraviolet irradiation was 90°C.
 加熱温度を150℃に変更したこと以外は、実施例3と同一の条件で、ハードコート層上に耐擦傷層を形成し、ハードコートフィルムを得た。 A scratch-resistant layer was formed on the hard coat layer under the same conditions as in Example 3, except that the heating temperature was changed to 150°C, to obtain a hard coat film.
<実施例8>
 ハードコート組成物Eに代えてハードコート組成物Fを用いたこと、および紫外線照射時の温度を80℃とした以外は、実施例7と同様にしてハードコートフィルムを得た。
<Example 8>
A hard coat film was obtained in the same manner as in Example 7, except that the hard coat composition F was used instead of the hard coat composition E, and the temperature during the ultraviolet irradiation was changed to 80°C.
<実施例9>
 ハードコート組成物Iを用いたこと以外は実施例8と同様にしてポリイミドフィルム上にハードコート層を形成し、コロナ処理を実施した後、ハードコート層の表面に、パーヒドロポリシラザン溶液(メルク製「Durazane2400」)をキシレンで固形分濃度5重量%に希釈した溶液を塗布し、室温で5分静置した後、150℃で1時間加熱した。その後、室温で24時間静置して、ポリシラザンを硬化させ、ハードコート層上に厚み225nmのプライマー層を形成した。プライマー層の表面を6J/cmでコロナ処理した後、実施例3と同一の条件で、ハードコート層上に耐擦傷層を形成し、ハードコートフィルムを得た。
<Example 9>
A hard coat layer was formed on a polyimide film in the same manner as in Example 8, except that hard coat composition I was used. "Durazane 2400") diluted with xylene to a solid concentration of 5% by weight was applied, allowed to stand at room temperature for 5 minutes, and then heated at 150° C. for 1 hour. After that, it was allowed to stand at room temperature for 24 hours to cure the polysilazane and form a primer layer with a thickness of 225 nm on the hard coat layer. After the surface of the primer layer was corona-treated at 6 J/cm 2 , a scratch-resistant layer was formed on the hard coat layer under the same conditions as in Example 3 to obtain a hard coat film.
<比較例5>
 実施例7と同様に、ポリイミドフィルム2上に、ハードコート組成物Eを塗布して、ハードコート層を形成した。その後、耐擦傷層を形成せず、ポリイミドフィルム上にハードコート層を備えるハードコートフィルムを得た。
<Comparative Example 5>
In the same manner as in Example 7, the hard coat composition E was applied onto the polyimide film 2 to form a hard coat layer. Thereafter, a hard coat film having a hard coat layer on a polyimide film without forming a scratch resistant layer was obtained.
<比較例6,7>
 ハードコート組成物Eに代えて、ハードコート組成物G,Hを用い、比較例5と同様に、ポリイミドフィルム上にハードコート層を備えるハードコートフィルムを得た。
<Comparative Examples 6 and 7>
Hard coat compositions G and H were used in place of hard coat composition E to obtain a hard coat film having a hard coat layer on a polyimide film in the same manner as in Comparative Example 5.
[評価]
<耐擦傷層およびプライマー層の厚み>
 ウルトラミクロトームを用いてハードコートフィルムの薄膜切片を作製し、透過型電子顕微鏡(日立ハイテクノロジーズ製;H―7650X)を用いて加速電圧100kVで拡大観察し、各層の厚みを測定した。なお、実施例9のプライマー層の厚みは、塗布量からの計算値である。
[evaluation]
<Thicknesses of scratch-resistant layer and primer layer>
A thin section of the hard coat film was prepared using an ultramicrotome, and enlarged and observed at an acceleration voltage of 100 kV using a transmission electron microscope (manufactured by Hitachi High Technologies; H-7650X) to measure the thickness of each layer. The thickness of the primer layer in Example 9 is a calculated value from the coating amount.
<鉛筆硬度>
 JIS K5600に従い、750gの荷重にてハードコート層表面の鉛筆硬度を測定した。
<Pencil hardness>
The pencil hardness of the hard coat layer surface was measured with a load of 750 g according to JIS K5600.
<水接触角>
 接触角計(協和界面化学製「PCA-11」)により、ハードコートフィルム表面の純水(液滴量:2μL)の接触角を測定した。実施例1~6では、プライマー層および耐擦傷層を形成する前(実施例3~6はコロナ処理後)のハードコート層表面の接触角も測定した。
<Water contact angle>
The contact angle of pure water (droplet volume: 2 μL) on the surface of the hard coat film was measured using a contact angle meter (“PCA-11” manufactured by Kyowa Interface Science Co., Ltd.). In Examples 1 to 6, the contact angle on the surface of the hard coat layer was also measured before forming the primer layer and the scratch resistant layer (after corona treatment in Examples 3 to 6).
<C1sスペクトル比およびフッ素原子比率>
 X線光電子分光分析(XPS)装置(アルバック・ファイ製「PHI 5000 VersaProbe II」)を用いて、X線強度AlKα/15kV・50Wの条件でハードコートフィルムの表面(耐擦傷層が設けられているものは耐擦傷層、耐擦傷層が設けられていないものはハードコート層)の分析を行い、得られたスペクトルから、フッ素原子の割合およびC1sスペクトルのピーク比を求めた。
<C1s spectrum ratio and fluorine atom ratio>
Using an X-ray photoelectron spectroscopy (XPS) device ("PHI 5000 VersaProbe II" manufactured by ULVAC-Phi), the surface of the hard coat film (with a scratch-resistant layer provided Analyzes were carried out on the scratch-resistant layer in the sample, and the hard coat layer in the sample without the scratch-resistant layer.
 C1sスペクトルのピーク比I/Iは、C1sナロースペクトルにおいて、結合エネルギー280~290eVの範囲でのピークトップ高さIと、290~300eVの範囲でのピークトップ高さIの比である。なお、ピークトップ高さIおよびIは、バックグラウンドを除いた値である。 The peak ratio I B /I A of the C1s spectrum is the ratio of the peak top height I A in the range of binding energy 280 to 290 eV and the peak top height I B in the range of 290 to 300 eV in the C1s narrow spectrum. be. The peak top heights IA and IB are values excluding the background.
<耐擦傷性試験(スチールウール試験)>
 スチールウール#0000を直径27mmの圧子にセットして、往復摩耗試験機(新東科学製 TYPE:30S)を用い、荷重:500g、ストローク:50mm、1サイクル/秒の条件で、ハードコートフィルム表面の耐擦傷性試験を行った。500往復または1500往復の試験後に、XPSによる表面のフッ素原子比率の測定、水接触角の測定および外観の目視観察を実施した。外観は以下の基準で評価した。
   A:傷および白化がみられないもの
  B:目視で確認できる10mm未満の傷または白化(微細な傷)がみられるもの
  C:10mm以上の傷があるもの
<Scratch resistance test (steel wool test)>
Steel wool #0000 is set on an indenter with a diameter of 27 mm, and a reciprocating abrasion tester (Shinto Kagaku TYPE: 30S) is used under the conditions of a load of 500 g, a stroke of 50 mm, and 1 cycle/second to test the surface of the hard coat film. was subjected to a scratch resistance test. After 500 reciprocations or 1500 reciprocations, the surface fluorine atom ratio was measured by XPS, the water contact angle was measured, and the appearance was visually observed. Appearance was evaluated according to the following criteria.
A: Those with no scratches or whitening B: Those with visible scratches of less than 10 mm or whitening (fine scratches) C: Those with scratches of 10 mm or more
<耐摩耗性試験(消しゴム試験)>
 Minoan社製の直径6mmの消しゴムを圧子にセットして、往復摩耗試験機により、上記の耐擦傷性試験と同一の条件で、ハードコートフィルム表面の耐摩耗性試験(消しゴム試験)を行った。1500往復の試験後に、XPSによる表面のフッ素原子比率の測定、水接触角の測定および外観の目視観察を実施した。外観は以下の基準で評価した。
  A:傷が1本以下で白化がないもの
  B:傷が2から5本または白化があるもの
  C:傷が6本以上のもの
<Abrasion resistance test (eraser test)>
An eraser with a diameter of 6 mm manufactured by Minoan was set on the indenter, and an abrasion resistance test (eraser test) of the surface of the hard coat film was conducted using a reciprocating abrasion tester under the same conditions as the above abrasion resistance test. After 1,500 reciprocating tests, XPS measurement of the fluorine atom ratio on the surface, measurement of the water contact angle, and visual observation of the appearance were carried out. Appearance was evaluated according to the following criteria.
A: 1 or less scratches and no whitening B: 2 to 5 scratches or whitening C: 6 or more scratches
<透明性>
 実施例1~9および比較例1~7のハードコートフィルムは、いずれも、目視にて無色透明であり濁りがなく、透明性に優れていた。
<Transparency>
All of the hard coat films of Examples 1 to 9 and Comparative Examples 1 to 7 were visually colorless and transparent without turbidity and had excellent transparency.
<耐屈曲性>
 JIS K5600に従い、タイプ1の試験機を用いてハードコートフィルムの円筒型マンドレル試験を行い、ハードコート層および/または耐擦傷層にクラックが生じる曲げ半径を求めた。実施例1~8および比較例1~7のハードコートフィルムは、いずれも、ハードコート層形成面を内側として屈曲させた際の耐屈曲半径が1mm以下、ハードコート層形成面を外側として屈曲させた際の耐屈曲半径が3mm以下であった。実施例9のハードコートフィルムは、ハードコート層形成面を内側として屈曲させた際の耐屈曲半径は1mm以下(半径1mmのマンドレルに沿って屈曲させても割れやクラックの発生なし)であったが、ハードコート層形成面を外側として屈曲させた際は、半径3mmのマンドレルに沿って屈曲させた際に、割れが生じていた。
<Flexibility>
According to JIS K5600, the hard coat film was subjected to a cylindrical mandrel test using a type 1 testing machine, and the bending radius at which cracks occurred in the hard coat layer and/or the scratch resistant layer was determined. Each of the hard coat films of Examples 1 to 8 and Comparative Examples 1 to 7 had a bending resistance radius of 1 mm or less when the hard coat layer forming surface was bent on the inside, and the hard coat layer forming surface was bent on the outside. The bend resistance radius was 3 mm or less. The hard coat film of Example 9 had a bending resistance radius of 1 mm or less when the hard coat layer-formed surface was bent on the inside (no cracks or cracks occurred even when the film was bent along a mandrel with a radius of 1 mm). However, when it was bent with the hard coat layer forming surface facing outward, cracking occurred when it was bent along a mandrel with a radius of 3 mm.
<繰り返し曲げ試験>
 ハードコートフィルムを、短辺25mm、長辺110mmの長方形にカットして試料を作製した。試験片の短辺に、面状無負荷U字伸縮試験冶具(ユアサシステム機器製)を取り付け、温度23℃、相対湿度55%の環境下にて、卓上型耐久試験機(ユアサシステム機器製「DMLHB」にセットし、ハードコート層形成面を内側として、屈曲半径2.5mm、1回/秒の速度で10万回の繰り返し曲げ試験した。実施例1~9および比較例1~7のハードコートフィルムは、いずれも10万回の折り曲げ試験後に、クラックが生じていなかった。
<Repeated bending test>
A sample was prepared by cutting the hard coat film into a rectangle having a short side of 25 mm and a long side of 110 mm. A planar no-load U-shaped expansion test jig (manufactured by Yuasa System Equipment Co., Ltd.) was attached to the short side of the test piece. DMLHB", with the hard coat layer forming surface facing inside, a bending radius of 2.5 mm and a bending test of 100,000 times at a speed of 1 time/second were performed. No cracks occurred in any of the coated films after the bending test of 100,000 times.
 実施例1~6および比較例1~4のハードコートフィルムの構成および評価結果を表2に、実施例7~9および比較例5~7のハードコートフィルムの構成および評価結果を表3に示す。 The structures and evaluation results of the hard coat films of Examples 1-6 and Comparative Examples 1-4 are shown in Table 2, and the structures and evaluation results of the hard coat films of Examples 7-9 and Comparative Examples 5-7 are shown in Table 3. .
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に示す結果から、実施例1~6のハードコートフィルムは、水接触角が大きく防汚性に優れていることが分かる。これらのハードコートフィルムは、防汚性に加えて、硬度、耐屈曲性、および透明性を兼ね備えており、フレキシブルディスプレイのカバーウインドウとして好適に使用できる。 From the results shown in Table 2, it can be seen that the hard coat films of Examples 1 to 6 have large water contact angles and excellent antifouling properties. These hard coat films have hardness, bending resistance, and transparency in addition to antifouling properties, and can be suitably used as cover windows for flexible displays.
 シリコーン系レベリング剤を含むハードコート層が最表面層である比較例1のハードコートフィルムは、初期の水接触角が小さく、防汚性が劣っていた。フッ素系レベリング剤を含むハードコート層が最表面層である比較例4も同様であった。 The hard coat film of Comparative Example 1, in which the hard coat layer containing a silicone-based leveling agent is the outermost layer, had a small initial water contact angle and poor antifouling properties. The same was true for Comparative Example 4 in which the hard coat layer containing a fluorine-based leveling agent was the outermost layer.
 重合性官能基を有するフッ素系化合物を含むハードコート層が最表面層である比較例2,3のハードコートフィルムは、比較例1,4に比べて水接触角が大きく防汚性に優れていたものの、スチールウール試験後および消しゴム試験後に防汚性(水接触角)が低下しており、傷の発生がみられた。 The hard coat films of Comparative Examples 2 and 3, in which the hard coat layer containing a fluorine-based compound having a polymerizable functional group is the outermost layer, had a larger water contact angle than Comparative Examples 1 and 4 and were excellent in antifouling properties. However, after the steel wool test and the eraser test, the antifouling property (water contact angle) decreased and scratches were observed.
 これに対して、ハードコート層上に耐擦傷層を備える実施例1~6のハードコートフィルムは、比較例1~4に比べて、スチールウール試験後および消しゴム試験後の水接触角が大きい傾向がみられた。 On the other hand, the hard coat films of Examples 1 to 6, which have a scratch-resistant layer on the hard coat layer, tend to have larger water contact angles after the steel wool test and after the eraser test than in Comparative Examples 1 to 4. was seen.
 消しゴム試験後の防汚性(水接触角)に着目すると、実施例1~3の中では、ハードコート層にコロナ処理を行っていない実施例1に比べて、コロナ処理後に耐擦傷層を形成した実施例2,3は、消しゴム試験後の水接触角が大きく、コロナ処理密度が高いほど、耐摩耗性が良好となる傾向がみられた。また、ハードコート層上にプライマー層を形成し、その上に耐擦傷層を形成した実施例4~6では、実施例1~3に比べてさらに耐摩耗性が向上していた。 Focusing on the antifouling property (water contact angle) after the eraser test, in Examples 1 to 3, compared to Example 1 in which the hard coat layer was not subjected to corona treatment, a scratch resistant layer was formed after corona treatment. In Examples 2 and 3, the greater the water contact angle after the eraser test, and the higher the corona treatment density, the better the abrasion resistance. Further, in Examples 4 to 6 in which a primer layer was formed on the hard coat layer and a scratch-resistant layer was formed thereon, wear resistance was further improved compared to Examples 1 to 3.
 スチールウール試験後の防汚性に着目すると、実施例1~6の中では、厚み35nmのプライマー層を設けた実施例4が、他の実施例に比べて水接触角が小さく、耐擦傷性に劣っていた。また、実施例4では、スチールウール試験後および消しゴム試験後のハードコートフィルムに傷がみられたことからも、他の実施例に比べて耐擦傷性が劣っているといえる。シラン化合物の縮合により形成される有機・無機ハイブリッド材料のプライマー層は、硬度が低く、厚みが大きい場合は、擦れや摩擦によるプライマー層の破壊が生じやすいことが、実施例4において、プライマー層を設けているにも関わらず耐擦傷性が十分でない要因の1つとして考えられる。 Focusing on the antifouling property after the steel wool test, among Examples 1 to 6, Example 4, which provided a primer layer with a thickness of 35 nm, had a smaller water contact angle and scratch resistance than the other examples. was inferior to In addition, in Example 4, scratches were observed on the hard coat film after the steel wool test and after the eraser test. The primer layer of an organic-inorganic hybrid material formed by condensation of a silane compound has a low hardness and a large thickness. This is considered to be one of the reasons why the scratch resistance is not sufficient despite the provision.
 表3においても、ハードコート層上に耐擦傷層を備える実施例7~9が、耐擦傷層を備えていない比較例5~7に比べて、スチールウール試験後の外観が良好であり、優れた耐擦傷性を有していることが分かる。また、ハードコート層上に耐擦傷層を備える実施例7~9では、耐擦傷性試験後の表面のフッ素原子比率が高いことからも、耐擦傷層の摩耗が少なく、耐擦傷性に優れていることが分かる。 Also in Table 3, Examples 7 to 9 having a scratch-resistant layer on the hard coat layer have a better appearance after the steel wool test than Comparative Examples 5 to 7 that do not have a scratch-resistant layer. It can be seen that it has excellent scratch resistance. In addition, in Examples 7 to 9 having a scratch-resistant layer on the hard coat layer, the fluorine atom ratio on the surface after the scratch resistance test was high, so the abrasion of the scratch-resistant layer was small and the scratch resistance was excellent. I know there is.
 ハードコート層と耐擦傷層の間に厚み225nmのプライマー層を設けた実施例9は、1500往復のスチールウール試験後も外観評価がAであり、実施例7~9の中で最も優れた耐擦傷性を示した。これは、プライマー層を設けることにより、耐擦傷層の密着性が向上したためであると考えられる。 Example 9, in which a primer layer with a thickness of 225 nm was provided between the hard coat layer and the scratch-resistant layer, had an appearance evaluation of A even after the steel wool test of 1500 reciprocations, which was the best resistance among Examples 7-9. It showed scratching properties. This is probably because the adhesion of the scratch resistant layer was improved by providing the primer layer.
 なお、実施例9のプライマー層は、実施例4のプライマー層よりも厚みが大きいが、実施例9のプライマー層はパーヒドロポリシラザンの硬化により形成されたSiO無機膜であるため、厚みが大きい場合でも膜の硬度が高く、耐擦傷性向上に寄与したと考えられる。実施例9のハードコートフィルムは、ハードコート層形成面を外側として屈曲させた際に、半径3mmで割れが生じていたが、これは剛性の高いSiOプライマー層の厚みが大きいことに起因すると考えられる。パーヒドロポリシラザンの硬化により形成されるSiOプライマー層の厚みをより小さくすることにより、SiOプライマー層による密着性向上効果を維持しつつ、耐屈曲性をさらに向上することが可能である。 Although the primer layer of Example 9 is thicker than the primer layer of Example 4, the thickness of the primer layer of Example 9 is greater because it is a SiO inorganic film formed by curing perhydropolysilazane. Even in this case, the hardness of the film was high, which is considered to have contributed to the improvement of scratch resistance. When the hard coat film of Example 9 was bent with the hard coat layer forming surface facing outward, cracks occurred at a radius of 3 mm. Conceivable. By reducing the thickness of the SiO2 primer layer formed by curing the perhydropolysilazane, it is possible to further improve the flex resistance while maintaining the effect of improving adhesion by the SiO2 primer layer.
 以上の結果から、ハードコート層にフッ素系レベリング剤を含めることにより、水接触角が大きくなり、防汚性が高められるものの、耐擦傷性や耐摩耗性が不十分であり、デバイスを長期間使用した後に、防汚性が低下することが分かる。一方、ハードコート層上にパーフルオロアルキル化合物を含む耐擦傷層を形成することにより、防汚性が向上するとともに、耐擦傷性および耐摩耗性が向上するため、デバイスを長期間使用した後も、優れた防汚性を有していることが分かる。特に、ハードコート層上に、適切な材料および厚みを有するプライマー層を設け、その上に耐擦傷層を形成することにより、耐擦傷層の密着性が向上し、耐擦傷性および耐摩耗性に優れるハードコートフィルムが得られることが分かる。 From the above results, it was found that the inclusion of a fluorine-based leveling agent in the hard coat layer increased the water contact angle and improved the antifouling property, but the scratch resistance and abrasion resistance were insufficient, and the device could be used for a long period of time. It can be seen that the antifouling property decreases after use. On the other hand, by forming a scratch-resistant layer containing a perfluoroalkyl compound on the hard coat layer, the antifouling property is improved, as well as the scratch resistance and abrasion resistance. , it can be seen that it has excellent antifouling properties. In particular, by providing a primer layer having an appropriate material and thickness on the hard coat layer and forming a scratch-resistant layer thereon, the adhesion of the scratch-resistant layer is improved, and the scratch resistance and abrasion resistance are improved. It can be seen that an excellent hard coat film can be obtained.
  1  透明樹脂フィルム
  3  ハードコート層
  4  プライマー層
  5  耐擦傷層
  10,11  ハードコートフィルム

 
REFERENCE SIGNS LIST 1 transparent resin film 3 hard coat layer 4 primer layer 5 scratch resistant layer 10, 11 hard coat film

Claims (21)

  1.  透明樹脂フィルム上に、ハードコート層および耐擦傷層をこの順に備えるハードコートフィルムであって、
     前記ハードコート層は、下記一般式(1)で表されるシラン化合物の縮合物であるポリオルガノシロキサン化合物を含む組成物の硬化物層であり、
        Y-R-(Si(OR 3-x) …(1)
     前記耐擦傷層が、パーフルオロ化合物を含む、ハードコートフィルム:
     一般式(1)において、Rは炭素数1~16の置換または無置換のアルキレン基であり;Rは水素原子または炭素数1~10のアルキル基であり;Rは、水素原子、または炭素数1~10のアルキル基、炭素数6~25のアリール基および炭素数7~12のアラルキル基から選択される1価の炭化水素基であり;xは2または3の整数であり;Yはグリシジルオキシ基または脂環式エポキシ基である。
    A hard coat film comprising a hard coat layer and a scratch-resistant layer in this order on a transparent resin film,
    The hard coat layer is a cured product layer of a composition containing a polyorganosiloxane compound that is a condensate of a silane compound represented by the following general formula (1),
    YR 1 -(Si(OR 2 ) x R 3 3-x ) (1)
    A hard coat film in which the scratch-resistant layer contains a perfluoro compound:
    In general formula (1), R 1 is a substituted or unsubstituted alkylene group having 1 to 16 carbon atoms; R 2 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms; R 3 is a hydrogen atom; or a monovalent hydrocarbon group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 25 carbon atoms and an aralkyl group having 7 to 12 carbon atoms; x is an integer of 2 or 3; Y is a glycidyloxy group or an alicyclic epoxy group.
  2.  前記一般式(1)において、Rが炭素数1~3の置換または無置換のアルキレン基であり、Yが脂環式エポキシ基である、請求項1に記載のハードコートフィルム。 2. The hard coat film according to claim 1, wherein in the general formula (1), R 1 is a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms, and Y is an alicyclic epoxy group.
  3.  前記一般式(1)において、Rが炭素数4~16の置換または無置換のアルキレン基であり、Yがグリシジルオキシ基である、請求項1に記載のハードコートフィルム。 2. The hard coat film according to claim 1, wherein in the general formula (1), R 1 is a substituted or unsubstituted alkylene group having 4 to 16 carbon atoms, and Y is a glycidyloxy group.
  4.  前記ポリオルガノシロキサン化合物は、
      前記一般式(1)において、Rが炭素数1~3の置換または無置換のアルキレン基であり、Yが脂環式エポキシ基であるシラン化合物、および
      前記一般式(1)において、Rが炭素数4~16の置換または無置換のアルキレン基であり、Yがグリシジルオキシ基であるシラン化合物
     を含む、複数種のシラン化合物の縮合物である、請求項1に記載のハードコートフィルム。
    The polyorganosiloxane compound is
    a silane compound in which R 1 is a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms and Y is an alicyclic epoxy group in the general formula (1), and R 1 in the general formula (1) is a substituted or unsubstituted alkylene group having 4 to 16 carbon atoms, and Y is a glycidyloxy group.
  5.  前記パーフルオロ化合物は、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物の縮合物である、請求項1~4のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 4, wherein the perfluoro compound is a condensate of a compound having an alkoxysilyl group and a perfluoroalkyl group in its molecule.
  6.  前記耐擦傷層の水接触角が100°以上である、請求項1~5のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 5, wherein the scratch-resistant layer has a water contact angle of 100° or more.
  7.  前記耐擦傷層の表面のフッ素原子の割合が30%以上である、請求項1~6のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 6, wherein the proportion of fluorine atoms on the surface of the scratch resistant layer is 30% or more.
  8.  前記耐擦傷層の表面のX線光電子分光分析によるC1sスペクトルにおいて、結合エネルギー280~290eVの範囲でのピークトップ高さIと、290~300eVの範囲でのピークトップ高さIの比I/Iが、0.28以上である、請求項1~7のいずれか1項に記載のハードコートフィルム。 In the C1s spectrum by X-ray photoelectron spectroscopy of the surface of the scratch-resistant layer, the ratio of the peak top height I A in the range of binding energy 280 to 290 eV and the peak top height I B in the range of 290 to 300 eV I The hard coat film according to any one of claims 1 to 7, wherein B 1 /I A is 0.28 or more.
  9.  前記耐擦傷層の厚みが5~30nmである、請求項1~8のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 8, wherein the scratch-resistant layer has a thickness of 5 to 30 nm.
  10.  前記ハードコート層と前記耐擦傷層の間にプライマー層を有する、請求項1~9のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 9, which has a primer layer between the hard coat layer and the scratch resistant layer.
  11.  前記プライマー層が、酸化ケイ素を含む、請求項10に記載のハードコートフィルム。 The hard coat film according to claim 10, wherein the primer layer contains silicon oxide.
  12.  前記プライマー層が、1つのSi原子にアルコキシ基および有機基が結合しているシラン化合物の縮合物を含む、請求項10に記載のハードコートフィルム。 The hard coat film according to claim 10, wherein the primer layer contains a condensate of a silane compound in which an alkoxy group and an organic group are bonded to one Si atom.
  13.  前記シラン化合物の前記有機基がアミノ基を含む有機基である、請求項12に記載のハードコートフィルム。 The hard coat film according to claim 12, wherein the organic group of the silane compound is an organic group containing an amino group.
  14.  前記プライマー層の厚みが、1~1000nmである、請求項10~13のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 10 to 13, wherein the primer layer has a thickness of 1 to 1000 nm.
  15.  前記ハードコート層の厚みが2~100μmである、請求項1~14のいずれか1項に記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 14, wherein the hard coat layer has a thickness of 2 to 100 µm.
  16.  前記透明樹脂フィルムが、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、環状ポリオレフィン、アクリル樹脂およびセルロース系樹脂からなる群から選択される1種以上の樹脂材料を含む、請求項1~15のいずれか1項に記載のハードコートフィルム。 Any one of claims 1 to 15, wherein the transparent resin film contains one or more resin materials selected from the group consisting of polyesters, polycarbonates, polyamides, polyimides, cyclic polyolefins, acrylic resins and cellulosic resins. The described hard coat film.
  17.  請求項1~16のいずれか1項に記載のハードコートフィルムの製造法であって、
     透明樹脂フィルム上にハードコート層を形成する工程;および
     ハードコート層を形成後に、分子内にアルコキシシリル基およびパーフルオロアルキル基を有する化合物を含む組成物を塗布し、前記化合物を縮合させて耐擦傷層を形成する工程、
     を有する、ハードコートフィルムの製造方法。
    A method for producing a hard coat film according to any one of claims 1 to 16,
    A step of forming a hard coat layer on the transparent resin film; forming a scratch layer;
    A method for producing a hard coat film.
  18.  前記耐擦傷層を形成する工程において、前記組成物を塗工した後に、100℃以上に加熱する、請求項17に記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to claim 17, wherein in the step of forming the scratch resistant layer, the composition is applied and then heated to 100°C or higher.
  19.  ハードコート層を形成後に、前記ハードコート層の表面をコロナ処理する工程をさらに含み、
     コロナ処理後のハードコート層の表面に、前記組成物を塗布して前記耐擦傷層を形成する、請求項17または18に記載のハードコートフィルムの製造方法。
    After forming the hard coat layer, further comprising a step of corona-treating the surface of the hard coat layer,
    19. The method for producing a hard coat film according to claim 17 or 18, wherein the composition is applied to the surface of the hard coat layer after corona treatment to form the scratch resistant layer.
  20.  前記ハードコート層を形成する工程と前記耐擦傷層を形成する工程の間に、前記ハードコート層上にプライマー層を形成する工程を含む、請求項17または18に記載のハードコートフィルムの製造方法。 19. The method for producing a hard coat film according to claim 17, comprising a step of forming a primer layer on the hard coat layer between the step of forming the hard coat layer and the step of forming the scratch resistant layer. .
  21.  画像表示パネル、および請求項1~16のいずれか1項に記載のハードコートフィルムを含み、
     前記ハードコートフィルムが視認側の最表面に配置されている、ディスプレイ。
    An image display panel, and the hard coat film according to any one of claims 1 to 16,
    A display in which the hard coat film is arranged on the outermost surface on the viewing side.
PCT/JP2022/011070 2021-03-12 2022-03-11 Hard coat film, method for producing same, and display WO2022191329A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280020859.1A CN116981963A (en) 2021-03-12 2022-03-11 Hard coat film, method for producing same, and display
JP2023505660A JPWO2022191329A1 (en) 2021-03-12 2022-03-11

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-039984 2021-03-12
JP2021039984 2021-03-12
JP2021-136590 2021-08-24
JP2021136590 2021-08-24

Publications (1)

Publication Number Publication Date
WO2022191329A1 true WO2022191329A1 (en) 2022-09-15

Family

ID=83228128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011070 WO2022191329A1 (en) 2021-03-12 2022-03-11 Hard coat film, method for producing same, and display

Country Status (2)

Country Link
JP (1) JPWO2022191329A1 (en)
WO (1) WO2022191329A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070714A (en) * 2008-09-22 2010-04-02 Central Glass Co Ltd Transparent thermosetting organic-inorganic hybrid sealing material
JP2016193956A (en) * 2015-03-31 2016-11-17 株式会社カネカ Laminate formed of photocurable or thermosetting resin composition
JP2017087523A (en) * 2015-11-09 2017-05-25 大日本印刷株式会社 Optical laminate, picture display unit and curable composition
JP2017228238A (en) * 2016-06-24 2017-12-28 大日本印刷株式会社 Touch panel, multilayer film, and method of manufacturing multilayer film
WO2018207914A1 (en) * 2017-05-12 2018-11-15 株式会社ダイセル Hard coat film suppressed in curling and method for producing same
JP2019139110A (en) * 2018-02-13 2019-08-22 日立化成株式会社 Dimming element
WO2020241751A1 (en) * 2019-05-31 2020-12-03 Agc株式会社 Transparent substrate with antifouling layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070714A (en) * 2008-09-22 2010-04-02 Central Glass Co Ltd Transparent thermosetting organic-inorganic hybrid sealing material
JP2016193956A (en) * 2015-03-31 2016-11-17 株式会社カネカ Laminate formed of photocurable or thermosetting resin composition
JP2017087523A (en) * 2015-11-09 2017-05-25 大日本印刷株式会社 Optical laminate, picture display unit and curable composition
JP2017228238A (en) * 2016-06-24 2017-12-28 大日本印刷株式会社 Touch panel, multilayer film, and method of manufacturing multilayer film
WO2018207914A1 (en) * 2017-05-12 2018-11-15 株式会社ダイセル Hard coat film suppressed in curling and method for producing same
JP2019139110A (en) * 2018-02-13 2019-08-22 日立化成株式会社 Dimming element
WO2020241751A1 (en) * 2019-05-31 2020-12-03 Agc株式会社 Transparent substrate with antifouling layer

Also Published As

Publication number Publication date
JPWO2022191329A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
KR100759203B1 (en) Coating Compositions and Articles with Cured Coats Thereof
JP7328973B2 (en) Hard coat composition, polyimide film with hard coat, method for producing the same, and image display device
JP6412867B2 (en) Active energy ray-curable composition
JPWO2015190526A1 (en) Curable composition containing perfluoropolyether having a silyl group
JP6702022B2 (en) Touch panel, multilayer film, and method for manufacturing multilayer film
JP6545482B2 (en) Photo- or thermosetting resin composition, cured product and laminate
WO2022191329A1 (en) Hard coat film, method for producing same, and display
CN110835478B (en) Composition for forming hard coat layer, method for producing hard coat film, and hard coat film produced by the method
JP2016193956A (en) Laminate formed of photocurable or thermosetting resin composition
US20190177573A1 (en) Curable Silsesquioxane Polymer Comprising Inorganic Oxide Nanoparticles, Articles, and Methods
JP2023129477A (en) Cured product, method for producing cured product, curable resin composition and use of cured product
WO2023008492A1 (en) Hardcoat film, method for producing same, and display
CN116981963A (en) Hard coat film, method for producing same, and display
JP7373074B2 (en) Composition for forming hard coat layer, hard coat film, method for producing hard coat film, and article containing hard coat film
WO2023008493A1 (en) Silane compound, method for producing same, polyorganosiloxane compound, hard coating composition, hard coating film, method for producing same, and display
WO2022270471A1 (en) Hard coating film, method for producing same, and display
TWI790308B (en) Composition containing compound having perfluoropolyether structure, surface-treated resin substrate, and production method thereof
JP2017113943A (en) Transfer film
JP2021070800A (en) Hard coat film and image display device
WO2022191328A1 (en) Film and method for producing same, laminated film, and display
WO2021172201A1 (en) Hardcoat film, method for producing same, and display device
JP2024066964A (en) Hard-coated film, its manufacturing method, and display including the hard-coated film
WO2024029496A1 (en) Curable resin composition, hard coat film and method for producing same, and display
TW202402542A (en) Flexible multi-layered polysiloxane hard coating
TW202348434A (en) Flexible multi-layered polysiloxane hard coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280020859.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767283

Country of ref document: EP

Kind code of ref document: A1