WO2022191258A1 - Rfid tag and rfid tag manufacturing method - Google Patents

Rfid tag and rfid tag manufacturing method Download PDF

Info

Publication number
WO2022191258A1
WO2022191258A1 PCT/JP2022/010424 JP2022010424W WO2022191258A1 WO 2022191258 A1 WO2022191258 A1 WO 2022191258A1 JP 2022010424 W JP2022010424 W JP 2022010424W WO 2022191258 A1 WO2022191258 A1 WO 2022191258A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid tag
magnetic sheet
slot
inlay
slot antenna
Prior art date
Application number
PCT/JP2022/010424
Other languages
French (fr)
Japanese (ja)
Inventor
卓朗 嶋田
エリナ 菅
武 菅
仁 中根
Original Assignee
大王製紙株式会社
藤倉化成株式会社
大同産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大王製紙株式会社, 藤倉化成株式会社, 大同産業株式会社 filed Critical 大王製紙株式会社
Publication of WO2022191258A1 publication Critical patent/WO2022191258A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems

Definitions

  • the present disclosure relates to RFID tags and RFID tag manufacturing methods.
  • RFID Radio Frequency Identification
  • An RFID tag includes an IC chip and an antenna electrically connected to the IC chip.
  • RFID tags are also called wireless tags, IC tags, RF-ID tags, and RF tags.
  • the object to which such an RFID tag is attached is made of metal, communication by the antenna inside the tag may not be possible, which may hinder reading of the identification information. This is because if there is metal around the RFID tag, the electromagnetic wave sent from the reader/writer that transmits and receives data to the RFID tag is lost as eddy current in the metal part, so the data is sent back from the IC chip to the antenna again. It is presumed that the cause is that the energy for this is not obtained efficiently.
  • the frequency band used for RFID tag communication is the UHF band (radio wave method), which enables long-distance communication and batch reading of multiple objects compared to the HF band (13.56 MHz, electromagnetic induction method). Needs are growing. However, there is a possibility that communication cannot be performed in the UHF band with a conventional configuration in which a magnetic sheet is sandwiched between an RFID tag and metal.
  • An object of the present disclosure is to provide an RFID tag capable of improving communication performance and a method for manufacturing the RFID tag.
  • An RFID tag is an RFID tag attached to an object to be attached, and has an IC chip on which identification information is recorded and a slot antenna connected to the IC chip.
  • the magnetic sheet is provided with a slit that separates a magnetic layer having magnetic properties, and the slit is a region that overlaps the slot of the inlay in a state in which the magnetic sheet and the inlay are laminated. placed in
  • a method for manufacturing an RFID tag includes the steps of forming a magnetic sheet provided with slits for separating a magnetic layer having magnetic properties, and an IC chip on which identification information is recorded. a slot antenna connected to the IC chip; and a step of stacking the magnetic sheets formed in the forming step, wherein the slot antenna is formed of a metal thin film, and the slot antenna is formed of a metal thin film.
  • the antenna is provided with a slot obtained by cutting out a part of the metal thin film in a long and narrow shape, and the slit is arranged in a region overlapping the slot of the inlay in a state in which the magnetic sheet and the inlay are laminated.
  • an RFID tag capable of improving communication performance and a method for manufacturing an RFID tag.
  • FIG. 2 is an exploded perspective view of the RFID tag shown in FIG.
  • FIG. 2 is a plan view of the RFID tag shown in FIG. 1 as viewed from above;
  • FIG. 4 is a diagram showing the dimensions of each part of the slot antenna and the slot used in the first embodiment;
  • FIG. 4 shows frequency characteristics of RFID tags of Examples 1 to 5 and Comparative Example 2;
  • FIG. 10 is a diagram showing frequency characteristics of RFID tags of Examples 6 to 9; The figure which shows the shape of the slot antenna used in Example 14.
  • FIG. 4 is a diagram showing the dimensions of each part of the slot antenna and the slot used in the first embodiment;
  • FIG. 4 shows frequency characteristics of RFID tags of Examples 1 to 5 and Comparative Example 2;
  • FIG. 10 is a diagram showing frequency characteristics of RFID tags of Examples 6 to 9; The figure which shows the shape of the slot antenna used in Example 14.
  • FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 14; The figure which shows the shape of the slot antenna used in Example 15.
  • FIG. 15 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 15; The figure which shows the shape of the slot antenna used in Example 16.
  • FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 16; The figure which shows the shape of the slot antenna used in Example 17.
  • FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 17; The figure which shows the shape of the slot antenna used in Example 18.
  • FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 18; The figure which shows the shape of the slot antenna used in Example 19.
  • FIG. 19 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 19; Stacked sectional view of an RFID tag according to a modified example
  • FIG. 4 is a diagram showing an example of characteristics for each metal type of the RFID
  • the x-direction, y-direction, and z-direction are directions perpendicular to each other.
  • the x-direction is the longitudinal direction of the inlay 101 and the magnetic sheet 102 and the extending direction of the parallel portion 22 of the slot 21 and the slit 30 .
  • the y direction is the lateral direction of the inlay 101 and the magnetic sheet 102 and the extending direction of the vertical portion 23 of the slot 21 .
  • the z-direction is the stacking direction of each component of the RFID tag 100 such as the inlay 101 and the magnetic sheet 102 .
  • the positive z direction side may also be referred to as the upper side
  • the negative z direction side may also be referred to as the lower side.
  • FIG. 1 is a laminated cross-sectional view of the RFID tag 100 according to the embodiment.
  • FIG. 2 is an exploded perspective view of the RFID tag 100 shown in FIG.
  • FIG. 3 is a top plan view of the RFID tag 100 shown in FIG.
  • the RFID tag 100 is a substantially planar device that is attached to an attachment target 200 .
  • the RFID tag comprises an inlay 101, a magnetic sheet 102 and a dielectric layer 103.
  • the sticking target 200 is, for example, metal.
  • Metals include metals such as iron, aluminum, and copper, as well as metal alloys such as iron alloys, aluminum alloys, and copper alloys.
  • the object 200 to be affixed includes materials other than metal, such as plastics, paper, and ceramics.
  • the main application of the RFID tag 100 according to the embodiment is to attach it to relatively large metal products such as drums and H steel, and to manage the inventory of each of these metal products. Can be used for tracking (traceability). In addition to metal products, the tag of this case may be attached and used.
  • the RFID tag of this embodiment is flexible and can be attached even if the surface of the adherend is curved. Good communication performance can be exhibited even when bent into a curved shape, and the RFID tag of the present embodiment can be used to identify articles with curved surfaces such as drums and spray cans, thus diversifying the applications. can be planned.
  • the inlay 101 is a part including elements related to the function of the RFID tag 100, and as shown in FIGS. have
  • the slot antenna 20 is made of a metal thin film.
  • the slot antenna 20 is provided with a slot 21 obtained by cutting out a part of the thin metal film.
  • the inlay 101 has a slot antenna 20 formed by dry laminating an aluminum sheet on a PET film, for example, and an IC chip 10 is mounted at a prescribed position.
  • the IC chip 10 is arranged in the center of the main surface of the inlay 101, and the slot 21 of the slot antenna 20 is a pair extending in parallel in a predetermined direction (the x direction in the examples of FIGS. 2 and 3) with the IC chip 10 interposed therebetween. and a pair of vertical portions 23 extending in a direction orthogonal to the pair of parallel portions 22 (y-direction).
  • the pair of vertical portions 23 are arranged at approximately equal intervals in the x direction with the IC chip 10 interposed therebetween.
  • the impedance frequency characteristics of the IC chip 10 are as follows. ⁇ 866MHz: 15-j265 ( ⁇ ) ⁇ 915MHz: 14-j252 ( ⁇ ) ⁇ 953MHz: 13-j242 ( ⁇ )
  • the impedance of the slot antenna 20 is designed to match the impedance of the IC chip 10 at 915-920 MHz. Such impedance matching reduces current loss, and the reduced loss increases the communicable distance.
  • the magnetic sheet 102 is a sheet material containing a magnetic material, and is laminated on the inlay 101 on the sticking object 200 side.
  • the magnetic sheet 102 is formed by, for example, kneading magnetic powder such as a stainless steel alloy into a rubber material, resin, or the like so as to uniformly and oriented and disperse the powder.
  • the magnetic sheet 102 is provided with slits 30 that separate the magnetic layers having magnetic properties.
  • the slit 30 is arranged in a region overlapping the slot 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated.
  • the slit 30 is formed at the center position of the magnetic sheet 102 in the y direction so as to extend along the x direction.
  • the slots 21 of the slot antenna 20 and the slits 30 of the magnetic sheet 102 are arranged such that at least a pair of parallel portions 22 of the slots 21 are entirely included in the area of the slits 30, as shown in FIG. placed in
  • the magnetic sheet 102 it is preferable to use a material having excellent magnetic shielding properties against radio waves in the UHF band.
  • the magnetic sheet 102 is obtained by coating a support with a magnetic paint containing components such as a magnetic filler and a binder resin and drying the paint.
  • the film thickness of the magnetic sheet 102 after drying is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less.
  • magnetic paint is applied.
  • the magnetic paint is applied so that the film thickness of the magnetic sheet 102 after drying is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or less.
  • the loss coefficient tan ⁇ ( ⁇ ′/ ⁇ ′′) is preferably 0.3 or less, more preferably 0.28 or less. Further, the loss coefficient tan ⁇ ( ⁇ ′/ ⁇ ′′) of the complex relative magnetic permeability in the frequency band of 860 to 960 MHz of the magnetic sheet is preferably 0.05 or more, more preferably 0.1 or more.
  • the thickness of the tag (excluding the release paper) in this embodiment is 200 ⁇ m to 1000 ⁇ m, preferably 300 to 400 ⁇ m.
  • the thickness of the magnetic sheet and the inlay in a state of being laminated (excluding label paper and release paper) is 150 to 250 ⁇ m, preferably 190 to 210 ⁇ m, more preferably about 200 ⁇ m.
  • the thickness of the label paper is 50 ⁇ m to 300 ⁇ m including the adhesive layer.
  • the thickness of the release paper is 50 ⁇ m to 300 ⁇ m.
  • the real part ⁇ ′ of the complex relative permeability of the magnetic sheet in the frequency band of 860 to 960 MHz is preferably is 5.0 or more, more preferably 5.2 or more. Further, the real part ⁇ ′ of the complex relative permeability of the magnetic sheet in the frequency band of 860 to 960 MHz is preferably 7.0 or less, more preferably 6.0 or less.
  • the material of the magnetic filler contained in the magnetic paint is preferably an Fe--Cr alloy.
  • the mass ratio of the solid content of the magnetic filler and the binder is preferably 70/30 or more, more preferably 75/25 or more, and 80/20. It is more preferable that it is above.
  • the mass ratio of the solid content of the magnetic filler and the binder is preferably 95/5 or less, more preferably 90/10 or less, and 85/ It is more preferably 15 or less.
  • the binder resin contained in the magnetic paint is one or more resins selected from the group consisting of epoxy resins, urethane resins, and polyester resins, preferably epoxy resins.
  • the dielectric layer 103 is further laminated on the attachment target 200 side of the magnetic sheet 102 and arranged between the magnetic sheet 102 and the attachment target 200 .
  • dielectric layer 103 is shown integrally beneath magnetic sheet 102 .
  • the dielectric layer 103 is preferably formed of an insulator such as a woven fabric or non-woven fabric made of fiber such as cardboard or synthetic resin, or a sheet of an inorganic material such as ceramic glass.
  • the dielectric layer 103 is made of foamed PET, for example.
  • the material of the dielectric layer 103 preferably has a dielectric constant of about 1.2 to 3.0, so that the communication distance of the RFID tag 100 can be increased.
  • the dielectric layer 103 also functions as a spacer that separates the inlay 101 and the magnetic sheet 102 from the attachment target 200 by the thickness thereof.
  • the dielectric layer 103 is made of a material that can be arbitrarily deformed together with the inlay 101 and the magnetic sheet 102 in response to an external force. , is preferably configured to improve versatility.
  • an adhesive layer 104 is arranged between the inlay 101 and the magnetic sheet 102 (not shown in FIG. 1). During lamination, the adhesive layer 104 can enter the gap formed by the slit 30 of the magnetic sheet 102 and the dielectric layer 103 therebelow to fill the gap.
  • a label paper (film-based tack paper) 105 is further arranged above the inlay 101 .
  • the label paper 105 can be printed on the surface in the positive z direction.
  • the material of the label paper can be appropriately selected.
  • an adhesive 106 is applied to the back surface of the label paper 105 on the negative z direction side.
  • the label paper 105 is formed larger than the inlay 101, the magnetic sheet 102, and the dielectric layer 103, and as shown in FIG. is formed to surround the outer edge portion 105A. Accordingly, as shown in FIG. 1, when the RFID tag 100 is attached to the attachment target 200, the outer sides of the inlay 101, the magnetic sheet 102, and the dielectric layer 103 are completely covered with the label paper 105. The outer edge portion 105A of the contact with the application target 200 . That is, the entire RFID tag 100 is attached to the attachment target 200 by the adhesive 106 on the outer edge portion 105A of the label paper 105 .
  • an adhesive can be used, for example, in a usage environment in which it is used for a long period of time. However, once the adhesive has cured, it may become difficult to remove.
  • the adhesive usually allows the RFID tag to be peeled off from the target article manually by an operator, etc., and depending on the type of adhesive, the RFID tag can be re-attached after peeling, and the RFID tag can be used. May be reusable.
  • the adhesive is not applied between the dielectric layer 103 and the attachment target 200, and the dielectric layer 103 does not have to be adhered (adhered) to the sticking object 200 .
  • a release paper 107 is arranged below the dielectric layer 103 on the RFID tag 100 before use.
  • the release paper 107 is, for example, formed to have a size equal to or larger than that of the label paper 105, and the label paper 105 and the release paper 107 are adhered to each other by the adhesive 106 on the outer edge portion.
  • the adhesive 106 on the outer edge portion 105A of the label paper 105 can be prevented from being exposed to the outside before being used for attachment to the attachment target 200, and the adhesive strength can be maintained.
  • the release paper 107 is peeled off from the RFID tag 100 , and the exposed adhesive 106 of the label paper 105 sticks the RFID tag 100 to the sticking object 200 .
  • the release paper 107 may be formed larger than the one illustrated in FIG. As a result, manufacturing efficiency and transport efficiency can be improved.
  • the release paper 107 is attached to an area of 50% or more of the area of the RFID tag 100 .
  • a plurality of RFID tags 100 are arranged on a release paper 107 extending in one direction, and the release paper 107 including the RFID tags 100 is rolled.
  • the roll-shaped release paper 107 is pulled out and the printing process is applied to each RFID tag 100.
  • the roll-shaped release paper 107 is re-rolled and stored. This is to prevent the RFID tag 100 from detaching from the roll-shaped release paper 107 in such a manufacturing process and a printing process.
  • FIG. 21 is a lamination cross-sectional view of an RFID tag 100A according to a modification.
  • the label paper 105 may have the same size as the inlay 101, the magnetic sheet 102, and the dielectric layer 103.
  • the adhesive 106 is applied to the lower surface of the dielectric layer 103 facing the object 200 to be adhered, so that the dielectric layer 103 adheres to the object 200 to be adhered.
  • the entire RFID tag 100A is attached to the attachment target 200 by being adhered.
  • FIG. 4 is a plan view showing an example of another shaped slot 21A of the slot antenna 20. As shown in FIG.
  • the shape of the slot of the slot antenna 20 may be a shape having only a pair of parallel portions 22A and no vertical portion, such as the slot 21A shown in FIG. 4, for example.
  • the parallel portion 22A has an opening area larger than that of the parallel portion 22 in FIG. 3 toward the extending direction of the vertical portion 23 in FIG. 3 and a width in the y direction.
  • the width of the slit 30 is formed wide so that the region of the slit 30 includes the pair of parallel portions 22A of the slot 21A.
  • FIG. 5 is a flow chart showing an example of a method for manufacturing the RFID tag 100 according to the embodiment.
  • step S1 a magnetic sheet 102 (slit magnetic sheet) provided with slits 30 separating magnetic layers having magnetic properties is formed.
  • Such a slitted magnetic sheet 102 is formed on a polyester synthetic film (manufactured by Toyobo Co., Ltd., "Crisper K1211 #38 ⁇ ") at a speed of 3 m/min by, for example, a roll-to-roll method.
  • a striped pattern is formed by using a magnetic shield paint using a coater, and the magnetic shield paint is passed through a curing furnace of 30 m while raising the temperature from 40°C to 80°C.
  • step S2 the slitted magnetic sheet 102 formed in step S1 and the inlay 101 are laminated.
  • the slits 30 provided in the magnetic sheet 102 in step S1 are formed so as to be arranged in a region overlapping the slots 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated in step S2.
  • step S3 the dielectric layer 103 is laminated on the surface of the magnetic sheet 102 opposite to the inlay 101.
  • steps S2 and S3 may be reversed to laminate the inlay 101 and the magnetic sheet 102 after the magnetic sheet 102 and the dielectric layer 103 are laminated.
  • step S4 a film-based tack paper (label paper) 105 is laminated on the surface of the inlay 101 opposite to the magnetic sheet 102 .
  • the RFID tag 100 includes an inlay 101 having an IC chip 10 on which identification information is recorded, a slot antenna 20 connected to the IC chip 10, and an object 200 to which the inlay 101 is attached. and a magnetic sheet 102 laminated on the side.
  • the slot antenna 20 is formed of a metal thin film, and the slot antenna 20 is provided with a slot 21 formed by cutting out a part of the metal thin film.
  • the magnetic sheet 102 is provided with slits 30 that separate the magnetic layers having magnetic properties. This slit 30 is arranged in a region overlapping the slot 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated.
  • the slit 30 in the magnetic sheet 102 in this way, it is possible to increase the communicable distance of the RFID tag 100 in the UHF band regardless of the type of the object 200 to be attached, and improve the communication performance (Fig. 22).
  • long-distance communication and batch reading of a plurality of objects are possible, and the communicable distance of the UHF band can be increased.
  • the conventional RFID tag cannot communicate with the antenna in the tag, which may hinder the reading of the identification information.
  • the effect of being able to improve the performance is particularly remarkable when the sticking target 200 is made of metal.
  • the overall thickness of the RFID tag is 3.5 mm or more in order to secure the interval, and it is difficult to reduce the thickness of the RFID tag.
  • the thickness of the RFID tag of this embodiment is 1 mm or less, and can be made thinner than conventional RFID tags that do not use a magnetic sheet.
  • the thickness of the RFID tag including the label paper and the release paper can be about 350 ⁇ m, and the thickness can be significantly reduced as a metal-compatible RFID tag.
  • the dielectric layer 103 further laminated on the attachment target 200 side of the magnetic sheet 102 can further increase the communicable distance in the UHF band. can be further improved.
  • the RFID tag 100 can be applied to both electromagnetic induction wireless tags and radio wave wireless tags.
  • a predetermined wireless communication distance with a reader can be secured.
  • the predetermined wireless communication distance ranges, for example, from 0m to 20m.
  • the RFID tag 100 can be applied not only to radio waves in the UHF band, but also to radio waves in the VHF band, SHF band, and the like.
  • the frequency used by the RFID tag 100 is a UHF band frequency, such as 860 to 960 MHz, 915 to 925 MHz, etc.
  • the UHF band has a higher frequency than the VHF band, so the wavelength becomes shorter, which is advantageous for miniaturizing the antenna. is. Therefore, by forming the RFID tag 100 into a shape suitable for radio waves in the UHF band, the size of the IC chip 10 can be reduced, and an inexpensive wireless tag with a small memory capacity can be obtained.
  • Examples 1 to 5 and Comparative Examples 1 and 2 were set as follows, and the effect on communication performance according to the change in the width of the slit 30 of the magnetic sheet 102 was verified.
  • Example 1 An inlay 101, a magnetic sheet 102 with a thickness of 100 ⁇ m, and a dielectric layer 103 made of foamed PET with a thickness of 38 ⁇ m were laminated to produce the RFID tag 100 shown in FIG.
  • a slot antenna 20 was formed by sticking a 10 ⁇ m aluminum sheet on a 38 ⁇ m thick PET film by dry lamination, and an IC chip 10 was mounted at a prescribed position.
  • the label paper 105 was removed.
  • the antenna pattern of the slot 21 of the slot antenna 20 has the shape shown in FIG. The dimensions of each part of the slot antenna 20 and slot 21 are shown in FIG.
  • the magnetic sheet 102 was prepared by the following procedure.
  • the magnetic paint consists of 55.2 parts by mass of Fe--Cr alloy (manufactured by Sanyo Special Steel Co., Ltd., "FKTE231”) as a magnetic filler, and polyester-based polyurethane (manufactured by Arakawa Chemical Industries, Ltd., "Uriano 2456”) as a binder resin.
  • Average molecular weight 30000 9.9 parts by mass, 22.6 parts by mass of toluene as an organic solvent, 0.4 parts by mass of a phosphate polyester dispersant (manufactured by BYK Chemie Japan Co., Ltd., "BYK-111") as a dispersant, and , and 0.2 parts by mass of a non-silicone antifoaming agent (“BYK-1752” manufactured by BYK Chemie Japan Co., Ltd.) as an antifoaming agent.
  • a phosphate polyester dispersant manufactured by BYK Chemie Japan Co., Ltd.
  • BYK-111 phosphate polyester dispersant
  • BYK-1752 non-silicone antifoaming agent
  • the slit 30 of the magnetic sheet 102 was formed to have a width of 2 mm in the y direction with the center of the magnetic sheet 102 in the y direction as the center position in the width direction, as shown in FIG.
  • the frequency characteristics of the RFID tag 100 were measured using an RFID tag performance inspection device (Tagformance Pro, manufactured by Voyantic) in a state in which the RFID tag 100 thus produced was attached to the attachment target 200 of the SUS plate.
  • the measurement frequency band of radio waves for wireless communication during measurement was set to 700 to 1200 MHz, and EIRP (Equivalent Isotropically Radiated Power) was set to 3.28W.
  • Example 2 The RFID tag 100 was produced in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 5 mm, and the frequency characteristics were measured.
  • Example 3 The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was set to 10 mm, and the frequency characteristics were measured.
  • Example 4 The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was 18 mm, and the frequency characteristics were measured.
  • Example 5 The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was set to 25 mm, and the frequency characteristics were measured.
  • the RFID tag 100 was produced in the same manner as in Example 1, except that the magnetic sheet 102 was not provided with the slit 30, and the frequency characteristics were measured.
  • An RFID tag 100 was produced in the same manner as in Example 1, except that the magnetic sheet 102 was omitted. That is, an RFID tag was produced by laminating an inlay 101 and a dielectric layer 103 having a thickness of 38 ⁇ m. Further, the frequency characteristics of the produced RFID tag were measured in the same manner as in the first embodiment.
  • FIG. 7 is a diagram showing frequency characteristics of RFID tags of Examples 1 to 5 and Comparative Example 2.
  • FIG. 7 (A) is Example 1, (B) is Example 2, (C) is Example 3, (D) is Example 4, (E) is Example 5, and (F) is a comparative example. 2 shows the frequency characteristics of FIG.
  • the horizontal axis represents the frequency of radio waves for wireless communication
  • the vertical axis represents the communicable distance from the RFID tag 100 to the reader.
  • wireless communication could not be performed between the RFID tag 100 and the reader.
  • wireless communication could not be performed in the frequency band of about 870 MHz or less.
  • wireless communication could not be performed in all frequency bands.
  • the communicable distance at a predetermined frequency of 920 MHz included in the UHF band is about 2.0 m in Example 1, about 3 m in Example 2, and about 4.5 m in Example 3.
  • Example 4 was about 4.5 m
  • Example 5 was about 2.5 m
  • Comparative Example 2 was about 1.5 m.
  • the communicable distance also increases.
  • the maximum communicable distance is about 4.5m.
  • the peak position of the frequency characteristics is included in the range of 860 to 960 MHz, which is the frequency of the UHF band.
  • Example 5 shown in FIG. 7(E) when the slit width was further increased, the peak position of the frequency characteristics moved to the high frequency side, and the communicable distance in the UHF band (for example, around 920 MHz) slightly decreased.
  • the communicable distance can be increased, and in particular, the communicable distance in the UHF band can be increased. shown that it can be done.
  • the communicable distance can be maximized by setting the width of the slit 30 to 10 to 18 mm.
  • the width of the slit 30 has an optimum range.
  • Examples 6 to 9 were set as follows, and the magnetic properties of the magnetic sheet 102, specifically, the influence on the communication performance according to the change in the ratio of the magnetic powder was verified.
  • Example 6 The width of the magnetic sheet 102 was set to 18 mm, which is within the optimum range among Examples 1 to 5 above.
  • the magnetic layer 102A of the magnetic sheet 102 has a magnetic powder ratio of 100% and a dielectric powder ratio of 0%.
  • the RFID tag 100 was produced under the same conditions as in Example 1 above, and the frequency characteristics were measured.
  • Example 7 An RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 70% and a dielectric powder ratio of 30%, and the frequency characteristics were measured. did.
  • Example 8 The RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 30% and a dielectric powder ratio of 70%, and the frequency characteristics were measured. did.
  • Example 9 An RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 0% and a dielectric powder ratio of 100%, and the frequency characteristics were measured. did.
  • FIG. 8 is a diagram showing frequency characteristics of RFID tags of Examples 6 to 9.
  • FIG. 8 (A) shows the frequency characteristics of the sixth embodiment, (B) the seventh embodiment, (C) the eighth embodiment, and (D) the ninth embodiment. The outline of each figure is the same as that of FIG.
  • the communicable distance at a predetermined frequency of 920 MHz included in the UHF band is about 4.5 m in Example 6, about 3.5 m in Example 7, and about 2.5 m in Example 8. , and about 1.8 m in Example 9. Further, the position of the peak of the frequency characteristics is about 900 to 960 MHz in Example 6, about 940 to 1025 MHz in Example 7, about 1010 to 1060 MHz in Example 8, and about 1010 MHz in Example 9. Met.
  • Examples 10 to 13 were set as follows, and the influence on communication performance depending on the presence or absence of the dielectric layer 103 was verified.
  • Example 10 As in Example 5 above, the RFID tag 100 was produced by setting the width of the slit 30 of the magnetic sheet 102 to 25 mm and the thickness of the magnetic sheet 102 to 100 ⁇ m. The produced RFID tag 100 was attached to a steel locker, and the communicable distance was measured using an off-the-shelf handy reader (trade name: AsReaderGUN, manufactured by Asterisk, output 1 W).
  • AsReaderGUN manufactured by Asterisk
  • Example 11 The RFID tag 100 was produced in the same manner as in Example 10, except that the dielectric layer 103 was omitted, and the frequency characteristics were measured.
  • Example 12 The RFID tag 100 was produced in the same manner as in Example 10, except that the thickness of the magnetic sheet 102 was 200 ⁇ m, and the frequency characteristics were measured.
  • Example 13 The RFID tag 100 was produced in the same manner as in Example 12, except that the dielectric layer 103 was omitted, and the frequency characteristics were measured.
  • Table 1 shows the measurement results of the communication distances of the RFID tags of Examples 10-13.
  • Example 10 provided with the dielectric layer 103 can increase the communicable distance. Moreover, even in the twelfth and thirteenth embodiments in which the thickness of the magnetic sheet 102 is 200 ⁇ m, the twelfth embodiment having the dielectric layer 103 can increase the communicable distance. From the above, it was shown that the communication performance can be improved by providing the dielectric layer 103 to the RFID tag regardless of the change in the thickness of the magnetic sheet 102 .
  • Examples 14 to 19 were set as follows, and the effect on communication performance according to the change in the shape of the slot antenna 20 was verified. Specifically, the shape of the slot antenna 20 was changed using a simulator, and changes in impedance were confirmed.
  • FIG. 9 is a diagram showing the shape of the slot antenna 20-1 used in the fourteenth embodiment.
  • a model of the slot antenna 20-1 having the shape shown in FIG. 9 was created on the simulator.
  • the shape and dimensions of each part of the slot antenna 20-1 shown in FIG. 9 are the same as those of the slot antenna 20 formed in Example 1 shown in FIG.
  • the impedance was measured on a simulator.
  • FIG. 10 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-1 of Example 14.
  • FIG. The vertical axis in FIG. 10 indicates the values of real and imaginary impedances.
  • the horizontal axis of FIG. 10 indicates frequency [MHz].
  • the dashed-dotted line graph (plotted with circles) shown in FIG. 10 plots the real number of the impedance corresponding to each frequency.
  • the solid-line graph (graph with square plots) shown in FIG. 10 plots the imaginary number of the impedance corresponding to each frequency.
  • FIG. 11 is a diagram showing the shape of the slot antenna 20-2 used in the fifteenth embodiment.
  • the slot 21 is formed such that the length of the parallel portion 22 of the slot 21 is shorter than that of the slot antenna 20-1 of the fourteenth embodiment.
  • the impedance was measured on a simulator.
  • FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-2 of the fifteenth embodiment. The outline of FIG. 12 is similar to that of FIG.
  • FIG. 13 is a diagram showing the shape of the slot antenna 20-3 used in the sixteenth embodiment.
  • the slot 21 is formed such that the length of the parallel portion 22 of the slot 21 is shorter than that of the slot antenna 20-2 of the fifteenth embodiment.
  • the impedance was measured on a simulator.
  • FIG. 14 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-3 of the sixteenth embodiment. The outline of FIG. 14 is similar to that of FIG.
  • FIG. 15 is a diagram showing the shape of the slot antenna 20-4 used in the seventeenth embodiment.
  • the slot 21 is formed so that the vertical portion 23 of the slot 21 is eliminated and only the parallel portion 22 is provided.
  • the length of the parallel portion 22 of the slot 21 is the same as that of the slot antenna 20-1 of the fourteenth embodiment.
  • the impedance was measured on a simulator.
  • FIG. 16 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-4 of the seventeenth embodiment. The outline of FIG. 16 is similar to that of FIG.
  • FIG. 17 is a diagram showing the shape of the slot antenna 20-5 used in the eighteenth embodiment.
  • the slot 21 is formed such that the width of the parallel portion 22 of the slot 21 is larger than that of the slot antenna 20-4 of the seventeenth embodiment.
  • the impedance was measured on a simulator.
  • FIG. 18 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-5 of the eighteenth embodiment. The outline of FIG. 18 is similar to that of FIG.
  • FIG. 19 is a diagram showing the shape of the slot antenna 20-6 used in the nineteenth embodiment.
  • the slot antenna 20-6 of the nineteenth embodiment is formed so that the dimension in the lateral direction (y direction) is shorter than that of the slot antenna 20-1 of the fourteenth embodiment.
  • the shape of the slot 21 is the same as that of the slot antenna 20-1 of the fourteenth embodiment.
  • FIG. 20 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-6 of Example 19. In FIG. The outline of FIG. 20 is similar to that of FIG.
  • Comparative verification of each of Examples 14 to 19 was performed based on the impedance characteristics of the slot antenna 20-1 of Example 14, which has the same shape and dimensions as the actual slot antenna 20 used in Example 1 and the like. .
  • the impedance characteristics of the slot antenna 20-1 of Example 14 which has the same shape and dimensions as the actual slot antenna 20 used in Example 1 and the like.
  • FIG. 22 is a diagram showing the results of evaluating the influence of the RFID tag of Example 1 on each kind of metal as the attachment target 200 in the present embodiment described above. However, in this evaluation, the label paper 105 was not used, and both ends of the tab were fixed to a metal plate with an adhesive tape.
  • the RFID tag of this embodiment can exhibit good communication performance for each metal type.
  • REFERENCE SIGNS LIST 100 RFID tag 101 inlay 10 IC chip 20 slot antenna 21 slot 22 pair of parallel parts 23 pair of vertical parts 102 magnetic sheet 30 slit 103 dielectric layer 200 attachment object

Abstract

An RFID tag (100) comprises: an inlay (101) having an IC chip (10) in which identification information is recorded, and a slot antenna (20) connected to the IC chip (10); and a magnetic sheet (102) layered on the inlay (101) on the adhered object side. The slot antenna (20) is formed of a metal thin film, and a slot (21), formed by cutting out a portion of the metal thin film in a long narrow shape, is provided in the slot antenna (20). The magnetic sheet (102) is provided with a slit (30) that divides a magnetic layer having magnetic characteristics. The slit (30) is disposed in a region which overlaps the slot (21) of the inlay (101) in a state in which the magnetic sheet (102) and the inlay (101) are layered.

Description

RFIDタグ及びRFIDタグの製造方法RFID tag and RFID tag manufacturing method
 本開示は、RFIDタグ及びRFIDタグの製造方法に関する。 The present disclosure relates to RFID tags and RFID tag manufacturing methods.
 物流管理や商品管理のため、貼付対象物に貼付されるRFID(Radio Frequency Identification)タグが普及している。RFIDタグは、ICチップとICチップに電気的に接続されるアンテナとを備える。RFIDタグは、無線タグ、ICタグ、RF-IDタグ、RFタグと呼ばれることもある。 RFID (Radio Frequency Identification) tags that are affixed to objects to be affixed are widely used for logistics management and product management. An RFID tag includes an IC chip and an antenna electrically connected to the IC chip. RFID tags are also called wireless tags, IC tags, RF-ID tags, and RF tags.
 このようなRFIDタグが貼付される貼付対象物が金属製である場合、タグ内のアンテナによる通信ができず、識別情報の読み出しに支障をきたすことがある。これは、金属がRFIDタグの周辺にあると、データを送受信するリーダライタからRFIDタグに送られた電磁波が、金属部で渦電流として損失してしまうため、ICチップからデータを再びアンテナに打ち返すためのエネルギが効率的に得られないことが原因と推測される。 If the object to which such an RFID tag is attached is made of metal, communication by the antenna inside the tag may not be possible, which may hinder reading of the identification information. This is because if there is metal around the RFID tag, the electromagnetic wave sent from the reader/writer that transmits and receives data to the RFID tag is lost as eddy current in the metal part, so the data is sent back from the IC chip to the antenna again. It is presumed that the cause is that the energy for this is not obtained efficiently.
 これらの問題を解決する手段として、磁性シートの使用が有効であることが知られている。RFIDタグと、貼付対象物である金属との間に磁性シートを挟むことで、アンテナが受けた電磁波を磁性シート内部で循環させ、ICチップに供給するエネルギを効率的に伝送することができる(例えば非特許文献1参照)。 It is known that the use of magnetic sheets is effective as a means of solving these problems. By sandwiching the magnetic sheet between the RFID tag and the metal object to be attached, the electromagnetic waves received by the antenna are circulated inside the magnetic sheet, and the energy supplied to the IC chip can be efficiently transmitted ( For example, see Non-Patent Document 1).
 ところで、RFIDタグの通信に用いられる周波数帯は、HF帯(13.56MHz、電磁誘導方式)と比較して長距離通信や複数の対象物の一括読み取りが可能となるUHF帯(電波方式)のニーズが高まっている。しかしながら、従来のRFIDタグと金属との間に磁性シートを挟む構成では、UHF帯で通信ができない虞がある。 By the way, the frequency band used for RFID tag communication is the UHF band (radio wave method), which enables long-distance communication and batch reading of multiple objects compared to the HF band (13.56 MHz, electromagnetic induction method). Needs are growing. However, there is a possibility that communication cannot be performed in the UHF band with a conventional configuration in which a magnetic sheet is sandwiched between an RFID tag and metal.
 本開示は、通信性能を向上できるRFIDタグ及びRFIDタグの製造方法を提供することを目的とする。 An object of the present disclosure is to provide an RFID tag capable of improving communication performance and a method for manufacturing the RFID tag.
 本発明の実施形態の一観点に係るRFIDタグは、貼付対象物に貼付されるRFIDタグであって、識別情報が記録されるICチップと、前記ICチップに接続されるスロットアンテナと、を有するインレイと、前記インレイの前記貼付対象物側に積層される磁性シートと、を備え、前記スロットアンテナは金属薄膜で形成され、前記スロットアンテナには、前記金属薄膜の一部が細長く切り抜かれたスロットが設けられ、前記磁性シートには、磁性特性を有する磁性層を区分するスリットが設けられ、前記スリットは、前記磁性シートと前記インレイとが積層された状態で、前記インレイの前記スロットと重なる領域に配置される。 An RFID tag according to one aspect of an embodiment of the present invention is an RFID tag attached to an object to be attached, and has an IC chip on which identification information is recorded and a slot antenna connected to the IC chip. An inlay and a magnetic sheet laminated on the side of the object to be adhered to the inlay, wherein the slot antenna is formed of a metal thin film, and the slot antenna is formed by cutting out a part of the metal thin film into a long and narrow slot. The magnetic sheet is provided with a slit that separates a magnetic layer having magnetic properties, and the slit is a region that overlaps the slot of the inlay in a state in which the magnetic sheet and the inlay are laminated. placed in
 同様に、本発明の実施形態の一観点に係るRFIDタグの製造方法は、磁性特性を有する磁性層を区分するスリットが設けられる磁性シートを形成するステップと、識別情報が記録されるICチップと、前記ICチップに接続されるスロットアンテナと、を有するインレイと、前記形成するステップにて形成された前記磁性シートを積層するステップと、を含み、前記スロットアンテナは金属薄膜で形成され、前記スロットアンテナには、前記金属薄膜の一部が細長く切り抜かれたスロットが設けられ、前記スリットは、前記磁性シートと前記インレイとが積層された状態で、前記インレイの前記スロットと重なる領域に配置される。 Similarly, a method for manufacturing an RFID tag according to one aspect of an embodiment of the present invention includes the steps of forming a magnetic sheet provided with slits for separating a magnetic layer having magnetic properties, and an IC chip on which identification information is recorded. a slot antenna connected to the IC chip; and a step of stacking the magnetic sheets formed in the forming step, wherein the slot antenna is formed of a metal thin film, and the slot antenna is formed of a metal thin film. The antenna is provided with a slot obtained by cutting out a part of the metal thin film in a long and narrow shape, and the slit is arranged in a region overlapping the slot of the inlay in a state in which the magnetic sheet and the inlay are laminated. .
 本開示によれば、通信性能を向上できるRFIDタグ及びRFIDタグの製造方法を提供することができる。 According to the present disclosure, it is possible to provide an RFID tag capable of improving communication performance and a method for manufacturing an RFID tag.
実施形態に係るRFIDタグの積層断面図Stacked sectional view of the RFID tag according to the embodiment 図1に示すRFIDタグの分解斜視図FIG. 2 is an exploded perspective view of the RFID tag shown in FIG. 図1に示すRFIDタグの上方から視た平面図FIG. 2 is a plan view of the RFID tag shown in FIG. 1 as viewed from above; スロットアンテナの他の形状のスロットの一例を示す平面図A plan view showing an example of another shaped slot of a slot antenna 実施形態に係るRFIDタグの製造方法の一例を示すフローチャートFlowchart showing an example of a method for manufacturing an RFID tag according to an embodiment 実施例1で用いるスロットアンテナとスロットの各部の寸法を示す図FIG. 4 is a diagram showing the dimensions of each part of the slot antenna and the slot used in the first embodiment; 実施例1~5及び比較例2のRFIDタグの周波数特性を示す図FIG. 4 shows frequency characteristics of RFID tags of Examples 1 to 5 and Comparative Example 2; 実施例6~9のRFIDタグの周波数特性を示す図FIG. 10 is a diagram showing frequency characteristics of RFID tags of Examples 6 to 9; 実施例14で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 14. 実施例14のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 14; 実施例15で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 15. 実施例15のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 15 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 15; 実施例16で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 16. 実施例16のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 16; 実施例17で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 17. 実施例17のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 17; 実施例18で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 18. 実施例18のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 18; 実施例19で用いたスロットアンテナの形状を示す図The figure which shows the shape of the slot antenna used in Example 19. 実施例19のスロットアンテナのインピーダンス特性の計測結果を示す図FIG. 19 is a diagram showing measurement results of impedance characteristics of the slot antenna of Example 19; 変形例に係るRFIDタグの積層断面図Stacked sectional view of an RFID tag according to a modified example 実施形態に係るRFIDタグの各金属種に対する特性例を示す図FIG. 4 is a diagram showing an example of characteristics for each metal type of the RFID tag according to the embodiment;
 以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Embodiments will be described below with reference to the accompanying drawings. In order to facilitate understanding of the description, the same constituent elements in each drawing are denoted by the same reference numerals as much as possible, and overlapping descriptions are omitted.
 なお、以下の説明において、x方向、y方向、z方向は互いに垂直な方向である。x方向はインレイ101や磁性シート102の長手方向であり、スロット21の平行部22及びスリット30の延在方向である。y方向は、インレイ101や磁性シート102の短手方向であり、スロット21の垂直部23の延在方向である。z方向は、インレイ101や磁性シート102などRFIDタグ100の各構成要素の積層方向である。また、以下では説明の便宜上、z正方向側を上側、z負方向側を下側とも表現する場合がある。 In the following description, the x-direction, y-direction, and z-direction are directions perpendicular to each other. The x-direction is the longitudinal direction of the inlay 101 and the magnetic sheet 102 and the extending direction of the parallel portion 22 of the slot 21 and the slit 30 . The y direction is the lateral direction of the inlay 101 and the magnetic sheet 102 and the extending direction of the vertical portion 23 of the slot 21 . The z-direction is the stacking direction of each component of the RFID tag 100 such as the inlay 101 and the magnetic sheet 102 . In the following, for convenience of explanation, the positive z direction side may also be referred to as the upper side, and the negative z direction side may also be referred to as the lower side.
 図1は、実施形態に係るRFIDタグ100の積層断面図である。図2は、図1に示すRFIDタグ100の分解斜視図である。図3は、図1に示すRFIDタグ100の上方から視た平面図である。RFIDタグ100は、貼付対象物200に貼付される略平面状の装置である。図1~図3に示すように、RFIDタグは、インレイ101と、磁性シート102と、誘電層103とを備える。貼付対象物200は、例えば金属である。金属としては、鉄、アルミニウム、銅などの金属の他、鉄合金、アルミ合金、銅合金等の金属の合金を含む。なお、貼付対象物200には、金属以外の他の材料、例えばプラスチックス、紙、セラミックスなども含まれる。 FIG. 1 is a laminated cross-sectional view of the RFID tag 100 according to the embodiment. FIG. 2 is an exploded perspective view of the RFID tag 100 shown in FIG. FIG. 3 is a top plan view of the RFID tag 100 shown in FIG. The RFID tag 100 is a substantially planar device that is attached to an attachment target 200 . As shown in FIGS. 1-3, the RFID tag comprises an inlay 101, a magnetic sheet 102 and a dielectric layer 103. FIG. The sticking target 200 is, for example, metal. Metals include metals such as iron, aluminum, and copper, as well as metal alloys such as iron alloys, aluminum alloys, and copper alloys. Note that the object 200 to be affixed includes materials other than metal, such as plastics, paper, and ceramics.
 実施形態に係るRFIDタグ100の主な使用用途としては、ドラム缶、H鋼等の比較的大きな金属製品への貼り付けが対象であり、これらの金属製品個々の在庫管理等を含む流通経路上の追跡(トレサビリティ)に使用できる。その他に、金属製品以外にも、本件のタグを貼り付けて使用してもよい。 The main application of the RFID tag 100 according to the embodiment is to attach it to relatively large metal products such as drums and H steel, and to manage the inventory of each of these metal products. Can be used for tracking (traceability). In addition to metal products, the tag of this case may be attached and used.
 さらに、本実施形態のRFIDタグは、可撓性を有しており、被着体の表面が湾曲していても貼り付け可能である。湾曲状に曲げられて状態においても、良好な通信性能を発揮でき、ドラム缶やスプレー缶などの曲面を有する物品の識別にも本実施形態のRFIDタグを使用することができ、用途の多様化を図ることができる。 Furthermore, the RFID tag of this embodiment is flexible and can be attached even if the surface of the adherend is curved. Good communication performance can be exhibited even when bent into a curved shape, and the RFID tag of the present embodiment can be used to identify articles with curved surfaces such as drums and spray cans, thus diversifying the applications. can be planned.
 インレイ101は、RFIDタグ100の機能に関する要素を含む部分であり、図2、図3に示すように、識別情報が記録されるICチップ10と、ICチップ10に接続されるスロットアンテナ20と、を有する。スロットアンテナ20は金属薄膜で形成される。スロットアンテナ20には、金属薄膜の一部が細長く切り抜かれたスロット21が設けられる。インレイ101は、例えばPETフィルム上に、アルミシートをドライラミネートで貼り付けたスロットアンテナ20が形成され、規定の位置にICチップ10が実装されている。 The inlay 101 is a part including elements related to the function of the RFID tag 100, and as shown in FIGS. have The slot antenna 20 is made of a metal thin film. The slot antenna 20 is provided with a slot 21 obtained by cutting out a part of the thin metal film. The inlay 101 has a slot antenna 20 formed by dry laminating an aluminum sheet on a PET film, for example, and an IC chip 10 is mounted at a prescribed position.
 インレイ101の主面の中央にICチップ10が配置され、スロットアンテナ20のスロット21は、ICチップ10を挟んで所定方向(図2、図3の例ではx方向)に平行に延在する一対の平行部22と、これらの一対の平行部22と直交する方向(y方向)に延在する一対の垂直部23とを有する。一対の垂直部23は、ICチップ10を挟んでx方向に略等間隔の位置にそれぞれ配置される。 The IC chip 10 is arranged in the center of the main surface of the inlay 101, and the slot 21 of the slot antenna 20 is a pair extending in parallel in a predetermined direction (the x direction in the examples of FIGS. 2 and 3) with the IC chip 10 interposed therebetween. and a pair of vertical portions 23 extending in a direction orthogonal to the pair of parallel portions 22 (y-direction). The pair of vertical portions 23 are arranged at approximately equal intervals in the x direction with the IC chip 10 interposed therebetween.
 なお、ICチップ10のインピーダンスの周波数特性は以下のとおりである。
・866MHz:15-j265(Ω)
・915MHz:14-j252(Ω)
・953MHz:13-j242(Ω)
The impedance frequency characteristics of the IC chip 10 are as follows.
・866MHz: 15-j265 (Ω)
・915MHz: 14-j252 (Ω)
・953MHz: 13-j242 (Ω)
 スロットアンテナ20のインピーダンスは、915~920MHzで上記のICチップ10のインピーダンスと整合するように設計されている。このようなインピーダンスの整合により、電流の損失が少なくなり、損失を少なくすることで通信可能距離が増大する。 The impedance of the slot antenna 20 is designed to match the impedance of the IC chip 10 at 915-920 MHz. Such impedance matching reduces current loss, and the reduced loss increases the communicable distance.
 磁性シート102は、磁性材料を含有するシート材であり、インレイ101の貼付対象物200側に積層される。磁性シート102は、例えばステンレス系合金などの磁性粉末をゴム材や樹脂等に均一かつ配向して分散するように練り込んで形成される。図2、図3に示すように、磁性シート102には、磁性特性を有する磁性層を区分するスリット30が設けられる。スリット30は、磁性シート102とインレイ101とが積層された状態で、インレイ101のスロット21と重なる領域に配置される。 The magnetic sheet 102 is a sheet material containing a magnetic material, and is laminated on the inlay 101 on the sticking object 200 side. The magnetic sheet 102 is formed by, for example, kneading magnetic powder such as a stainless steel alloy into a rubber material, resin, or the like so as to uniformly and oriented and disperse the powder. As shown in FIGS. 2 and 3, the magnetic sheet 102 is provided with slits 30 that separate the magnetic layers having magnetic properties. The slit 30 is arranged in a region overlapping the slot 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated.
 スリット30は、例えば図3に示すように、磁性シート102のy方向の中央の位置に、x方向に沿って延在するよう形成される。また、スロットアンテナ20のスロット21と、磁性シート102のスリット30との配置は、例えば図3に示すように、スリット30の領域にスロット21のうち少なくとも一対の平行部22の全体が含まれるように配置される。 For example, as shown in FIG. 3, the slit 30 is formed at the center position of the magnetic sheet 102 in the y direction so as to extend along the x direction. Also, the slots 21 of the slot antenna 20 and the slits 30 of the magnetic sheet 102 are arranged such that at least a pair of parallel portions 22 of the slots 21 are entirely included in the area of the slits 30, as shown in FIG. placed in
 磁性シート102には、UHF帯の電波に対して優れた磁気シールド特性を有するものを用いるのが好ましい。磁性シート102は、磁性フィラー、バインダー樹脂等の成分が含まれる磁性塗料を、支持体上に塗布して乾燥させることで得られる。磁性シート102をUHF帯の電波に対して優れた磁気シールド特性を有するものにするためには、乾燥後の磁性シート102の膜厚が、好ましくは500μm以下、より好ましくは300μm以下となるように、磁性塗料が塗布される。また、乾燥後の磁性シート102の膜厚が、好ましくは50μm以上、より好ましくは100μm以下となるように、磁性塗料が塗布される。 For the magnetic sheet 102, it is preferable to use a material having excellent magnetic shielding properties against radio waves in the UHF band. The magnetic sheet 102 is obtained by coating a support with a magnetic paint containing components such as a magnetic filler and a binder resin and drying the paint. In order for the magnetic sheet 102 to have excellent magnetic shielding properties against radio waves in the UHF band, the film thickness of the magnetic sheet 102 after drying is preferably 500 μm or less, more preferably 300 μm or less. , magnetic paint is applied. In addition, the magnetic paint is applied so that the film thickness of the magnetic sheet 102 after drying is preferably 50 μm or more, more preferably 100 μm or less.
 同様に、磁性シート102をUHF帯の電波に対して優れた磁気シールド特性を有するものにするためには、磁性シートの860~960MHzの周波数帯域における複素比透磁率の損失係数tanδ(μ´/μ´´)は、好ましくは0.3以下、より好ましくは0.28以下である。また、磁性シートの860~960MHzの周波数帯域における複素比透磁率の損失係数tanδ(μ´/μ´´)は、好ましくは0.05以上、より好ましくは0.1以上である。 Similarly, in order for the magnetic sheet 102 to have excellent magnetic shielding properties against radio waves in the UHF band, the loss coefficient tan δ (μ′/ μ″) is preferably 0.3 or less, more preferably 0.28 or less. Further, the loss coefficient tan δ (μ′/μ″) of the complex relative magnetic permeability in the frequency band of 860 to 960 MHz of the magnetic sheet is preferably 0.05 or more, more preferably 0.1 or more.
 なお、本実施の形態におけるタグの厚さ(剥離紙を除く)は、200μm~1000μmであり、好ましくは300~400μmである。また、磁性シートとインレイを貼り合せた状態の厚さ(ラベル紙及び剥離紙は除く)は、150~250μmであり、好ましくは190~210μmであり、より好ましくは200μm程度である。ラベル紙の厚さは、粘着層を含め、50μm~300μmである。剥離紙の厚さは、50μm~300μmである。 The thickness of the tag (excluding the release paper) in this embodiment is 200 μm to 1000 μm, preferably 300 to 400 μm. The thickness of the magnetic sheet and the inlay in a state of being laminated (excluding label paper and release paper) is 150 to 250 μm, preferably 190 to 210 μm, more preferably about 200 μm. The thickness of the label paper is 50 μm to 300 μm including the adhesive layer. The thickness of the release paper is 50 μm to 300 μm.
 同様に、磁性シート102をUHF帯の電波に対して優れた磁気シールド特性を有するものにするためには、磁性シートの860~960MHzの周波数帯域における複素比透磁率の実数部μ´は、好ましくは5.0以上であり、より好ましくは5.2以上である。また、磁性シートの860~960MHzの周波数帯域における複素比透磁率の実数部μ´は、好ましくは7.0以下であり、より好ましくは6.0以下である。 Similarly, in order for the magnetic sheet 102 to have excellent magnetic shielding properties against radio waves in the UHF band, the real part μ′ of the complex relative permeability of the magnetic sheet in the frequency band of 860 to 960 MHz is preferably is 5.0 or more, more preferably 5.2 or more. Further, the real part μ′ of the complex relative permeability of the magnetic sheet in the frequency band of 860 to 960 MHz is preferably 7.0 or less, more preferably 6.0 or less.
 また、上記の複素比透磁率の条件を満たすためには、磁性塗料に含まれる磁性フィラーの材質は、Fe-Cr合金であるのが好ましい。また、磁性フィラーとバインダーの固形分の質量比(磁性フィラーの質量/バインダーの固形分の質量)が70/30以上であるのが好ましく、75/25以上であるのがより好ましく、80/20以上であるのがさらに好ましい。さらに、磁性フィラーとバインダーの固形分の質量比(磁性フィラーの質量/バインダーの固形分の質量)は、95/5以下であるのが好ましく、90/10以下であるのがより好ましく、85/15以下であるのがさらに好ましい。 Further, in order to satisfy the condition of the above complex relative magnetic permeability, the material of the magnetic filler contained in the magnetic paint is preferably an Fe--Cr alloy. Further, the mass ratio of the solid content of the magnetic filler and the binder (mass of the magnetic filler/mass of the solid content of the binder) is preferably 70/30 or more, more preferably 75/25 or more, and 80/20. It is more preferable that it is above. Furthermore, the mass ratio of the solid content of the magnetic filler and the binder (mass of the magnetic filler/mass of the solid content of the binder) is preferably 95/5 or less, more preferably 90/10 or less, and 85/ It is more preferably 15 or less.
 また、磁性塗料に含まれるバインダー樹脂は、エポキシ樹脂、ウレタン樹脂、またはポリエステル樹脂から成る群より選ばれる1種類以上の樹脂であり、エポキシ樹脂が好ましい。 Further, the binder resin contained in the magnetic paint is one or more resins selected from the group consisting of epoxy resins, urethane resins, and polyester resins, preferably epoxy resins.
 誘電層103は、磁性シート102の貼付対象物200側にさらに積層され、磁性シート102と貼付対象物200との間に配置される。図2では、誘電層103は磁性シート102の下方に一体的に図示されている。誘電層103は、例えば厚紙や合成樹脂等の繊維からなる織布や不織布、セラミックガラス等の無機材料のシートなどの絶縁体で形成されるのが好ましい。本実施形態では、誘電層103は、例えば発泡PETで形成される。誘電層103の材料は、比誘電率が1.2~3.0程度であるのものが好ましく、これによりRFIDタグ100の通信距離を増やすことができる。 The dielectric layer 103 is further laminated on the attachment target 200 side of the magnetic sheet 102 and arranged between the magnetic sheet 102 and the attachment target 200 . In FIG. 2, dielectric layer 103 is shown integrally beneath magnetic sheet 102 . The dielectric layer 103 is preferably formed of an insulator such as a woven fabric or non-woven fabric made of fiber such as cardboard or synthetic resin, or a sheet of an inorganic material such as ceramic glass. In this embodiment, the dielectric layer 103 is made of foamed PET, for example. The material of the dielectric layer 103 preferably has a dielectric constant of about 1.2 to 3.0, so that the communication distance of the RFID tag 100 can be increased.
 また、図1に示すように、誘電層103は、インレイ101及び磁性シート102を、貼付対象物200からその厚み分だけ離間させた状態で配置させるスペーサとしても機能する。誘電層103は、外力に応じてインレイ101及び磁性シート102と共に任意に変形可能な材料で形成され、これにより貼付対象物200の貼付面が湾曲している場合でもRFIDタグ100を容易に貼付でき、汎用性を向上できるよう構成されるのが好ましい。 In addition, as shown in FIG. 1, the dielectric layer 103 also functions as a spacer that separates the inlay 101 and the magnetic sheet 102 from the attachment target 200 by the thickness thereof. The dielectric layer 103 is made of a material that can be arbitrarily deformed together with the inlay 101 and the magnetic sheet 102 in response to an external force. , is preferably configured to improve versatility.
 また、RFIDタグ100では、例えば図2に示すように、インレイ101と磁性シート102との間に粘着層104が配置される(図1では図示を省略している)。粘着層104は、積層時には、磁性シート102のスリット30とその下方の誘電層103とによって形成される隙間に進入して、この隙間を埋めることができる。 Also, in the RFID tag 100, for example, as shown in FIG. 2, an adhesive layer 104 is arranged between the inlay 101 and the magnetic sheet 102 (not shown in FIG. 1). During lamination, the adhesive layer 104 can enter the gap formed by the slit 30 of the magnetic sheet 102 and the dielectric layer 103 therebelow to fill the gap.
 また、本実施形態のRFIDタグ100では、インレイ101の上方にさらにラベル紙(フィルム系タック紙)105が配置される。ラベル紙105は、z正方向側の表面に印刷可能である。ラベル紙の素材は適宜選択可能である。 Further, in the RFID tag 100 of this embodiment, a label paper (film-based tack paper) 105 is further arranged above the inlay 101 . The label paper 105 can be printed on the surface in the positive z direction. The material of the label paper can be appropriately selected.
 また、図1に示すように、ラベル紙105のz負方向側の裏面には粘着剤106が塗布されている。ラベル紙105は、インレイ101、磁性シート102、及び誘電層103より大きく形成されており、図2に示すように、インレイ101、磁性シート102、及び誘電層103の外形の全周をラベル紙105の外縁部分105Aが包囲するよう形成されている。これにより、図1に示すように、RFIDタグ100が貼付対象物200に貼付されるときには、インレイ101、磁性シート102、及び誘電層103の外側がラベル紙105によって完全に覆われ、ラベル紙105の外縁部分105Aが貼付対象物200と接触する。つまり、ラベル紙105の外縁部分105Aの粘着剤106によって、RFIDタグ100の全体が貼付対象物200に貼付される。 Further, as shown in FIG. 1, an adhesive 106 is applied to the back surface of the label paper 105 on the negative z direction side. The label paper 105 is formed larger than the inlay 101, the magnetic sheet 102, and the dielectric layer 103, and as shown in FIG. is formed to surround the outer edge portion 105A. Accordingly, as shown in FIG. 1, when the RFID tag 100 is attached to the attachment target 200, the outer sides of the inlay 101, the magnetic sheet 102, and the dielectric layer 103 are completely covered with the label paper 105. The outer edge portion 105A of the contact with the application target 200 . That is, the entire RFID tag 100 is attached to the attachment target 200 by the adhesive 106 on the outer edge portion 105A of the label paper 105 .
 また、粘着剤106は、例えば長期間使用する使用環境においては接着剤を用いることができる。しかし、接着剤は硬化すると剥離が困難になる場合がある。これに対し、粘着剤は、通常、作業者の手作業等でRFIDタグを対象物品から剥離可能であり、さらに、粘着剤の種類によっては剥離後にRFIDタグを再度貼り付け可能でありRFIDタグとして再利用可能となる場合がある。 Also, for the adhesive 106, an adhesive can be used, for example, in a usage environment in which it is used for a long period of time. However, once the adhesive has cured, it may become difficult to remove. On the other hand, the adhesive usually allows the RFID tag to be peeled off from the target article manually by an operator, etc., and depending on the type of adhesive, the RFID tag can be re-attached after peeling, and the RFID tag can be used. May be reusable.
 なお、図1に示す、ラベル紙105の粘着剤106によってRFIDタグ100を貼付する構成の場合には、誘電層103と貼付対象物200との間には粘着剤を塗布せずに、誘電層103を貼付対象物200に接着(粘着)しなくてよい。 In the case of the structure shown in FIG. 1, in which the RFID tag 100 is attached by the adhesive 106 of the label paper 105, the adhesive is not applied between the dielectric layer 103 and the attachment target 200, and the dielectric layer 103 does not have to be adhered (adhered) to the sticking object 200 .
 また、図2に示すように、使用前のRFIDタグ100には、誘電層103より下方に剥離紙107が配置される。剥離紙107は、例えばラベル紙105と同一以上の大きさで形成され、ラベル紙105と剥離紙107とが、外縁部分の粘着剤106によって密着される。これにより、ラベル紙105の外縁部分105Aの粘着剤106が貼付対象物200への貼付に用いられる前に外部に露出することを防止でき、粘着力を保持できる。RFIDタグ100の使用時には、剥離紙107がRFIDタグ100から剥がされて、これにより露出したラベル紙105の粘着剤106によってRFIDタグ100が貼付対象物200に貼付される。 In addition, as shown in FIG. 2, a release paper 107 is arranged below the dielectric layer 103 on the RFID tag 100 before use. The release paper 107 is, for example, formed to have a size equal to or larger than that of the label paper 105, and the label paper 105 and the release paper 107 are adhered to each other by the adhesive 106 on the outer edge portion. As a result, the adhesive 106 on the outer edge portion 105A of the label paper 105 can be prevented from being exposed to the outside before being used for attachment to the attachment target 200, and the adhesive strength can be maintained. When using the RFID tag 100 , the release paper 107 is peeled off from the RFID tag 100 , and the exposed adhesive 106 of the label paper 105 sticks the RFID tag 100 to the sticking object 200 .
 また、剥離紙107は、図2に例示するものよりも大きく形成され、一枚の剥離紙107の上に複数個のRFIDタグ100が配置される構成でもよい。これにより、製造効率や搬送効率を向上できる。 Also, the release paper 107 may be formed larger than the one illustrated in FIG. As a result, manufacturing efficiency and transport efficiency can be improved.
 なお、ラベル紙105の下面の粘着剤106に関して、RFIDタグ100の面積の50%以上の面積が剥離紙107に貼り合わせられることが好ましい。RFIDタグ100の製造工程では、一方向へ延びる剥離紙107上に複数のRFIDタグ100が配置されて、RIDFタグ100を含む剥離紙107がロール状とされる。印刷工程では、ロール状の剥離紙107が引き出されて個々のRFIDタグ100に対して印刷処理が施されて、印刷処理の終了後に再度ロール状とされて保管される。このような製造工程及び印刷工程において、ロール状とされる剥離紙107からのRFIDタグ100の離脱を防ぐためである。 Regarding the adhesive 106 on the lower surface of the label paper 105 , it is preferable that the release paper 107 is attached to an area of 50% or more of the area of the RFID tag 100 . In the manufacturing process of the RFID tag 100, a plurality of RFID tags 100 are arranged on a release paper 107 extending in one direction, and the release paper 107 including the RFID tags 100 is rolled. In the printing process, the roll-shaped release paper 107 is pulled out and the printing process is applied to each RFID tag 100. After the printing process is completed, the roll-shaped release paper 107 is re-rolled and stored. This is to prevent the RFID tag 100 from detaching from the roll-shaped release paper 107 in such a manufacturing process and a printing process.
 なお、RFIDタグ100の積層構造は図1、図2に示すものに限られない。図21は、変形例に係るRFIDタグ100Aの積層断面図である。図21に示すように、ラベル紙105が、インレイ101、磁性シート102、及び誘電層103と同じ大きさで形成される構成でもよい。この場合、ラベル紙105の外縁部分が貼付対象物200には接触できないので、貼付対象物200と対向する誘電層103の下面に粘着剤106が塗布されて、誘電層103が貼付対象物200に接着されることによって、RFIDタグ100Aの全体が貼付対象物200に貼付される。 Note that the laminated structure of the RFID tag 100 is not limited to those shown in FIGS. FIG. 21 is a lamination cross-sectional view of an RFID tag 100A according to a modification. As shown in FIG. 21, the label paper 105 may have the same size as the inlay 101, the magnetic sheet 102, and the dielectric layer 103. FIG. In this case, since the outer edge portion of the label paper 105 cannot contact the object 200 to be adhered, the adhesive 106 is applied to the lower surface of the dielectric layer 103 facing the object 200 to be adhered, so that the dielectric layer 103 adheres to the object 200 to be adhered. The entire RFID tag 100A is attached to the attachment target 200 by being adhered.
 なお、図2、図3に示したスロットアンテナ20のスロット21の形状は一例であり、図2、図3に示した形状には限定されない。図4は、スロットアンテナ20の他の形状のスロット21Aの一例を示す平面図である。 The shape of the slot 21 of the slot antenna 20 shown in FIGS. 2 and 3 is an example, and is not limited to the shapes shown in FIGS. FIG. 4 is a plan view showing an example of another shaped slot 21A of the slot antenna 20. As shown in FIG.
 スロットアンテナ20のスロットの形状は、例えば図4に示すスロット21Aのように、一対の平行部22Aのみを有し、垂直部が無い形状でもよい。図4の例では、平行部22Aは、図3の垂直部23の延在方向に向けて、図3の平行部22よりも開口面積が増えており、y方向の幅が大きくなっている。また、図4の例では、スリット30の領域にスロット21Aの一対の平行部22Aが含まれるように、スリット30の幅が広く形成されている。 The shape of the slot of the slot antenna 20 may be a shape having only a pair of parallel portions 22A and no vertical portion, such as the slot 21A shown in FIG. 4, for example. In the example of FIG. 4, the parallel portion 22A has an opening area larger than that of the parallel portion 22 in FIG. 3 toward the extending direction of the vertical portion 23 in FIG. 3 and a width in the y direction. In addition, in the example of FIG. 4, the width of the slit 30 is formed wide so that the region of the slit 30 includes the pair of parallel portions 22A of the slot 21A.
 図5は、実施形態に係るRFIDタグ100の製造方法の一例を示すフローチャートである。ステップS1では、磁性特性を有する磁性層を区分するスリット30が設けられた磁性シート102(スリット入り磁性シート)が形成される。 FIG. 5 is a flow chart showing an example of a method for manufacturing the RFID tag 100 according to the embodiment. In step S1, a magnetic sheet 102 (slit magnetic sheet) provided with slits 30 separating magnetic layers having magnetic properties is formed.
 このようなスリット入り磁性シート102は、例えば、ロール・トゥ・ロール方式により、ポリエステル系合成フィルム(東洋紡株式会社製、「クリスパーK1211 #38μ」)を速度3m/minで搬送しながら、該フィルム上に、コーターを用いて磁気シールド塗料によるストライプパターンを形成し、40℃から80℃まで温度を上げながら30mの硬化炉を通過させることで、形成できる。 Such a slitted magnetic sheet 102 is formed on a polyester synthetic film (manufactured by Toyobo Co., Ltd., "Crisper K1211 #38μ") at a speed of 3 m/min by, for example, a roll-to-roll method. Second, a striped pattern is formed by using a magnetic shield paint using a coater, and the magnetic shield paint is passed through a curing furnace of 30 m while raising the temperature from 40°C to 80°C.
 ステップS2では、ステップS1にて形成されたスリット入り磁性シート102と、インレイ101とが積層される。 In step S2, the slitted magnetic sheet 102 formed in step S1 and the inlay 101 are laminated.
 なお、ステップS1において磁性シート102に設けられるスリット30は、ステップS2にて磁性シート102とインレイ101とが積層された状態で、インレイ101のスロット21と重なる領域に配置されるよう形成される。 Note that the slits 30 provided in the magnetic sheet 102 in step S1 are formed so as to be arranged in a region overlapping the slots 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated in step S2.
 ステップS3では、磁性シート102のインレイ101と反対側の面に誘電層103が積層される。なお、ステップS2とS3とを逆に行い、磁性シート102と誘電層103とを積層した後に、インレイ101と磁性シート102とを積層する手順でもよい。 In step S3, the dielectric layer 103 is laminated on the surface of the magnetic sheet 102 opposite to the inlay 101. Alternatively, steps S2 and S3 may be reversed to laminate the inlay 101 and the magnetic sheet 102 after the magnetic sheet 102 and the dielectric layer 103 are laminated.
 ステップS4では、インレイ101の磁性シート102とは反対側の面にフィルム系タック紙(ラベル紙)105が積層される。 In step S4, a film-based tack paper (label paper) 105 is laminated on the surface of the inlay 101 opposite to the magnetic sheet 102 .
 このように、本実施形態に係るRFIDタグ100は、識別情報が記録されるICチップ10と、ICチップ10に接続されるスロットアンテナ20と、を有するインレイ101と、インレイ101の貼付対象物200側に積層される磁性シート102と、を備える。スロットアンテナ20は金属薄膜で形成され、スロットアンテナ20には、金属薄膜の一部が細長く切り抜かれたスロット21が設けられる。磁性シート102には、磁性特性を有する磁性層を区分するスリット30が設けられる。このスリット30は、磁性シート102とインレイ101とが積層された状態で、インレイ101のスロット21と重なる領域に配置される。 Thus, the RFID tag 100 according to the present embodiment includes an inlay 101 having an IC chip 10 on which identification information is recorded, a slot antenna 20 connected to the IC chip 10, and an object 200 to which the inlay 101 is attached. and a magnetic sheet 102 laminated on the side. The slot antenna 20 is formed of a metal thin film, and the slot antenna 20 is provided with a slot 21 formed by cutting out a part of the metal thin film. The magnetic sheet 102 is provided with slits 30 that separate the magnetic layers having magnetic properties. This slit 30 is arranged in a region overlapping the slot 21 of the inlay 101 in a state in which the magnetic sheet 102 and the inlay 101 are laminated.
 このように磁性シート102にスリット30を設けることにより、貼付対象物200の種類によらず、RFIDタグ100のUHF帯における通信可能距離を増やすことが可能となり、通信性能を向上できる(後述する図22参照)。また、HF帯と比較して長距離通信や複数の対象物の一括読み取りが可能とUHF帯の通信可能距離を増やすことができるので、汎用性の高いRFIDタグ100を実現できる。 By providing the slit 30 in the magnetic sheet 102 in this way, it is possible to increase the communicable distance of the RFID tag 100 in the UHF band regardless of the type of the object 200 to be attached, and improve the communication performance (Fig. 22). In addition, compared to the HF band, long-distance communication and batch reading of a plurality of objects are possible, and the communicable distance of the UHF band can be increased.
 また、貼付対象物200が金属製であると、従来のRFIDタグではタグ内のアンテナによる通信ができず、識別情報の読み出しに支障をきたすことがあるので、本実施形態に係るRFIDタグ100通信性能を向上できるという効果は、貼付対象物200が金属製であるときに特に顕著となる。 In addition, if the object 200 to be affixed is made of metal, the conventional RFID tag cannot communicate with the antenna in the tag, which may hinder the reading of the identification information. The effect of being able to improve the performance is particularly remarkable when the sticking target 200 is made of metal.
 また、磁性シートを用いない既存の金属用のRFIDタグにおいては、被着体としての金属の影響による通信性能低下を抑えるために、インレイと被着体との間に比較的大きな間隔が必要となり、その間隔を確保するためにRFIDタグの全体の厚みが3.5mm以上であり薄型化が困難であった。 In addition, in existing metal RFID tags that do not use a magnetic sheet, a relatively large gap is required between the inlay and the adherend in order to suppress deterioration in communication performance due to the influence of the metal as the adherend. However, the overall thickness of the RFID tag is 3.5 mm or more in order to secure the interval, and it is difficult to reduce the thickness of the RFID tag.
 これに対して、本実施形態のRFIDタグの厚みは、1mm以下であり、磁性シートを使用しない従来のRFIDタグよりも薄くすることができる。例えば、ラベル紙及び剥離紙を含んだRFIDタグの厚さとして約350μmの厚さとすることができ、金属対応のRFIDタグとして著しく薄型化ができる。 On the other hand, the thickness of the RFID tag of this embodiment is 1 mm or less, and can be made thinner than conventional RFID tags that do not use a magnetic sheet. For example, the thickness of the RFID tag including the label paper and the release paper can be about 350 μm, and the thickness can be significantly reduced as a metal-compatible RFID tag.
 また、著しく薄型化が可能となることで、通常用いられている(汎用の)ラベルプリンターを用いて、ラベルの印刷とICチップへの情報の書き込みとを同時に行うことが可能で、製造効率を一層高めることができる。 In addition, by making it possible to significantly reduce the thickness, it is possible to print labels and write information to IC chips at the same time using a commonly used (general-purpose) label printer, improving manufacturing efficiency. can be further enhanced.
 また、本実施形態に係るRFIDタグ100では、磁性シート102の貼付対象物200側にさらに積層される誘電層103を備えることにより、UHF帯における通信可能距離をさらに増やすことができるので、通信性能をさらに向上できる。 Further, in the RFID tag 100 according to the present embodiment, the dielectric layer 103 further laminated on the attachment target 200 side of the magnetic sheet 102 can further increase the communicable distance in the UHF band. can be further improved.
 実施形態に係るRFIDタグ100は、電磁誘導式の無線タグ、電波式の無線タグの何れにも適用可能である。特に、RFIDタグ100を、電波式の無線タグに適用した場合、リーダとの所定の無線通信距離を確保できる。所定の無線通信距離は、例えば0mから20mまでの範囲である。 The RFID tag 100 according to the embodiment can be applied to both electromagnetic induction wireless tags and radio wave wireless tags. In particular, when the RFID tag 100 is applied to a radio wave type wireless tag, a predetermined wireless communication distance with a reader can be secured. The predetermined wireless communication distance ranges, for example, from 0m to 20m.
 実施形態に係るRFIDタグ100は、UHF帯の電波だけでなく、VHF帯、SHF帯などの電波にも適用可能である。RFIDタグ100の使用周波数がUHF帯の周波数、例えば860~960MHz、915~925MHzなどである場合、UHF帯はVHF帯に比べて、周波数が高いため、波長が短くなり、アンテナの小型化に有利である。従って、RFIDタグ100をUHF帯の電波に好適な形状にすることで、ICチップ10の小型化を図ることができると共に、メモリ容量も小さく安価な無線タグを得ることができる。 The RFID tag 100 according to the embodiment can be applied not only to radio waves in the UHF band, but also to radio waves in the VHF band, SHF band, and the like. When the frequency used by the RFID tag 100 is a UHF band frequency, such as 860 to 960 MHz, 915 to 925 MHz, etc., the UHF band has a higher frequency than the VHF band, so the wavelength becomes shorter, which is advantageous for miniaturizing the antenna. is. Therefore, by forming the RFID tag 100 into a shape suitable for radio waves in the UHF band, the size of the IC chip 10 can be reduced, and an inexpensive wireless tag with a small memory capacity can be obtained.
 次に、本発明の実施例について具体的に説明する。 Next, an embodiment of the present invention will be specifically described.
 <スリット幅の影響>
 下記のように実施例1~5、比較例1~2を設定し、磁性シート102のスリット30の幅の変化に応じた通信性能への影響を検証した。
<Influence of slit width>
Examples 1 to 5 and Comparative Examples 1 and 2 were set as follows, and the effect on communication performance according to the change in the width of the slit 30 of the magnetic sheet 102 was verified.
 [実施例1]
 インレイ101、厚さ100μmの磁性シート102、厚さ38μmの発泡PET製の誘電層103を積層して図1に示すRFIDタグ100を作成した。インレイ101は、厚さ38μmのPETフィルム上に、10μmのアルミシートをドライラミネートで貼り付けたスロットアンテナ20を形成し、規定の位置にICチップ10を実装した。ただし、ラベル紙105は外した。スロットアンテナ20のスロット21のアンテナパターンは、図2に示す形状とした。スロットアンテナ20とスロット21の各部の寸法を図6に示す。
[Example 1]
An inlay 101, a magnetic sheet 102 with a thickness of 100 μm, and a dielectric layer 103 made of foamed PET with a thickness of 38 μm were laminated to produce the RFID tag 100 shown in FIG. For the inlay 101, a slot antenna 20 was formed by sticking a 10 μm aluminum sheet on a 38 μm thick PET film by dry lamination, and an IC chip 10 was mounted at a prescribed position. However, the label paper 105 was removed. The antenna pattern of the slot 21 of the slot antenna 20 has the shape shown in FIG. The dimensions of each part of the slot antenna 20 and slot 21 are shown in FIG.
 磁性シート102は、次の手順で作成したものを用いた。まず磁性塗料は、磁性フィラーとしてFe-Cr合金(山陽特殊製鋼株式会社製、「FKTE231」)55.2質量部、バインダー樹脂としてポリエステル系ポリウレタン(荒川化学工業株式会社製、「ユリアーノ2456」、重量平均分子量30000)9.9質量部、有機溶剤としてトルエン22.6質量部、分散剤としてリン酸ポリエステル系分散剤(ビックケミージャパン株式会社製、「BYK-111」)0.4質量部、及び、消泡剤として非シリコーン系消泡剤(ビックケミージャパン株式会社製、「BYK-1752」)0.2質量部を混合して得た。次に、ロール・トゥ・ロール方式により、ポリエステル系合成フィルム(東洋紡株式会社製、「クリスパーK1211 #38μ」)を速度3m/minで搬送しながら、該フィルム上に、コーターを用いて磁気シールド塗料(上記で得られた磁性塗料)によるストライプパターンを形成し、40℃から80℃まで温度を上げながら30mの硬化炉を通過させた。これにより、スリット30入りの磁性シート102を作成した。 The magnetic sheet 102 was prepared by the following procedure. First, the magnetic paint consists of 55.2 parts by mass of Fe--Cr alloy (manufactured by Sanyo Special Steel Co., Ltd., "FKTE231") as a magnetic filler, and polyester-based polyurethane (manufactured by Arakawa Chemical Industries, Ltd., "Uriano 2456") as a binder resin. Average molecular weight 30000) 9.9 parts by mass, 22.6 parts by mass of toluene as an organic solvent, 0.4 parts by mass of a phosphate polyester dispersant (manufactured by BYK Chemie Japan Co., Ltd., "BYK-111") as a dispersant, and , and 0.2 parts by mass of a non-silicone antifoaming agent (“BYK-1752” manufactured by BYK Chemie Japan Co., Ltd.) as an antifoaming agent. Next, while conveying a polyester synthetic film (manufactured by Toyobo Co., Ltd., "Crisper K1211 #38μ") at a speed of 3 m/min by a roll-to-roll method, magnetic shielding paint is applied onto the film using a coater. A striped pattern was formed by (the magnetic paint obtained above), and passed through a curing furnace of 30 m while raising the temperature from 40°C to 80°C. Thus, a magnetic sheet 102 with slits 30 was produced.
 磁性シート102のスリット30は、図3に示したように磁性シート102のy方向の中央を幅方向の中心位置として、y方向の幅が2mmとなるように形成した。 The slit 30 of the magnetic sheet 102 was formed to have a width of 2 mm in the y direction with the center of the magnetic sheet 102 in the y direction as the center position in the width direction, as shown in FIG.
 このように作成したRFIDタグ100を、SUS板の貼付対象物200に貼付した状態で、RFIDタグ性能検査装置(Tagformance Pro、Voyantic社製)を用いて、RFIDタグ100の周波数特性を計測した。計測時の無線通信用電波の測定周波数帯は700~1200MHzとし、EIRP(Equivalent Isotropically Radiated Power:等価等方輻射電力)は3.28Wとした。 The frequency characteristics of the RFID tag 100 were measured using an RFID tag performance inspection device (Tagformance Pro, manufactured by Voyantic) in a state in which the RFID tag 100 thus produced was attached to the attachment target 200 of the SUS plate. The measurement frequency band of radio waves for wireless communication during measurement was set to 700 to 1200 MHz, and EIRP (Equivalent Isotropically Radiated Power) was set to 3.28W.
 [実施例2]
 磁性シート102のスリット30の幅を5mmとしたこと以外は、実施例1と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 2]
The RFID tag 100 was produced in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 5 mm, and the frequency characteristics were measured.
 [実施例3]
 磁性シート102のスリット30の幅を10mmとしたこと以外は、実施例1と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 3]
The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was set to 10 mm, and the frequency characteristics were measured.
 [実施例4]
 磁性シート102のスリット30の幅を18mmとしたこと以外は、実施例1と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 4]
The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was 18 mm, and the frequency characteristics were measured.
 [実施例5]
 磁性シート102のスリット30の幅を25mmとしたこと以外は、実施例1と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 5]
The RFID tag 100 was produced in the same manner as in Example 1, except that the width of the slit 30 of the magnetic sheet 102 was set to 25 mm, and the frequency characteristics were measured.
 [比較例1]
 磁性シート102にスリット30を設けないこと以外は、実施例1と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Comparative Example 1]
The RFID tag 100 was produced in the same manner as in Example 1, except that the magnetic sheet 102 was not provided with the slit 30, and the frequency characteristics were measured.
 [比較例2]
 磁性シート102を除外したこと以外は、実施例1と同様にRFIDタグ100を作成した。すなわち、インレイ101、厚さ38μmの誘電層103を積層してRFIDタグを作成した。また、作成したRFIDタグについて、実施例1と同様の手法で周波数特性を計測した。
[Comparative Example 2]
An RFID tag 100 was produced in the same manner as in Example 1, except that the magnetic sheet 102 was omitted. That is, an RFID tag was produced by laminating an inlay 101 and a dielectric layer 103 having a thickness of 38 μm. Further, the frequency characteristics of the produced RFID tag were measured in the same manner as in the first embodiment.
 図7は、実施例1~5及び比較例2のRFIDタグの周波数特性を示す図である。図7中の(A)は実施例1、(B)は実施例2、(C)は実施例3、(D)は実施例4、(E)は実施例5、(F)は比較例2の周波数特性を示す。各図の横軸は無線通信用電波の周波数を表し、縦軸はRFIDタグ100からリーダまでの通信可能距離を表す。 FIG. 7 is a diagram showing frequency characteristics of RFID tags of Examples 1 to 5 and Comparative Example 2. FIG. In FIG. 7, (A) is Example 1, (B) is Example 2, (C) is Example 3, (D) is Example 4, (E) is Example 5, and (F) is a comparative example. 2 shows the frequency characteristics of FIG. In each figure, the horizontal axis represents the frequency of radio waves for wireless communication, and the vertical axis represents the communicable distance from the RFID tag 100 to the reader.
 図7で特性のグラフが図示されていない周波数帯では、RFIDタグ100とリーダとの間で無線通信を行うことができなかったことを表す。図7(F)に示すように、磁性シート102が無い比較例2では、約870MHz以下の周波数帯では無線通信を行うことができなかった。なお、図7には図示されていないが、磁性シート102にスリット30を設けない比較例1では、すべての周波数帯において無線通信を行うことができなかった。  In the frequency band for which the characteristic graph is not shown in FIG. 7, wireless communication could not be performed between the RFID tag 100 and the reader. As shown in FIG. 7F, in Comparative Example 2 without the magnetic sheet 102, wireless communication could not be performed in the frequency band of about 870 MHz or less. Although not shown in FIG. 7, in Comparative Example 1 in which the magnetic sheet 102 is not provided with the slits 30, wireless communication could not be performed in all frequency bands.
 図7に示すように、UHF帯に含まれる所定の周波数920MHzのときの通信可能距離は、実施例1では約2.0m、実施例2では約3m、実施例3では約4.5m、実施例4では約4.5m、実施例5では約2.5m、比較例2では約1.5mであった。 As shown in FIG. 7, the communicable distance at a predetermined frequency of 920 MHz included in the UHF band is about 2.0 m in Example 1, about 3 m in Example 2, and about 4.5 m in Example 3. Example 4 was about 4.5 m, Example 5 was about 2.5 m, and Comparative Example 2 was about 1.5 m.
 図7(A)~(D)に示すように、磁性シート102にスリット30を設ける実施例1~4の構成では、スリット30の幅が増えるにつれて通信可能距離も増大し、スリット幅が10~18mmで通信可能距離が最大の約4.5mとなる。また、周波数特性のピーク位置は、UHF帯の周波数である860~960MHzの範囲に含まれる。なお、図7(E)に示す実施例5では、スリット幅をさらに増やすと、周波数特性のピーク位置が高周波側に移動し、UHF帯(例えば920MHzあたり)の通信可能距離が若干低下した。  As shown in FIGS. 7A to 7D, in the configurations of Examples 1 to 4 in which the slits 30 are provided in the magnetic sheet 102, as the width of the slits 30 increases, the communicable distance also increases. At 18mm, the maximum communicable distance is about 4.5m. Also, the peak position of the frequency characteristics is included in the range of 860 to 960 MHz, which is the frequency of the UHF band. In Example 5 shown in FIG. 7(E), when the slit width was further increased, the peak position of the frequency characteristics moved to the high frequency side, and the communicable distance in the UHF band (for example, around 920 MHz) slightly decreased. 
 また、図7(F)に示すように、磁性シート102が無い比較例2では、周波数特性のピーク位置が、図7(E)に示す実施例5の場合よりもさらに高周波側に大きく移動していた。比較例2では、UHF帯で使用するためにはアンテナサイズを大きくする必要がある。 Further, as shown in FIG. 7(F), in Comparative Example 2 without the magnetic sheet 102, the peak position of the frequency characteristics moves further to the high frequency side than in the case of Example 5 shown in FIG. 7(E). was In Comparative Example 2, it is necessary to increase the size of the antenna for use in the UHF band.
 図7に示した試験結果より、RFIDタグ100に磁性シート102を設け、さらに磁性シートにスリット30を設けることにより、通信可能距離を増やすことができ、特にUHF帯の通信可能距離を増やすことができることが示された。 From the test results shown in FIG. 7, by providing the magnetic sheet 102 in the RFID tag 100 and further providing the slit 30 in the magnetic sheet, the communicable distance can be increased, and in particular, the communicable distance in the UHF band can be increased. shown that it can be done.
 さらに、図6に示した各部寸法のスロットアンテナ20に対しては、スリット30の幅を10~18mmとすると、通信可能距離を最大にできることが示された。つまり、スリット30の幅には最適な範囲があることが示された。この条件をスロットアンテナ20のスロット21との関係で表現すると、スリット30の範囲内にスロット21の平行部22が完全に包含される場合から、スリット30にスロット21の平行部22及び垂直部23の全体が完全に包含され、スリット30の幅が垂直部23の長さをほぼ一致する場合まで、とも表現できる。 Furthermore, it has been shown that for the slot antenna 20 having the dimensions of each part shown in FIG. 6, the communicable distance can be maximized by setting the width of the slit 30 to 10 to 18 mm. In other words, it was shown that the width of the slit 30 has an optimum range. Expressing this condition in relation to the slot 21 of the slot antenna 20 , since the parallel portion 22 of the slot 21 is completely included in the range of the slit 30 , the parallel portion 22 and the vertical portion 23 of the slot 21 are in the slit 30 . is completely included and the width of the slit 30 substantially matches the length of the vertical portion 23.
 <磁性シートの磁性特性の影響>
 下記のように実施例6~9を設定し、磁性シート102の磁性特性、具体的には磁性粉の割合の変化に応じた通信性能への影響を検証した。
<Influence of Magnetic Properties of Magnetic Sheet>
Examples 6 to 9 were set as follows, and the magnetic properties of the magnetic sheet 102, specifically, the influence on the communication performance according to the change in the ratio of the magnetic powder was verified.
 [実施例6]
 磁性シート102の幅は、上記の実施例1~5のうち最適な範囲に含まれる18mmとした。磁性シート102の磁性層102Aは、磁性粉の割合が100%、誘電粉の割合が0%のものとした。その他の条件は上記の実施例1と同様としてRFIDタグ100を作成して、周波数特性を計測した。
[Example 6]
The width of the magnetic sheet 102 was set to 18 mm, which is within the optimum range among Examples 1 to 5 above. The magnetic layer 102A of the magnetic sheet 102 has a magnetic powder ratio of 100% and a dielectric powder ratio of 0%. The RFID tag 100 was produced under the same conditions as in Example 1 above, and the frequency characteristics were measured.
 [実施例7]
 磁性シート102の磁性層102Aを、磁性粉の割合が70%、誘電粉の割合が30%のものとしたこと以外は、実施例6と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 7]
An RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 70% and a dielectric powder ratio of 30%, and the frequency characteristics were measured. did.
 [実施例8]
 磁性シート102の磁性層102Aを、磁性粉の割合が30%、誘電粉の割合が70%のものとしたこと以外は、実施例6と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 8]
The RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 30% and a dielectric powder ratio of 70%, and the frequency characteristics were measured. did.
 [実施例9]
 磁性シート102の磁性層102Aを、磁性粉の割合が0%、誘電粉の割合が100%のものとしたこと以外は、実施例6と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 9]
An RFID tag 100 was produced in the same manner as in Example 6 except that the magnetic layer 102A of the magnetic sheet 102 had a magnetic powder ratio of 0% and a dielectric powder ratio of 100%, and the frequency characteristics were measured. did.
 図8は、実施例6~9のRFIDタグの周波数特性を示す図である。図8中の(A)は実施例6、(B)は実施例7、(C)は実施例8、(D)は実施例9の周波数特性を示す
。各図の概要は、図7と同様である。
FIG. 8 is a diagram showing frequency characteristics of RFID tags of Examples 6 to 9. FIG. In FIG. 8, (A) shows the frequency characteristics of the sixth embodiment, (B) the seventh embodiment, (C) the eighth embodiment, and (D) the ninth embodiment. The outline of each figure is the same as that of FIG.
 図8に示すように、UHF帯に含まれる所定の周波数920MHzのときの通信可能距離は、実施例6では約4.5m、実施例7では約3.5m、実施例8では約2.5m、実施例9では約1.8mであった。また、周波数特性のピークの位置は、実施例6では約900~960MHzであり、実施例7では約940~1025MHzであり、実施例8では約1010~1060MHzであり、実施例9では約1010MHz付近であった。 As shown in FIG. 8, the communicable distance at a predetermined frequency of 920 MHz included in the UHF band is about 4.5 m in Example 6, about 3.5 m in Example 7, and about 2.5 m in Example 8. , and about 1.8 m in Example 9. Further, the position of the peak of the frequency characteristics is about 900 to 960 MHz in Example 6, about 940 to 1025 MHz in Example 7, about 1010 to 1060 MHz in Example 8, and about 1010 MHz in Example 9. Met.
 図8に示した試験結果より、磁性シート102の磁性層102Aの組成において、磁性粉の割合が多いほど、共振周波数を低周波数側に移動させることができると考えられる。共振周波数を低周波数側に移動させることができるということは、アンテナの小型化が図れるということである。磁性シートの組成において磁性粉の割合を増やすことにより、より小さく、薄いRFIDタグ100を実現できると考えられる。また、図8に示した試験結果より、磁性粉の割合を増やすほど、周波数特性のピークとUHF帯とが重なる範囲が増えるので、UHF帯における通信可能距離を改善でき、RFIDタグ100の通信性能を向上できることが示された。 From the test results shown in FIG. 8, it is considered that the higher the ratio of the magnetic powder in the composition of the magnetic layer 102A of the magnetic sheet 102, the more the resonance frequency can be shifted to the lower frequency side. The fact that the resonance frequency can be moved to the low frequency side means that the size of the antenna can be reduced. It is believed that a smaller and thinner RFID tag 100 can be realized by increasing the proportion of magnetic powder in the composition of the magnetic sheet. In addition, from the test results shown in FIG. 8, as the ratio of the magnetic powder is increased, the range where the peak of the frequency characteristics and the UHF band overlap increases, so the communicable distance in the UHF band can be improved, and the communication performance of the RFID tag 100 can be improved.
 <誘電層の影響>
 下記のように実施例10~13を設定し、誘電層103の有無に応じた通信性能への影響を検証した。
<Influence of dielectric layer>
Examples 10 to 13 were set as follows, and the influence on communication performance depending on the presence or absence of the dielectric layer 103 was verified.
 [実施例10]
 上記の実施例5と同様に、磁性シート102のスリット30の幅を25mmとし、磁性シート102の厚さを100μmとして、RFIDタグ100を作成した。作成したRFIDタグ100をスチール製ロッカーに貼付して、既製品のハンディリーダ(商品名:AsReaderGUN、アスタリスク社製、出力1W)を用い、通信可能距離を計測した。
[Example 10]
As in Example 5 above, the RFID tag 100 was produced by setting the width of the slit 30 of the magnetic sheet 102 to 25 mm and the thickness of the magnetic sheet 102 to 100 μm. The produced RFID tag 100 was attached to a steel locker, and the communicable distance was measured using an off-the-shelf handy reader (trade name: AsReaderGUN, manufactured by Asterisk, output 1 W).
 [実施例11]
 誘電層103を除外したこと以外は、実施例10と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 11]
The RFID tag 100 was produced in the same manner as in Example 10, except that the dielectric layer 103 was omitted, and the frequency characteristics were measured.
 [実施例12]
 磁性シート102の厚さを200μmとしたこと以外は、実施例10と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 12]
The RFID tag 100 was produced in the same manner as in Example 10, except that the thickness of the magnetic sheet 102 was 200 μm, and the frequency characteristics were measured.
 [実施例13]
 誘電層103を除外したこと以外は、実施例12と同様にRFIDタグ100を作成して、周波数特性を計測した。
[Example 13]
The RFID tag 100 was produced in the same manner as in Example 12, except that the dielectric layer 103 was omitted, and the frequency characteristics were measured.
 表1に、実施例10~13のRFIDタグの通信距離の計測結果を示す。 Table 1 shows the measurement results of the communication distances of the RFID tags of Examples 10-13.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、磁性シート102の厚さが100μmで共通する実施例10、11では、誘電層103を備える実施例10のほうが通信可能距離を増大できる。また、磁性シート102の厚さが200μmで共通する実施例12、13でも、誘電層103を備える実施例12のほうが通信可能距離を増大できる。以上より、磁性シート102の厚さの変化によらず、RFIDタグに誘電層103を設けるほうが通信性能を向上できることが示された。 As shown in Table 1, in Examples 10 and 11 in which the thickness of the magnetic sheet 102 is 100 μm, Example 10 provided with the dielectric layer 103 can increase the communicable distance. Moreover, even in the twelfth and thirteenth embodiments in which the thickness of the magnetic sheet 102 is 200 μm, the twelfth embodiment having the dielectric layer 103 can increase the communicable distance. From the above, it was shown that the communication performance can be improved by providing the dielectric layer 103 to the RFID tag regardless of the change in the thickness of the magnetic sheet 102 .
 <スロットアンテナの形状の影響>
 下記のように実施例14~19を設定し、スロットアンテナ20の形状の変化に応じた通信性能への影響を検証した。具体的には、スロットアンテナ20の形状をシミュレータで変化させて、インピーダンスの変化を確認した。
<Influence of shape of slot antenna>
Examples 14 to 19 were set as follows, and the effect on communication performance according to the change in the shape of the slot antenna 20 was verified. Specifically, the shape of the slot antenna 20 was changed using a simulator, and changes in impedance were confirmed.
 [実施例14]
 図9は、実施例14で用いたスロットアンテナ20-1の形状を示す図である。シミュレータ上で図9に示す形状のスロットアンテナ20-1のモデルを作成した。なお、図9に示すスロットアンテナ20-1の形状や各部寸法は、図6に示した実施例1などで形成したスロットアンテナ20のものと同一である。このように作成したスロットアンテナ20-1のモデルを用いて、シミュレータ上でインピーダンスの計測を行った。
[Example 14]
FIG. 9 is a diagram showing the shape of the slot antenna 20-1 used in the fourteenth embodiment. A model of the slot antenna 20-1 having the shape shown in FIG. 9 was created on the simulator. The shape and dimensions of each part of the slot antenna 20-1 shown in FIG. 9 are the same as those of the slot antenna 20 formed in Example 1 shown in FIG. Using the model of the slot antenna 20-1 created in this way, the impedance was measured on a simulator.
 図10は、実施例14のスロットアンテナ20-1のインピーダンス特性の計測結果を示す図である。図10の縦軸は、インピーダンスの実数と虚数の値を示す。図10の横軸は周波数[MHz]を示す。図10に示す一点鎖線のグラフ(プロットが丸のグラフ)は各周波数に対応するインピーダンスの実数をプロットしたものである。図10に示す実線のグラフ(プロットが四角のグラフ)は各周波数に対応するインピーダンスの虚数をプロットしたものである。 FIG. 10 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-1 of Example 14. FIG. The vertical axis in FIG. 10 indicates the values of real and imaginary impedances. The horizontal axis of FIG. 10 indicates frequency [MHz]. The dashed-dotted line graph (plotted with circles) shown in FIG. 10 plots the real number of the impedance corresponding to each frequency. The solid-line graph (graph with square plots) shown in FIG. 10 plots the imaginary number of the impedance corresponding to each frequency.
 [実施例15]
 図11は、実施例15で用いたスロットアンテナ20-2の形状を示す図である。実施例15のスロットアンテナ20-2では、スロット21の平行部22の長さが実施例14のスロットアンテナ20-1のものより短くなるよう、スロット21が形成されている。このように作成したスロットアンテナ20-2のモデルを用いて、シミュレータ上でインピーダンスの計測を行った。図12は、実施例15のスロットアンテナ20-2のインピーダンス特性の計測結果を示す図である。図12の概要は図10と同様である。
[Example 15]
FIG. 11 is a diagram showing the shape of the slot antenna 20-2 used in the fifteenth embodiment. In the slot antenna 20-2 of the fifteenth embodiment, the slot 21 is formed such that the length of the parallel portion 22 of the slot 21 is shorter than that of the slot antenna 20-1 of the fourteenth embodiment. Using the model of the slot antenna 20-2 created in this way, the impedance was measured on a simulator. FIG. 12 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-2 of the fifteenth embodiment. The outline of FIG. 12 is similar to that of FIG.
 [実施例16]
 図13は、実施例16で用いたスロットアンテナ20-3の形状を示す図である。実施例16のスロットアンテナ20-3では、スロット21の平行部22の長さが実施例15のスロットアンテナ20-2のものよりさらに短くなるよう、スロット21が形成されている。このように作成したスロットアンテナ20-3のモデルを用いて、シミュレータ上でインピーダンスの計測を行った。図14は、実施例16のスロットアンテナ20-3のインピーダンス特性の計測結果を示す図である。図14の概要は図10と同様である。
[Example 16]
FIG. 13 is a diagram showing the shape of the slot antenna 20-3 used in the sixteenth embodiment. In the slot antenna 20-3 of the sixteenth embodiment, the slot 21 is formed such that the length of the parallel portion 22 of the slot 21 is shorter than that of the slot antenna 20-2 of the fifteenth embodiment. Using the model of the slot antenna 20-3 created in this way, the impedance was measured on a simulator. FIG. 14 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-3 of the sixteenth embodiment. The outline of FIG. 14 is similar to that of FIG.
 [実施例17]
 図15は、実施例17で用いたスロットアンテナ20-4の形状を示す図である。実施例17のスロットアンテナ20-4では、スロット21の垂直部23を無くし、平行部22のみとなるよう、スロット21が形成されている。スロット21の平行部22の長さは、実施例14のスロットアンテナ20-1のものと同一である。このように作成したスロットアンテナ20-4のモデルを用いて、シミュレータ上でインピーダンスの計測を行った。図16は、実施例17のスロットアンテナ20-4のインピーダンス特性の計測結果を示す図である。図16の概要は図10と同様である。
[Example 17]
FIG. 15 is a diagram showing the shape of the slot antenna 20-4 used in the seventeenth embodiment. In the slot antenna 20-4 of Example 17, the slot 21 is formed so that the vertical portion 23 of the slot 21 is eliminated and only the parallel portion 22 is provided. The length of the parallel portion 22 of the slot 21 is the same as that of the slot antenna 20-1 of the fourteenth embodiment. Using the model of the slot antenna 20-4 created in this way, the impedance was measured on a simulator. FIG. 16 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-4 of the seventeenth embodiment. The outline of FIG. 16 is similar to that of FIG.
 [実施例18]
 図17は、実施例18で用いたスロットアンテナ20-5の形状を示す図である。実施例18のスロットアンテナ20-5では、スロット21の平行部22の幅が実施例17のスロットアンテナ20-4のものより大きくなるようスロット21が形成されている。このように作成したスロットアンテナ20-5のモデルを用いて、シミュレータ上でインピーダンスの計測を行った。図18は、実施例18のスロットアンテナ20-5のインピーダンス特性の計測結果を示す図である。図18の概要は図10と同様である。
[Example 18]
FIG. 17 is a diagram showing the shape of the slot antenna 20-5 used in the eighteenth embodiment. In the slot antenna 20-5 of the eighteenth embodiment, the slot 21 is formed such that the width of the parallel portion 22 of the slot 21 is larger than that of the slot antenna 20-4 of the seventeenth embodiment. Using the model of the slot antenna 20-5 created in this way, the impedance was measured on a simulator. FIG. 18 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-5 of the eighteenth embodiment. The outline of FIG. 18 is similar to that of FIG.
 [実施例19]
 図19は、実施例19で用いたスロットアンテナ20-6の形状を示す図である。実施例19のスロットアンテナ20-6は、短手方向(y方向)の寸法が実施例14のスロットアンテナ20-1のものより短くなるよう形成されている。スロット21の形状は実施例14のスロットアンテナ20-1のものと同一である。このように作成したスロットアンテナ20-6モデルを用いて、シミュレータ上でインピーダンスの計測を行った。図20は、実施例19のスロットアンテナ20-6のインピーダンス特性の計測結果を示す図である。図20の概要は図10と同様である。
[Example 19]
FIG. 19 is a diagram showing the shape of the slot antenna 20-6 used in the nineteenth embodiment. The slot antenna 20-6 of the nineteenth embodiment is formed so that the dimension in the lateral direction (y direction) is shorter than that of the slot antenna 20-1 of the fourteenth embodiment. The shape of the slot 21 is the same as that of the slot antenna 20-1 of the fourteenth embodiment. Using the slot antenna 20-6 model created in this way, the impedance was measured on a simulator. FIG. 20 is a diagram showing measurement results of impedance characteristics of the slot antenna 20-6 of Example 19. In FIG. The outline of FIG. 20 is similar to that of FIG.
 各実施例14~19の比較検証は、上記実施例1などで用いた実物のスロットアンテナ20の形状や各部寸法と同一である実施例14のスロットアンテナ20-1のインピーダンス特性を基準として行った。例えば、実施例14と同様のインピーダンス特性の実施例では、当該実施例の形状で実際にアンテナを製造したものでも、実施例1などの実物のスロットアンテナ20と同様の性能が得られると仮定した。 Comparative verification of each of Examples 14 to 19 was performed based on the impedance characteristics of the slot antenna 20-1 of Example 14, which has the same shape and dimensions as the actual slot antenna 20 used in Example 1 and the like. . For example, in the example having the same impedance characteristics as in Example 14, it was assumed that even if the antenna was actually manufactured in the shape of the example, the performance similar to that of the actual slot antenna 20 such as Example 1 could be obtained. .
 実施例14~16を比較すると、図10、図12、図14に示すように、スリット30の平行部22の長さ、つまりスリット30の長手方向(x方向)の長さを変更すると、スロットアンテナのインピーダンス特性が大きく変化していることがわかる。一方、実施例14と、実施例17、18とを比較すると、図10、図16、図18に示すように、スリットの垂直部23を無くしたり、平行部22の幅を増やすなど、スリット30の短手方向(y方向)の長さを変更しても、シミュレーション上ではスロットアンテナのインピーダンス特性にはほとんど変化が見られなかった。同様に、実施例14と実施例19を比較すると、図10、図20に示すように、スリットアンテナの短手方向(y方向)の寸法を変更しても、スロットアンテナのインピーダンス特性にはほとんど変化が見られなかった。  Comparing Examples 14 to 16, as shown in FIGS. 10, 12, and 14, when the length of the parallel portion 22 of the slit 30, that is, the length of the slit 30 in the longitudinal direction (x direction) is changed, the slot It can be seen that the impedance characteristics of the antenna change greatly. On the other hand, when comparing Example 14 with Examples 17 and 18, as shown in FIGS. Even if the length in the lateral direction (y direction) of the slot antenna was changed, almost no change was observed in the impedance characteristics of the slot antenna on the simulation. Similarly, comparing Example 14 and Example 19, as shown in FIGS. No change was seen. 
 以上より、シミュレーション上で、スリット30の長手方向(x方向)の長さがスロットアンテナのアンテナ特性に重要であることが示された。 From the above, it was shown in the simulation that the length of the slit 30 in the longitudinal direction (x direction) is important for the antenna characteristics of the slot antenna.
 図22は、上述した本実施の形態における、実施例1のRFIDタグについて、貼付対象物200としての各金属種への影響について評価した結果を示す図である。ただし、本評価に当たっては、ラベル紙105は使用せず、タブの両端を金属板に粘着テープで固定して、評価した。 FIG. 22 is a diagram showing the results of evaluating the influence of the RFID tag of Example 1 on each kind of metal as the attachment target 200 in the present embodiment described above. However, in this evaluation, the label paper 105 was not used, and both ends of the tab were fixed to a metal plate with an adhesive tape.
 図22の評価結果から明らかなように、本実施の形態のRFIDタグは各金属種に対し良好な通信性能を発揮できる。 As is clear from the evaluation results in FIG. 22, the RFID tag of this embodiment can exhibit good communication performance for each metal type.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Design modifications to these specific examples by those skilled in the art are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each specific example described above and its arrangement, conditions, shape, etc. are not limited to those illustrated and can be changed as appropriate. As long as there is no technical contradiction, the combination of the elements included in the specific examples described above can be changed as appropriate.
 本国際出願は2021年3月12日に出願された日本国特許出願2021-040664号に基づく優先権を主張するものであり、2021-040664号の全内容をここに本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2021-040664 filed on March 12, 2021, and the entire contents of No. 2021-040664 are hereby incorporated into this international application.
 100  RFIDタグ
 101  インレイ
  10  ICチップ
  20  スロットアンテナ
  21  スロット
  22  一対の平行部
  23  一対の垂直部
 102  磁性シート
  30  スリット
 103  誘電層
 200  貼付対象物
REFERENCE SIGNS LIST 100 RFID tag 101 inlay 10 IC chip 20 slot antenna 21 slot 22 pair of parallel parts 23 pair of vertical parts 102 magnetic sheet 30 slit 103 dielectric layer 200 attachment object

Claims (9)

  1.  貼付対象物に貼付されるRFIDタグであって、
     識別情報が記録されるICチップと、前記ICチップに接続されるスロットアンテナと、を有するインレイと、
     前記インレイの前記貼付対象物側に積層される磁性シートと、
    を備え、
     前記スロットアンテナは金属薄膜で形成され、
     前記スロットアンテナには、前記金属薄膜の一部が細長く切り抜かれたスロットが設けられ、
     前記磁性シートには、磁性特性を有する磁性層を区分するスリットが設けられ、
     前記スリットは、前記磁性シートと前記インレイとが積層された状態で、前記インレイの前記スロットと重なる領域に配置される、
    RFIDタグ。
    An RFID tag affixed to an affixed object,
    an inlay having an IC chip on which identification information is recorded and a slot antenna connected to the IC chip;
    a magnetic sheet laminated on the inlay on the side of the object to be adhered;
    with
    The slot antenna is formed of a metal thin film,
    The slot antenna is provided with a slot obtained by cutting a part of the metal thin film into an elongated shape,
    The magnetic sheet is provided with slits that separate the magnetic layers having magnetic properties,
    The slit is arranged in a region where the magnetic sheet and the inlay are stacked and overlaps the slot of the inlay.
    RFID tag.
  2.  前記磁性シートの前記貼付対象物側にさらに積層される誘電層を備える、
    請求項1に記載のRFIDタグ。
    A dielectric layer further laminated on the side of the object to be adhered of the magnetic sheet,
    The RFID tag according to claim 1.
  3.  前記貼付対象物は金属である、
    請求項1に記載のRFIDタグ。
    The object to be attached is metal,
    The RFID tag according to claim 1.
  4.  前記インレイの主面の中央に前記ICチップが配置され、
     前記スロットアンテナの前記スロットは、前記ICチップを挟んで所定方向に平行に延在する一対の平行部を有する、
    請求項1に記載のRFIDタグ。
    The IC chip is arranged in the center of the main surface of the inlay,
    The slot of the slot antenna has a pair of parallel portions extending in parallel in a predetermined direction with the IC chip sandwiched therebetween,
    The RFID tag according to claim 1.
  5.  前記スロットは、前記一対の平行部と直交する方向に延在する垂直部を有する、
    請求項4に記載のRFIDタグ。
    The slot has a vertical portion extending in a direction orthogonal to the pair of parallel portions,
    The RFID tag according to claim 4.
  6.  前記スリットは、前記磁性シートと前記インレイとが積層された状態で、前記インレイの前記スロットの前記一対の平行部の全体が前記スリットの領域に含まれるように形成される、
    請求項4に記載のRFIDタグ。
    The slit is formed such that the entire pair of parallel portions of the slot of the inlay is included in the region of the slit in a state in which the magnetic sheet and the inlay are laminated.
    The RFID tag according to claim 4.
  7.  使用周波数がUHF帯の周波数である請求項1~5のいずれか1項に記載のRFIDタグ。 The RFID tag according to any one of claims 1 to 5, wherein the frequency used is a UHF band frequency.
  8.  電波式の無線タグである請求項1に記載のRFIDタグ。 The RFID tag according to claim 1, which is a radio wave type wireless tag.
  9.  磁性特性を有する磁性層を区分するスリットが設けられた磁性シートを形成するステップと、
     識別情報が記録されるICチップと、前記ICチップに接続されるスロットアンテナと、を有するインレイと、前記形成するステップにて形成された前記磁性シートを積層するステップと、
    を含み、
     前記スロットアンテナは金属薄膜で形成され、
     前記スロットアンテナには、前記金属薄膜の一部が細長く切り抜かれたスロットが設けられ、
     前記スリットは、前記磁性シートと前記インレイとが積層された状態で、前記インレイの前記スロットと重なる領域に配置される、
    RFIDタグの製造方法。
    forming a magnetic sheet with slits separating magnetic layers having magnetic properties;
    laminating an inlay having an IC chip on which identification information is recorded and a slot antenna connected to the IC chip, and the magnetic sheet formed in the forming step;
    including
    The slot antenna is formed of a metal thin film,
    The slot antenna is provided with a slot obtained by cutting a part of the metal thin film into an elongated shape,
    The slit is arranged in a region where the magnetic sheet and the inlay are stacked and overlaps the slot of the inlay.
    A method for manufacturing an RFID tag.
PCT/JP2022/010424 2021-03-12 2022-03-09 Rfid tag and rfid tag manufacturing method WO2022191258A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040664 2021-03-12
JP2021040664A JP2022140030A (en) 2021-03-12 2021-03-12 RFID tag and RFID tag manufacturing method

Publications (1)

Publication Number Publication Date
WO2022191258A1 true WO2022191258A1 (en) 2022-09-15

Family

ID=83227959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010424 WO2022191258A1 (en) 2021-03-12 2022-03-09 Rfid tag and rfid tag manufacturing method

Country Status (2)

Country Link
JP (1) JP2022140030A (en)
WO (1) WO2022191258A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170202A (en) * 1987-12-25 1989-07-05 Sumitomo Electric Ind Ltd Slot antenna for twisted pair type leakage cable
JP2005210676A (en) * 2003-12-25 2005-08-04 Hitachi Ltd Wireless ic tag, and method and apparatus for manufacturing the same
JP3120051U (en) * 2005-12-27 2006-03-23 タック化成株式会社 RFID label with magnetic sheet
JP2007195153A (en) * 2006-01-16 2007-08-02 Samsung Electro-Mechanics Co Ltd Wideband chip antenna
JP2008147750A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Antenna and oscillator using the same
JP2008523768A (en) * 2004-12-14 2008-07-03 インテル コーポレイション Slot antenna with MEMS varactor for resonant frequency tuning
JP2010056683A (en) * 2008-08-26 2010-03-11 Nitta Ind Corp Wireless ic tag and wireless communication system
JP2013026860A (en) * 2011-07-21 2013-02-04 Smart:Kk Universal ic tag, its manufacturing method, and communication management system
JP2014127751A (en) * 2012-12-25 2014-07-07 Smart:Kk Antenna, communication management system and communication system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170202A (en) * 1987-12-25 1989-07-05 Sumitomo Electric Ind Ltd Slot antenna for twisted pair type leakage cable
JP2005210676A (en) * 2003-12-25 2005-08-04 Hitachi Ltd Wireless ic tag, and method and apparatus for manufacturing the same
JP2008523768A (en) * 2004-12-14 2008-07-03 インテル コーポレイション Slot antenna with MEMS varactor for resonant frequency tuning
JP3120051U (en) * 2005-12-27 2006-03-23 タック化成株式会社 RFID label with magnetic sheet
JP2007195153A (en) * 2006-01-16 2007-08-02 Samsung Electro-Mechanics Co Ltd Wideband chip antenna
JP2008147750A (en) * 2006-12-06 2008-06-26 National Institute Of Advanced Industrial & Technology Antenna and oscillator using the same
JP2010056683A (en) * 2008-08-26 2010-03-11 Nitta Ind Corp Wireless ic tag and wireless communication system
JP2013026860A (en) * 2011-07-21 2013-02-04 Smart:Kk Universal ic tag, its manufacturing method, and communication management system
JP2014127751A (en) * 2012-12-25 2014-07-07 Smart:Kk Antenna, communication management system and communication system

Also Published As

Publication number Publication date
TW202307738A (en) 2023-02-16
JP2022140030A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
US7633394B2 (en) RFID tags with modifiable operating parameters
US7141451B2 (en) Wireless communication medium and method of manufacturing the same
CN111566672B (en) Antenna pattern, RFID inlay, RFID tag, and RFID medium
US8246849B2 (en) Magnetic powder production method
CN108292804B (en) Multifunctional composite module and portable equipment comprising same
CN108293314A (en) Magnetic shielding unit and Multifunctional composite mould block including it
WO2001018749A2 (en) Radio frequency identification tags and labels
JP2007123575A (en) Magnetic sheet, antenna using the same, and method of manufacturing the same
CN101689418A (en) Magnetic sheet, process for producing the same, antenna, and portable communications equipment
EP1713025B1 (en) RFID tag set and RFID tag
WO2001003058A1 (en) Methods of placing rfid transponders in densely spaced media
KR100567840B1 (en) Radio frequency identification tag for the metal product with high thermal resistance and the fabricating method thereof
US11695195B2 (en) Self-supporting antenna
WO2022191258A1 (en) Rfid tag and rfid tag manufacturing method
JP2008194865A (en) Sheetlike molded body and its manufacturing method
JP2006127424A (en) Radio tag
US9508037B2 (en) Non-contact IC label
TWI837608B (en) RFID tag and method for manufacturing the same
JP2024031275A (en) RFID tag
JP5061712B2 (en) Non-contact IC tag manufacturing method
JP2019061516A (en) Identification body
WO2021189228A1 (en) Rfid tag
WO2019065665A1 (en) Identification body and method for manufacturing same
JP2007026302A (en) Ic tag
WO2024009688A1 (en) Rfid tag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22767212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22767212

Country of ref document: EP

Kind code of ref document: A1