TWI837608B - RFID tag and method for manufacturing the same - Google Patents

RFID tag and method for manufacturing the same Download PDF

Info

Publication number
TWI837608B
TWI837608B TW111108934A TW111108934A TWI837608B TW I837608 B TWI837608 B TW I837608B TW 111108934 A TW111108934 A TW 111108934A TW 111108934 A TW111108934 A TW 111108934A TW I837608 B TWI837608 B TW I837608B
Authority
TW
Taiwan
Prior art keywords
magnetic sheet
rfid tag
slot
slot antenna
magnetic
Prior art date
Application number
TW111108934A
Other languages
Chinese (zh)
Other versions
TW202307738A (en
Inventor
嶋田卓朗
菅艾莉娜
菅武
中根仁
Original Assignee
日商大王製紙股份有限公司
日商藤倉化成股份有限公司
日商大同產業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021040664A external-priority patent/JP2022140030A/en
Application filed by 日商大王製紙股份有限公司, 日商藤倉化成股份有限公司, 日商大同產業股份有限公司 filed Critical 日商大王製紙股份有限公司
Publication of TW202307738A publication Critical patent/TW202307738A/en
Application granted granted Critical
Publication of TWI837608B publication Critical patent/TWI837608B/en

Links

Abstract

RFID標籤具備:嵌置部,其具有記錄有識別資訊之IC晶片與連接於IC晶片之槽孔天線;及,磁性片材,其層疊在嵌置部的貼附對象物側。槽孔天線是由金屬薄膜形成,在槽孔天線上設置有其金屬薄膜的一部分被細長狀地切下而成之槽孔。在磁性片材上設置有狹縫,用以區分具有磁性特性的磁性層。此狹縫,在磁性片材與嵌置部層疊的狀態下,被配置在與嵌置部的槽孔重疊的區域。The RFID tag comprises: an embedding portion having an IC chip recording identification information and a slot antenna connected to the IC chip; and a magnetic sheet stacked on the side of the embedding portion to be attached. The slot antenna is formed of a metal film, and a slot hole is provided on the slot antenna in which a portion of the metal film is cut out in a long and thin shape. A slit is provided on the magnetic sheet to distinguish the magnetic layer having magnetic properties. This slit is arranged in an area overlapping with the slot hole of the embedding portion when the magnetic sheet and the embedding portion are stacked.

Description

RFID標籤及RFID標籤的製造方法RFID tag and method for manufacturing the same

本揭示關於RFID標籤及RFID標籤的製造方法。The present invention relates to RFID tags and methods for manufacturing RFID tags.

為了物流管理或商品管理,要被貼附於貼附對象物上的RFID(射頻識別(Radio Frequency Identification))標籤已經普及。RFID標籤具備IC晶片和電性連接於IC晶片上的天線。RFID標籤亦稱為無線標籤、IC標籤、RF-ID標籤、RF標籤。RFID (Radio Frequency Identification) tags that are attached to objects for logistics management or product management have become popular. RFID tags have an IC chip and an antenna electrically connected to the IC chip. RFID tags are also called wireless tags, IC tags, RF-ID tags, and RF tags.

在這樣的RFID標籤所貼附的貼附對象物是金屬製的情況下,會有由於無法藉由標籤內的天線進行通訊,識別資訊的讀出發生故障的情況。推測這是由於在金屬位於RFID標籤的周邊的情況下,從用於收發資料的讀寫器送到RFID標籤的電磁波,在金屬部以渦電流的形式損失,所以無法有效地取得用於從IC晶片將資料再次回傳到天線的能量。If the object to which such an RFID tag is attached is made of metal, communication cannot be performed via the antenna inside the tag, and the reading of identification information may fail. It is speculated that this is because when metal is located around the RFID tag, the electromagnetic waves sent from the reader/writer for transmitting and receiving data to the RFID tag are lost in the form of eddy current in the metal part, so the energy used to transmit data back to the antenna from the IC chip cannot be effectively obtained.

作為解決這樣的問題的手段,已知磁性片材的使用是有效的。在RFID標籤與作為貼附對象物的金屬之間夾入磁性片材,能夠使天線所接受到的電磁波在磁性片材內部進行循環,而有效地傳輸要供給到IC晶片的能量(例如參照非專利文獻1)。 [先前技術文獻] (非專利文獻) As a means of solving such a problem, the use of magnetic sheets is known to be effective. By inserting a magnetic sheet between the RFID tag and the metal to which it is attached, the electromagnetic waves received by the antenna can be circulated inside the magnetic sheet, and the energy to be supplied to the IC chip can be effectively transmitted (for example, refer to non-patent document 1). [Prior art document] (Non-patent document)

非專利文獻1:深瀨美紀子、武本聰,「UHF頻帶金屬對應RFID標籤用磁性片材的開發」,電性製鋼,第82卷1號,p.23~30,2011年。Non-patent document 1: Fukase Mikiko and Takemoto Satoshi, "Development of magnetic sheets for UHF band metal-compatible RFID tags," Electrical Steelmaking, Vol. 82, No. 1, pp. 23-30, 2011.

[發明所欲解決的問題] 然而,相較於HF頻帶(13.56MHz,電磁感應方式),RFID標籤的通訊所使用的頻率帶對於可以長距離通訊和一起讀取複數個對象物的UHF頻帶(電波方式)的需求較高。然而,在習知的RFID標籤與金屬之間夾入磁性片材的結構中,可能無法利用UHF頻帶進行通訊。 [Problem to be solved by the invention] However, the frequency band used for communication of RFID tags has a higher demand for the UHF band (radio wave method) that can communicate over long distances and read multiple objects at the same time, compared to the HF band (13.56MHz, electromagnetic induction method). However, in the structure in which a magnetic sheet is sandwiched between the known RFID tag and the metal, it may not be possible to communicate using the UHF band.

本揭示的目的在於提供一種可提升通訊性能的RFID標籤及RFID標籤的製造方法。 [解決問題的技術手段] The purpose of this disclosure is to provide an RFID tag and a method for manufacturing an RFID tag that can improve communication performance. [Technical means to solve the problem]

本發明的實施形態的一態樣的RFID標籤,其要被貼附於貼附對象物上,並具備:嵌置部,其具有記錄有識別資訊之IC晶片與連接於前述IC晶片之槽孔天線;及,磁性片材,其層疊在前述嵌置部的前述貼附對象物側;其中,前述槽孔天線是由金屬薄膜形成,在前述槽孔天線上設置有其前述金屬薄膜的一部分被細長狀地切下而成之槽孔,在前述磁性片材上設置有狹縫,用以區分具有磁性特性的磁性層,並且,前述狹縫,在前述磁性片材與前述嵌置部層疊的狀態下,被配置在與前述嵌置部的前述槽孔重疊的區域。An RFID tag in one embodiment of the present invention is to be attached to an attachment object and comprises: an embedding portion having an IC chip recording identification information and a slot antenna connected to the IC chip; and a magnetic sheet stacked on the attachment object side of the embedding portion; wherein the slot antenna is formed of a metal film, a slot hole is provided on the slot antenna in which a portion of the metal film is cut out in an elongated shape, a slit is provided on the magnetic sheet to distinguish a magnetic layer having magnetic properties, and the slit is arranged in a region overlapping with the slot hole of the embedding portion when the magnetic sheet and the embedding portion are stacked.

同樣地,本發明的實施形態的一態樣的RFID標籤的製造方法,包括:形成磁性片材之步驟,該步驟形成磁性片材,該磁性片材設置了用以區分具有磁性特性的磁性層之狹縫;及,層疊步驟,將嵌置部與在前述形成磁性片材之步驟中所形成的前述磁性片材加以層疊,該嵌置部具有記錄有識別資訊之IC晶片與連接於前述IC晶片之槽孔天線;其中,前述槽孔天線是由金屬薄膜形成,在前述槽孔天線上設置有其前述金屬薄膜的一部分被細長狀地切下而成之槽孔,並且,前述狹縫,在前述磁性片材與前述嵌置部層疊的狀態下,被配置在與前述嵌置部的前述槽孔重疊的區域。 [發明的效果] Similarly, a manufacturing method of an RFID tag in one embodiment of the present invention includes: a step of forming a magnetic sheet, the step of forming a magnetic sheet, the magnetic sheet being provided with a slit for distinguishing a magnetic layer having magnetic properties; and a stacking step of stacking an embedding portion with the magnetic sheet formed in the step of forming the magnetic sheet, the embedding portion having an IC chip recording identification information and a slot antenna connected to the IC chip; wherein the slot antenna is formed of a metal film, a slot hole formed by cutting a portion of the metal film in a long and thin shape is provided on the slot antenna, and the slit is arranged in a region overlapping with the slot hole of the embedding portion when the magnetic sheet and the embedding portion are stacked. [Effect of the invention]

藉由本揭示,能夠提供一種可提升通訊性能的RFID標籤及RFID標籤的製造方法。Through the present disclosure, an RFID tag and a method for manufacturing the RFID tag that can improve communication performance can be provided.

以下,參照隨附圖式來說明實施形態。為了方便對於說明的理解,針對各圖式中的相同構成元件儘可能附加相同的符號,而省略重複的說明。In the following, the embodiments are described with reference to the accompanying drawings. To facilitate the understanding of the description, the same components in each drawing are given the same symbols as much as possible, and repeated descriptions are omitted.

另外,在以下的說明中,x方向、y方向、z方向是互相垂直的方向。x方向是嵌置部101和磁性片材102的長邊方向,且是槽孔21的平行部22和狹縫30的延伸方向。y方向是嵌置部101和磁性片材102的短邊方向,且是槽孔21的垂直部23的延伸方向。z方向是嵌置部101和磁性片材102等的RFID標籤100的各構成元件的層疊方向。又,在以下為了便於說明,會有將z正方向側表現為上側並將z負方向側表現為下側的情況。In addition, in the following description, the x-direction, y-direction, and z-direction are mutually perpendicular directions. The x-direction is the long side direction of the embedding portion 101 and the magnetic sheet 102, and is the extension direction of the parallel portion 22 and the slit 30 of the slot 21. The y-direction is the short side direction of the embedding portion 101 and the magnetic sheet 102, and is the extension direction of the vertical portion 23 of the slot 21. The z-direction is the stacking direction of each component of the RFID tag 100 such as the embedding portion 101 and the magnetic sheet 102. In addition, for the sake of convenience in the following description, the positive z-direction side may be represented as the upper side and the negative z-direction side may be represented as the lower side.

第1圖是實施形態的RFID標籤100的層疊剖面圖。第2圖是第1圖所示的RFID標籤100的分解斜視圖。第3圖是第1圖所示的RFID標籤100的從上方觀察而得的平面圖。RFID標籤100是要被貼附在貼附對象物200上的大致平面狀的裝置。如第1圖〜第3圖所示,RFID標籤具備嵌置部101、磁性片材102及介電層103。貼附對象物200是例如金屬。作為金屬,除了鐵、鋁、銅等金屬之外,亦包含鐵合金、鋁合金、銅合金等金屬合金。再者,貼附對象物200中,也包含金屬以外的其他材料,例如也包含塑膠、紙、陶瓷等。FIG. 1 is a stacked cross-sectional view of an implementation form of the RFID tag 100. FIG. 2 is an exploded oblique view of the RFID tag 100 shown in FIG. 1. FIG. 3 is a plan view of the RFID tag 100 shown in FIG. 1 as viewed from above. The RFID tag 100 is a roughly planar device to be attached to an attachment object 200. As shown in FIG. 1 to FIG. 3, the RFID tag has an embedding portion 101, a magnetic sheet 102, and a dielectric layer 103. The attachment object 200 is, for example, a metal. As a metal, in addition to metals such as iron, aluminum, and copper, metal alloys such as iron alloys, aluminum alloys, and copper alloys are also included. Furthermore, the attachment object 200 also includes other materials other than metals, for example, plastics, paper, ceramics, etc.

作為實施形態的RFID標籤100的主要使用用途,其貼附對象是鐵桶、H型鋼等比較大的金屬製品,能夠使用於這些金屬製品各自的包含庫存管理等之流通路徑上的追蹤(追溯)。除了金屬製品以外,也可以將本案的標籤貼附在其他物品上來使用。The main use of the RFID tag 100 in the embodiment is to attach it to relatively large metal products such as iron drums and H-shaped steels, and can be used to track the distribution paths of these metal products, including inventory management, etc. In addition to metal products, the tag of this case can also be attached to other items for use.

進一步,本實施形態的RFID標籤具有可撓性,即便被黏接體的表面彎曲也可貼附。即便在被折彎成彎曲狀的狀態,也能夠發揮良好的通訊性能,並能夠將本實施形態的RFID標籤使用於鐵桶和噴霧罐等的具有曲面之物品的識別,因而能夠謀求用途的多樣化。Furthermore, the RFID tag of this embodiment is flexible and can be attached even if the surface of the adherend is curved. Even when bent, it can still demonstrate good communication performance, and the RFID tag of this embodiment can be used to identify objects with curved surfaces such as drums and spray cans, thereby achieving a variety of uses.

嵌置部101是包含關於RFID標籤100的功能的元件之部分,如第2圖、第3圖所示,具有記錄有識別資訊之IC晶片10與連接於IC晶片10之槽孔天線20。槽孔天線20是由金屬薄膜形成。在槽孔天線20上,設置有其金屬薄膜的一部分被細長狀地切下而成之槽孔21。嵌置部101,例如在PET(聚對苯二甲酸乙二酯)薄膜上以乾式疊層的方式貼附鋁片而形成有槽孔天線20,並在規定位置上構裝有IC晶片10。The embedding part 101 is a part that includes components related to the functions of the RFID tag 100. As shown in FIG. 2 and FIG. 3, it has an IC chip 10 that records identification information and a slot antenna 20 connected to the IC chip 10. The slot antenna 20 is formed of a metal film. The slot antenna 20 is provided with a slot 21 formed by cutting a part of the metal film into a long shape. The embedding part 101 is formed by attaching an aluminum sheet to a PET (polyethylene terephthalate) film in a dry lamination manner to form the slot antenna 20, and the IC chip 10 is mounted at a predetermined position.

IC晶片10配置於嵌置部101的主面的中央,槽孔天線20的槽孔21,具有:一對平行部22,其夾入IC晶片10並往規定方向(在第2圖、第3圖的例子中為x方向)平行地延伸;及,一對垂直部23,其往與該一對平行部22正交之方向(y方向)延伸。一對垂直部23,其夾入IC晶片10並在x方向上分別被配置於大致等間隔的位置上。The IC chip 10 is arranged at the center of the main surface of the embedding portion 101. The slot 21 of the slot antenna 20 has: a pair of parallel portions 22 that sandwich the IC chip 10 and extend in parallel in a predetermined direction (the x direction in the example of FIG. 2 and FIG. 3); and a pair of vertical portions 23 that extend in a direction (y direction) orthogonal to the pair of parallel portions 22. The pair of vertical portions 23 sandwich the IC chip 10 and are arranged at positions approximately equally spaced in the x direction.

再者,IC晶片10的阻抗的頻率特性,如以下所述。 ・866MHz:15-j265(Ω) ・915MHz:14-j252(Ω) ・953MHz:13-j242(Ω) Furthermore, the frequency characteristics of the impedance of the IC chip 10 are as follows. ・866MHz: 15-j265(Ω) ・915MHz: 14-j252(Ω) ・953MHz: 13-j242(Ω)

槽孔天線20的阻抗,以可在915〜920MHz與上述IC晶片10的阻抗匹配的方式設計。藉由如此的阻抗的匹配,電流的損失變少,因為減少損失而可通訊距離增大。The impedance of the slot antenna 20 is designed to match the impedance of the IC chip 10 at 915 to 920 MHz. By matching the impedance in this way, the current loss is reduced, and the communication distance can be increased due to the reduction of the loss.

磁性片材102是含有磁性材料之片材,並且層疊在嵌置部101的貼附對象物200側。磁性片材102是以將例如不銹系合金等的磁性粉末平均且定向分散至橡膠材和樹脂等而加以揉合的方式來形成。如第2圖、第3圖所示,在磁性片材102上設置有狹縫30,用以區分具有磁性特性的磁性層。狹縫30,在磁性片材102與嵌置部101層疊的狀態下,被配置在與嵌置部101的槽孔21重疊的區域。The magnetic sheet 102 is a sheet containing a magnetic material and is stacked on the attachment object 200 side of the embedding portion 101. The magnetic sheet 102 is formed by evenly and directionally dispersing magnetic powder such as a stainless alloy in a rubber material and a resin and kneading the mixture. As shown in FIG. 2 and FIG. 3, a slit 30 is provided on the magnetic sheet 102 to distinguish the magnetic layer having magnetic properties. The slit 30 is arranged in a region overlapping with the slot 21 of the embedding portion 101 when the magnetic sheet 102 and the embedding portion 101 are stacked.

狹縫30,例如第3圖所示,在磁性片材102的y方向的中央位置,以沿著x方向延伸的方式形成。又,槽孔天線20的槽孔21與磁性片材102的狹縫30的配置,例如第3圖所示,以槽孔21之中的至少一對平行部22的全體被包含在狹縫30的區域內的方式配置。The slit 30 is formed, for example, as shown in FIG. 3 , at the center of the magnetic sheet 102 in the y direction so as to extend in the x direction. Furthermore, the slot 21 of the slot antenna 20 and the slit 30 of the magnetic sheet 102 are arranged, for example, as shown in FIG. 3 , so that at least one pair of parallel portions 22 in the slot 21 are entirely included in the area of the slit 30.

磁性片材102,較佳是採用一種對於UHF頻帶的電波具有優異的磁屏蔽特性的片材。磁性片材102,可利用將含有磁性填料、黏合劑樹脂等成分之磁性塗料塗佈於支持體上並使其乾燥而獲得。為了使磁性片材102對於UHF頻帶的電波具有優異的磁屏蔽特性,乾燥後的磁性片材102的膜厚,較佳是以成為500μm以下的方式,更佳是以成為300μm以下的方式來塗佈磁性塗料。又,乾燥後的磁性片材102的膜厚,較佳是以成為50μm以上的方式,更佳是以成為100μm以上的方式來塗佈磁性塗料。The magnetic sheet 102 is preferably a sheet having excellent magnetic shielding properties for UHF band radio waves. The magnetic sheet 102 can be obtained by applying a magnetic coating containing components such as a magnetic filler and an adhesive resin on a support and drying the magnetic coating. In order to make the magnetic sheet 102 have excellent magnetic shielding properties for UHF band radio waves, the magnetic sheet 102 after drying is preferably coated with the magnetic coating in a manner that is less than 500 μm, and more preferably less than 300 μm. Furthermore, the magnetic sheet 102 after drying is preferably coated with the magnetic coating in a manner that is greater than 50 μm, and more preferably greater than 100 μm.

同樣地,為了使磁性片材102對於UHF頻帶的電波具有優異的磁屏蔽特性,磁性片材的860〜960MHz頻率帶中的複數相對磁導率(complex relative permeability)的損失係數tanδ(μ´/μ´´)較佳是0.3以下,更佳是0.28以下。又,磁性片材的860〜960MHz頻率帶中的複數相對磁導率的損失係數tanδ(μ´/μ´´)較佳是0.05以上,更佳是0.1以上。Similarly, in order to make the magnetic sheet 102 have excellent magnetic shielding properties for UHF band radio waves, the loss coefficient tanδ(μ´/μ´´) of the complex relative permeability of the magnetic sheet in the 860-960MHz frequency band is preferably 0.3 or less, and more preferably 0.28 or less. In addition, the loss coefficient tanδ(μ´/μ´´) of the complex relative permeability of the magnetic sheet in the 860-960MHz frequency band is preferably 0.05 or more, and more preferably 0.1 or more.

再者,本實施形態中的標籤的厚度(除去剝離紙)是200μm〜1000μm,較佳是300μm〜400μm。又,將磁性片材與嵌置部貼合後的狀態的厚度(除去標籤紙和剝離紙)是150μm〜250μm,較佳是190μm〜210μm,更佳是200μm左右。標籤紙的厚度,包含黏著層是50μm〜300μm。剝離紙的厚度是50μm〜300μm。Furthermore, the thickness of the label in this embodiment (excluding the release paper) is 200μm to 1000μm, preferably 300μm to 400μm. In addition, the thickness of the state after the magnetic sheet and the embedding portion are bonded (excluding the label paper and the release paper) is 150μm to 250μm, preferably 190μm to 210μm, and more preferably about 200μm. The thickness of the label paper, including the adhesive layer, is 50μm to 300μm. The thickness of the release paper is 50μm to 300μm.

同樣地,為了使磁性片材102對於UHF頻帶的電波具有優異的磁屏蔽特性,磁性片材的860〜960MHz頻率帶中的複數相對磁導率的實數部分μ´,較佳是5.0以上,更佳是5.2以上。又,磁性片材的860〜960MHz頻率帶中的複數相對磁導率的實數部分μ´,較佳是7.0以下,更佳是6.0以下。Similarly, in order to make the magnetic sheet 102 have excellent magnetic shielding properties for UHF band radio waves, the real part μ' of the complex relative permeability of the magnetic sheet in the 860-960MHz frequency band is preferably 5.0 or more, and more preferably 5.2 or more. In addition, the real part μ' of the complex relative permeability of the magnetic sheet in the 860-960MHz frequency band is preferably 7.0 or less, and more preferably 6.0 or less.

又,為了滿足上述複數相對磁導率的條件,包含於磁性塗料中的磁性填料的材質,較佳是Fe-Cr合金。又,磁性填料與黏合劑的固體成分的質量比(磁性填料的質量/黏合劑的固體成分的質量)較佳是70/30以上,更佳是75/25以上,進一步更佳是80/20以上。進一步,磁性填料與黏合劑的固體成分的質量比(磁性填料的質量/黏合劑的固體成分的質量)較佳是95/5以下,更佳是90/10以下,進一步更佳是85/15以下。Furthermore, in order to satisfy the above-mentioned multiple relative permeabilities, the material of the magnetic filler contained in the magnetic coating is preferably a Fe-Cr alloy. Furthermore, the mass ratio of the magnetic filler to the solid component of the binder (mass of the magnetic filler/mass of the solid component of the binder) is preferably 70/30 or more, more preferably 75/25 or more, and further preferably 80/20 or more. Furthermore, the mass ratio of the magnetic filler to the solid component of the binder (mass of the magnetic filler/mass of the solid component of the binder) is preferably 95/5 or less, more preferably 90/10 or less, and further preferably 85/15 or less.

又,磁性塗料中所含的黏合劑樹脂,是選自由環氧樹脂、胺酯樹脂及聚酯樹脂所組成之群組中的1種類以上的樹脂,較佳是環氧樹脂。Furthermore, the binder resin contained in the magnetic coating is one or more resins selected from the group consisting of epoxy resins, urethane resins and polyester resins, and is preferably epoxy resin.

介電層103進一步被層疊在磁性片材102的貼附對象物200側,且被配置在磁性片材102與貼附對象物200之間。第2圖中,介電層103一體地圖示於磁性片材102的下方。介電層103較佳是形成為例如厚紙和由合成樹脂等的纖維所構成的織布和不織布、陶瓷玻璃等的無機材料的片材等的絕緣體。本實施形態中,介電層103例如由發泡PET形成。介電層103的材料較佳是相對介電係數為1.2〜3.0左右的材料,藉此能夠增加RFID標籤100的通訊距離。The dielectric layer 103 is further stacked on the side of the magnetic sheet 102 to which the object 200 is to be attached, and is arranged between the magnetic sheet 102 and the object 200 to which the object is to be attached. In FIG. 2, the dielectric layer 103 is integrally illustrated below the magnetic sheet 102. The dielectric layer 103 is preferably formed as an insulator such as a sheet of thick paper, woven and non-woven fabrics composed of fibers such as synthetic resins, and inorganic materials such as ceramic glass. In the present embodiment, the dielectric layer 103 is formed of, for example, foamed PET. The material of the dielectric layer 103 is preferably a material having a relative dielectric constant of approximately 1.2 to 3.0, thereby increasing the communication distance of the RFID tag 100.

又,如第1圖所示,介電層103也發揮作為間隔件的功能而使嵌置部101和磁性片材102配置成僅從貼附對象物200分離該介電層103的厚度的狀態。介電層103較佳是由可以對應外力而與嵌置部101和磁性片材102一起任意地變形的材料來形成,藉此在貼附對象物200的貼附面彎曲的情況下,也能夠容易地貼附RFID標籤100並構成為能夠提升通用性。Furthermore, as shown in FIG. 1 , the dielectric layer 103 also functions as a spacer so that the embedding portion 101 and the magnetic sheet 102 are arranged in a state where only the thickness of the dielectric layer 103 is separated from the attachment object 200. The dielectric layer 103 is preferably formed of a material that can be arbitrarily deformed together with the embedding portion 101 and the magnetic sheet 102 in response to an external force, thereby making it possible to easily attach the RFID tag 100 even when the attachment surface of the attachment object 200 is curved, and to improve versatility.

又,在RFID標籤100中,例如第2圖所示,在嵌置部101與磁性片材102之間配置有黏著層104(第1圖中省略圖示)。黏著層104,在層疊時,進入由磁性片材102的狹縫30與其下方的介電層103所形成的間隙內而能夠填埋此間隙。In the RFID tag 100, as shown in FIG. 2, an adhesive layer 104 (not shown in FIG. 1) is disposed between the embedding portion 101 and the magnetic sheet 102. When stacked, the adhesive layer 104 enters the gap formed by the slit 30 of the magnetic sheet 102 and the dielectric layer 103 thereunder and can fill the gap.

又,在本實施形態的RFID標籤100中,在嵌置部101的上方進一步配置有標籤紙(薄膜系黏合紙)105。標籤紙105可在z正方向側的表面上印刷。標籤紙的原材料可適當選擇。In the RFID tag 100 of the present embodiment, a label paper (film-based adhesive paper) 105 is further arranged above the embedding portion 101. The label paper 105 can be printed on the surface on the positive z direction side. The raw material of the label paper can be appropriately selected.

又,如第1圖所示,在標籤紙105的z負方向側的背面上塗佈有黏著劑106。標籤紙105形成比嵌置部101、磁性片材102及介電層103大,如第2圖所示,標籤紙105以其外緣部分105A可包圍嵌置部101、磁性片材102及介電層103的外形整周的方式形成。藉此,如第1圖所示,當RFID標籤100被貼附在貼附對象物200上的時候,嵌置部101、磁性片材102及介電層103的外側被標籤紙105完全地覆蓋,標籤紙105的外緣部分105A與貼附對象物200接觸。也就是說,藉由標籤紙105的外緣部分105A的黏著劑106,RFID標籤100整體被貼附在貼附對象物200上。Furthermore, as shown in FIG. 1, an adhesive 106 is applied on the back side of the label paper 105 on the negative z direction side. The label paper 105 is formed larger than the embedding portion 101, the magnetic sheet 102, and the dielectric layer 103. As shown in FIG. 2, the label paper 105 is formed in such a way that its outer edge portion 105A can surround the entire outer shape of the embedding portion 101, the magnetic sheet 102, and the dielectric layer 103. Thereby, as shown in FIG. 1, when the RFID tag 100 is attached to the attachment object 200, the outer sides of the embedding portion 101, the magnetic sheet 102, and the dielectric layer 103 are completely covered by the label paper 105, and the outer edge portion 105A of the label paper 105 is in contact with the attachment object 200. That is, the entire RFID tag 100 is attached to the attachment object 200 by the adhesive 106 on the outer edge portion 105A of the label paper 105.

又,黏著劑106,例如在長時間使用的使用環境中,能夠使用黏結劑。但是,若黏結劑硬化則剝離會有變困難的情況。對此,黏著劑通常可利用作業者的手工操作將RFID標籤從對象物品剝離,進一步,根據黏著劑的種類,可在剝離後再度貼附RFID標籤,而成為可將RFID標籤再度利用的情況。In addition, the adhesive 106 can be used in an environment where the object is used for a long time. However, if the adhesive hardens, it may be difficult to peel off. In contrast, the adhesive can be used to peel off the RFID tag from the object by manual operation of the operator. Furthermore, depending on the type of adhesive, the RFID tag can be attached again after peeling off, so that the RFID tag can be reused.

再者,在第1圖所示的藉由標籤紙105的黏著劑106來貼附RFID標籤100的結構的情況,也可在介電層103與貼附對象物200之間不塗佈黏著劑而不將介電層103接合(黏著)在貼附對象物200上。Furthermore, in the case of the structure in which the RFID tag 100 is attached by the adhesive 106 of the label paper 105 as shown in FIG. 1 , the adhesive may not be applied between the dielectric layer 103 and the attached object 200 and the dielectric layer 103 may not be bonded (adhered) to the attached object 200.

又,如第2圖所示,在使用前的RFID標籤100上,在比介電層103更下方配置有剝離紙107。剝離紙107的尺寸例如形成為與標籤紙105的尺寸相同或更大,標籤紙105與剝離紙107藉由外緣部分的黏著劑106而貼緊。藉此能夠防止標籤紙105的外緣部分105A的黏著劑106在用於對貼附對象物200進行貼付前露出於外部,並能夠保持黏著力。在使用RFID標籤100時,剝離紙107從RFID標籤100被剝除,藉此,利用露出的標籤紙105的黏著劑106,RFID標籤100被貼附在貼附對象物200上。Furthermore, as shown in FIG. 2, a release paper 107 is arranged below the dielectric layer 103 on the RFID tag 100 before use. The size of the release paper 107 is, for example, the same as or larger than the size of the label paper 105, and the label paper 105 and the release paper 107 are closely attached to each other by the adhesive 106 on the outer edge portion. This prevents the adhesive 106 on the outer edge portion 105A of the label paper 105 from being exposed to the outside before being attached to the attachment object 200, and the adhesive force can be maintained. When the RFID tag 100 is used, the release paper 107 is peeled off from the RFID tag 100, and the RFID tag 100 is attached to the attachment object 200 using the adhesive 106 on the exposed label paper 105.

又,剝離紙107也可形成比第2圖所示的剝離紙更大而可在一張剝離紙107上配置複數個RFID標籤100。藉此,能夠提升製造效率和搬送效率。Furthermore, the release paper 107 may be formed larger than the release paper shown in FIG. 2 so that a plurality of RFID tags 100 may be arranged on one release paper 107. Thus, the manufacturing efficiency and the conveying efficiency can be improved.

有關標籤紙105的底面的黏著劑106,較佳是RFID標籤100的面積的50%以上的面積被貼合在剝離紙107上。在RFID標籤100的製造步驟中,在往一方向延伸的剝離紙107上配置有複數各RFID標籤100,包含RFID標籤100之剝離紙107被捲繞成滾筒狀。在印刷步驟中,滾筒狀的剝離紙107被拉出而對各個RFID標籤100施行印刷處理,在印刷處理結束後,再度捲繞成滾筒狀來加以保管。這是為了在此種製造步驟和印刷步驟中,防止RFID標籤100從捲繞成滾筒狀之剝離紙107脫離。Regarding the adhesive 106 on the bottom surface of the label paper 105, it is preferred that more than 50% of the area of the RFID tag 100 is adhered to the release paper 107. In the manufacturing step of the RFID tag 100, a plurality of RFID tags 100 are arranged on the release paper 107 extending in one direction, and the release paper 107 including the RFID tags 100 is rolled into a roll. In the printing step, the roll-shaped release paper 107 is pulled out and the printing process is performed on each RFID tag 100. After the printing process is completed, it is rolled into a roll again for storage. This is to prevent the RFID tag 100 from being separated from the release paper 107 wound into a roll shape during such manufacturing steps and printing steps.

再者,RFID標籤100的層疊構造並未限定於第1圖、第2圖所示的構造。第21圖是變化例的RFID標籤100A的層疊剖面圖。如第21圖所示,標籤紙105也可以是其尺寸形成為與嵌置部101、磁性片材102及介電層103的尺寸相同之結構。此情況,標籤紙105的外緣部分無法接觸到貼附對象物200,所以在與貼附對象物200相對向之介電層103的底面上塗佈有黏著劑106,並藉由介電層103被接合在貼附對象物200上,RFID標籤100A整體被貼附在貼附對象物200上。Furthermore, the stacking structure of the RFID tag 100 is not limited to the structure shown in Figures 1 and 2. Figure 21 is a stacking cross-sectional view of a modified RFID tag 100A. As shown in Figure 21, the label paper 105 may also be a structure whose size is formed to be the same as the size of the embedding portion 101, the magnetic sheet 102, and the dielectric layer 103. In this case, the outer edge of the label paper 105 cannot contact the attached object 200, so an adhesive 106 is applied to the bottom surface of the dielectric layer 103 opposite to the attached object 200, and is bonded to the attached object 200 through the dielectric layer 103, and the RFID tag 100A is attached to the attached object 200 as a whole.

再者,第2圖、第3圖所示的槽孔天線20的槽孔21的形狀是一例,並未限定於第2圖、第3圖所示的形狀。第4圖是示出槽孔天線20的其他形狀的槽孔21A的一例的平面圖。The shapes of the slot 21 of the slot antenna 20 shown in Fig. 2 and Fig. 3 are examples and are not limited to the shapes shown in Fig. 2 and Fig. 3. Fig. 4 is a plan view showing an example of a slot 21A of another shape of the slot antenna 20.

槽孔天線20的槽孔的形狀,例如第4圖所示的槽孔21A,也可以是僅具有一對平行部22A而沒有垂直部之形狀。在第4圖的例子中,平行部22A朝向第3圖的垂直部23的延伸方向,其開口面積比第3圖的平行部22增加且y方向的寬度變大。又,在第4圖的例子中,以槽孔21A的一對平行部22A包含在狹縫30的區域內的方式,狹縫30的寬度變寬地形成。The shape of the slot of the slot antenna 20, such as the slot 21A shown in FIG. 4, may also be a shape having only a pair of parallel portions 22A without a vertical portion. In the example of FIG. 4, the parallel portion 22A extends in the direction of the vertical portion 23 of FIG. 3, and its opening area is larger than that of the parallel portion 22 of FIG. 3 and the width in the y direction is larger. In the example of FIG. 4, the width of the slit 30 is formed so that the pair of parallel portions 22A of the slot 21A are included in the region of the slit 30.

第5圖是示出實施形態的RFID標籤100的製造方法的一例的流程圖。在步驟S1中,形成磁性片材102(帶有狹縫之磁性片材),其設置了用以區分具有磁性特性的磁性層之狹縫30。Fig. 5 is a flow chart showing an example of a method for manufacturing the RFID tag 100 of the embodiment. In step S1, a magnetic sheet 102 (slit-shaped magnetic sheet) is formed, in which slits 30 for separating the magnetic layer having magnetic properties are provided.

如此的帶有狹縫之磁性片材102,例如能夠利用下述方式來形成:藉由卷對卷(roll to roll)方式,一邊以速度3m/min來搬送聚酯系合成薄膜(東洋紡股份有限公司製造,「CRISPER K1211 #38μ」)一邊使用塗佈機將由磁屏蔽塗料而產生的條紋圖樣形成在該薄膜上,並一邊將溫度從40℃上升至80℃一邊使該薄膜通過30m的硬化爐。Such a magnetic sheet 102 with slits can be formed, for example, by the following method: a polyester synthetic film (manufactured by Toyobo Co., Ltd., "CRISPER K1211 #38μ") is conveyed at a speed of 3 m/min by a roll-to-roll method, a stripe pattern produced by a magnetic shielding coating is formed on the film using a coating machine, and the film is passed through a 30m curing furnace while the temperature is raised from 40°C to 80°C.

在步驟S2中,層疊在步驟S1中所形成的帶有狹縫之磁性片材102與嵌置部101。In step S2, the magnetic sheet 102 with slits and the embedding portion 101 formed in step S1 are stacked.

再者,在步驟S1中被設置於磁性片材102上的狹縫30,是以在步驟S2中的磁性片材102與嵌置部101層疊在一起的狀態下會被配置在與嵌置部101的槽孔21重疊的區域的方式形成。Furthermore, the slit 30 provided on the magnetic sheet 102 in step S1 is formed in such a manner that the slit 30 is arranged in a region overlapping with the slot 21 of the embedding portion 101 when the magnetic sheet 102 and the embedding portion 101 are stacked together in step S2.

在步驟S3中,介電層103被層疊在磁性片材102的與嵌置部101相反的一側的面上。再者,步驟S2與步驟S3也可相反順序地實行,在將磁性片材102與介電層103層疊之後,將嵌置部101與磁性片材102層疊。In step S3, the dielectric layer 103 is stacked on the surface of the magnetic sheet 102 on the side opposite to the embedding portion 101. Furthermore, step S2 and step S3 may also be performed in reverse order, where the embedding portion 101 is stacked on the magnetic sheet 102 after the magnetic sheet 102 and the dielectric layer 103 are stacked.

在步驟S4中,薄膜系黏合紙(標籤紙)105被層疊在嵌置部101的與磁性片材102相反的一側的面上。In step S4, a film-based adhesive paper (label paper) 105 is stacked on the surface of the embedding portion 101 on the side opposite to the magnetic sheet 102.

如此一來,本實施形態的RFID標籤100,具備:嵌置部101,其具有記錄有識別資訊之IC晶片10和連接於IC晶片10之槽孔天線20;及,磁性片材102,其層疊在嵌置部101的貼附對象物200側。槽孔天線20是由金屬薄膜形成,在槽孔天線20上,設置有其金屬薄膜的一部分被細長狀地切下而成之槽孔21。在磁性片材102上設置有狹縫30,用以區分具有磁性特性的磁性層。此狹縫30,在磁性片材102與嵌置部101層疊的狀態下,被配置在與嵌置部101的槽孔21重疊的區域。Thus, the RFID tag 100 of the present embodiment comprises: an embedding portion 101 having an IC chip 10 recording identification information and a slot antenna 20 connected to the IC chip 10; and a magnetic sheet 102 stacked on the side of the embedding portion 101 to which the object 200 is attached. The slot antenna 20 is formed of a metal film, and a slot hole 21 is provided on the slot antenna 20 in which a portion of the metal film is cut off in an elongated shape. A slit 30 is provided on the magnetic sheet 102 to distinguish a magnetic layer having magnetic properties. This slit 30 is arranged in a region overlapping with the slot hole 21 of the embedding portion 101 when the magnetic sheet 102 and the embedding portion 101 are stacked.

藉由如此地在磁性片材102上設置狹縫30,不論貼附對象物200的種類為何,變成可增加RFID標籤100的在UHF頻帶中的可通訊距離且能夠提升通訊性能(參照後述第22圖)。又,相較於HF頻帶,可以長距離通訊和一起讀取複數個對象物並能夠增加UHF頻帶的可通訊距離,因此能夠實現通用性高的RFID標籤100。By providing the slits 30 on the magnetic sheet 102 in this manner, the communication distance of the RFID tag 100 in the UHF band can be increased and the communication performance can be improved regardless of the type of the attached object 200 (see FIG. 22 described later). In addition, compared to the HF band, long-distance communication and simultaneous reading of multiple objects are possible, and the communication distance of the UHF band can be increased, thereby realizing a highly versatile RFID tag 100.

又,若貼附對象物200為金屬製,則對於先前的RFID標籤,無法根據標籤內的天線來實行通訊,會有識別資訊的讀出招致障礙的情況,所以提升本實施形態的RFID標籤100的通訊性能這樣的效果,當貼附對象物200為金屬製時變成特別顯著。Furthermore, if the attached object 200 is made of metal, the previous RFID tag cannot communicate based on the antenna inside the tag, which may cause obstacles to the reading of identification information. Therefore, the effect of improving the communication performance of the RFID tag 100 of this embodiment becomes particularly significant when the attached object 200 is made of metal.

又,在沒有使用磁性片材之既有的金屬用RFID標籤中,為了抑制由於作為被黏接體的金屬的影響而導致的通訊性能降低,在嵌置部與被黏接體之間變成需要比較大的間隔,為了確保該間隔,RFID標籤整體的厚度為3.5mm以上,薄型化是困難的。Furthermore, in existing metal RFID tags that do not use magnetic sheets, in order to suppress the reduction in communication performance due to the influence of the metal as the adherend, a relatively large distance is required between the embedded part and the adherend. In order to ensure this distance, the overall thickness of the RFID tag is more than 3.5 mm, making it difficult to reduce the thickness.

相對於此,本實施形態的RFID標籤的厚度為1mm以下,相較於沒有使用磁性片材之先前的RFID標籤,能夠更薄。例如,能夠將包含標籤紙和剝離紙之RFID標籤的厚度作成大約350μm的厚度,作為對應於金屬之RFID標籤,能夠顯著地薄型化。In contrast, the thickness of the RFID tag of this embodiment is less than 1 mm, which can be thinner than the previous RFID tag that does not use a magnetic sheet. For example, the thickness of the RFID tag including the label paper and the release paper can be made to be about 350 μm, which is significantly thinner than a metal RFID tag.

又,利用變成可顯著地薄型化,可以使用通常採用的(通用的)標籤印刷機,同時地實行標籤的印刷與IC晶片的資訊寫入,從而能夠更加地提高製造效率。Furthermore, since the device can be significantly thinned, a commonly used (general-purpose) label printer can be used to simultaneously print labels and write information on IC chips, thereby further improving manufacturing efficiency.

又,本實施形態的RFID標籤100中,進一步具備被層疊在磁性片材102的貼附對象物200側之介電層103,藉此,由於能夠進一步增加UHF頻帶中的可通訊距離,所以能夠進一步提升通訊性能。In addition, the RFID tag 100 of this embodiment further has a dielectric layer 103 stacked on the side of the magnetic sheet 102 on which the object 200 is to be attached, thereby further increasing the communication distance in the UHF band and thus further improving the communication performance.

本實施形態的RFID標籤100,可應用於電磁感應式的無線標籤、電波式的無線標籤的任一種。尤其,在將RFID標籤100應用於電波式的無線標籤的情況,能夠確保與讀取器之間的規定的無線通訊距離。規定的無線通訊距離例如是在0m〜20m的範圍。The RFID tag 100 of this embodiment can be applied to any of electromagnetic induction type wireless tags and radio wave type wireless tags. In particular, when the RFID tag 100 is applied to a radio wave type wireless tag, a predetermined wireless communication distance with a reader can be ensured. The predetermined wireless communication distance is, for example, in the range of 0m to 20m.

本實施形態的RFID標籤100,不僅可應用於UHF頻帶的電波,也可應用於VHF頻帶、SHF頻帶等的電波。RFID標籤100的使用頻率為UHF頻帶的頻率例如860〜960MHz、915〜925MHz等的情況,UHF頻帶,相較於VHF頻帶,由於頻率較高因而波長變短,對於天線的小型化是有利的。因此,利用將RFID標籤100作成適合UHF頻帶的電波之形狀,能夠謀求IC晶片10的小型化,同時能夠獲得一種記憶體容量小但是價廉的無線標籤。 (實施例) The RFID tag 100 of this embodiment can be applied not only to radio waves of the UHF band, but also to radio waves of the VHF band, SHF band, etc. When the operating frequency of the RFID tag 100 is a frequency of the UHF band, such as 860 to 960 MHz, 915 to 925 MHz, etc., the UHF band has a higher frequency and a shorter wavelength than the VHF band, which is beneficial for miniaturization of the antenna. Therefore, by making the RFID tag 100 into a shape suitable for radio waves of the UHF band, it is possible to miniaturize the IC chip 10 and obtain a wireless tag with a small memory capacity but low price. (Example)

以下,具體地說明有關本發明的實施例。Hereinafter, embodiments of the present invention will be described in detail.

<狹縫寬度的影響> 如下述般地設定實施例1〜5、比較例1〜2,驗證相應於磁性片材102的狹縫30的寬度的變化對於通訊性能的影響。 <Influence of slit width> Examples 1 to 5 and Comparative Examples 1 to 2 were set as follows to verify the influence of the change in the width of the slit 30 corresponding to the magnetic sheet 102 on the communication performance.

[實施例1] 將嵌置部101、厚度100μm的磁性片材102、厚度38μm的發泡PET製的介電層103加以層疊而作成第1圖所示的RFID標籤100。嵌置部101,在厚度38μm的PET薄膜上以乾式疊層的方式貼附10μm的鋁片而形成槽孔天線20,並在規定位置上構裝IC晶片10。其中,撕除標籤紙105。槽孔天線20的槽孔21的天線圖案作成第2圖所示的形狀。將槽孔天線20與槽孔21的各部分的尺寸示於第6圖。 [Example 1] The RFID tag 100 shown in FIG. 1 is made by stacking an embedding portion 101, a magnetic sheet 102 with a thickness of 100 μm, and a dielectric layer 103 made of foamed PET with a thickness of 38 μm. The embedding portion 101 is formed by attaching a 10 μm aluminum sheet to a PET film with a thickness of 38 μm by dry lamination to form a slot antenna 20, and an IC chip 10 is mounted at a predetermined position. The label paper 105 is removed. The antenna pattern of the slot 21 of the slot antenna 20 is made into the shape shown in FIG. 2. The dimensions of each part of the slot antenna 20 and the slot 21 are shown in FIG. 6.

磁性片材102,使用以下述方式作成的片材。首先,磁性塗料,是將作為磁性填料的Fe-Cr合金(山陽特殊製鋼股份有限公司製造、「FKTE231」)55.2質量份、作為黏合劑樹脂的聚酯系聚胺酯(荒川化學工業股份有限公司製造、「Iuliano2456」、重量平均分子量30000)9.9質量份、作為有機溶劑的甲苯22.6質量份、作為分散劑的聚磷酸酯系分散劑(BYK日本股份有限公司製造、「BYK-111」)0.4質量份、及作為消泡劑的非矽氧系消泡劑(BYK日本股份有限公司製造、「BYK-1752」)0.2質量份加以混合而獲得。接著,藉由卷對卷(roll to roll)方式,一邊以速度3m/min來搬送聚酯系合成薄膜(東洋紡股份有限公司製造,「CRISPER K1211 #38μ」)一邊使用塗佈機將由磁屏蔽塗料(利用上述所獲得的磁性塗料)而產生的條紋圖樣形成在該薄膜上,並一邊將溫度從40℃上升至80℃一邊使該薄膜通過30m的硬化爐。藉此,作為帶有狹縫30之磁性片材102。The magnetic sheet 102 was prepared as follows. First, the magnetic coating was prepared by mixing 55.2 parts by mass of Fe-Cr alloy ("FKTE231" manufactured by Sanyo Tokugawa Steel Co., Ltd.) as a magnetic filler, 9.9 parts by mass of polyester polyurethane ("Iuliano 2456" manufactured by Arakawa Chemical Industries, Ltd., weight average molecular weight 30,000) as a binder resin, 22.6 parts by mass of toluene as an organic solvent, 0.4 parts by mass of polyphosphate dispersant ("BYK-111" manufactured by BYK Japan Co., Ltd.) as a dispersant, and 0.2 parts by mass of non-silicone defoaming agent ("BYK-1752" manufactured by BYK Japan Co., Ltd.) as a defoaming agent. Next, a polyester synthetic film ("CRISPER K1211 #38μ" manufactured by Toyobo Co., Ltd.) was conveyed at a speed of 3 m/min by a roll-to-roll method, and a stripe pattern was formed on the film using a coating machine using a magnetic shielding coating (using the magnetic coating obtained above), and the film was passed through a curing furnace for 30 m while the temperature was raised from 40°C to 80°C. Thus, a magnetic sheet 102 with slits 30 was obtained.

磁性片材102的狹縫30,如第3圖所示,將磁性片材102的y方向的中央作為寬度方向的中心位置,並以y方向的寬度成為2mm的方式形成。As shown in FIG. 3 , the slit 30 of the magnetic sheet 102 is formed so that the center of the y direction of the magnetic sheet 102 is the center position in the width direction and the width in the y direction becomes 2 mm.

在將以如此方式作成的RFID標籤100貼附在不銹鋼(SUS)板的貼附對象物200上的狀態下,使用RFID標籤性能檢查裝置(Tagformance Pro、Voyantic公司製造),測量RFID標籤100的頻率特性。測量時的無線通訊用電波的測定頻率帶設為700〜1200MHz,EIRP(Equivalent Isotropically Radiated Power:等效均向輻射功率)設為3.2W。The RFID tag 100 thus produced was attached to a stainless steel (SUS) plate as an attachment object 200, and the frequency characteristics of the RFID tag 100 were measured using an RFID tag performance tester (Tagformance Pro, manufactured by Voyantic). The measurement frequency band of the wireless communication radio wave was set to 700 to 1200 MHz, and the EIRP (Equivalent Isotropically Radiated Power) was set to 3.2 W.

[實施例2] 將磁性片材102的狹縫30的寬度設為5mm,除此以外,與實施例1同樣地作成RFID標籤100,測量頻率特性。 [Example 2] The RFID tag 100 was prepared in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 5 mm, and the frequency characteristics were measured.

[實施例3] 將磁性片材102的狹縫30的寬度設為10mm,除此以外,與實施例1同樣地作成RFID標籤100,測量頻率特性。 [Example 3] The RFID tag 100 was prepared in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 10 mm, and the frequency characteristics were measured.

[實施例4] 將磁性片材102的狹縫30的寬度設為18mm,除此以外,與實施例1同樣地作成RFID標籤100,測量頻率特性。 [Example 4] The RFID tag 100 was prepared in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 18 mm, and the frequency characteristics were measured.

[實施例5] 將磁性片材102的狹縫30的寬度設為25mm,除此以外,與實施例1同樣地作成RFID標籤100,測量頻率特性。 [Example 5] The RFID tag 100 was prepared in the same manner as in Example 1 except that the width of the slit 30 of the magnetic sheet 102 was set to 25 mm, and the frequency characteristics were measured.

[比較例1] 除了沒有在磁性片材102設置狹縫30以外,與實施例1同樣地作成RFID標籤100,測量頻率特性。 [Comparative Example 1] Except that the slit 30 is not provided in the magnetic sheet 102, the RFID tag 100 is produced in the same manner as in Example 1, and the frequency characteristics are measured.

[比較例2] 除了去除磁性片材102以外,與實施例1同樣地作成RFID標籤100。亦即,將嵌置部101、厚度38μm的介電層103加以層疊而作成RFID標籤。又,針對所作成的RFID標籤,利用與實施例1同樣的手法來測量頻率特性。 [Comparative Example 2] Except for removing the magnetic sheet 102, the RFID tag 100 is made in the same manner as in Example 1. That is, the embedding portion 101 and the dielectric layer 103 with a thickness of 38 μm are stacked to make the RFID tag. In addition, the frequency characteristics of the made RFID tag are measured using the same method as in Example 1.

第7圖是示出實施例1〜5和比較例2的RFID標籤的頻率特性的圖。第7圖中的(A)表示實施例1的頻率特性、(B)表示實施例2的頻率特性、(C)表示實施例3的頻率特性、(D)表示實施例4的頻率特性、(E)表示實施例4的頻率特性、(F)表示比較例2的頻率特性。各圖的橫軸表示無線通訊用電波的頻率,縱軸表示從RFID標籤100至讀取器為止的可通訊距離。FIG. 7 is a graph showing the frequency characteristics of the RFID tags of Examples 1 to 5 and Comparative Example 2. In FIG. 7, (A) represents the frequency characteristics of Example 1, (B) represents the frequency characteristics of Example 2, (C) represents the frequency characteristics of Example 3, (D) represents the frequency characteristics of Example 4, (E) represents the frequency characteristics of Example 4, and (F) represents the frequency characteristics of Comparative Example 2. The horizontal axis of each figure represents the frequency of the radio wave for wireless communication, and the vertical axis represents the communicable distance from the RFID tag 100 to the reader.

在第7圖中,特性的圖表未圖示的頻率帶,表示無法在RFID標籤100與讀取器之間實行無線通訊。如第7圖(F)所示,在沒有磁性片材102之比較例2中,在大約870MHz以下的頻率帶,無法實行無線通訊。再者,雖然在第7圖中未圖示出來,沒有在磁性片材102設置狹縫30之比較例1,在全部的頻率帶都無法實行無線通訊。In FIG. 7, the frequency bands not shown in the characteristic graph indicate that wireless communication cannot be performed between the RFID tag 100 and the reader. As shown in FIG. 7 (F), in Comparative Example 2 without the magnetic sheet 102, wireless communication cannot be performed in the frequency band below about 870 MHz. Furthermore, although not shown in FIG. 7, in Comparative Example 1 without the slit 30 in the magnetic sheet 102, wireless communication cannot be performed in all frequency bands.

如第7圖所示,包含在UHF頻帶中的規定的頻率920MHz時的可通訊距離,在實施例1中大約為2.0m、在實施例2中大約為3m、在實施例3中大約為4.5m、在實施例4中大約為4.5m、在實施例5中大約為2.5m、在比較例2中大約為1.5m。As shown in FIG. 7 , the communicable distance at the prescribed frequency of 920 MHz included in the UHF band is approximately 2.0 m in Example 1, approximately 3 m in Example 2, approximately 4.5 m in Example 3, approximately 4.5 m in Example 4, approximately 2.5 m in Example 5, and approximately 1.5 m in Comparative Example 2.

如第7圖(A)〜(D)所示,在磁性片材102設置狹縫30之實施例1〜4的結構中,隨著狹縫30的寬度增加,可通訊距離也增大,而在狹縫寬度為10〜18mm的情況下,可通訊距離變成最大的大約4.5m。又,頻率特性的峰值的位置,包含在UHF頻帶的頻率也就是860〜960MHz的範圍內。再者,在第7圖(E)所示的實施例5中,若進一步增加狹縫寬度,則頻率特性的峰值的位置往高頻側移動,UHF頻帶(例如920MHz附近)的可通訊距離降低一些。As shown in FIG. 7 (A) to (D), in the structure of embodiments 1 to 4 in which a slit 30 is provided in the magnetic sheet 102, as the width of the slit 30 increases, the communicative distance also increases, and when the slit width is 10 to 18 mm, the communicative distance becomes a maximum of about 4.5 m. In addition, the position of the peak of the frequency characteristic is included in the frequency range of 860 to 960 MHz in the UHF band. Furthermore, in embodiment 5 shown in FIG. 7 (E), if the slit width is further increased, the position of the peak of the frequency characteristic moves to the high frequency side, and the communicative distance of the UHF band (for example, near 920 MHz) is reduced.

又,如第7圖(F)所示,在沒有磁性片材102之比較例2中,頻率特性的峰值的位置,相較於第7圖(E)所示的實施例5的情況,進一步大幅地往高頻側移動。在比較例2中,為了在UHF頻帶中使用,需要增大天線尺寸。As shown in FIG. 7(F), in Comparative Example 2 without the magnetic sheet 102, the peak position of the frequency characteristic is further shifted toward the high frequency side compared to the case of Example 5 shown in FIG. 7(E). In Comparative Example 2, the antenna size needs to be increased in order to be used in the UHF band.

根據第7圖所示的試驗結果,藉由在RFID標籤100中設置磁性片材102且進一步在磁性片材上設置狹縫30,顯示出能夠增加可通訊距離,尤其能夠增加UHF頻帶的可通訊距離。According to the test results shown in FIG. 7 , by providing a magnetic sheet 102 in the RFID tag 100 and further providing a slit 30 on the magnetic sheet, it is shown that the communicative distance can be increased, especially the communicative distance in the UHF band can be increased.

進一步,對於第6圖所示的各部分的尺寸的槽孔天線20,若將狹縫30的寬度設為10〜18mm,則顯示出能夠使可通訊距離變成最大。也就是說,顯示出狹縫30的寬度有最適當的範圍。若將此條件以與槽孔天線20的槽孔21的關係來顯現,則能夠顯現出下述各種情況:槽孔21的平行部22完全地被包含在狹縫30的範圍內的情況、槽孔21的平行部22和垂直部23全體完全地被包含在狹縫30的範圍內的情況、狹縫30的寬度與垂直部23的長度(尺寸)大致一致的情況。Furthermore, for the slot antenna 20 having the dimensions of each part shown in FIG. 6, if the width of the slit 30 is set to 10 to 18 mm, it is shown that the communicable distance can be maximized. In other words, it is shown that there is an optimal range for the width of the slit 30. If this condition is shown in relation to the slot 21 of the slot antenna 20, the following various situations can be shown: the parallel portion 22 of the slot 21 is completely included in the range of the slit 30, the parallel portion 22 and the vertical portion 23 of the slot 21 are completely included in the range of the slit 30, and the width of the slit 30 is roughly the same as the length (size) of the vertical portion 23.

<磁性片材的磁性特性的影響> 以如下的方式設定實施例6〜9,驗證相應於磁性片材102的磁性特性,具體來說是相應於磁性粉的比率的變化對於通訊性能的影響。 <Influence of magnetic properties of magnetic sheet> Examples 6 to 9 are set as follows to verify the influence of the magnetic properties of the magnetic sheet 102, specifically the influence of the change in the ratio of magnetic powder on the communication performance.

[實施例6] 磁性片材102的狹縫30的寬度,設為被包含在上述實施例1〜5之中的最適當範圍內的18mm。磁性片材102的磁性層102A,其磁性粉的比率設為100%,介電粉的比率設為0%。以其他條件與上述實施例1同樣的方式來作成RFID標籤100,測量頻率特性。 [Example 6] The width of the slit 30 of the magnetic sheet 102 is set to 18 mm, which is within the optimal range of Examples 1 to 5. The magnetic layer 102A of the magnetic sheet 102 has a magnetic powder ratio of 100% and a dielectric powder ratio of 0%. The RFID tag 100 is made in the same manner as in Example 1, and the frequency characteristics are measured.

[實施例7] 除了將磁性片材102的磁性層102A的磁性粉的比率設為70%,介電粉的比率設為30%以外,與實施例6同樣地作成RFID標籤100,測量頻率特性。 [Example 7] Except that the ratio of magnetic powder in the magnetic layer 102A of the magnetic sheet 102 is set to 70% and the ratio of dielectric powder is set to 30%, the RFID tag 100 is made in the same manner as in Example 6, and the frequency characteristics are measured.

[實施例8] 除了將磁性片材102的磁性層102A的磁性粉的比率設為30%,介電粉的比率設為70%以外,與實施例6同樣地作成RFID標籤100,測量頻率特性。 [Example 8] Except that the ratio of magnetic powder in the magnetic layer 102A of the magnetic sheet 102 is set to 30% and the ratio of dielectric powder is set to 70%, the RFID tag 100 is made in the same manner as in Example 6, and the frequency characteristics are measured.

[實施例9] 除了將磁性片材102的磁性層102A的磁性粉的比率設為0%,介電粉的比率設為100%以外,與實施例6同樣地作成RFID標籤100,測量頻率特性。 [Example 9] Except that the ratio of magnetic powder in the magnetic layer 102A of the magnetic sheet 102 is set to 0% and the ratio of dielectric powder is set to 100%, the RFID tag 100 is made in the same manner as in Example 6, and the frequency characteristics are measured.

第8圖是示出實施例6〜9的RFID標籤的頻率特性的圖。第8圖中的(A)表示實施例6的頻率特性、(B)表示實施例7的頻率特性、(C)表示實施例8的頻率特性、(D)表示實施例9的頻率特性。各圖的概要與第7圖相同。FIG. 8 is a diagram showing the frequency characteristics of the RFID tags of Examples 6 to 9. In FIG. 8, (A) shows the frequency characteristics of Example 6, (B) shows the frequency characteristics of Example 7, (C) shows the frequency characteristics of Example 8, and (D) shows the frequency characteristics of Example 9. The overview of each figure is the same as that of FIG. 7.

如第8圖所示,包含在UHF頻帶中的規定的頻率920MHz時的可通訊距離,在實施例6中大約為4.5m、在實施例7中大約為3.5m、在實施例8中大約為2.5m、在實施例9中大約為1.8m。又,頻率特性的峰值的位置,在實施例6中大約為900〜960MHz、在實施例7中大約為940〜1025MHz、在實施例8中大約為1010〜1060MHz、在實施例9中大約為1010MHz附近。As shown in FIG. 8 , the communication distance at the predetermined frequency of 920 MHz included in the UHF band is about 4.5 m in Example 6, about 3.5 m in Example 7, about 2.5 m in Example 8, and about 1.8 m in Example 9. The peak position of the frequency characteristic is about 900 to 960 MHz in Example 6, about 940 to 1025 MHz in Example 7, about 1010 to 1060 MHz in Example 8, and about 1010 MHz in Example 9.

根據第8圖所示的試驗結果,針對磁性片材102的磁性層102A的組成,認為磁性粉的比率越多,則越能夠使共振頻率往低頻率側移動。能夠使共振頻率往低頻率側移動這樣的狀況,是可謀求天線的小型化的意思。針對磁性片材的組成,藉由增加磁性粉的比率,認為能夠實現更小且薄的RFID標籤100。又,根據第8圖所示的試驗結果,因為磁性粉的比率越增加則頻率特性的峰值與UHF頻帶重疊的範圍增加,所以顯示出能夠改善在UHF頻帶中的可通訊距離且能夠提升RFID標籤100的通訊性能。According to the test results shown in FIG. 8 , with respect to the composition of the magnetic layer 102A of the magnetic sheet 102, it is believed that the higher the ratio of magnetic powder, the more the resonance frequency can be shifted to the low frequency side. The fact that the resonance frequency can be shifted to the low frequency side means that the antenna can be miniaturized. With respect to the composition of the magnetic sheet, by increasing the ratio of magnetic powder, it is believed that a smaller and thinner RFID tag 100 can be realized. Furthermore, according to the test results shown in FIG. 8 , because the range of overlap between the peak of the frequency characteristic and the UHF band increases as the ratio of magnetic powder increases, it is shown that the communication distance in the UHF band can be improved and the communication performance of the RFID tag 100 can be enhanced.

<介電層的影響> 如下述般地設定實施例10〜13,驗證相應於介電層103的有無對於通訊性能的影響。 <Influence of dielectric layer> Examples 10 to 13 are set as follows to verify whether the presence of the corresponding dielectric layer 103 has an influence on the communication performance.

[實施例10] 與上述實施例5同樣地,將磁性片材102的狹縫30的寬度設為25mm且將磁性片材102的厚度設為100μm來作成RFID標籤100。將所作成的RFID標籤100貼附在鋼鐵製的櫃上,並使用既有的製品的手持式讀取器(商品名稱:AsReaderGUN、Asterisk公司製造、輸出1W),測量可通訊距離。 [Example 10] Similar to Example 5, the width of the slit 30 of the magnetic sheet 102 is set to 25 mm and the thickness of the magnetic sheet 102 is set to 100 μm to produce an RFID tag 100. The produced RFID tag 100 is attached to a steel cabinet, and the communication distance is measured using an existing handheld reader (trade name: AsReaderGUN, manufactured by Asterisk, output 1W).

[實施例11] 除了去除介電層103以外,與實施例10同樣地作成RFID標籤100,測量頻率特性。 [Example 11] Except for removing the dielectric layer 103, the RFID tag 100 was made in the same manner as in Example 10, and the frequency characteristics were measured.

[實施例12] 除了將磁性片材102的厚度設為200μm以外,與實施例10同樣地作成RFID標籤100,測量頻率特性。 [Example 12] Except that the thickness of the magnetic sheet 102 was set to 200 μm, the RFID tag 100 was prepared in the same manner as in Example 10, and the frequency characteristics were measured.

[實施例13] 除了去除介電層103以外,與實施例12同樣地作成RFID標籤100,測量頻率特性。 [Example 13] Except for removing the dielectric layer 103, the RFID tag 100 was made in the same manner as in Example 12, and the frequency characteristics were measured.

將實施例10〜13的RFID標籤的通訊距離的測量結果顯示於表1中。The measurement results of the communication distances of the RFID tags of Examples 10 to 13 are shown in Table 1.

[表1]    通訊距離[cm] 實施例10 120〜400 實施例11 120〜220 實施例12 300 實施例13 220 [Table 1] Communication distance [cm] Embodiment 10 120~400 Embodiment 11 120~220 Embodiment 12 300 Embodiment 13 220

如表1所示,在磁性片材102的厚度一樣為100μm之實施例10、11中,具備介電層103之實施例10能夠增大可通訊距離。又,在磁性片材102的厚度一樣為200μm之實施例12、13中,具備介電層103之實施例12能夠增大可通訊距離。根據上述結果,顯示出不論磁性片材102的厚度的變化為何,在RFID標籤上設置有介電層103之結構能夠提升通訊性能。As shown in Table 1, in Examples 10 and 11, where the thickness of the magnetic sheet 102 is the same as 100 μm, Example 10 having the dielectric layer 103 can increase the communicative distance. In addition, in Examples 12 and 13, where the thickness of the magnetic sheet 102 is the same as 200 μm, Example 12 having the dielectric layer 103 can increase the communicative distance. According to the above results, it is shown that regardless of the change in the thickness of the magnetic sheet 102, the structure in which the dielectric layer 103 is provided on the RFID tag can improve the communication performance.

<槽孔天線的形狀的影響> 如下述般地設定實施例14〜19,驗證相應於槽孔天線20的形狀的變化對於通訊性能的影響。具體來說,以模擬的方式改變槽孔天線20的形狀,確認阻抗的變化。 <Influence of the shape of the slot antenna> Examples 14 to 19 are set as follows to verify the influence of the change in the shape of the slot antenna 20 on the communication performance. Specifically, the shape of the slot antenna 20 is changed in a simulation to confirm the change in impedance.

[實施例14] 第9圖是示出用於實施例14中的槽孔天線20-1的形狀的圖。以模擬的方式,作成第9圖所示的形狀的槽孔天線20-1的模型。再者,第9圖所示的槽孔天線20-1的形狀和各部分的尺寸,與第6圖所示的實施例1等所形成的槽孔天線20的形狀和各部分的尺寸是相同的。使用以如此方式作成的槽孔天線20-1的模型,模擬之後,實行阻抗的測量。 [Example 14] FIG. 9 is a diagram showing the shape of the slot antenna 20-1 used in Example 14. A model of the slot antenna 20-1 in the shape shown in FIG. 9 is made in a simulation manner. The shape and dimensions of each part of the slot antenna 20-1 shown in FIG. 9 are the same as the shape and dimensions of each part of the slot antenna 20 formed in Example 1 and the like shown in FIG. 6. Using the model of the slot antenna 20-1 made in this way, impedance measurement is performed after simulation.

第10圖是示出實施例14的槽孔天線20-1的阻抗特性的測量結果的圖。第10圖的縱軸表示阻抗的實數與虛數的值。第10圖的橫軸表示頻率[MHz]。第10圖所示的一點鏈線的曲線(標繪有圓圈之曲線)是將對應於各頻率之阻抗的實數加以標繪而成之曲線。第10圖所示的實線的曲線(標繪有四方形之曲線)是將對應於各頻率之阻抗的虛數加以標繪而成之曲線。FIG. 10 is a graph showing the measurement results of the impedance characteristics of the slot antenna 20-1 of Example 14. The vertical axis of FIG. 10 represents the values of real numbers and imaginary numbers of impedance. The horizontal axis of FIG. 10 represents frequency [MHz]. The one-point chain curve (curve with circles) shown in FIG. 10 is a curve in which the real numbers of impedance corresponding to each frequency are plotted. The solid line curve (curve with squares) shown in FIG. 10 is a curve in which the imaginary numbers of impedance corresponding to each frequency are plotted.

[實施例15] 第11圖是示出用於實施例15中的槽孔天線20-2的形狀的圖。實施例15的槽孔天線20-2,以槽孔21的平行部22的長度比實施例14的槽孔天線20-1的槽孔21的平行部22的長度短的方式來形成槽孔21。使用以如此方式作成的槽孔天線20-2的模型,模擬之後,實行阻抗的測量。第12圖是示出實施例15的槽孔天線20-2的阻抗特性的測量結果的圖。第12圖的概要與第10圖相同。 [Example 15] FIG. 11 is a diagram showing the shape of the slot antenna 20-2 used in Example 15. The slot antenna 20-2 of Example 15 forms the slot 21 in a manner such that the length of the parallel portion 22 of the slot 21 is shorter than the length of the parallel portion 22 of the slot 21 of the slot antenna 20-1 of Example 14. Using the model of the slot antenna 20-2 thus made, after simulation, impedance measurement is performed. FIG. 12 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-2 of Example 15. The outline of FIG. 12 is the same as that of FIG. 10.

[實施例16] 第13圖是示出用於實施例16中的槽孔天線20-3的形狀的圖。實施例16的槽孔天線20-3,以槽孔21的平行部22的長度比實施例15的槽孔天線20-2的槽孔21的平行部22的長度短的方式來形成槽孔21。使用以如此方式作成的槽孔天線20-3的模型,模擬之後,實行阻抗的測量。第14圖是示出實施例16的槽孔天線20-3的阻抗特性的測量結果的圖。第14圖的概要與第10圖相同。 [Example 16] FIG. 13 is a diagram showing the shape of the slot antenna 20-3 used in Example 16. The slot antenna 20-3 of Example 16 forms the slot 21 in a manner such that the length of the parallel portion 22 of the slot 21 is shorter than the length of the parallel portion 22 of the slot 21 of the slot antenna 20-2 of Example 15. Using the model of the slot antenna 20-3 made in this manner, after simulation, impedance measurement is performed. FIG. 14 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-3 of Example 16. The outline of FIG. 14 is the same as that of FIG. 10.

[實施例17] 第15圖是示出用於實施例17中的槽孔天線20-4的形狀的圖。實施例17的槽孔天線20-4,以槽孔21沒有垂直部23而僅有平行部22的方式來形成槽孔21。槽孔21的平行部22的長度與實施例14的槽孔天線20-1的槽孔21的平行部22相同。使用以如此方式作成的槽孔天線20-4的模型,模擬之後,實行阻抗的測量。第16圖是示出實施例17的槽孔天線20-4的阻抗特性的測量結果的圖。第16圖的概要與第10圖相同。 [Example 17] FIG. 15 is a diagram showing the shape of the slot antenna 20-4 used in Example 17. The slot antenna 20-4 of Example 17 forms the slot 21 in a manner that the slot 21 has no vertical portion 23 but only a parallel portion 22. The length of the parallel portion 22 of the slot 21 is the same as the parallel portion 22 of the slot 21 of the slot antenna 20-1 of Example 14. Using the model of the slot antenna 20-4 made in this way, after simulation, impedance measurement is performed. FIG. 16 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-4 of Example 17. The outline of FIG. 16 is the same as that of FIG. 10.

[實施例18] 第17圖是示出用於實施例18中的槽孔天線20-5的形狀的圖。實施例18的槽孔天線20-5,以槽孔21的平行部22的寬度比實施例17的槽孔天線20-4的槽孔21的平行部22的寬度大的方式來形成槽孔21。使用以如此方式作成的槽孔天線20-5的模型,模擬之後,實行阻抗的測量。第18圖是示出實施例18的槽孔天線20-5的阻抗特性的測量結果的圖。第18圖的概要與第10圖相同。 [Example 18] FIG. 17 is a diagram showing the shape of the slot antenna 20-5 used in Example 18. The slot antenna 20-5 of Example 18 forms the slot 21 in a manner such that the width of the parallel portion 22 of the slot 21 is larger than the width of the parallel portion 22 of the slot 21 of the slot antenna 20-4 of Example 17. Using the model of the slot antenna 20-5 thus made, after simulation, impedance measurement is performed. FIG. 18 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-5 of Example 18. The outline of FIG. 18 is the same as that of FIG. 10.

[實施例19] 第19圖是示出用於實施例19中的槽孔天線20-6的形狀的圖。實施例19的槽孔天線20-6,以其短邊方向(y方向)的尺寸比實施例14的槽孔天線20-1的短邊方向的尺寸短的方式來形成。槽孔21的形狀與實施例14的槽孔天線20-1的形狀相同。使用以如此方式作成的槽孔天線20-6的模型,模擬之後,實行阻抗的測量。第20圖是示出實施例19的槽孔天線20-6的阻抗特性的測量結果的圖。第20圖的概要與第10圖相同。 [Example 19] FIG. 19 is a diagram showing the shape of the slot antenna 20-6 used in Example 19. The slot antenna 20-6 of Example 19 is formed in such a way that the dimension in the short side direction (y direction) is shorter than the dimension in the short side direction of the slot antenna 20-1 of Example 14. The shape of the slot 21 is the same as that of the slot antenna 20-1 of Example 14. Using the model of the slot antenna 20-6 made in this way, after simulation, impedance measurement is performed. FIG. 20 is a diagram showing the measurement results of the impedance characteristics of the slot antenna 20-6 of Example 19. The outline of FIG. 20 is the same as that of FIG. 10.

各實施例14〜19的比較驗證,是以與在上述實施例1等之中所使用的實物的槽孔天線20的形狀和各部分的尺寸相同之實施例14的槽孔天線20-1的阻抗特性作為基準來實行。例如,在與實施例14同樣的阻抗特性的實施例中,即便以該實施例的形狀來實際地製造天線,假定也可獲得與實施例1等的實物的槽孔天線20同樣的性能。The comparative verification of each of the embodiments 14 to 19 was performed based on the impedance characteristics of the slot antenna 20-1 of the embodiment 14 which has the same shape and dimensions of each part as the actual slot antenna 20 used in the above-mentioned embodiment 1, etc. For example, in an embodiment having the same impedance characteristics as that of the embodiment 14, even if an antenna is actually manufactured in the shape of the embodiment, it is assumed that the same performance as that of the actual slot antenna 20 of the embodiment 1, etc. can be obtained.

若比較實施例14〜16,如第10圖、第12圖、第14圖所示,若變更狹縫30的平行部22的長度也就是變更狹縫30的長邊方向(x方向)的長度,可知槽孔天線的阻抗特性大幅地變化。另一方面,若比較實施例14與實施例17、18,如第10圖、第16圖、第18圖所示,即便使狹縫沒有垂直部23或增加平行部22的寬度等來變更狹縫30的短邊方向(y方向)的長度,在模擬之後,發現槽孔天線的阻抗特性幾乎沒有變化。同樣地,若比較實施例14與實施例19,如第10圖、第20圖所示,即便變更槽孔天線的短邊方向(y方向)的尺寸,槽孔天線的阻抗特性也幾乎沒有發現到變化。When comparing Examples 14 to 16, as shown in FIG. 10, FIG. 12, and FIG. 14, if the length of the parallel portion 22 of the slit 30 is changed, that is, the length of the long side direction (x direction) of the slit 30 is changed, it can be seen that the impedance characteristics of the slot antenna change significantly. On the other hand, when comparing Example 14 with Examples 17 and 18, as shown in FIG. 10, FIG. 16, and FIG. 18, even if the length of the short side direction (y direction) of the slit 30 is changed by making the slit have no vertical portion 23 or increasing the width of the parallel portion 22, after simulation, it is found that the impedance characteristics of the slot antenna are almost unchanged. Similarly, when comparing Example 14 and Example 19, as shown in FIG. 10 and FIG. 20 , even if the dimension of the short side direction (y direction) of the slot antenna is changed, the impedance characteristics of the slot antenna are hardly changed.

根據上述,在模擬之後,顯示出狹縫30的長邊方向(x方向)的長度對於槽孔天線的阻抗特性是重要的。According to the above, after simulation, it is shown that the length of the long side direction (x direction) of the slit 30 is important for the impedance characteristics of the slot antenna.

第22圖是有關上述本實施形態中的實施例1的RFID標籤,示出針對作為貼附對象物200的各種金屬的影響的評價結果的圖。其中,當進行本評價時,不使用標籤紙105,以黏著帶將標籤的兩端固定在金屬板上來進行評價。Fig. 22 is a diagram showing the evaluation results of the RFID tag of Example 1 in the present embodiment, with respect to the influence of various metals as the attached object 200. In this evaluation, the label paper 105 is not used, and both ends of the label are fixed to the metal plate with adhesive tape for evaluation.

由第2圖的評價結果可知,本實施形態的RFID標籤,對於各種金屬能夠發揮良好的通訊性能。From the evaluation results in FIG. 2 , it can be seen that the RFID tag of this embodiment can exhibit good communication performance with various metals.

以上,一邊參照具體實例,一邊說明本實施形態。然而,本揭示並非限定於這些具體實例。只要具備本揭示的特徵,即使業者將適當設計變更加入這些具體實例,亦包含在本揭示的範圍中。前述的各具體實例所具備的各元件以及此配置、條件、形狀等並未限定於所例示者,並且能夠進行適當變更。只要不發生技術上的矛盾,能夠適當地改變前述的各具體實例所具備的各元件的組合。The above describes the present embodiment with reference to specific examples. However, the present disclosure is not limited to these specific examples. As long as the features of the present disclosure are present, even if the industry adds appropriate design changes to these specific examples, they are also included in the scope of the present disclosure. The various components and the configuration, conditions, shapes, etc. of the aforementioned specific examples are not limited to those illustrated, and can be appropriately changed. As long as there is no technical contradiction, the combination of the various components of the aforementioned specific examples can be appropriately changed.

本國際申請案是基於2021年3月12日申請的日本專利申請案2021-040664號而主張優先權,此處將2021-040664號的全部內容援用在本國際申請案內。This international application claims priority based on Japanese Patent Application No. 2021-040664 filed on March 12, 2021, and the entire contents of Japanese Patent Application No. 2021-040664 are hereby incorporated by reference into this international application.

10:IC晶片 20,20-1,20-2,20-3,20-4,20-520-6:槽孔天線 21,21A:槽孔 22,22A:一對平行部 23:一對垂直部 30:狹縫 100,100A:RFID標籤 101:嵌置部 102:磁性片材 103:介電層 104:黏著層 105:標籤紙(薄膜系黏合紙) 105A:外緣部分 106:黏著劑 107:剝離紙 200:貼附對象物 10: IC chip 20,20-1,20-2,20-3,20-4,20-520-6: slot antenna 21,21A: slot 22,22A: a pair of parallel parts 23: a pair of vertical parts 30: slit 100,100A: RFID tag 101: embedding part 102: magnetic sheet 103: dielectric layer 104: adhesive layer 105: label paper (film adhesive paper) 105A: outer edge part 106: adhesive 107: release paper 200: attached object

第1圖是實施形態的RFID標籤的層疊剖面圖。 第2圖是第1圖所示的RFID標籤的分解斜視圖。 第3圖是第1圖所示的RFID標籤的從上方觀察而得的平面圖。 第4圖是示出槽孔天線的其他形狀的槽孔的一例的平面圖。 第5圖是示出實施形態的RFID標籤的製造方法的一例的流程圖。 第6圖是示出用於實施例1中的槽孔天線與槽孔的各部分的尺寸的圖。 第7圖是示出實施例1〜5和比較例2的RFID標籤的頻率特性的圖。 第8圖是示出實施例6〜9的RFID標籤的頻率特性的圖。 第9圖是示出用於實施例14中的槽孔天線的形狀的圖。 第10圖是示出實施例14的槽孔天線的阻抗特性的測量結果的圖。 第11圖是示出用於實施例15中的槽孔天線的形狀的圖。 第12圖是示出實施例15的槽孔天線的阻抗特性的測量結果的圖。 第13圖是示出用於實施例16中的槽孔天線的形狀的圖。 第14圖是示出實施例16的槽孔天線的阻抗特性的測量結果的圖。 第15圖是示出用於實施例17中的槽孔天線的形狀的圖。 第16圖是示出實施例17的槽孔天線的阻抗特性的測量結果的圖。 第17圖是示出用於實施例18中的槽孔天線的形狀的圖。 第18圖是示出實施例18的槽孔天線的阻抗特性的測量結果的圖。 第19圖是示出用於實施例19中的槽孔天線的形狀的圖。 第20圖是示出實施例19的槽孔天線的阻抗特性的測量結果的圖。 第21圖是變化例的RFID標籤的層疊剖面圖。 第22圖是示出實施形態的RFID標籤的對於各種金屬的特性例的圖。 FIG. 1 is a stacked cross-sectional view of an RFID tag of an embodiment. FIG. 2 is an exploded oblique view of the RFID tag shown in FIG. 1. FIG. 3 is a plan view of the RFID tag shown in FIG. 1 as viewed from above. FIG. 4 is a plan view showing an example of a slot of another shape of a slot antenna. FIG. 5 is a flow chart showing an example of a method for manufacturing an RFID tag of an embodiment. FIG. 6 is a diagram showing the dimensions of each part of the slot antenna and the slot used in Embodiment 1. FIG. 7 is a diagram showing the frequency characteristics of the RFID tags of Embodiments 1 to 5 and Comparative Example 2. FIG. 8 is a diagram showing the frequency characteristics of the RFID tags of Embodiments 6 to 9. FIG. 9 is a diagram showing the shape of the slot antenna used in Embodiment 14. FIG. 10 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Embodiment 14. FIG. 11 is a diagram showing the shape of the slot antenna used in Example 15. FIG. 12 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Example 15. FIG. 13 is a diagram showing the shape of the slot antenna used in Example 16. FIG. 14 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Example 16. FIG. 15 is a diagram showing the shape of the slot antenna used in Example 17. FIG. 16 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Example 17. FIG. 17 is a diagram showing the shape of the slot antenna used in Example 18. FIG. 18 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Example 18. FIG. 19 is a diagram showing the shape of the slot antenna used in Example 19. FIG. 20 is a diagram showing the measurement results of the impedance characteristics of the slot antenna of Example 19. FIG. 21 is a stacked cross-sectional diagram of a variation of the RFID tag. FIG. 22 is a diagram showing examples of the characteristics of the RFID tag of the embodiment for various metals.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

Claims (8)

一種RFID標籤,其要貼附在貼附對象物上,並具備:嵌置部,其具有記錄有識別資訊之IC晶片與連接於前述IC晶片之槽孔天線;磁性片材,其在前述嵌置部的前述貼附對象物側經由黏著層而直接層疊於前述嵌置部;介電層,其層疊在前述磁性片材的前述貼附對象物側;其中,前述槽孔天線是由金屬薄膜形成,在前述槽孔天線上設置有其前述金屬薄膜的一部分被細長狀地切下而成之槽孔,在磁性片材上設置有狹縫,用以區分具有磁性特性的磁性層,前述狹縫,在前述磁性片材與前述嵌置部層疊的狀態下,被配置在與前述嵌置部的前述槽孔重疊的區域。 An RFID tag is to be attached to an object to be attached, and comprises: an embedding portion having an IC chip recording identification information and a slot antenna connected to the IC chip; a magnetic sheet directly stacked on the embedding portion via an adhesive layer on the embedding portion's side to be attached; and a dielectric layer stacked on the magnetic sheet's side to be attached; wherein the slot antenna is formed of a metal film, a slot hole formed by cutting a portion of the metal film in a long and narrow shape is provided on the slot antenna, a slit is provided on the magnetic sheet to distinguish a magnetic layer having magnetic properties, and the slit is arranged in a region overlapping with the slot hole of the embedding portion when the magnetic sheet and the embedding portion are stacked. 如請求項1所述之RFID標籤,其中,前述貼附對象物是金屬製。 The RFID tag as described in claim 1, wherein the object to be attached is made of metal. 如請求項1所述之RFID標籤,其中,前述IC晶片配置於前述嵌置部的主面的中央,前述槽孔天線的前述槽孔具有一對平行部,其夾入前述IC晶片並往規定方向平行地延伸。 The RFID tag as described in claim 1, wherein the IC chip is disposed at the center of the main surface of the embedding portion, and the slot of the slot antenna has a pair of parallel portions that sandwich the IC chip and extend parallel to a specified direction. 如請求項3所述之RFID標籤,其中,前述槽孔具有垂直部,其往與前述一對平行部正交之方向延伸。 An RFID tag as described in claim 3, wherein the slot has a vertical portion extending in a direction orthogonal to the pair of parallel portions. 如請求項3所述之RFID標籤,其中,前述狹縫,以在前述磁性片材與前述嵌置部層疊的狀態下,前述嵌置部的前述槽孔的前述一對平行部的全體被包含在前 述狹縫的區域內的方式形成。 The RFID tag as described in claim 3, wherein the aforementioned slit is formed in such a way that when the aforementioned magnetic sheet and the aforementioned embedding portion are stacked, the entire pair of parallel portions of the aforementioned slot of the aforementioned embedding portion are contained within the area of the aforementioned slit. 如請求項1至4中任一項所述之RFID標籤,其使用頻率為UHF頻帶的頻率。 The RFID tag as described in any one of claim items 1 to 4 uses a frequency in the UHF band. 如請求項1所述之RFID標籤,其為電波式的無線標籤。 The RFID tag as described in claim 1 is a radio wave wireless tag. 一種RFID標籤的製造方法,該RFID標籤要被貼附於貼附對象物上,該製造方法由RFID標籤的製造裝置來實行,包括:形成磁性片材之步驟,該步驟形成磁性片材,該磁性片材設置了用以區分具有磁性特性的磁性層之狹縫;層疊嵌置部與前述磁性片材之步驟,將在前述形成磁性片材之步驟中所形成的前述磁性片材,在該嵌置部的前述貼附對象物側經由黏著層而直接層疊於前述嵌置部,該嵌置部具有記錄有識別資訊之IC晶片與連接於前述IC晶片之槽孔天線;層疊介電層之步驟,將該介電層層疊於前述磁性片材的前述貼附對象物側;其中,前述槽孔天線是由金屬薄膜形成,在前述槽孔天線上設置有其前述金屬薄膜的一部分被細長狀地切下而成之槽孔,前述狹縫,在前述磁性片材與前述嵌置部層疊的狀態下,被配置在與前述嵌置部的前述槽孔重疊的區域。 A method for manufacturing an RFID tag, the RFID tag is to be attached to an attached object, the manufacturing method is implemented by an RFID tag manufacturing device, comprising: a step of forming a magnetic sheet, the step of forming a magnetic sheet, the magnetic sheet being provided with a slit for distinguishing a magnetic layer having magnetic properties; a step of laminating an embedding portion and the magnetic sheet, the magnetic sheet formed in the step of forming the magnetic sheet being directly laminated on the aforementioned attachment object side of the embedding portion via an adhesive layer; An embedding part, the embedding part has an IC chip recording identification information and a slot antenna connected to the IC chip; a step of stacking dielectric layers, stacking the dielectric layers on the attachment object side of the magnetic sheet; wherein the slot antenna is formed of a metal film, and a slot hole is provided on the slot antenna, in which a part of the metal film is cut off in a long and thin shape, and the slit is arranged in a region overlapping with the slot hole of the embedding part when the magnetic sheet and the embedding part are stacked.
TW111108934A 2021-03-12 2022-03-11 RFID tag and method for manufacturing the same TWI837608B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-040664 2021-03-12
JP2021040664A JP2022140030A (en) 2021-03-12 2021-03-12 RFID tag and RFID tag manufacturing method

Publications (2)

Publication Number Publication Date
TW202307738A TW202307738A (en) 2023-02-16
TWI837608B true TWI837608B (en) 2024-04-01

Family

ID=

Similar Documents

Publication Publication Date Title
CN111566672B (en) Antenna pattern, RFID inlay, RFID tag, and RFID medium
KR100787263B1 (en) Rfid tag and manufacturing method thereof
EP2916418B1 (en) Wireless charging and communication board and wireless charging and communication device
EP1713025B1 (en) RFID tag set and RFID tag
US11695195B2 (en) Self-supporting antenna
JP2006127424A (en) Radio tag
TWI837608B (en) RFID tag and method for manufacturing the same
JP2007048183A (en) Non-contact ic tag label
US9508037B2 (en) Non-contact IC label
WO2008018211A1 (en) Magnetic sheet, antenna device, and method for manufacturing antenna device
WO2022191258A1 (en) Rfid tag and rfid tag manufacturing method
JP5061712B2 (en) Non-contact IC tag manufacturing method
KR101909956B1 (en) Manufacturing method of antenna module using one time hot press
JP2019061516A (en) Identification body
JP2009130483A (en) Contactless ic tag and method for manufacturing contactless ic tag
WO2021189228A1 (en) Rfid tag
JP7183651B2 (en) RF tag label
JP2024031275A (en) RFID tag
KR101444905B1 (en) Antenna for near field communication
JP2004086683A (en) Rf tag
CN114730364A (en) RFID tag
WO2019065665A1 (en) Identification body and method for manufacturing same
KR102092281B1 (en) Wireless communication and charge substrate and wireless communication and charge device
JP2012248106A (en) Non-contact ic label
KR102130026B1 (en) Wireless communication and charge substrate and wireless communication and charge device